76,273 research outputs found

    Towards Quantum Dielectric Branes: Curvature Corrections in Abelian Beta Function and Nonabelian Born-Infeld Action

    Full text link
    We initiate a programme to compute curvature corrections to the nonabelian BI action. This is based on the calculation of derivative corrections to the abelian BI action, describing a maximal brane, to all orders in F. An exact calculation in F allows us to apply the SW map, reducing the maximal abelian point of view to a minimal nonabelian point of view (replacing 1/F with [X,X] at large F), resulting in matrix model equations of motion. We first study derivative corrections to the abelian BI action and compute the 2-loop beta function for an open string in a WZW (parallelizable) background. This beta function is the first step in the process of computing string equations of motion, which can be later obtained by computing the Weyl anomaly coefficients or the partition function. The beta function is exact in F and computed to orders O(H,H^2,H^3) (H=dB and curvature is R ~ H^2) and O(DF,D^2F,D^3F). In order to carry out this calculation we develop a new regularization method for 2-loop graphs. We then relate perturbative results for abelian and nonabelian BI actions, by showing how abelian derivative corrections yield nonabelian commutator corrections, at large F. We begin the construction of a matrix model describing \a' corrections to Myers' dielectric effect. This construction is carried out by setting up a perturbative classification of the relevant nonabelian tensor structures, which can be considerably narrowed down by the constraint of translation invariance in the action and the possibility for generic field redefinitions. The final matrix action is not uniquely determined and depends upon two free parameters. These parameters could be computed via further calculations in the abelian theory.Comment: JHEP3.cls, 64 pages, 3 figures; v2: added references; v3: more references, final version for NP

    A Diagrammatic Equation for Oriented Planar Graphs

    Full text link
    In this paper we introduce a diagrammatic equation for the planar sector of square non hermitian random matrix models strongly reminiscent of Polchinski's equation in quantum field theory. Our fundamental equation is first obtained by a graph counting argument and subsequently derived independently by a precise saddle point analysis of the corresponding random matrix integral. We solve the equation perturbatively for a generic model and conclude by exhibiting two duality properties of the perturbative solution.Comment: References [12] and [13] and subsequent discussion adde

    On the refined counting of graphs on surfaces

    Full text link
    Ribbon graphs embedded on a Riemann surface provide a useful way to describe the double line Feynman diagrams of large N computations and a variety of other QFT correlator and scattering amplitude calculations, e.g in MHV rules for scattering amplitudes, as well as in ordinary QED. Their counting is a special case of the counting of bi-partite embedded graphs. We review and extend relevant mathematical literature and present results on the counting of some infinite classes of bi-partite graphs. Permutation groups and representations as well as double cosets and quotients of graphs are useful mathematical tools. The counting results are refined according to data of physical relevance, such as the structure of the vertices, faces and genus of the embedded graph. These counting problems can be expressed in terms of observables in three-dimensional topological field theory with S_d gauge group which gives them a topological membrane interpretation.Comment: 57 pages, 12 figures; v2: Typos corrected; references adde

    Low momentum expansion of one loop amplitudes in heterotic string theory

    Full text link
    We consider the low momentum expansion of the four graviton and the two graviton--two gluon amplitudes in heterotic string theory at one loop in ten dimensions, and analyze contributions upto the D^2 R^4 interaction from the four graviton amplitude, and the D^4 R^2 F^2 interaction from the two graviton--two gluon amplitude. The calculations are performed by obtaining equations for the relevant modular graph functions that arise in the modular invariant integrals, and involve amalgamating techniques used in the type II theory and the calculation of the elliptic genus in the heterotic theory.Comment: 67 pages, LaTeX, 14 figure

    On the Infrared Behavior of Landau Gauge Yang-Mills Theory with a Fundamentally Charged Scalar Field

    Full text link
    Recently it has been shown that infrared singularities of Landau gauge QCD can confine static quarks via a linearly rising potential. We show that the same mechanism can also provide a confining interaction between charged scalar fields in the fundamental representation. This confirms that within this scenario static confinement is a universal property of the gauge sector even though it is formally represented in the functional equations of the matter sector. The simplifications compared to the fermionic case make the scalar system an ideal laboratory for a detailed analysis of the confinement mechanism in numerical studies of the functional equations as well as in gauge-fixed lattice simulations.Comment: 8 pages, PDFLaTe

    The resultant parameters of effective theory

    Full text link
    This is the 4-th paper in the series devoted to a systematic study of the problem of mathematically correct formulation of the rules needed to manage an effective field theory. Here we consider the problem of constructing the full set of essential parameters in the case of the most general effective scattering theory containing no massless particles with spin J > 1/2. We perform the detailed classification of combinations of the Hamiltonian coupling constants and select those which appear in the expressions for renormalized S-matrix elements at a given loop order.Comment: 21 pages, 4 LaTeX figures, submitted to Phys. Rev.
    corecore