117 research outputs found

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    FlexWAFE - eine Architektur für rekonfigurierbare-Bildverarbeitungssysteme

    Get PDF
    Recently there has been an increase in demand for high-resolution digital media content in both cinema and television industries. Currently existing equipment does not meet the requirements, or is too costly. New hardware systems and new programming techniques are needed in order to meet the high-resolution, high-quality, image requirements and reduce costs. The industry seeks a flexible architecture capable of running multiple applications on top of standard off-the-shelf components, with reduced development time. Until now, standard practice has been to develop specialized architectures and systems that target a single application. This has little flexibility and leads to high developments costs, every new application is designed almost from scratch. Our focus was to develop an architecture that is suited to image stream processing and has the flexibility to run multiple applications using the same FPGA-based hardware platform. The novelty in our approach is that we reconfigure parts of the architecture at run-time, but without incurring in the time and added constraints penalty of FPGA-partial-reconfiguration techniques. The architecture uses a hierarchical control structure that is well suited to parallel processing, and allows single cycle latency reconfiguration of parts of the processing pipeline. This is achieved using relatively little resources for the distributed control structures. To test the developed architecture a complex film-grain noise reduction algorithm was implemented on an off-the-shelf hardware platform developed by Thomson-Grass Valley. The system meet all the requirements and had very little load on the hierarchical control structures, there is growth headroom for much complexer control demands. The architecture has been ported to other hardware platforms, and other applications have been implemented as well. The run-time reconfigurability has proven to be a key factor in the success of the FlexWAFE.Kürzlich gab es eine Zunahme der Nachfrage nach hochauflösenden digitalen Medieninhalten in den Kino- und Fernsehenindustrien. Derzeit vorhandene Systeme entsprechen nicht den Anforderungen, oder sind zu teuer. Neue Hardware-Systeme und neuer Programmiertechniken sind erforderlich, um den hochauflösenden, hochwertigen, Bildanforderungen zu genügen und Kosten zu verringern. Die Industrie sucht eine flexible Architektur zur Ausführung mehrerer Anwendungen auf Standard-Komponenten, mit reduzierten Entwicklungszeiten. Bis jetzt ist gängige Praxis, spezialisierten Architektur und Systeme zu entwickeln, die eine einzelne Anwendung zielen. Dieses hat wenig Flexibilität und führt zu hohe Entwicklungskosten, jede neue Anwendung ist fast von Grund auf neu konzipiert. Unser Fokus war es, eine für Bild Verarbeitung geeignet Architektur zu entwickeln dass die Flexibilität hat mehrere Anwendungen an dieselbe FPGA-basierte Hardware-Plattform zu laufen. Die Neuheit in unserem Ansatz ist, dass wir Teile der Architektur zur Laufzeit rekonfigurieren, aber, ohne das Zeit und constraints strafe von FPGA Partielle-Rekonfiguration-Techniken. Die Architektur verwendet eine hierarchische Kontrollstruktur, die zur parallel Verarbeitung gut geeignet ist, und Single-Cycle-Latenz Rekonfiguration von Teilen der Verarbeitungs-Pipeline ermöglicht. Dieses wird unter Verwendung relativ weniger Ressourcen für die verteiltes Steuerung Strukturen erzielt. Um das entwickelte Architektur zu testen ein komplexer Film-Korn-Rauschunterdrückung Algorithmus wurde auf einer von Thomson-Grass Valley entwickelt standard Hardware-Plattform umgesetzt. Das System erfüllt alle Anforderungen und hatte sehr wenig Last auf den hierarchischen Kontrollstrukturen, es gibt viel Wachstum Spielraum für viel kompliziertere Steuerunganforderungen. Die Architektur ist zu anderen Hardwareplattformen portiert worden, und andere Anwendungen wurden ebenfalls implementiert. Der Laufzeitreconfigurability ist ein Schlüsselfaktor im Erfolg des FlexWAFE gewesen

    Runtime Hardware Reconfiguration in Wireless Sensor Networks for Condition Monitoring

    Get PDF
    The integration of miniaturized heterogeneous electronic components has enabled the deployment of tiny sensing platforms empowered by wireless connectivity known as wireless sensor networks. Thanks to an optimized duty-cycled activity, the energy consumption of these battery-powered devices can be reduced to a level where several years of operation is possible. However, the processing capability of currently available wireless sensor nodes does not scale well with the observation of phenomena requiring a high sampling resolution. The large amount of data generated by the sensors cannot be handled efficiently by low-power wireless communication protocols without a preliminary filtering of the information relevant for the application. For this purpose, energy-efficient, flexible, fast and accurate processing units are required to extract important features from the sensor data and relieve the operating system from computationally demanding tasks. Reconfigurable hardware is identified as a suitable technology to fulfill these requirements, balancing implementation flexibility with performance and energy-efficiency. While both static and dynamic power consumption of field programmable gate arrays has often been pointed out as prohibitive for very-low-power applications, recent programmable logic chips based on non-volatile memory appear as a potential solution overcoming this constraint. This thesis first verifies this assumption with the help of a modular sensor node built around a field programmable gate array based on Flash technology. Short and autonomous duty-cycled operation combined with hardware acceleration efficiently drop the energy consumption of the device in the considered context. However, Flash-based devices suffer from restrictions such as long configuration times and limited resources, which reduce their suitability for complex processing tasks. A template of a dynamically reconfigurable architecture built around coarse-grained reconfigurable function units is proposed in a second part of this work to overcome these issues. The module is conceived as an overlay of the sensor node FPGA increasing the implementation flexibility and introducing a standardized programming model. Mechanisms for virtual reconfiguration tailored for resource-constrained systems are introduced to minimize the overhead induced by this genericity. The definition of this template architecture leaves room for design space exploration and application- specific customization. Nevertheless, this aspect must be supported by appropriate design tools which facilitate and automate the generation of low-level design files. For this purpose, a software tool is introduced to graphically configure the architecture and operation of the hardware accelerator. A middleware service is further integrated into the wireless sensor network operating system to bridge the gap between the hardware and the design tools, enabling remote reprogramming and scheduling of the hardware functionality at runtime. At last, this hardware and software toolchain is applied to real-world wireless sensor network deployments in the domain of condition monitoring. This category of applications often require the complex analysis of signals in the considered range of sampling frequencies such as vibrations or electrical currents, making the proposed system ideally suited for the implementation. The flexibility of the approach is demonstrated by taking examples with heterogeneous algorithmic specifications. Different data processing tasks executed by the sensor node hardware accelerator are modified at runtime according to application requests

    Acquisition systems and decoding algorithms of peripheral neural signals for prosthetic applications

    Get PDF
    During the years, neuroprosthetic applications have obtained a great deal of attention by the international research, especially in the bioengineering field, thanks to the huge investments on several proposed projects funded by the political institutions which consider the treatment of this particular disease of fundamental importance for the global community. The aim of these projects is to find a possible solution to restore the functionalities lost by a patient subjected to an upper limb amputation trying to develop, according to physiological considerations, a communication link between the brain in which the significant signals are generated and a motor prosthesis device able to perform the desired action. Moreover, the designed system must be able to give back to the brain a sensory feedback about the surrounding world in terms of pressure or temperature acquired by tactile biosensors placed at the surface of the cybernetic hand. It in fact allows to execute involuntarymovements when for example the armcomes in contact with hot objects. The development of such a closed-loop architecture involves the need to address some critical issues which depend on the chosen approach. Several solutions have been proposed by the researches of the field, each one differing with respect to where the neural signals are acquired, either at the central nervous systemor at the peripheral one,most of themfollowing the former even that the latter is always considered by the amputees amore natural way to handle the artificial limb. This research work is based on the use of intrafascicular electrodes directly implanted in the residual peripheral nerves of the stump which represents a good compromise choice in terms of invasiveness and selectivity extracting electroneurographic (ENG) signals from which it is possible to identify the significant activity of a quite limited number of neuronal cells. In the perspective of the hardware implementation of the resulting solution which can work autonomously without any intervention by the amputee in an adaptive way according to the current characteristics of the processed signal and by using batteries as power source allowing portability, it is necessary to fulfill the tight constraints imposed by the application under consideration involved in each of the various phases which compose the considered closed-loop system. Regarding to the recording phase, the implementation must be able to remove the unwanted interferences mainly due to the electro-stimulations of themuscles placed near the electrodes featured by an order of magnitude much greater in comparison to that of the signals of interest amplifying the frequency components belonging to the significant bandwidth, and to convert them with a high resolution in order to obtain good performance at the next processing phases. To this aim, a recording module for peripheral neural signals will be presented, based on the use of a sigma-delta architecture which is composed by two main parts: an analog front-end stage for neural signal acquisition, pre-filtering and sigma-delta modulation and a digital unit for sigma-delta decimation and system configuration. Hardware/software cosimulations exploiting the Xilinx System Generator tool in Matlab Simulink environment and then transistor-level simulations confirmed that the system is capable of recording neural signals in the order of magnitude of tens of μV rejecting the huge low-frequency noise due to electromyographic interferences. The same architecture has been then exploited to implement a prototype of an 8-channel implantable electronic bi-directional interface between the peripheral nervous system and the neuro-controlled hand prosthesis. The solution includes a custom designed Integrated Circuit (0.35μm CMOS technology), responsible of the signal pre-filtering and sigma-delta modulation for each channel and the neural stimuli generation (in the opposite path) based on the directives sent by a digital control systemmapped on a low-cost Xilinx FPGA Spartan-3E 1600 development board which also involves the multi-channel sigma-delta decimation with a high-order band-pass filter as first stage in order to totally remove the unwanted interferences. In this way, the analog chip can be implanted near the electrodes thanks to its limited size avoiding to add a huge noise to theweak neural signals due to longwires connections and to cause heat-related infections, shifting the complexity to the digital part which can be hosted on a separated device in the stump of the amputeewithout using complex laboratory instrumentations. The system has been successfully tested from the electrical point of view and with in-vivo experiments exposing good results in terms of output resolution and noise rejection even in case of critical conditions. The various output channels at the Nyquist sampling frequency coming from the acquisition system must be processed in order to decode the intentions of movements of the amputee, applying the correspondent electro-mechanical stimulation in input to the cybernetic hand in order to perform the desired motor action. Different decoding approaches have been presented in the past, the majority of them were conceived starting from the relative implementation and performance evaluation of their off-line version. At the end of the research, it is necessary to develop these solutions on embedded systems performing an online processing of the peripheral neural signals. However, it is often possible only by using complex hardware platforms clocked at very high operating frequencies which are not be compliant with the low-power requirements needed to allow portability for the prosthetic device. At present, in fact, the important aspect of the real-time implementation of sophisticated signal processing algorithms on embedded systems has been often overlooked, notwithstanding the impact that limited resources of the former may have on the efficiency/effectiveness of any given algorithm. In this research work it has been addressed the optimization of a state-of-the-art algorithmfor PNS signals decoding that is a step forward for its real-time, full implementation onto a floating-point Digital Signal Processor (DSP). Beyond low-level optimizations, different solutions have been proposed at an high level in order to find the best trade-off in terms of effectiveness/efficiency. A latency model, obtained through cycle accurate profiling of the different code sections, has been drawn in order to perform a fair performance assessment. The proposed optimized real-time algorithmachieves up to 96% of correct classification on real PNS signals acquired through tf-LIFE electrodes on animals, and performs as the best off-line algorithmfor spike clustering on a synthetic cortical dataset characterized by a reasonable dissimilarity between the spikemorphologies of different neurons. When the real-time requirements are joined to the fulfilment of area and power minimization for implantable/portable applications, such as for the target neuroprosthetic devices, only custom VLSI implementations can be adopted. In this case, every part of the algorithmshould be carefully tuned. To this aim, the first preprocessing stage of the decoding algorithmbased on the use of aWavelet Denoising solution able to remove also the in-band noise sources has been deeply analysed in order to obtain an optimal hardware implementation. In particular, the usually overlooked part related to threshold estimation has been evaluated in terms of required hardware resources and functionality, exploiting the commercial Xilinx System Generator tool for the design of the architecture and the co-simulation. The analysis has revealed how the widely used Median Absolute Deviation (MAD) could lead o hardware implementations highly inefficient compared to other dispersion estimators demonstrating better scalability, relatively to the specific application. Finally, two different hardware implementations of the reference decoding algorithm have been presented highlighting pros and cons of each one of them. Firstly, a novel approach based on high-level dataflow description and automatic hardware generation is presented and evaluated on the on-line template-matching spike sorting algorithmwhich represents the most complex processing stage. It starts from the identification of the single kernels with the greater computational complexity and using their dataflow description to generate the HDL implementation of a coarse-grained reconfigurable global kernel characterized by theminimumresources in order to reduce the area and the energy dissipation for the fulfilment of the low-power requirements imposed by the application. Results in the best case have revealed a 71%of area saving compared tomore traditional solutions,without any accuracy penalty. With respect to single kernels execution, better latency performance are achievable stillminimizing the number of adopted resources. The performance in terms of latency can also be improved by tuning the implemented parallelismin the light of a defined number of channels and real-time constraints, by using more than one reconfigurable global kernel in order that they can be exploited to perform the same or different kernels at the same time in a parallel way, due to the fact that each one can execute the relative processing only in a sequential way. For this reason, a second FPGA-based prototype has been proposed based on the use of aMulti-Processor System-on-Chip (MPSoC) embedded architecture. This prototype is capable of respecting the real-time constraints posed by the application when clocked at less than 50 MHz, in comparison to 300 MHz of the previous DSP implementation. Considering that the application workload is extremely data dependent and unpredictable due to the sparsity of the neural signals, the architecture has to be dimensioned taking into account critical worst-case operating conditions in order to always ensure the correct functionality. To compensate the resulting overprovisioning of the system architecture, a software-controllable power management based on the use of clock gating techniques has been integrated in order tominimize the dynamic power consumption of the resulting solution. Summarizing, this research work can be considered a sort of proof-of-concept for the proposed techniques considering all the design issues which characterize each stage of the closed-loop system in the perspective of a portable low-power real-time hardware implementation of the neuro-controlled prosthetic device

    Global Shipping Container Monitoring Using Machine Learning with Multi-Sensor Hubs and Catadioptric Imaging

    Get PDF
    We describe a framework for global shipping container monitoring using machine learning with multi-sensor hubs and infrared catadioptric imaging. A wireless mesh radio satellite tag architecture provides connectivity anywhere in the world which is a significant improvement to legacy methods. We discuss the design and testing of a low-cost long-wave infrared catadioptric imaging device and multi-sensor hub combination as an intelligent edge computing system that, when equipped with physics-based machine learning algorithms, can interpret the scene inside a shipping container to make efficient use of expensive communications bandwidth. The histogram of oriented gradients and T-channel (HOG+) feature as introduced for human detection on low-resolution infrared catadioptric images is shown to be effective for various mirror shapes designed to give wide volume coverage with controlled distortion. Initial results for through-metal communication with ultrasonic guided waves show promise using the Dynamic Wavelet Fingerprint Technique (DWFT) to identify Lamb waves in a complicated ultrasonic signal

    Acquisition systems and decoding algorithms of peripheral neural signals for prosthetic applications

    Get PDF
    During the years, neuroprosthetic applications have obtained a great deal of attention by the international research, especially in the bioengineering field, thanks to the huge investments on several proposed projects funded by the political institutions which consider the treatment of this particular disease of fundamental importance for the global community. The aim of these projects is to find a possible solution to restore the functionalities lost by a patient subjected to an upper limb amputation trying to develop, according to physiological considerations, a communication link between the brain in which the significant signals are generated and a motor prosthesis device able to perform the desired action. Moreover, the designed system must be able to give back to the brain a sensory feedback about the surrounding world in terms of pressure or temperature acquired by tactile biosensors placed at the surface of the cybernetic hand. It in fact allows to execute involuntarymovements when for example the armcomes in contact with hot objects. The development of such a closed-loop architecture involves the need to address some critical issues which depend on the chosen approach. Several solutions have been proposed by the researches of the field, each one differing with respect to where the neural signals are acquired, either at the central nervous systemor at the peripheral one,most of themfollowing the former even that the latter is always considered by the amputees amore natural way to handle the artificial limb. This research work is based on the use of intrafascicular electrodes directly implanted in the residual peripheral nerves of the stump which represents a good compromise choice in terms of invasiveness and selectivity extracting electroneurographic (ENG) signals from which it is possible to identify the significant activity of a quite limited number of neuronal cells. In the perspective of the hardware implementation of the resulting solution which can work autonomously without any intervention by the amputee in an adaptive way according to the current characteristics of the processed signal and by using batteries as power source allowing portability, it is necessary to fulfill the tight constraints imposed by the application under consideration involved in each of the various phases which compose the considered closed-loop system. Regarding to the recording phase, the implementation must be able to remove the unwanted interferences mainly due to the electro-stimulations of themuscles placed near the electrodes featured by an order of magnitude much greater in comparison to that of the signals of interest amplifying the frequency components belonging to the significant bandwidth, and to convert them with a high resolution in order to obtain good performance at the next processing phases. To this aim, a recording module for peripheral neural signals will be presented, based on the use of a sigma-delta architecture which is composed by two main parts: an analog front-end stage for neural signal acquisition, pre-filtering and sigma-delta modulation and a digital unit for sigma-delta decimation and system configuration. Hardware/software cosimulations exploiting the Xilinx System Generator tool in Matlab Simulink environment and then transistor-level simulations confirmed that the system is capable of recording neural signals in the order of magnitude of tens of μV rejecting the huge low-frequency noise due to electromyographic interferences. The same architecture has been then exploited to implement a prototype of an 8-channel implantable electronic bi-directional interface between the peripheral nervous system and the neuro-controlled hand prosthesis. The solution includes a custom designed Integrated Circuit (0.35μm CMOS technology), responsible of the signal pre-filtering and sigma-delta modulation for each channel and the neural stimuli generation (in the opposite path) based on the directives sent by a digital control systemmapped on a low-cost Xilinx FPGA Spartan-3E 1600 development board which also involves the multi-channel sigma-delta decimation with a high-order band-pass filter as first stage in order to totally remove the unwanted interferences. In this way, the analog chip can be implanted near the electrodes thanks to its limited size avoiding to add a huge noise to theweak neural signals due to longwires connections and to cause heat-related infections, shifting the complexity to the digital part which can be hosted on a separated device in the stump of the amputeewithout using complex laboratory instrumentations. The system has been successfully tested from the electrical point of view and with in-vivo experiments exposing good results in terms of output resolution and noise rejection even in case of critical conditions. The various output channels at the Nyquist sampling frequency coming from the acquisition system must be processed in order to decode the intentions of movements of the amputee, applying the correspondent electro-mechanical stimulation in input to the cybernetic hand in order to perform the desired motor action. Different decoding approaches have been presented in the past, the majority of them were conceived starting from the relative implementation and performance evaluation of their off-line version. At the end of the research, it is necessary to develop these solutions on embedded systems performing an online processing of the peripheral neural signals. However, it is often possible only by using complex hardware platforms clocked at very high operating frequencies which are not be compliant with the low-power requirements needed to allow portability for the prosthetic device. At present, in fact, the important aspect of the real-time implementation of sophisticated signal processing algorithms on embedded systems has been often overlooked, notwithstanding the impact that limited resources of the former may have on the efficiency/effectiveness of any given algorithm. In this research work it has been addressed the optimization of a state-of-the-art algorithmfor PNS signals decoding that is a step forward for its real-time, full implementation onto a floating-point Digital Signal Processor (DSP). Beyond low-level optimizations, different solutions have been proposed at an high level in order to find the best trade-off in terms of effectiveness/efficiency. A latency model, obtained through cycle accurate profiling of the different code sections, has been drawn in order to perform a fair performance assessment. The proposed optimized real-time algorithmachieves up to 96% of correct classification on real PNS signals acquired through tf-LIFE electrodes on animals, and performs as the best off-line algorithmfor spike clustering on a synthetic cortical dataset characterized by a reasonable dissimilarity between the spikemorphologies of different neurons. When the real-time requirements are joined to the fulfilment of area and power minimization for implantable/portable applications, such as for the target neuroprosthetic devices, only custom VLSI implementations can be adopted. In this case, every part of the algorithmshould be carefully tuned. To this aim, the first preprocessing stage of the decoding algorithmbased on the use of aWavelet Denoising solution able to remove also the in-band noise sources has been deeply analysed in order to obtain an optimal hardware implementation. In particular, the usually overlooked part related to threshold estimation has been evaluated in terms of required hardware resources and functionality, exploiting the commercial Xilinx System Generator tool for the design of the architecture and the co-simulation. The analysis has revealed how the widely used Median Absolute Deviation (MAD) could lead o hardware implementations highly inefficient compared to other dispersion estimators demonstrating better scalability, relatively to the specific application. Finally, two different hardware implementations of the reference decoding algorithm have been presented highlighting pros and cons of each one of them. Firstly, a novel approach based on high-level dataflow description and automatic hardware generation is presented and evaluated on the on-line template-matching spike sorting algorithmwhich represents the most complex processing stage. It starts from the identification of the single kernels with the greater computational complexity and using their dataflow description to generate the HDL implementation of a coarse-grained reconfigurable global kernel characterized by theminimumresources in order to reduce the area and the energy dissipation for the fulfilment of the low-power requirements imposed by the application. Results in the best case have revealed a 71%of area saving compared tomore traditional solutions,without any accuracy penalty. With respect to single kernels execution, better latency performance are achievable stillminimizing the number of adopted resources. The performance in terms of latency can also be improved by tuning the implemented parallelismin the light of a defined number of channels and real-time constraints, by using more than one reconfigurable global kernel in order that they can be exploited to perform the same or different kernels at the same time in a parallel way, due to the fact that each one can execute the relative processing only in a sequential way. For this reason, a second FPGA-based prototype has been proposed based on the use of aMulti-Processor System-on-Chip (MPSoC) embedded architecture. This prototype is capable of respecting the real-time constraints posed by the application when clocked at less than 50 MHz, in comparison to 300 MHz of the previous DSP implementation. Considering that the application workload is extremely data dependent and unpredictable due to the sparsity of the neural signals, the architecture has to be dimensioned taking into account critical worst-case operating conditions in order to always ensure the correct functionality. To compensate the resulting overprovisioning of the system architecture, a software-controllable power management based on the use of clock gating techniques has been integrated in order tominimize the dynamic power consumption of the resulting solution. Summarizing, this research work can be considered a sort of proof-of-concept for the proposed techniques considering all the design issues which characterize each stage of the closed-loop system in the perspective of a portable low-power real-time hardware implementation of the neuro-controlled prosthetic device

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design
    corecore