
Runtime Hardware Reconfiguration
in Wireless Sensor Networks for
Condition Monitoring
Vom Fachbereich Elektrotechnik und Informationstechnik
zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Dipl.-Ing. François Philipp aus Forbach, Frankreich
Tag der Einreichung: 16. Juni 2014, Tag der Prüfung: 1. September 2014
Darmstadt — D 17 — 2014

1. Gutachten: Prof. Dr. Dr. h. c. mult. Manfred Glesner
2. Gutachten: Prof. Dr.-Ing. Christian Hochberger
3. Gutachten: Prof. Dr. Eduardo de la Torre

Runtime Hardware Reconfiguration in Wireless Sensor Networks for Condition Monitoring

Genehmigte Dissertation von Dipl.-Ing. François Philipp aus Forbach, Frankreich

1. Gutachten: Prof. Dr. Dr. h. c. mult. Manfred Glesner
2. Gutachten: Prof. Dr.-Ing. Christian Hochberger
3. Gutachten: Prof. Dr. Eduardo de la Torre

Tag der Einreichung: 16. Juni 2014
Tag der Prüfung: 1. September 2014

Darmstadt — D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-41597
URL: http://tuprints.ulb.tu-darmstadt.de/4159

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 24. September 2014

(François Philipp)

I

III

en mémoire de mon grand-père Pierre

IV

Acknowledgments
A Ph.D. thesis is certainly a long, challenging but also rewarding work that cannot be accomplished
without a high quality supervision and close accompaniment. In this sense, I believe that Prof. Manfred
Glesner was thanks to his long and rich experience and his close relationships with his research assistants,
one of the greatest source of advice and inspiration for the development of relevant scientific work.
Therefore, my very first acknowledgment goes to him for the wise guidance and all opportunities he
offered me during the time of my stay in the Microelectronic Systems Research Group, which resulted in
the contributions presented in this document.

Similarly, I would like to sincerely thank Prof. Christian Hochberger from the Computer Systems Group
of TU Darmstadt and Prof. Eduardo de la Torre from the Center for Industrial Electronics in Madrid
for being the co-referees of my Ph.D thesis. I express my gratitude to all members of the examination
committee for taking the time to consciously and rightly evaluate this work.

Nowadays, scientific innovations are often triggered by multi-disciplinary research projects. With the
European project Maintenance on Demand and the LOEWE-Zentrum AdRIA, this requirement was largely
fulfilled by offering exciting application scenarios in the domain of mechanical and structural engineering.
I would like to thank Prof. Thilo Bein who was coordinating these projects and guiding my work towards
a successful completion of their objectives. I thank all the persons who collaborated with me during
these projects and particularly Dominik Elsberkirch and Manuel Andreu in MoDe as well as Andreas
Engel in AdRIA. Thank you to Prof. Saman Halgamuge and all his coworkers for the fruitful partnership
built during the DAAD collaborative project with the University of Melbourne. A large part of this work
would not have been possible without the help of Javier Martinez, with whom I started one of the most
productive collaborative work.

A Ph.D. thesis is also an everyday fight that could not be won without a constant support of coworkers
and colleagues. This time at the Microelectronic Systems Research Group allowed me developing new
friendships and constructive collaborations which were the source of many parts of this work. I thank
Heiko Hinkelmann for his wise supervision during my diploma thesis and the opportunity he gave me
by recommending me to work on the Maintenance on Demand project. The early stages of the thesis
were the results of a great collaborative work with Faizal Arya Samman and Ping Zhao. I am thankful
to my colleagues Ramkumar Ganesan, Sebastian Pankalla, Leandro Moller and particularly Surapong
Pongyupinpanich and Christopher Spies who share many memories and good times with me. Thank you
to Yuan Fang, Lufei Shen, Alex Schönberger and all colleagues from the Integrated Electronic Systems
group who started they journey towards the doctoral degree with me. I also thank Pablo Guerrero from
the Databases and Distributed Systems group, Kristof Van Laerhoven from the Embedded Sensing Group
and all co-organizers of the Wireless Sensor Networks labs and seminars, which always were an interesting
and enriching experience. Administrative work would have been much more difficult without the help of
Silvia Hermann and Brigitte Kuntzsch. I of course thank all the students who worked with me during the
time of the thesis. I am very proud that I had the chance to accompany them during their studies.

Outside the work, the support of the close family and friends is primordial to keep the motivation level
and the enthusiasm high. Many thanks to my mother who illustrated the cover page of this document, to
my father for his support and his constant care about the advancement of the work and all other members
of my family who shared with me the happy and hard events of life which occurred during these last
couple of years. Finally, I address my last and strongest thank you to Lang Yu, who illuminated my daily
life with love and cheerfulness.

V

Abstract
The integration of miniaturized heterogeneous electronic components has enabled the deployment of tiny
sensing platforms empowered by wireless connectivity known as wireless sensor networks. Thanks to an
optimized duty-cycled activity, the energy consumption of these battery-powered devices can be reduced
to a level where several years of operation is possible. However, the processing capability of currently
available wireless sensor nodes does not scale well with the observation of phenomena requiring a high
sampling resolution. The large amount of data generated by the sensors cannot be handled efficiently by
low-power wireless communication protocols without a preliminary filtering of the information relevant
for the application. For this purpose, energy-efficient, flexible, fast and accurate processing units are
required to extract important features from the sensor data and relieve the operating system from
computationally demanding tasks. Reconfigurable hardware is identified as a suitable technology to fulfill
these requirements, balancing implementation flexibility with performance and energy-efficiency.

While both static and dynamic power consumption of field programmable gate arrays has often been
pointed out as prohibitive for very-low-power applications, recent programmable logic chips based on
non-volatile memory appear as a potential solution overcoming this constraint. This thesis first verifies this
assumption with the help of a modular sensor node built around a field programmable gate array based
on Flash technology. Short and autonomous duty-cycled operation combined with hardware acceleration
efficiently drop the energy consumption of the device in the considered context.

However, Flash-based devices suffer from restrictions such as long configuration times and limited
resources, which reduce their suitability for complex processing tasks. A template of a dynamically
reconfigurable architecture built around coarse-grained reconfigurable function units is proposed in
a second part of this work to overcome these issues. The module is conceived as an overlay of the
sensor node FPGA increasing the implementation flexibility and introducing a standardized programming
model. Mechanisms for virtual reconfiguration tailored for resource-constrained systems are introduced
to minimize the overhead induced by this genericity.

The definition of this template architecture leaves room for design space exploration and application-
specific customization. Nevertheless, this aspect must be supported by appropriate design tools which
facilitate and automate the generation of low-level design files. For this purpose, a software tool is
introduced to graphically configure the architecture and operation of the hardware accelerator. A
middleware service is further integrated into the wireless sensor network operating system to bridge the
gap between the hardware and the design tools, enabling remote reprogramming and scheduling of the
hardware functionality at runtime.

At last, this hardware and software toolchain is applied to real-world wireless sensor network deploy-
ments in the domain of condition monitoring. This category of applications often require the complex
analysis of signals in the considered range of sampling frequencies such as vibrations or electrical currents,
making the proposed system ideally suited for the implementation. The flexibility of the approach is
demonstrated by taking examples with heterogeneous algorithmic specifications. Different data processing
tasks executed by the sensor node hardware accelerator are modified at runtime according to application
requests.

VII

Kurzfassung
Die Integration miniaturisierter heterogener elektronischer Bauteile hat der Einsatz winziger drahtlos
angebundener Erfassungsplattformen, sogenannte drahtlose Sensorknoten, ermöglicht. Der Energiever-
brauch dieser Komponenten kann dank optimierter Betriebszeiten soweit reduziert werden, dass eine
batteriebetriebene Laufzeit über mehrere Jahre möglich ist. Allerdings skaliert die Rechenkapazität
der bisher vorliegenden Sensorknoten bei Beobachtung von Ereignissen, die eine hohe Abtastauflösung
benötigen, schlecht. Eine große Menge von Sensordaten kann ohne eine Vorfilterung der für die Anwen-
dung relevanten Merkmale nur ineffizient durch drahtlose stromsparende Kommunikationsprotokolle
verarbeitet werden. Daher werden energieeffiziente, flexible, schnelle und genaue Recheneinheiten
benötigt, um wichtige Merkmalen aus den Sensordaten lokal zu extrahieren, ohne das Betriebssystem mit
rechenintensiven Tasks zu belasten. Rekonfigurierbare Hardware ist als eine geeignete Zieltechnologie an-
erkannt, um diese Anforderungen durch eine Balance zwischen Implementierungsflexibilität, Performanz
und Energieeffizienz zu erfüllen.

Obwohl der statische und dynamische Leistungsverbrauch der Field Programmable Gate Arrays (FPGAs)
sich oft als nachteilig für Anwendungen mit sehr niedrigem Energieverbrauch darstellte, kommen neueste,
auf einem nichtflüchtigen Speicher basierende, programmierbare Logikbausteine als mögliche Lösung,
die diese Nachteile aufheben, in Frage. Diese Doktorarbeit überprüft zuerst diese These mit Hilfe eines
modularen Sensorknotens, der auf einem Flash-basierenden FPGA aufgebaut ist. Die Kombination einer
kurzen und autonomen Betriebsperiode mit Hardwarebeschleunigung ergibt eine effiziente Reduzierung
des Leistungsverbrauchs für den betrachteten Anwendungsbereich.

Allerdings weisen Flash-basierende Bausteine unter Beschränkungen wie lange Konfigurationszeiten
und begrenzte Ressourcen auf, die ihre Tauglichkeit für komplexe Datenverarbeitungsaufgaben reduziert.
Eine Vorlage einer dynamisch rekonfigurierbaren Architektur, die auf grob-granularen Funktionseinheiten
basiert, wird in einem zweiten Teil dieser Arbeit als potentielle Lösung vorgestellt. Das Rechenmodul
wird als ein Overlay des FPGAs realisiert und verbessert die Implementierungsfreiheit mit Hilfe eines
standardisierten Programmierungsmodells zur Laufzeit. Für ressourcenbeschränkte Geräte angepasste
Mechanismen werden eingeführt, um das Modul virtuell zu rekonfigurieren und den durch diese Konfig-
urierbarkeit erzeugten Zusatzaufwand zu minimieren.

Diese Architekturvorlage erschließt den Entwurfsraum und vereinfacht die anwendungsspezifische
Anpassung der Plattform. Dennoch müssen diese Funktionalitäten durch entsprechende Designwerkzeuge
für automatische Erzeugung von Designdateien auf niedriger Ebene unterstützt werden. Hierzu wird ein
Softwarewerkzeug eingeführt, um die Architektur und den Ablauf der Hardwarebeschleuniger graphisch
zu konfigurieren. Zusätzlich wird ein Middleware-Dienst im Betriebssystem des Sensornetzwerks integriert,
um die Kluft zwischen der Hardware und den Designwerkzeugen zu schließen. Dies ermöglicht eine
Umprogrammierung aus der Ferne und Ablaufplanung der Hardwarefunktionalität zur Laufzeit.

Zuletzt wird diese Hardware- und Software-Werkzeugkette mit relevanten Anwendungen im Bereich
der Zustandsüberwachung bewertet. Die komplexe Analyse von Signalen im betrachteten Abtastfre-
quenzbereich, wie Schwingungen oder elektrische Ströme, wird für solche Anwendungen oft benötigt.
Das vorgestellte System ist somit für die Implementierung bestens geeignet. Die Flexibilität des Konzepts
wird mit Hilfe von Algorithmen mit heterogenen algorithmischen Anforderungen gezeigt. Auf Anwen-
dungsanfrage können unterschiedliche Datenverarbeitungsaufgaben auf der Sensorknotenhardware zur
Laufzeit beschleunigt werden.

IX

Contents

Affidavit I

Acknowledgments V

Abstract VII

Kurzfassung IX

Table of Contents XI

List of Symbols XV

List of Abbreviations XVII

List of Figures XXI

List of Tables XXV

I Context and Motivation for Reconfigurable Hardware in Wireless Sensor
Networks 1

1 Introduction 3

1.1 Background . 3
1.2 Research scope and objectives . 4
1.3 Thesis outline . 4

2 High-Bandwidth Sensing Wireless Networks 9

2.1 Origins of wireless sensor networks . 9
2.1.1 Bell’s law . 9
2.1.2 Moore and more . 10
2.1.3 Ubiquitous computing . 11

2.2 The design space of wireless sensor networks . 12
2.2.1 Operation of a wireless sensor network . 12

2.2.1.1 General principle . 13
2.2.1.2 System-level metrics . 14

2.2.2 Sensing . 15
2.2.3 Processing . 17

2.2.3.1 Processing hardware . 17

XI

2.2.3.2 In-network processing . 19
2.2.3.3 Operating systems for wireless sensor networks 20

2.2.4 Wireless communication in wireless sensor networks 21
2.2.5 Energy consumption of a wireless sensor node . 23

2.2.5.1 Limits of wireless communication and in-networking processing for high-
bandwidth sensing on standard motes . 27

2.3 Conclusion . 29

3 Reconfigurable Hardware for Low-Power Embedded Systems 31

3.1 Features of reconfigurable hardware systems . 32
3.1.1 Technology . 33
3.1.2 Granularity . 34
3.1.3 Reconfiguration processes . 36

3.2 Estimating the power consumption of reconfigurable hardware devices 37
3.3 Low-power duty cycling for FPGAs . 39
3.4 Conclusion . 41

3.4.1 Summary of the considerations on reconfigurable hardware 41
3.4.2 Outlook on the following part . 41

II Design of a Framework Enabling Reconfigurable Hardware Acceleration in
Wireless Sensor Networks 43

4 FPGA-based Hardware Acceleration for Wireless Sensor Nodes 45

4.1 Related work . 45
4.1.1 Wireless sensor nodes using an FPGA for SoC prototyping 46
4.1.2 Wireless sensor nodes with standalone FPGA . 48
4.1.3 Wireless sensor nodes with a co-processing unit based on programmable logic . . . 49
4.1.4 General considerations on related work . 51

4.2 Design of a modular FPGA-based low-power mote . 53
4.2.1 Core architecture . 53
4.2.2 The HaLOEWEn platform . 54

4.2.2.1 Main board . 54
4.2.2.2 Extensions . 55
4.2.2.3 Software . 57

4.2.3 MoDe LPSIP . 58
4.3 Performance evaluation . 58

4.3.1 Power consumption . 60
4.3.2 Autonomous control of sleep mode . 61
4.3.3 Hardware abstraction layer . 62
4.3.4 Application examples . 64

4.3.4.1 FFT processing . 64
4.3.4.2 Localization . 68
4.3.4.3 Combined channel coding and cryptography 70

4.4 Conclusion . 72

5 Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained
Devices 73

5.1 Introduction . 73

XII Contents

5.2 Related work . 76
5.2.1 Low-power coarse-grained reconfigurable architectures 77
5.2.2 Virtually reconfigurable hardware . 77
5.2.3 Dynamic reconfiguration for Flash-based devices . 78

5.3 Template architecture . 78
5.3.1 Overview . 78
5.3.2 Producer-consumer transactions and interconnect . 79
5.3.3 Sensor interfaces . 80
5.3.4 Memory elements . 82
5.3.5 Processing elements . 83

5.3.5.1 Reconfigurable multiply-accumulate unit . 83
5.3.5.2 CORDIC unit . 84
5.3.5.3 ALU unit . 85
5.3.5.4 Other units . 88

5.3.6 Reconfiguration layer . 88
5.3.6.1 Difference-based reconfiguration . 89
5.3.6.2 Context flow . 91
5.3.6.3 Meta-reconfiguration . 93

5.3.7 Clock and power management . 93
5.4 Evaluation . 94

5.4.1 Resources . 94
5.4.2 Performance . 96

5.5 Conclusion . 98

6 Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware
Accelerators 99

6.1 General overview . 100
6.2 Graphical configuration interface . 101

6.2.1 Related work . 101
6.2.2 Architecture editor . 102
6.2.3 Data flow editor . 104
6.2.4 Evaluation . 106
6.2.5 Methodology for application-specific customization and programming of the archi-

tecture . 106
6.3 Middleware for configuration management . 110

6.3.1 Related work . 110
6.3.2 General overview . 110
6.3.3 Middleware components . 111
6.3.4 Event-based reconfiguration . 112
6.3.5 Middleware commands . 114
6.3.6 Implementation . 115
6.3.7 Application examples . 116

6.4 Conclusion . 118

III Application of Wireless Sensor Networks Strengthened with Reconfigurable
Hardware to Condition Monitoring Systems 121

7 Condition Monitoring of a Shock Absorber for Predictive Maintenance 123

Contents XIII

7.1 Concept . 124
7.1.1 General overview . 124
7.1.2 Condition monitoring of the damping system . 125

7.2 Motivation for on-demand reconfiguration . 129
7.3 Implementation and results . 129
7.4 Conclusion . 134

8 Diagnosis of Induction Motors 135
8.1 Concept . 135

8.1.1 Detection of broken bars . 135
8.1.2 Detection of dynamic eccentricity . 139
8.1.3 Detection of inter-turn short circuit . 139

8.2 Motivation for on-demand reconfiguration . 142
8.3 Implementation and results . 142

8.3.1 Implementation on HaLOEWEn . 143
8.3.2 Diagnosis results . 145

8.4 Conclusion . 146

9 Conclusion 147
9.1 Contributions of the work . 147
9.2 Outlook . 148
9.3 Final conclusion . 149

IV Appendix 151

A HaLOEWEn Design Files 153

B Details of implemented algorithms 159
B.1 High-Diffusion . 159
B.2 Range-extended CORDIC . 162
B.3 Corrected fixed-point Fast Fourier Transform . 163

References 167

List of Own Publications 185

Supervised Theses 189

Curriculum Vitae 191

XIV Contents

List of Symbols
Symbol Unit Definition

a - Constant angle e
2πi
3 in Fortescue transformation

ai - Address value in address generators
Ai A Wavelet approximation at level i of the current signal
C - Cost function of a state estimation using a wireless sensor network
CD - Damping ratio of the shock absorber

dWSN s Delay of the wireless sensor network
Di A Wavelet details at level i of the current signal
E J Energy consumption
f Hz Clock frequency

fb b Hz Frequency of spectral components induced by broken bars
fd yn Hz Frequency of spectral components induced by dynamic eccentricity
fs Hz Machine supply frequency
I A Electric current

Ia, Ib, Ic A Phases of the electrical motor
I0, I1, I2 A Symmetrical components

H - Frequency response
KS N·m-1 Spring stiffness
KT N·m-1 Tire radial stiffness
Kx y - Correlation factor
L - Number of physical phenomenons observed by the wireless sensor network
M - Number of nodes in the wireless sensor network
MS kg Sprung mass of a vehicle
MU kg Unsprung mass of a vehicle

nb1, nb2 - Broken bars harmonic indexes
nd , nr , nst - Harmonic indexes related to dynamic eccentricity

N - Number of sensor nodes cluster
p - Number of pole pairs
P W Power consumption
R - Number of rotor bars
s - Slip of the machine
S - State of a physical phenomenon

Sx y m2·s-3 Cross spectrum of two acceleration sequences
Sy y m2·s-3 Power spectrum of a sequence of acceleration values
Ŝ - Estimated state of an observed physical phenomenon
tS s Time when a state was observed
tŜ s Time when a state has been estimated

TSi→S j
s Duration of a transition between states

TWSN s Time resolution of the wireless sensor network
Tc yc s Duration of one processor cycle
T12 - Transmissibility of the damping system
U - Set of raw sensor values
V - Set of external values provided to a sensor node

XV

Table continued
Symbol Unit Definition

VDD V Supply voltage
X - Set of values sent by a sensor node
X1 m Vertical displacement of the vehicle body
X2 m Vertical displacement at the wheel hub
α - Switching activity factor
εWSN - Approximation error of the wireless sensor network
λ bit·s-1 Sensing rate
ξ m Road excitation
ω rad·s-1 Radian frequency

XVI List of Symbols

List of Abbreviations
ACM Active Current Measurment

ADC Analog-Digital Converter

AdRIA Adaptronics, Research, Innovation, Applications

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BLE Bluetooth Low Energy

CGRA Coarse Grained Reconfigurable Architecture

CMOS Complementary Metal-Oxide-Semiconductor

CORDIC COordinate Rotation DIgital Computer

COTS Commercial Off-The-Shelf

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DSP Digital Signal Process-ing ,-or

DWT Discrete Wavelet Transform

ECG Electrocardiography

EMG Electromyography

FEC Forward Error Correction

FFT Fast Fourier Transform

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

GECO2 Graphical Environment for COnfiguration and GEneration of bitstreams for a COarse-grained
dynamically reconfigurable architecture

GPS Global Positioning System

GUI Graphical User Interface

XVII

HAL Hardware Abstracion Layer

HaLOEWEn Hardware-accelerated LOw Energy Wireless Embedded Sensor-Actuator node

HDL Hardware Description Language

I/O Input/Output

I2C Inter-Integrated Circuit

IC Integrated Circuit

IoT Internet of Things

IP Intellectual Property

JTAG Join Test Action Group

LPSIP Low-Power Sensor Interface Platform

LSB Less Significant Bit

MAC Medium-Access Control

MCU Microcontroller Unit

MEMS Microelectromechanical Systems

MoDe Maintenance on Demand

MSB Most Significant Bit

OS Operating System

PAN Personal Area Network

PDR Partial Dynamic Reconfiguration

PE Processing Element

PER Packet Error Rate

PLD Programmable Logic Device

PLL Phase-Locked Loop

PWM Pulse Wave Modulation

RAM Random-Access Memory

RF Radio Frequency

ROM Read-Only Memory

RSSI Received Signal Strength Indicator

RX Reception

SoC System-on-Chip

SPI Serial Peripheral Interface

XVIII List of Abbreviations

SRAM Static Random Access Memory

TX Transmission

UART Universal Asynchronous Receiver-Transmitter

UWB Ultra-Wide Band

VCD Value Change Dump

VHDL Very-High-Speed Integrated Circuits Hardware Description Language

Wi-Fi Wireless Fidelity

WSN Wireless Sensor Network

XIX

List of Figures
1.1 Overview of the thesis structure . 5

2.1 Evolution of computer classes according to Bell’s law [Bel08] Wireless sensor networks
emerge in the 2000’s . 10

2.2 Generic architecture of a mote enabled by the technological trends for integrated electronic
systems . 12

2.3 Schematic representation of the general functionality of a sensor network [GK07] 13
2.4 Design of wireless sensor networks for low and high bandwidth sensing 17
2.5 Design alternatives to handle high-bandwidth sensing in wireless sensor networks [Mar+06] 20
2.6 Energy efficiency, data rate and peak power consumption of selected wireless communica-

tion standards . 23
2.7 Typical current consumption profile of a duty-cycled mote [Wan+13a] 24
2.8 State transition latency and power [SC01] . 26
2.9 Example for high-bandwidth sensing . 28
2.10 Schematic representation of the effect of high-bandwidth sensing and enhanced computa-

tional power on WSN metrics . 29

3.1 Generic cells of a reconfigurable hardware system . 33
3.2 Static power consumption and logic density of recent FPGA devices 34
3.3 Generic architecture of a coarse-grained reconfigurable architecture (derived from [KM11]) 35
3.4 Design flow for accurate FPGA power estimation . 38
3.5 Power consumption breakdown of a memory-intensive application on different devices . . 38
3.6 Low-power duty cycling solutions for FPGAs . 39

4.1 Architecture alternatives for FPGA-based wireless sensor nodes 46
4.2 Applications of FPGA-based wireless sensor nodes . 52
4.3 Design space of FPGA-based wireless sensor nodes . 53
4.4 Generic architecture of the FPGA-based sensor node . 54
4.5 Block diagram of the HaLOEWEn main board . 55
4.6 Photo of HaLOEWEn version 3 and HaLOEWEn logo . 56
4.7 Task distribution on HaLOEWEn . 58
4.8 Block diagram of the LPSIP platform . 59
4.9 Photos of LPSIP modules . 60
4.10 Setup for the measure of power consumption . 60
4.11 FPGA startup delay . 61
4.12 Concept for internal wake-up process on FPGAs with Flash*Freeze technology 62
4.13 Low-level placement of ring oscillators components on an Igloo FPGA 63
4.14 MCU-FPGA Interface . 64
4.15 FPGA design for simple FFT processing . 65
4.16 Comparison of different implementations for FFT processing on the wireless sensor node . 66
4.17 Board-level distribution of power consumption . 68
4.18 FPGA design for localization accelerator . 69
4.19 FPGA design for high-diffusion accelerator . 71

5.1 Levels of hardware dynamic reconfiguration . 76

XXI

5.2 Architecture of the coarse-grained overlay based on two clusters 79
5.3 Levels of reconfiguration enabled by the virtually reconfigurable architecture 80
5.4 Example of producer-consumer interconnect . 81
5.5 Architecture of reconfigurable Multiply-Accumulate unit . 84
5.6 Architecture of the CORDIC unit . 86
5.7 Architecture of a {2, 2,1} ALU unit . 87
5.8 Block diagram of the configuration controller . 89
5.9 Threshold percentage of the number frames to reconfigure to make difference-based

reconfiguration more efficient than full reconfiguration . 91
5.10 Example of reconfiguration process for a filtering task . 92
5.11 Task-level reconfiguration . 93
5.12 Customization of the architecture template for three types of applications 95
5.13 Performance evaluation of the overlay architecture . 97

6.1 General overview of the configuration tools . 101
6.2 (GECO)2 concept for HDL parameterization . 103
6.3 Screenshot of the (GECO)2 graphical user interface . 105
6.4 Methodology for architecture and algorithm design . 109
6.5 Block diagram of the middleware components . 112
6.6 Event and configuration tables . 113
6.7 Duration and energy costs of configuration data transmission 117
6.8 Tool-flow for generating and running hardware reconfigurable tasks on the sensor node . 119

7.1 Typical flowchart of a distributed condition monitoring application running on a sensor
node (inspired from [Kul10]) . 124

7.2 Overview of the MoDe condition monitoring infrastructure [Bei12] 125
7.3 Concept for transmissibility measurement . 126
7.4 Transmissibility function of the damping system during the test drive [Bei+14] 128
7.5 Test measurements on a passenger vehicle . 130
7.6 FPGA overlay for the condition monitoring of the shock absorber with LPSIP 131
7.7 LPSIP hardware with Continental BSZ04D wheel acceleration sensors 131
7.8 Computation of Welch’s modified periodogram on the vertical acceleration time series . . 132
7.9 Time-space partitioning of the damper condition monitoring tasks on the overlay architecture133
7.10 Breakdown of time spent for the damper condition monitoring tasks (time is given in

milliseconds) . 134

8.1 Spectral analysis of the induction motor currents (Part 1) . 136
8.2 Spectral analysis of the induction motor currents (Part 2) . 137
8.3 Pictures of the experimental setup . 139
8.4 Alternative techniques for the detection of broken bars (Part 1) 140
8.5 Alternative techniques for the detection of broken bars (Part 2) 141
8.6 Concept for motor Condition Monitoring . 143
8.7 Time-space partitioning of the motor condition monitoring tasks on the overlay architecture144
8.8 Breakdown of time spent for the motor condition monitoring tasks (time is given in

milliseconds) . 145

9.1 Miniaturized implementation of the HaLOEWEn platform . 149

A.1 HaLOEWEn schematics - FPGA page 1/2 . 154
A.2 HaLOEWEn schematics - FPGA page 2/2 . 155
A.3 HaLOEWEn schematics - Power . 156
A.4 HaLOEWEn schematics - RF SoC . 157

XXII List of Figures

B.1 Flow chart of the High Diffusion algorithm . 160
B.2 Results of NIST pseudo-randomness tests for the High-Diffusion algorithm 161
B.3 8-FFT decimation in frequency with perfect shuffle address pattern 163
B.4 Error correction for fixed-point FFT . 165

List of Figures XXIII

List of Tables
2.1 Evolution of CPU specifications for microcontrollers from selected general purpose motes 10
2.2 Type of COTS sensors commonly used in wireless sensor networks applications 16
2.3 Amount of data generated by different sensors [WC02] . 16
2.4 Specifications of CPUs for high-bandwidth sensing motes . 18
2.5 Selected communication standards for wireless sensor networks 22
2.6 Comparative overview of energy costs for basic operations on TmoteSky1[Meu+08] 25
2.7 Power consumption and threshold active time for selected MCUs 26

3.1 Power consumption and threshold shutdown times for SRAM and Flash FPGAs 40

4.1 Research works using FPGAs for mote architecture prototyping 47
4.2 Research works using FPGAs as standalone processing unit 48
4.3 Research works using FPGAs for CPU extension . 50
4.4 Main features of the HaLOEWEn platform . 56
4.5 Main features of the LPSIP platform . 59
4.6 Power consumption of HaLOEWEn in different operation modes 61
4.7 Transition metrics for the FPGA on HaLOEWEn . 63
4.8 Resource consumption of the 1024-FFT design . 67
4.9 Resource consumption of the localization accelerator . 69
4.10 Performance evaluation for the localization process . 69
4.11 Resource consumption of the High-Diffusion core . 71
4.12 Performance evaluation for combined encryption and forward error correction 71

5.1 Resource utilization of selected cores for Igloo AGL1000 FPGAs 75
5.2 Configuration of the interconnect . 80
5.3 Resource consumption for one cluster interconnect with identical amount of producers and

consumers on each line . 81
5.4 Configuration of sensor interfaces . 82
5.5 Configuration of address sequencers . 83
5.6 Resource consumption for one address sequencer . 83
5.7 Configuration of reconfigurable Multiply-Accumulate unit . 84
5.8 Resource consumption for the reconfigurable Multiply-Accumulate unit 85
5.9 Configuration of CORDIC . 85
5.10 Resource consumption for the CORDIC unit . 86
5.11 Configuration of the ALU array . 87
5.12 Resource consumption for the ALU unit . 88
5.13 Resource consumption for the configuration controller . 90
5.14 Instructions of the configuration controller . 92
5.15 Resource utilization of the example architectures . 96

6.1 Components available in the (GECO)2 HDL library . 107
6.2 List of elementary functions available in the (GECO)2 DSP library 108
6.3 Summary of the middleware commands . 114

7.1 Resource consumption of the FPGA overlay used for damper condition monitoring 130

XXV

7.2 Performance metrics for the damper condition monitoring tasks 133

8.1 Nameplate and constructive parameters of the studied motor 138
8.2 Resource consumption of the FPGA overlay for the motor condition monitoring 143
8.3 Performance metrics of the motor condition monitoring tasks 144
8.4 Estimation results for a motor suffering from dynamic eccentricity 145
8.5 Estimation results for a motor with broken bars . 146
8.6 Estimation results for a motor suffering from inter-turn short circuit 146

B.1 CORDIC modes of operation . 162

XXVI List of Tables

Part I.
Context and Motivation for
Reconfigurable Hardware in
Wireless Sensor Networks

1

1 Introduction

1.1 Background

Hundreds of tiny electronic devices capturing physical phenomena and collaborating to monitor complex
systems and interact with the environment: wireless sensor networks are an important step towards an
ubiquitous world where electronics component are vanishing in our surroundings while constantly observ-
ing and evaluating them. As a result of numerous major innovations in the domains of microelectronics,
communication engineering and sensor technology, the emergence of this new class of computing systems
created a big wave in the scientific community by offering a new range of multi-disciplinary challenges to
solve. From energy harvesting systems to routing protocols via novel integrated sensors, a whole spectrum
of topics has been deeply investigated by the scientific community during the past decade with a focus on
optimizing energy-efficiency. The restrictions on the energy budget of such platforms have created a need
for very low power systems which can complete complex tasks with a minimum amount of resources.
Not only the underlying technology of wireless sensor networks has attracted much interest, but also
their application potential in domains as various as geology, biomedicine or agriculture. Wireless sensor
networks have become a universal topic where almost all domains of engineering can find a benefit or
give a new contribution.

While the technology has now reached a level of maturity suitable for large-scale commercialization
as it has been proven by the success of recently founded companies such as Libelium [Liba] or Memsic
[Mem], there is still room to improve the capability and the reliability of these systems for opening new
application domains. Large-scale monitoring of low-rate environmental parameters such as temperature,
light, humid or gas concentration are mastered with installations lasting for several years of operation
using a simple battery power supply. Standardized communication protocols such as ZigBee [Zig08] have
facilitated the deployment of networks in all kinds of environment, varying from mobile wearable sensors
to harsh industrial constraints.

However, a problem which is often pointed out as the bottleneck of wireless sensor networks is the high
energy costs of the wireless communication. Although wireless connectivity is the main powerfulness of
these systems, maximizing the energy-efficiency of a wireless sensor node often requires a minimization
of the radio activity. The low throughput and low range of low-power radios become particularly critical
when the sensed signal is getting more complex and the amount of data to transmit is more important.
While recent progress has been made for improving the energy-efficiency of wireless transceivers with the
introduction of standards such as Bluetooth Low Energy [Blu10], a more viable solution for long term
installations resides in distributing the analysis of sensor data among the sensor nodes and finding an
optimal communication-computation trade-off.

Simple microcontrollers are however not suitable to efficiently handle complex data processing tasks.
Although multi-processor systems are becoming necessary in general purpose high-performance computing,
they do not scale well for very low power systems such as wireless sensor nodes. A preferable solution to
minimize energy consumption is the integration of application-specific hardware accelerators. The time
and energy spent for data processing tasks implemented with specialized digital logic can be reduced
to several orders of magnitude when compared to pure software solutions. Nevertheless, the broad
range of wireless sensor networks applications implies that a certain level of flexibility is available in
the underlying hardware, so that the same infrastructure can be reused for multiple purposes. Recent
advances in the design of programmable logic devices have drastically reduce the power consumption of
these chips, which can be arbitrarily configured with complex data processing circuits. Reduced static and

3

dynamic power consumption combined with high logic density make these devices a promising option
for flexible hardware acceleration. Reconfigurable hardware emerges then as a potential solution to
provide a sufficient level of computation power to the sensor node while leaving enough freedom for the
implementation of applications in fundamentally different domains.

1.2 Research scope and objectives

This thesis investigates the potential of integrating low-power programmable logic in the architecture
of wireless sensor nodes. The utilization of reconfigurable hardware is considered at several level
of abstractions, from the technology choice up to the utilization in real-world applications and the
development of appropriate development tools. As such, the thesis covers multiple complementary
disciplines such as low-power embedded systems design, reconfigurable computing, computer-aided
design, signal processing or cryptography. In particular, this thesis gives answers to the following questions:

• What range of wireless sensor networks applications could benefit from reconfigurable hard-
ware acceleration ? Concrete issues with current deployments and potential improvements need
to be identified. The impact of hardware acceleration on system-level metrics will be evaluated and
the different types of wireless sensor nodes based on reconfigurable hardware are categorized.

• How to include reconfigurable hardware in the architecture of a wireless sensor node while
keeping a minimal power consumption ? The power consumption overhead typically introduced
by reconfigurable hardware is often seen as critical for very low-power applications. To deal with
this problem, low-power design techniques are applied to define suitable modes of operation where
this overhead stays negligible. The approach will be validated by building hardware prototypes
implementing typical tasks from wireless sensor networks applications and taking on-board power
measurements. It is foreseen to reduce the power consumption to a level that has not yet been
reached by state-of-the-art wireless sensor nodes using reconfigurable hardware.

• Which programming model is suitable to obtain the best profit from the reconfigurable hard-
ware ? Solutions to overcome the arduous task of application-specific hardware description are
required. The multiplicity of wireless sensor networks applications implies the availability of a
programming environment where the hardware and software components can be rapidly deployed.
A new generic model which can be customized for the desired data processing algorithms is in-
troduced. This model combines the design techniques for reducing power consumption with an
overall flexibility enabling the implementation of a large range of data processing tasks. This
level of flexibility is notably achieved by supporting dynamic hardware reconfiguration at runtime:
hardware accelerated tasks running on the sensor node can be replaced and activated at any time.
Special mechanisms are introduced to make this feature compatible with the restrictions induced by
wireless sensor networks. This framework is supported by a special design flow reducing the overall
development time and system complexity.

• How does a generic framework for reconfigurable hardware acceleration scale with real-
world applications ? Application scenarios relevant for an industrial context are taken to illustrate
how reconfigurable hardware acceleration can improve existing installations or enable new types
of deployments that were previously not feasible. Even if it is not only limited to this domain, the
thesis is focusing on applications related to the condition monitoring of electro-mechanical systems
since they can benefit from the proposed infrastructure particularly well.

1.3 Thesis outline

To answer these questions, this thesis has been split into three main parts addressing respectively a more
detailed description of the background and motivation of this thesis (Part I), the development of the set of

4 1. Introduction

Hardware

Architecture

Tools

Applications

Chapter 5 : Design of a Virtually
Reconfigurable FPGA Overlay

Architecture for Resource-
Constrained

Devices
Chapter 6 : Tools for Generation and
Online Dissemination of Dynamically

Reconfigurable Hardware Accelerators

Chapter 7 : Condition
Monitoring of a Shock
Absorber for Predictive

Maintenance

Chapter 9 : Conclusion
The Third Generation Wireless

Sensor Networks

Chapter 3 :
Reconfigurable

Hardware for Low-
Power Embedded

Systems

Chapter 2 : High
Bandwidth Sensing
Wireless Networks

Chapter 8 : Diagnosis of
Induction Motors

Figure 1.1.: Overview of the thesis structure

1.3. Thesis outline 5

hardware concepts and tools supporting the usage of reconfigurable hardware on a wireless sensor node
(Part II) and the application and evaluation of the complete framework to concrete scenarios. The overall
structure of the thesis is illustrated by Figure 1.1: based on the different constraints and features of wireless
sensor networks, a modular hardware is built as the foundation of the proposed infrastructure. This base is
abstracted by a generic architecture reusable with application-specific customizations. Configuration and
deployment tools are then introduced to fully exploit this architecture and the underlying hardware. Based
on these components, complex applications can be efficiently implemented, deployed and evaluated.

The following paragraphs give a short summary of the chapters composing these different parts:
Part I: Context and Motivation for Reconfigurable Hardware in Wireless Sensor Networks

• Chapter 2 introduces the area of wireless sensor networks by describing its operation in a generic
way. The main constraints and requirements of such systems are identified. Being the core aspect
of this thesis, the chapter is focusing on state-of-the-art features related to processing and duty
cycled operation. Challenges and open issues related to distributed processing and high sensor data
bandwidth are emphasized.

• Chapter 3 reports recent advances in the domain of reconfigurable hardware applied to low-power
embedded systems. Development and architectural challenges are identified and confronted with
the ones from wireless sensor networks, notably in terms of duty-cycled operation.

Part II: Design of a Framework Enabling Reconfigurable Hardware Acceleration in Wireless Sen-
sor Networks

• Chapter 4 describes the development of a wireless sensor node hardware with embedded pro-
grammable logic. Unexplored architectural features of state-of-the-art wireless sensor nodes based
on field-programmable gate arrays (FPGAs) are identified and new platforms are designed to exploit
their potential benefit. The hardware is evaluated for different scenarios typical for the considered
range of applications.

• Chapter 5 introduces a template design to overcome certain technological restrictions of the proposed
sensor node programmable hardware. A generic architecture and systematic mechanisms exploiting
dynamic reconfiguration of coarse-grained reconfigurable operators are implemented to maximize
the re-utilization of the available hardware resources while keeping a high-level of energy-efficiency.
The chapter describes the different types of operators and components available to customize the
hardware accelerator as well as the reconfiguration mechanisms targeting a minimization of the
resource usage, reconfiguration delay and amount of configuration data. Example architectures are
generated to illustrate and evaluate the template design.

• Chapter 6 presents the software development and management tools that have been developed
to reduce the design time of the hardware accelerator. At first, the functionalities of a graphical
interface assisting the static and dynamic configuration of the template architecture are described. A
design flow based on the composition of elementary function blocks is proposed. A second software
component which is running on the main processor embedded on the platform is then introduced.
This component implements a set of generic services for the management of configuration data on
the sensor node and within the network.

Part III: Application of Wireless Sensor Networks Strengthened with Reconfigurable Hardware
to Condition Monitoring Systems

• Chapter 7 addresses the implementation of a set of signal processing algorithms with the proposed
infrastructure for the condition monitoring of a road vehicle’s shock absorber. Developed in the
frame of a European research project with industrial partners, this chapter illustrates the capability
of the proposed architecture to be adapted for scenarios with a high computational complexity and
requiring a high reliability.

6 1. Introduction

• Chapter 8 describes another application in the domain of condition monitoring of electrical machines.
A system able to detect faults of an induction motor by analyzing features of the current signal in
both frequency and time domain is implemented. The reconfigurability of the platform is exploited
to analyze the sensor signals with different types of algorithms which can be dynamically selected
according to the current operation of the motor. It is shown that the framework provides enough
flexibility to implement algorithms producing results with high accuracy.

At last, Chapter 9 concludes this thesis by summarizing the important contributions and giving directions
for future work.

1.3. Thesis outline 7

2 High-Bandwidth Sensing Wireless Networks
All emphasize low-cost components operating
on shoestring power budgets for years at a time
in potentially hostile environments without
hope of human intervention.

J. Hill & al., “The Platforms Enabling Wireless
Sensor Networks”. In: Communications of the

ACM, June 2004, Vol. 47, No. 6

Contents
1.1 Background . 3

1.2 Research scope and objectives . 4

1.3 Thesis outline . 4

This introductory chapter describes the current development status of wireless sensor networks by
first giving an historical perspective explaining their rising popularity. This section is followed by a
description of the general operation principle of these systems. This analysis will emphasize aspects where
computational power plays a particularly important role, notably in cases where an important amount of
sensor data is generated.

2.1 Origins of wireless sensor networks

Different perspectives exist to explain the emergence of WSNs as a fascinating research topic in multidisci-
plinary domains as well as a fast growing market with a wide range of application areas. In this section,
some of these views are reviewed and aspects relevant for the motivation of this work are identified.

2.1.1 Bell’s law

In 2007, Gordon Bell established his law on the evolution of computer classes [Bel08]. These classes
are defined as sets of computing technologies in a common price range supported by “ a programming
environment [...] , a network, and a user interface”. Every decade, a new class of computers appears from a
fractional set of an older class, which reached a technological maturity through fast-evolving performance
improvement (Figure 2.1). The newly created class benefits from lower prices and form factors, which
enable a new market penetration. Thus, tiny networked sensors called wireless sensor nets appeared
as a new class around 2002. They include miniaturized devices known as Motes. Millimeter-scaled
systems known as Smart Dust appeared already in 2001 [War+01] but they are still costly and undergoing
intensive research to develop the technologies suitable for a broader usage [Lee+13]. If production costs
can be minimized, they will follow Bell’s law as the most recent computer class.

A second trend of Bell’s law is the performance improvement at a constant price level within a computer
class. However, this technological evolution is slow compared to the penetration of a newly introduced
class. To stay competitive and attractive, a technology must undergo constant improvement while
sustaining its price range. Eventually, a class will disappear to benefit the newer class, which offers a

9

Price

1940 1950 1960 1970 1980 1990 2000 2010

Personal Computers

10.000 €

100 €

1 €

1.000.000 €

100.000.000 €

Figure 2.1.: Evolution of computer classes according to Bell’s law [Bel08]
Wireless sensor networks emerge in the 2000’s

broad new market. The performance improvement within the class of WSNs is one of the main aspect
tackled by this thesis. Developing new generations of high-performance motes at low price will sustain
the technological relevance of this computer class and eventually open directions for new applications.

2.1.2 Moore and more

The main trigger of the technological improvement within all computer classes is Moore’s Law [Moo98].
The integration of a huge number of transistors in smaller silicon areas allows a simultaneous reduction
of the cost and size of chips while their computational capability is improved. For WSNs, Moore’s law
enabled the integration of small-scaled microcontrollers able to implement complex signal processing
tasks and communication protocols on a tiny, autonomous device. The progress in Moore’s law will
continue to reduce the size, price and power consumption of such microcontrollers while improving their
information processing capability. Table 2.1 shows the improvement of central processing unit (CPU)
characteristics of selected general-purpose motes. These motes are either historically relevant, or popular,
commercially available devices. In one decade, each characteristic is tendentially improved.

Mote CPU Word Size Flash RAM Clock (MHz) Year
weC [Hil00] Atmel AT90LS8535 8-Bit 8K 512 4 1999
Mica [HC02] Atmel Atmega 163 8-Bit 16K 1K 8 2000
Mica2 [Mica] Atmel Atmega 128L 8-Bit 128K 4K 8 2002
Telos [PSC05] TI MSP430F149 16-bit 60K 2K 8 2004
TelosB [Tel] TI MSP430F1611 16-Bit 48K 10K 8 2005

IRIS [Iri] Atmel Atmega1281 8-Bit 128K 8K 8 2007
AVR Raven [Avr] Atmel Atmega1284P 8-Bit 128K 16K 8 2008
Zolertia Z1 [Z1] TI MSP430F2617 16-Bit 92K 8K 16 2010
XM1000 [Xm1] TI MSP430F2618 16-Bit 116K 8K 8 2011

Table 2.1.: Evolution of CPU specifications for microcontrollers from selected general purpose motes

10 2. High-Bandwidth Sensing Wireless Networks

Beyond the miniaturization of digital information processors, wireless sensor networks also benefited
from the technological trend known as More than Moore [Ard+10; Int05]. Within this movement, the
increasing heterogeneity of integrated circuits (ICs) is addressed. The diversification of the types of circuits
available in a single chip or package open a very large spectrum of applications. In particular two types of
microsystems played a crucial role for the emergence of WSNs. Advances in low-power complementary
metal-oxide-semiconductor (CMOS) radio frequency (RF) ICs made the realization of a broad family of
new low-power radio transceivers possible. Technologies which are nowadays commercially successful
like ZigBee or Bluetooth are the best examples of the important role that CMOS RF ICs played for this
penetration. Such RF transceivers are now directly available in mixed-signal System-on-chips (SoCs).
Popular examples of such chips include Texas Instruments’s CC2530 [Cc2b] or Atmel’s ATMEGA128RFA1
[Atm], combining respectively an 8051 central processing unit (CPU) and an AVR microcontroller with
an IEEE 802.15.4 transceiver. Thanks to a tight coupling between the radio and the CPU, the power
consumption and the form factor of such chips are further reduced.

Similarly, the integration of sensing elements into chips contributed to the elaboration of such het-
erogeneous systems. Analog-Digital Converters (ADCs) and temperature sensors are standard elements
for WSN-enabled SoCs [Cc2b]. Sensors based on microelectromechanical systems (MEMS) such as
accelerometers, microphones, gyroscopes or pressure sensors are widely used in WSN applications since
they provide rich context about the environment at the cost of a few square millimeters. Analog Devices’s
ADIS16229 [Adi] is for example one of the few available products integrating a MEMS accelerometer, a
signal processing digital core and an RF transceiver in a single package.

Integrated power electronics also largely contributed to the success of WSNs. Optimizing energy and
power consumption on a battery-powered sensor node is one of the most critical challenges in the WSN
research. Power management circuits are essential components of motes to achieve ultra-low-power
consumption. CMOS RF transceivers notably require reliable and efficient power amplifiers to meet their
stringent performance requirements. In some cases, energy harvesting modules can be used in synergy
with the mote power unit to potentially provide a lifetime over several years of operation. The original
Smart Dust project was for instance integrating a millimeter-scaled solar cell [War+01]. Motes with
piezo-MEMS based vibrational energy harvesters are nowadays commercially available [Dre10].

All together, these technological advances build the hardware skeleton of a mote (Figure 2.2). Around
the digital brain, sensors, RF circuitry and a power management unit enable the functionality of au-
tonomous wireless sensing networks [Aky+02]. Integrating these elements into a single chip at minimal
cost is the road-map to the RF Smart Dust [CLP06] as it was defined in 2000 [Rab+00] and updated in
2006 [Rab+06] by Rabaey et al. for the PicoRadio project. Eventually, all features of a mote will fit on a
few square millimeters chip enabling a seamless and ubiquitous deployment in our environment.

2.1.3 Ubiquitous computing

A further perspective supporting the rise of WSNs is the concept of ubiquitous computing. In his article
“The Computer for the 21st Century” [Wei99], Mark Weiser foresaw in 1999 the invisible penetration of a
huge number of a new generation of computing systems in our daily life. Wireless connectivity coupled
to a reduced size and cost will help to make these devices vanish in our background environment. This
technology will serve our everyday purposes with specialized components without the frustration of
interfacing a complex machine.

WSNs and the infrastructure known as the Internet of Things (IoT) are today the best examples fulfilling
this vision. Intelligent, connected objects are completely integrated in our environments. From smart
houses, to wearable computing, not only we do not notice these embedded devices any more, but their
size make them unnoticeable. A large number of modern systems are automated by sensor and actuators
networks, but there is still a limit for a certain range of applications whose complexity is too high to be
supported by tiny embedded devices. It is then a worthy research goal to raise this limit and distribute
always more intelligence in the electronic devices being part of our surroundings.

2.1. Origins of wireless sensor networks 11

Memories

Storage
Storage

Storage

Power Unit

CPU

SoC Bus

Memories

IP Cores /
Periphery

RF
Transceiver

ADC

USART

Power Supply

Antenna

MEMS Sensor
+ADC

 Sensor

Analog Sensor

CoreSensors

Mote

More Moore integration :

Miniaturization of digital

components

Heterogeneous integration :

Diversification

Figure 2.2.: Generic architecture of a mote enabled by the technological trends for integrated electronic
systems

Making the underlying technology “invisible” is one aspect of ubiquitous computing defined by Mark
Weiser that this thesis takes closely into account. Abstracting the features of the hardware and enabling
the possibility to autonomously adapt or change its behavior without a manual human intervention is a
key aspect for a large scale adoption of this technology.

2.2 The design space of wireless sensor networks

Emerging from these paradigms, wireless sensor networks appear as a large congregation of tiny embedded
devices communicating over wireless links. The key elements of each device are sensors, a processing
engine, a communication interface and a power supply unit. Each electronic unit is a node of the network.
Low-power communication protocols and data processing algorithms are jointly used to collect and
process the sensor data acquired by each node. A sensor network will then provide heterogeneous
information about the physical or environmental condition of the observed system. In the simplest form
of a wireless sensor network, one or several physical quantities are measured across time and space.
Typical examples of physical quantities monitored by WSNs include temperature, humidity, barometric air
pressure, gas concentration, light or moisture.

In this section, the general aspects of WSNs are described while emphasizing the main challenges
relevant for the scope of this thesis. We start from a generic approach to go into more detailed aspects. An
information processing point of view is adopted rather than considerations on communication networks
as it is frequently the case in the domain of WSN, since it is fundamentally more relevant for the original
purpose of a WSN. Beside the definition of founding principles, metrics and properties are introduced to
enable evaluation and comparison of WSN deployments.

2.2.1 Operation of a wireless sensor network

12 2. High-Bandwidth Sensing Wireless Networks

Physical Phenomenon
Observation

Process

SL

Si

Mote 1

Mote j

Mote M

 Uj

..
.

..
.

..
.

..
.

Sensor

Communication
NetworkRF

Xj
Data

Collector

..
.

Sensing Processing Communicating

Energy Source

Harvester

Powering

Analysis

Figure 2.3.: Schematic representation of the general functionality of a sensor network [GK07]

2.2.1.1 General principle

The general functionality of a WSN can be described by the schematic representation of Figure 2.3 [GK07].
Three core aspects govern the operation of the system : sensing, processing and communicating. Thereafter,
the role of each of these functionalities is individually abstracted. The primary target of any WSN is to
observe or characterize a physical phenomenon. This phenomenon is describable by a set of variables
{Si}1≤i≤L = S. Each variable Si is a numerical indicator of the phenomenon or more generally represents
a given state of this phenomenon. The variables {U j}1≤ j≤M represent the raw values sensed by each mote
through an observation process. Each U j is a disturbed observation of a combination of the phenomenon
state variables {Si}1≤i≤L.

In addition to the raw measurements, each mote receives a variable set Vj including information
provided by other motes of the network and application parameters. A combination of U j and Vj is
processed by each mote to create a measurement X j. {X j}1≤ j≤M are shared within the communication
network to collaboratively create new information. Groups of motes sharing their observations are
denoted as clusters. By fusing the data, a cluster of motes will output the set of variables {Yk}1≤k≤N . The
values Yk are collected on a central node of the network known as the sink. Eventually, when information
is available on a sufficiently long time, the data accumulated on the sink is analyzed to retrieve the
physical phenomenon states {Si}1≤i≤L. The proximity between the WSN estimated {Ŝi}1≤i≤L and the
original {Si}1≤i≤L defines the accuracy of the WSN. The closeness of these variables represent the ability
of the WSN to observe the considered phenomenon correctly. In this sense, a WSN can be considered as a
measuring tool, whose approximation error can be expressed as:

εWSN = ‖Ŝ − S‖. (2.1)

The optimal operation of a WSN will then allow determining all {Ŝi}1≤i≤L at minimal costs while
sustaining an accuracy fulfilling the requirements of the application. Real costs induced by a WSN are
specific to each application. In general, when considering wireless communication and autonomous
operation of the motes, these costs include energy consumption, infrastructure costs, delay, etc.

The physical phenomenon observed is usually changing over time. S, respectively Ŝ, can therefore be
expressed as a discrete sequence S[n], n ≥ 0, respectively Ŝ[n], n ≥ 0, whose indexes n are increasing
with time. This implies that the process of estimating Ŝ has to be repeated over time in order to follow

2.2. The design space of wireless sensor networks 13

the fluctuations of the physical phenomenon on long time periods. If C[n] is defined as the cost function
for estimating Ŝ[n], the general optimization problem of a WSN can be formulated as:

min
∞
∑

n=0

C[n]

subject to ∀n≥ 0,‖Ŝ[n]− S[n]‖ ≤ εWSN [n]

(2.2)

As each estimation may have different costs and accuracy requirements, a WSN must be evaluated on
its complete operation time, leading to consider the sum of all costs. Improving the efficiency of a WSN
involves reducing the cost C[n] of estimating Ŝ[n] for all n≥ 0.

The general ideal operation of a WSN is to retrieve Ŝ with the smallest approximation error while
spending for example the minimal amount of energy, in the shortest time and with the minimal amount
of hardware costs.

This optimization problem leads to two fundamental directions in WSN research: one one hand, the
minimization of the cost function is the center of interest. The multiplicity of parameters impacting this
function result in a large number of sub-problems to solve. Optimizing the operation of the communication
network was a particularly important focus in academia [KW07a]. On the other hand, one wish to obtain
a description as accurate as possible from the underlying physical phenomenon, i.e. maintaining the
approximation error low [MKS12]. This approach is more application-centric but leads to an even high
number of technical challenges.

2.2.1.2 System-level metrics

For all the different kinds of application scenarios that can be built on this model, these relatively abstract
optimization goals can be turned into measurable figures of merits defining the quality of service of
the WSN [KW07b]. These parameters are commonly used in the literature to evaluate a WSN [Xia08].
Although a concrete formulation is only possible with a given application, a generic definition can be given
based on the previous model. One of the most fundamental metric is the accuracy. It can be defined as
the average approximation error on observations made during a certain period of time:

εWSN =
1
m

m
∑

n≥0

εWSN [n] =
1
m

m
∑

n≥0

‖Ŝ[n]− S[n]‖. (2.3)

The accuracy first depends on the ability of the sensing infrastructure (type, number, resolution, accuracy
and location of sensors) to reflect the state of the observed physical phenomenon. In terms of information
processing, the accuracy of the WSN is affected if the raw data are not directly transmitted to the sink,
e.g. because the amount of data is too important. In this case, the accuracy depends on the ability of the
processing infrastructure to extract the relevant features from the acquired data. This can vary according
to the complexity of the data processing algorithms and the numerical resolution of the processing unit.
Efficient processing capability plays here also a central role for the improvement of this metric.

The delay dWSN [n] of the WSN represents the time difference between the observation time of S[n],
tS[n], and the time tŜ[n] when Ŝ has been determined :

dWSN [n] = tŜ[n]− tS[n] (2.4)

The delay usually depends on the time required to process and route the sensor data to a central node. For
time-critical applications, it is desirable that this delay stays minimum. Intrinsically, this delay depends on
the amount of data that needs to be processed or transfered within the network. In particular, the delay is
strongly related to the size of the data sets X j,Vj and Yj as the bandwidth and the throughput of WSN is
limited. Reducing this amount of data is then a mandatory steps towards a minimum delay. On the other

14 2. High-Bandwidth Sensing Wireless Networks

hand, the delay might be largely dominated by the time spent for processing if not enough computational
power is available. In both cases, an efficient processing infrastructure is necessary to limit the amount of
data flowing through the network and minimize computation times.

Similarly, the time resolution TWSN of the WSN corresponds to the minimum achievable time interval
between two successive evaluations of S.

TWSN =min
n
{tS[n+ 1]− tS[n]} (2.5)

Here again, this metric depends on the processing capability and throughput of the network. If a node is
too busy with handling data at time step n, the data corresponding to time step n+ 1 needs to be queued
and processed at a later point in time. This metric can be related to the jitter, which is generally defined
as the variation in delay [Xia08].

The WSN lifetime is the time during which it is possible to obtain estimations Ŝ while keeping a
set of other system-level metrics over a specific threshold, e.g. when the WSN is not able to deliver
results with a sufficient accuracy or under a certain amount of time. Typically, the lifetime of the WSN is
over when nodes playing a central role in the network fail or run out of energy. In a global sense, the
energy-efficiency of the WSN is the average amount of energy which is spent by battery-powered nodes
to obtain an estimate Ŝ. In order to improve both metrics, reducing the average energy consumption of
each node, i.e the power consumption, is crucial. This requires a maximum efficiency for all components
of the node, from the radio transceiver to the sensors via the processing core. More details on energy
consumption models for a wireless sensor node will be given in the section 2.2.5 of this chapter.

Further metrics can be defined for a WSN [KW07b] such as reliability, i.e. the percentage of estimations
staying over a given accuracy threshold, the trustworthiness, i.e. the probability that the delivered data
has not been distorted by a malicious component, or the scalability, i.e. the ability to maintain a level
of accuracy and a long lifetime independently from the size of the network. For almost all metrics,
two fundamental aspects are playing a major role: the amount of data wirelessly exchanged within the
network and the capability of the node to process information efficiently. If these features are optimized,
the WSN is likely to reach a high quality level.

Now that the essential features of WSNs are defined, the following sections will address distinct aspects
of WSN design, notably with regard to the key elements composing a wireless sensor node, i.e. the sensors,
the processing unit and the communication unit.

2.2.2 Sensing

Sensors are the interface between the mote processing unit and the observed phenomenon. The sensing
operation will deliver digitalized information from a physical effect. The size and price requirements
of motes usually implies that low-cost, off-the-shell sensors are preferred to high-end devices. Lower
quality sensor signals can be compensated by a preprocessing of the data on the mote. Operations such as
de-noising and spike removal are therefore common in WSNs [GK07]. An aspect playing a fundamental
role in the design of a WSN is the bandwidth of the sensing process. The amount of sensed data highly
depends on the nature of the observed phenomenon and on the desired accuracy of the WSN. High
amount of data will impact the type of hardware used and the approach for wireless communication since
the data has to be processed and transmitted within the network [WC02].

Table 2.2 gives a non-exhaustive overview of commercial off-the-shelf (COTS) sensors used in typical
WSN applications. The separation in the table marks a differentiation between general-purpose, low-
bandwidth sensing devices and high-bandwidth sensing devices [Hil+04]. This distinction is taken
relatively to the bandwidth of the communication network used to transmit the data. For low-power
WSNs, the bandwidth of the RF channel is usually in the range of 100 kilobits per second up to 1 Megabit
per second. When sensor data is sampled at a range within one order of magnitude of this bandwidth,
the communication channel is likely to be overloaded and processing the data becomes mandatory.

2.2. The design space of wireless sensor networks 15

Sensor Sampling rate Application example
Photodiode 0.1 Hz - 1 Hz Intelligent light control
CMOS Light 0.1 Hz - 1 Hz Color sensing, object detection
Temperature 0.1 Hz - 1 Hz Environment monitoring, heat control
Humidity 0.1 Hz - 1 Hz Environment, weather monitoring
Barometric Pressure 0.1 Hz - 1 Hz Altitude estimation, weather monitoring
Soil Moisture 0.1 Hz - 1 Hz Smart irrigation
GPS 0.1 Hz - 1 Hz Animal tracking
Gas 0.1 Hz - 1 Hz Fire detection, biometrics
Push button 0 - 1 Hz Remote control
Infrared 1 Hz - 10 Hz Proximity sensor, intruder detection
Capacitive touch 5 Hz - 10 Hz Pad, human machine interface

Compass 1H z - 500 Hz Motion recognition, orientation
Accelerometer 10 Hz - 10 kHz Gesture recognition, condition monitoring
Piezoelectric 100 Hz - 10 kHz Machine condition monitoring
Flex 1 Hz - 100 Hz Condition monitoring
Gyroscope 10 Hz - 500 Hz Motion recognition
Seismic 1 Hz - 200 Hz Volcano monitoring
EMG electrode 100 Hz - 5 kHz Biometrics, device control
ECG electrode 100 Hz - 5 kHz Biometrics
Current 10 Hz - 10 kHz Motor condition monitoring, power meter
Acoustic 1 kHz - 100 kHz Target tracking
Ultrasound 1 kHz - 100 kHz Localization
RF Wave 1 Hz - 1 kHz Identification, Localization
Video Camera 0.1 Hz - 20 Hz Intruder detection

Table 2.2.: Type of COTS sensors commonly used in wireless sensor networks applications

In this context, sensors requiring a sampling rate higher than 10 Hertz can already be considered as
high-bandwidth sensing devices.

Figure 2.4 illustrates the two different situations where low and high bandwidth sensing is applied.
In general, networks using sensors requiring high sampling rates are less dense since the data includes
already sufficient information to describe the observed phenomenon. In Table 2.3, the amount of data
generated by different types of sensors during one hour is given. There is almost a difference of three
orders of magnitude between each category, showing that the same networking or processing approach
can not be used for each of this sensor.

Temperature Vibration Image

Sampling frequency 1 Hz 1 kHz
20 frames/s

25 kpixels/frame
Bit rate 7 bits/sample 12 bits/sample 8 bits/pixel

Amount of data
for one hour sampling 25 kb 43 Mb 14 Gb

Table 2.3.: Amount of data generated by different sensors [WC02]

16 2. High-Bandwidth Sensing Wireless Networks

minutes

seconds

Slowly fluctuating phenomenon

Fast fluctuating phenomenon

~ 1 – 100 bps

~ 0.1 – 10kbps

Low bandwidth

sensing

High bandwidth

sensing

MCU RF

General-purpose

MCU / Low throughput

RF transceiver

MCU
+DSP

RF

DSP MCU /

High throughput

RF transceiver

High-density

network

Low-density

network

Figure 2.4.: Design of wireless sensor networks for low and high bandwidth sensing

2.2.3 Processing

The processing unit is the core of the mote and provides the necessary intelligence to process the sensor
readings and transfer them to the communication network while managing the power consumption of the
whole device. The main tasks of the processing core can thus be subdivided into three categories: signal
processing, communication protocol and resources management.

2.2.3.1 Processing hardware

The choice of the processing core for a mote is a trade-off between flexibility, performance, power
consumption and cost. It is also highly related to the complexity of the tasks assigned to the mote. The
nature and amount of these tasks generally defines an application profile. Neither should it be oversized,
which would result in low efficiency and overconsumption of energy, nor undersized, which would make
it unable to perform the required tasks in a reasonable amount of time. In line with the two categories of
sensing bandwidth introduced in Section 2.2.2, processor devices listed in Table 2.1 are appropriate for
general-purpose, low-rate tasks. For high-bandwidth sensing, processors with higher computational power
(larger word length, additional memory, larger data path) are preferred to implement data processing
tasks more efficiently. Such processors usually support larger word sizes and include cores for digital
signal processing (DSP). Example of such chips on selected motes are presented in Table 2.4.

Processors for WSNs rarely integrate floating-point units (FPUs). For instance, none of the processors
listed in Table 2.4 and 2.1 support floating-point operations in hardware. Even if floating-point arithmetic
can be emulated as a software library, this results in significant memory and processing costs to implement
algorithms requiring high-precision results or numerical stability. However, processors used in WSN are
often associated to a number of intellectual property (IP) cores able to support or accelerate typical tasks,
as illustrated in Figure 2.2.

Among the essential components of WSN microcontroller units (MCUs), timers allow a precise schedule
and synchronization of operations between motes of a network. Specialized units for standard serial
communication protocols such as Universal Asynchronous Receiver-Transmitter (UART), Inter-Integrated

2.2. The design space of wireless sensor networks 17

Word Clock
Mote CPU

size
Flash RAM

(MHz)
Year

µAMPS [Min+00] Intel StrongARM SA-1100 32-Bit 512K 24k 59-206 2000
iMote [Nac+05] Zeevo TC2001P 32-Bit 512K 64K 12 2005
Stargate [Sta] Intel PXA255 XScale® 32-Bit 32M 32K 400 2006
iMote2 [Imo] Intel PXA271 XScale® 32-Bit 32M 64K 13-416 2008

Sun SPOT [Sun] Atmel AT91SAM9G20 32-Bit 8M 32K 9-60 2010
Lotus [Lot] ARM Cortex®M3 32-Bit 64M 64k 10-100 2011

Table 2.4.: Specifications of CPUs for high-bandwidth sensing motes

Circuit (I2C) or Serial Peripheral Interface (SPI) are common for interfacing sensors or other peripheral
chips present on the mote. The instruction and data memory must be sized to limit the area and the static
power consumption of the chip while holding a complete operating system and large data sets.

An important feature of WSN MCUs is their ability to switch in low-power mode. As energy is often a
critical cost for a mote, the MCU must be programmed to limit its period of activity as much as possible,
and switch for the rest of the time in a sleep mode. The depth of the sleep mode vary according to the
number of functionalities that stay active, e.g. timers, peripheral components or oscillators. Recent
MCU support several depths of sleep in order to fit to specific application requirements. Very low power
consumption in sleep mode and short transition times are as important as low power consumption in
active mode. This aspect will be addressed with more details in section 2.2.5.

Developing custom processor or microcontroller architecture for WSNs is a prolific research area.
New application-specific integrated circuits (ASICs) are regularly introduced with a focus on low-power
consumption like the Phoenix processor, reaching 30pW in sleep mode [Han+09], or integrating hardware
accelerators to handle networking tasks like the Charm processor [She+06] or the ASIC developed by
Hempstead & al. [HBW11]. Even if these processors show significant improvement towards COTS MCUs
and highlight architecture solutions for future WSN chips, they are rarely deployed in a large range of
applications because of costs reasons, ASIC development being not affordable for the deployment of a
WSN.

A reasonably priced alternative is to prototype WSN processors on reconfigurable logic, e.g. FPGAs.
This is the solution adopted by Hinkelman & al. [Hin+08] and Lu & al. [Lu+09] to evaluate their
custom processor architectures. The Hyperion [Hil10] and the HogthrobV0 [Leo07b; Leo07a] platforms
use FPGAs to test, evaluate and compare different architectures. Using reconfigurable logic requires a
description of the core in a hardware description language (HDL), such as VHDL or Verilog, or using
opaque IP cores. The usage of FPGAs in WSNs will be largely covered in the chapter 4 dedicated to the
design of the mote developed in the frame of this thesis.

When the computational power of the main processor is not sufficient to handle a specific task, a
second processor or a co-processor is added to the mote. It can be integrated on the main board of the
mote, e.g. the AVR Raven includes a second microcontroller (Atmel ATmega3290P) to handle sensors and
user interface (LCD screen) [Avr]. In the ZebraNet application dedicated to wildlife tracking, the motes
combined a Texas Instruments MSP430F149 MCU with a µ-blox GPS-MS1E chip including an Hitachi RISC
CPU SH-7020 [Zha+04] for GPS localization. Alternatively, standard motes are extended with add-on
processing modules, e.g the Mica2 mote [Mica] is extended with a Xilinx Spartan II FPGA to handle audio
data processing in a counter-sniper system [Sim+04].

In general, these examples show that a general purpose processing hardware is quickly limited when
the implementation of application-specific or computationally intensive tasks is needed. Specialized
hardware is then required to replace or extend the main processor. This is particularly valid in the case of
high-bandwidth sensing wireless networks where intensive in-mote processing is often required.

18 2. High-Bandwidth Sensing Wireless Networks

2.2.3.2 In-network processing

The main purpose of processing the data directly on the motes, denoted in-network processing, is to create
data sets holding selective information relevant for the purpose of the WSN. Obtaining this data sets within
the network must provide a cost reduction for the operation of the WSN, usually in terms of reduction of
the network traffic. Using the symbols defined in Section 2.2.1, in-network processing correspond to the
series of transformations of the raw observations {U j}1≤ j≤M into {Yk}1≤k≤N . As illustrated by Figure 2.5,
two main approaches for data processing can be distinguished here:

• Single node algorithms cover all processes that a mote can perform without using information
from the sink or from neighbour nodes, i.e. without using wireless communication. Examples of
such algorithms include:

– Data characterization: based on its own readings, a mote can polish the sensor signal and
extract relevant features.

– Data interpolation: the trend of the data is identified, allowing to represent the process with
function parameters and predict future behaviour.

– Data compression: the size of data is reduced set by eliminating statistical redundancy. Lossy
data compression implies removing unnecessary information in addition.

– Difference-based approach: only the difference between successive observations is considered.
This is particularly suitable when the observations have a low fluctuation rate.

– Confidence interval approach: the sensor signal is described with its statistical characteristics.

• Distributed algorithms implies the collection and combination of data and parameters from other
members of the network. This data is denoted {X j}1≤ j≤M in Section 2.2.1. Examples of such
algorithms include:

– Data fusion: sensor readings from multiple nodes are combined into a single data set by
eliminating for example spatial or temporal redundancy.

– Data aggregation: observations are reduced to statistical characteristics computed among the
data sets provided by each node.

– Incremental analysis: measurements from neighbors or past measurements are used to limit
the computational burden of regenerating a new observation.

– Distributed analysis: the analysis of the WSN data to estimate Ŝ is directly executed on the
motes.

In addition to the processing of sensor data, motes may have to handle further computationally intensive
tasks related to the organization of the network or to the improvement of the wireless communication. A
non-exhaustive list of such tasks include:

• Localization: in networks where the positions of motes is unknown, a positioning process is necessary
to localize the sensor readings. Such process can involve the solving of least squares problems
using QR Factorization as it is the case for multilateration algorithms for example [KW07c]. Texas
Instruments’ CC2431 RF SoC includes a location engine to accelerate a positioning algorithm based
on received signal strength indicators (RSSI) [Cc2a].

• Cryptography: by nature, wireless communication is vulnerable as it uses the air as a shared com-
munication medium. In critical applications, it is therefore necessary to authenticate and encrypt
packets to guarantee the security and the validity of the data. Cryptographic operations usually
require a significant amount of computations and must be repeated for each packet exchange.

2.2. The design space of wireless sensor networks 19

However, as communication standards are often associated with a predefined cryptographic algo-
rithm, e.g. the advanced encryption standard (AES) for IEEE 802.15.4 [IEE11], modern transceivers
integrate a dedicated hardware accelerator to handle these tasks, e.g. the AES engine in the CC2431
[Cc2a].

• Error detection and correction: wireless communication is also unreliable and packets are likely to be
received with errors such as simple bit flips or burst errors. Receivers must therefore detect and
eventually correct such errors. Two processes can be distinguished here:

– Automatic repeat request (ARQ) where a node is asked to resend a packet if the receiver
detected errors with a checksum algorithm. Cyclic redundancy checks (CRC) are for example
used by IEEE 802.15.4 [IEE11]. SoCs such as the CC2431 [Cc2a] integrate dedicated hardware
accelerators to implement them.

– Forward Error Correction (FEC) schemes uses error correction codes to directly correct errors
on the receiver side without retransmission. In [How+06], the authors compare the hardware
implementation of various decoders for WSNs and stress the need for low-power consumption
to make the coding process energy-efficient.

Large Sensor
Data Set

High-Bandwidth
 Sensing

Wireless
Communication

In-Mote Storage

In-Mote Processing

On-Demand

Forwarding
Load Balancing

Data

Interpolation

Data

Compression

Data

Characterization

Difference Based

Approach

Confidence Level

Based Approach

Distributed

Analysis

Data

Aggregation

Data Fusion
Incremental

Algorithms

Single Node

Approaches

Collaborative

approaches

Reduced
 Data Set

Figure 2.5.: Design alternatives to handle high-bandwidth sensing in wireless sensor networks [Mar+06]

In conclusion, the variety of tasks that a mote processor is susceptible to implement generally speaks for
general-purpose processing hardware. On the other hand, the resource and energy constraints are rather
promoting the usage of application-specific hardware. Solving this trade-off becomes the main challenge
when designing an advanced sensor node with a good capability for application-specific customization.

2.2.3.3 Operating systems for wireless sensor networks

As autonomous and resource-constrained embedded systems, motes require a lightweight operating
system (OS) for proper operation. Among the main tasks of the OS on a mote, scheduling the activity of
the hardware components is one of the most important. This should be obtained by using as low memory
as possible while maintaining energy-efficient operation. Several types of programming models for WSN
OS can be distinguished to achieve this purpose [KW07d; FK11]:

20 2. High-Bandwidth Sensing Wireless Networks

• Multithreading programming: The CPU supports the execution of concurrent threads. Although
this model is common in modern OSs, it can suffer from a large overhead for switching between
threads on systems with low capability such as motes. Memory management is particularly challen-
ging as each thread require its own stack. WSN OSs based on this model offer than specific
mechanisms to reduce this overhead. MANTIS OS [Bha+05] and Nano-RK [ERR05] are example of
such OSs.

• Event-based: A kernel manages the execution of pieces of code based on events. Each event is
completely handled before waiting or handling the next one. This fits well to the reactive nature of
motes, which typically have to react to events such as the arrival of a packet or the interrupt of a
timer. Event-based OSs consume significantly less resources than multithreading OSs in terms of
dynamic memory utilization and size of code [LSR03]. However, the programmability is lower since
developers are more used to a sequential model of execution.

The currently most popular WSN OSs, Tiny OS [Lev+05] and Contiki [DGV04], are then inherently
event-based. They however both support multithreading as a lightweight library built on top of the kernel
(TOS threads for TinyOS, Protothreads for Contiki). Thus, they combine the best of both approaches.

When considering in-network processing tasks with a large computational overhead implemented
on the main MCU, multithreading becomes mandatory since their large delay might block other vital
functionalities of the mote such as the radio. The OS should then switch between the handling of
application events and the time consuming data processing tasks, validating the choice of a mixed
approach.

One of the main challenges for WSN OS is hardware compatibility or portability. They are numerous
types of WSN MCUs and successfully porting an OS to a new MCU is a complex task. This partially
explains why platforms to which popular OS have been ported remain used for long time periods, even if
the hardware is out of date. This is for instance the case of the TelosB/TmoteSky [Tel] and MicaZ [Micb]
motes, which support all TinyOS, Contiki, Mantis and Nano-RK.

Most of WSN OSs are programmed in the C language. TinyOS is based on a language called nesC,
which reuses the basic constructs of C while offering new constructs useful to benefit from the OS features
[Gay+03]. Some OSs are based on high-level programming languages or virtual machines, i.e. Java.
This is for example the case of IBM’s MoteRunner [Car+09] or Java Micro Edition for the Sun SPOT
[Sun]. While such approaches are offering a better programmability, they also introduce a slight overhead
reducing their energy-efficiency when compared to OSs close to the hardware [Car+11]. In general,
defining a generic hardware abstraction layer (HAL) is crucial for an OS in order to improve its portability
and programmability.

Besides providing a programming paradigm, OSs offer libraries of functionalities which ease the
development of applications significantly. Even if a large number of libraries are available for supporting
wireless communication or interfacing the mote hardware, few OSs provide support for in-network
processing. For example, Contiki only includes a function to implement integer Fast Fourier Transform
(FFT). It is worth highlighting this lack, since improving support for in-network processing within the OS
of a mote is one of the main contribution of this thesis. Chapter 6 will develop this aspect in details.

2.2.4 Wireless communication in wireless sensor networks

The powerfulness of WSNs is their ability to remotely communicate without an underlying cable infra-
structure, i.e. wirelessly. This is enabled by CMOS RF ICs which achieve combining very low consumption
and medium data rates for short range communication. Beyond optimizations on the physical layer
such as the transceiver architecture, the antenna efficiency or the modulation scheme, the efficiency of
WSN communication protocols arise from duty-cycled operation. The energy-efficiency of a mote largely
depends on its capacity to avoid idle listening, overhearing or packet collisions. In order to minimize
the uptime of the transceiver, a mote should acquire knowledge about the radio activity of its neighbors

2.2. The design space of wireless sensor networks 21

Name Frequency band Datarate Max. node count Indoor range
IEEE 802.15.4 868/915 MHz

[IEE11] 2.4 GHz
250 kbps > 1000 50 m

Bluetooth
2.4 GHz 1 Mbps 8 30m

Low Energy [Blu10]
ANT[ANT13] 2.4GHz 1 Mbps 28 10m

EnOcean [IEC12] 868MHz 125 kbps 232 30 m
ONE-NET[One] 868/915MHz 30.4 kbps 4096 50 m
Wi-Fi [IEE12] 2.4 GHz 54 Mbps > 10000 100m
UWB [IEE03] 2.4 GHz 114 Mbps 245 10 m

Table 2.5.: Selected communication standards for wireless sensor networks

and coordinate the sending and reception of packets. These challenges lead to the investigation and
standardization of a large numbers of medium-access control (MAC) protocols. A non-exhaustive list of
popular WSN communication standards is given in Table 2.5.

IEEE 802.15.4 [IEE11] is the most used communication standard in WSNs. It is the basis for numerous
routing protocols such as ZigBee [Zig08] for applications in building automation, smart energy or health
care, WirelessHART [Wir] for industrial process monitoring and predictive maintenance, ISA-100.11a
[Int11] for industrial process automation or 6LoWPAN [She+12] for IPv6 enabled networks (IoT). Another
common standards is IEEE 802.15.1, also known as Bluetooth. The latest specification of the Bluetooth
protocol (v. 4.0) notably introduced a low energy variation of the traditional standard, which tackles the
high power consumption of the transceivers when transmitting at low data rates. This standard is known
as Bluetooth Low Energy (BLE).

Selecting the right wireless communication protocol for an application usually depends on the size, the
range and the topology of the network as well as the reliability, the delay requirements and the application
throughput. Figure 2.6 illustrates the data rate of selected wireless communication standards with regard
to their energy efficiency, i.e. the amount of energy required to receive one Megabit over the air, and the
peak power consumption, i.e. the power consumed by a state-of-the art transceiver customized for this
standard in receive mode. The energy-efficiency metric should be considered with respect to the physical
layer since it does not take the protocol overhead into account. Additional costs should be taken into
account when considering packet sizes, carrier-sense mechanisms or acknowledgments.

High-speed communication protocols, Wi-Fi [IEE12] and ultra wide band (UWB)(IEEE 802.15.3)
[IEE03], outperform low-power standards in terms of energy-efficiency from one to two orders of
magnitude. They however suffer from a very high peak power consumption, which makes them unsuitable
for battery-powered devices, unable to deliver such current. ANT [ANT13], a technology specialized
for fitness devices and personal area networks (PAN), and BLE demonstrate very similar performance
metrics. However, they are both limited in terms of transmission range compared with IEEE 802.15.4
based networks. ANT has additional MAC mechanisms that prevent application throughput higher than 60
kilobits per second, whereas BLE has some restrictions with respect to the network topology and number
of nodes being part of the network. At last, 802.15.4 based networks suffer from a low energy-efficiency
and low data rates but offer more flexibility in terms of network size, since both range and maximum
node count are higher.

For applications with a large throughput, BLE is a good choice when the range and the size of the
network are small. When the number of nodes or the covering area increase, solutions reducing the
application throughput by in-network processing should be coupled to a low-rate protocol such as IEEE
802.15.4. A further argument supporting this statement is the higher reliability requirement for high-
bandwidth sensing applications. In order to improve the efficiency of a MAC protocol, i.e. the ratio of the

22 2. High-Bandwidth Sensing Wireless Networks

61 54.6

684

75

750

1

100

10,000

1,000,000

100,000,000

0.0010.010.11

D
a
ta

 r
a
te

 (
k
b
p
s
)

Energy-efficiency (J/Mb)

Peak Power (mW)

Wi-Fi
UWB

BLE

ZigBee

ANT

Figure 2.6.: Energy efficiency, data rate and peak power consumption of selected wireless communication
standards

energy required to send the complete packet, including headers and overhead to access the link, over the
energy costs required to send the useful payload alone, maximizing the size of a packet is recommended.

This efficiency will have a bigger impact in networks with high throughput requirements since the
number of sent packets will be higher. Packets with larger payload are however more important at the
application layer. The loss of large packets will create large gaps in the data, which is often send as
streams in high-bandwidth sensing applications. While the lost of single value in a stream is usually
acceptable since it can be retrieved using for example interpolation, losing a series of samples is likely to
make the data inaccurate and unusable. The ANT protocol [ANT13] uses small packet sizes to avoid such
losses at the cost of a lower efficiency.

These standards hide a considerable amount of MAC protocols developed in an academic context. In
[Bac+10], a non exhaustive list of 75 MAC protocols are classified. The proliferation of MAC protocols can
be partially explained by the variety of WSN applications, each application having various topologies and
performance requirements (delay, throughput, energy-efficiency, . . .). Each protocol aims to specifically
improve the performance metrics in given sectors, to fit to a particular network architecture or to fit a
particular data delivery scheme.

2.2.5 Energy consumption of a wireless sensor node

A generally accepted energy consumption model for wireless sensor nodes is based on the activity periods
of each subcomponent owning a significant share of the global power consumption [Dun+07]1. It
distinguishes when components are active, when they are temporarily unused and set in a low-power
sleep mode, or when they are unused for a long time period and completely shutdown. More complete
models include energy costs of transiting from one state to the other. This transitions periods might have
a significant cost on the overall energy consumption if they are repeated too frequently [Min+01]. The
energy consumption of a mote on a given time period can be expressed as:

ETot =
∑

i

�

PAct
i · tAct

i + PSleep
i · tSleep

i + ETransi t ions
i

�

(2.6)

1 Such a model has been studied in the frame of the bachelor theses [Bol11] and [Man12a]

2.2. The design space of wireless sensor networks 23

45

30

15

Time

C
u
rr

e
n
t

c
o
n
s
u
m

p
ti
o
n
 (

m
A
)

CPU
 wakes up

ACK

TX

Carrier sense

Activity cycle

μA
sleep current

Figure 2.7.: Typical current consumption profile of a duty-cycled mote [Wan+13a]

with i ∈ { CPU, Radio, Sensor, Memory, LEDs, . . . }. Pk
i and tk

i are respectively the average power
consumption of the component i in mode k and the time spent in this mode. The energy spent for
transiting between different states can be expressed as:

ETransi t ions
i =

∑

{A,B}∈S2

PSA→SB
i tSA→SB

i (2.7)

where S is the set of possible states, i.e active, sleep, shutdown, etc.
Individual active energy consumption terms can be further subdivided according to internal sub-states.

Radio and nonvolatile memory active energy can for example be expressed as

EAct
Radio = PT X0dBm

· tT X0dBm
+ PT X−10dBm

· tT X−10dBm
+ PRX · tRX (2.8)

EAct
Mem = PErase · tErase + PRead · tRead + PW rite · tW rite. (2.9)

The superposition of these individual power consumption states results in typical current consumption
profiles as depicted in Figure 2.7.

Thus, each mote can be characterized by the set of power consumption values of its individual
subcomponents. Roughly evaluating the energy consumption of the mote is then reduced to measuring
the time during which the subcomponents are staying in their respective sub-states. This is for instance
the solution followed by the WSN energy estimation tools Energest [Dun+07] (see next subsection) or
Avrora.

In general, the activity of a wireless sensor node can be described with cycles: the node is waking-up
from a sleep state at regular time intervals to perform a set of tasks, including sensor sampling, processing
and RF communication operations (channel sense, packet transmission, etc.) before going back to sleep.
As the wake-up period is usually fixed by application and communication protocol parameters such as

24 2. High-Bandwidth Sensing Wireless Networks

Operation Energy consumption Equivalent CPU cycles
Compute for 1 Tc yc 1.2 nJ 1

Transmit 1 bit 0.72 µJ 600
Receive 1 bit 0.81 µJ 680

Listen for 1 Tc yc 15 nJ 13
Sleep for 1 Tc yc 9 pJ 7.5× 10−3

Table 2.6.: Comparative overview of energy costs for basic operations on TmoteSky2[Meu+08]

sampling rate, packet size or channel check rates, minimizing the uptime of each component during the
active part of the duty cycle is the main path towards lowest energy consumption.

In the context of high-bandwidth sensing, the average uptime of the sensors, processing unit, radio
is intuitively a monotonically increasing function of the sampling rate when no in-network processing
scheme is applied. By processing the data locally on the node, the processing time will further increase
but may result in lower radio activity. On the other hand long processing times may be costly in terms
of energy consumption if a significant reduction of radio activity is not achieved. Table 2.6 shows the
energetic equivalent number of CPU cycles for basic operations of a wireless sensor node. This table gives
a general indicator of how much computational power can be invested to save wireless communication
energy.

The cost of transiting between states must be carefully taken into account as well. Intuitively, a
component is not doing anything useful during these transition states. As a consequence, if the transition
delay is non negligible, these transitions will have a significant impact on the overall energy consumption
of the mote if they occur frequently (see equation 2.6). This is particularly relevant for MCUs: coming
back from a deep sleep state requires the execution of power-up sequences where the internal voltage
regulators and oscillators must stabilize. A long wake-up delay implies that there is a specific duty-cycling
period for each MCU for which it is more energy-efficient to stay idle than to switch in low-power mode.
This observation is particularly important for applications where high sampling rates are required since it
implies that the MCU can never switch in a low-power mode, which significantly increases the average
power consumption of the platform.

This problem can be formulated in the following mathematical terms [SC01]: if Si describes the
different modes of operation of the MCU, S0 being the active mode, and S j (j > 0) the different levels of
sleep supported by the device, t1 is the time when it switches to a lower power mode and t2 the time
when it starts recovering from this mode, the total energy saved by switching in low-power mode Sk can
be expressed as:

Esav e,k =
�

P0 − Pk

2

�

TS0→Sk
+ (P0 − Pk)(t2 − t1 − TS0→Sk

)−
�

P0 + Pk

2

�

TSk→S0
(2.10)

Figure 2.8 illustrates these transition periods for different levels of sleep. Intuitively, the transition is only
useful if the saved energy Esav e,k is positive, which results in

t2 − t1 >
1
2

�

TS0→Sk
+

P0 + Pk

P0 − Pk
TSk→S0

�

. (2.11)

This last equation defines a time threshold upon which it is not energy-efficient to switch in low-power
mode. Such a value can be estimated for each type of system, as long as average power consumption
and wake-up delay values are available. Table 3.1 gives these threshold times for the different modes
of operation of selected MCUs used in WSNs. In this table, sleep mode corresponds to the simplest
low-power mode supported by the device, usually corresponding to a gating of the main clock. From

2 These values are estimated for a CPU running at 4 MHz and a radio transmitting at -5 dBm

2.2. The design space of wireless sensor networks 25

Active Active

Sk+1

Idle

t1

TS0->Sk+1

Sk

S0

TSk->S0

P0

Pk

Pk+1

Power
Consumption

Time

Figure 2.8.: State transition latency and power [SC01]

MCU Mode Power Threshold

CC2531 Active 19.5 mW -
[Cc2b] Sleep 0.6 mW < 1 µs

(32 MHz | 3V) Deep Sleep 3 µW 3 ms

StrongARM SA 1100
Active 1,040 mW -
Sleep 400 mW 8 ms

[SC01] Deep Sleep 270 mW 20 ms
PXA271 XScale Active 264 mW -
(Imote2 [Imo]) Sleep 4.5 mW 1.08 ms
(104 MHz | 4V) Deep Sleep 1.5 mW > 1.3 ms
NXP LPC1758 Active 138.6 mW -
(LOTUS [Lot]) Sleep 6.6 mW < 1 µs

(100 MHz | 3.3V) Deep Sleep 0.8 mW > 765 µs

Table 2.7.: Power consumption and threshold active time for selected MCUs

this mode, operation can be resumed within a very short time, usually a few clock cycles. In deep-sleep
mode, the main oscillator or phase-locked loop (PLL) is stopped and must be restarted after waking-up.
Although power consumption is significantly reduced, the start-up sequence in deep-sleep mode is usually
much longer.

The values from Table 2.7 are showing that deep-sleep mode cannot be applied if the duty-cycle of
the mote has a very short period. For instance, if a sampling frequency of 1 kHz is required, none of
the reported MCUs can efficiently switch in deep-sleep mode and must stay in a state where power
consumption stays relatively high. This observation in particularly important in the context of high-
bandwidth sensing, since it implies that low-power sleep techniques cannot be applied when the sampling
frequency increases. Not only is this observation valid for very low-power MCUs, but also for chips with
larger word length or DSP extensions. In addition, these chips with higher computational capability
still have a relatively high power consumption in their first level of sleep mode. Finally, the oscillator
stabilization time might be rather unpredictable: time intervals from 0.5 up to 271 milliseconds can for
example be expected for the PXA271 XScale [Imo].

26 2. High-Bandwidth Sensing Wireless Networks

2.2.5.1 Limits of wireless communication and in-networking processing for high-bandwidth
sensing on standard motes

In this section, an example is taken to illustrate the limits of a standard mote MCU and MAC protocol
when dealing with high-bandwidth sensing. The topology depicted in Figure 2.9a is considered. Node 1 is
the sink of the network and collects the data generated by all other nodes at a rate λ. Nodes 4,5 and 6
cannot communicate directly with the sink. Their data is therefore routed via node 3.

This scenario is evaluated in terms of average power consumption and reliability, i.e proportion of
packets that successfully arrived at the sink. For this purpose, the network is simulated in COOJA, a
Java-based simulation framework for WSNs using the Contiki OS [Ost+06]. Contiki integrates a software
tool for online estimation of energy consumption called energest [Dun+07]. Energest measures the active
periods of the motes in a modular basis. Every time a module of the mote, e.g. the radio, is activated or
deactivated, timestamps are saved to keep track of the activity. The network is simulated with Telos-B /
Tmote-Sky motes [Tel]. COOJA integrates the CPU simulator MSPSIM in order to simulate the activity
of the MSP430F1611 MCU of the the Telos-B at the instruction level [Eri+09]. The communication
between nodes is based on the semi-asynchronous Contiki-MAC protocol [Dun11] working at a cycle rate
of 32Hz and the IEEE 802.15.4 [IEE11] physical layer. Data is clustered in packets of 100 Bytes in order
to maximize the efficiency of the MAC protocol. The behavior of the network is simulated for 30 minutes
of operation.

The chart 2.9b depicts the results of a scenario where the data generated by the nodes is directly sent
to the sink without any processing. The energy consumption and the packet reception rate on the sink are
evaluated for different data generation rates λ. Until 3.2 kbps, the network is operating in a reliable way
with packet reception rates over 99%. The power consumption of the motes is increasing for both CPU and
radio, with a large ratio for radio operations. Leaf nodes 2, 4, 5 and 6 have similar power consumption
histograms since they have the same role in the network. Node 1 spends most of its energy for reception
purposes while node 3 has the largest power consumption since it needs to receive and forward the data
from 4, 5 and 6 in addition to its own data. For λ equals 6.4 kbps, the packet reception rate drops because
the communication links are overloaded. The MAC protocol is not able to handle the transmission of
all packets, which leads to packet drops and makes the data unusable. As a matter of comparison, a
mote equipped with a 12-bit 3-axial accelerometer sampling at a frequency of 100 Hz would generate
3.6 kbps. The maximum reachable throughput with this configuration, i.e. the amount of data per time
unit received by the sink, is then close to 25 kbps, which is about one tenth of the physical capability of
the link. A large disparity can be observed between nodes 1 and 3 and other nodes. In average, they
respectively consume 49% and 129% more energy than leaf nodes. At equal battery capability, this ratio
is critical since the failure of node 1 or 3 will result in the failure of the complete network. The battery
level of these nodes is therefore an indicator of the remaining useful lifetime of the network.

The results of a second scenario where data is processed by the motes CPU is depicted in chart 2.9c. In
this case, data is processed by the 512 points integer FFT available in the Contiki OS, without overlapping
window. The raw data is assumed to be real, so that the amplitude spectrum is symmetric. Therefore,
only 50% of the amount of generated data needs to be transmitted over the air. In this case, the packet
reception rate starts to drop for λ equals 3.2 kbps. The reason is that the execution of the FFT is keeping
the CPU busy for long periods. Even if the operation of algorithm can be interrupted by multi-threading
mechanisms, the CPU is unable to handle the high radio traffic and the high computational burden of the
FFT at the same time. For higher λ, not only does the packet error rate (PER) drop, but the leaf nodes are
unable to complete the FFT within the data generation cycle, leading to packet drops at the source. In
terms of power, the average consumption is approximately the same for both scenarios with λ≤ 1.6kbps.
The consumption is however better balanced in the second case where node 3 consumes 64% more power
than leaf nodes while node 1 has now the lowest energy consumption. The energy spent for wireless
communication in the first scenario has been converted into CPU energy. For leaf nodes, only 20% of the
energy was spent by the CPU in the first scenario against 48% in the second one.

2.2. The design space of wireless sensor networks 27

4

5

6

1 23

λ

λ

λ

λ

λ

λ

Sensor Node

Sink

Sensing Process

Communication Link

(a) Network Topology

80%

85%

90%

95%

100%

0

5

10

15

20

25

30

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

P
ac

ke
t

R
ec

ep
ti

o
n

 R
at

e

A
v
e
rg

a
e
 P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

m
W

)

CPU Low-Power Mode Transmit Receive Packet Reception Rate Trend Average Power

λ = 0.8 kbps λ = 1.6 kbps λ = 3.2 kbps λ = 6.4 kbps

(b) Chart for wireless communication approach

P
ac

ke
t

R
ec

ep
ti

o
n

 R
at

e

80%

85%

90%

95%

100%

0

5

10

15

20

25

30

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

P
ac

ke
t

R
ec

ep
ti

o
n

 R
at

e

A
v
e
ra

g
e
 P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

m
W

)

CPU Low-Power Mode Transmit Receive Packet Reception Rate Trend Average Power

λ = 0.8 kbps λ = 1.6 kbps λ = 3.2 kbps

(c) Chart for in-network processsing approach

Figure 2.9.: Example for high-bandwidth sensing

28 2. High-Bandwidth Sensing Wireless Networks

Speed

Resolution

LifetimeReliability

Trustworthiness

Speed

Resolution

LifetimeReliability

Trustworthiness

Figure 2.10.: Schematic representation of the effect of high-bandwidth sensing and enhanced
computational power on WSN metrics

This example clearly shows that the main limitation of standard motes in high-bandwidth sensing
application is their computational capability. By improving the speed and the energy-efficiency of the FFT
processing, motes will be able to handle additional radio traffic while decreasing their energy consumption.
From example 2.9c, it is also advisable to decouple data processing from the communication protocol.

Converting processing efforts for wireless communication into processing energy is not straightforward.
A limited CPU can rapidly be overloaded and becomes unable to handle data processing tasks and MAC
protocol at the same time. Works such as [Nac+08] have shown that more advanced chips such as DSPs
achieve better energy-efficiency when the computational load is higher. However, an efficient low-power
duty-cycling is hardly achievable with these devices, making them less suitable for long-term deployments.

2.3 Conclusion

Wireless sensor networks have a very large design space where a large number of parameters have a
significant impact on the quality of service and costs of the system. However, a large amount of data
exchanged within the network and low processing power on individual nodes have been identified as two
critical aspects limiting the main system-level metrics. Either the communication channel or the processor
becomes quickly overloaded and the data cannot be handled completely. This situation occurring typically
when high bandwidth sensors are used, a special hardware is required to cover this range of applications.
Even if DSPs or larger CPUs have been successfully introduced to improve the processing efficiency of
motes, they still suffer from very large power consumption figures, which limits the energy-efficiency
improvement. Raising the operating frequency of the sensor node induces high costs, which are not
always compatible with the very low power consumption expected from these devices. In addition, as
the sampling frequency increases, these chips must stay continuously active and will start to consume
significantly more energy since power management techniques cannot be applied.

Therefore, alternative solutions must be found to increase the computational power of the sensor node
while keeping its power consumption as low as possible in all modes of operation. Increasing the number
of processors is not a very scalable solution as it does not solve the problem of long wake-up delays. A
solution closer to the hardware has a better potential as the best optimizations and customizations can be
made at this level, both in terms of power management and acceleration of computationally intensive
tasks.

2.3. Conclusion 29

3 Reconfigurable Hardware for Low-Power
Embedded Systems

“The future for embedded systems that integrate
ever-increasing portions of the system is
becoming reality. And the availability of FPGAs
with a broad range of sophisticated digital and
analog capabilities is driving that future”

Yankin Tanurhan, “Processors and FPGAs Quo
Vadis?” IEEE Computer, November 2006, Vol.

39, No. 11

Contents
2.1 Origins of wireless sensor networks . 9

2.1.1 Bell’s law . 9

2.1.2 Moore and more . 10

2.1.3 Ubiquitous computing . 11

2.2 The design space of wireless sensor networks . 12

2.2.1 Operation of a wireless sensor network . 12

2.2.1.1 General principle . 13

2.2.1.2 System-level metrics . 14

2.2.2 Sensing . 15

2.2.3 Processing . 17

2.2.3.1 Processing hardware . 17

2.2.3.2 In-network processing . 19

2.2.3.3 Operating systems for wireless sensor networks 20

2.2.4 Wireless communication in wireless sensor networks 21

2.2.5 Energy consumption of a wireless sensor node . 23

2.2.5.1 Limits of wireless communication and in-networking processing for high-
bandwidth sensing on standard motes . 27

2.3 Conclusion . 29

Alternatives to approaches relying on software running on a general-purpose processor which improve
the performance and the energy-efficiency of a system are numerous. In terms of architecture, this
enhancement is driven by a specialization for a specific range of applications. From domain-specific
processors such as DSPs to application specific processors (ASICs), the design space is vast. In the end, a
solution finding a trade-off between implementation flexibility, performance, costs and development time
is selected. Towards this goal, reconfigurable hardware has been often identified as suitable technology,
equitably balancing these characteristics [KM11; TSV07; Bob07].

Along with the More Moore technological trend, the number of transistors per die is constantly increasing
[Int05; Moo98]. Being based on homogeneous patterns, which are copied and distributed all over the chip,

31

programmable logic devices (PLDs) are often among the first large-scale applications of newer technology
processes. This results in chips with an always higher density, where designs with very high degree of
complexity can be built. On the other hand, the operating frequency of digital circuits has reached a
threshold, where it is no longer scalable with the transistor density. Reaching this so-called frequency wall
lead into a growing interest for parallel computing, where computation is not only distributed in time,
but also in space [Sut05]. This trend is intrinsically at the advantage of reconfigurable hardware devices,
which are inherently more scalable than MPSoCs or NoCs where the benefit is much more difficult to
extract [Sun10].

However, this increase in size and density conducted to another limitation related to power consumption
[Sut05]. Switching and leakage current is becoming so important that temperature and power are
becoming critical restrictions to achieve an always increasing performance. In particular, the static power
consumption, which has been often neglected in the past, is becoming as equally important as the dynamic
power consumption. This problem resulted in the development of new technologies and design techniques
where low power consumption was particularly relevant. This trend is however not only applicable to
systems for high-performance computing, but it is also beneficial for very low-power systems as wireless
sensor networks.

This chapter intends to give an overview on the main features of systems based on reconfigurable
hardware. In particular, state-of-the art techniques and devices achieving very low-power consumption
are identified and presented.

Section 3.1 gives a general description on current technologies based on reconfigurable hardware.
In section 3.2, methods used to estimate the power consumption of programmable logic devices are
described. Finally, section 3.3 identifies to what extend can devices based on reconfigurable hardware be
used for duty-cycled operation as required by wireless sensor networks applications.

3.1 Features of reconfigurable hardware systems

A generic digital reconfigurable hardware system can be defined as a combination of digital logic blocks,
configuration signals and an interconnection network. Different reconfigurable hardware architectures
can be created by modifying the nature, the number and the organization of these elements. The basic
concept of reconfigurability can be defined as the ability to modify the operation of the logic block and its
connection by modifying the state of the configuration signals. In PLDs, logic cells are usually organized in
a two-dimensional array surrounded by Input/Output (I/O) cells for external connectivity and specialized
cores enabling heterogeneous functionalities. However, one-dimensional structures can also be used to
limit the overhead introduced by a too flexible interconnection network. In the end, the interconnect of
reconfigurable arrays are based on an heterogeneous mix of one and two dimensional routing networks
[TSV07].

Reconfigurability is not only limited to the digital world: reconfigurable analog components can also be
implemented by following similar design patterns. A combination of analog and digital reconfigurable
elements create a customizable mixed-signal chip (More than Moore trend [Int05]). Examples of such
devices among COTS include Cypress PSoCs [Pso] or Microsemi Smart Fusion [Iglb]. As this thesis
is focusing on the improvement of digital computational power, reconfigurable analog parts are not
considered in details, even though they could be used to implement e.g. pre-filtering or ADC functionalities.
Therefore, the rest of this chapter emphasizes reconfigurable digital logic.

In addition to the spatial organization of logic blocks and their interconnect, reconfigurable hardware
devices can be mainly distinguished by their underlying technological characteristics, their granularity,
and their reconfiguration model. The following sections are investigating these aspects.

32 3. Reconfigurable Hardware for Low-Power Embedded Systems

Logic block Logic block

Logic block Logic block

C
o
n
fi
g
u
ra

ti
o
n

C
o
n
fi
g
u
ra

ti
o
n

C
o
n
fi
g
u
ra

ti
o
n

C
o
n
fi
g
u
ra

ti
o
n

Interconnect

Programmable
Switches

Figure 3.1.: Generic cells of a reconfigurable hardware system

3.1.1 Technology

Different PLD technologies first differ from their programming technology, i.e. the way the configuration
signal are set. As the configuration logic may be dominating the area of the die, selecting an appropriate
technology is of utmost importance for the global performance. Following technologies are usually
distinguished:

• Antifuse technology: these devices are usually one-time programmable, but their size can be
significantly reduced. The configuration is intrinsically non-volatile. Example: Microsemi SX-A
family.

• Static RAM (SRAM): configuration information is saved in SRAM cells. This technology is nowadays
the most commonly used. The device can be programmed a very high amount of times but the
configuration is volatile. Example: Xilinx Spartan, Altera Cyclone families.

• Nonvolatile memory such as EEPROM or Flash cell: these devices combine the non-volatility of the
anti-fuse technology with the reconfigurability of SRAM. The number of reconfigurations is however
limited to several thousand times. Example: Microsemi Igloo family.

Certain devices combine these two technologies such as the Lattice iCE40 FPGA, which can be either
configured as an SRAM FPGA or the configuration data can be loaded from a one-time programmable
nonvolatile memory. As the SRAM technology is implementable with a smaller process technology than
the antifuse and non-volatile counterparts, the density and performance achieved by SRAM devices is
higher.

The logic density and the static power consumption of different families of FPGAs is represented in
Figure 3.2. The data has been extracted from device datasheets and vendor-specific power estimation
spreadsheets. The chart shows a clear trend towards higher density and higher static power consumption.
However, recent devices featuring a higher amount of logic gates but lower leakage (Virtex 6 to Virtex 7
for example) are inverting the static power consumption trend. This trend conveys the fact that static
power consumption has become a critical design limitation for chips with very dense logic. Much efforts
have been invested to reduce this figure in the newest technology processes. At the bottom of the chart,
FPGAs based on Flash technology demonstrate more than two to three orders of magnitude lower static
power consumption than equivalent SRAM FPGAs. This makes this family of devices very suitable for

3.1. Features of reconfigurable hardware systems 33

Spartan 3 XC3S200

Spartan 6 XC6SLX100

Virtex 6 XC6VLX240T

Virtex 7 XC7VX330T

Artix 7 XC7A100TCyclone II EP2C8

Cyclone V 5CEFA9 Stratix II EP230

Stratix V 5SEE9

Arria V 57GXMA1D

Igloo AGL250V2
Igloo AGL1000V2

Igloo2 M2GL050
ProASIC3 A3P600

SX-A A54SX72A

iCE40 LP8K

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+1

1.E+3 1.E+4 1.E+5 1.E+6

S
ta

ti
c
 P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

W
)

Logic Cells

Trend Xilinx Altera Microsemi Lattice

Figure 3.2.: Static power consumption and logic density of recent FPGA devices

low-power applications. However, using Flash technology results in a significant loss of performance :
Igloo FPGAs are based on a 130 nm technology whereas Xilinx Spartan 6 uses 45 nm, which significantly
lowers propagation delays and the overall density.

3.1.2 Granularity

The granularity of a PLD represents the complexity of the logic blocks forming the basis of the architecture.
For instance, the base logic elements of FPGAs are implementing gate level operations (fine granularity)
while coarse-grained reconfigurable arrays (CGRAs) are based on word operations (coarse granularity).
In typical processing elements of CGRAs, a set of synchronous elements such as FIFOs or register files
are combined with ALUs, multiplexers and simple configurable controllers [TSV07]. This contrasts with
FPGA logic cells where a flip-flop is associated with a look-up table. If approximately the same amount of
configuration logic is used for cells with different granularity, it can be easily deduced that a CGRA requires
a significantly less amount of configuration resources than an FPGA to implement a similar functionality.
However, fine granularity offers more flexibility and may implement low-level functions more efficiently.
As a consequence, CGRAs are usually demonstrating higher performance for domain specific applications
such as DSP or image processing [TSV07; Bob07]. In terms of power and energy efficiency, CGRAs are
dominating FPGAs in their specialization domain since their overhead for reconfigurability is much lower
[KM11].

CGRAs have emerged at the end of the 90’s as a potential solution to accelerated patterned signal
processing tasks in multimedia and cryptographic systems. Since then, a large number of architecture
variants has been described in the literature. In general, all designs are derived from the generic
architecture depicted in Figure 3.3. An array of interconnected processing elements configurable at the
word level are used by a main processor to accelerate performance-critical tasks. Thanks to a low number
of reconfiguration bits, the configuration of the CGRA can be hold in a single register. Even multiple
configurations bitstreams called contexts can be hold in underlying registers for configuration switching
within a few clock cycles. The flow of these configuration contexts is controlled by a sequencer, which
selects which configuration should be currently active.

Among the most popular and most complete CGRAs in terms of design flow, one can cite the ADRES
(Architecture for dynamically reconfigurable embedded systems) framework [Mei+03]. A CGRA is tightly
integrated into a VLIW processor in order to reduce the communication overhead induced by traditional

34 3. Reconfigurable Hardware for Low-Power Embedded Systems

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Processing
element

Array of coarse-grained processing
elements with reconfigurable

interconnect

Configuration
Cache

Data BufferMemory

Main Processor

Sequencer

Figure 3.3.: Generic architecture of a coarse-grained reconfigurable architecture (derived from [KM11])

interaction with a RISC processor. This combination leads to a simplified programming model and a better
support to describe parallelism. The architecture is further supported by a complete tool flow [Bou+07]
where trade-offs between energy consumption and performance can be found. Co-developed with the
IMEC research institute, this CGRA is targeting high performance multimedia and digital signal processing
applications.

The Pact XPP (eXtreme Processing Platform) [Bau+03] is another CGRA template targeting high-
performance DSP applications. Pact-XPP utilizes complex mechanisms to handle packet-like data structures
and sophisticated configuration scheduling protocols. The architecture is also supported by a compiler to
map C code to the processing elements.

RaPiDs (Reconfigurable pipelined datapaths) [EGF96] are one-dimensional CGRAs with multiple
functional units communicating through a simple programmable interconnect. Data caches and complex
crossbar switches are not used in order to save area and reduce processing delays. This simplification has
an impact on the flexibility of the architecture, since tasks with irregular address patterns or complex
control flows will not map well on the architecture.

Another type of reconfigurable datapath is implemented by the PipeRench architecture [Gol+99],
which is composed of successive pipelined stages. A virtualization layer splits a static data flow configura-
tion into smaller pieces corresponding to individual pipeline stages. The functionality of each stage can
be reconfigured at runtime according to a time and space multiplexing process.

The Pleiades is another architecture template where heterogeneous satellite processing elements are
connected to a main processor [Wan+01]. Low energy consumption is achieved by mixed granularity
(satellites can be embedded FPGAs or ASIC modules) and application-specific customization. The overhead
introduced by the interconnection network is reduced by using a mesh structure. The Pleiades template is
customized for an application by analyzing C and C++ software code.

Despite their inherent advantages compared to FPGAs for domain-specific computing, most of pure
CGRAs are still undergoing research for the optimization of architectures and development tools. Only a
few architectures such as the ADRES and Pact-XPP have been already integrated in chips for commercial
applications [Mei+03; Bau+03]. For very low-power applications, the suitability of CGRAs with regard
to acceleration of data processing tasks has been demonstrated in previous works [Kim+12; Hin11].
However, these already specialized CGRAs often lack a certain level of flexibility, which make them

3.1. Features of reconfigurable hardware systems 35

unsuitable for large-scale tape-out. This significantly increases the price of single chips implementing this
technology and make them unsuitable with the low-priced feature of wireless sensor nodes.

In order to profit from both fine and coarse granularity, recent reconfigurable hardware systems tend
to mix them into heterogeneous architectures. For instance, Xilinx Virtex-7 FPGAs combine generic
programmable logic with DSP slices, Gigabit transceivers, block RAMs, PCIe interfaces, high speed
memories interfaces, ADCs, etc. An even higher level of granularity can be achieved by directly integrating
CPU cores in the architecture. Typical examples include Xilinx Zynq devices, Microsemi Smart Fusion 2, or
Altera Stratix 10. The family of Cypress PSoCs is also excellent example of devices with mixed granularity
[Pso]. A CPU core is combined with PLD macrocells (fine granularity) and configurable datapaths
(coarse granularity). The low amount of configurable blocks available in these chips makes only the
implementation of elementary functions possible. This includes low-level communication interfaces and
simple data processing tasks, e.g. filtering. This aspect restricts the suitability of the PSoC to implement
custom hardware accelerators or complex data processing blocks.

3.1.3 Reconfiguration processes

Different approaches can be adopted to reconfigure the functionality implemented by the hardware
system. Except one-time programmable PLDs, all reconfigurable systems support static reconfiguration.
The configware, i.e. the data stored in the cells’ reconfiguration memory, is loaded into the device during
system initialization. The data is read from an external source such as a PC or a memory chip through
a programming interface such as a vendor-specific programming device or a specialized programming
chip. The duration of this process depends on the size, the architecture and the technology of the device.
Static reconfiguration of Flash-based PLDs takes a significantly longer time than SRAM FPGAs because of
the delay induced by the erasing and writing of Flash cells. Configuring SRAM FPGAs is completed in
the order of hundreds of milliseconds while it takes up to several minutes to program Flash FPGAs [Igla;
HWH12].

In dynamically reconfigurable systems, the reconfiguration process is part of the application and can
be triggered at runtime by a configuration controller in response to internal or external events [RM10].
In general, dynamic reconfiguration is applied when the resources of the device are not sufficient to hold
accelerators for each functionality required by the application or when the desired functionality was
unknown at programming time. The PLD is in these cases a customizable hardware accelerator, which
can be adapted on-demand to application requirements. This approach requires additional control logic to
be implemented in a dependable fashion. The reconfiguration process includes access to the configuration
memory, which can only be done when the device operation is suspended.

A subclass of dynamically reconfigurable systems comprises PLDs supporting partial dynamic reconfig-
uration (PDR). Here, only a specific part of the configware is modified during the reconfiguration process.
This implicitly reduces the size of the configware and the reconfiguration time. A further advantage is the
possibility to leave the rest of the device active. The operation of active logic is not interrupted, which
may improve the overall speed of the design when compared to full reconfiguration. This enables self
reconfigurable systems where the PDR control logic is implemented as a static part of the device itself. On
the other hand, PDR implies stringent restrictions in terms of resource usage. A partially reconfigurable
hardware block is limited to a predefined area of the device, which gives less flexibility for placing and
routing the design [RM10].

Another notable approach is multi-context reconfiguration. Systems supporting this type of reconfigura-
tion holds within each cell multiple versions of the configuration data while only one of them is active.
The FPGA functionality can thus be modified in a very short amount of time by simply multiplexing these
configuration vectors. Designs implementing this solution are running in a time-multiplexed manner
with very short activity periods. Commercial devices implementing this functionality include Tabula’s
ABAX2P1 with the so called Spacetime architecture. Most of CGRAs are also based on this type of

36 3. Reconfigurable Hardware for Low-Power Embedded Systems

reconfiguration process since they have lower requirements than FPGAs in terms of configuration memory,
which drastically reduces the overall overhead.

During the reconfiguration process, the system is usually not able to do anything useful, so that it can
be considered as a pure loss when estimating the power and energy efficiency of the system. Multi-context
approaches accelerate this task but have a large overhead in terms of resources utilization whereas
classical reconfiguration is slow but needs only a minimal amount of additional logic. Finding a good
trade-off depends mainly on how frequently the architecture needs to be reconfigured and the time
criticality of the application. In general, frequent reconfiguration is only suitable if a significant gain in
terms of processing efficiency is reached.

3.2 Estimating the power consumption of reconfigurable hardware devices

Precisely estimating the power consumption of a reconfigurable hardware device is an arduous task
because of the heterogeneity of the components, the size of the chip and the high dependency with the
input data. In general, the power consumption PTotal of a reconfigurable hardware device can be split
into static (leakage) and dynamic (switching activity) power as [Igla]

PTotal = PStat + PD yn. (3.1)

Due to the heterogeneity of FPGA architectures, static and dynamic power consumption can be further
split into component-based values. This includes the core logic and routing resources but also I/O banks,
individual pins, block RAMS and other coarse-grained elements included in the architecture.

PStat = PStatCore
+ PStatBank

+ PStat IO
+ PStatRAM

. . . (3.2)

PD yn = PLogic + PRouting + PRAM + PClock + PIO + . . . (3.3)

Static power is mainly coming from sub-threshold conduction and tunneling currents such as

PS = ISVDD (3.4)

where VDD is the supply voltage and IS the static current. It the static current globally depends on the size
of the device, other parameters such a supply voltage and ambient temperature also have a significant
impact. In general, it is hardly possible to reduce the static contribution without an intervention at the
technology level [RCN96]. On the other hand, the dynamic power consumption of a component is related
to the switching activity of the underlying transistors. This power consumption can be expressed as

PD = αCV 2
DD f (3.5)

where C is the load capacitance of the circuit, f the clock frequency and α the activity factor of the gate,
i.e. the probability that the transistor will switch during a clock cycle. α is a parameter which is very
difficult to estimate precisely since it depends on the data itself (repartition of 1’s and 0’s), on the circuit
architecture and on the upper level operation activity. Spurious logic transitions may also occur within a
single clock cycle due to different propagation times in the signal paths.

The dynamic power consumption adds up for each basic component of the architecture. Therefore,
the fastest way to obtain an estimation of power consumption is to give a rough approximation of the
global switching activity and the resource usage of the device. FPGA vendors provide power estimation
spreadsheets based on this concept to obtain these values. Nevertheless, this method is often considered
as inaccurate because of the erroneousness of the switching activity and the absence of a precise estimate
of the interconnect contribution.

3.2. Estimating the power consumption of reconfigurable hardware devices 37

HDL Files

IP cores

Timing

Constraints

User Design Files

Synthesis

Physical Constraints

Implemen-
tation

Netlist
Back-annotated

model

Simulation

Top-level

test bench

Power
Analysis

VCD File

User Files

Tool generated files

Figure 3.4.: Design flow for accurate FPGA power estimation

Net
61%

Gate
7%

I/O
4%

Memory
23%

Static
5%

(a) Igloo FPGA

Net
27%

Gate
5%

I/O
4%

Memory
10%

Static
54%

(b) Spartan6 FPGA

Figure 3.5.: Power consumption breakdown of a memory-intensive application on different devices

A more accurate estimate can be obtained with a post Place & Route simulation. Indeed, once the
position and the functionality of each logic cell is known, the activity factor can be precisely estimated
by counting the numbers of transitions induced by injecting stimulus data in the FPGA model. If the
simulation model is sufficiently accurate in terms of architecture and propagation delays, a more reliable
estimate can be obtained. This functionality is usually included into FPGA development environments
(Xilinx XPower, Microsemi Smart Power, etc.). The complete flow using this method is illustrated by
Figure 3.4.

When looking at a detailed breakdown of the power consumption on an FPGA as shown with a typical
example in Figure 3.5, the most important share of the dynamic power comes from the interconnect. The
consumption of the functional logic only represents a tenth of the consumption from the interconnect,
which is one of the main reason why ASICs achieve about one order of magnitude better energy-efficiency
than FPGAs. Similarly, CGRAs achieve better power efficiency because less resources are required to
route the data signals, which are more constrained. When comparing the Flash-based Igloo FPGA with
the SRAM-based FPGA, it can be noticed that the latter has a significantly higher share for static power
consumption. Because of the low clock frequency considered for this test (10 MHz), the static power
consumption is even dominating.

Dynamic power consumption is however only relevant when the device is active and processing a task.
During inactivity times, power saving schemes must be introduced in order to save energy.

38 3. Reconfigurable Hardware for Low-Power Embedded Systems

ttask
tcycle

PDYN

PSTAT
Time

Average Power

Consumption

tSleep

PSLEEP

(a) Sleep

ttask
tcycle

PDYN

PSTAT

PPOWERUP

tPOWERUP

PSAVESTATE

tSAVESTATE

Time

Average Power

Consumption

(b) Shutdown

Figure 3.6.: Low-power duty cycling solutions for FPGAs

3.3 Low-power duty cycling for FPGAs

In general, reconfigurable hardware devices achieve better energy efficiency than MCUs for the execution
of a task because they allow an implementation with custom logic which is significantly faster than
software, i.e the device stays active for a shorter time. However, this gain must be counterbalanced with
the energy spent after the execution of the task, i.e. when the device is idle and waiting for a new task.
This problem can be modeled by a duty-cycled activity similar to the one of typical WSN applications (see
section 2.2.5).

In general, two different scenarios can be considered:

• In scenario 3.6a, the device goes into a low power sleep mode where the clock to the core of the
design is gated. Optionally, a minimal part of the device can stay active to monitor the arrival of
a new task (timer, interrupt handler, etc.). The dynamic power consumption of the device is then
minimized but the static current must still be taken into account. The internal state of the logic and
memory stays unchanged. In this scenario, the normal operation of the device can be resumed in
almost no delay. Flash FPGAs such as Igloo support this mode inherently and have a dedicated pin
to activate it. During this so called Flash*Freeze mode, the I/Os of the device are frozen, so that no
signal, in particular the clock, is driving the logic within the FPGA. For SRAM FPGAs, the supply
voltage can usually be lowered down until a threshold where the internal state of the registers and
block memories is kept. Hybrid devices such as PSoCs support low-power modes with configuration
retention but lost of the internal logic state [Pso]. This implies that data processing tasks must be
fully executed during each activity cycle. In addition, these devices have a wake-up delay from sleep
in the range of 200 microseconds before they are operational.

• In scenario 3.6b: the supply voltage of the device is shutdown, effectively zeroing both static and
dynamic power consumption. As a consequence, the internal content of the registers and memories

3.3. Low-power duty cycling for FPGAs 39

FPGA PPOW ERU P tPOW ERU P PSTAT Threshold

Xilinx XC6SLX150
(Full) 2.4 mW 1.044 sec 61.2 mW 1.085 sec

Xilinx XC6SLX150
(Compressed) 4.8 mW 127 msec 61.2 mW 137 msec

Microsemi AGL1000V2 0 µW 315 µsec 112 µW 315 µsec

Table 3.1.: Power consumption and threshold shutdown times for SRAM and Flash FPGAs

is lost. If this data is critical, the device must undergo a preliminary save-state sequence where the
important information is transfered to a nonvolatile memory. Similarly, this data must be restored
when the device is powered on again. More importantly, the configuration data of SRAM FPGAs
is lost when powered down. This implies that the complete stream of configuration data must be
reloaded prior to resuming operation. Furthermore, additional delays caused by clock or voltage
regulator stabilization must be taken into account.

Intuitively, the second scenario is only efficient if the down time is sufficiently long. A threshold time for
which this solution is preferable to the sleep mode can be established in a similar way as it has been done
for an MCU in section 2.2.5: the energy spent during the save state and the recovery can be considered as
pure overhead. The energy saved in shutdown mode compared to the energy spent in sleep mode can
then be expressed as:

ESav ed = (PSLEEP + PSTAT)tSLEEP − (PSAV ESTAT E + PSTAT)tSAV ESTAT E − (PPOW ERU P + PSTAT)tPOW ERU P . (3.6)

This results in a threshold time of

tSLEEP >
(PSAV ESTAT E + PSTAT)tSAV ESTAT E + (PPOW ERU P + PSTAT)tPOW ERU P

PSLEEP + PSTAT
. (3.7)

In order to evaluate this threshold time, it is important to analyze the different delays and current draws
for different types of FPGA technologies. For simplification, it is considered that only the reconfiguration
process is required during the power-up sequence and that no data need to be saved or restored. If it
is the case, the FPGA technology plays here only a minor role and no notable difference will emerge.
Table 3.1 gives estimates of this threshold time for a Xilinx Spartan6 FPGA and a Microsemi Igloo FPGA.
Values for the Xilinx Spartan 6 are extracted from the work realized in [Lom+12] where such a scenario is
considered. Reconfiguration times is given for reconfiguration with a full and compressed bitstream. For
the Igloo FPGA, no power-up sequence is required, so that the device is almost instantaneously ready to
operate. A value of zero is then considered for PPOW ERU P , although the current is progressively increasing
to the active value. The power-up time corresponds only to the startup delay of external components
(power gate, oscillator) and internal regulators.

Switching off SRAM-Based FPGAs is therefore only useful if long waiting periods are expected. On the
other hand, Igloo FPGAs can be already switched off at very early stages. However, the long startup time
of the supply voltage and clock regulators prevent a shutdown at very high frequencies. The low-power
static consumption in sleep mode stays however in a range acceptable for WSN applications. Igloo devices
are ready for operation within one microsecond when recovering from the low-power Flash*Freeze mode
[Igla] with a quiescent supply current as low as several micro-amperes.

Considering that Flash-based FPGAs and SRAM-based FPGAs have a similar level of dynamic power
consumption when applying the same clock frequency, Flash FPGAs are preferable for both types of
duty-cycled activity. The lower static power and the negligible startup delays of Flash FPGAs make SRAM
FPGAs clearly out of the race to achieve the lowest energy consumption.

40 3. Reconfigurable Hardware for Low-Power Embedded Systems

3.4 Conclusion

3.4.1 Summary of the considerations on reconfigurable hardware

By enabling a higher level of parallelism and the implementation of dedicated processing cores with
digital logic, reconfigurable hardware easily outclass CPUs and DSPs with regard to speed. Thanks to
a relatively patterned and homogeneous architecture, FPGAs can also benefit from the latest process
technologies and achieve a high cell density while vendors invest significant efforts to reduce the power
consumption of their devices. However, this characteristic remains a costly overhead for SRAM FPGAs
applied to very low-power systems.

Nevertheless, a novel class of FPGAs has emerged in the recent years. Thanks to very promising
figures in terms of static power consumption and a nonvolatile configuration memory, Flash FPGAs are
constituting a convincing alternative to traditional SRAM-based devices. These features make these chips
ideal candidates for integration in computationally demanding wireless sensor nodes. Minimal activation
times are compatible with the high sampling rates typical for the targeted application domain. The lower
performance is not critical as it is usually not expected that the device runs at its maximum operating
frequency. Resources necessary to maintain high frequency oscillators can be saved and the overall power
consumption reduced.

On the other hand, Flash devices lose the ability for runtime reconfiguration, which is much longer
and energy costly as the similar procedure for the SRAM counterparts. This intrinsically reduces the
flexibility of Flash FPGAs, which become more difficult to adapt to changing application specifications or
environmental conditions. Innovative solutions must therefore be found to extract the maximum profit
from a static FPGA configuration.

3.4.2 Outlook on the following part

Based on the preliminary analysis developed in these two introductory chapters, the practical investigation
of this thesis will address the following problems in the next part:

• A general purpose hardware implementation of an FPGA-based wireless sensor node is potentially
improving energy efficiency for computationally demanding applications. This property must be
verified not only for the processing capability, but also for long term operation with appropriate
low-power modes. In particular, it must be investigated how such a solution scales with high
sampling rates compared with traditional MCU-based approaches.

• A solution overcoming the flexibility loss inherited by the lack of support for dynamic reconfiguration
with Flash FPGAs is required. Wireless sensor networks are typical applications requiring flexible
adaptivity mechanisms after deployments. This ability must be generalized in order to cover multiple
application domain in a scalable manner.

• Deploying such an infrastructure requires the appropriate tools and drivers to fully support appli-
cation deployment in a limited amount of time. The design of the FPGA architecture must not
complexify the application unnecessarily. A solution integrating support for hardware acceleration
and dynamic reconfiguration within the operating system is required.

3.4. Conclusion 41

Part II.
Design of a Framework
Enabling Reconfigurable
Hardware Acceleration in
Wireless Sensor Networks

43

4 FPGA-based Hardware Acceleration for
Wireless Sensor Nodes

Contents
3.1 Features of reconfigurable hardware systems . 32

3.1.1 Technology . 33

3.1.2 Granularity . 34

3.1.3 Reconfiguration processes . 36

3.2 Estimating the power consumption of reconfigurable hardware devices 37

3.3 Low-power duty cycling for FPGAs . 39

3.4 Conclusion . 41

3.4.1 Summary of the considerations on reconfigurable hardware 41

3.4.2 Outlook on the following part . 41

The design of motes architecture can benefit from reconfigurable hardware technology with regard
to multiple aspects. Not only is the inherent design flexibility exploited to develop custom hardware
accelerators, but also to prototype new processor architectures or to explore the hardware design space.
However, the overhead introduced by this implementation freedom is not always bearable for real-world
applications, often restricting the created platform to experimental purposes. Therefore, it is important to
first distinguish in the related work the projects with sensor nodes based on reconfigurable hardware for
a usage in long-term deployments and projects staying at the prototype level. This chapter first reviews
the literature with works following this approach and proposes several classifications of the existing
platforms. Based on this analysis and the results from the preliminary chapters, the design of a mote based
on reconfigurable hardware and suitable for real-world deployments is presented. The main features,
performance metrics ans limitations of a mote implementing this architecture are presented and illustrated
with selected application scenarios1.

4.1 Related work

This section reviews recent research works where the idea of embedding reconfigurable hardware in a
wireless sensor node is considered. The concept of integrating reconfigurable hardware into distributed
sensor systems already emerged at the very early stages of wireless sensor networks with the Caµs system
[SFN00] and the PicoRadio mote architecture [Rab+00]. The potential of reconfigurable hardware to
accelerate computationally demanding signal processing tasks was already identified. Nevertheless it has
never been fully exploited since then despite a high number of implementations.

A good and recent overview of sensor systems based on FPGAs has been given in [PBT12]. This work
served as a preliminary basis for elaborating the tables reported in the following subsections, along with
personal literature review and experiences from conference meetings. Because of their higher amount
of resources, FPGAs are more commonly used in the design of hardware reconfigurable sensor nodes as
complex programmable logic devices (CPLDs). However, because motes are intrinsically low-resourced

1 The work presented in this chapter is related to the publications [PSG11a; PSG11b]

45

RF MCU / SoC Sensors

RF Sensors RF Sensors

FPGA

Custom

MCU / SoC

FPGA

Custom

Digital

Hardware

RF

FPGA

Custom

Digital

Hardware
MCU / SoC

Sensors RF Sensors

Classic
Architecture

Design Space Exploration
Architecture

Coprocessing
Architecture

Specialised Architecture

Prototyping
Extension Specialisation

Figure 4.1.: Architecture alternatives for FPGA-based wireless sensor nodes

devices, CPLDs are in some cases a good alternative [LPZ07; MCP09; Bro+11]. Therefore, CPLD-based
sensor nodes are also considered for this review work. Throughout the state-of-the-art analysis, three
main types of approaches motivating the usage of reconfigurable hardware emerged:

• FPGA as prototype for SoC design: the reconfigurability of the FPGA is used to implement and
evaluate different SoC architectures customized for motes (Section 4.1.1).

• PLD as MCU coprocessing unit: an FPGA is extending the MCU to accelerate specific tasks (Section
4.1.3).

• FPGA as standalone processing unit: the traditional mote MCU is completely replaced by custom
hardware. No CPU is implemented (Section 4.1.2).

The generic architectures of these three design alternatives are illustrated by Figure 4.1. The next
subsections will first consider these different approaches independently.

4.1.1 Wireless sensor nodes using an FPGA for SoC prototyping

Modern FPGAs have sufficient capacity to host a complete SoC architecture including CPU, memory and
peripheral components based on digital logic. Specific design flows and tools have been developed by all
majors FPGA vendors to support this feature (Xilinx Embedded Development Kit (EDK) [Xila], Altera’s
Nios II Embedded Design Suite [Alt] or the Microsemis’s Libero SoC IDE [Libb]). Using these devices to
evaluate different design alternatives is therefore a straightforward, cheap and fast approach. Table 4.3
reports the most relevant works based on this approach along with the main features of the proposed
mote.

In general, the works are focusing on custom peripheral modules in the SoC. The CPU is kept unchanged
and only application-specific hardware accelerators are investigated. In [Hil10] and [Ple+03], custom
combinations of CPU and hardware accelerators (sensor interfaces) are analyzed. Design space exploration
methods are applied to optimize the design with regard to power consumption and execution time. The
application range is very wide, with cores accelerating routing algorithms [CSM08] up to image processing
[Lu+09]. Certain works explore custom CPU architectures [Hin+08; HRG08; RFB10; AGP09]. In these
works, new processor instructions are introduced to accelerate frequent operations executed by motes.

46 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

M
ot

e
-

R
ef

er
en

ce
Ye

ar
FP

G
A

C
PU

R
ad

io
A

pp
li

ca
ti

on
C

om
m

en
t

W
U

R
M

[P
le

+
03

]
20

03
X

ili
nx

Vi
rt

ex
LE

O
N

32
-B

it
B

lu
et

oo
th

N
et

w
or

ki
ng

W
ea

ra
bl

e
C

om
pu

ti
ng

PD
R

w
it

h
O

S
su

pp
or

t

[H
in

+
08

;H
R

G
08

]
20

07
X

ili
nx

Sp
ar

ta
n

3
LE

O
N

2
32

-B
it

X
em

ic
s

86
8

M
H

z
G

en
er

al
pu

rp
os

e
R

ec
on

fig
ur

ab
le

D
at

ap
at

h

[V
ol

+
07

]
20

07
X

ili
nx

Sp
ar

ta
n

3
Pi

co
-B

la
ze

IE
EE

80
2.

15
.4

+
B

lu
et

oo
th

A
co

us
ti

c
si

gn
al

pr
oc

es
si

ng
M

ul
ti

-c
ha

nn
el

N
ok

ia
A

SP
[A

ho
+

07
]

20
07

A
lt

er
a

C
yc

lo
ne

II
N

io
s

II
B

lu
et

oo
th

W
ea

ra
bl

e
co

m
pu

ti
ng

Sm
ar

t
w

at
ch

[C
SM

08
]

20
08

A
lt

er
a

C
yc

lo
ne

N
io

s
II

B
lu

et
oo

th
G

en
er

al
pu

rp
os

e
Pr

ot
oc

ol
op

ti
m

iz
at

io
n

[M
R

08
]

20
08

A
lt

er
a

C
yc

lo
ne

II
N

io
s

II
B

lu
et

oo
th

Te
m

pe
ra

tu
re

m
on

it
or

in
g

Pr
ot

oc
ol

op
ti

m
iz

at
io

n

[H
.+

09
]

20
09

A
lt

er
a

C
yc

lo
ne

II
N

io
s

II
nR

F2
40

1
2.

4
G

H
z

Im
ag

e
pr

oc
es

si
ng

Ea
si

So
C

[L
u+

09
]

20
09

X
ili

nx
Sp

ar
ta

n
3E

M
C

80
51

U
nk

no
w

n
Im

ag
e

pr
oc

es
si

ng
O

ve
r-

th
e-

ai
r

pr
og

ra
m

m
in

g

Fe
m

to
N

od
e

[A
G

P0
9]

20
09

X
ili

nx
Vi

rt
ex

II
Fe

m
to

Ja
va

IE
EE

80
2.

15
.4

Te
m

pe
ra

tu
re

m
on

it
or

in
g

Ja
va

V
M

[T
on

+
09

]
20

09
X

ili
nx

Sp
ar

ta
n

3E
M

ic
ro

bl
az

e
IE

EE
80

2.
15

.4
C

ry
pt

og
ra

ph
y

Pe
ta

lin
ux

O
S

[W
ei

+
09

]
20

09
A

lt
er

a
C

yc
lo

ne
II

O
pe

nR
IS

C
IE

EE
80

2.
15

.4
Te

m
pe

ra
tu

re
m

on
it

or
in

g

B
lu

eD
ot

[R
FB

10
]

20
10

X
ili

nx
Vi

rt
ex

4
B

lu
eC

or
e

nR
F2

40
1

2.
4

G
H

z
G

en
er

al
pu

rp
os

e
In

st
ru

ct
io

n
se

t
op

ti
m

iz
at

io
n

H
yp

er
io

n
[H

il1
0]

20
10

X
ili

nx
Sp

ar
ta

n
3

Pl
as

m
a

32
-B

it
30

0
-4

00
-8

00
M

H
z

G
en

er
al

pu
rp

os
e

D
es

ig
n

Sp
ac

e
Ex

pl
or

at
io

n
[V

ol
+

10
]

20
10

A
ct

el
lI

gl
oo

A
R

M
C

or
te

x-
M

1
U

nk
no

w
n

G
en

er
al

pu
rp

os
e

R
ad

io
in

te
rf

ac
e

[Z
ha

11
]

20
11

A
lt

er
a

C
yc

lo
ne

II
N

io
s

II
nR

F2
40

1
2.

4
G

H
z

Vi
br

at
io

n
m

on
it

or
in

g
[L

i+
12

]
20

12
X

ili
nx

Vi
rt

ex
4

LE
O

N
3

/
80

51
IE

EE
80

2.
15

.4
C

ry
pt

og
ra

ph
y

PD
R

[A
M

12
]

20
12

X
ili

nx
Vi

rt
ex

4
M

in
iM

IP
S

N
oC

U
nk

nw
on

D
SP

M
PS

oC
so

lu
ti

on
H

iR
eC

oo
ki

e
[V

al
+

12
a]

20
12

X
ili

nx
Sp

ar
ta

n
6

M
ic

ro
bl

az
e

IE
EE

80
2.

15
.4

C
ry

pt
og

ra
ph

y
C

oo
ki

es
[P

or
+

06
a]

ex
-

te
ns

io
n

[H
ay

+
12

]
20

12
X

ili
nx

Sp
ar

ta
n

3
80

51
W

iF
i

Vi
br

at
io

n
M

on
it

or
in

g
Sa

fe
ty

ap
pl

ic
at

io
ns

[F
G

V
13

]
20

13
C

yp
re

ss
PS

oC
5

C
or

te
x

M
3

IE
EE

80
2.

15
.4

G
en

er
al

pu
rp

os
e

Sm
ar

t
tr

an
sd

uc
er

in
te

rf
ac

e
M

ar
m

ot
e

SD
R

[S
zi

+
13

]
20

13
Sm

ar
tF

us
io

n
C

or
te

x
M

3
M

A
X

28
30

Lo
w

-p
ow

er
SD

R
M

od
ul

ar
m

ot
e

Ta
bl

e
4.

1.
:R

es
ea

rc
h

w
or

ks
us

in
g

FP
G

As
fo

rm
ot

e
ar

ch
ite

ct
ur

e
pr

ot
ot

yp
in

g

4.1. Related work 47

Even though this approach gives good design hints to optimize processing tasks on motes, most of the
works do not consider low-power operating modes. Duty-cycled operation is not taken into account even
though it is one of the most efficient design aspect to achieve low energy consumption. By focusing on
processing aspects only, other important mote-level features such as power management are neglected. In
the end, the works presented here are not used in real-world applications, mainly because of a too high
energy consumption. Even if this can be explained by the intrinsic nature of prototypes, the choice of
the FPGA technology has also an impact on this observation. The devices are usually selected with high
gates number in order to benefit from the maximum flexibility when evaluating the SoC architectures. By
nature, these chips do not support well very low power operation modes since they are not targeting this
range of applications. As a consequence, only a few works report the actual active current consumption
of the mote (up to 1.1 W for [Hin+08], 330 mW for [Aho+07], 221 mW for [Wei+09], up to 400 mW
for [Hil10], up to 1.2 W for [Li+12]). Using large devices is also taking the risk that all the available
resources are not exploited and that a part of the power consumption and the infrastructure are wasted.

The only exception is the HireCookie node [Val+12a; Lom+12] where a MicroBlaze-based SoC with
PDR capability is evaluated. Specialized hardware accelerators can be loaded at runtime to accelerate
algorithms on-demand. When unused, the FPGA is switched off in order to save power. A second
low-power microcontroller is controlling the activity and the reconfiguration of the main FPGA at regular
time intervals. The authors reported an average active current consumption of 140 mA, which must be
counterbalanced with the overhead introduced by the reconfiguration process (between 0.5 and 1 second
at 50 mA for each power-up sequence).

Although these works show in general that the performance of motes can be largely improved by using
tailored hardware accelerators and CPU architectures, they do not represent a reliable solution for real
deployments. Most of the designs are targeting ASIC implementation, which is often a costly solution for
WSNs where low prices and development times are important.

4.1.2 Wireless sensor nodes with standalone FPGA

Mote - Reference Year FPGA Radio Application Comment
RCH

[CTA08] 2008
Xilinx

Virtex II Sub-1-GHz Data aggregation PDR

VAPRES
[GGRG09] 2009

Xilinx
Virtex 4 Unknwon Target tracking Kalman filters

AEPod [Led+09] 2009 Actel Igloo 2.4 GHz radio SHM
High sampling rate

on multilple channels

[Kad+10] 2010
Xilinx

Virtex 5 Unknown Image processing ASIC prototyping

[Gas+11b] 2010
Actel Igloo

AGL600 IEEE 802.15.4 Image processing Low power

[VS+10] 2010
Actel Igloo

AGL250 IEEE 802.15.4 Vibration analysis Industrial monitoring

[CSS11] 2011
Xilinx

Virtex 5 Unknown Image processing ASIC prototyping

[TD11] 2011
SiliconBlue
iCE65L08 144 MHz Image processing Biomedial applications

WMSN
[PA11] 2011

Xilinx
Spartan 3 IEEE 802.15.4 Image processing

[Lia+13] 2013
Xilinx

Spartan 3 IEEE 802.15.4 Network tasks Protocol acceleration

Table 4.2.: Research works using FPGAs as standalone processing unit

48 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

Another notable design alternative for motes based on reconfigurable hardware is to completely remove
the CPU. Existing works following this approach are reported in Table 4.2. Even though this solution
intrinsically reduces the flexibility, it also impacts the energy-efficiency of the mote by focusing on the
core functionalities. For this category, one can further distinguish between works using FPGAs for ASIC
prototyping ([CSS11; Kad+10]) and works using the FPGA-based mote in real-world deployments with
application specific configurations [Gas+11b; VS+10; TD11]. While the first approach is suffering
from similar symptoms as mote SoC prototypes (Section 4.1.1), the latter is more suitable for very
low-power application scenarios. [Gas+11b] and [TD11] respectively reported an average consumption
of 8 mW and 5.9 mW for motes performing image processing while [VS+10] reported 8 mW for a mote
implementing vibration analysis algorithms. It must be emphasized that these motes are based on FPGAs
with non-volatile memory and a low number of logic cells.

Except in [Lia+13], the motes from this category have almost no support for communication tasks. This
limits severely the networking capability of the nodes and restricts the number of supported topologies
and the complexity of the MAC protocol, thus reducing the number of potential applications. In general,
motes without CPU are already very focused on the target application and lack a genericity, which would
make them suitable to a broader range of implementation scenarios.

4.1.3 Wireless sensor nodes with a co-processing unit based on programmable logic

The last and largest category is comprised of motes where MCUs or SoCs which are commonly found
in motes architecture are extended with reconfigurable hardware devices. A list of works based on this
approach is given in Table 4.3. In this case, the task of the reconfigurable hardware device is to relieve
the CPU from specific duties that cannot be handled efficiently in software. Unlike FPGA-based motes
designed for prototyping, most wireless sensor nodes from this category are expected to perform better
than MCUs-only solution, in particular in terms of energy consumption and execution speed. That is
one of the reason why the chips used for these motes are in the lower range of reconfigurable hardware
devices in terms of gate count. In order to limit the power consumption, the co-processing unit is carefully
scaled to the application requirements. In most of the cases, the extension is implementing a task that
is not supported at all by the CPU because of resources restrictions, e.g. image processing or vibration
analysis.

In the earliest stage, this solution has been studied with the PicoNode, a prototype mote for the
PicoRadio project [BMR02]. Although the used technology is not up-to-date anymore, the architecture
and the design flow were already very advanced and can still be used as a reference today. The FPGA
co-processor could notably be programmed with a set of standardized functions, which could be selected
out of a library and parameterized by the processor over different levels of application programming
interfaces (APIs). Another founding work is the countersniper project [Sim+04] where an FPGA has been
used to perform acoustic signal processing. This work is still used as standard reference for numerous
WSN applications. Later on, numerous motes were created with the similar objectives. Among the most
advances projects, it is worth citing the modular sensor node created by the Tyndall research institute
[Bel+05]. Two different types of FPGAs with different capability can be plugged to a main CPU board
and diverse sensor, communication or power supply modules. To the best of my knowledge, this mote
is now the only FPGA-based sensor node which is commercially available. A very similar approach has
been adopted for the design of the Cookie mote [Por+06b], which enables a modular combination of
FPGA processing boards with different CPU, radio and sensing modules. Among other relevant projects,
multiple recent motes are based on the low-power Igloo FPGA [Cen; Tan+08; Sch+08; Kos+10; BS10;
Khu+11]. Like in the examples from section 4.1.2, an average active power consumption in the range of
5 to 20 mW is achieved. Works using CPLDs [Bro+11; MCP09] accelerate simple functionalities related
to networking such as coding or cryptography. The mote developed by Microsoft research [LPZ07] uses
CPLDs for inter-board communication in a modular sensor node architecture.

4.1. Related work 49

M
ote

-
R

eferen
ce

Year
FPG

A
C

PU
R

adio
A

pplication
C

om
m

en
t

PicoR
adio

[B
M

R
02]

2002
X

ilinx
XC

4000X
LA

Strong
A

R
M

1100
B

luetooth
D

SP
-N

etw
ork

Tasks
PicoN

ode
SoC

C
ountersniper

[Sim
+

04]
2004

X
ilinx

Spartan
II

A
tm

ega
128L

Sub-1-G
H

z
A

coustic
signal

processing
M

IC
A

2
extension

25
m

m
Tyndall

[O
’F+

05;B
el+

05]
2005

X
ilinx

Spartan
II-E

X
ilinx

Virtex
4

A
tm

ega
128L

8051
nR

F2401
2.4

G
H

z
IEEE

802.15.4
N

euralnetw
orks

sensor
connectivity

Sm
alland

m
odular

R
A

N
S-300

[C
al+

05]
2005

X
ilinx

Spartan
II-E

TI
M

SP430
Sub-1-G

H
z

Fire
detection

D
ynam

ic
reconfiguration

H
ogthrob

[Vir+
05]

2005
X

ilinx
Spartan

3
A

tm
ega

128L
nR

F2401
2.4

G
H

z
A

nim
alm

onitoring
C

PU
prototyping

Square
[K

K
06]

2006
X

ilinx
Spartan

II
M

icroB
laze

(second
FPG

A
)

R
FM

433.92
M

H
z

Im
age

processing
D

ynam
ic

reconfiguration

C
ookies

[Por+
06b;K

ra+
11]

2006
X

ilinx
Spartan

3
A

D
uC

841
B

luetooth
IEEE

802.15.4
G

eneralpurpose
D

ynam
ic

reconfiguration

C
ookies

[C
en]

2012
A

ctelIgloo
A

G
L125

TI
M

SP430
B

luetooth
IEEE

802.15.4
G

eneralpurpose
W

ake-up
radio

Parrotfish
[EK

D
06]

2006
U

nknow
n

ATm
ega162

B
luetooth

G
eneralpurpose

D
ynam

ic
reconfiguration

M
icreleye

[N
ah+

07]
2007

A
tm

elFPSLIC
A

tm
elAV

R
U

nknow
n

Im
age

processing
D

ynam
ic

reconfiguration
M

icrosoft
m

Platform
[LPZ07]

2007
X

ilinx
C

oolR
unner-II

TI
M

SP430
IEEE

802.15.4
A

coustic
signal

processing
Stacked

m
otes

C
PLD

based

R
ew

ise
[W

il+
07]

2007
X

ilinx
Virtex

TI
M

SP430
IEEE

802.15.4
G

eneralpurpose
D

ynam
ic

reconfiguration
[Tan+

08]
2008

A
ctelIgloo

A
G

L600
ATm

ega644p
U

nknow
n

FFT
M

odule
slots

[Sch+
08]

2008
A

ctelIgloo
A

G
L250

TI
M

SP430
U

nknow
n

Precise
tim

ing
Low

-pow
er

[M
C

P09]
2009

X
ilinx

C
oolR

unner-II
ATm

ega
1281

IEEE
802.15.4

N
etw

ork
tasks

C
PLD

based
[Kos+

10]
2010

A
ctelIgloo

A
tm

elAV
R

868
M

H
z

Vibration
analysis

Industrialapplication
Pow

W
ow

[B
S10]

2010
A

ctelIgloo
A

G
L125

TI
M

SP430
IEEE

802.15.4
N

etw
orking

tasks
C

ontikiO
S

[SLL11]
2011

X
ilinx

Spartan
3E

A
tm

elSA
M

7X
IEEE

802.15.4
N

etw
orking

tasks
H

igh
bandw

idth

[K
hu+

11]
2011

X
ilinx

Spartan
6

A
ctelIgloo

A
G

L600
A

tm
elAV

R
32

IEEE
802.15.4

Im
age

Processing
FPG

A
com

parison

M
asliN

ET
[Jel+

11]
2011

A
ctelProA

SIC
3

ATm
ega

1281
IEEE

802.15.4
Im

age
Processing

Energy
harvesting

R
ESEN

SE
[B

ro+
11]

2011
X

ilinx
C

oolR
unner-II

ATm
ega

1281
IEEE

802.15.4
N

etw
orking

tasks
C

PLD
based

C
ES

[H
W

H
12]

2012
A

ctelSm
artFusion

A
R

M
C

ortex-M
3

IEEE
802.15.4

G
eneralpurpose

R
econfigurable

SoC

Table
4.3.:Research

w
orksusing

FPG
AsforCPU

extension

50 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

As the application scenarios differ for each of these motes, a direct comparison in terms of performance
is not fair and not possible. Except CPLDs-based architecture and the PowWow node [BS10], hardware
accelerators were used to improve sensor data processing, since it is usually the domain where highest
gain can be obtained.

4.1.4 General considerations on related work

Among this high amount of motes selected from the literature analysis (more than 50), only a few
works have reached an advanced level of development where a hardware prototype and a development
environment is available. This includes :

• The PicoNode testbed as described in the previous section [BMR02]. Unfortunately, the reported
power consumption is over 400 mW in all modes of operation.

• The 25mm sensor node from the Tyndall institute [Bel+05; O’F+05], which combines a Spartan-
IIE or a Virtex-4 FPGA with different radio and sensor modules into a modular platform with a
very small form factor. The nodes were used in applications where high sensor connectivity was
required and for wearable computing applications. Even though the form factor of the node is very
advantageous, no or very few performance and energy consumption metrics are given.

• The Cookies platform, which supports several types of FPGA (Igloo and Spartan 3), radio (Bluetooth
and IEEE 802.15.4) and CPU (MSP430 and ADuC841) [Cen]. The mote was successfully deployed
in an application for industrial environment monitoring [Val+12b]. Custom sensor interfaces and
hardware accelerators were also implemented on the node. The authors show notably a significant
gain in terms of speed when compared to software approaches.

• The Marmote SDR [Szi+13] with its modular architecture where the reconfigurable is principally
used for SDR purposes. The authors show here a very large benefit for the usage of SoC embedding
Flash-based reconfigurable logic when compared to standard SDR systems. This show the potential
of these devices for high-speed and complex digital signal processing. The authors emphasize
however that their approach with a SoC is not as good as what one could expect with an FPGA, as
the low-power mode of the SoC is still power hungry.

• The platform developed by Hinkelmann et al. for the evaluation of different processor architectures
on a Spartan-3 FPGA [Hin+08]. Unlike most of the existing works. Hinkelmann exploited the
potential of a coarse-grained architecture to improve the energy-efficiency of the node. Even if his
approach demonstrated that CGRAs are a good trade-off between software and ASIC, the acceleration
capability is limited to a specific domain of applications (error correction and cryptography) where
most of modern WSN MCUs or transceivers already integrate dedicated IP cores. The proximity
to the processor limits also the level of parallelism that could be achieved with a custom design
implemented on reconfigurable hardware.

• The Hyperion platform [Hil10] used for SoC design space exploration. This platform gives a great
potential to test new architectures as it comes with a power estimation framework and a flexible
connectivity. The benefit of selected SoC architectures for image processing could be demonstrated.
However, the platform is not suitable for real deployments as the consumed power is too high.

None of these works was fully exploiting the low-power consumption of Flash-based FPGAs for sensor
data processing. In particular, all the existing works using Igloo FPGAs are mainly focusing on the
processing only part and do not take the power management issues into account.

The majority of the works are based on the WSN standard IEEE 802.15.4 radio. Bluetooth and Sub-1-
GHz radios could also be commonly found but no motes was using a protocol supporting over-the-air

4.1. Related work 51

Image
Processing

26%

Network
Tasks

21%DSP
23%

General
Purpose

30%

Figure 4.2.: Applications of FPGA-based wireless sensor nodes

throughput larger as 1 Mbps. In general, only a few works are making detailed considerations on the
communication protocol.

The application range of the selected works is very wide, although three main domains could be
identified: image processing, digital signal processing and networking tasks (including cryptography,
channel coding and routing). The distribution of these application domains is shown in the pie chart from
Figure 4.2. This shows that the additional processing power is not only used for sensor data processing
but also for tasks related to communication.

In parallel to the mote architecture, three main trends are emerging to motivate the utilization of FPGAs
on motes:

• Application-specific acceleration : One or several computation-intensive tasks need to be acceler-
ated to achieve higher energy-efficiency. FPGAs with very low power consumption are selected to
implement the algorithms. In general, the design is limited to the specific application domain, e.g.
image processing, but is suitable for real-world deployments.

• Design space exploration : Large FPGAs are used to test and evaluate different CPU or SoC archi-
tectures. The larger power consumption makes the node not suitable for real-world deployments.

• Dynamic reconfiguration : Several works are investigating concepts to take profit from the
dynamic reconfiguration capability of certain FPGAs [Ple+03; Hin+08; Li+12; Cal+05; KK06;
EKD06; Nah+07; Kra+11; Lom+12]. Although this aspect will be addressed with more details in
chapter 5, it is worth identifying this trend at this point since it describes a category of nodes with
particular features.

Selected works have been classified according to these trends and placed on the graph 4.3. When
considering the FPGA size and the implementation flexibility enabled by each design, the three respective
zones can clearly be distinguished. The diagonal of the graph results from the logical relationship between
the amount of available logic and the implementation freedom. The dynamic reconfiguration approach
gives more flexibility while using less resources, placing the corresponding zone towards the right of the
graph. Some motes share characteristics from several zones, like the WURM project, which combines
dynamic reconfigurability features with design space exploration. In the lower left part of the graph, one
can find existing works using Flash-based FPGAs, which are relatively limited for an utilization in different
applications.

A zone corresponding to lower-resourced FPGAs but enabling more design flexibility stays however
empty. There is here a good potential to develop a mote with limited resources allowing real deployments
but sufficiently generic to cover a large range of applications and explore different types of processing
solutions. By taking motes application-specific acceleration as a reference, this could be achieved by
slightly increasing the size of the FPGA device. These additional resources can be used to implement a

52 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

FPGA
Size

Flexibility General-purposeApplication-specific

High-end
highly resourced

Low-power
Small gate count

Counter
sniper

WURM

Cookie

Hinkelmann

REWISE

ASP

Hyperion

VTTGasparini

Vera-Selas

Turcza

FemtoNode

Li

HiReCookie

Hoghtrob

Unexplored zone

Figure 4.3.: Design space of FPGA-based wireless sensor nodes

framework for dynamic reconfiguration, which would place the mote further to the right of the graph.
Finally, more resources and more flexibility implies better support for design space exploration.

Such a platform would then be suitable for deployments in real-world applications and benefit from the
other main design features of reconfigurable hardware: resource sharing and architecture prototyping.
This approach is promoting the utilization of the FPGA as an extension of a main microcontroller in order
to maximize the CPU energy-efficiency. Implementing CPUs as softcores is a good solution for SoC design
space exploration but stays a costly solution in terms of resource consumption. The rest of this chapter is
endeavoring to describe the design of a platform architecture meeting these objectives.

4.2 Design of a modular FPGA-based low-power mote

The design requirements and the functionalities of a low-power FPGA-based wireless sensing platform
have been identified in previous chapters and sections. The core architecture of the mote will be first
described and metrics of two hardware implementations developed in the frame of two research projects
related to this thesis. These are respectively HaLOEWEn (Hardware-accelerated LOw Energy Wireless
Embedded Sensor-Actuator node) developed in cooperation with the TU Darmstadt group for Embedded
Systems and Applications (ESA) for the research center AdRIA [Adr] and LPSIP (Low-Power Sensor
Interface Platform) developed in cooperation with the Wireless Sensor Network research group from the
Fraunhofer Institute for Integrated Circuits (IIS) for the EU FP7 MoDe (Maintenance on Demand) project
[Mod].

4.2.1 Core architecture

A major feature driving the design of general-purpose mote and sensing-actuating systems in general
is modularity. Directly integrating sensors on the main board of the platform is too restrictive. Each
application requires the utilization of specific components which can be attached to the mote in a plug-
and-play fashion. The high I/O connectivity of FPGAs is a further argument giving the board a natural

4.2. Design of a modular FPGA-based low-power mote 53

Reconfigurable

Hardware

Microcontroller

Unit
Radio

Custom

Extension

Sensors

Signal

Conditioning

Sensors

Signal

Conditioning

Communication module
Acceleration

Module
Sensing Module

Custom Extension Sensing Module

Power Supply

Power module

Figure 4.4.: Generic architecture of the FPGA-based sensor node

potential to be extended with additional modules. The core architecture of traditional motes is intrinsically
suitable for modular design when distinguishing processing, sensing, radio and power supply (see Figure
2.2). Many of the related works are designed in a modular way as well: the PicoNode [BMR02], the
25 mm Tyndall node [Bel+05], Cookies [Por+06b], Microsoft mPlatform [LPZ07], Hyperion [Hil10],
Marmote SDR [Szi+13] or the platform from Hinkelmann et al. [Hin+08].

On the other hand, modularity induces a significant overhead in terms of size, making the platform
less suitable for a miniaturized implementation. As the evaluation of different radio modules is outside
the scope of this work, no modularity has been planed for the wireless communication interface, thus
globally reducing the size of the mote. This allows the utilization of RF SoCs where CPU and radio are
already integrated in the same chip. The general concept of the mote is illustrated by Figure 4.4. It can
be noticed that no direct interaction between the radio and the reconfigurable hardware module has
been planed. This decision is an intentional wish to decouple the FPGA from the wireless communication
protocol. Most of WSN microcontrollers and radio chips already include ASIC cores to accelerate MAC
tasks, including encryption or error checking. The platform is then mainly targeting applications with
data processing requirements at the sensor level, or at higher layer of the communication stack, i.e. at
application level.

Based on the considerations from the previous chapters, the FPGA type has been fixed to Microsemi
Igloo AGL1000V2, which is the largest available device from the Igloo family. A package which is
compatible with smaller versions of the chip has been selected in order to downgrade the capability of the
device if the target application has less stringent requirements. The chip supports supply voltage down to
1.2 V, which is compatible with a very low-power operation.

4.2.2 The HaLOEWEn platform

4.2.2.1 Main board

The HaLOEWEn platform implements the generic architecture described in the previous section with the
only difference that the communication and acceleration module are associated on the same main board.

54 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

CC2531 RF SoC RF
Circuitry

SMA
Antenna

USB
SoC Programming

Header

Input Power
Switch

Reset
Button

Configuration
Jumpers

FPGA
Programming

Header

LEDs

46 I/Os – FPGA Bank 1

10 I/Os
FPGA Bank 2

IGLOO
AGL100 FPGA

4
4
 I

/O
s
 –

 F
P
G

A
 B

a
n
k
 0

46 I/Os – FPGA Bank 3

Flash & Freeze

JTAG

LED

3.3V or 2.5V
Power Island

2.5V
 Power Island

1.5V
 Power Island

Figure 4.5.: Block diagram of the HaLOEWEn main board

The CC2531 chip was selected as RF SoC for its low power consumption in both active and sleep mode
and efficient 2.4 GHz radio with IEEE 802.15.4 MAC support. This SoC is based on a 8051 8-bit CPU core.

A block diagram of the platform is given in Figure 4.5. The main characteristics of the board are
reported in Table 4.4. A photograph of the board along with the platform logo are depicted in Figure 4.6.
The complete schematics of the platform can be found in Appendix A and in the technical report [PP12].

4.2.2.2 Extensions

FPGA extensions
Thanks to the FPGA, the HaLOEWEn platform has a high I/O connectivity for external modules. Four

extension headers are available to plug various application-specific modules. Each extension includes
power I/O pins to supply extension boards from the main board with a selectable 3.3 or 2.5 voltage.
HaLOEWEn-specific extension modules include an SRAM-FRAM memory module with parallel access
for memory intensive applications, a generic ADC-DAC board with different acquisition ranges, sensor
modules and an additional RF SoC extension to create multi-radio applications. An adapter has been
conceived to support Digilent Pmods [Dig], low-cost digital breakout boards for sensing, data acquisition,
communication, memory, I/O adapters and actuators. A VHDL driver is already available for most of these
modules, enabling an easy import into the FPGA design.

This high connectivity gives a large design freedom. As modular hardware is getting increasingly
popular thanks to open-source hardware projects like Arduino [Ard], the availability of breakout extension
boards for a broad spectrum of applications is very high.

Energy harvesting
Even though the HaLOEWEn mote is commonly powered by two AA batteries, a hybrid energy har-

vesting module couple to a rechargeable Lithium-ion battery was developed [Zha12b]2. The module
simultaneously collects energy from a 12.5 cm x 6.5 cm solar panel (photovoltaics) and from a 30 mm x
90 mm thermoelectric generator (Seebeck effect). The generator outputs are regulated by a Single-Ended

2 Preliminary results have been published in [Phi+12b] and a demonstration has been prepared for the DATE’11 conference
[Phi+11]

4.2. Design of a modular FPGA-based low-power mote 55

Feature Value
RF SoC TI CC2531
CPU Core 8-bit 8051
Flash size 256 kB
RAM size 8 kB
ADC 8 channels 12-bit
Peripherals 2 USART - AES Coprocessor - USB core
Current draw 3.4 mA (Active)
Current draw 1 µA (Sleep)

Radio 2.4 GHz IEEE 802.15.4
Sensitivity -97 dBm
TX current 28.7 mA (@1 dBm)
RX current 24.3 mA

FPGA Igloo AGL1000V5
System gates 1 M
Low-Power mode 53 µW
RAM 144 kbits
On board oscillator 20 MHz

Size 96x60 mm2

Table 4.4.: Main features of the HaLOEWEn platform

Figure 4.6.: Photo of HaLOEWEn version 3 and HaLOEWEn logo

56 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

Primary-Inductance Converter (SEPIC) DC/DC converter. This type of converter is controlled by a pulse
wave modulation (PWM) signal, which can be tuned to achieve optimal impedance matching between the
generator and the DC/DC converter. Searching for this optimal PWM duty cycle at runtime is a technique
known as Maximum Power Point Tracking (MPPT). As the environmental conditions are changing, the
operation of the DC/DC converter must be adapted to maximize the power output. In order to simplify the
control logic necessary to implement this algorithm, the method known as fractional open-circuit voltage
has been applied [Ahm10]. It relies on the quasi linear relationship between the optimal duty cycle and
the open-circuit voltage of the energy source. By regularly sensing this voltage, the corresponding optimal
PWM duty-cycle can be determined via a look-up table. On the developed energy harvesting module, the
sensing, look-up and PWM functionalities for both the solar cell and the thermoelectric generator were
implemented on an Igloo low-power FPGA with a very low amount of cells (AGL060 with 60k equivalent
gates). Additional power management logic has been implemented to automatically cut the FPGA supply
power when the amount of available power is too low for efficient recharging.

Experiments have been performed to measure the performance of the energy harvesting circuit in
outdoor conditions [Zha12b]. The temperature gradient for the thermoelectric generator was created
by exposing one side to direct sunlight while the other side is attached to a thermal mass used as heat
capacitance. On a twelve days experiment with summer weather, it was estimated that the module could
approximately generate an average power of 4.7 mW (day and night combined). From this 4.7 mW, the
contribution of the thermoelectric generator was estimated to 4 %. This particularly low value is due
to the low temperature gradient achieved in this scenario. Only the side of thermoelectric generator
exposed to the sun is considered as the hot spot, which does not create a temperature variation sufficient
to generate a significant amount of power.

This result gives an approximate value for the average power consumption that the wireless sensor
node should reach to enable self sufficient operation, i.e. batteries do not need to be replaced. In practice,
this setup is limited by the aging of the Lithium-ion battery, which does not support well continuous
recharging processes. It however gives a significant lifetime extension boost for outdoor deployments.

Self-extension
For computation-intensive and time-critical applications, several HaLOEWEn boards can be combined

into a multi-FPGA, multi-transceiver platform3. The FPGA I/O headers can be used for high bandwidth
inter-FPGA communication while RF SoCs can communicate over wireless links. This setup is a particularly
suitable for networked control systems where concurrent RF transmissions on different channels and
highly parallel computing can significantly reduce processing delays. Distributed active vibration control
is a typical example where motes must intensively coordinate with each other while implementing
resource-consuming adaptive control schemes such as Least-Mean-Square (LMS) algorithms [PSG11a;
Lav11]. As actuating and control systems are outside the scope of this thesis, no further details will be
given on this aspect.

4.2.2.3 Software

The Contiki OS [DGV04; Con] was selected to manage the resources of the mote and implement
the wireless communication stack. The OS includes a variety of libraries to combine event-driven
operation with multi-threading. In particular, Contiki support Protothreads [Dun+06a], which are a
lightweight memory-friendly mechanism to control multiple sequential flows running in parallel. The
Contiki framework includes a simulator (COOJA) [Ost+06], which facilitates the test and evaluation of
network-level tasks.

Contiki for HaLOEWEn was ported from the implementation for the TI CC2530 SoC from Sensinode
[Sen], available in the main online repository of the OS. The modifications include board-level I/O

3 This approach has been considered in the work published in [SPG11]

4.2. Design of a modular FPGA-based low-power mote 57

IGLOO
AGL1000V5

CC2531

RF SoC
FPGA

Control / Reconfiguration / Data Transfer

Data Acquisition / Preprocessing / Feature
Extraction / Classification / Encryption /
Error Correction

M
e
m

M
e
m

Buffer for local processing

Long-term logger

ADC Sensor

Wireless Communication /
User Interaction / USB Transfer
/ Application Control

Figure 4.7.: Task distribution on HaLOEWEn

mapping and the integration of low-level drivers for USB and FPGA communication. In addition to the
default Contiki Rime networking stack, the Sensinode group was particularly active in deploying the
6LowPan stack, a communication protocol commonly used for Internet of the Things (IoT)s applications.
HaLOEWEn supports both communication stacks.

Based on the available resources and already available code fragments, the tasks on the sensor node
can be distributed as illustrated by Figure 4.7. The MCU is handling communication and networking tasks
while the FPGA implements all functions related to sensor data acquisition and processing, as well as all
computationally demanding tasks.

4.2.3 MoDe LPSIP

The LPSIP implements the architecture described by Figure 4.4 with stackable boards. A block diagram of
the system is depicted in Figure 4.8. The platform has been designed in such a way that the FPGA module
(AB1MODE acceleration module) is optional. When not required, this module can be removed, leaving a
traditional mote architecture without reconfigurable hardware extension.

The radio module is derived from the S3TAG mote developed by the WSN division of Fraunhofer IIS
[Iis]. The microcontroller implements a proprietary operating system and very low-power communication
protocol based on a tree hierarchical topology and Time-Division Multiple Access (TDMA) MAC.

The sensing module integrates four 12-bit ADCs accessible over different SPI busses with a sampling
frequency configurable though a separate I2C bus. The MCU and the FPGA also share the signals from
four SPI busses for multi channel data exchange. ADCs and FPGA are clocked by a common oscillator
operating at a frequency of 6.78 MHz. If a higher frequency is required to drive the FPGA internal logic,
the internal PLL and clock conditioning circuits of the device must be used. The other main features of the
platform are summarized in table 4.5. A complete description of the mote functionalities and operation
modes can be found in [Els10].

4.3 Performance evaluation

As both platforms are based on a similar architecture, the performance evaluation will be focused on
HaLOEWEn. The main target of this section is to highlight specific metrics of the platform, in particular in
terms of power consumption and duty-cycled activity. As these metrics principally depend on the selected
FPGA, they can serve as proof-of-concept for both platforms.

58 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

TI
MSP430F5438

2xI²C

Radio
CC1101

Chip Antenna

SPI

Programming
Header

LEDs

4xSPI

Test

CLK

IGLOO
AGL1000V5

1Mbit
SRAM

1Mbit
EEPROM

Programming
Header

2xI²C

4xSPI

Test

Clock
Generation

CLK

Reset
Button

12-bit SPI
ADCs

I²C

Power
Management

DB-25 Sensor and
Power I/Os

Microcontroller and radio
S3MODE Radio Module

FPGA
AB1MODE Acceleration Board

SIB2MODE Sensor Interface Board

Figure 4.8.: Block diagram of the LPSIP platform

Feature Value
MCU TI MSP430F5438
CPU Core 16-bit MSP430
Flash size 256 kB
RAM size 16 kB
ADC 14 channels 12-bit
Peripherals 4 USART- 2 USCI - RTC
Current draw 2.5 mA (Active at 8 Mhz)
Current draw 1.8 µA (Sleep)

Radio Sub-1-GHz CC1101
Sensitivity -112 dBm
TX current 34 mA (@12 dBm)
RX current 14.7 mA

FPGA IGLOO AGL1000V5
System gates 1 M
Low-Power mode 53 µW
RAM 144 kbits + 1 Mbits (external)
EEPROM 1 Mbits (external serial access)
On board oscillator 6.78 MHz

Size (enclosure) 120x120x60 mm2

Table 4.5.: Main features of the LPSIP platform

4.3. Performance evaluation 59

(a) Radio module (b) FPGA module
(c) Sensing module and case

Figure 4.9.: Photos of LPSIP modules

DC Power
Source

ACM
Probe

Power
Scale

HaLOEWEn

USB

Smart RF
Studio

PowerScale
GUI

CCDebugger

RF SoC

Vin

Jumper
Config

FPGA

Shutdown

3 V

GND

GND

Figure 4.10.: Setup for the measure of power consumption

4.3.1 Power consumption

As highlighted in Chapter 3, the dynamic power consumption of the FPGA cannot be precisely estimated
without taking a real application into account. Power consumption can however be estimated for operation
modes where the FPGA is set in sleeping mode. As highlighted in the introductory chapters, it is also
important to estimate the transition times between different operation modes. The platform current draw
has been estimated using the Hitex ACM (Active Current Measurement) power probe for the PowerScale
device [Hit]. Such a setup was also used to measure board-level average power consumption in the
other experiments realized in the frame of this thesis. RF transmission was controlled with the CC2531
control panel integrated in the Texas Instruments Smart RF Studio 7 environment. The FPGA can be
completely turned off by shutting down the DC/DC converter delivering I/O (3.3 V) and core supply power
(1.5 V). The measure setup is depicted in Figure 4.10. Table 4.6 summarizes the power consumption
of HaLOEWEn in the considered modes of operation. The 20 MHz oscillator was shutdown for these
measurements.

Switching between different mode of operations might be costly in terms of delay and power con-
sumption. For instance, the on-board 20 MHz oscillator driving the FPGA clock has a significant power
consumption when active (> 6 mW) [Ltc]. Therefore, this component should be switched off simultane-
ously with the FPGA device to save energy. However, the startup time is restrictive as well. This delay

60 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

SoC operation mode FPGA operation mode Power consumption
Deep Sleep mode (LPM2) Off 470 µW
Deep Sleep mode (LPM2) Flash*Freeze 960 µW

Sleep mode (LPM1) Off 750 µW
Sleep mode (LPM1) Flash*Freeze 1.2 mW
CPU Idle (no radio) Off 29.8 mW
CPU Idle (no radio) Flash*Freeze 30.3 mW
TX mode (1 dBm) Flash*Freeze 92.1 mW

TX mode (-16 dBm) Flash*Freeze 78.3 mW
RX mode Flash*Freeze 95 mW

CPU Idle (no radio) On (16-bit counter) 38 mW

Table 4.6.: Power consumption of HaLOEWEn in different operation modes

650 μs

Power ON

Oscillator

Startup

(a) External Oscillator

150 ns

End of

Flash*Freeze

FPGA is

running

(b) Flash*Freeze

Figure 4.11.: FPGA startup delay

illustrated by the measurement screenshot in Figure 4.11a is the combined effect of the slow startup time
of the DC/DC converter and the oscillator. On the other hand, recovering from the FPGA Flash*Freeze
mode is performed within a few nanoseconds (Figure 4.11b). This significantly lower delay makes the
FPGA ready to process data almost instantaneously and enables very short duty cycle activity. It however
requires that the oscillator stays continuously active. To overcome this issue, a solution where the FPGA
can autonomously control its sleep activity without external oscillator is presented.

4.3.2 Autonomous control of sleep mode

In the classical approach, managing the sleep activity of the FPGA is carried out by the MCU by asserting
the dedicated Flash*Freeze pin. This implies that this controller must synchronize its activity with the
reconfigurable hardware device. This is a main issue if the controller must maintain its own duty-cycled
activity. It must first come out of a sleep cycle before being able to activate or deactivate the second
device. Section 2.2.5 has shown that this approach is not scalable when the duty cycle period is short, as
the MCU might need to stay continuously active.

There is however a method to maintain a wake-up self-awareness by keeping an internal part of the
logic activated, even during sleep periods. For Microsemi Flash FPGAs, the sleep Flash*Freeze mode is
activated when both the external pin and an internal enable signal are asserted. When this mode is active,
external I/Os are deactivated so that no external clock signal can toggle the logic. As a consequence, only

4.3. Performance evaluation 61

 Timer

Reset

Ring Oscillator

Frequency Divider

Flash*Freeze
Pin

Ext Clock

Power Management
Logic

Flash*Freeze
CoreEnable

Gated clock

Ready for sleep

Main Logic

T Q

QN

T Q

QN

T Q

QN

T Q

QN

Figure 4.12.: Concept for internal wake-up process on FPGAs with Flash*Freeze technology

the deassertion of the external pin can wake the FPGA up from the Flash*Freeze. This problem can be
overcome by implementing an internal ring oscillator [Msa; Gas+11b; GS12]. Based on an odd chain of
inverters, this ring will continue running as long as the core internal voltage is supplied. Indeed, as its
operation does not depend on external signal, it can continuously run even if the sleep mode is activated.
This mechanism can be used to control a timer, which regularly change the status of the internal sleep
enable signal and allow the device waking up on its own in order to perform a custom operation, typically
acquiring sensor data or starting a processing task. A block diagram illustrating this concept is shown in
Figure 4.12.

Ring oscillators in FPGA are however particularly sensitive to external factors such as temperature but
also to internal unpredictable delays due to routing. In order to obtain a predictable output frequency,
FPGA cells implementing the inverters and frequency divider must be placed close to each others. This is
achieved by constraining cell placement in the Place & Route tool. The result of such a placement in the
Libero FPGA Editor tool is depicted in Figure 4.13. A ring composed of 25 inverters (including a NAND
gate connected to the reset signal) triggering a 10 stages frequency divider has been implemented. This
circuit generates a clock signal with frequency 25.5 kHz on an Igloo AGL1000 FPGA. This circuit has an
estimated power consumption of 351 µW. The clock frequency can be tuned by adjusting the number of
T-Flip-Flops and inverters in the chain. Without frequency divider, the ring oscillator generates a clock at
13.05 MHz, which corresponds to a unit cell delay of approximately 3 nanoseconds. The generated clock
frequency follows then the relationship

fintclk =
1

3 · 2NT F F NInv
(4.1)

where NT F F is the number of T-Flip-Flops and NInv the number of inverters. This frequency can be adjusted
according to the application requirements. If the accuracy of the clock frequency is not critical, this signal
can even be used as a main clock for the design, thus canceling the need for the external oscillator and
drastically reducing the power consumption of the platform in sleep mode.

As highlighted by the previous chapters, it is important to precisely estimate the costs from transiting
from one state to another for a duty-cycled activity. Table 4.7 reports these costs when taking the different
clocking solutions into account (ring oscillator or external oscillator). The indication (+Osc) in the table
indicates that the external oscillator is running. Clearly, the solution using the internal ring oscillator is
the most efficient. The FPGA can resume its activity instantaneously while the overall power consumption
stays very low.

4.3.3 Hardware abstraction layer

In order to optimize the interaction of the MCU with the FPGA, a custom interface has been implemented
in VHDL to access the functionalities of the FPGA. Based on the considered distribution of tasks, the
MCU is operating as master and is always initiating transactions between the two components. Two

62 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

I
n

v
e
r
te

r
 C

h
a

in

T-FF Chain – Frequency Divider

Reset Pad

Nand Gate

Figure 4.13.: Low-level placement of ring oscillators components on an Igloo FPGA

Transition Sleep power Wake-up time

Active (+Osc) - Off (+Osc) 8.1 mW 315 µsec
Active (+Osc) - Off 0.75 mW 650 µsec

Active (+Osc) - Flash*Freeze (+Osc) 9.3 mW < 1 µsec
Active (+Osc) - Flash*Freeze 1.2 mW 650 µsec

Active - Flash*Freeze 1.4 mW < 1 µsec

Table 4.7.: Transition metrics for the FPGA on HaLOEWEn

4.3. Performance evaluation 63

FPGA

In FIFO

Out FIFO

Read-only Registers

Control Registers

Sleep Logic

Core

Low-Level

MCU Interface

Serial

Parallel

or

Figure 4.14.: MCU-FPGA Interface

access modes are supported: register access and memory access, both with byte granularity. The interface
integrates one or several block memories operating as a first-in first-out (FIFO) module for streamed
data exchanges. Depending on the pin connectivity between the FPGA and the MCU, the low level data
link can either be serial (SPI based) or parallel. In both cases, a communication sequence between both
components starts with a command (one byte) sent by the MCU indicating the access type of the required
transaction. A separated pin is reserved for enabling the Flash*Freeze mode of the FPGA.

The corresponding driver for both parallel and serial interfaces has been implemented in the Contiki-OS
files specific for HaLOEWEn. A maximum transfer speed of 2 Mbps is reachable with the serial interface
while 6.2 Mbps can be achieved with the parallel interface. Similarly, an SPI driver has been integrated in
the firmware of the LPSIP for a maximum speed of 847 kbps. Up to four SPI interfaces can run in parallel
on this platform so that the transfer rate can be increased but this feature has not been evaluated.

4.3.4 Application examples

In order to illustrate the utilization and the performance of the platform with real-world applications,
several examples have been selected. The objective of this section is to show the feasibility of the
FPGA-based platform for the selected scenarios.

4.3.4.1 FFT processing

The Fast Fourier Transform (FFT) is a common reference algorithm to compare the performance of motes
when considering processing power. State-of-the-art motes usually hardly support FFT algorithms because
of a low support for DSP operations and memory limitations. In this scenario, we consider that HaLOEWEn
is sensing a signal from a 12-bit ADC with at a sampling rate fs and computing the average magnitude of
the FFT of this signal over eight non-overlapping windows of size 2N samples. This scenario is typical for

64 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

FPGA

ADC
SPI

FIFO
12

Interface

Butterfly
Cell

Coefficients

Adder

Power
Magnitude

MCU
Interface

Out Memory

12

Processing
Memories

12

Ring
Oscillator

Sleep
Timer

Flash*Freeze
Control

Figure 4.15.: FPGA design for simple FFT processing

condition monitoring applications based on vibration or current signature analysis as it will be described
in details in the Part III dedicated to application scenarios. Such algorithms are also commonly used in
audio signal processing applications or biomedical smart systems. A similar scenario is also considered in
[Nac+08] with the Imote2 platform, and [Tan+08] and [VS+10] with a mote extended with an Igloo
FPGA.

The FFT core considered in this application is based on a single butterfly cell and two processing
memories alternately used to store intermediate processing results. Results from butterfly operations are
computed at each clock cycle thanks to an internal pipelining of operators. Including further butterfly
units to increase the parallelism of the execution will result in a bottleneck at the memory level. Data
samples for different butterfly units can not be read or written back simultaneously from the same memory
and the target device has not enough memory resources for parallel block memory instantiation. This
architecture is typical for resource-constrained FFT implementations and is also used in IP cores from
Xilinx or Microsemi [Xilb; Mic13]. It is assumed that the twiddle coefficients are already computed
and available in an extra block memory. This architecture is suitable for Cooley-Tukey 2N -FFT schemes.
The FPGA is operating independently from the MCU: the internal wake-up logic as described in section
3.3 is used to regularly turn on the logic to acquire sensor data from the ADC. A higher frequency ring
oscillator is used to generate the ADC SPI clock allowing to turn off the the external oscillator for most
of the time. When sufficient data have been accumulated in the internal FIFO, the FFT core is activated.
Results are accumulated eight times before an interrupt signal is sent to the MCU to retrieve the data.
Figure 4.15 shows a block diagram of the design while Figure 4.16 gives results of the performance
evaluation. Processing time is evaluated as the delay between the start (all samples are available) and
the end (magnitude of the half spectrum is available) of the FFT. As a matter of comparison, the same
algorithm is implemented on the CC2531 MCU in pure software and on the same VHDL code has been
ported to the Xilinx Spartan6 LX16 FPGA for a comparison with SRAM-based technology. However, the
implementation on Spartan6 does not use a ring oscillator and the sleep mode is activated by simply
gating the main clock to the core design. No microcontrollers are used in parallel of the Spartan6 FPGA to
control sleep mode. The data is directly transfered to a PC over a serial link. The power consumption of
the Spartan6 is measured on a standard Xilinx development board (Nexys3).

The curves in Figure 4.16 show the different metrics evaluated for different FFT sizes, target devices
and sampling frequencies. For the curves 4.16a, 4.16b and 4.16c a sampling frequency of 1 kHz was used.
An FFT size of 1024 points was used for curve 4.16d.

4.3. Performance evaluation 65

1
.E
-5

1
.E
-4

1
.E
-3

1
.E
-2

1
.E
-1

1
.E
+
0

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

Processing time (sec)

FFT Size

Iglo
o

 (@
1

3
 M

H
z)

M
C

U
 (@

 3
2

 M
H

z)
Sp

artan
6

 (@
2

0
 M

H
z)

(a)
D

elay
(processing

only)

1
.E-7

1
.E-6

1
.E-5

1
.E-4

1
.E-3

1
.E-2

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

Energy Consumption (J)

FFT Size

Iglo
o

 (@
1

3
 M

H
z)

M
C

U
 (@

 3
2

 M
H

z)
Sp

artan
6

 (@
2

0
 M

H
z)

(b)
Energy

(processing
only)

0 5

1
0

1
5

2
0

2
5

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

Average Power Consumption (mW)

FFT Size

Iglo
o

 (@
1

3
 M

H
z)

M
C

U
 (@

 3
2

 M
H

z)
Sp

artan
6

 (@
2

0
 M

H
z)

(c)
D

ependency
ofaverage

pow
erconsum

ption
againstFFT

size
(sam

pling
included)

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Average Power Consumption (mW)
Sam

p
lin

g Freq
u

en
cy (H

z)

Iglo
o

 (@
1

3
 M

H
z)

(d)
D

ependency
ofaverage

pow
erconsum

ption
againstsam

pling
rate

(sam
pling

included)

Figure
4.16.:Com

parison
ofdiff

erentim
plem

entationsforFFT
processing

on
the

w
irelesssensornode

66 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

Logic occupancy Blocks memory Max. frequency
Igloo 32.1 % 66 % 22.3 MHz

Spartan6 14 % 28 % 60.7 MHz

Table 4.8.: Resource consumption of the 1024-FFT design

In terms of processing delay, the FFT is completed in a comparable amount of clock cycles for both
FPGAs, resulting in similar computation times. The Xilinx FPGA is faster here since it is clocked by a
faster oscillator. The MCU is however taking a significantly longer amount of time (about two orders of
magnitude), which may prevent the execution of other tasks related to networking as it has been shown
in the example from section 2.2.5.1. The processing time could be improved by implementing the FFT
with a radix-4 dragonfly cell or with a streaming architecture at the cost of additional memory resources
and logic resources. However, streaming FFT is not a viable solution for the Igloo FPGA as the necessary
logic is not available to implement all ten butterfly operators that would be required in this case. Similarly,
the resources of the Igloo would be pushed to their limits with a dragonfly operator, which requires two
additional complex multipliers and ten additional adder/subtractors.

In terms of energy consumption (considered for the processing task only), the trend is similar: both
FPGAs demonstrate similar performance whereas the MCU has a significantly higher cost. The Igloo FPGA
has a slightly better value than the Spartan FPGA because of its lower static power consumption. At this
frequency, static power is dominating the overall power consumption on the SRAM FPGA.

When taking the time and energy spent during the sampling period, i.e. before enough sensor data is
available to start the FFT, a clear distinction can be made between each platform. It can be first noticed
that there is only a small dependency with the size of the FFT. Indeed, as the sampling period is relatively
small compared to the processing time, the average consumption is highly dominated by the power spent
during sampling. For instance, for a 1024 points FFT, the computing time represents less than 0.1 % of
the activity for the FPGAs, respectively 10 % for the MCU. As a consequence, the Flash FPGA can reach
a much lower power consumption value thanks to the autonomous control of sleep mode introduced
in the previous section. On the other hand, the Spartan6 FPGA is suffering from its high static power
consumption and consumes up to ten times more power than the Flash-based counterpart. The MCU
reaches also a high average value because of the additional time required for processing and its inability
to switch faster in a very deep low-power mode.

Finally, the last curve is showing the dependency of the average power consumption against the size of
the FFT on the Igloo FPGA. This value starts to increase more rapidly for higher sampling frequencies
because of the increasing number of transitions to sleep mode. As some internal parts of the device are
shutdown during the Flash*Freeze mode, there is still a certain inertia in power consumption during the
transitions. This overhead is more noticeable when the sampling frequency increases.

The resources consumption largely vary between the Spartan6 and the Igloo FPGA. This difference is
mainly due to the availability of DSP embedded blocks in the Xilinx part. The maximum frequency is
higher accordingly.

A fair comparison with related works is difficult since the implementation details of the algorithm are
different. However, the FFT computation on the Imote2 [Nac+08] is taking up to 700 milliseconds for
1600 points, which is significantly longer as what could be expected with an FPGA implementation.

At last, it is worth estimating the energy spent by the whole platform when taking the wireless
communication into account. At 1 kHz sampling rate, it is not feasible to transfer the complete sensor
data stream with an acceptable reliability. By averaging the FFT computed on eight windows, the amount
of data to transmit can be efficiently reduced by a factor 16 (it is sufficient to transfer a half spectrum),
which reduces the data arrival rate to the MAC layer of the communication stack to 1 kbps. The pie
chart 4.17 shows the measured power consumption when the MCU running the ContikiMAC protocol in a
similar fashion as in the example from section 2.2.5.1.

4.3. Performance evaluation 67

ADC; 0.08 mW
FPGA Core; 0.47 mW

FPGA IO; 0.05 mW

MCU ; 3.10 mW

Others; 0.10 mW

ADC FPGA Core FPGA IO MCU Others

Figure 4.17.: Board-level distribution of power consumption

The power consumption of the board is largely dominated by the MCU because of the wireless
communication costs. The share of the FPGA stays very low thanks to the low-power management
techniques and the fast execution speed. It can be noticed that the overall power consumption stays below
4 mW, which makes the solution suitable for a power supply with energy harvesting.

4.3.4.2 Localization5

This example investigates the implementation of an engine for acoustic source localization. Clustered
motes use differences of time of arrival of acoustic waves to precisely estimate the location where they
were originally emitted. Indeed, as acoustic waves have a low propagation speed, they will reach spatially
distributed sensor nodes at different times. This difference can be easily measured if nodes implement
a synchronization mechanism. Such a setup can be applied for sniper localization as in [Sim+04] and
[Vol+07], for structural health monitoring purposes as in [GGK10] or for localization of motes between
themselves, like it could be the case for the Cricket motes, which are equipped with ultrasonic transceivers
[PCB00]. A wireless sensor network combining ultrasonic localization and external acoustic source
localization has been realized with the platform from Hinkelmann & al. [Hin+08]. The details of the
selected localization algorithm called spherical intersection can be found in [Phi09; PSG11a; PSG11b]. It
is mainly based on the solving a system of second order equations obtained from matrix of time difference
measurements. Similar location engines can be found as hardware IPs in some WSN-specific SoCs such as
the TI CC2431 [Cc2a] or in the ASIC developed by Karalar & al. in [Kar+04].

The FPGA is used here as an accelerator for the localization algorithm and not as a sensor interface.
From this perspective, the FPGA is used for on-demand processing. It is sufficient to power it up only when
necessary as the startup delay is negligible. In this application, starting the computation corresponds to
the time when difference of time of arrival measurements from neighboring nodes have been collected.
This approach is also suitable for an heterogeneous sensor network where only one mote extended with
an FPGA is available. Computationally-intensive tasks such as the localization algorithm are centralized
on this mote.

Figure 4.18 shows the architecture of the design. Most of the resources are consumed by the two
multiply-accumulate units although the second degree solver also requires adders and a square root
unit. It has been shown in [Phi09] that the best accuracy is achieved when several estimates from small
node clusters are combined whereas using all measurements unnecessarily increases the complexity and
duration of the computation without giving better results. In a two-dimensional localization system, four
measurements are already giving a good approximation. Therefore, the core considered here implements a
localization algorithm for four nodes. Further measurements can be taken into account by computing other
estimates and combining them. Table 4.10 reports the processing time and average power consumption
measured for the same targets as the ones considered in the previous sections.

5 This section is based on the Diploma thesis [Phi09] and the publications [PSG11a; PSG11b]

68 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

FPGA

Controller

MCU
Interface

Processing
Memories

TDOA

Mote Positions
MAC

MAC

2nd Degree
Solver

Operators

Figure 4.18.: FPGA design for localization accelerator

Logic occupancy Blocks memory Max. frequency
Igloo 24.1 % 9.4 % 25.6 MHz

Spartan6 8.3 % 9.4 % 86.3 MHz

Table 4.9.: Resource consumption of the localization accelerator

Platform Time Power Normalized energy
CC2531 (32 MHz) 7.6 msec 29.8 mW 297
Spartan6 (20 MHz) 114 µsec 17.1 mW 2.5

Igloo (13 MHz) 177 µsec 4.3 mW 1

Table 4.10.: Performance evaluation for the localization process

4.3. Performance evaluation 69

The benefit of implementing the algorithm on the Igloo FPGA can clearly be identified. When compared
to software, up to 300 times less energy is consumed. The Spartan6 FPGA consumes slightly more energy
for the processing, but the results in this table do not take the startup delay from the shutdown mode into
account. Indeed, if the FPGA is not running when the localization is demanded, the FPGA needs to be
preliminarily configured, which is taking up to 50 milliseconds with the best optimizations [Lom+12].

In general, Igloo represents the best alternative to execute a computationally demanding algorithm as
long as the data transfer between the MCU and the device is not becoming the bottleneck. For instance,
the same localization algorithm implemented on the LEON2 32-bit CPU core used in the prototype of
Hinkelmann & al. is taking 764.3 microseconds without reconfigurable extension (software) and 13
microseconds with the reconfigurable function unit (reconfigurable hardware) [Hin11]. In the latter
case, the data was directly available in the memory of the CPU and could be fetched directly to the
reconfigurable function unit. With the Igloo approach, data must be exchanged externally with the MCU,
which is taking a longer amount of time.

4.3.4.3 Combined channel coding and cryptography7

Forward error correction (FEC) and encryption are essential features of wireless systems. Even if FEC
is only energy-efficient when the coding and decoding costs stay very low [SBW09], the vulnerability
of the wireless medium made systematic ciphering mandatory for trustworthy deployments. However,
cryptography has a significant cost in terms of energy and processing delay, which is not always affordable
for a low-resourced wireless sensor node. As they are often use together, the possibility to combine both
algorithms into a single primitive becomes an interesting approach to reduce the overall system costs.
Nevertheless, the simultaneous optimization of both features in a single algorithm is not straightforward as
maximum security and maximum error correction capability are natural contradictory features. Exploitable
synergies between the primitives can be identified: a first simple basis is the common arithmetical
background used by selected FEC and encryption algorithms: Galois-field arithmetic. Secondly, both
algorithms process data block-wise. But most importantly, the most exploitable similarity of these
primitives is the diffusion property. Famous encryption (Rijndael AES, SHARK, Twofish) and error
correction schemes (Reed-Solomon) are both using Maximum-Distance Separable (MDS) matrices to
achieve a maximal diffusion.

Based on this similarity, a combined error correction - cryptography hardware accelerator has been
implemented. The core is based on the so-called High-Diffusion algorithm parametrized for blocks of 128
bits with a coding rate of 33 %. Implementation details of the algorithm can be found in Appendix B.1.

As in section 4.3.4.2, the core is evaluated without sensor attached to the FPGA. The combined
cryptographic-error correction core is called by the MCU when required. If the encryption key is fixed
for the duration of the application, it can be saved in the internal read-only memory (ROM) of the Igloo
FPGA. In this case, the FPGA can be safely shutdown between several encryption cycles. Otherwise, the
FPGA must be kept in Flash*Freeze mode since it would be unsafe to transfer the key between the MCU
and the FPGA at each cycle.

Figure 4.19 shows the hardware architecture of the core. It is based on a classical AES hardware
accelerator with minor modifications for the Transpose and Diffusion step. Additional logic is included to
handle the coding part of the algorithm. This basis architecture is closely operating with a Reed-Solomon
decoder, which is used to identify and correct transmission errors. The performance metrics of this core
are reported in table 4.12.

Once again, the FPGA is demonstrating a largely better energy-efficiency than the MCU. Even if the
absolute gain is not large for a single execution of the algorithm, encryption and error correction are
operations that are ran very frequently. Accumulated, this difference can become significant on a long-term
basis. A major drawback of this approach is when the FPGA must stay in a sleep mode to keep track of

7 This section is based on the Master thesis work [Kly11] and the publication [Phi+12c]

70 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

FPGA

Controller

MCU
Interface

Data Buffer

Data

KeyKey Expansion

S0

S1

S2

S3

S4

S5

S-Box

St0

St1

St2

St3

St4

St5

Transpose High-Diffusion

High-Diffusion Core

Reed-Solomon
(6,4,256) Decoder

Figure 4.19.: FPGA design for high-diffusion accelerator

Logic occupancy Blocks memory Max. frequency
Igloo 41 % 6.2 % 41 MHz

Spartan6 34.3 % 6.2 % 122 MHz

Table 4.11.: Resource consumption of the High-Diffusion core

Platform Throughput Energy efficiency

Coding
Igloo (20 MHz) 182 Mbps 112.8 pJ/bit

Spartan6 (20 MHz) 182 Mbps 208.8 pJ/bit
CC2531 (20 MHz) 21 kbps 51 nJ/bit

Decoding
Igloo (20 MHz) 37 Mbps 310 pJ/bit

Spartan6 (20 MHz) 37 Mbps 675 pJ/bit
CC2531 (20 MHz) 12.7 kbps 87 nJ/bit

Table 4.12.: Performance evaluation for combined encryption and forward error correction

4.3. Performance evaluation 71

the key. The hardware solution is no longer suitable in this case since the energy gain of the hardware
implementation will not cover the energy spent by the FPGA during sleeping. As a consequence, this
solution is only suitable if it is associated with sensor data acquisition core as in the example with the FFT.

Another scenario where the approach is efficient is when a large number of data blocks has to be
processed. In [Val+12a], the authors consider this scenario for various encryption algorithms implemented
on an SRAM-FPGA. Here, the reconfiguration time of the FPGA must be taken into account as well. They
demonstrated that the hardware solution is more energy-efficient than software when the number of
data blocks is high (> 2000). As this situation is unlikely to happen in a typical wireless sensor network
scenario, SRAM-FPGAs are not a good target device for this type of processing. On the other hand,
computation time can be largely reduced with the hardware implementation: this solution can therefore
be adopted for time-critical implementations.

4.4 Conclusion

FPGA-based wireless sensor nodes are popular research platforms because they give designers a large
freedom to investigate customized hardware architectures, whether it is new types of CPUs or co-processing
units. Three main types of mote architectures were identified were FPGA are used for three main reasons:
design space exploration, application-specific acceleration and runtime reconfigurability.

However, many works were restricted to the processing-only tasks and are failing to demonstrate the
efficiency of the approach on longer activity periods. A platform architecture and two different imple-
mentations have been presented to demonstrate the feasibility of very low-power hardware accelerated
wireless sensor nodes. Thanks to the nonvolatile technology and efficient wake-up schemes, the platform
can operate with very low current consumption, making it suitable for scenarios with power supply based
on energy harvesting. In particular, high bandwidth sensing applications where sampling periods are very
short can be efficiently implemented. On-demand hardware acceleration is also possible for applications
where computationally demanding tasks need to be implemented.

Compared to the related work, the works based on SRAM-FPGA are clearly ruled out for the considered
range of applications when taking the analysis done in this chapter into account. This technology
keeps however certain advantages, notably in terms of speed and reconfigurability at runtime. Indeed,
SRAM-based FPGAs are usually faster and more suitable to implement digital signal processing or image
processing tasks than the Flash counterparts. Motes using Igloo FPGAs appear in the literature around
the same time frame (2009 - 2011) [VS+10; Gas+11a; Khu+11; Tan+08; Sch+08; Kos+10]. However,
these works fail to introduce a platform with a certain degree of universality as it has been done here.
This was later on corrected with one of the layer for the Cookies mote, but in all cases, a detailed analysis
of power consumption and duty-cycled activity is missing.

The examples taken in this chapter demonstrated the suitability of the platform for application-specific
acceleration8. On the roadmap to the unexplored zone depicted in Figure 4.3, more flexibility has to be
given to the platform in order to embrace applications with more advanced processing requirements. A
suitable solution pulling the system towards more flexibility is dynamic reconfiguration. However, the
non-volatility of the FPGA, which was a significant advantage for low-power consumption, becomes in
this case a major obstacle that must be overcome.

8 Additional publications and application examples with HaLOEWEn can be found in [ELK11; ELK12a; ELK12b]

72 4. FPGA-based Hardware Acceleration for Wireless Sensor Nodes

5 Design of a Virtually Reconfigurable FPGA
Overlay Architecture for
Resource-Constrained Devices

Generality always win

G. Bell, “Bell’s Law for the Birth and Death of
Computer Classes”. In: Communications of the

ACM, January 2008, Vol. 51, No. 1

Contents
4.1 Related work . 45

4.1.1 Wireless sensor nodes using an FPGA for SoC prototyping 46

4.1.2 Wireless sensor nodes with standalone FPGA . 48

4.1.3 Wireless sensor nodes with a co-processing unit based on programmable logic . . . 49

4.1.4 General considerations on related work . 51

4.2 Design of a modular FPGA-based low-power mote . 53

4.2.1 Core architecture . 53

4.2.2 The HaLOEWEn platform . 54

4.2.2.1 Main board . 54

4.2.2.2 Extensions . 55

4.2.2.3 Software . 57

4.2.3 MoDe LPSIP . 58

4.3 Performance evaluation . 58

4.3.1 Power consumption . 60

4.3.2 Autonomous control of sleep mode . 61

4.3.3 Hardware abstraction layer . 62

4.3.4 Application examples . 64

4.3.4.1 FFT processing . 64

4.3.4.2 Localization . 68

4.3.4.3 Combined channel coding and cryptography 70

4.4 Conclusion . 72

5.1 Introduction

In [EK09], A. El Kateeb emphasized the need for the development of a third generation of wireless sensor
nodes with hardware reconfiguration capability. Beyond the first generation of static motes and the second
generation with software update capability, this new class of motes will support a full adaptability to

73

adjust all application-level functionalities after deployment. He however points out that an appropriate
infrastructure is missing and that the power consumption overhead of reconfigurable hardware is still a
major issue.

The design of such sensor nodes with runtime hardware reconfiguration capability has been also
addressed in multiple works in the literature [CTA08; Cal+05; Por+06b; Kra+11; Lom+12; Val+12a;
EKD06; Nah+07; Wil+07; Ple+03; Lu+09]. However, all these works were based on SRAM FPGAs,
which support this feature inherently, but still suffer from a large static power consumption overhead
as it has been highlighted in the previous chapters. With Flash FPGAs, this restriction disappear but the
devices do not support hardware reconfiguration natively. A solution where both hardware dynamic
reconfiguration and low power consumption are combined is therefore required to fully enable this new
generation of advanced sensor nodes.

To achieve this goal, it is important to first identify the aspects motivating and restricting runtime
hardware reconfiguration on sensor nodes in general, and with Flash-based FPGAs in particular:

• Device limitation: wireless sensor nodes are intrinsically embedded systems which are limited in
resources. When using reconfigurable hardware, the size of the device cannot be freely extended
without negatively impacting the current draw and the size of the platform. The number of
reconfigurable cells available to implement hardware accelerators must be therefore limited. As a
consequence, all tasks that could potentially benefit from an implementation on the reconfigurable
hardware cannot be programmed at the same time. With dynamic reconfiguration, each task could
be loaded on the hardware in a time-multiplexed manner in order to comply with these restrictions.
Flash FPGAs are particularly suffering from this limited size since the still large process technology
(130 nm) does not allow producing chips with very large capacity. For instance, table 5.1 reports the
resources usage of selected IP cores on an Igloo AGL1000 FPGA, the largest available in this family.
It can be noticed that the device becomes very quickly overloaded when several cores are combined,
notably when dealing with digital signal processing. This weakness is due to the lack of embedded
multipliers, which must be implemented with the programmable logic. A single multiplier will
already cost 10% of the resources (24-bit), which stringently limits their utilization and speaks in
favor of a reutilization across multiple signal processing units. Larger Flash-based devices exist in
the Igloo-e family, a subfamily of Igloo FPGAs. In particular, the AGLE3000 can hold three times the
capacity of the Igloo AGL1000. This large size would partially solve this resources limitation issue
but the associated price (over 400€) is fully incompatible with the low-priced feature of wireless
sensor nodes1.

• Adaptiveness: Runtime reconfiguration enables functional update of the motes with hardware
accelerators that were not planed at programming time. Thus, the device can be modified with
cores which are more appropriate for a given situation (context-awareness) or updated with a bug
fix or with a design improving the system performance. Once deployed, motes are not directly
accessible and are in some cases even unreachable. It is also likely that there is a important number
of nodes being part of the network. Reprogramming each single node using a manual programmer is
therefore a time costly task that should be avoided. Enabling runtime and remote update capability
would solve this issue. The ability to remotely modify the functionality of a wireless node is known
in the literature as over-the-air reprogramming.

• Reconfiguration limit: Flash cells are sensitive to program-erase cycles. Microsemi reports that
Igloo FPGAs can go through an average of 1,000 programming cycles before getting damaged.
This limitation makes such FPGAs unsuitable for applications which regularly require a complete
reconfiguration of functionality. A solution to implement different tasks without modifying the
underlying configuration saved in the Flash cells is therefore needed.

1 As a matter of comparison, the IGLOO AGL1000V5 FPGA used in the frame of this work is available for about 75 €
2 COordinate Rotation DIgital Computer

74 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

Core Cells utilization
Block RAMs
utilization

UART 1,247 (5%) 2 (6%)
3DES 1,316 (5%) 0
AES 4,049 (16%) 8 (25%)

CORDIC2

(vector serial)
1,560 (6%) 0

CORDIC
(vector parallel) 17,563 (71%) 0

DES 1,187 (5%) 0
RS Decoder 9,701 (39%) 1 (3 %)

16-bit FIR 8-tap 2,702 (11 %) 0
16-bit FIR 16-tap 4.926 (20 %) 0

Cortex-M1 7,491 (30 %) 4 (13%)
1024-FFT (16-bit) 6,681 (28%) 18 (56 %)
Multiplier 16-Bit 1,041 (4%) 0
Multiplier 24-Bit 2,103 (9%) 0

Table 5.1.: Resource utilization of selected cores for Igloo AGL1000 FPGAs

• Reconfiguration time: Time and energy spent during the hardware reconfiguration are pure
losses for the application, since nothing useful can be executed during this process. Minimizing
these metrics is therefore critical to improve the time and energy-efficiency of the device. As
reprogramming the configuration memory of Flash FPGAs is taking up to several minutes [HWH12],
it must preferably stay untouched, which corroborates the previous statement about limiting the
amount of core reconfigurations. When possible, the dynamic reconfiguration process must stays
as short as possible. The reconfiguration time larger than 1 second reported in [Lom+12] for
SRAM-based FPGAs may already be considered as too restrictive, so that beyond the technology,
different reconfiguration models are required.

• Bitstream size: One of the cause for FPGA long reconfiguration times is large configuration
bitstreams. As FPGAs are fine-grained reconfigurable, each cell require a significant amount of
configuration data to implement a gate-level functionality, resulting in large programming files
(in the range of hundreds of kilobits [Val+12a]). Holding or managing this amount of data on
wireless sensor nodes is challenging since they usually have stringent memory restrictions and
limited bandwidth for remote transmission. For instance, it is unlikely that a standard mote is able
to store a complete FPGA configuration bitstream as the memory capacity is too low.

When considering hardware dynamic reconfiguration, it is also important to identify the purpose and
the frequency of the reconfiguration. Figure 5.1 shows a graph where different types of reconfiguration
processes are classified according to their level and frequency. For instance, runtime reconfiguration
applied because of resources limitations will correspond to a time-multiplexed hardware, where an opera-
tor or logic resources are shared across multiple accelerated tasks. Responding to changing environmental
conditions will correspond to the model of context-awareness where the functionality of the reconfigurable
hardware is modified in a more global manner.

Taking the previous considerations into account, all types of reconfiguration are appropriate. Limited
resources and inaccessibility make wireless sensor nodes ideal candidates for supporting all types of
approaches, which is a feature rarely available in traditional embedded systems based on reconfigurable
hardware.

5.1. Introduction 75

Bug – fixes

Firmware

update

R
e
c
o
n
fi
g
u
ra

ti
o
n

L
e
v
e
l

Frequency of
Reconfiguration

Clock cycleDays

Full device

Cell

Context

Awareness

Partial Area

Operator

On-Demand

Acceleration

MillisecondMinutes

Time-

Multiplexed

Hardware

Figure 5.1.: Levels of hardware dynamic reconfiguration

In order to handle all these requirements, the solution proposed in this chapter will take profit from the
features of another type of reconfigurable architectures: coarse-grained arrays. Introduced in Chapter
3, this type of architecture potentially solves the problems of long reconfiguration times and large
configuration bitstreams since significantly less data is needed to describe the functionality, as it has been
highlighted by Hinkelmann in a previous work [Hin11]. This property makes CGRAs easily scalable to all
types of dynamic reconfiguration as described in Figure 5.1. Profiting from the flexibility of the underlying
logic provided by the FPGA, a coarse-grained reconfigurable architecture can be implemented on top of
the programmable logic, as a virtually reconfigurable overlay. Such an overlay alleviates the restriction
of integrated CGRAs, which may suffer from a too high degree of specialization for a certain domain of
applications. The design of Hinkelmann [Hin11] was for instance restricted to a few types of algorithms
and an extension of functionality required modifications of the core architecture. Thus, the solution
introduced here is based on a template CGRA, which can be freely customized for application-specific
requirements. As an overlay, the architecture does not interfere with the configuration of the underlying
Flash cells at runtime. The reprogramming restrictions of the Igloo FPGAs are thus overcome. In addition,
such an overlay might be ported to other target technologies and represents therefore a more generic
alternative to FPGA dynamic reconfiguration, which is often device specific, i.e. the reconfiguration flow
does not need to be adapted for each vendor or family of chips.

This chapter describes the design and the features of such a CGRA layer implemented on top of the
Flash FPGA embedded in the mote architecture. After a review of the related works, the components
of the template architecture are described. Details of selected processing elements and configuration
controllers are given. The chapter ends with an evaluation of the resources consumed by the virtually
reconfigurable overlay in various configurations.

5.2 Related work

76 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

5.2.1 Low-power coarse-grained reconfigurable architectures

Although it has been demonstrated that CGRAs achieve intermediate performance between ASICs and
FPGAs, most of the architectures were dedicated to High-Performance Computing (HPC). More recent
works also identify the benefit of CGRA for low-power and low-energy systems. This is the case of
Hinkelmann [HZG10] who extended the datapath of a WSN CPU with a configurable array of functional
units. It was shown that the approach is a good compromise in terms of chip area, performance and energy-
efficiency when compared to pure software and pure ASIC approaches. In [KM11], several techniques
are introduced to improve the energy-efficiency of CGRAs. The authors demonstrated that bitstream
compression and cost-effective array architectures have a large impact on the power consumption of the
design.

Several works focused on CGRAs for biomedical signal processing. This range of applications can highly
benefit from very low-power implementations while being computationally demanding. The SYSCORE
has been developed with the intention to reduce the energy consumption of biomedical signal processing
tasks such as EEG or ECG analysis [PMB11]. Up to 62 % savings compared to traditional architectures
could be reached by selecting appropriate function units and reducing the density of the interconnect.
The Ultra Low-Power - Samsung Reconfigurable Processor also targets biomedical signal processing
on battery-powered wearable devices [Kim+12]. The core supports several modes of operation (high
performance to low power), which exploit power gating of CGRA cells to reduce the current draw of the
device.

In general, these works showed that the efficiency of CGRAs in very low-power applications relies on
two main aspects: reduced and optimized interconnect between processing elements and management
of configuration bitstreams with reduced overhead. The power spent in interconnect and memory was
already identified as critical for FPGA designs in Section 3.2. These optimizations also go in the sense of
the area and memory restrictions of the proposed mote architecture.

5.2.2 Virtually reconfigurable hardware

Several research works investigated the possibility to experiment and evaluate novel FPGA or reconfi-
gurable hardware architectures on top of an existing device. As FPGAs theoretically allow the imple-
mentation of a large variety of digital circuits architecture, they intrinsically permit the test of another
FPGA architecture, which is a digital circuit by itself. The underlying component is here used for its great
prototyping and emulation potential. Designing and experimenting new FPGA architectures requires
however to have the corresponding CAD tools for the complete FPGA design steps such as synthesis or
place and route.

Virtualization is also a good way to make a design compatible with different technologies. Like the Java
Virtual Machine, a virtual architecture will use the same top-level configuration or instructions while the
underlying implementation can vary from one platform to the other. This approach makes the design very
portable but has a cost in terms of performance and resource consumption, which must be reduced as
much as possible.

Hübner et al. proposed in [Hüb+11] a virtual FPGA architecture to enable dynamic reconfiguration
on devices which are not natively suitable for this feature. The architecture of custom cells and routing
blocks were directly mapped on top of the underlying FPGA. As routing resources consume a significant
amount of logic in FPGA architectures, only a small virtual architecture (10x10 CLBs) could fit into a
Microsemi ProAsic3 A3P1000 device (equivalent number of system gates as the Igloo used for HaLOEWEn
and LPSIP).

Similarly, the ZUMA overlay is an open FPGA architecture [BL12] which can be emulated and tested
on another FPGA. Different types of logic elements and interconnect components can be evaluated and
compared on real hardware.

5.2. Related work 77

In [CA12], Capalija & al. implemented a coarse-grain FPGA overlay to accelerate critical code fragments
running on a softcore processor. During the execution, the overlay is dynamically reconfigured to improve
the execution times of changing data-flow graphs. The coarse-grained overlay is preferred to fine-grain
logic since a specific task can be mapped faster on the array, enabling just-in-time compilation of hardware
accelerators.

The QUKU [SBB06] is another example of such a CGRA overlay. The authors used the reduced
configuration bitstream to reconfigure an array of processing elements for digital signal processing faster.
The authors show with the example of an FIR filter that this approach reduces the size of the design by
encouraging the sharing of resources while achieving intermediate performance between custom FPGA
implementation and software.

A CGRA-based overlay for high performance digital signal processing has been proposed by McGettrick
& al. in [MPB11]. With this approach, the authors intend to reduce the long reconfiguration times
inherent to FPGAs. They demonstrated that the overlay architecture outperforms traditional CPU and
DSP implementations but also custom FPGA implementations for certain benchmarks. The performance
loss of the CGRA overlay is then compensated by the lower time necessary to reconfigure it.

5.2.3 Dynamic reconfiguration for Flash-based devices

Although Microsemi Flash devices support in-system-programming via a MCU controlling the JTAG (Joint
Test Action Group) ports of the FPGA [Igla], this process is too resource and time consuming for a limited
device such as a wireless sensor node. However, some related works have explored this possibility.

The DANCE framework [HWH13] covers the need for runtime reconfiguration on Flash-based reconfi-
gurable SoCs (Microsemi SmartFusion). The authors point out that the amount of programmable logic
available on such devices is not sufficient to hold several accelerators simultaneously (FFT with 65.78%
cell occupancy and AES with 45.18%). Therefore, they propose a task distribution scheme optimizing
quality of service metrics by assigning hardware accelerators based on spatiality. The same authors
evaluated in [HWH12] the costs of the dynamic reconfiguration on the reconfigurable hardware fabric
of the SmartFusion device (CES prototype mote). Reconfiguration delays are going up to 360 seconds,
including erase, and verification steps. A power consumption of 28 mW was measured during this
process. This delay is clearly critical when it comes to frequent reconfiguration and can only be applied
for firmware update or complete change of functionality.

5.3 Template architecture

5.3.1 Overview

The proposed architecture is based on a combination of domain-specific processing clusters. Each cluster
is a one-dimensional array of function units comprising pipelined configurable operators, data sources
and memory elements. The structure is suitable for streamed data processing schemes where each step
of a data flow graph is either time-multiplexed on the same cluster or mapped on a subsequent cluster.
Each cluster is managed by its own configuration controller, which controls the configuration context of
each element independently. At a higher level, each cluster controller may be reconfigured by a general
control unit dispatching configuration data in each cluster according to the global application flow. Each
cluster can be built with different types of processing elements so that they can be individually tuned for
a specific range of algorithms. This method allows allocating resources that cannot be intrinsically shared
within a task in a parallel execution pattern. For example, operators used for cryptography can be used in
parallel to digital signal processing operators as they are rarely used simultaneously. A block diagram of
this template architecture with two clusters is shown in Figure 5.2.

78 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

Sensor

Interface

1

FIFO

Sensor

Interface

2

FIFO

External

Memory

Interface

MCU

Interface

Interconnect

Register File
Supervision Supervision

PE

Address
Generator

PE PE PE PE

Interconnect

Internal

Memory

Block

Address
Generator

Internal Memory

Block

Address Generator

PE PE PE PE
FIFO FIFO Registers

Cluster

Cluster

Configuration
Controller

Configuration
Controller

Meta-
Configuration

Controller

Configuration
Memory
Access

C

Figure 5.2.: Architecture of the coarse-grained overlay based on two clusters

Based on this approach, several levels of runtime reconfiguration can be achieved. Figure 5.3 shows
the complete stack of reconfigurability levels enabled by the proposed infrastructure. At a low level,
the functionality of each operator implemented on the FPGA can be modified by the changing the
configuration bits driving them. When considering the configuration of all available operators as a whole,
it describes a whole function, i.e. a succession of individual operations. This flow of of operations can
be modified at a higher level by changing the content of the configuration vector. With a succession of
reconfiguration, a complete algorithm flow can be implemented.

5.3.2 Producer-consumer transactions and interconnect

Within each cluster, elements can be connected to each others by following a producer-consumer transaction.
Producers are delivering data to a shared interconnect line while consumers are reading and processing
it. Each producer-consumer relationship is based on a single data word. Thus, a producer can deliver
data to several consumers simultaneously, i.e. consumers use the same data, but a consumer cannot read
data from several producers since it would result in a conflict in the data line access. A complete chain of
producers-consumers can be configured in order to implement a virtual pipeline within the cluster.

Each configuration context describes a set of producer-consumer transactions between the different
elements of a cluster. The number of transactions lcontext determines the duration of the context, i.e. when
the next configuration context will be loaded. A global counter keeps track of the current amount of
transactions and will send a signal to the configuration controller when a threshold has been reached. A
single configuration word is thus sufficient to describe a simple task if no modifications of the interconnect
or memory access are necessary.

5.3. Template architecture 79

Gate

Operator

Function

Task

Processing Unit

Application

Application Domain

FPGA Cell

Operator
Configuration

Cluster Configuration

Configuration
Sequence

Cluster Architecture

FPGA Configuration

FPGA Hardware
Extensions

Level Element

Figure 5.3.: Levels of reconfiguration enabled by the virtually reconfigurable architecture

Parameter Value - # bits Function

static

ni
interconnect Z∩ [1, 8] Number of lines, cluster i

ni, j
P Z∩ [1,16] Number of producers, cluster i, line j

P i, j - Type of producers, cluster i, line j
ni, j

C Z∩ [1, 16] Number of consumers, cluster i, line j
P i, j - Type of consumers, cluster i, line j
bbus Z∩ [4, 32] Line wordlength

dynamic
c i, j

Psel log2(n
i, j
P) Active producer, cluster i, line j

c i, j
Csel P i, j Active consumers, cluster i, line j

Table 5.2.: Configuration of the interconnect

Table 5.2 gives the detailed configuration parameters of the interconnect within a cluster of the overlay
architecture3. Table 5.3 gives an estimate of the resource usage and maximum frequency supported by
the interconnect for selected parameters4.

5.3.3 Sensor interfaces

Sensor interfaces are pure producer elements. Data is acquired by accessing external components (ADCs)
or by internal generation processes (Random Number Generators). Data is sent to connected consumers
at a configurable delivery rate. Other building blocks of sensor interfaces include FIFOs to buffer data

3 Similar tables are used thereafter to describe the different types of elements that can be instantiated in the architecture.
Each table is divided between a static and dynamic part, the latter being reconfigurable at runtime. The second column
describes the set of valid parameters in the case of static configuration while it gives the configuration size in bits in the
case of the dynamic configuration. Static or dynamic parameters marked by a dagger {·}† are optional and correspond
to features that might not be instantiated. In general, the notation of the parameters follows: n for an amount, b for a
wordlength, v for a value and c for a selection of functionality.

4 These values were obtained by synthesis for the Microsemi Igloo AGL1000V5 FBGA256 (chip used on both HaLOEWEn
and LPSIP) with Synopsys Sinplify Pro H-2013.03M-1. The following tables giving synthesis results for other units are
based on the same setup

80 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

Configuration Core cells Max. frequency
{ninterconnect, nP , nC , bbus} (out of 24,576) (MHz)

{3,4, 4,8} 115 (<1 %) 81.3
{3,8, 8,16} 460 (1.8 %) 65.1
{4,8, 8,16} 614 (2.5 %) 65.1
{4,8, 8,32} 1187 (4.8 %) 63.7

Table 5.3.: Resource consumption for one cluster interconnect with identical amount of producers and
consumers on each line

Consumer

avail

ready

en

data

Interconnect

Producer

avail

ready

data

Consumer

avail

ready

en

data

Consumer

avail

ready

en

data

Sensor

Function Unit

Producer

avail

ready

en

data

Producer

avail

ready

en

data

Memory

0 1 2

Figure 5.4.: Example of producer-consumer interconnect

5.3. Template architecture 81

Parameter Value - # bits Function

static
FIFOdepth {2k, 0≤ k ≤ 8 k ∈ Z} FIFO Depth

bsensor Z∩ [4, 32] Sensor data wordlength

dynamic
vthr† bsensor Supervision threshold

csupervision† 2 Supervision mode
sensor specific

Table 5.4.: Configuration of sensor interfaces

samples while consumers are busy and sensor supervision units connected to an interrupt signal verifying
if the data stay within a configurable range. This last feature was introduced by recommendations of the
VTT institute for online sensor supervision techniques [Jan+10]. Each sensor unit may integrate custom
configuration bits if special functionalities are supported.

5.3.4 Memory elements

Memory elements are simultaneously producers and consumers. In the first mode, data is read from the
memory and delivered to connected consumers. In the latter mode, data is written in the memory. Both
internal block memories and external memory chips are belonging to this category. In all cases, read and
write addresses are generated by independent configurable sequencers. For 0≤ i < lcontext, sequencers
follow the equations :

ai+1 =

¨

abase + ai + kstep if asub,i 6= 0

abase + ai + kskip otherwise
(5.1)

asub,i+1 = asub,i + 1 (mod lsubset) (5.2)

where ai and asub,i are indexes. The rest of the parameters is explained in Table 5.5. In general, this type of
address generators gives a relatively large freedom for patterned memory access and array manipulations.
When required, a bit reversal block can be inserted to generate addresses compliant with Cooley-Tukey FFT
algorithms. The chosen sequencer architecture is suitable for typical DSP tasks where almost exclusively
linear address patterns are used. Matrix manipulations typical from cryptographic algorithms can also be
supported by the module. The access mode of the memory describes the format of the data: a data word
can be split into two half words and reverse. This enables for example parallel processing of two smaller
data items, parallel storage or description of complex numbers.

Address sequencers are commonly used in stream processing. An overview of system based on address
generators can be found in [Her+02]. They could already be found in founding CGRAs such as RaPiD
[EGF96] and PipeRench [Gol+99]. More recent works still include address generation units for DSP
applications [IS11]. These components are important in CGRAs since they relieve the core architecture
or the associated CPU from address computation. Using a single configuration word, addresses for a
complete stream of data can be generated. This intrinsically reduces the need for reconfiguration.

Special types of memory elements are the FIFOs from the MCU interface. This type of memory only
works in FIFO mode and does not include address generators. In order to avoid deadlocks, FIFOs keep
producing the last element when empty and consumed data is discarded when full.

ROMs are another type of memory unit working as producer only. Igloo FPGAs include a 128x8 bits
Flash ROM that can be used for this purpose. Alternatively, the content of block RAMs can be initialized
via JTAG and used as a ROM, as it is also feasible on Xilinx FPGAs.

82 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

Parameter Value - # bits Function

static
memdepth† [24, 224] Memory Depth
memwidth† Z∩ [4, 32] Memory Width

dynamic

abase log2(memdepth) Reference address
kstep log2(memdepth) Primary incremental factor
kskip log2(memdepth) Secondary incremental factor
lsubset log2(memdepth) Length of subset loop
cam† 2 Access mode

Table 5.5.: Configuration of address sequencers

Configuration Core cells Max. frequency
memdepth (out of 24,576) (MHz)

28 77 53.1
210 104 (<1%) 45.1
212 124 (<1%) 42
216 168 (<1%) 34.1
224 260 (1%) 27.1

Table 5.6.: Resource consumption for one address sequencer

5.3.5 Processing elements

Processing elements (PEs) are mixed producers and consumers. Each input of a PE is a consumer while
each output is a producer. A register is placed before each PE output to queue data going out. Thereafter,
three of the main PEs acting as reconfigurable function units are detailed, i.e. the Multiply-Accumulate
unit (section 5.3.5.1), the CORDIC unit (section 5.3.5.2) and the ALU tree (section 5.3.5.3). As each PE
must be defined with a standard producer-consumer interface, custom processing elements can extend
the architecture to implement functions that are not supported by the aforementioned cores, to reduce
the costs of a function unit by selecting a dedicated core having less reconfigurability or to enhance
the performance by selecting a specialized dedicated core. Each of these PEs is based on fixed-point
arithmetic.

5.3.5.1 Reconfigurable multiply-accumulate unit

Multiply-Accumulate is the most typical operation in DSP applications. When no multiplier is available
in the datapath of a CPU, implementing the multiplication in software requires a significant amount of
time, which may be critical as this operation must often be repeated when processing long data streams.
A hardware implementation is therefore of great interest as it can speedup the execution of this operation
to a few clock cycles. As Igloo FPGAs do not embed integrated multipliers like Xilinx DSP48 slices,
multipliers must be implemented using the programmable gate logic. This consumes a large amount
of the available resources and requires particular care to design a multiply unit which combines both
flexibility, performance and low area. The architecture of the function unit supports then a subdivision
of the input data into two half parts. Each part can be considered independently in order to implement
two identical operations in parallel or it can be reconstructed as a bit vector utilizing the full resolution
or representing a complex number (real part as least significant bits (LSBs) and imaginary part as most
significant bits (MSBs)). The unit has three inputs (consumers) and two outputs (producers). One output
is linked to the internal multiplier while the second output is linked to the accumulator and main adder.
The result of the final adder-subtracter can be linked back to the input of the multiplication so that this

5.3. Template architecture 83

In1

In2

Acc

"1"

Mult1,high

Mult1,low

Mult2,high

Mult2,low

Mult1,high

Mult2,high

Mult1,high

Mult2,low

Mult2,low

Mult1,low

Mult1,low

Mult2,high

P
a
rt

ia
l
S
u
m

 /
 D

if
f

T
ru

n
c

In1

In3

Acc

+/-

Sel1

Acc

Out1

Out2

Sel2

MultmodeTruncm Sel3

Addmode

Sel4

T
ru

n
c

Acctrunc

Trunca

Figure 5.5.: Architecture of reconfigurable Multiply-Accumulate unit

Parameter Value - # bits Function

static
brMAC {8,12, 16,20, 24,32} Wordlength
bacc Z∩ [0, 12] Accumulator bit extension

dynamic

csel1 2 Input 1 Select
csel2 2 Input 2 Select

cmmode 2 Multiplication Mode
cmtrunc log2(brMAC) Multiplication Truncation

csel3 2 Adder Select 1
csel4 1 Adder Select 2

camode 2 Adder Mode
cat runc log2(brMAC + bacc) Accumulator Truncation

Table 5.7.: Configuration of reconfigurable Multiply-Accumulate unit

operation can be executed at first. As all data inputs and outputs must have the same size, an internal
logic for truncating is available. Figure 5.5 depicts the main architectural components of the unit.

The most common operations supported by the function unit include product, square, sum, difference,
accumulate, sum-of-products, product-of-sums or multiply-accumulate, all in either full resolution, parallel
half resolution or in complex form. The large majority of multiplication-based operations in digital signal
processing is based on one of these operations, giving the unit full support for this range of applications.

5.3.5.2 CORDIC unit

CORDIC is a lightweight iterative algorithm used to implement standard arithmetic operations which
are usually costly in terms of hardware resources if implemented as standalone cores. In addition to
trigonometric operations, CORDIC is also useful to compute magnitude of complex numbers or less
standard functions such as logarithm or square root when applying appropriate pre- or post-processing
[KC11]. The number of iterations necessary to reach the final value with the best accuracy usually
depends on the data wordlength. It is generally accepted that one iteration per bit is required when using
the normal CORDIC algorithm. A major restriction of CORDIC is the limited convergence range due to
the magnitude restriction that must be imposed on the inputs. In addition, accuracy issues may emerge

84 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

Configuration Core cells Max. frequency
{brMAC, bacc} (out of 24,576) (MHz)
{8, 0} 887 (3.6 %) 37.7
{16,0} 2,487 (10.1%) 24.1
{16,8} 2,598 (10.5%) 24.1
{32,8} 7,449 (30.3%) 15.5

Table 5.8.: Resource consumption for the reconfigurable Multiply-Accumulate unit

Parameter Value - # bits Function

static

bCORDIC {16, 20,24} I/O wordlength
beCORDIC {0,2, 4,6} Internal wordlength extension

nex t Z∩ [0,10] Extra convergence iterations
b f rac Z∩ [0, bCORDIC − 1] Internal fraction width

dynamic
cm 2 Coordinates Mode
cr 1 Operation Mode

ni ter† log2(bCORDIC + beCORDIC) Number of iterations

Table 5.9.: Configuration of CORDIC

because of the limited dynamic range of the fixed-point representation. There are numerous methods to
alleviate these restrictions with optimizations on speed, area or accuracy [Pon12]. The following solutions
have been adopted based on the recommendations from [HHB91] and [KC11]:

• Internal wordlength extension to avoid overflows and underflows. Input can be scaled to fit to the
convergence range using other units available within the architecture.

• Custom additional iterations to selectively speedup the convergence or increase the input range.
Each iteration slightly improves the convergence range.

The extra convergence iterations come at the cost of an additional adder-subtracter and memory to store
the values of θi corresponding to this extension. All algorithmic details corresponding to the operation of
CORDIC and its range extension can be found in appendix B.2.

The resulting hardware implementation of the CORDIC unit is depicted in Figure 5.6. The execution is
iterative, i.e. the same hardware resources are reused for each iteration. The unit owns a consumer and
producer interface for each input x ,y and z. The internal memory used to store the values of the iteration
angle in each coordinates mode is implemented with a preinitialized memory block. Different coordinates
correspond to different address ranges. No pre- or post-processing stage is included as it is usually the
case for CORDIC units since these operations can be mapped on other function units of the architecture
like the reconfigurable multiply-accumulate unit or the ALU unit. The resulting resource usage reported
in Table 5.10 is given for a number of extra iterations nex t equals to 8.

5.3.5.3 ALU unit

The most common PE used in CGRAs is the Arithmetical Logical Unit (ALU) since it is a lightweight but yet
powerful and flexible function unit. When arranged in a regular structure, a set of ALUs can implement a
simple sequence of operations with a single configuration vector. ALUs are arranged in successive stages
whose outputs are interconnect with the inputs of a next level. The best structure and configuration
for such an array of ALUs has been studied in the frame of two Master theses [Bor13; Zha12a]. While
evaluating the mapping of different algorithms on different topologies, the tree structure turned out to

5.3. Template architecture 85

x y z

>> >>

+/- +/-

+/-

+/-

m

cnt

xin yin zin

-δi±δi δi

θ

xout yout zout

Range Extension

Figure 5.6.: Architecture of the CORDIC unit

Configuration Core cells Max. frequency
{bCORDIC, beCORDIC} (out of 24,576) (MHz)

{16,0} 572 (1.7%) 35.0
{16,4} 756 (3.1%) 31.1
{20,4} 956 (3.9%) 27.9
{24,6} 1,237 (5.0%) 23.5

Table 5.10.: Resource consumption for the CORDIC unit

86 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

R1 R2

In1In2 R1R2 In1In2 R1R2 In1In2 R1R2 In1In2 R1R2

Csel111 Csel112 Csel121 Csel122

Cc11
Cc12

Ccs12

Carry1

Carry2
Carry1

Carry2

Cc22

Ccs22

Csel21 Csel22

Ccs32

Ccs21

Cc21

Cc23

Csel22

Csel31

Figure 5.7.: Architecture of a {2, 2,1} ALU unit

Parameter Value - # bits Function

static
bALU {8, 16} I/O wordlength
nALU {1}, {2, 1},{2, 2},{2, 2,1},{4,4, 2} ALU topology

dynamic

c i, j
ALU 5 ALU(i, j) operation code
c i, j

sel [1,3] ALU(i, j) input selection
c i, j

cs 1 Carry select
c i, j

c 1 Forced carry

Table 5.11.: Configuration of the ALU array

be the more efficient. Indeed, as the computation is progressing, intermediate results are combined into
single results. This affects the bottom units of the array, which are used less frequently than the top ones.
This also minimizes the amount of required multiplexers, which reduces the area required by the circuit.
Five topologies can be selected depending on the application requirements. Each topology is described by
the n-tuple {a1, a2, . . . , an} where each ai represents the number of ALUs at stage i and n is the number of
stages. The following topologies can be instantiated: {1}, {2,1},{2, 2},{2,2, 1},{4,4, 2}. The number of
producer and consumer interfaces depends on the selected topology.

Each ALU has four configuration bits and a carry select bit. The operations implemented by the
ALU include the logical functions AND, OR, XOR, NOT, shift and the arithmetical functions increment,
decrement, addition, subtraction and shift. Two internal registers are available to locally store intermediate
results.

5.3. Template architecture 87

Configuration Core cells Max. frequency
{bALU, nALU} (out of 24,576) (MHz)
{16, {1}} 328 (1.7%) 71.0
{8, {2,1}} 513 (2.0%) 55.0
{16, {2,1}} 1080 (4.4%) 39.7
{16, {2,2, 1}} 1598 (6.5%) 33.1

Table 5.12.: Resource consumption for the ALU unit

5.3.5.4 Other units

The architecture is not only limited to the aforementioned components. As long as the producer-consumer
interface is implemented, any type of operator can be instantiated. Other types of units with a simpler
functionality or less reconfigurability include:

• The inter-cluster connector: an input and an output data line are available for the exchange of data
between two clusters.

• The register file is a set of registers used to store single intermediate results. It can be used in
addition to the MCU interface registers if they are not sufficient (8x8 bits) or if they are connected
to this cluster. The number of registers available within the register file is statically configurable, as
the number of producer and consumer interfaces. Registers selected for write or read operations are
dynamically configured with separated configuration vectors. The content of the registers can also
be set through configuration data. This is useful to set single constants required for the execution of
a task.

• Arithmetic units specialized for different application-domains such as cryptography or forward-error-
correction were developed for the reconfigurable datapath of Hinkelmann’s architecture [Hin11].
This notably includes a Galois-field multiply-accumulate array and a Galois-field inverter. Simplified
versions of these units were integrated into the array. However, only a 32-bit wide interconnect is
supported.

• Division or square roots are operations which are commonly required in DSP applications, but
used at low rates. Implementing a full divider or square root unit is therefore very costly in terms
of resources and should only be done if mandatory. Besides, the extended CORDIC unit already
supports these operations over a large convergence range. However, if the CORDIC unit is oversized
for the target application, specialized square root and division units based on iterative computation
can be instantiated instead.

• As the ALU does not implement any comparison operation, a comparator unit has been implemented.
This unit is useful to find extrema within a data stream of for sorting purposes.

One can imagine the integration of further components such as actuator and communication interfaces
but these features were not considered in the frame of this thesis.

5.3.6 Reconfiguration layer

At runtime, a single configuration vector is usually not sufficient to describe a complex task. When
referring to Figure 5.3, a context would correspond to the operation level. A complete function or task is
thus defined as the sequence of configuration contexts, i.e operations, necessary to complete it. However,
the utilization of address sequencers and patterned connections between units usually prevent the need for

88 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

Active Context

Level 1 Register

To core

Level 2

 Context Register

Reset

Context

memory

ID Data

Configuration

frame

Configuration

Controller

Configuration

Instructions

+1

Transaction

enable

from core

Context Transaction Limit

==

Transactions

counter

From External
Configuration

Memory

Figure 5.8.: Block diagram of the configuration controller

a reconfiguration at each clock cycle. Indeed, stream processing is commonly based on vector operations,
so that a configuration generally stays active for a number of clock cycles greater or equal to the number of
vector elements. As the target platform has stringent resource constraints, the reconfiguration mechanism
should not consume a large amount of logic and memory. The traditional multi-context approach of
CGRAs consists in multiple configuration contexts saved in parallel to the active one [KM11]. A new
context can be switched through a multiplexer within one clock cycle. However, this method has a large
cost in terms of logic gates and memory cells that cannot be afforded here. As a reconfiguration at each
clock cycle is not fully exploitable here, a solution where reconfiguration time is slightly longer but logic
requirements are reduced is adopted.

The active configuration is stored into a register denoted level 1 context register. This register controls
all dynamic configuration bits required by the architecture. The next active configuration is prepared in a
second register denoted level 2 context register. The rest of the non-active configuration data is stored in a
block memory. The level 1 context stays active as long as the number of corresponding producer-consumer
transactions has not been executed. When this occurs and the level 2 configuration register is ready, the
content of the level 1 register is automatically replaced and the transaction counter is reset. Otherwise,
the processing elements stay idle until the reconfiguration process of the level 2 register has been finished,
i.e. the corresponding content of the context memory has been read. The architecture of the configuration
control is depicted by the block diagram of Figure 5.8. As each cluster of the overlay architecture is
associated with a reconfiguration controller, each cluster can be controlled individually.

5.3.6.1 Difference-based reconfiguration

As all units are not necessarily modified during each context switch, reloading the totality of the context
register would cost a significant amount of time and memory at each step. Indeed, PEs are rarely all
active at the same time as the template architecture can only support a limited number of simultaneous
producer-consumer transactions. This number is related to the amount of lines available in the cluster
interconnect. For example, if three data lines are available, a maximum of three processing elements can
be used simultaneously. As it is usually the case, the number of PEs is high compared to the number of
interconnect lines. As a consequence, only a small part of the configuration word needs to be changed
between successive producer-consumer transactions.

5.3. Template architecture 89

Size of configuration context Core cells Max. frequency
(bits) (out of 24,576) (MHz)
100 1,547 (6.2 %) 68.3 MHz
200 1,881 (7,6 %) 67.8 MHz
350 2,151 (8.7 %) 67.3 MHz

Table 5.13.: Resource consumption for the configuration controller

Different methods have been proposed to reduced the unnecessary overhead of full reconfiguration
such as the compression of configuration data [KM10] or the tag-matching mechanism from Hinkelmann
[Hin11]. However, the latter method still relies on large configuration tables and multiplexers that are
not area efficient. The method applied here is based on differences between two successive contexts.
The level 2 context register is subdivided into an array of configuration frames that can be individually
addressed. Therefore, the configuration data contains only the information that needs to be modified
for the next configuration. A global default configuration is also available as a reference for evaluating
the difference between two configurations. Thus, if the next context requires less modifications when
compared with the default context as with the previous one, the second level register can be reset before
the reconfiguration starts. The first context of the sequence is always based on the difference with the
default context.

In order to save memory resources, the context memory is always tuned to use a single block RAM
(256x18 used as 256x16 in order to facilitate data alignment). Items of the memory are configuration
frames corresponding to the ID and the data of one subdivision of the level 2 context register. In order to
maximize the memory utilization, configuration data should be designed to have a size which is a multiple
of 16. Large configuration frames will be more memory efficient since they will require less IDs but they
are less selective, so that they will be required more often, even if a small change in the configuration is
necessary. On the other hand, smaller configuration frames will require more IDs but can focus on smaller
parts of the context register. A trade-off can be found by selecting a length fitting with the average size of
the configuration data for a single block.

Based on these considerations, the size of the configuration frame has been set to 32 including 4 ID
bits. This corresponds to two memory items and a maximum of 384 bits for the context register. This
also implies that a minimum of two clock cycles are required to switch between contexts, as loading one
configuration frame takes two cycles. The reconfiguration process takes at most 32 cycles when all frames
need to be reloaded. The context memory can store between 7 and 128 contexts, which is in general
already sufficient to describe moderately complex tasks. Figure 5.9 shows the threshold amount of frames
requiring reconfiguration between successive contexts so that difference-based reconfiguration is faster
and less memory consuming than full reconfiguration. Although 32 bits frames seem more efficient than
16 bits, it is also more likely that the share of frames to reconfigure is higher when using 32 bits than with
16 bits. In general, the threshold is relatively high (> 70 %), so that difference-based reconfiguration is
almost always advantageous. Moreover, the default reconfiguration context offers a second chance to go
below this threshold if two successive configuration contexts have too many differences.

Table 5.13 reports the amount of resources consumed by the configuration controller for different sizes
of context, including the two levels of configuration registers. In each case, two blocks RAM are used
to store the operators configuration data and the configuration instructions respectively. The amount of
logic cells used is already non negligible. Including additional registers for caching reconfiguration data
would unnecessarily increase the complexity and the resource usage of the controller and would make the
reconfiguration overhead non bearable anymore for an implementation on a resource-constrained FPGA.

90 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

P
er

ce
n

ta
ge

 o
f

fr
am

es
 t

o
 r

ec
o

n
fi

gu
re

Length of configuration word (bits)

32 bits Frame - 4 bits ID 16 bits Frame - 5 bits ID

Figure 5.9.: Threshold percentage of the number frames to reconfigure to make difference-based
reconfiguration more efficient than full reconfiguration

5.3.6.2 Context flow

During the execution of a task, it is likely that contexts or sequences of contexts must be repeated. DSP
or cryptographic algorithms are often based on inner loops or on the repetition of the same operation
pattern. In order to eliminate the unnecessary repetitive portion of this flow of contexts, a hierarchical
approach has been adopted. The execution sequence of the contexts stored in the context memory is
determined by a a set of instructions associated with the task. As the execution of contexts does not
always follow a linear pattern, a programmable configuration controller has been implemented to control
this sequence. It has been shown with a similar approach in [Wan+13b] that reconfiguration time can
be reduced. The set of available instructions is reported in Table 5.14. Each instruction is 16 bits wide
and include a parameter whose functionality depends on the instruction type. Like the context memory,
the instructions are stored in a block RAM (256x16). In addition to flow control, additional instructions
controlling the global status of the processing unit have been included.

The EXE instruction defines how many context frames should be read in the context memory for
reconfiguration. The SENSE instruction is an EXE instruction where the core is allowed to switch in
a low-power sleep mode is no sensor units are currently active, i.e. acquiring data from an external
component. The LOOP instruction is automatically followed by a context based on the difference with
the default context since the content of the previous context can differ. The RESET instruction reset
components attached to the cluster. Interrupt flags can be set by the INT instruction while the WAIT
instruction is maintaining the processing idle as long as the operation has not been resumed by the
processor interface.

An example of the reconfiguration flow is illustrated by Figure 5.10. The instructions describes a
filtering task. At first the coefficients are loaded in a local memory. Then a sequence where data is
sampled, filtered and the units are reset is repeated 16 times. The EXIT instruction indicates the end of
the task. The current instruction is SENSE, which requires the modification of two configuration frames
(0 and 4).

This set of instructions has been developed in order to access all the control mechanisms available in
the template architecture. This includes the difference-based reconfiguration (EXED), low-power and
sensor management (SENSE), interface with the MCU (INT), and basic control operations (RESET, LOOP,
WAIT, EXIT).

5.3. Template architecture 91

Instruction Parameter Function

EXE size of context Execute the current context once (difference with previous)
EXED size of context Execute the current context once (difference with default)
SENSE size of context Execute one context with sleep enable
LOOP {n1, n2} Loop the n1 next instructions n2 times
INT type Set an interrupt flag

RESET type Reset selected internal registers
WAIT none Wait until execution is resumed
EXIT none End of the context sequence

Table 5.14.: Instructions of the configuration controller

EXED 2

LOOP 3 16

SENSE 2

EXE 3

RESET 3

EXIT 1

Load coeff

Loop 16 times

Collect Sensor Data

Apply Filter

Reset Units

End of Task

0

4

InstructionsContext Memory

Load 2 next

frames

F
ra

m
e
 4

F
ra

m
e
 0

Controller

Level 2
Context
Register

Level 1
Context
Register

Core

Figure 5.10.: Example of reconfiguration process for a filtering task

92 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

Contexts

Instruction 1

Instruction 2

Instruction 3

Instruction N

Context Frame 1

Instruction 1

InstructionsTask ID 1 Header

Instructions

16 bits

Context Frame 1

Frame ID

Context Frame M

Context Frame M

Frame ID

Contexts

Contexts# InstructionsTask ID 2

External Configuration Memory

Controller

FPGA

FIFO

Memory
Interface

CPU
 Interface

To Configuration Controller

Figure 5.11.: Task-level reconfiguration

5.3.6.3 Meta-reconfiguration

For each cluster, the complete reconfiguration bitstream comprises the content the configuration memory
plus the configuration instructions. This set of configuration data corresponds to the task level in Figure
5.3. In order to implement a different task, the content of the corresponding block memories must be
replaced. A top-level configuration controller is available for this purpose. As this unit is reconfiguring
a lower level reconfiguration unit, it has been named meta-configuration controller. A single top-level
controller is available to reconfigure the configuration memories of each cluster.

When a task has been completed, an interrupt is sent to inform the main processor. If further tasks
need to be accelerated, a command is sent to the meta-configuration controller to load the corresponding
configuration data from an external non-volatile memory where it is stored. Each task configuration is
identified by an ID which corresponds to its address in the configuration memory as depicted by Figure
5.11.

If no external configuration memory is available, the configuration data has to be loaded every time
by the main processor. On the HaLOEWEn platform, configuration data can be loaded from an external
parallel nonvolatile FRAM memory chip. On the LPSIP, configuration data is stored in a serial EEPROM.
As the serial transfer of the data might cost a long time for reconfiguration between tasks, it can also be
loaded into the parallel SRAM during an initialization sequence.

The content of the configuration memory is modified by using a special access mode of the MCU
interface. Data is transfered from the MCU to the memory by transiting in the FPGA. A bidirectional FIFO
is used for this purpose.

5.3.7 Clock and power management

As highlighted in chapter 4, the FPGA can be clocked by an external oscillator at the cost of a large power
consumption overhead. Alternatively, the internal ring oscillator used to control the sleep mode can be
used. Each of the clocks is connected to the internal clock tree of the FPGA and can be used by any
component. A global timer unit accessible by all processing elements has not been implemented. As a
consequence, each sensor interface must implement its own timer in order to regulate the sampling rate.

5.3. Template architecture 93

A special controller has been developed to manage the sleep cycles of the platform. In general, the
system will switch automatically in Flash*Freeze mode if the following conditions are fulfilled :

1. No timer of an active sensor interface is running with the external clock

2. The Flash*Freeze pin is asserted

3. All sensor interfaces are idle

4. All clusters are inactive or running the SENSE or WAIT instruction

In Flash*Freeze mode, the clock generated by the internal ring oscillator is gated for all processing
elements, memories and other external interfaces.

5.4 Evaluation

This section gives examples of overlay architectures that can be instantiated using the proposed template.
Three architectures depicted in Figure 5.12 were selected:

• (a): The first architecture integrates three 12-bit ADCs and three main processing units within one
single cluster. This cluster is specialized for signal processing tasks where the input signals must be
combined. An example of such an application is detailed in Chapter 8 where a sensor node for the
condition monitoring of an electrical motor is implemented.

• (b): The second architecture has two separated clusters, each with a 12-bit ADC interface. In this
case, the two sensor data streams can be processed in parallel. This is useful if sensors requiring
different types of data processing are used.

• (c): The third architecture has two clusters customized for different application domains. While
the first cluster is specialized for simple signal processing, the second cluster integrates units for
cryptography and general-purpose processing.

5.4.1 Resources

The resources usage for the three architectures is summarized in Table 5.15. As a matter of comparison,
the overlay has also been synthesized for the Spartan6 LX16 FPGA. This shows that the architecture is not
only implementable on the Igloo FPGA, but also on other families of devices. It can be noticed that two
clusters are already filling the Igloo FPGA. An architecture based on three clusters is therefore not worth
considering since it would require the reduction of the amount of PEs in each cluster and by extension
their potential to implement complex tasks. However, one cluster is already sufficient for a large range of
applications, so that this restriction is not critical.

Secondly, although the amount of internal memory used by architecture (a) is not high, most of the
block memories are already used. This configuration is for instance not sufficient to implement a 1024-FFT
for which the external memory should be used. As a consequence, the size of the configuration vector
increases because a large part is dedicated to the address generators of the external SRAM.

In terms of maximum frequency or critical path, all architectures are limited by the reconfigurable
multiply-accumulate unit. The value stays nevertheless over the frequencies which are commonly used for
applications running on wireless sensor nodes, i.e. under 20 MHz.

For the Spartan6 FPGA, the general occupancy stays relatively low, leaving more space for subsequent
clusters. Again, the availability of DSP slices makes the design smaller and faster.

94 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

3x 12-bit

ADC

FIFO

SRAM 1Mbit
External
Interface

MCU

Interface

Interconnect

Register File

CORDIC

Address
Generator

rMAC ALU

FIFO FIFO Registers

5x16-

bit

Configuration

Controller
Meta-

Configuration
Controller

Configuration
Memory
Access

+

3x 210x16bit
Internal
Memory

Address
Generator

(a) Architecture customized for signal processing

12-bit ADC

FIFO

MCU

Interface

Interconnect

Register File

rMAC ALU

FIFO FIFO Registers

5x16-

bit

Configuration

Controller Meta-
Configuration

Controller

Configuration
Memory
Access

+

2x 29x16bit
Internal
Memory

Address
Generator

12-bit ADC

FIFO

Interconnect

Register File

5x16-

bit

Configuration

Controller

2x 29x16bit
Internal
Memory

Address
Generator

rMAC ALU

+

(b) Architecture customized for a dual sensor interface

3x 8-bit Sensor

FIFO

MCU
Interface

Interconnect

Register File

rMAC ALU

FIFO FIFO
Registers

5x8-bit

Configuration
Controller

Meta-
Configuration

Controller

Configuration
Memory
Access

+

2x 29x8bit
Internal Memory

Address

Generator

Interconnect

Register File

3x32-bit

Configuration
Controller

28x32bit
Internal Memory

Address

Generator

GF MAC S-Box

Comparator

>, >=, ==

+
S

ALU

(c) Architecture customized for multi-domain processing

Figure 5.12.: Customization of the architecture template for three types of applications

5.4. Evaluation 95

Arch. (a) Arch. (b) Arch. (c)

Igloo
Cells 14,664 (59.7 %) 19,906 (80.1 %) 19,192 (78.1 %)

Memory blocks 20 (62.5 %) 17 (53.1 %) 14 (43.7 %)
Max. frequency 22.1 MHz 22.2 MHz 30.2 MHz

Spartan6
Slices 870 (38.2 %) 1,020 (44.7 %) 1,168 (51.3 %)

Memory blocks 11 (34 %) 13 (40.6 %) 16 (50 %)
Max. frequency 63.4 MHz 65.1 MHz 97.44 MHz
Size of context 292 bits {172,182} bits {135, 88} bits

Table 5.15.: Resource utilization of the example architectures

5.4.2 Performance

In order to estimate the performance and the overhead introduced by the reconfigurability of the design,
the example scenarios from Chapter 4 have been ported on the architecture (a). The bar charts in
Figure 5.13 shows the differences in terms of processing time and energy consumption between an
implementation on the developed overlay and a direct implementation where only the considered
algorithm can be run.

On the overlay, the execution time is in average 2.6 times longer than on the dedicated architecture.
During this time, the reconfiguration process, i.e. the time required to load the configuration data in
the internal memory, is taking only a short amount of time (5% in average). This share decreases when
the complexity of the algorithm increases since the overlay stays in a longer time in a processing mode
where no reconfiguration is required. Similarly, when several configurations are executed sequentially,
the time overhead of the reconfiguration stays low since the next reconfiguration can be preloaded from
the external configuration memory while the current one is executed.

In general, the reconfiguration time (in the range of microseconds) stays much shorter than the ones of
classical FPGA reconfiguration schemes (in the range of several milliseconds up to several seconds).

In terms of energy, the consumption is about 3.8 times higher using the reconfigurable overlay when
considering the processing time only. The absolute value stays still in a range which is much lower than
equivalent software implementations. The overhead is low for the considered algorithms because the
dedicated implementation cannot fully exploit operation level parallelism. Indeed, because of the FPGA
resources restrictions, the dedicated implementations are centralized around one or two operators used
sequentially. As the overlay architecture is based on a similar scheme, the differences in time and energy
consumption are not substantial.

Again, this value must be balanced with an evaluation on a longer term, i.e. by taking the sampling
period into account. The graph 5.13c shows the average power consumed by both overlay and dedicated
architecture when sampling a sensor signal at 1 kHz and processing it with an FFT. As it can be observed,
the overall power consumption stays almost the same as the processing time is negligible in comparison
to the time necessary to sample all the data. Thanks to the low-power sleep mechanisms of the Igloo
FPGA, an average relative increase of 3.1 % of the power consumption is observed with the overlay. The
absolute increase is negligible when compared to equivalent MCU or SRAM-based FPGA implementations.
For such a scenario, the overall overhead of the reconfiguration process stays very low as it is very short
and needs to be executed only once (the content of the internal block RAM and register is not lost when
the FPGA is switched in Flash*Freeze mode).

This evaluation is focusing on the execution of single tasks on the overlay architecture. A more complete
analysis where multiple tasks are run in a sequential fashion would demonstrate the full potential of the
reconfigurability in a better way. However, a relevant scenario can only be considered in the frame of
real-word applications where a precise set of tasks needs to be implemented. Such examples and the

96 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

0

100

200

300

400

500

600

700

800

900

1000

128-FFT 256-FFT 512-FFT Loc.

Ex
ec

u
ti

o
n

 T
im

e
(μ

se
c)

Overlay Reconfiguration Overhead Dedicated

(a) Processing time

0

2

4

6

8

10

12

14

128-FFT 256-FFT 512-FFT Loc.

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
μ

J)

Overlay Reconfiguration Overhead Dedicated

(b) Processing energy

0

100

200

300

400

500

600

128-FFT 256-FFT 512-FFT

A
ve

ra
ge

 P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (
μ

W
)

Overlay Dedicated

(c) Average power consumption (sampling included)

Figure 5.13.: Performance evaluation of the overlay architecture

5.4. Evaluation 97

corresponding evaluation are given in the part of this thesis dedicated to applications (Chapter 7 and
Chapter 8).

5.5 Conclusion

WSNs need a high level of adaptability to comply with their low accessibility and always changing applica-
tion requirements. By making the hardware accelerators available on each sensor node reconfigurable at
runtime, a whole new range of possibilities is open. Even though Flash-based FPGAs do not support well
a core reconfiguration, one can exploit the gain provided by their lower power consumption to implement
more generic hardware architectures which can be reconfigured at a higher level of abstraction. However,
the overhead introduced by this genericity must stay in a reasonable range, so that the architecture still fit
on a resource-constrained device.

By reusing the architectural concepts of CGRAs, the proposed overlay architecture for the Igloo
FPGA combines both low reconfiguration costs with general-purpose flexibility, allowing a reusing of
arithmetic operators across multiple algorithms. Depending on the final application, the overlay can be
parameterized in many different ways, so that a specialization for a specific sensor interface or a specific
type of arithmetic domain is still possible. The lightweight reconfiguration mechanisms reduce both
the amount of configuration data and the size of the necessary control logic. In the end, the complete
architecture is almost filling the considered device, so that the maximum of the available logic is used and
resources are not wasted. Such scenario often occurs in FPGA-based designs where the selected chips are
often oversized with respect to the target application.

In conclusion, runtime reconfiguration at task level has been virtually enabled on a Flash-based FPGA.
The scheme go beyond the state-of-the-art where virtual reconfiguration on Flash-based devices was only
evaluated for virtual FPGA architectures [Hüb+11], or coarse-grained overlay architectures were used for
high-performance computing [SBB06; MPB11; BL12]. The design combines the best of both approaches
in a lightweight template tailored for WSN applications.

98 5. Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices

6 Tools for Generation and Online
Dissemination of Dynamically Reconfigurable
Hardware Accelerators

Convenient programmability across several
orders of magnitude of energy consumption and
data processing requirements is a worthy
research goal for pervasive computing

G. J. Pottie and W. J. Kaiser, “Wireless
Integrated Network Sensors”. In:

Communications of the ACM, May 2000, Vol.
43, No. 5

Contents
5.1 Introduction . 73

5.2 Related work . 76

5.2.1 Low-power coarse-grained reconfigurable architectures 77

5.2.2 Virtually reconfigurable hardware . 77

5.2.3 Dynamic reconfiguration for Flash-based devices . 78

5.3 Template architecture . 78

5.3.1 Overview . 78

5.3.2 Producer-consumer transactions and interconnect . 79

5.3.3 Sensor interfaces . 80

5.3.4 Memory elements . 82

5.3.5 Processing elements . 83

5.3.5.1 Reconfigurable multiply-accumulate unit . 83

5.3.5.2 CORDIC unit . 84

5.3.5.3 ALU unit . 85

5.3.5.4 Other units . 88

5.3.6 Reconfiguration layer . 88

5.3.6.1 Difference-based reconfiguration . 89

5.3.6.2 Context flow . 91

5.3.6.3 Meta-reconfiguration . 93

5.3.7 Clock and power management . 93

5.4 Evaluation . 94

5.4.1 Resources . 94

5.4.2 Performance . 96

5.5 Conclusion . 98

99

The FPGA overlay template introduced in the previous chapter fixes the basis infrastructure for hardware
reconfiguration on the wireless sensor node at runtime. Despite the restrictions introduced by the
unalterable communication infrastructure or the format of the operators, the design space of the template
is sufficiently large to customize architectures for specific applications. However, parameterizing the
template demands a significant effort as each component has a set of settings that must be individually
adapted. As the nature and the organization of the operators is heterogeneous, each component must
be meticulously tuned to ensure that each unit fits to each other. More importantly, the content of the
configuration memory describing the operation of the hardware accelerator cannot be defined manually
without a deep knowledge of the reconfiguration process and the cluster architecture. As the format of
the configuration data varies according to the implemented architecture, tools abstracting and automating
these tasks are therefore required to make the static and dynamic configuration of the architecture
more accessible, even to users with no knowledge of hardware description languages (HDL). For this
purpose, a graphical interface can be considered as the most intuitive solution, which gives in addition
a visualization frame of the developed architecture and associated configurations. Developing such a
software configuration tool is also a good way to centralize and standardize the code for all architectural
elements implementable in the design. A graphical configuration tool for the FPGA overlay architecture is
therefore introduced in the section 6.2 of this chapter1.

Once configuration data has been generated, another important aspect requiring a generic approach
to enhance the accessibility of the hardware accelerator is the remote management of the dynamic
reconfiguration. Indeed, the task-level reconfigurability of the hardware accelerator can only be fully
exploited if the software service controlling it is not static. Once deployed, wireless sensor nodes are
usually hardly accessible and manual reloading of configuration data is not desirable. Furthermore, the
small size of the task description on the reconfigurable hardware is compatible with the low bandwidth of
WSNs so that a dissemination of the configuration data on the wireless link is worth considering. The
section 6.3 addresses these aspects by describing the operation of a middleware service handling the
management of configuration data at runtime2.

6.1 General overview

The set of configuration tools has been unified in a software program named (GECO)2, standing for
Graphical Environment for COnfiguration and GEneration of bitstreams for a COarse-grained dynamically
reconfigurable architecture. It has be developed in the Java programming language with the standard
widget tool (SWT) library for graphical user interface (GUI) components [Swt]. A general overview of
the proposed tool chain is depicted in Figure 6.1. At first, the static configuration of the architecture is
elaborated based on the specifications of the hardware platform and the application profile. This allows
selecting the appropriate sensor and memory interfaces or processing elements. This results in a set
of HDL files that can be used to generate a FPGA configuration bitstream through the corresponding
synthesis tool. Then, the architecture can be programmed on the platform. The details of this tool are
given in section 6.2.2.

In a second step, the architecture must be configured with the appropriate tasks implementing the
application functionalities. The second purpose of the GUI is to parametrize all units for each configuration
context. This can be realized by loading the configuration data corresponding to pre-existing task
descriptions or by creating a custom task. Section 6.2.3 reports the working principle of this tool.

At last, the task must be loaded and activated into the sensor node. Even if this can be done statically
in software, the dynamic reconfiguration feature is not fully exploited. A generic framework is then
described to remotely load and schedule hardware accelerated tasks on the sensor node at runtime. This
functionality is implemented as a software service running closely to the operating system of the platform.

1 The work presented in this section is related to the publication [PG12]
2 The work presented in this section is related to the publication [PG13b]

100 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

Architecture
Editor

Application

Platform

HDL
Components

Algorithms
Library

(GECO)² Resources

SW Drivers

Synthesis Tools
Specifications

Profile

HDL
Project

FPGA
Bitstream

Task
Description

Processing Tasks

Software Configuration Agent

Dynamic
Reconfiguration

Scheduling
Instructions

Context
Dependencies

Data Flow
Editor

Event-Based
Scheduling

1

3

2

Figure 6.1.: General overview of the configuration tools

It joins the networking layer with the low-level access to the configuration memory of the hardware
accelerator. This aspect is detailed in Section 6.3.

6.2 Graphical configuration interface

6.2.1 Related work

Design software of programmable hardware vendors all include graphical user interfaces for fast and
user-friendly parameter settings. From the low-level FPGA editor to the customization of IP cores or SoC
architectures, e.g. with the Xilinx Platform Studio [Xila] or Microsemi Libero SoC [Libb], these interfaces
abstract the underlying implementation and prevent an error-prone parameterization of components
in the source code. Even with no HDL knowledge, optimized source files describing complex hardware
architectures can be generated in a short amount of time, thus reducing the total design time. Similarly,
the graphical design interface introduced in this chapter intends to make the design of the reconfigurable
hardware accelerator more accessible, even for traditional WSN developers with no particular skills for
FPGA or digital logic design.

Parameterizable processor architectures are often accompanied by a configuration software, e.g. the
LEON3 processor [Aer], or even special semantics, e.g. The Incredible Machine (TIM) from Silicon Hive
[Okm11] or the CGRA description language from [Cha+08], to describe the desired system settings.

Some academic projects are also supported by graphical design interfaces. A set of programing
and configuration tools has been created for the MorphoSys coarse-grained reconfigurable architecture
[Sin+00], the Butter coarse-grained architecture for multimedia [BGN08] or the AMDREL low-energy
FPGA architecture [Sou+07]. The virtual FPGA overlay proposed by Hübner et al. [Hüb+11] is supported
by a graphical configuration editor and bitstream generator. Individual configurable logic blocks (CLBs),
switching matrices and I/O cells can be manually configured to implement a custom functionality.
Bitstreams for the virtual FPGA are generated accordingly.

Most of advanced CGRAs are extended with a compiler to map the application on the processing
elements [TSV07]. The description language can be specific to the CGRA or derived from a standard

6.2. Graphical configuration interface 101

embedded programming language such as C. As the development of such as tool requires a significant
effort because of the heterogeneity and flexibility of the template, it was excluded from the scope of this
thesis. However, as the developed architecture still requires a comfortable and automated way to generate
configuration data, the GUI presented thereafter was introduced to set both static and dynamic parameters
of each individual components used in the design. This low-level configurability, comparable to the one
of an FPGA cell editor, is rare to find in the related work, although it allows a custom optimization of a
CGRA configuration.

The challenge of rapid and facilitated design of digital logic on FPGA-based wireless sensor nodes has
been also emphasized by Völgyesi & al. in [Vol+10]. The authors extended a graphical development
environment for the component-oriented operating system for WSN TinyOS with the possibility to map
components directly on an FPGA. As component-based design fits also well to hardware design, suitable
modules can be arbitrarily implemented in hardware or in software if the appropriate interfaces are
available. After a graphical entry, the tool is able to generate software and hardware code corresponding
to the described application. The authors also emphasized the need for a unified hardware-software
framework where components can be arbitrarily interchanged. Unfortunately, the tool stayed at a low
development advancement, in particular with regards to the integration of VHDL components.

6.2.2 Architecture editor

The architecture editor is the first step towards the deployment of the hardware accelerator on the target
platform. The template architecture defined is Chapter 5 is customized for the desired application, i.e.
all static parameters of the architecture and processing elements are set. In Chapter 5, these parameters
were listed in tables corresponding to selected components. As a result, a compilation of HDL files that
can be used for FPGA synthesis, simulation and validation is created.

The tool has been designed in a generic way so that it is not only usable with the HaLOEWEn and
the LPSIP platforms presented in the frame of this thesis. In particular, the tool is also able to generate
HDL files that can be used with other types of FPGAs. As a consequence, the specifications of the target
platform are first required. This includes the nature of the target device, but also the nature all external
components that are going to be used for the application, e.g. sensors, memories or communication
interfaces. Secondly the main processing requirements of the application must be identified in order to
select the appropriate processing and memory elements. An application profile summarizing the desired
functionalities or determining the specialization domain must be established. For this purpose, most of the
approaches in related work are relying on the analysis of existing code written in C/C++ or assimilated.
Critical loops or functions are automatically identified and the best-suited processing elements are selected.
As the number of available processing elements is relatively low for the developed architecture, the choice
of the processing elements is left here to the decision of the designer. Furthermore, the tool targets the
acceleration of algorithms which were not previously implemented because of the processor restrictions,
so that a preliminary version written in C language is not always available.

At last, the interconnect between the components is manually defined by setting the desired connections
between each busses and the corresponding components. Once elaborated, the corresponding HDL project
can be generated. For (GECO)2, this implies two steps: the creation of a top-level configuration file and
the modification of the top-level HDL file from the template architecture. The configuration file config.vhd
compiles all the static parameters required by the different components of the architecture. In particular,
it describes the format of the configuration register so that the overlap of single component configurations
on several frames is minimized.

Each sub-component is associated with an HDL file and IP cores available in the tool library. New
components can be added to this library as long as the mandatory producer-consumer interfaces are
implemented. Parameterizable, technology-independent implementations are preferred for enhanced
genericity. A mix of VHDL generate and configuration statements is used to differentiate technology-specific
architectures and selectively instantiates the appropriate entities (see Listings 6.1 and 6.2). A diagram

102 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

config.vhd

HDL Entities
Library

(GECO)²

generates

modifies

top.vhd

parameterizes

fu_typeA.vhd fu_typeC.vhd

instantiates

fu_typeB.vhd

Target X

Target Y

Target Z

Architectures

Figure 6.2.: (GECO)2 concept for HDL parameterization

illustrating the (GECO)2 concept for HDL parameterization is included in Figure 6.2. In [Por+06a], a
similar library of sensor-actuators interfaces written in HDL was developed for the Cookie FPGA-based
wireless sensor node. The library was however limited to low-level communication cores such as I2C or
SPI and does not include operators or an elaborate processing architecture as it is the case here.

−− IGLOO S p e c i f i c i n s t a n c e
m u l t i p l i e r _ i g l o o : i f TARGET_IGLOO generate

i f dw = 16 generate −−Data width o f i n p u t s
mul0 : mul_16 port map(. . .) ; −−16 b i t s M u l t i p l i e r IP

end generate ;

i f dw = 24 generate −−Data width o f i n p u t s
mul0 : mul_24 port map(. . .) ; −−24 b i t s M u l t i p l i e r IP

end generate ;

. . .
end generate ;

−− Targe t independent i n s t a n c e
mul t ip l i e r_bhv : i f not (TARGET_IGLOO) generate

mul0 : mul generic map(dw => dw) −−Gener i c Behav i o ra l M u l t i p l i e r
port map(. . .) ;

end generate ;

Listing 6.1: Target-aware instantiation of a multiplier

configuration IGLOO of f i f o _ t o p i s
for f i f o _ t o p _ r t l −− a r c h i t e c t u r e body o f f i f o _ t o p

for f i f o 0 : f i fo_ram −− f o r i n s t a n c e f i f o 0
use ent i t y work . f i f o (f i f o _ i g l o o _ a r c h) −−Use IGLOO s p e c i f i c a r c h i t e c t u r e
port map (. . .) ;

end for ;
end for ;
end IGLOO ;

Listing 6.2: Target-aware instantiation of a FIFO using VHDL configuration

The generated HDL files can be imported in a project of the target FPGA design software or serve
as input for a synthesis script. When associated with the platform constraint files, the design can be
synthesized and implemented in order to generate the FPGA configuration bitstream. It must be noticed

6.2. Graphical configuration interface 103

that the (GECO)2 tool does not guarantee the fulfillment of any area or timing requirements, so that
design check rules might be broken during the implementation. The FPGA on the target platform is finally
programmed with the generated bitstream with classical programming tools and devices, e.g. FlashPro
programmers for Microsemi devices.

The architecture editor GUI is composed of two main panels: one for global parameterization of the
architecture components and the second for visualization. A screenshot of the (GECO)2 main window
is included in Figure 6.3. Each individual component is associated with its own configuration window
in order to customize its parameters. A Java interface is available to develop configuration GUIs for
newly created components. The visualization frame makes the architecture more readable and gives a
better overview on the currently designed architecture. The task mapping is facilitated by visualizing the
interaction between the different components.

Once an architecture has been elaborated, the specifications can be saved in an architecture description
file (extension *.gco in Figure 6.1). The design can be thus reloaded as basis for further modifications or
for the design of new task flows.

6.2.3 Data flow editor

Once the static architecture has been elaborated and loaded on the target platform, compatible task
configurations corresponding to the desired application functionalities must be generated so that they can
be dynamically loaded into the FPGA. This second phase of configuration can only be started once the
static architecture has been locked. Indeed, a modification of the static architecture is likely to impact the
format of the configuration register, so that configuration data is no longer aligned with the corresponding
units. A *.gco file is therefore mandatory to start this phase. All dynamic parameters of the processing
elements described in Chapter 5 can be configured. A different value can be assigned for each instruction
executed by the configuration controller.

The data flow editor GUI is subdivided into three parts (Figure 6.3):

• With the instruction editor, the instructions describing the sequence of contexts as explained in
section 5.3.6.2 can be entered. Each instruction is associated with its corresponding parameter and
transaction count. Additionally, a comment can be associated to the instruction in order to facilitate
the identification of the implemented functionality.

• For each execution instruction (EXE, EXED or SENSE), the configuration of each dynamically
reconfigurable component can be defined in the unit configuration panel. This includes processing
elements, address sequencers, sensors and the interconnect.

• An existing instruction or set of instructions with the corresponding unit configurations can be
imported via the library panel. The imported instructions can be placed at any position in the
current sequence. Reversely, a set of configured instructions can be exported to the library for use in
other tasks or applications based on the same architecture. Each library item is saved in a *.gcox
file for reuse among different designs. These files are associated with the architecture for which
they were developed and cannot be used with different architectures. Hence, an architecture with a
rich library content can easily be configured with an already preprogrammed task by importing the
corresponding sequence of instructions.

Once the set of instructions and unit configurations have been fixed, the corresponding bitstream can
be generated. For each execution instruction, the configuration vector (context) corresponding to all
elements is generated. Then, the tool automatically applies the difference-based reconfiguration process
described in Section 5.3.6.1 to remove redundant frames. The resulting context data is packed into the 32
bits format that can be saved in the cluster’s configuration memory. The binary data corresponding to
the instructions is generated as well. At last, the two sets of configuration data describing the task are

104 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

A
rc

h
it
e
c
tu

re
 E

d
it
o
r

a
n
d
 V

is
u
a
li
z
a
ti
o
n

W
S
N

 I
n
te

rf
a
c
e

D
y
n
a
m

ic
 C

o
n
fi
g
u
ra

ti
o
n
 E

d
it
o
r

Figure 6.3.: Screenshot of the (GECO)2 graphical user interface

6.2. Graphical configuration interface 105

written into a single binary file (see format in Figure 5.11), which can be tested and simulated with the
HDL model of the architecture or directly loaded into the external configuration memory of the platform.

6.2.4 Evaluation

The (GECO)2 framework was used to generate architectures and task configurations for multiple platforms
with different target technologies. The platforms for which the projects were successfully synthesized and
programmed include:

• HaLOEWEn - Microsemi IGLOO AGL1000V5 FPGA

• LPSIP - Microsemi IGLOO AGL1000V5 FPGA

• IGLOO development kit AGL-DEV-KIT - Microsemi IGLOO AGL600V2 FPGA

• Digilent Nexys 3 - Xilinx Spartan 6 XC6LX16 FPGA

• Digilent Atlys 2 - Xilinx Spartan 6 XC6LX45 FPGA

It must be noticed that the three latest platforms do not embed an MCU. In this case, the software is
running on a laptop connected to the board over a UART serial link. A special framework implemented in
Java has been implemented for this purpose. Although the design cannot run in an autonomous fashion
in these cases, the platform can be used for test and validation purposes, e.g. testing an interface to a new
sensor board. In addition, Xilinx FPGAs do not have sleep modes so that the device stays idle when no
task is processed. The implementation on these boards serve also as proof of concept that the design can
be ported to different FPGAs.

The list of HDL components currently available for (GECO)2 is summarized in Table 6.1. This table
does not include internal memory components such as blocks RAM and ROM. Most of the ADC interfaces
are based on the SPI protocol. The existing HDL files are then easily reusable for other chips based on the
same interface. Analog sensors such as accelerometers or microphones were used in combination with
these ADCs for the implementation of real-world applications [ERA13; Abd13; Man12b; Rie11; Gre14].
When no sensor is available, sensor data can be emulated using the virtual sensor interface. Data streams
stored on a computer are sent to the device over a serial interface in a Hardware-in-the-loop fashion.

A task library based on the architecture for DSP described in Figure 5.12a was intensively populated
using configuration data generated with the (GECO)2 application. A non-exhaustive list of functions
available in this library is given in Table 6.2. Most of the functions need to be adapted with application-
specific parameters such as length or constant values, but each elementary configuration gives a good
basis that only need a slight modification. The bitstream size is given for a configuration where the
task is used as standalone function. The size is given here as an indicator and might vary according to
application-specific customization of the task, e.g. constant address offsets in the memory. The given
number of instructions do not include EXIT instructions. If enough instructions are available, tasks can
be combined to form more complex functions within one configuration bitstream. Such a library allows
an easy composition of elementary tasks to build a more complex algorithm. For instance, a spectral
analysis of an input signal could be built by combining the tasks Collect for the acquisition of data, Cross
for the windowing operation, a set of FFTStep functions and the final Magnitude. Other transforms ore
signal processing tasks can be built by following a similar scheme. More advanced examples of such
compositions are given in the Chapter 7 related to applications.

6.2.5 Methodology for application-specific customization and programming of the architecture

In this section, a standard methodology is proposed to design an architecture and implement a given
algorithm with the proposed template. By following these successive design steps, all features of the

106 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

Type Name Comment

Sensing

ADC121S051 12-bit ADC (HaLOEWEn)
ADC128S022 8 channels 12-bit ADC (HaLOEWEn)
TI-ADS7866 12-bit ADC (LPSIP)

AD-7476 Two channels 12-bit ADC (PmodAD1)
ADXL362 3-axis 12-bit accelerometer (PmodACL2)

LIS3LV02DL 3-axis 12-bit accelerometer
ADC122S021 2 channels 12-bit ADC

IMU-3000 3-axis I2C gyroscope
Virtual sensor UART interface to PC

Memory

CY62126EV30 1 Mbit parallel SRAM (HaLOEWEn)
FM21L1660TG 2 Mbit parallel FRAM (HaLOEWEn)

ISSI IS62WV1288 1 Mbit parallel SRAM (LPSIP)
ST M95M01 1 Mbit serial EEPROM (LPSIP)
CY7C1041 4 Mbit parallel SRAM (AGL-DEV-KIT)
JS28F650 16 Mbit parallel Flash (AGL-DEV-KIT)
N25Q12 256 Mbit serial Flash (Atlys)

Communication
SPI slave SPI access (HaLOEWEn - LPSIP)

MCU parallel access 8-bit data line (HaLOEWEn)
UART Serial access

Operators

rMAC Integer multiply-and-accumulate
CORDIC Iterative extended CORDIC

ALU ALU tree
Reg Register file

S-Box Combinatorial S-Box
GF MAC Galois-Field MAC

DIV Iterative Divider
SQRT Iterative square root
COMP Comparator unit
MUL Iterative multiplier

Table 6.1.: Components available in the (GECO)2 HDL library

6.2. Graphical configuration interface 107

Name Function # Instr.
Bitstream size

(bits)
Collect Save sensor data in memory 1 112
Store Save data in external memory 1 112

LoadMCU Load data from the MCU 1 112
Add Add two vectors 1 176

Cross Cross product of two vectors 1 176
Dot Dot product of two vectors 1 176

MatrixMul Matrix Multiplication 3 336
ArithMean Arithmetic Mean of a vector 3 272

Var Variance of a vector 4 384
MS Mean Square of a vector 4 384
FIR FIR filter of a vector 2 240
IIR IIR filter of a vector 4 448

Wavelet Step of a Wavelet Transform 3 304
FFTStep Step of a Fourier Transform 3 400

DFT Discrete Fourier Transform 4 384
Twiddle Compute DFT coefficients 3 368
SQRT CORDIC square root 3 368

Magnitude CORDIC magnitude 1 176

Table 6.2.: List of elementary functions available in the (GECO)2 DSP library

architecture can be exploited. This methodology is referring at Figure 6.1 and Figure 6.4 to emphasize
the relationships between each phase.

1. Application profiling: the preliminary design task before the configuration of the architecture is
the identification of operation patterns in the algorithms being part of the application. Using a
validation model of the algorithm written in a high-level modeling language, e.g. Matlab, Java or C,
critical loops and repeated operation patterns must be identified. Independently from the amount of
sensor units, which directly depends on the application, these patterns will fix the nature of the PEs
available in each cluster. The size and the amount of memory blocks must be evaluated in a similar
fashion. As memory is very limited in Igloo FPGAs, external memory chips are usually required
to hold large data streams. Implementing several clusters is justified only if the computations in
each cluster can be well parallelized, i.e. the computations are independent from each other. It is
not always necessary and efficient to implement a full interconnect between PEs. It is generally
sufficient to have interconnect patterns following a typical flow from sensor to output, i.e. (a)
sensors to memory and PEs (b) memory to PEs (c) (optional) PEs between themselves (d) PEs to
memory and output (e) memory to output.

2. Algorithm implementation: Once an architecture is fixed, tasks can be mapped on it. A good basis
is the task library available for predefine architecture. If a new architecture has been elaborated,
basis tasks can easily be derived from the pre-existing ones. The algorithm implemented on the
core should be rewritten in such a way that a maximum number of linear patterns are executed.
The FFT algorithm can for example be rewritten with a perfect shuffle address pattern, which can
be mapped more easily on the address generators [Sto71]. This pattern is described in Appendix
B. In general the number of instructions within a task description should be minimized in order
to avoid a reconfiguration overhead. Loops and repetitions should be exploited to reduce the
amount of instructions. The difference-based reconfiguration can also be exploited by leaving the
configuration of unused PEs unchanged. A PE can thus be dynamically configured by anticipation or
left configured after its operation is terminated in order to save configuration time and memory.

108 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

High-level algorithm

description (Matlab, Java, C/C++)

LOOP from 0 to N

 f(x)

END

A B C

D
Identification of dominant functions

suitable with the available operators

-

Rewriting with standard functions

available in the tool library

Identification of linear address patterns

and dominant loops

Estimation of memory

requirements and

data resolution
Subdivision into elementary

data-flow graphs

Static:

 Amount and size of

memory elements

 System word size

Static:

 Interconnect organization

 Cluster specialization

Dynamic:

 Producer-Consumer

Transactions

Static:

 Operator selection

Dynamic:

 Address Generation

 Operator configuration

 Function reuse

Figure 6.4.: Methodology for architecture and algorithm design

6.2. Graphical configuration interface 109

6.3 Middleware for configuration management

In order to load and activate the configuration data saved in the external configuration memory of the
platform, the MCU has to sent a specific sequence of commands over the dedicated interface (see Section
4.3.3). If the flow of tasks implemented by the reconfigurable hardware accelerator is fixed, static calls
to the function sending these commands are sufficient to manage the dynamic reconfiguration of the
hardware accelerator. However, WSN applications often require a level of adaptability where such a static
approach is not scalable [EK09]. A higher level of control can be achieved for the hardware accelerator if
it can be called on-demand, according to user or applications requests.

6.3.1 Related work

Dynamic software reconfiguration in wireless sensor networks is a popular topic that has been often
addressed by extending the underlying operating system. The Maté framework was for example enabling
portable program migration by defining a virtual machine running on top of TinyOS [LC02]. Small
code fragments for the virtual machine named capsules can be dynamically transfered and activated on
any sensor node at runtime. The Agilla middleware for TinyOS proposes another programming model
where mobile software agents can be transfered between neighboring nodes [FRL09]. In Contiki, the
software can be modified at runtime by using the dynamic linking functionality integrated in the core of
the operating system [Dun+06b].

For dynamic hardware reconfiguration, the management of bitstreams is in general managed by the op-
eration system as well, e.g. the reconfiguration agent in the MORPHEUS framework [TB09]. In [Ull+04],
FPGA slots of a partially reconfigurable system are dynamically reconfigured according to commands sent
over a CAN bus. Issues such as resource allocation and context saving are addressed. However, the nature
and the amount of partially reconfigurable bitstreams available in the local configuration memory cannot
be modified at runtime. The remote access to configuration data is investigated in [Ind+03] where an
API is develop to load bitstreams over an Internet protocol link.

When considering hardware reconfiguration in WSNs, the Cookie sensor node integrates a layer
for reconfiguration control within its software stack [Kra+11]. However, the work focuses only on
the reconfiguration process itself and not on the dynamic management of multiple bitstreams within
the network. In particular, the authors highlighted the particularly high costs of transmitting FPGA
configuration bitstreams over a low-power wireless link, even when compression algorithms are used.
Hinkelmann handled the top-level reconfiguration of its coarse-grained reconfigurable function unit
by introducing a dedicated processor instruction [Hin11]. Calling this instruction was triggering the
reconfiguration process, which could run in the background of the normal processor operation. The
loading and activation of configuration bitstreams that were not available at compile time was not
considered. In this case, this feature would require an additional software reconfiguration, so that the
global application stays always static. In [HHP13], the authors integrate a so-called Flexible Radio Kernel
within the application stack of wireless platform in order to facilitate runtime reconfiguration of the
protocol functionalities. Tasks are described using Waveforms, which are a combination of predefined
functions available in a library. The software kernel is then able to select and configure on the hardware
at runtime the different functions required by the waveform.

The need for a unified component integrator which could arbitrarily load and activate any type of
hardware configuration on a sensor node during runtime has been emphasized in [EK09] but no solution
was introduced.

6.3.2 General overview

Using the presented reconfigurable architecture, the amount of configuration data necessary to describe
a task is considerably reduced when compared to an FPGA bitstream. This advantage can be exploited

110 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

to handle the transfer of configuration data within the network in a lightweight fashion. Particularities
of WSN operating systems and software dynamic reconfiguration schemes can be reused for abstracting
hardware dynamic reconfiguration on the sensor node. However, the presented framework stays as
generic as possible so that it can be applied to other types of dynamically reconfigurable systems, e.g. for
partially reconfigurable FPGA designs.

For dynamically reconfigurable systems, two scenarios are distinguished to decide when and what to
reconfigure:

• The reconfiguration process follows a static schedule. It is either fixed by the functionality, e.g. a
hardware task is started after a data packet has been received, or it is delimited in time, e.g. the
hardware task is started at regular time intervals.

• Reconfiguration is requested on-demand by another layer of the application stack. The hardware
might be busy running another task while the request is incoming and must react accordingly.

In order to cover these situations in a uniform environment, an event-based programming model is
adopted to control the reconfiguration process. Each event can be generated by an external component of
the system or it can be generated internally, in response to an imposed scheduling strategy. This approach
gives an additional level of flexibility to the system where both external and internal reconfiguration
requests can occur. It also offers a global framework supporting multiple runtime reconfiguration policies
which can be dynamically and remotely tuned.

An event-based middleware abstracting the reconfiguration process has been then implemented as an
intermediate software agent between the application and the reconfigurable hardware as illustrated by
Figure 6.5. Unlike compiler-based approaches, the control of dynamic reconfiguration is not made entirely
transparent to the user. Reconfiguration must be explicitly requested by using the middleware API and
specific scheduling rules.

The rest of this section is organized as follows: in section 6.3.3, the different elements of the middleware
framework are shortly introduced. The strategy to dynamically handle different types of events is described
in section 6.3.4 while the command-based API is explained in section 6.3.5. Usage examples are finally
given in section 6.3.7.

6.3.3 Middleware components

The middleware is divided in several sub-components handling separate parts of the complete reconfigu-
ration flow as follows:

• The remote interface is running on a remote device that can be directly accessed by the user. It
generates the commands describing the reconfiguration rules for a specific task. The configuration
database indexes and stores all configuration files available to the reconfigurable device.

• The gateway interprets the reconfiguration instructions sent over the network and dispatch them to
the middleware kernel or the event handler.

• The middleware kernel manages individual reconfiguration requests and a global table indexing
all configuration bitstreams currently available on the platform. It applies the instructions associated
with each reconfiguration event.

• The event handler monitors external events which trigger reconfigurations as specified by the
commands sent by the user. It also handles internal events such as timing or control events. This
component is further detailed in section 6.3.4.

• The resource management unit select the most appropriate target to implement a task when
multiple options are available. For example, a software implementation can be preferred to a
hardware reconfiguration if the hardware device is busy.

6.3. Middleware for configuration management 111

Application

Layer

Configuration
Database

Remote
Interface

User input / Commands

Network

Middleware

Gateway

Kernel

Event-HandlerC
o
n
fi
g
u
ra

ti
o
n
 M

a
n
a
g
e
m

e
n
t Compression

Cryptography

Error Checking

Storage

Operating

System

Hardware

Abstraction Layer
Configurator

Hardware Reconfigurable SlotReconfigurable SlotReconfigurable SlotConfiguration
Memory

Resource
Management

Sensor
Node

Base
Station

Figure 6.5.: Block diagram of the middleware components

• The bitstream management unit combines a set of services guaranteeing a secure, error-free and
resource-friendly handling of configuration data. These services are particularly important when
considering remote transfer of configuration data as the data is more likely to be damaged or
altered during the transfer. The software managing the organization of the configuration memory is
included here. Some of these components are not mandatory for the operation of the middleware
(marked with a dotted line in Figure 6.5). Similar services are included in the existing FPGA
programming tools, e.g. AES decryption and CRC check in Igloo FPGAs [Igla] or Lempel-Ziv-Welch
(LZW) compression in [Ull+04].

• The configurator module implements the actual dynamic reconfiguration. It controls the loading
and activation of the configuration data (bitstream) via one of the available reconfiguration methods,
e.g. access to the internal configuration access port (ICAP) or JTAG port, depending on the target
platform. In the case of the overlay architecture introduced in Chapter 5, this function refers to
the sequence of commands sent by the MCU to activate the loading of configuration data from the
external configuration memory.

6.3.4 Event-based reconfiguration

Except in the case of system updates, the reconfiguration process is not explicitly initiated by the user but
it is started only if a specific set of conditions is fulfilled. Meeting these conditions will then trigger an
event, which will be processed by the event-handler module accordingly. Three classes of events have
been distinguished:

• External: Reconfiguration is triggered by an event reported by higher application layers. In this
case, the evaluation of the system conditions triggering the event is not performed by the platform
itself. New types of external events can be integrated into the system while running.

112 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

ID Type Value ConfigID Force Queue SaveState

1 Time 500 ms 1 False True False

2 Intern INT1 2 True False True

3 Extern EXT1 2 False True False

CONFIG SLOTA

WITH 2
WHEN EXT1
QUEUE

ID Partition CacheAddr

1 SlotA #000000

2 SlotA #010A73

Module
Header

Bitstream

Figure 6.6.: Event and configuration tables

• Internal: Signal from lower layers (hardware, operating system) are indicating a need for reconfig-
uration. This class includes time events, which schedule reconfiguration according to an underlying
timer. The different types of internal events is fixed at compile time and cannot be extended at
runtime.

• Direct: Reconfiguration is requested independently from the state of the system for an immediate
schedule (system update).

In order to index the events and associate them with reconfiguration instructions, the event-handler
is using a table as illustrated by Figure 6.6. Each event is associated with an ID, the identifier of the
corresponding configuration data and a set of flags defining reconfiguration rules. When the event occurs,
its ID is looked up in the table and the middleware kernel is requested to configure the hardware with the
corresponding rules. In order to avoid conflicts, an event cannot appear several times in the table but the
same configuration data can be associated with different events. Only external and internal events are
stored in the table. Direct events occur only once and are directly processed by the middleware kernel.
The reconfiguration instructions or rules allow defining an individual reconfiguration policy for each
event and module. Current parameters allow forcing reconfiguration, even if a previous task has not been
completed. This implies that the operation of the hardware is stopped and that the new configuration
data is directly loaded and activated. The state of the previous configuration can be previously saved at
the cost of additional configuration delay. At last, the configuration can be queued if the task can not be
loaded directly, e.g. because the hardware is busy or the configuration data is not available. A task which
is neither queued nor forced and for which the hardware can not be reconfigured immediately will be
dropped.

The event table is closely coupled to another table indexing the available configuration data, which is
managed by the middleware kernel. This table lists all currently registered configuration bitstreams and
their addresses in the configuration memory.

The content of both tables can be modified at runtime through the middleware API. For instance, new
events can be registered or out-of-date associations can be removed.

6.3. Middleware for configuration management 113

Command Function
ADD Register a bitstream in the configuration table
REM Remove a bitstream from the configuration table
MOD Modifiy an entry in the configuration table
CONFIG Register a reconfiguration process in the event table
CANCEL Remove a reconfiguration process in the event table
EVENT Trigger and external event
SET Transfer data to the hardware
GET Read data from the hardware

Table 6.3.: Summary of the middleware commands

6.3.5 Middleware commands

The middleware offers an interface based on commands to interact with the kernel and the event handler.
A syntax has been defined to describe all types of interactions with the middleware. This approach is
a simple and readable way to remotely modify the behavior of the system at runtime without need for
software reconfiguration, which is adopted in most of the currently existing approaches.

Commands written by the user are coded and encapsulated in messages passed to the middleware API.
Commands are built as a succession of keywords and parameters. The main commands functionalities
are summarized in table 6.3. The ADD, REM and MOD commands are used for basic interaction with the
configuration table managed by the middleware kernel. The CONFIG and CANCEL are used for the event
table management. Commands can also be directly coded by the application internally so that nodes
within a network can send commands between themselves.

The syntax of an ADD command is given in the listings 6.3. A similar syntax can be used for REM and MOD.
Each configuration bitstream must be associated with a unique identifier and a location in the configuration
memory. For systems with multiple reconfigurable partitions, e.g. a slotted partially reconfigurable system
or the multi-clustered architecture as described in Chapter 5, the partition compatible with the bitstream
must be specified.

ADD <module name>
LOC <address>
ID <value>
FOR <recon f i gu rab l e p a r t i t i o n >
[OPTION <value> , . . .]

Listing 6.3: Syntax of the ADD command

The command can be optionally extended with the option LOCAL to indicate that the bitstream must be
saved in the platform configuration memory. If this option is not specified, the middleware kernel will
retrieve the configuration information from the remote server over the network interface every time the
task must be configured. This option is useful if a bitstream is rarely used and the memory available for
configuration data is limited.

For the management of the event table, the syntax of the CONFIG command is given in the listings
6.4. It is associated with a single task or a sequence of tasks which should be executed on the hardware.
If no further options are entered, the command is interpreted as a direct event and the corresponding
bitstream is immediately loaded. Otherwise, the event triggering the reconfiguration of the sequence of
tasks is specified after the WHEN keyword. Timed events can be specified as well using this keyword. The
reconfiguration rules (force, queue, save state) are given as options of the command. When this command
is received by the middleware, it will create a novel entry in the event table. If the event was already
registered, the entry will be replaced.

114 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

CONFIG <module_0> [, . . . , < module_i >, . . .]
[WHEN <event >]
[OPTION <value> , . . .]

Listing 6.4: Syntax of the CONFIG command

An entry of the event table can be deleted by using the CANCEL command followed by the value of
the event. The EVENT command is used to trigger an external event within the system. If the event is
associated with configuration data in the event table, the reconfiguration will be started according to the
specified rules. Otherwise, the event is ignored.

At last, the GET and SET command are used for data transfer between a remote location and the target
hardware. This commands are useful to transfer custom data to the hardware accelerator before a task is
implemented and the results accordingly. The commands take the size and the location of the data in the
target device memory as argument.

SET [data]
FORMAT <format>
LOC <address>

Listing 6.5: Syntax of the SET command

6.3.6 Implementation

The middleware framework was implemented for the HaLOEWEn platform and the coarse-grained overlay
architecture using the event management features already available in the Contiki operating system
[DGV04]. Thus, the event handler process can easily be called by posting dedicated events as illustrated
by the listings 6.6. Support for timed events is enabled by the Contiki internal timers. This feature largely
simplifies the implementation of the rest of the middleware, which mainly consists in the management of
the tables and the external interfaces.

#include " c o n t i k i . h "

/* Event Handler P r o c e s s */
PROCESS(ev_hd l r_proces s , " Event Handler Process ") ;
AUTOSTART_PROCESSES(& ev t_hd l r_p roce s s) ;

PROCESS_THREAD(ev t_hd l r_p roce s s , ev , data){
PROCESS_BEGIN () ;

* Event t a b l e and i n t e r n a l events i n i t i a l i z a t i o n *\
. . .

while (t rue) {
PROCESS_WAIT_EVENT () ;
ta sk = lookup_event (ev) ;
i f (ta sk != n u l l){

hw_reconfigure (ta sk) ;
}
. . .

}
PROCESS_END () ;
}

Listing 6.6: Event management in Contiki

6.3. Middleware for configuration management 115

The Configurator component is implementing the transfer of the reconfiguration commands and
reconfiguration data to the FPGA interface. If the external configuration memory is available, i.e. the
FRAM memory module is plugged, the data is stored in this chip.

Wireless communication is implemented with the Rime networking stack available in the Contiki
operating system. The mesh networking primitive is used to exchange configuration data or commands
between any nodes of the network. All routing and network maintenance routines are handled by the
Rime stack autonomously.

Without taking the optional bitstream management services into account, the middleware has a code
footprint of 7.4 kBytes, which represents about 30 % of the Flash memory available for a Contiki
application running on HaLOEWEn.

The remote server has been implemented as a part of the (GECO)2 application. For instance, when a
wireless sensor network is deployed and connected to the (GECO)2 application, a list of available nodes is
displayed in the GUI (see Figure 6.3). The interface allows sending configuration commands and events
to individual nodes. In particular the loading and activation of a configuration bitstream on the sensor
node can be fully controlled from this interface.

The transfer costs in terms of time and wireless communication energy were estimated for a single-
hop scenario. A configuration bitstream with variable size is sent from a central node connected to
the (GECO)2 tool to the target platform by issuing an ADD command. The energy and transfer time is
estimated until the bitstream transfer is completed, not including the transfer in the configuration memory.
The Contiki-MAC protocol with a channel check rate of 8 Hz and a maximum useful payload of 100 bytes
per packet has been used for this experiment. The resulting curves are shown in Figure 6.7.

When compared to [Kra+11] or [HWH12] where remote reconfiguration of a complete FPGA is
implemented, the low size of the configuration bitstream makes the wireless transfer a significantly less
costly operation. A configuration bitstream can be sent within one second with the presented framework,
whereas transfer duration up to several minutes are reported in the related works. With this low size, it
becomes possible to store and manage multiple configuration bitstreams on the node itself.

The middleware presents however some limitations in terms of latency. Indeed, it has been estimated
that a delay going up to 15 milliseconds is introduced between the occurrence of an event and the actual
start of the reconfiguration process. This delay is due to the processing delays of the event handler and
the middleware kernel as well as the internal mechanisms of the operating system, which does not give
immediate priority to the event handler process. The middleware is thus not suitable for reconfiguration
with real-time constraints. Nevertheless, this latency is specific to the target MCU and operating system
and may be reduced on different platforms. In addition, the framework is targeting applications for
continuous monitoring so that real-time constraints are rarely required.

6.3.7 Application examples

A few command examples are given in this section to illustrate the potential of the middleware to configure
hardware tasks on the sensor node.

• On-demand computation: in wireless sensor networks with heterogeneous platforms, it is often
beneficial to reallocate the computation of a function on the most powerful nodes. This approach
is for instance adopted in [Rei11] where a protocol based on lightweight Remote Procedure
Calls (RPC) is implemented. Here, a custom hardware accelerator can be called on the sen-
sor node by sending direct reconfiguration events. Data must be preliminary loaded with SET,
before the CONFIG is sent. Results are eventually read by issuing a GET command. For exam-
ple, the localization application introduced in part 4.3.4.2 can be called using the commands

116 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

T
ra

n
s
fe

r
ti
m

e
 (

m
s
)

Size of configuration data (Bytes)

0

2

4

6

8

10

12

0 200 400 600 800 1000

E
n
e
rg

y
 c

o
s
ts

 f
o
r

w
ir
e
le

s
s

tr
a
n
s
m

is
s
io

n
(m

W
s
)

Size of configuration data (Bytes)

Figure 6.7.: Duration and energy costs of configuration data transmission

6.3. Middleware for configuration management 117

from the listings 6.7. Real data has been replaced by the label dtoa_data for more readability.

SET dtoa_data FORMAT i n t16_ t LOC f i f o
CONFIG l o c a l i z a t i o n
GET 3 FORMAT i n t16_ t LOC f i f o

Listing 6.7: Commands for remote function call

• Computation scheduling: the middleware allows scheduling the execution of a task at regu-
lar time intervals. For example, a continuously running machine whose condition is monito-
red by vibration analysis do not need to be constantly examined as its degradation is a rather
slow process. The analysis, for example using wavelet analysis, can be scheduled every five
minutes with the command from listing 6.8. Later on, the algorithm can be rescheduled
with different time intervals or with different algorithms if the operation of the machine is
more critical. A similar example is studied in more details in the application Chapter 8.

CONFIG wave l e t _ana l y s i s WHEN @300s QUEUE

Listing 6.8: Command for task scheduling

• Context-aware computation: it is likely that different sensor data processing algorithms are
required when environmental conditions are changing. A wearable activity recognition body area
network may for example be programmed differently according to the location of the user. When
location changes are coded to generate events, the feature extraction algorithms necessary to classify
the user activity can be executed according to the commands given in the listings 6.9.

CONFIG f ea tureSetA WHEN evtLocA QUEUE
CONFIG f ea tureSe tB WHEN evtLocB QUEUE
CONFIG f ea tureSetC WHEN evtLocC QUEUE

Listing 6.9: Commands for context-aware computation

6.4 Conclusion

Taking profit of the hardware accelerator embedded on the wireless sensor node implies a significant
programming effort. Designing custom FPGA projects and the corresponding software drivers may
consume precious time. Including the capability for dynamic reconfiguration introduces a further level
of complexity preventing rapid deployments. The tools proposed in this chapter bypass these issues by
providing an universal framework to handle the hardware accelerator at several level of abstractions.
The template FPGA overlay introduced in Chapter 5 can be easily parameterized through an accessible
graphical user interface. Generated HDL files can be used for implementation on devices from multiple
FPGA vendors. At the next level, configuration data compatible with the generated architecture can be
created using the same tool. A library of preprogrammed tasks encourages the composition of elementary
tasks to built complex algorithms. Finally, this configuration data can be freely loaded and scheduled
on the sensor node hardware at runtime thanks to a lightweight middleware service implemented on
top of the mote operating system. Dynamic reconfiguration can be thus exploited at all levels using
programming and scheduling within a single tool.

In addition to the genericity required by the complete design stack, the tools introduced in this chapter
contribute to improve the accessibility of the hardware accelerator. This aspect is often seen as a major
obstacle when dealing with FPGAs. Simplified programming models and complete toolchains are the
essence of popular smart sensing and actuating platforms such as Arduino [Ard]. Ranging from the
hardware PCB design to the integrated development environment, internal implementation details of the

118 6. Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators

Architecture Design

Design Step Tool

(GECO)²

FPGA Implementation
and Programming

HDL Files

Task Design and
Implementation

*.gco Architecture
Description

(GECO)²

Task Programming

*.gcox Task
Description

Event-based
Middleware

Figure 6.8.: Tool-flow for generating and running hardware reconfigurable tasks on the sensor node

microcontroller-centric platform are abstracted to allow the user focusing on the application functionality.
A similar approach was applied here to a programmable hardware architecture. Even if the different
abstraction levels have an impact on the global performance, energy-efficiency and flexibility of the
platform, the improved programmability makes the approach more usable in practice. The variety of
applications applying this framework and developed on the basis of student projects [Abd13; Gre14;
Man12b] show that the design environment has also a potential for educational purposes3. More
importantly, the complete set of hardware components, template architecture and programming tools can
be applied to wireless sensor network deployments with industrial relevance. The next part of this thesis
will give an overview of two of these applications.

3 The publication [PG14b] discusses this aspect in details

6.4. Conclusion 119

Part III.
Application of Wireless
Sensor Networks
Strengthened with
Reconfigurable Hardware to
Condition Monitoring
Systems

121

7 Condition Monitoring of a Shock Absorber
for Predictive Maintenance

Maintenance on Demand: Designed in a very
modular and flexible way

B. Favre, “Maintenance on Demand”. In:
Transport, 2012, Vol. 29

Contents
6.1 General overview . 100

6.2 Graphical configuration interface . 101

6.2.1 Related work . 101

6.2.2 Architecture editor . 102

6.2.3 Data flow editor . 104

6.2.4 Evaluation . 106

6.2.5 Methodology for application-specific customization and programming of the archi-
tecture . 106

6.3 Middleware for configuration management . 110

6.3.1 Related work . 110

6.3.2 General overview . 110

6.3.3 Middleware components . 111

6.3.4 Event-based reconfiguration . 112

6.3.5 Middleware commands . 114

6.3.6 Implementation . 115

6.3.7 Application examples . 116

6.4 Conclusion . 118

Among the vast range of applications enabled by WSNs, a large number could be found where the
complete set of concepts and tools implementing reconfigurable hardware acceleration could have a big
potential. Condition monitoring is probably one of the most relevant one because of its intrinsic needs
for reliable, accurate and cost-effective processing solutions [Kos+10; Ram+07; SSS10; LL06; Kri+05].
The next two chapters describe the development of two condition monitoring applications using the
framework introduced in the previous part of this thesis. These applications are used to demonstrate the
flexibility of the approach and its suitability for applications with industrial relevance.

Currently, many concepts for condition monitoring are being developed and validated for the detection
and diagnosis of premature damage in mechanical systems and for the prevention of hazardous failures
in the case of damage. These methods, indicated as health monitoring methods, aim at controlling and
reducing the life-cycle costs in safety-critical components of vehicles (such as wheels, brakes, power trains)
[Mic12; MD08], civil structures (such as cable-stayed bridges) [LL06; SSS10] or machinery (such as

123

Sensor Data
Acquisition

(ADC)

Preprocessing
(Filtering

-
 Downsampling)

Feature
Extraction

Sensor fault
identification

Feature
Processing
Data Fusion

Classification
-

Pattern
Recognition

Actuation

Wireless
Transmission

-
Log

Encryption

Figure 7.1.: Typical flowchart of a distributed condition monitoring application running on a sensor node
(inspired from [Kul10])

electrical motors, industrial robot arm) [Kri+05; HB12]. Improvement of the life-cycle costs is achieved
by reducing product maintenance costs and improving product availability and reliability.

Even if most of the critical equipment is already equipped with wired monitoring systems, there is still
a large potential for WSNs. Indeed, in a large-scale context, WSNs present many inherent advantages
such as reduced cabling costs and ease of installation. Moreover, WSNs enable continuous monitoring,
which is not supported by portable monitoring equipment often used as an alternative to wired systems
[Mic12]. In an industrial environment, a high level of reliability is expected for the WSN. Node failures or
erroneous measurements cannot be afforded, so that dependable monitoring systems able to implement
complex functions in a flexible manner must be introduced. Figure 7.1 shows the data processing flow of
a typical distributed condition monitoring application running a sensor node [Kul10]. The complexity
and the computational burden of the complete flow makes traditional microcontroller-based wireless
sensor nodes no longer suitable. The following results aim to show that a sensor with runtime hardware
reconfigurability fits better to these requirements1.

7.1 Concept

7.1.1 General overview

In the Maintenance on Demand project (MoDe) [Mod], condition monitoring concepts are combined
with wireless communication and advanced data management to enable a complete chain of services
optimizing the maintenance of a truck fleet. Sensor nodes deployed within the vehicle are collecting data
from on-board sensors, performing a distributed analysis and delivering health indicators to the truck
central control unit. Information is further forwarded to the truck company back office for prediction
of the remaining useful lifetime of damaged or aged structures and optimal scheduling of maintenance
operations. The route and the maintenance schedule of the vehicle is thus dynamically adapted to reduce
risks of accidents, downtime of the vehicle and environmental pollution.

Three parts of the truck were selected for condition monitoring, i.e the shock absorbers, the fuel injector
system and the oil system. Each part is equipped with appropriate sensors and processing units, which
1 The results of this section are based on the articles [Bei+14] and [Fav12] and on the project internal reports [Els10;

Jan+10; Els12; Pee12; Pee11]

124 7. Condition Monitoring of a Shock Absorber for Predictive Maintenance

Fuel
Injector Oil

System

Damper

Sensor

Wireless node

Wireless link

GPSServer

Estimation of remaining
useful lifetime and

maintenance policies

Figure 7.2.: Overview of the MoDe condition monitoring infrastructure [Bei12]

are forming a WSN within the vehicle. A general overview of the WSN concept in the MoDe project is
shown in Figure 7.2.

7.1.2 Condition monitoring of the damping system

With regard to computationally intensive data processing, the most relevant test case is the damping
system. As it requires the simultaneous and continuous analysis of several data streams from accelerometer
sensors, the distributed computing approach enabled by the sensor node architecture proposed in this
thesis is very appropriate. Furthermore, the wireless communication protocol selected for the in-vehicle
sensor network has a very low throughput [Iis]. Packets with a limited payload can only be sent at a rate
below 10 Hz. Edge-processing is therefore mandatory in order to transfer the condition indicators to the
truck central control unit. The rest of this section will then focus on the infrastructure deployed for this
part.

Three different health monitoring methods have been considered [Pee12]. The first method uses the
transmissibility as an indicator of the damper condition. Transmissibility is a quantity widely used in
vibration engineering and is an indicator of the relative vibration levels between two points. Figure 7.3b
shows a model of a vehicle suspension system with two degrees of freedom (X1 represents the vertical
displacement of the vehicle body and X2 represents the displacement at the wheel hub). The symbols in
Figure 7.3a refer to the sprung mass [MS] (portion of the vehicle mass supported above the suspension),
the unsprung mass [MU] (includes the masses associated to the braking system, tire, wheel rim, etc.), the
spring stiffness [KS], the radial stiffness of the tire [KT], the damping ratio of the shock absorber [CD]
and the road excitation [ξ].

The transmissibility T12 between the points 1 and 2 depends on the spring stiffness KS, the vehicle
mass MS (which depends on the vehicle loading) and the shock absorber damping ratio CD [Pee11]. As
KS stays constant during the vehicle lifetime and MS can be estimated before the start of each vehicle,
the transmissibility becomes a function of the damping ratio. As this value is changing with aging or
malfunction, the transmissibility can be used as a damage indicator of the damping system.

7.1. Concept 125

Ms

MU

CD

X1

X2

Ks

KT

ξ

(a) Damper model

Continental accelerometer
(suspension strut mount)

Continental accelerometer
(wheel hub)

(b) Positions of the sensors on the damper

Figure 7.3.: Concept for transmissibility measurement

The transmissibility values are computed in the frequency domain. The transmissibility function can
be seen as a frequency response function between the input (acceleration at the wheel hub) and output
(acceleration at the strut mount) signals acquired during the normal operation of the vehicle. Computing
this frequency response function requires an accurate and reliable processing of the time series. First, the
accelerometer data needs to be filtered to remove any DC component. This is typically done using an IIR
filter. The data can be then re-sampled at a lower frequency in order to reduce the amount of data and
reduce the signal noise. The power spectra of the signals are then required. A popular non-parametric
method to estimate a power spectrum is known as the Welch’s modified periodogram [Pee+07]. It first
relies on the DFT of the input sequences, which can be written for a sequence y of length N as:

Y (ω) =
N−1
∑

k=0

ykwke
−2πiωk

N (7.1)

where wk is a windowing function, e.g. wk = 0.5
�

1− cos
�

2πk
N−1

��

for the Hanning window. The DFTs of
P small overlapping frames of the complete time series are computed. Then, the power spectrum, also
denoted auto power spectrum, is evaluated over each time frame with the formula:

S(j)y y(ω) =
1

∑N−1
k=0 |wk|

2
Y (ω)Y ∗(ω). (7.2)

When the power spectra of all time blocks are available, the global power spectrum of the time series can
be computed as their average:

Sy y(ω) =
1
P

P−1
∑

j=0

S(j)y y(ω). (7.3)

This averaging method tends to reduce the noise in the spectrum, which is a desirable effect. Similarly,
Welch’s method is used to compute the cross-spectrum of the two input sequences. The cross-spectrum of
the sequences x and y over a time frame j is defined as:

S(j)x y(ω) =
1

∑N−1
k=0 |wk|

2
X (ω)Y ∗(ω). (7.4)

126 7. Condition Monitoring of a Shock Absorber for Predictive Maintenance

The frequency response of the system can finally be computed using an H1 estimator as:

H(ω) =
Sx y (ω)

Sx x (ω)
(7.5)

The transmissibility T12 of the damping system is then estimated with:

T12(ω) =
S12 (ω)
S11 (ω)

. (7.6)

A test drive on a passenger car with and without a damaged damper has been performed in order
to test the reliability of the target sensors and algorithms. Continental BSZ04D low-cost automotive
accelerometers were compared with laboratory sensors in order to validate their ability to sense damaged
dampers. A picture of the LPSIP hardware with the Continental accelerometers is shown in Figure 7.7.
Results of the transmissibility computation during this test are depicted in Figure 7.4. It can be clearly
observed that a damaged suspension will result in a higher transmissibility. This difference was observed
with both Continental and laboratory accelerometers. The transmissibility function can thus be used as a
reliable estimator for the condition monitoring of the vehicle damping system. However, it can only be
used in conjunction with other indicators such as the vehicle mass and the road profile. These aspects
were investigated in other work packages of the project related to the estimation of the remaining useful
lifetime and maintenance strategies [Mod].

A second method investigated to monitor the condition of the shock absorber is the random-decrement
technique [Bei+14]. Here, the acquired sensor data time series are averaged when a given trigger
condition is fulfilled, e.g. a threshold value is crossed. The result of this averaging process is denoted as
the random decrement signature. After a large number of averaging processes, the random part of the
signature will tend to disappear, leaving only data which can be interpreted as the response of the system
to the conditions defined by the trigger. The information contained in this signature can thus be used to
analyze the system’s behavior. Although differences could be observed between the random-decrement
signature of a damaged and undamaged shock absorber, they were difficult to assert. In particular, tests
validating the approach were performed with laboratory sensors but COTS sensors will tend to make the
difference very difficult to detect. For this reason, this technique has not been retained for implementation
on the platform [Pee12].

The third technique is based on the computation of correlation factors between the acceleration at the
wheels and the acceleration at the center of gravity of the vehicle. These factors are defined as [MD08]:

Kx y =

∑N
i=1 x(i)y(i)

∑N
i=1 x(i)x(i)

(7.7)

where x is the vertical acceleration at the center of gravity of the vehicle and y is the vertical acceleration
at the wheels level. Simulation and tests have shown that this method is reliable to detect damaged shock
absorbers. Over time, the correlation coefficient of a damaged damping system will tend towards a value
close to zero at a slower rate than undamaged systems. Figure 7.5 shows how the coefficient tends rapidly
towards a constant value and stays constant. These graphs were generated using real measurements on a
vehicle with undamaged dampers.

This method has however the disadvantage that the computation of the correlation coefficient requires
the acceleration time series at two different locations of the vehicle (wheel and center of gravity). As
the sensor network protocol does not support the transfer of large data streams at high rate, this method
could practically be applied only if a wired connection is available between the sensor located at the
center of gravity and the wheel sensors. This setup would however cancel the inherent advantages of a
wireless network. In addition, even if the data transfer would be possible, a high level of synchronization
is required between nodes, so that the correlation coefficient can be estimated in a reliable way. As the

7.1. Concept 127

0 2 4 6 8 10 12 14 16 18

0.5

1

1.5

2

Frequency-[Hz]

T
ra

n
sm

is
si

b
ili

ty

0

front-left suspension
rear-left suspension
rear-right suspension
front-right suspension

(a) Undamaged shock absorbers

0 2 4 6 8 10 12 14 16 18

0.5

1

1.5

2

2.5

Frequency-[Hz]

T
ra

n
sm

is
si

b
ili

ty

0-

front-left-suspension-
rear-left-suspension-

rear-right-suspension-
front-right-suspension-

(b) Rear-left timeworn shock absorber

Figure 7.4.: Transmissibility function of the damping system during the test drive [Bei+14]

128 7. Condition Monitoring of a Shock Absorber for Predictive Maintenance

implementation is straightforward, the algorithm has been ported on the hardware accelerator for the
sake of feasibility analysis.

In order to validate this method, a test drive with a passenger car equipped with accelerometers has
been realized on November 28th 2012 at the Fraunhofer LBF institute in Darmstadt. Analog Devices
ADW22035Z MEMS sensors were positioned at each damper in order to measure vertical acceleration. An
Analog Devices ADXL325 3-axis accelerometer was positioned at the center of gravity of the car. Three
LPSIP nodes were deployed to respectively measure acceleration at the front dampers (two sensors), rear
dampers (two sensors) and center of gravity (three sensors). The route of the car for the test was a typical
inner city curse of five kilometers. As a damper could not be easily replaced by timeworn equipment, two
test drives were performed with different loading and tire pressure. Figure 7.5 shows the times series and
the running correlation coefficients for a test drive realized with three passengers and a tire pressure of
1.8 bars. A second test was performed with five passengers and a tire pressure of 2.4 bars, but the results
showed that these modifications had no or a very little impact on the correlation coefficient [Pee12].

During the tests, the correlation coefficients could not be directly computed on the sensor nodes as the
accelerometer at the vehicle’s center of gravity was separated from other sensors. The computation of the
correlation coefficients on the FPGA was nevertheless tested offline by virtually injecting the sensor data
to the device.

7.2 Motivation for on-demand reconfiguration

In the MoDe project, dynamic reconfiguration was mainly motivated by the possibility to remotely update
the firmware. Indeed, after deployment of the sensor nodes in a fleet of vehicles, a manual reprogramming
of each board would cost a significant amount of time. A framework to update both software and hardware
has been then developed to enable a seamless remote modification of the core functionalities of the node
[Els12].

In addition, the hardware accelerator can also be dynamically reconfigured according to environmental
conditions. As some of the algorithms depend on the mass of the vehicle or on the road profile, other
algorithms can be used if these parameters are not available or if they perform better under specific
circumstances.

7.3 Implementation and results

The condition monitoring algorithms were implemented on the LPSIP platform, which was specifically
developed in the frame of this project. The radio module was implementing the operating system
and communication protocol developed by the WSN research group from the Fraunhofer Institute for
Integrated Circuits [Iis]. The profile of the algorithms described in the previous section suggest a high
demand for DSP operations. The reconfigurable FPGA overlay implemented with the help of the (GECO)2

tool on top of the IGLOO FPGA is then very close to the one presented in Figure 5.12a. A notable change
is the replacement of the CORDIC unit by an iterative divider. Indeed, division is required for both the
computation of the transmissibility function and the correlation coefficient, while CORDIC would only
be required for the initialization of the FFT algorithm (computation of twiddle factors). It has been
assumed that these factors could be computed by the microcontroller and transfered to the FPGA during
an initialization phase. Four sensor interfaces are available as the LPSIP sensor board is equipped with
four ADCs. A 6.78 MHz clock signal generated on the sensor module of the LPSIP is used to clock both
the FPGA and the ADCs. No internal ring oscillator is used in this design. A summary of the resource
consumption of this architecture were included in Table 7.1.

Two main tasks have been programmed for the architecture: the computation of the transmissibility
function as described in the previous section and the computation of the correlation factor. Both tasks
are based on running computation, i.e. the FPGA is constantly sampling and updating the result. For the
computation of the transmissibility, the data from the two accelerometers is first sampled at 200 Hz, the

7.2. Motivation for on-demand reconfiguration 129

0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

A
cc

el
er

at
io

n
(g

)

Front left
Front right

(a) Time series

0 20 40 60 80 100 120
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

C
or

re
la

tio
n

co
ef

fic
ie

nt

Front left
Front right
Rear left
Rear right

(b) Running correlation coefficient

Figure 7.5.: Test measurements on a passenger vehicle

Cells Blocks memory Max. Frequency Size of context
19,784 (80.5 %) 27 (81.2 %) 14.9 MHz 272 bits

Table 7.1.: Resource consumption of the FPGA overlay used for damper condition monitoring

130 7. Condition Monitoring of a Shock Absorber for Predictive Maintenance

4x 12-bit ADC

FIFO

SRAM 1Mbit
External Interface

MCU Interface
(SPI)

Interconnect

Register File

Address

Generator

rMAC ALU

FIFO FIFO
Registers

5x32-bit

Configuration
Controller

Meta-
Configuration

Controller

Configuration
Memory
Access
(Serial

EEPROM)

+

2x 210x32bit
Internal Memory

Address

Generator

Divider

Figure 7.6.: FPGA overlay for the condition monitoring of the shock absorber with LPSIP

Figure 7.7.: LPSIP hardware with Continental BSZ04D wheel acceleration sensors

7.3. Implementation and results 131

50 % Overlapping Windows

1024 samples at 50 Hz

Figure 7.8.: Computation of Welch’s modified periodogram on the vertical acceleration time series

DC part is removed and the data is down-sampled at 50 Hz before being stored in the SRAM memory.
Using an overlapping window of 50 %, the auto-power spectrum and the cross-power spectrum of the
two streams are regularly computed using a 1024 points FFT. This approach is illustrated by Figure 7.8.
Half-spectra are saved back in the memory. After five minutes of sampling, the computed spectra are
averaged and the transmissibility function is computed as their ratio. For the correlation factor, a new
value is computed every time a new sample arrives. The accumulated values of the autocorrelation and
the cross-correlation are summed with the product of the new samples. The ratio of the accumulated
values is then computed. The complete flow of the tasks is represented by Figure 7.9.

Table 7.2 reports the execution costs of the considered tasks. The computation of the correlation
coefficient takes a very small amount of time since it is reduced in accumulating values and computing
their ratio. The global average power consumption of the device when applying this technique is therefore
almost equal to the power consumption of a scenario with sampling only, i.e 201 µW at 50 Hz.

For the transmissibility approach, computing both auto- and cross-power spectra costs for each window
8 milliseconds (a total of 30 windows are considered). The final averaging and ratio of the spectra has
then a negligible duration in comparison to the total time spent for the spectral transformation. Figure
7.10 shows the detailed distribution of the time spent for each of the sub-tasks. The average power
consumed during the execution has been estimated using the power estimation tools from the FPGA
vendor. This value presents only the power spent by the FPGA and does not include external components
such as the microcontroller, memory or the clock generation circuit. When no computation is required, the
FPGA is automatically set in Flash*Freeze mode between the acquisition two samples. During sampling,
the average power consumption of the device is efficiently lowered down to 475.2 µW. The overall duty
cycle of the FPGA when considering both acquisition and processing time is lower than 0.1 %. This
drastically reduces the contribution of the FPGA to the global power consumption of the sensor node,
which stays below 500 µW.

The computation of the correlation coefficient is potentially more efficient than the transmissibility. In
addition to the short processing overhead, the external SRAM memory is not required to store intermediate
results.

For all tasks, the reconfiguration overhead stays low, even if a serial configuration memory is used on
this platform. Indeed as the loading of the configuration data as to occur only once at the initialization of
the task, it does not impact significantly the overall processing time.

132 7. Condition Monitoring of a Shock Absorber for Predictive Maintenance

MAC

ALU

Divider

DC
Filter

1048-FFT
(Inter-turn)

Window

Sensor Data

Auto-
Power

Storage

MAC

ALU

Divider Ratio

Storage

Averaging

Transfer

Sensor Data

Autocorrelation Crosscorrelation

Sampling

Transmissibility Correlation Coefficient

Down-
sampling

Window

1024-FFT
Cross-
Power

Storage

Spectra

Averaging

Ratio

Figure 7.9.: Time-space partitioning of the damper condition monitoring tasks on the overlay architecture

Task
Duration

(ms)
Power

consumption (mW) # Instructions
Bitstream size

(bits)
Spectra 15.9 5.4 28 1,792

Transmissibility 11.2 4.2 9 480
Correlation
coefficient 0.012 1.7 5 320

Table 7.2.: Performance metrics for the damper condition monitoring tasks

7.3. Implementation and results 133

Window; 0.2

FFT; 6.6

CrossPower; 0.1
AutoPower; 0.1

Reconfiguration; 1.1

(a) Spectra

Averaging; 4.6

Ratio; 0.9

Reconfiguration; 0.7

(b) Transmissibility

Figure 7.10.: Breakdown of time spent for the damper condition monitoring tasks
(time is given in milliseconds)

In terms of accuracy, the fixed-point implementation was particularly problematic for the tasks accumu-
lating values on long data streams, i.e. the final step of the transmissibility and the correlation coefficient.

7.4 Conclusion

Implementing condition monitoring tasks on distributed sensor nodes require particular care in the choice
of algorithms and placement of sensors. Even if three different methods were foreseen to detect damages
in the shock absorber, only the one based on the transmissibility function could be meaningfully ported
on the target sensor network. The restrictions in term of bandwidth and synchronization capability of the
wireless protocol prevented the deployment of the other techniques although they potentially generate
a lower computational overhead. On the other hand, the FPGA-based accelerator was providing all the
necessary computational resources to implement the computation of the transmissibility function online.
The execution scheme of the FPGA overlay was suitable for a smooth and autonomous implementation of
the algorithm without intermediate intervention from the microcontroller. The computation time and the
average power consumption of the hardware accelerator stay very low thanks to the implementation on
the Flash FPGA.

In the related work, the authors of [Ven+08] suggested to use a smart wireless sensor to implement the
transmissibility function for the condition monitoring of a shock absorber. This work can be seen as the
realization of this vision. Other approaches for in-vehicle wireless sensors are mostly based on centralized
processing, such as the sensor nodes from MicroStrain [Mic12]. This implies that all measurements must
be wirelessly transmitted to the central unit, which is not a viable solution for a long-term deployment
with a battery-powered node. The proposed approach reduces both the risks of data losses or corruption
during the wireless transfer and the processing energy costs, which are minimized by the hardware
acceleration.

In conclusion, it was demonstrated that deploying hardware-accelerated sensor nodes for the condition
monitoring of a vehicle shock absorber is a feasible and reliable approach. By combining a low-power
wireless communication protocol and a low-power processing engine, energy costs are reduced at the two
critical levels of a high-bandwidth sensing application, so that long-term deployments can be foreseen.
The functionality of the node is dynamically reconfigurable over a wireless link, which minimizes the
maintenance costs of the network and enables customization of condition monitoring algorithms according
to load or environmental conditions. With this set of features, the platform is a potential candidate to
implement vibration-based condition monitoring in other types of vehicles, such as aircraft or trains, or
different types of mechanical systems, such as bridges or buildings, where similar sensor setups and data
processing schemes can be applied.

134 7. Condition Monitoring of a Shock Absorber for Predictive Maintenance

8 Diagnosis of Induction Motors

Contents
7.1 Concept . 124

7.1.1 General overview . 124

7.1.2 Condition monitoring of the damping system . 125

7.2 Motivation for on-demand reconfiguration . 129

7.3 Implementation and results . 129

7.4 Conclusion . 134

Electrical machines like induction motors are widely used in industry, e.g. for traction purposes. A
faulty operation of the motor would potentially damage it and induce a down time of a plant. In critical
industrial applications like a production chain, these inactive periods must be avoided as much as possible
in order to maximize the productivity. The condition of electric motors can be monitored under different
aspects: a review of standard diagnosis techniques can be found in [NTL05]. This article notably states
that the most common methods are based on currents analysis, vibration patterns or analysis of thermal
effects. The techniques based on the analysis of the stator currents are referred in the literature as Motor
Current Signature Analysis (MCSA). Their main advantage is the use of non-intrusive sensors at only one
point of the machine. The following section describes the implementation of MCSA techniques on the
hardware-accelerated wireless sensor node. At first, the considered faults and the corresponding features
in the motor current signal are shortly explained in Section 8.1. The signal processing techniques enabling
their accurate detection are presented. This section is followed by a short overview on the related work.
The implementation details and the results are then given in section 8.31.

8.1 Concept

This section briefly reviews the recent literature for stator current indicators of the considered faults, i.e.
dynamic eccentricity, broken bars and inter-turn short circuit. These faults were selected since they are
common references in motor fault diagnosis. They have in common to induce the emergence of specific
components in the current spectrum, so that spectral analysis techniques can be used to identify them.
Beyond the theory, the presence of these components has been verified using a finite element model of a
motor [Mar+14] and experiments on real machines. In particular, the curves shown in Figure 8.1 and
8.2 were extracted from real measurements where the different faults were artificially recreated. On all
curves, the amplitude has been normalized with respect to the component at the supply frequency (50
Hz). The characteristics of the motor under test are summarized in Table 8.1. For all measurements, the
motor was operating at a speed of 1350 revolutions per minute.

8.1.1 Detection of broken bars

Broken bars are one of the most rare faults. Whenever a bar breaks in the rotor, the current distribution of
the squirrel cage loses its symmetry. This asymmetry produces an inverse field that induces new spectral

1 The results of this section are based on the conference papers [Phi+12a; Mar+13]. This work is the fruit of a collaboration
with Javier Martinez Garcia-Teronio and Antero Arkkio from the School of Electrical Engineering, Aalto University, Finland

135

0 20 40 60 80 100 120 140 160 180 200
−140

−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Healthy

(a) Healthy

0 20 40 60 80 100 120 140 160 180 200
−140

−120

−100

−80

−60

−40

−20

0

Frequencyd(Hz)

A
m

pl
itu

de
d(

dB
)

1dBrokendBar
2dBrokendBars

Brokendbars
spectraldcomponents

(b) Broken bars

Figure 8.1.: Spectral analysis of the induction motor currents (Part 1)

136 8. Diagnosis of Induction Motors

0 20 40 60 80 100 120 140 160 180 200
−140

−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Dynamic eccentricity

Dynamic eccentricity
spectral components

(a) Dynamic eccentricity

140 142 144 146 148 150 152 154 156 158 160
−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequency)(Hz)

A
m

pl
itu

de
)(

dB
)

Healthy
Inter−turn
short)circuitAmplitude

increase

(b) Inter-turn short circuit

Figure 8.2.: Spectral analysis of the induction motor currents (Part 2)

8.1. Concept 137

Pole pairs, p 2
Parallel branches 2
Stator slots, Z1 48
Rotor slots, Z2 40

Rated slip 5.5 %
Rated voltage 380 V
Rated current 41 A

Supply frequency 50 Hz
Rated Power 22 kW

Skew factor, csk 0.98
Electric connection Star

Table 8.1.: Nameplate and constructive parameters of the studied motor

components in the stator windings. In addition to these new stator current components, the inverse
magnetic field interacts with the existing one and produce magnetic torque ripple. These ripples will
eventually modulate the pulsating frequency of the magnetic waves inducing a second set of spectral
components. This process is repeated with the other set of magnetic waves rotating in the air-gap such as
the ones produced by the slotting effect. Induced components can be expressed as [Khe+09]

fbb (nb1, nb2) = (nb1 (1− s)± s± 2nb2s) fs (8.1)

where nb1 and nb2 are the broken bar harmonic indexes. In general, the analysis is reduced to the
harmonics define as:

fbb = (1± 2s) fs. (8.2)

The photo 8.3b shows how this fault was artificially recreated. In Figure 8.1b, one can notice that two
components appear in the spectrum, respectively at 44 Hz and 56 Hz, close to the main supply frequency.

A problem arising from this proximity to the main frequency component fs is the need for an increasing
spectral resolution when the slip of the motor decreases, i.e. when fbb is getting very close to fs. Indeed,
because of the effect of spectral leakage in the discrete Fourier transformation, one might not be able
to identify the faulty spectral components which are hidden by the leakage of the main peak, as shown
in Figure 8.4. Increasing the number of points of the DFT solves this issue but considerably increases
the processing and memory requirements of the sensor node hardware (the operational complexity of
the FFT is O(N log(N)), which is not a viable solution when considering a resource-constrained device.
An alternative solution consists in applying a frequency shift of the signal towards the region of interest
followed by a decimation filter. This technique, known as Zoom-FFT, reduces the computational complexity
for the analysis of a specific area of the spectrum with increased resolution [Phi+12a]. Full details on the
utilization of this algorithm in spectral analysis for fault detection of induction machines can be found in
[Bel+08].

However, this approach is still not fully reliable in all operating conditions. When the machine is
very lightly loaded or unloaded, the faulty sideband components are practically overlapping the supply
frequency. There are also other frequency components like ball bearing defects, voltage oscillations or
load fluctuations frequencies which can appear in the spectrum and overlap with the ones associated with
rotor bar rupture. Another monitoring technique overcoming these issues is the analysis of the discrete
wavelet transform of the current signal during the startup of the motor. During this period, fbb is not
stationary and can be tracked moving between different frequency bands. Figure 8.5b shows this trend in
the wavelet coefficients of a motor with two broken bars. The terms Ai and Di correspond respectively to
the approximation and details wavelet coefficients at level i. A Daubechies-40 mother wavelet was used

138 8. Diagnosis of Induction Motors

(a) Motor used to perform the experiments (b) Holes drilled to create artificial broken bars

Figure 8.3.: Pictures of the experimental setup

in this experiment. A good indicator to measure the severity of the fault with this wavelet coefficients is
to compute the variability, i.e the statistical dispersion, of the coefficients as shown by the bar diagram in
Figure 8.4b2.

8.1.2 Detection of dynamic eccentricity

This fault is produced when there exists a shift between the geometric centers of the stator and rotor.
The degree of eccentricity is defined as the amount of this shift over the total air-gap length. This shift
will then rotate at the same speed as the mechanical speed. When this situation occurs, the spectrum of
the stator current is modified due to the existing asymmetric air-gap length. More precisely, the set of
additional frequencies, fd yn, added to the stator current spectrum is expressed as [Nan+11]

fd yn (nr , nd , nst) =
�

(nrR± nd)
1− s

p
± nst

�

fs (8.3)

where fs id the supply frequency, s is the slip parameter, p the number of pole pairs, R the number of
rotor bars, and nr , nd and nst are the harmonic index for respectively the rotor slot permeance, dynamic
eccentricity and stator time. In Figure 8.2a, two faulty components appear in the spectrum at 26.8
Hz and 73.1 Hz respectively. These components can be identify by simple spectral analysis but their
amplitude is relatively small. This requires a particularly high level of accuracy for reliable detection. As
the implementation is realized in fixed-point on the target platform, particular care should be taken to
reduce the rounding errors during the computation. A correction algorithm detailed in appendix B.3 has
been introduced for this purpose.

8.1.3 Detection of inter-turn short circuit

Inter-turn short circuits are the second cause of fault in electric motors [WN10]. Inter-turn arises from
over-voltages or hot spots that can damage the insulation of the coil. When the insulation is damaged,
a short-circuit is appearing between different turns going through the same slot. This short-circuit is
characterized by a short-circuit resistance. Short-circuited turns create a new coil where a circulating
current is induced. The target of this circulating current is to oppose the main rotating air-gap flux wave
in the motor. In [WN10], the authors monitored the spectrum of the three-phase currents Fortescue’s

2 These aspects were studied in details in the Master thesis [Abd13]

8.1. Concept 139

35 40 45 50 55 60 65
−120

−100

−80

−60

−40

−20

0

20

FrequencyT(Hz)

A
m

pl
itu

de
T(

dB
)

Zoom−FFTT(1024Tpoints)
ClassicalTFFTT(1024Tpoints)

(a) Zoom-FFT of the current spectrum for one broken bar (decimation factor 8)

A5 D5 D6
0

500

1000

1500

2000

2500

3000

Wavelet Coefficients

V
ar

ia
bi

lit
y

Healthy
1 Broken Bar
2 Broken Bars
3 Broken Bars

(b) Variability of the wavelet coefficients

Figure 8.4.: Alternative techniques for the detection of broken bars (Part 1)

140 8. Diagnosis of Induction Motors

0 0.5 1 1.5 2 2.5 3
−100

0

100
C

ur
re

nt
 (

A
)

0 0.5 1 1.5 2 2.5 3

−20

0

20

A
5

0 0.5 1 1.5 2 2.5 3
−40
−20

0
20
40

D
5

0 0.5 1 1.5 2 2.5 3
−20

0

20

D
6

Time(s)

(a) Wavelet transform of the transient current (healthy)

0 0.5 1 1.5 2 2.5 3
−100

0

100

C
ur

re
nt

 (
A

)

0 0.5 1 1.5 2 2.5 3

−20

0

20

A
5

0 0.5 1 1.5 2 2.5 3
−40
−20

0
20
40

D
5

0 0.5 1 1.5 2 2.5 3
−20

0

20

D
6

Time(s)

(b) Wavelet transform of the transient current (two broken bars)

Figure 8.5.: Alternative techniques for the detection of broken bars (Part 2)

8.1. Concept 141

transformation and focused on the locations at ±3 fs. The Fortescue’s transformation converts the three-
phase Ia,Ib and Ic of the electrical motor into the set of symmetrical components I0,I1 and I2 (respectively
zero, positive and negative sequences) such as

I0
I1
I2

=
1
3

1 1 1
1 a a2

1 a2 a

Ia
Ib
Ic

 , (8.4)

where a = e
2πi
3 . Figure 8.2b shows the slight increase of the component located at 3 fs in the negative

current sequence of a motor suffering from an inter-turn short circuit. Here again, highly reliable
amplitude estimation is required to identify this fault as differences are very low. For this purpose, a
lightweight signal processing technique correcting spectral leakage has been introduced [Mar+13]. Based
on considerations on the used spectral window and neighboring points in the discrete spectrum, the
amplitude of a spectral peak can be estimated with a relative error lower than 1 % when applying this
method.

8.2 Motivation for on-demand reconfiguration

The complete processing chain required by the studied MCSA flow is based on many subsets that could
not fit as individual cores on the FPGA (filtering, Fortescue’s transformation, Fourier transform, wavelet
transform, magnitude computation). Intuitively, saving resources to implement these algorithms would
imply sharing a multiply-accumulate unit, which is precisely what the FPGA overlay presented in Chapter
5 is enabling. In addition, the architecture and the related tools combine all the necessary elements for an
easy and efficient control of this operator.

At runtime, there is a need to select whether the Fourier transform or the wavelet analysis is used.
Indeed, as the effectiveness of the algorithm depends on the state of the motor (for example steady state
for detection of broken bars with FFT, transient state with wavelet analysis), the functionality of the
hardware accelerator must be adapted accordingly. For instance, this can be controlled by commands sent
to the event-based middleware (listings 8.1).

CONFIG In te r−turn WHEN @300s
CONFIG bb− f f t WHEN @300s QUEUE
CONFIG wavelet WHEN s t a r t u p FORCE

Listing 8.1: Commands for context-aware selection of algorithms for sensor data analysis

Another parameter affecting the selection of the signal processing algorithm is the load of the motor. For
instance, the frequency of the components related to the broken bars fault is getting closer to the supply
frequency when the load is decreasing. In this case, the traditional FFT approach must be replaced by the
Zoom-FFT algorithm, as mentioned in the section dedicated to the broken bars fault. These algorithms
can then be dynamically programmed on the sensor node according to operation of the motor.

CANCEL bb− f f t
CONFIG zoom− f f t WHEN @300s QUEUE

Listing 8.2: Commands for modifying the scheduling of a task

At last, it was shown in [Med+10] that the vibrations of the motor could also be analyzed by mean of
the Fourier transform to detect and monitor the considered faults. Thus, if accelerometers are available,
the processing unit can be reconfigured to analyze these signals as well.

8.3 Implementation and results

142 8. Diagnosis of Induction Motors

Current

Vibrations

Hardware-
Accelerated
Sensor Node

Wavelet
Analysis

Spectral
Analysis

Start-up Transient

Steady

Broken Bars

Dynamic
Eccentricity

Intern-turn
Short Circuit

Diagnosis

Figure 8.6.: Concept for motor Condition Monitoring

Cells Blocks memory Max. frequency Size of context
20,718 (84.3 %) 26 (81.2 %) 14.9 MHz 260 bits

Table 8.2.: Resource consumption of the FPGA overlay for the motor condition monitoring

8.3.1 Implementation on HaLOEWEn

HaLOEWEn has been used as target platform to implement the different signal processing algorithms. The
memory extension is required to handle FFT with large number of points and signal acquisition from three
different sources. Indeed, each of the three phase currents are monitored using LEM LT 1005-S/SP19
Hall sensors. If only one phase is sufficient for diagnosing broken bars and dynamic eccentricity, the
detection of an inter-turn short circuit requires the computation of the negative current sequence, which
is a composition of the three phases.

As the architecture for the FPGA overlay is very close to the one from Figure 5.12a and 7.6, it has not
been reproduced here. The notable differences include a wordlength of 32 bits for the bus, the operators
and the internal memories. The number of internal memories has been reduced to two. The resulting
resource consumption has been reported in Table 8.2. The extension to 32 bits is particularly costly in
terms of resources, since the whole design is consuming 35 % more resources compared to the 16-bits
version. The FPGA core is running with a 13.25 MHz clock generated internally with the ring oscillator.

The task configurations as depicted by Figure 8.7 have been generated for the architecture using
the (GECO)2 tool. The three phase currents are simultaneously sampled with a frequency of 1 kHz.
An FFT size of 2048 points has been selected to guarantee a sufficient accuracy in the spectrum while
meeting the memory restrictions of the platform. A Hanning window is used to prior to the FFT in
order to reduce the leakage effect. The wavelet transform uses the Daubechies-40 mother wavelet on
six levels of decomposition. The middleware has been programmed in such a way that the Wavelet
task is automatically started during the startup of the motor. During the steady state, a data sampling
task followed by the inter-turn fault diagnosis and the zoom-FFT (dynamic eccentricity and broken bars
diagnosis) is started every three minutes.

The mapping of the different subtasks on the arithmetic operators is depicted in Figure 8.7. The size of
each block is not proportional to the duration of the task in this diagram. A breakdown of the time spent
for each sub-task has been included in the pie charts of Figure 8.8. The reconfiguration time combines
the time required for loading the configuration data from the configuration memory and the internal
reconfiguration time between successive instructions. In general, the time spent for reconfiguration is
very low compared to the overall task duration, so that the reconfiguration overhead stays very low.

Figure 3.4 shows the average power consumed during the execution of each task. The FPGA switches
automatically in Flash*Freeze mode between the acquisition of two samples. Once the tasks are completed,
the FPGA can be shutdown until the next spectral analysis is started (every three minutes). As a matter of

8.3. Implementation and results 143

MAC

ALU

CORDIC

FIR
Filter

2048-FFT
(Inter-turn)

Fortescue

Amplitude

Sensor Data

Correction

Storage

Twiddles

Transfer

MAC

ALU

CORDIC

2048-FFT
[Zoom]

(Broken Bars
Dynamic eccentricity)

Window

Amplitude

Correction

Window

Storage

Frequency
Shift

Frequency
Shift

Transfer

Sensor Data

DWT Variability

Transfer

Init

Inter-Turn
Analysis

Zoom-FFT Wavelet

Figure 8.7.: Time-space partitioning of the motor condition monitoring tasks on the overlay architecture

Task
Duration

(ms)
Power

consumption (mW) # Instructions
Bitstream size

(bits)
Twiddles 2.9 2.3 3 330
Inter-Turn 19.7 8.3 43 4,272
Zoom-FFT 14.5 7.9 31 2,928
Wavelet 58.9 6.8 29 2,352

Table 8.3.: Performance metrics of the motor condition monitoring tasks

144 8. Diagnosis of Induction Motors

FIR ; 6.0

Memory Access;
0.9

Fortescue; 1.2

Window; 0.2
FFT; 6.8

Correction -
Amplitude; 2.9

Transfer; 0.2
Reconfiguration; 1.3

(a) Inter-Turn analysis

Frequency Shift; 3.1

Memory Access;
0.3

 Window; 0.2

FFT; 6.8

Correction -
Amplitude; 2.9

Transfer; 0.2

Reconfiguration; 1.0

Reconfiguration;

(b) Zoom-FFT
Memory Access; 1.2

DWT ; 55.6

Variability; 0.2

Reconfiguration; 1.9

(c) Wavelet

Figure 8.8.: Breakdown of time spent for the motor condition monitoring tasks
(time is given in milliseconds)

Dynamic eccentricity Healthy 28 % 42 %
Amplitude at 26.81 Hz (mA) 29.7 32.1 89.7
Amplitude at 73.17 Hz (mA) 32.3 47.1 60.7

Table 8.4.: Estimation results for a motor suffering from dynamic eccentricity

comparison, the static power consumption of a SRAM-based Xilinx Spartan 6 XC6SLX16 FPGA is 14 mW.
During the acquisition time, the FPGA must stay active as reconfiguration times are much larger than
the sampling period. Thus, the only acquisition of 8,192 samples cost already 114 mWs, just because of
the static power consumption. On the other hand, the average power consumption of the Flash-FPGA
taking sampling and processing into account (inter-turn plus FFT) was estimated to 498 µW, resulting in
an energy consumption of 4.1 mWs, which is already a reduction of almost two orders of magnitude.

8.3.2 Diagnosis results

Once the spectral analysis is completed, a selected part of the magnitude spectrum is transfered to the
MCU for the end of the monitoring process. The region of interest is chosen in accordance with the
value of the motor slip, which can be monitored externally using a tachometer. Peak frequency and
amplitude are then precisely estimated using the approach described in [Mar+13]. Various tests have been
performed with different degrees of failure for each of the fault. The average value of the faulty spectral
components that were measured using the FPGA implementation described previously are reported in the
tables 8.4, 8.5 and 8.6. For each of the considered scenarios, the amplitude of the side band components
is increasing with the degree of the fault. This result demonstrates that the processing results delivered by
the FPGA can be reliably used for diagnosis purposes.

8.3. Implementation and results 145

Broken bars Healthy 1 2 3
Amplitude at 44.71 Hz (mA) 58 369.8 634.9 1,940
Amplitude at 55.36 Hz (mA) 43.5 106.3 262.8 688

Table 8.5.: Estimation results for a motor with broken bars

Inter-turn short circuit Healthy 1.5Ω 0.75Ω
Amplitude at -50 Hz (A) 2.26 2.64 3.22
Amplitude at 150 Hz (A) 0.1 0.18 0.58

Table 8.6.: Estimation results for a motor suffering from inter-turn short circuit

8.4 Conclusion

Different MCSA techniques have been successfully implemented on the HaLOEWEn platform. All tests
showed that the implementation of the spectral or wavelet analysis on the FPGA overlay architecture was
sufficiently accurate to diagnose a faulty operation of the motor. This demonstrates that the architecture
and programming tools are suitable to implement advanced signal processing techniques. All tasks can be
executed in an autonomous way by the hardware accelerator without the support of the MCU to compute
intermediate results. During the acquisition and computing time, the MCU can stay in sleep mode, which
further reduces the average power consumption of the node.

In the literature, several research works addressed the utilization of FPGAs for the online diagnosis of
induction motors. The used techniques include the analysis of stator current signatures with a discrete
wavelet transform (DWT) [OM+08], vibration analysis [Med+10] or mixed approaches suitable for both
vibration and current signature analysis using DWT and STFT according to target device [CY+13]. In
all cases, it has been showed that FPGAs demonstrate a significant improvement compared to offline
diagnosis methods where the analysis of the data by an expert is usually required. However, all these
works were relying on SRAM-based FPGA platforms requiring a supply from a power line. Here, a similar
level of accuracy and performance is achieved with an architecture which is dynamically reconfigurable,
i.e. new or adapted techniques can be easily loaded after deployments. The average power consumption is
also sufficiently low for battery-powered operation, which enables an easy and straightforward installation
in an industrial environment.

Condition monitoring of electrical machines with wireless sensor networks has also been the subject
of the work carried in [HB12]. The authors are measuring the stator current and the vibrations of a
motor to identify potential faults with a neural network classifier. The feature extraction tasks are based
on a 512 points FFT for the vibrations and variance coupled to peak-to-peak amplitude for the current.
A Jennic JN5139 32-bit microcontroller is used for the implementation of the algorithms. The authors
measured that the total running time of their feature extraction algorithm is larger than one second with
an average power consumption of 20 mW. This results in an energy consumption value which is almost
equivalent to the energy necessary for a wireless transfer of the raw data. The proposed solution based on
the low-power FPGA was shown to achieve a much higher level of energy-efficiency.

Thanks to the genericity of the FPGA overlay architecture, the current design can be extended to support
the diagnosis of further faults, notably using vibration analysis, such as unbalance or looseness [Med+10].
Such a device would result in an universal motor diagnosis device, which could attract much attention in
industrial applications.

146 8. Diagnosis of Induction Motors

9 Conclusion
A complete framework for accelerating computationally intensive tasks with programmable hardware on
wireless sensor nodes has been introduced in this thesis. By combining an FPGA based on non-volatile
memory with a lightweight overlay architecture and its associated programming tools, a new level of
energy-efficiency has been reached for low power high-bandwidth sensing applications.

9.1 Contributions of the work

This work addressed issues covering multiple domains, from digital electronics design to fault diagnosis
of electromechanical systems via cryptography and signal processing. The main contributions emerging
from this multi-disciplinary work can be summarized as follows:

• Exploitation of low-power technologies and design techniques to reduce the power consumption of an
FPGA-based wireless sensor node: the low static consumption of an FPGA based on non-volatile
memory has been fully exploited to reduce the large overhead that the SRAM-based counterpart
would induce. Mechanisms for fast and autonomous wake-up control based on an internal ring
oscillator maintain the duty cycle of the device very low, even with high sampling rates. The main
processor can go in deeper sleep mode by reallocating all sensor data acquisition and processing
tasks to the reconfigurable hardware device. Fast wake-up times make the FPGA also suitable for
on-demand acceleration. In general, the superiority of reconfigurable hardware based on Flash
technology against other types of COTS processing elements for intensive distributed computation
in wireless sensor networks has been demonstrated.

• Introduction of an architecture for virtual runtime reconfiguration at low cost on resource-constrained
FPGAs: Although Flash-based FPGAs achieve a lower power consumption, they are limited by a low
amount of available resources preventing the implementation of complex data processing designs. As
a fast dynamic reconfiguration of the FPGA core at runtime is inconceivable, a template for an overlay
architecture based on coarse-grained reconfigurable operators has been introduced. Data flows
between operators is regulated by a lightweight reconfiguration mechanism, which compromises
the size of the configuration data with the amount of extra resources and the reconfiguration delay.
Multiple tasks can thus be mapped on the FPGA by dynamically loading different bitstreams in the
overlay configuration memory in a minimal amount of time. The overall overhead of the virtual
reconfiguration layer has a low impact on the energy efficiency of the design. The concept is not
only limited to Flash FPGAs and it has been already successfully ported to different platforms and
target technologies.

• Introduction of tools and methods for the runtime deployment of hardware accelerators: Development
and deployment of hardware accelerated tasks on the sensor node hardware has been facilitated
by a set of graphical tools and software drivers. Customizing the template overlay architecture.
Custom applications can be created by reusing preprogrammed tasks as building blocks of new data
processing functions. Generated configuration data can be remotely loaded and scheduled on the
sensor node using a custom middleware infrastructure, making the reconfigurable hardware an
intrinsic part of the wireless sensor node operating system. This set of tools make the utilization of
the hardware accelerator accessible to developers not familiar with the reconfiguration mechanisms
of the FPGA overlay or with reliable transfer of data blocks within wireless sensor networks.

147

• Improvement of condition monitoring systems with hardware accelerated wireless sensor nodes: The
enhanced computational capability and energy-efficiency of the hardware-accelerated sensor node
has been successfully exploited to develop innovative systems for condition monitoring applications.
Signal processing algorithms to track damages in a vehicle shock absorber could be ported to a
wireless sensor node, efficiently compensating the sensor node low throughput with enhanced
processing power. Following the same principle, algorithms for diagnosis of induction motors using
motor current signature analysis have been implemented. Multiple techniques for detecting faults in
different modes of operation were programmed in such a way that the node select the most suitable
signal processing tasks for the current context.

9.2 Outlook

While new solutions have been brought to enhance wireless sensor networks applications and low-power
reconfigurable hardware, new problems and new investigation opportunities have arisen from this work.
The following items lists suggestions for future work and newly open research directions:

• At the technological level, the lack of embedded multipliers on Igloo FPGAs was causing a significant
overhead for the performance and the resource consumption of the designs. DSP blocks were
included in the Igloo2, the newest generation of Microsemi’s Flash FPGAs. Unfortunately, the static
power consumption of these devices increased to more than one of order of magnitude compared
to similar counterparts from the previous generation. A large number of IP cores for interfaces
have been integrated into the device architecture, which potentially improves its performance
but also induces a non-negligible overhead in sleep mode. This limitation makes the chip less
efficient in applications with very low duty cycles such as the ones considered in the frame of
this thesis. Therefore, there is still a potential to design devices supporting ultra-low static power
consumption with an intermediate amount of features which could fit with WSN applications.
Eventually, combining the programmable logic with a microcontroller, programmable analog and RF
circuitry on the same chip would implement the mote-on-a-chip vision of the PicoRadio [Rab+00].
The PSoC family of devices is already getting towards this direction but still lacks flexibility for the
custom digital hardware functionalities and support for RF communication. Recent RF SoCs such as
the Atmel SAM R21 family are integrating new types of very low-power processor cores such as the
32-bit ARM Cortex M0. The delay of software tasks related to networking or to the background
operations of the operating system could be significantly reduced with this type of core, so that
the chip could switch earlier in low-power mode. In addition, delays to recover from deep-sleep
mode are getting lower with the new generation of SoCs, so that high sampling rates can be better
supported. This new generation of chips should be considered with more attention in the future
work.

• At a higher level, the FPGA overlay can be extended with new types of operators fitting to other
application domains, such as image processing, or operators with support for floating-point arith-
metic if the available resources are sufficient. The configuration controller requires extensions to
gain support for data-dependent flow control, notably by enabling instruction branching. Tasks
such as data compression could then be mapped as well on the overlay. By further extending the
capability of the reconfigurable architecture and keeping the genericity level of the template high,
the development tools can be configured for automated design space exploration.

• Acceleration of signal processing tasks is not only limited to condition monitoring applications.
The sensor node has been already successfully used for the implementation of online inertial
sensor data classification1. This type of tasks is widely used in electronic devices for video games

1 Results concerning this aspect have been already published in the conference paper [PG13a] and the article [PG13c]. The
student works [Gre14; Mou13; Man12b; KA12; Rad13] were also addressing this topic

148 9. Conclusion

Figure 9.1.: Miniaturized implementation of the HaLOEWEn platform

controllers, smartphones, human-machine interaction, fitness tracking or biomedical application
such as actigraphy. Based on the continuous extraction and comparison of large feature sets from
accelerometer and gyroscope data, classification algorithms are usually considered as too heavy for
online execution. The proposed framework overcomes this limitation with energy-efficient hardware
acceleration. In general, biomedical signal processing is another important potential application
domain for the designed system. Wireless body area networks used for wearable computing are
based on EKG or EEG sensors requiring high sampling rate and complex signal processing, making
the low-power FPGA an ideal fit.

• A non-invasive deployment of the FPGA-based wireless sensor nodes in wearable computing appli-
cations requires however a drastic size reduction of the platform. The next generation of the
HaLOEWEn motes2 has been miniaturized (Figure 9.1) for a seamless integration in most of real
world applications. As a new type of RF SoC with lower power consumption has been used, future
work include porting the software and hardware drivers enabling the design programming of the
overlay architecture with the (GECO)2 tool and the middleware services.

• The freedom to execute hardware acceleration on-demand on the sensor node opens new research
opportunities for developing adaptivity at the network level. The low reconfiguration overhead
makes a fast and frequent modification of the node functionality feasible. Based on environmental
or application parameters such as the amount of harvested energy or the topology of the network,
energy can be balanced between nodes by selectively executing tasks with lower or higher energy
trace, e.g. using with lower sampling rates or lower resolution3.

9.3 Final conclusion

Single processors are not sufficient to efficiently handle the processing of high-bandwidth data streams
on wireless sensor nodes, not only because of performance issues, but also because of a poor support
for high frequency duty cycling. Relieving the processor from this task by using a Flash-based FPGA is a
viable and efficient solution when the suitable infrastructure is available. More flexible and more efficient
than application-specific processors, reconfigurable hardware is not only restricted to high-performance
computing. With the right technology and design methods, programmable logic has also a bright future
in very low-power applications.

2 This mote has been developed in the last phase of the LOEWE project AdRIA by the Embedded Systems and Applications
group of TU Darmstadt

3 Initial results on this aspect were published in the paper [Phi+12b] and the Master thesis [Jun13]

9.3. Final conclusion 149

Part IV.
Appendix

151

A HaLOEWEn Design Files

153

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
Revision

Size

A
4

D
ate:

19.04.2011
Sheet of

File:
C

:\U
sers\..\FPG

A
_1.SchD

oc
D

raw
n By:

BANK 3

G
EA

0/IO
188N

D
B

3
R

2

G
EA

1/IO
188PD

B
3

R
1

G
EB

0/IO
189N

D
B

3
P2

G
EB

1/IO
189PD

B
3

P1

G
EC

0/IO
190N

PB
3

M
4

G
EC

1/IO
190PPB

3
N

3

IO
192N

PB
3

N
4

IO
192PPB

3
N

2

IO
193N

PB
3

M
3

IO
193PPB

3
L4

IO
194PSB

3
N

1

IO
196N

PB
3

M
2

IO
196PPB

3
L3

IO
197N

SB
3

M
1

IO
202N

D
B

3
L1

IO
202PD

B
3

L2

IO
203N

D
B

3
K

3

IO
203PD

B
3

K
4

IO
204N

D
B

3
K

2

G
FC

2/IO
204PD

B
3

K
1

IO
205N

D
B

3
J4

G
FB

2/IO
205PD

B
3

J5

G
FA

2/IO
206PSB

3
J1

G
FA

0/IO
207N

D
B

3
H

2

G
FA

1/IO
207PD

B
3

J2

G
FB

0/IO
208N

PB
3

H
1

G
FB

1/IO
208PPB

3
H

3

G
FC

0/IO
209N

PB
3

H
5

G
FC

1/IO
209PPB

3
G

4

IO
210PSB

3
G

1

IO
213N

D
B

3
G

2

IO
213PD

B
3

G
3

IO
216N

D
B

3
F4

IO
216PD

B
3

F3

IO
217N

D
B

3
F1

IO
217PD

B
3

E1

IO
218N

D
B

3
F2

IO
218PD

B
3

E2

IO
221N

D
B

3
E3

IO
221PD

B
3

E4

IO
222N

D
B

3
D

1

IO
222PD

B
3

D
2

IO
223N

D
B

3
D

4

G
A

C
2/IO

223PD
B

3
D

3

IO
224N

D
B

3
C

1

G
A

B
2/IO

224PD
B

3
B

1

IO
225N

D
B

3
C

2

G
A

A
2/IO

225PD
B

3
B

2

IG
LD

A
G

L1000V
2-FG

256

SPI_SC
K

C
S_FPG

A

SPI_M
O

SI
SPI_M

ISO

FPG
A

_3
FPG

A
_4

FPG
A

_2

FPG
A

_5

0.1uF
C

112

G
N

D

10nF C
x1

10nF Cy1
10nF C

z1
10nF C

x2
10nF Cy2

10nF C
z2

10nF C
x3

10nF Cy3
10nF C

z3
10nF C

x4
10nF Cy4

10nF C
z4

10nF C
x5

10nF Cy5
10nF C

z5
100nF

C
x6

100nF
Cy6

100nF
C

z6
100nF

C
x7

100nF
Cy7

100nF
C

z7
100nF

C
x8

100nF
Cy8

100nF
C

z8
1uF C

x9
1uF Cy9

1uF C
z9

1uF C
x10

1uF Cy10
1uF C

z10
10uF C

x11
10uF Cy11

10uF C
z11

V
C

C
1.5

G
N

D

N
6

R
2

R
1

P2P1M
4

N
3

N
4

N
2

M
3

L4N
1

M
2

L3M
1

L1L2K
3

K
4

K
2

K
1

J4J5J1H
2

J2H
1

H
3

H
5

G
4

G
1

G
2

G
3

F4F3F1E1F2E2E3E4D
1

D
2

D
4

D
3

C
1

C
2

IO
V

3

G
N

D

O
scillator

20M
H

z Expansion
H

eader 2

G
N

D
G

N
D

+1.5V

G
N

D

T12
SPI_SC

K
N

11
R

12
P11
N

10
T11
R

11
P10
T10
M

9
P9R

10
N

9
T9R

9
M

8
R

8
P8T8N

8
R

7
T7P7N

7
R

6
T6 SPI_M

O
SI

R
13

R
1

P1N
1

M
1

L1K
1

J1H
1

L4 L3K
4

R
2

P2
N

2

M
2

L2K
2

J2H
2

J4 K
3

H
3

BANK 2
G

D
A

2/IO
114R

SB
2

T14

G
D

B
2/IO

115R
SB

2
R

13

G
D

C
2/IO

116R
SB

2
T12

IO
120R

SB
2

T13

IO
124R

SB
2

N
11

IO
125R

SB
2

R
12

IO
128R

SB
2

P11

IO
129R

SB
2

N
10

IO
130R

SB
2

T11

IO
131R

SB
2

R
11

IO
134R

SB
2

P10

IO
135R

SB
2

T10

IO
136R

SB
2

M
9

IO
137R

SB
2

P9

IO
138R

SB
2

R
10

IO
141R

SB
2

N
9

IO
142R

SB
2

T9

IO
143R

SB
2

R
9

IO
147R

SB
2

M
8

IO
149R

SB
2

R
8

IO
151R

SB
2

P8

IO
153R

SB
2

T8

IO
155R

SB
2

N
8

IO
157R

SB
2

R
7

IO
158R

SB
2

T7

IO
159R

SB
2

P7

IO
161R

SB
2

N
7

IO
163R

SB
2

R
6

IO
164R

SB
2

T6

IO
165R

SB
2

P6

IO
168R

SB
2

R
5

IO
170R

SB
2

T5

IO
171R

SB
2

P5

IO
172R

SB
2

T4

IO
179R

SB
2

P4

IO
183R

SB
2

T2

IO
184R

SB
2

R
3

G
EC

2/IO
185R

SB
2

R
4

FF/G
EB

2/IO
186R

SB
2

T3

G
EA

2/IO
187R

SB
2

N
6

IG
LC

A
G

L1000V
2-FG

256

R
5

T5P5T4P4T2R
3

T3N
6

R
4

P6

M
4

M
3

G
4

F2 F1E2D
2

C
2

N
4

G
2

N
3

E1D
1

C
1

G
1

Expansion
H

eader 3

FLA
SH

_FR
EEZE

V
+

G
N

D

SETD
IV

O
U

T

O
scF

LTC
6900-O

SC

10K

R
112

+3.3V T9T8T7T6 R
10

R
9

R
8

R
7

R
6

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

EX
P3

H
eader 25X

2

J5H
5

F4E4 G
3

E3D
3

F3D
4

IO
V

1
IO

V
3

IO
V

1
IO

V
3

10nF Cv1
10nF Cv2

10nF Cv3
10nF Cv4

10nF Cv5
100nF

Cv6
100nF

Cv7
100nF

Cv8
1uF Cv9

1uF Cv10
10uF Cv11

G
N

D

IO
V

0

IO
V

0

10nF C
w

1
10nF C

w
2

10nF C
w

3
10nF C

w
4

10nF C
w

5
100nF

C
w

6
100nF

C
w

8
1uF C

w
9

1uF C
w

10
10uF C

w
11

G
N

D

+2.5V

1
2

3
4

5
6

7
8

9
10

11
12

EX
P2

H
eader 6X

2

+2.5V

+2.5V

Technische U
niversität D

arm
stadt

Forshungsgruppe M
ikroelektronische System

e

C
annot

open
file
D

:\athe
ne_sw

_
150x17
9.bm

p

FPG
A

 IG
LO

O
 A

G
L1000V

5
Sheet 1 of 2

FPG
A

_6

FPG
A

_7
FPG

A
_8

FPG
A

_0
FPG

A
_1

G
N

D
IO

V
3

G
N

D

+2.5V

+2.5V

1
CT

2
G

N
D

3
M

R/
4

R
ESET/

5
V

D
D

PO
R

TPS3836

P11

PIC11201 PIC11202
COC112

PICv101 PICv102
COCv1PICv201 PICv202

COCv2PICv301 PICv302
COCv3PICv401 PICv402

COCv4PICv501 PICv502
COCv5PICv601 PICv602

COCv6PICv701 PICv702
COCv7PICv801 PICv802

COCv8PICv901 PICv902
COCv9PICv1001 PICv1002

COCv10
PICv1101PICv1102

COCv11
PICw101 PICw102

COCw1PICw201 PICw202
COCw2PICw301 PICw302

COCw3PICw401 PICw402
COCw4PICw501 PICw502

COCw5PICw601 PICw602
COCw6

PICw801 PICw802
COCw8PICw901 PICw902

COCw9PICw1001 PICw1002
COCw10

PICw1101PICw1102
COCw11

PICx101 PICx102
COCx1PICx201 PICx202

COCx2PICx301 PICx302
COCx3PICx401 PICx402

COCx4PICx501 PICx502
COCx5PICx601 PICx602

COCx6PICx701 PICx702
COCx7PICx801 PICx802

COCx8PICx901 PICx902
COCx9PICx1001 PICx1002

COCx10
PICx1101PICx1102

COCx11
PICy101 PICy102

COCy1PICy201 PICy202
COCy2PICy301 PICy302

COCy3PICy401 PICy402
COCy4PICy501 PICy502

COCy5PICy601 PICy602
COCy6PICy701 PICy702

COCy7PICy801 PICy802
COCy8PICy901 PICy902

COCy9PICy1001 PICy1002
COCy10

PICy1101PICy1102
COCy11

PICz101 PICz102
COCz1PICz201 PICz202

COCz2PICz301 PICz302
COCz3PICz401 PICz402

COCz4PICz501 PICz502
COCz5PICz601 PICz602

COCz6PICz701 PICz702
COCz7PICz801 PICz802

COCz8PICz901 PICz902
COCz9PICz1001 PICz1002

COCz10
PICz1101PICz1102

COCz11

P
I
E
X
P
2
0
1

P
I
E
X
P
2
0
2

P
I
E
X
P
2
0
3

P
I
E
X
P
2
0
4

PIEXP205
PIEXP206

PIEXP207
PIEXP208

P
I
E
X
P
2
0
9

PIEXP2010

PIEXP2011
PIEXP2012

COEXP2

PIEXP301
PIEXP302

PIEXP303
PIEXP304

P
I
E
X
P
3
0
5

P
I
E
X
P
3
0
6

P
I
E
X
P
3
0
7

P
I
E
X
P
3
0
8

P
I
E
X
P
3
0
9

PIEXP3010

PIEXP3011
PIEXP3012

PIEXP3013
PIEXP3014

PIEXP3015
PIEXP3016

PIEXP3017
PIEXP3018

PIEXP3019
PIEXP3020

PIEXP3021
PIEXP3022

PIEXP3023
PIEXP3024

PIEXP3025
PIEXP3026

PIEXP3027
PIEXP3028

PIEXP3029
PIEXP3030

PIEXP3031
PIEXP3032

PIEXP3033
PIEXP3034

PIEXP3035
PIEXP3036

PIEXP3037
PIEXP3038

PIEXP3039
PIEXP3040

PIEXP3041
PIEXP3042

PIEXP3043
PIEXP3044

PIEXP3045
PIEXP3046

PIEXP3047
PIEXP3048

PIEXP3049
PIEXP3050 COEXP3

P
I
I
G
L
0
M
8

P
I
I
G
L
0
M
9

P
I
I
G
L
0
N
6

P
I
I
G
L
0
N
7

P
I
I
G
L
0
N
8

P
I
I
G
L
0
N
9

P
I
I
G
L
0
N
1
0

P
I
I
G
L
0
N
1
1

P
I
I
G
L
0
P
4

P
I
I
G
L
0
P
5

P
I
I
G
L
0
P
6

P
I
I
G
L
0
P
7

P
I
I
G
L
0
P
8

P
I
I
G
L
0
P
9

P
I
I
G
L
0
P
1
0

P
I
I
G
L
0
P
1
1

P
I
I
G
L
0
R
3

P
I
I
G
L
0
R
4

P
I
I
G
L
0
R
5

P
I
I
G
L
0
R
6

P
I
I
G
L
0
R
7

P
I
I
G
L
0
R
8

P
I
I
G
L
0
R
9

P
I
I
G
L
0
R
1
0

P
I
I
G
L
0
R
1
1

P
I
I
G
L
0
R
1
2

P
I
I
G
L
0
R
1
3

P
I
I
G
L
0
T
2

P
I
I
G
L
0
T
3

P
I
I
G
L
0
T
4

P
I
I
G
L
0
T
5

P
I
I
G
L
0
T
6

P
I
I
G
L
0
T
7

P
I
I
G
L
0
T
8

P
I
I
G
L
0
T
9

P
I
I
G
L
0
T
1
0

P
I
I
G
L
0
T
1
1

P
I
I
G
L
0
T
1
2

P
I
I
G
L
0
T
1
3

P
I
I
G
L
0
T
1
4

COIGLC

P
I
I
G
L
0
B
1

P
I
I
G
L
0
B
2

P
I
I
G
L
0
C
1

P
I
I
G
L
0
C
2

P
I
I
G
L
0
D
1

P
I
I
G
L
0
D
2

P
I
I
G
L
0
D
3

P
I
I
G
L
0
D
4

P
I
I
G
L
0
E
1

P
I
I
G
L
0
E
2

P
I
I
G
L
0
E
3

P
I
I
G
L
0
E
4

P
I
I
G
L
0
F
1

P
I
I
G
L
0
F
2

P
I
I
G
L
0
F
3

P
I
I
G
L
0
F
4

P
I
I
G
L
0
G
1

P
I
I
G
L
0
G
2

P
I
I
G
L
0
G
3

P
I
I
G
L
0
G
4

P
I
I
G
L
0
H
1

P
I
I
G
L
0
H
2

P
I
I
G
L
0
H
3

P
I
I
G
L
0
H
5

P
I
I
G
L
0
J
1

P
I
I
G
L
0
J
2

P
I
I
G
L
0
J
4

P
I
I
G
L
0
J
5

P
I
I
G
L
0
K
1

P
I
I
G
L
0
K
2

P
I
I
G
L
0
K
3

P
I
I
G
L
0
K
4

P
I
I
G
L
0
L
1

P
I
I
G
L
0
L
2

P
I
I
G
L
0
L
3

P
I
I
G
L
0
L
4

P
I
I
G
L
0
M
1

P
I
I
G
L
0
M
2

P
I
I
G
L
0
M
3

P
I
I
G
L
0
M
4

P
I
I
G
L
0
N
1

P
I
I
G
L
0
N
2

P
I
I
G
L
0
N
3

P
I
I
G
L
0
N
4

P
I
I
G
L
0
P
1

P
I
I
G
L
0
P
2

P
I
I
G
L
0
R
1

P
I
I
G
L
0
R
2

COIGLD

PIOscF01

PIOscF02

PIOscF03

PIOscF04

PIOscF05

COOscF

PIPOR0CT

PIPOR0GND

PIPOR0MR0
PIPOR0RESET0

PIPOR0VDD

COPOR PIR11201
PIR11202 COR112

PICw102
PICw202

PICw302
PICw402

PICw502
PICw602

PICw802
PICw902

PICw1002
PICw1101

P
I
E
X
P
2
0
1

PIPOR0MR0

PIPOR0VDD

NL0205V

PIC11202
PIOscF01

PIR11202

P
I
E
X
P
3
0
6

P
I
I
G
L
0
C
1 NLC1

PIEXP304

P
I
I
G
L
0
C
2 NLC2

PIEXP3010

P
I
I
G
L
0
D
1 NLD1

P
I
E
X
P
3
0
8

P
I
I
G
L
0
D
2 NLD2

P
I
E
X
P
3
0
5

P
I
I
G
L
0
D
3 NLD3

PIEXP303

P
I
I
G
L
0
D
4 NLD4

PIEXP3014

P
I
I
G
L
0
E
1 NLE1

PIEXP3012

P
I
I
G
L
0
E
2 NLE2

P
I
E
X
P
3
0
9

P
I
I
G
L
0
E
3 NLE3

P
I
E
X
P
3
0
7

P
I
I
G
L
0
E
4 NLE4

PIEXP3018

P
I
I
G
L
0
F
1 NLF1

PIEXP3016

P
I
I
G
L
0
F
2 NLF2

PIEXP3013

P
I
I
G
L
0
F
3 NLF3

PIEXP3011

P
I
I
G
L
0
F
4 NLF4

PIEXP3022

P
I
I
G
L
0
G
1 NLG1

PIEXP3020

P
I
I
G
L
0
G
2 NLG2

PIEXP3017

P
I
I
G
L
0
G
3 NLG3

PIEXP3015

P
I
I
G
L
0
G
4 NLG4

PIC11201

PICv101
PICv201

PICv301
PICv401

PICv501
PICv601

PICv701
PICv801

PICv901
PICv1001

PICv1102
PICw101

PICw201
PICw301

PICw401
PICw501

PICw601
PICw801

PICw901
PICw1001

PICw1102

PICx101
PICx201

PICx301
PICx401

PICx501
PICx601

PICx701
PICx801

PICx901
PICx1001

PICx1102
PICy101

PICy201
PICy301

PICy401
PICy501

PICy601
PICy701

PICy801
PICy901

PICy1001
PICy1102

PICz101
PICz201

PICz301
PICz401

PICz501
PICz601

PICz701
PICz801

PICz901
PICz1001

PICz1102

P
I
E
X
P
2
0
2

P
I
E
X
P
2
0
4

PIEXP301

PIEXP3049

PIOscF02
PIOscF04

PIPOR0CT

PIPOR0GND

PIEXP3023

P
I
I
G
L
0
H
1 NLH1

PIEXP3024
P
I
I
G
L
0
H
2 NLH2

PIEXP3026

P
I
I
G
L
0
H
3 NLH3

PIEXP3019

P
I
I
G
L
0
H
5 NLH5

PICv102
PICv202

PICv302
PICv402

PICv502
PICv602

PICv702
PICv802

PICv902
PICv1002

PICv1101
NLIOV0

PICy102
PICy202

PICy302
PICy402

PICy502
PICy602

PICy702
PICy802

PICy902
PICy1002

PICy1101
NLIOV1

PICz102
PICz202

PICz302
PICz402

PICz502
PICz602

PICz702
PICz802

PICz902
PICz1002

PICz1101

PIEXP302

PIEXP3050

NLIOV3

PIEXP3025
P
I
I
G
L
0
J
1 NLJ1

PIEXP3028

P
I
I
G
L
0
J
2 NLJ2

PIEXP3021

P
I
I
G
L
0
J
4 NLJ4

PIEXP3029

P
I
I
G
L
0
J
5 NLJ5

PIEXP3030

P
I
I
G
L
0
K
1 NLK1

PIEXP3032

P
I
I
G
L
0
K
2 NLK2

PIEXP3031

P
I
I
G
L
0
K
3 NLK3

PIEXP3027

P
I
I
G
L
0
K
4 NLK4

PIEXP3034

P
I
I
G
L
0
L
1 NLL1

PIEXP3036

P
I
I
G
L
0
L
2 NLL2

PIEXP3035

P
I
I
G
L
0
L
3 NLL3

PIEXP3033

P
I
I
G
L
0
L
4 NLL4

PIEXP3038

P
I
I
G
L
0
M
1 NLM1

PIEXP3040

P
I
I
G
L
0
M
2 NLM2

PIEXP3039

P
I
I
G
L
0
M
3 NLM3

PIEXP3037

P
I
I
G
L
0
M
4 NLM4

P
I
I
G
L
0
M
8 NLM8

P
I
I
G
L
0
M
9 NLM9

PIOscF03
PIR11201

P
I
I
G
L
0
B
2

P
I
I
G
L
0
B
1

PIEXP3042

P
I
I
G
L
0
N
1 NLN1

PIEXP3044

P
I
I
G
L
0
N
2 NLN2

PIEXP3043

P
I
I
G
L
0
N
3 NLN3

PIEXP3041

P
I
I
G
L
0
N
4 NLN4

P
I
I
G
L
0
N
6

PIOscF05

NLN6

P
I
I
G
L
0
N
7 NLN7

P
I
I
G
L
0
N
8 NLN8

P
I
I
G
L
0
N
9 NLN9

P
I
I
G
L
0
N
1
0 NLN10

P
I
I
G
L
0
N
1
1 NLN11

PIEXP3046

P
I
I
G
L
0
P
1 NLP1

PIEXP3045

P
I
I
G
L
0
P
2 NLP2

P
I
I
G
L
0
P
4 NLP4

P
I
I
G
L
0
P
5 NLP5

P
I
I
G
L
0
P
6 NLP6

P
I
I
G
L
0
P
7 NLP7

P
I
I
G
L
0
P
8 NLP8

P
I
I
G
L
0
P
9 NLP9

P
I
I
G
L
0
P
1
0 NLP10

P
I
I
G
L
0
P
1
1

PIPOR0RESET0

NLP11

PIEXP3048

P
I
I
G
L
0
R
1 NLR1

PIEXP3047

P
I
I
G
L
0
R
2 NLR2

P
I
I
G
L
0
R
3 NLR3

P
I
I
G
L
0
R
4 NLR4

P
I
I
G
L
0
R
5 NLR5

PIEXP2012

P
I
I
G
L
0
R
6 NLR6

PIEXP2010

P
I
I
G
L
0
R
7 NLR7

PIEXP208

P
I
I
G
L
0
R
8 NLR8

PIEXP206

P
I
I
G
L
0
R
9 NLR9

P
I
E
X
P
2
0
3

P
I
I
G
L
0
R
1
0 NLR10

P
I
I
G
L
0
R
1
1 NLR11

P
I
I
G
L
0
R
1
2 NLR12

P
I
I
G
L
0
R
1
3 NLR13

P
I
I
G
L
0
T
2 NLT2

P
I
I
G
L
0
T
3 NLT3

P
I
I
G
L
0
T
4 NLT4

P
I
I
G
L
0
T
5 NLT5

PIEXP2011

P
I
I
G
L
0
T
6 NLT6

P
I
E
X
P
2
0
9

P
I
I
G
L
0
T
7 NLT7

PIEXP207

P
I
I
G
L
0
T
8 NLT8

PIEXP205

P
I
I
G
L
0
T
9 NLT9

P
I
I
G
L
0
T
1
0 NLT10

P
I
I
G
L
0
T
1
1 NLT11

P
I
I
G
L
0
T
1
2 NLT12

P
I
I
G
L
0
T
1
3 NLT13

P
I
I
G
L
0
T
1
4 NLT14

PICx102
PICx202

PICx302
PICx402

PICx502
PICx602

PICx702
PICx802

PICx902
PICx1002

PICx1101
NLVCC105

Figure A.1.: HaLOEWEn schematics - FPGA page 1/2

154 A. HaLOEWEn Design Files

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
Revision

Size

A
4

D
ate:

19.04.2011
Sheet of

File:
C

:\U
sers\..\FPG

A
_2.SchD

oc
D

raw
n By:

G
N

D
G

N
D

G
N

D

G
N

D

+1.5V+2.5V

1
2

3
4

5
6

7
8

9
10

JTA
G

FPG
A

 H
eader 5X

2

TD
I

TD
O

TC
K

TM
S

TR
ST

TC
K

TD
O

TM
S

V
PU

M
P

TD
I

+2.5V
TR

ST

G
N

D

330nF
C

110
10nF
C

111

G
N

D V
PU

M
P

+2.5V
+3.3V

G
N

D

G
N

D

IO
V

0

IO
V

0

A
2

A
3

A
4

B
4

C
5

C
6

C
4

A
5

B
5

B
6

A
6

D
6

C
7

B
7

A
7

D
7

D
8

B
8

A
8

C
8

E8C
9

B
9

A
9

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

B
4

B
5

B
6

B
7

B
8

B
9

B
10

B
11

B
12

B
13

A
15

A
14

D
9

E9C
10

A
10

B
10

D
10

A
11

C
11

B
11

D
11

A
12

C
13

B
14

C
12

B
12

B
13

A
13

A
14

A
15

13
2

J0H
D

R
_JM

P

13
2

J1

H
D

R
_JM

P

13
2

J2

H
D

R
_JM

P

BANK 0
G

A
A

0/IO
00R

SB
0

A
2

G
A

A
1/IO

01R
SB

0
A

3

G
A

B
0/IO

02R
SB

0
A

4

G
A

B
1/IO

03R
SB

0
B

4

G
A

C
0/IO

04R
SB

0
C

5

G
A

C
1/IO

05R
SB

0
C

6

IO
11R

SB
0

C
4

IO
16R

SB
0

A
5

IO
17R

SB
0

B
5

IO
21R

SB
0

B
6

IO
22R

SB
0

A
6

IO
23R

SB
0

D
6

IO
25R

SB
0

C
7

IO
27R

SB
0

B
7

IO
28R

SB
0

A
7

IO
29R

SB
0

D
7

IO
33R

SB
0

D
8

IO
34R

SB
0

B
8

IO
35R

SB
0

A
8

IO
36R

SB
0

C
8

IO
38R

SB
0

E8

IO
42R

SB
0

C
9

IO
44R

SB
0

B
9

IO
45R

SB
0

A
9

IO
46R

SB
0

D
9

IO
47R

SB
0

E9

IO
49R

SB
0

C
10

IO
50R

SB
0

A
10

IO
51R

SB
0

B
10

IO
52R

SB
0

D
10

IO
55R

SB
0

A
11

IO
56R

SB
0

C
11

IO
57R

SB
0

B
11

IO
60R

SB
0

D
11

IO
61R

SB
0

A
12

IO
62R

SB
0

C
13

IO
71R

SB
0

B
14

G
B

C
0/IO

72R
SB

0
C

12

G
B

C
1/IO

73R
SB

0
B

12

G
B

B
0/IO

74R
SB

0
B

13

G
B

B
1/IO

75R
SB

0
A

13

G
BA

0/IO
76R

SB
0

A
14

G
BA

1/IO
77R

SB
0

A
15

IG
LA

A
G

L1000V
2-FG

256

G
N

D
A

1

G
N

D
A

16

G
N

D
F6

G
N

D
F11

G
N

D
G

7

G
N

D
G

8

G
N

D
G

9

G
N

D
G

10

G
N

D
H

7

G
N

D
H

8

G
N

D
H

9

G
N

D
H

10

G
N

D
J7

G
N

D
J8

G
N

D
J9

G
N

D
J10

G
N

D
K

7

G
N

D
K

8

G
N

D
K

9

G
N

D
K

10

G
N

D
L6

G
N

D
L11

G
N

D
T1

G
N

D
T16

G
N

D
Q

B
3

G
N

D
Q

D
5

G
N

D
Q

D
12

G
N

D
Q

N
5

G
N

D
Q

N
12

G
N

D
Q

R
15

IG
LG

A
G

L1000V
2-FG

256

TD
I

R
14

TD
O

R
16

TC
K

P13

TM
S

T15

TR
ST

P15

IG
LE

A
G

L1000V
2-FG

256

V
C

C
PLF

J3
V

C
O

M
PLF

H
4

IG
LH

A
G

L1000V
2-FG

256

V
C

C
F7

V
C

C
F8

V
C

C
F9

V
C

C
F10

V
C

C
G

6

V
C

C
G

11

V
C

C
H

6

V
C

C
H

11

V
C

C
J6

V
C

C
J11

V
C

C
K

6

V
C

C
K

11

V
C

C
L7

V
C

C
L8

V
C

C
L9

V
C

C
L10

V
CCIB

0
E6

V
CCIB

0
E7

V
CCIB

0
E10

V
CCIB

0
E11

V
CCIB

1
F12

V
CCIB

1
G

12

V
CCIB

1
K

12

V
CCIB

1
L12

V
CCIB

2
M

6

V
CCIB

2
M

7

V
CCIB

2
M

10

V
CCIB

2
M

11

V
CCIB

3
F5

V
CCIB

3
G

5

V
CCIB

3
K

5

V
CCIB

3
L5

V
JTA

G
N

14

V
M

V
0

C
14

V
M

V
0

E5

V
M

V
1

E12

V
M

V
1

P12

V
M

V
2

M
12

V
M

V
2

P3

V
M

V
3

C
3

V
M

V
3

M
5

V
PU

M
P

P14

IG
LF

A
G

L1000V
2-FG

256

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

EX
P0

H
eader 24X

2

IO
V

0
B

14

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

D
6

D
7

D
8

D
9

D
10

D
11

E8E9

IO
V

3

Program
m

ing
H

eader

Expansion
H

eader 0

BANK 1

IO
78N

D
B

1
C

15

G
BA

2/IO
78PD

B
1

B
15

IO
79N

D
B

1
D

15

G
B

B
2/IO

79PD
B

1
D

14

IO
80N

D
B

1
D

13

G
B

C
2/IO

80PD
B

1
E13

IO
81N

D
B

1
C

16

IO
81PD

B
1

B
16

IO
82N

SB
1

D
16

IO
83N

PB
1

F13

IO
83PPB

1
E14

IO
86N

PB
1

F14

IO
86PPB

1
E15

IO
87N

D
B

1
F16

IO
87PD

B
1

E16

IO
88N

D
B

1
G

16

IO
88PD

B
1

G
15

IO
90N

PB
1

G
14

IO
90PPB

1
F15

G
C

C
0/IO

91N
PB

1
H

12

G
C

C
1/IO

91PPB
1

G
13

G
C

B
0/IO

92N
PB

1
H

16

G
C

B
1/IO

92PPB
1

H
13

G
CA

0/IO
93N

PB
1

H
14

G
CA

1/IO
93PPB

1
J13

G
CA

2/IO
94PSB

1
J16

IO
95N

PB
1

K
13

G
C

B
2/IO

95PPB
1

J12

IO
96N

PB
1

H
15

G
C

C
2/IO

96PPB
1

J14

IO
100N

PB
1

K
14

IO
100PPB

1
J15

IO
102N

D
B

1
K

15

IO
102PD

B
1

K
16

IO
106N

D
B

1
L14

IO
106PD

B
1

L15

IO
107N

D
B

1
M

16

IO
107PD

B
1

L16

IO
110N

D
B

1
M

13

IO
110PD

B
1

N
13

G
D

C
0/IO

111N
D

B
1

N
15

G
D

C
1/IO

111PD
B

1
M

15

G
D

B
0/IO

112N
PB

1
L13

G
D

B
1/IO

112PPB
1

M
14

G
D

A
0/IO

113N
D

B
1

P16

G
D

A
1/IO

113PD
B

1
N

16

IG
LB

A
G

L1000V
2-FG

256

G
13

C
15

B
15

D
15

D
14

D
13

E13
C

16
B

16
D

16
F13
E14
F14
E15
F16
E16
G

16
G

15
G

14
F15
H

12

H
16

H
13

H
14

J13
J16
K

13
J12
H

15
J14
K

14
J15
K

15
K

16
L14
L15
M

16
L16
M

13
N

13
N

15
M

15
L13
M

14
P16
N

16

G
N

D

G
N

D

B
16

C
16

D
16

E16

F16

G
16

H
16

J16

K
16

G
13

H
13

J13

F13

E13

D
13

K
13

L14

M
14

N
13

C
15

D
15

E15

F15

G
15

H
15

J15

D
14

E14

F14

G
14

H
14

J14

K
14

L13

M
13

IO
V

1

H
12

J12

IO
V

1

Expansion
H

eader 1

1 2

V
Ext

H
eader 2

G
N

D

K
15

L16
L15
M

16
M

15
N

16
N

15
P16

B
15

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

EX
P1

H
eader 25X

2

IO
V

1

IO
V

0

+2.5V

Technische U
niversität D

arm
stadt

Forshungsgruppe M
ikroelektronische System

e

C
annot

open
file
D

:\athe
ne_sw

_
150x17
9.bm

p

FPG
A

 IG
LO

O
 A

G
L1000V

5
Sheet 2 of 2

13
2

JPLL

H
D

R
_JM

P

+1.5V

PIC11001 PIC11002
COC110

PIC11101 PIC11102
COC111

PIEXP001
PIEXP002

P
I
E
X
P
0
0
3

P
I
E
X
P
0
0
4

P
I
E
X
P
0
0
5

P
I
E
X
P
0
0
6

P
I
E
X
P
0
0
7

P
I
E
X
P
0
0
8

PIEXP009
PIEXP0010

PIEXP0011
PIEXP0012

PIEXP0013
PIEXP0014

PIEXP0015
PIEXP0016

PIEXP0017
PIEXP0018

PIEXP0019
PIEXP0020

PIEXP0021
PIEXP0022

PIEXP0023
PIEXP0024

PIEXP0025
PIEXP0026

PIEXP0027
PIEXP0028

PIEXP0029
PIEXP0030

PIEXP0031
PIEXP0032

PIEXP0033
PIEXP0034

PIEXP0035
PIEXP0036

PIEXP0037
PIEXP0038

PIEXP0039
PIEXP0040

PIEXP0041
PIEXP0042

PIEXP0043
PIEXP0044

PIEXP0045
PIEXP0046

PIEXP0047
PIEXP0048

COEXP0
P
I
E
X
P
1
0
1

P
I
E
X
P
1
0
2

P
I
E
X
P
1
0
3

P
I
E
X
P
1
0
4

PIEXP105
PIEXP106

P
I
E
X
P
1
0
7

P
I
E
X
P
1
0
8

P
I
E
X
P
1
0
9

PIEXP1010

PIEXP1011
PIEXP1012

PIEXP1013
PIEXP1014

PIEXP1015
PIEXP1016

PIEXP1017
PIEXP1018

PIEXP1019
PIEXP1020

PIEXP1021
PIEXP1022

PIEXP1023
PIEXP1024

PIEXP1025
PIEXP1026

PIEXP1027
PIEXP1028

PIEXP1029
PIEXP1030

PIEXP1031
PIEXP1032

PIEXP1033
PIEXP1034

PIEXP1035
PIEXP1036

PIEXP1037
PIEXP1038

PIEXP1039
PIEXP1040

PIEXP1041
PIEXP1042

PIEXP1043
PIEXP1044

PIEXP1045
PIEXP1046

PIEXP1047
PIEXP1048

PIEXP1049
PIEXP1050

COEXP1
P
I
I
G
L
0
A
2

P
I
I
G
L
0
A
3

P
I
I
G
L
0
A
4

P
I
I
G
L
0
A
5

P
I
I
G
L
0
A
6

P
I
I
G
L
0
A
7

P
I
I
G
L
0
A
8

P
I
I
G
L
0
A
9

P
I
I
G
L
0
A
1
0

P
I
I
G
L
0
A
1
1

P
I
I
G
L
0
A
1
2

P
I
I
G
L
0
A
1
3

P
I
I
G
L
0
A
1
4

P
I
I
G
L
0
A
1
5

P
I
I
G
L
0
B
4

P
I
I
G
L
0
B
5

P
I
I
G
L
0
B
6

P
I
I
G
L
0
B
7

P
I
I
G
L
0
B
8

P
I
I
G
L
0
B
9

P
I
I
G
L
0
B
1
0

P
I
I
G
L
0
B
1
1

P
I
I
G
L
0
B
1
2

P
I
I
G
L
0
B
1
3

P
I
I
G
L
0
B
1
4

P
I
I
G
L
0
C
4

P
I
I
G
L
0
C
5

P
I
I
G
L
0
C
6

P
I
I
G
L
0
C
7

P
I
I
G
L
0
C
8

P
I
I
G
L
0
C
9

P
I
I
G
L
0
C
1
0

P
I
I
G
L
0
C
1
1

P
I
I
G
L
0
C
1
2

P
I
I
G
L
0
C
1
3

P
I
I
G
L
0
D
6

P
I
I
G
L
0
D
7

P
I
I
G
L
0
D
8

P
I
I
G
L
0
D
9

P
I
I
G
L
0
D
1
0

P
I
I
G
L
0
D
1
1

P
I
I
G
L
0
E
8

P
I
I
G
L
0
E
9

COIGLA

P
I
I
G
L
0
B
1
5

P
I
I
G
L
0
B
1
6

P
I
I
G
L
0
C
1
5

P
I
I
G
L
0
C
1
6

P
I
I
G
L
0
D
1
3

P
I
I
G
L
0
D
1
4

P
I
I
G
L
0
D
1
5

P
I
I
G
L
0
D
1
6

P
I
I
G
L
0
E
1
3

P
I
I
G
L
0
E
1
4

P
I
I
G
L
0
E
1
5

P
I
I
G
L
0
E
1
6

P
I
I
G
L
0
F
1
3

P
I
I
G
L
0
F
1
4

P
I
I
G
L
0
F
1
5

P
I
I
G
L
0
F
1
6

P
I
I
G
L
0
G
1
3

P
I
I
G
L
0
G
1
4

P
I
I
G
L
0
G
1
5

P
I
I
G
L
0
G
1
6

P
I
I
G
L
0
H
1
2

P
I
I
G
L
0
H
1
3

P
I
I
G
L
0
H
1
4

P
I
I
G
L
0
H
1
5

P
I
I
G
L
0
H
1
6

P
I
I
G
L
0
J
1
2

P
I
I
G
L
0
J
1
3

P
I
I
G
L
0
J
1
4

P
I
I
G
L
0
J
1
5

P
I
I
G
L
0
J
1
6

P
I
I
G
L
0
K
1
3

P
I
I
G
L
0
K
1
4

P
I
I
G
L
0
K
1
5

P
I
I
G
L
0
K
1
6

P
I
I
G
L
0
L
1
3

P
I
I
G
L
0
L
1
4

P
I
I
G
L
0
L
1
5

P
I
I
G
L
0
L
1
6

P
I
I
G
L
0
M
1
3

P
I
I
G
L
0
M
1
4

P
I
I
G
L
0
M
1
5

P
I
I
G
L
0
M
1
6

P
I
I
G
L
0
N
1
3

P
I
I
G
L
0
N
1
5

P
I
I
G
L
0
N
1
6

P
I
I
G
L
0
P
1
6

COIGLB

P
I
I
G
L
0
P
1
3

P
I
I
G
L
0
P
1
5

P
I
I
G
L
0
R
1
4

P
I
I
G
L
0
R
1
6

P
I
I
G
L
0
T
1
5 COIGLE

P
I
I
G
L
0
C
3

P
I
I
G
L
0
C
1
4

P
I
I
G
L
0
E
5

P
I
I
G
L
0
E
6

P
I
I
G
L
0
E
7

P
I
I
G
L
0
E
1
0

P
I
I
G
L
0
E
1
1

P
I
I
G
L
0
E
1
2

P
I
I
G
L
0
F
5

P
I
I
G
L
0
F
7

P
I
I
G
L
0
F
8

P
I
I
G
L
0
F
9

P
I
I
G
L
0
F
1
0

P
I
I
G
L
0
F
1
2

P
I
I
G
L
0
G
5

P
I
I
G
L
0
G
6

P
I
I
G
L
0
G
1
1

P
I
I
G
L
0
G
1
2

P
I
I
G
L
0
H
6

P
I
I
G
L
0
H
1
1

P
I
I
G
L
0
J
6

P
I
I
G
L
0
J
1
1

P
I
I
G
L
0
K
5

P
I
I
G
L
0
K
6

P
I
I
G
L
0
K
1
1

P
I
I
G
L
0
K
1
2

P
I
I
G
L
0
L
5

P
I
I
G
L
0
L
7

P
I
I
G
L
0
L
8

P
I
I
G
L
0
L
9

P
I
I
G
L
0
L
1
0

P
I
I
G
L
0
L
1
2

P
I
I
G
L
0
M
5

P
I
I
G
L
0
M
6

P
I
I
G
L
0
M
7

P
I
I
G
L
0
M
1
0

P
I
I
G
L
0
M
1
1

P
I
I
G
L
0
M
1
2

P
I
I
G
L
0
N
1
4

P
I
I
G
L
0
P
3

P
I
I
G
L
0
P
1
2

P
I
I
G
L
0
P
1
4

COIGLF

P
I
I
G
L
0
A
1

P
I
I
G
L
0
A
1
6

P
I
I
G
L
0
B
3

P
I
I
G
L
0
D
5

P
I
I
G
L
0
D
1
2

P
I
I
G
L
0
F
6

P
I
I
G
L
0
F
1
1

P
I
I
G
L
0
G
7

P
I
I
G
L
0
G
8

P
I
I
G
L
0
G
9

P
I
I
G
L
0
G
1
0

P
I
I
G
L
0
H
7

P
I
I
G
L
0
H
8

P
I
I
G
L
0
H
9

P
I
I
G
L
0
H
1
0

P
I
I
G
L
0
J
7

P
I
I
G
L
0
J
8

P
I
I
G
L
0
J
9

P
I
I
G
L
0
J
1
0

P
I
I
G
L
0
K
7

P
I
I
G
L
0
K
8

P
I
I
G
L
0
K
9

P
I
I
G
L
0
K
1
0

P
I
I
G
L
0
L
6

P
I
I
G
L
0
L
1
1

P
I
I
G
L
0
N
5

P
I
I
G
L
0
N
1
2

P
I
I
G
L
0
R
1
5

P
I
I
G
L
0
T
1

P
I
I
G
L
0
T
1
6

COIGLG

P
I
I
G
L
0
H
4

P
I
I
G
L
0
J
3 COIGLH

PIJ001

PIJ002

PIJ003 COJ0

PIJ101

PIJ102

PIJ103 COJ1

PIJ201

PIJ202

PIJ203

COJ2

PIJPLL01

PIJPLL02

PIJPLL03

COJPLL

PIJTAG01
PIJTAG02

PIJTAG03
PIJTAG04

P
I
J
T
A
G
0
5

P
I
J
T
A
G
0
6

P
I
J
T
A
G
0
7

P
I
J
T
A
G
0
8

P
I
J
T
A
G
0
9

PIJTAG010

COJTAG

PIVExt01

P
I
V
E
x
t
0
2

COVExt

P
I
I
G
L
0
F
7

P
I
I
G
L
0
F
8

P
I
I
G
L
0
F
9

P
I
I
G
L
0
F
1
0

P
I
I
G
L
0
G
6

P
I
I
G
L
0
G
1
1

P
I
I
G
L
0
H
6

P
I
I
G
L
0
H
1
1

P
I
I
G
L
0
J
6

P
I
I
G
L
0
J
1
1

P
I
I
G
L
0
K
6

P
I
I
G
L
0
K
1
1

P
I
I
G
L
0
L
7

P
I
I
G
L
0
L
8

P
I
I
G
L
0
L
9

P
I
I
G
L
0
L
1
0

PIJPLL01

PIJ003

PIJ103

PIJ203

P
I
E
X
P
0
0
3

P
I
I
G
L
0
A
2 NLA2

P
I
E
X
P
0
0
4

P
I
I
G
L
0
A
3 NLA3

P
I
E
X
P
0
0
7

P
I
I
G
L
0
A
4 NLA4

PIEXP0010
P
I
I
G
L
0
A
5 NLA5

PIEXP0013

P
I
I
G
L
0
A
6 NLA6

PIEXP0017

P
I
I
G
L
0
A
7 NLA7

PIEXP0021

P
I
I
G
L
0
A
8 NLA8

PIEXP0025

P
I
I
G
L
0
A
9 NLA9

PIEXP0029

P
I
I
G
L
0
A
1
0 NLA10

PIEXP0033

P
I
I
G
L
0
A
1
1 NLA11

PIEXP0037

P
I
I
G
L
0
A
1
2 NLA12

PIEXP0039

P
I
I
G
L
0
A
1
3 NLA13

PIEXP0044

P
I
I
G
L
0
A
1
4 NLA14

PIEXP0045

P
I
I
G
L
0
A
1
5 NLA15

P
I
E
X
P
0
0
5

P
I
I
G
L
0
B
4 NLB4

P
I
E
X
P
0
0
8

P
I
I
G
L
0
B
5 NLB5

PIEXP0011

P
I
I
G
L
0
B
6 NLB6

PIEXP0015

P
I
I
G
L
0
B
7 NLB7

PIEXP0019

P
I
I
G
L
0
B
8 NLB8

PIEXP0027

P
I
I
G
L
0
B
9 NLB9

PIEXP0031

P
I
I
G
L
0
B
1
0 NLB10

PIEXP0035

P
I
I
G
L
0
B
1
1 NLB11

PIEXP0040

P
I
I
G
L
0
B
1
2 NLB12

PIEXP0041

P
I
I
G
L
0
B
1
3 NLB13

PIEXP0043

P
I
I
G
L
0
B
1
4 NLB14

P
I
E
X
P
1
0
4

P
I
I
G
L
0
B
1
5 NLB15

P
I
E
X
P
1
0
3

P
I
I
G
L
0
B
1
6 NLB16

P
I
E
X
P
0
0
6

P
I
I
G
L
0
C
4 NLC4

PIEXP009

P
I
I
G
L
0
C
5 NLC5

PIEXP0012

P
I
I
G
L
0
C
6 NLC6

PIEXP0016

P
I
I
G
L
0
C
7 NLC7

PIEXP0020

P
I
I
G
L
0
C
8 NLC8

PIEXP0023

P
I
I
G
L
0
C
9 NLC9

PIEXP0030

P
I
I
G
L
0
C
1
0 NLC10

PIEXP0034

P
I
I
G
L
0
C
1
1 NLC11

PIEXP0038

P
I
I
G
L
0
C
1
2 NLC12

PIEXP0042

P
I
I
G
L
0
C
1
3 NLC13

PIEXP106

P
I
I
G
L
0
C
1
5 NLC15

PIEXP105

P
I
I
G
L
0
C
1
6 NLC16

PIEXP0014

P
I
I
G
L
0
D
6 NLD6

PIEXP0022

P
I
I
G
L
0
D
7 NLD7

PIEXP0024

P
I
I
G
L
0
D
8 NLD8

PIEXP0028

P
I
I
G
L
0
D
9 NLD9

PIEXP0032

P
I
I
G
L
0
D
1
0 NLD10

PIEXP0036

P
I
I
G
L
0
D
1
1 NLD11

PIEXP1010
P
I
I
G
L
0
D
1
3 NLD13

P
I
E
X
P
1
0
8

P
I
I
G
L
0
D
1
4 NLD14

P
I
E
X
P
1
0
7

P
I
I
G
L
0
D
1
5 NLD15

P
I
E
X
P
1
0
9

P
I
I
G
L
0
D
1
6 NLD16

PIEXP0018

P
I
I
G
L
0
E
8 NLE8

PIEXP0026

P
I
I
G
L
0
E
9 NLE9

PIEXP1014

P
I
I
G
L
0
E
1
3 NLE13

PIEXP1012

P
I
I
G
L
0
E
1
4 NLE14

PIEXP1011

P
I
I
G
L
0
E
1
5 NLE15

PIEXP1013

P
I
I
G
L
0
E
1
6 NLE16

PIEXP1018

P
I
I
G
L
0
F
1
3 NLF13

PIEXP1016

P
I
I
G
L
0
F
1
4 NLF14

PIEXP1015

P
I
I
G
L
0
F
1
5 NLF15

PIEXP1017

P
I
I
G
L
0
F
1
6 NLF16

PIEXP1022

P
I
I
G
L
0
G
1
3 NLG13

PIEXP1020

P
I
I
G
L
0
G
1
4 NLG14

PIEXP1019

P
I
I
G
L
0
G
1
5 NLG15

PIEXP1021

P
I
I
G
L
0
G
1
6 NLG16

PIC11001
PIC11101

PIEXP002

PIEXP0048

P
I
E
X
P
1
0
2

PIEXP1050

P
I
I
G
L
0
A
1

P
I
I
G
L
0
A
1
6

P
I
I
G
L
0
B
3

P
I
I
G
L
0
D
5

P
I
I
G
L
0
D
1
2

P
I
I
G
L
0
F
6

P
I
I
G
L
0
F
1
1

P
I
I
G
L
0
G
7

P
I
I
G
L
0
G
8

P
I
I
G
L
0
G
9

P
I
I
G
L
0
G
1
0

P
I
I
G
L
0
H
4

P
I
I
G
L
0
H
7

P
I
I
G
L
0
H
8

P
I
I
G
L
0
H
9

P
I
I
G
L
0
H
1
0

P
I
I
G
L
0
J
7

P
I
I
G
L
0
J
8

P
I
I
G
L
0
J
9

P
I
I
G
L
0
J
1
0

P
I
I
G
L
0
K
7

P
I
I
G
L
0
K
8

P
I
I
G
L
0
K
9

P
I
I
G
L
0
K
1
0

P
I
I
G
L
0
L
6

P
I
I
G
L
0
L
1
1

P
I
I
G
L
0
N
5

P
I
I
G
L
0
N
1
2

P
I
I
G
L
0
R
1
5

P
I
I
G
L
0
T
1

P
I
I
G
L
0
T
1
6

PIJPLL03

PIJTAG02

PIJTAG010

PIVExt01

PIEXP1026

P
I
I
G
L
0
H
1
2 NLH12

PIEXP1024

P
I
I
G
L
0
H
1
3 NLH13

PIEXP1027

P
I
I
G
L
0
H
1
4 NLH14

PIEXP1023

P
I
I
G
L
0
H
1
5 NLH15

PIEXP1025

P
I
I
G
L
0
H
1
6 NLH16

PIEXP001

PIEXP0046

PIEXP0047

NLIOV0

P
I
I
G
L
0
C
1
4

P
I
I
G
L
0
E
5

P
I
I
G
L
0
E
6

P
I
I
G
L
0
E
7

P
I
I
G
L
0
E
1
0

P
I
I
G
L
0
E
1
1

PIJ002

P
I
E
X
P
1
0
1

PIEXP1049

NLIOV1

P
I
I
G
L
0
E
1
2

P
I
I
G
L
0
F
1
2

P
I
I
G
L
0
G
1
2

P
I
I
G
L
0
K
1
2

P
I
I
G
L
0
L
1
2

P
I
I
G
L
0
P
1
2

PIJ102

P
I
I
G
L
0
C
3

P
I
I
G
L
0
F
5

P
I
I
G
L
0
G
5

P
I
I
G
L
0
K
5

P
I
I
G
L
0
L
5

P
I
I
G
L
0
M
5

PIJ202

PIEXP1028

P
I
I
G
L
0
J
1
2 NLJ12

PIEXP1030

P
I
I
G
L
0
J
1
3 NLJ13

PIEXP1032

P
I
I
G
L
0
J
1
4 NLJ14

PIEXP1031

P
I
I
G
L
0
J
1
5 NLJ15

PIEXP1029

P
I
I
G
L
0
J
1
6 NLJ16

PIEXP1034

P
I
I
G
L
0
K
1
3 NLK13

PIEXP1036

P
I
I
G
L
0
K
1
4 NLK14

PIEXP1035

P
I
I
G
L
0
K
1
5 NLK15

PIEXP1033

P
I
I
G
L
0
K
1
6 NLK16

PIEXP1038

P
I
I
G
L
0
L
1
3 NLL13

PIEXP1040

P
I
I
G
L
0
L
1
4 NLL14

PIEXP1039

P
I
I
G
L
0
L
1
5 NLL15

PIEXP1037

P
I
I
G
L
0
L
1
6 NLL16

PIEXP1042

P
I
I
G
L
0
M
1
3 NLM13

PIEXP1044

P
I
I
G
L
0
M
1
4 NLM14

PIEXP1043

P
I
I
G
L
0
M
1
5 NLM15

PIEXP1041

P
I
I
G
L
0
M
1
6 NLM16

PIJTAG04

PIJ201

P
I
V
E
x
t
0
2

P
I
I
G
L
0
J
3

PIJPLL02

PIEXP1046

P
I
I
G
L
0
N
1
3 NLN13

PIEXP1047

P
I
I
G
L
0
N
1
5 NLN15

PIEXP1045

P
I
I
G
L
0
N
1
6 NLN16

PIEXP1048

P
I
I
G
L
0
P
1
6 NLP16

P
I
I
G
L
0
P
1
3

PIJTAG01
NLTCK

P
I
I
G
L
0
R
1
4

P
I
J
T
A
G
0
9

NLTDI

P
I
I
G
L
0
R
1
6

PIJTAG03
NLTDO

P
I
I
G
L
0
T
1
5

P
I
J
T
A
G
0
5

NLTMS

P
I
I
G
L
0
P
1
5

P
I
J
T
A
G
0
8 NLTRST

P
I
I
G
L
0
M
6

P
I
I
G
L
0
M
7

P
I
I
G
L
0
M
1
0

P
I
I
G
L
0
M
1
1

P
I
I
G
L
0
M
1
2

P
I
I
G
L
0
N
1
4

P
I
I
G
L
0
P
3

PIJ001

PIJ101

P
I
J
T
A
G
0
6 NLVJTAG

PIC11002
PIC11102

P
I
I
G
L
0
P
1
4

P
I
J
T
A
G
0
7

NLVPUMP

Figure A.2.: HaLOEWEn schematics - FPGA page 2/2

155

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
Revision

Size

A
4

D
ate:

19.04.2011
Sheet of

File:
C

:\U
sers\..\Pow

er.SchD
oc

D
raw

n By:

1uF

C
2

4.7uF
C

3
1uF
C

1

1
2

PB
atG

N
D

V
BA

T

G
N

D
G

N
D

V
BA

T

1uF

C
5

1uF
C

4

1uF

C
8

1uF
C

7

4.7uF
C

6
4.7uF
C

9
G

N
D

G
N

D

G
N

D

V
BA

T

G
N

DG
N

D

G
N

D

V
BA

T

C+ 6

C- 4

V
O

U
T

5

G
N

D
2

SH
D

N
3

V
IN

1

LTC
3250-1.5

B
uck C

onv.

dc1
LTC

3240-2.5

G
N

D
1

V
in

2

V
out

3

C+
4

C
-

5

SH
D

6

dc2

LTC
3240-3.3

G
N

D
1

V
in

2

V
out

3

C+
4

C
-

5

SH
D

6

dc3

+2.5V
+3.3V

+1.5V

D
C

_SH
D

D
C

_SH
D

Buck C
onverter

1.5V

Buck-Boost
Converter 2.5V

Buck-Boost
Converter 3.3V

1
1

2
2

3
3

S1SS312SA
H

4

V
BA

T

1 3
2

J5H
D

R
_JM

P

1 3
2

J4H
D

R
_JM

P

V
BA

T
V

BA
T

1
2

V
BTG

N
D

+2.5V

Technische U
niversität D

arm
stadt

Forshungsgruppe M
ikroelektronische System

e

C
annot

open
file
D

:\athe
ne_sw

_
150x17
9.bm

p

B
uck-B

oost C
onverters

PIC101 PIC102
COC1

PIC201
PIC202

COC2

PIC301 PIC302
COC3

PIC401 PIC402
COC4

PIC501
PIC502

COC5

PIC601 PIC602
COC6

PIC701 PIC702
COC7

PIC801
PIC802

COC8

PIC901 PIC902
COC9

P
I
d
c
1
0
1

P
I
d
c
1
0
2

P
I
d
c
1
0
3

PIdc104

P
I
d
c
1
0
5

PIdc106

COdc1

P
I
d
c
2
0
1

P
I
d
c
2
0
2

P
I
d
c
2
0
3

P
I
d
c
2
0
4

P
I
d
c
2
0
5

P
I
d
c
2
0
6

COdc2

P
I
d
c
3
0
1

P
I
d
c
3
0
2

P
I
d
c
3
0
3

P
I
d
c
3
0
4

P
I
d
c
3
0
5

P
I
d
c
3
0
6

COdc3

PIJ401

PIJ402

PIJ403

COJ4

PIJ501

PIJ502

PIJ503

COJ5

PIPBat01PIPBat02

COPBat

P
I
S
1
0
1

P
I
S
1
0
2

P
I
S
1
0
3

COS1

PIVBT01PIVBT02

COVBT

PIC302
P
I
d
c
1
0
5

PIC602
P
I
d
c
2
0
3

NL0205V
PIC902

P
I
d
c
3
0
3

PIJ401
PIJ501

PIC101
PIC301

PIC401

PIC601

PIC701

PIC901

P
I
d
c
1
0
2

P
I
d
c
2
0
1

P
I
d
c
3
0
1

PIPBat02
PIVBT02

P
I
S
1
0
3

PIVBT01
PIPBat01

P
I
S
1
0
1

P
I
d
c
3
0
6

PIJ402

P
I
d
c
1
0
3PIJ502

PIC802

P
I
d
c
3
0
5

PIC801

P
I
d
c
3
0
4

PIC502

P
I
d
c
2
0
5

PIC501

P
I
d
c
2
0
4

PIC202

PIdc106
PIC201

PIdc104

PIC102
PIC402

PIC702
P
I
d
c
1
0
1

P
I
d
c
2
0
2

P
I
d
c
2
0
6

P
I
d
c
3
0
2

PIJ403
PIJ503

P
I
S
1
0
2

NLVbat

Figure A.3.: HaLOEWEn schematics - Power

156 A. HaLOEWEn Design Files

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
Revision

Size

A
4

D
ate:

19.04.2011
Sheet of

File:
C

:\U
sers\..\R

FIC
.SchD

oc
D

raw
n By:

1.5K

R
53

33
R

51

33
R

52

56K

R
54

47pF
C

51

47pF
C

52

10pF C
53

1uF
C

54

15pF
C

72
15pF
C

73

18pF

C
55

18pF

C
56

1pF

C
57

1pF
C

58
2.2pF
C

59
2.2pF
C

61

2.2pF

C
60

27pF
C

70
27pF
C

71

+2.5V

G
N

D

G
N

D

G
N

D

G
N

D

2nH L57

2nH

L56

G
N

D

G
N

D

G
N

D
G

N
D

D
G

N
D

_U
SB

1

U
SB

_P
2

U
SB

_N
3

D
V

D
D

_U
SB

4

P1_5
5

P1_4
6

P1_3
7

P1_2
8

P1_1
9

D
V

D
D

2
10

P1_011

P0_712

P0_613

P0_514

P0_415

P0_316

P0_217

P0_118

P0_019

RESET_N20

A
V

D
D

5
21

X
O

SC
_Q

1
22

X
O

SC
_Q

2
23

A
V

D
D

3
24

R
F_P

25

R
F_N

26

A
V

D
D

2
27

A
V

D
D

1
28

A
V

D
D

4
29

RBIA
S

30

AVDD6 31

XOSC32K/P2_4 32

XOSC32K/P2_3 33

P2_2 34

P2_1 35

P2_0 36

P1_7 37

P1_6 38

DVDD1 39

DCOUPL 40

RFuC
 SoC

CC2531

R
FSoC

G
N

D

32kH
z-X

Tal-CM
200C

2
2

3
3

1
1

4
4

X
tal1

32M
H

z-X
Tal-C

S325

1
1

4
4

3
3

2
2

X
tal2

G
N

D
G

N
D

G
N

D
G

N
D

D
1

LED
2

50 O
hm

2.4-2.5G
H

z

feed1

A
nt

SM
A

 A
ntenna

100
R

55
LED

_1

SPI_M
O

SI

SPI_M
ISO

C
S_FPG

A

SPI_SC
K

A
D

C
_0

A
D

C
_1

P1_0

D
C

_SH
D

FPG
A

_3

FPG
A

_2

FPG
A

_4

FPG
A

_5
12

3 4
PB

1

PushB
utton

1
2

3
4

5
6

7
8

9
10

H
PR

O
G

H
eader 5X

2

D
C

_PR
O

G
D

D
_PR

O
G

R
ESET

G
N

D

DD_PROG

DC_PROG

Program
m

ing
H

eader

RESET

LED
s

C
S

1

Q
2

W
P

3

G
N

D
4

D
5

SC
L

6

H
O

LD
7

V
C

C
8

FM
em

ST95041W
M

1

Enternal Flash
M

em
ory

100nF
C

64

G
N

D

G
N

D

R
13

C
S_FLA

SH

SPI_M
O

SI
SPI_SC

K

PU
SH

_BU
TTO

N

PUSH_BUTTON

SPI_SC
K

C
S_FLA

SH

SPI_M
O

SI

R
13

3.3V
C

C
_U

SB

D
2

LED
2

100
R

56
LED

_2

P0_7

100nF
C

66
100nF
C

67
100nF
C

65
1uF
C

68

ADC_0

ADC_1

ADC_6

D
3

LED
2

G
N

D

3.3VCC_USB

D
4

LED
2

G
N

D

FLA
SH

_FR
EEZE

2

IN
4

O
U

T
5

EN
3

R
EF

1

G
N

D

U
1

LM
4120A

IM
5-3.3

3.3V
C

C
_U

SB

VCC_USB

G
N

D

0.022uF
C

69

G
N

D

1
2JS1 1

2JS2

+2.5V

+2.5V

+2.5V

+2.5V

+2.5V

G
N

D

+2.5V

D
ecoupling

Technische U
niversität D

arm
stadt

Forshungsgruppe M
ikroelektronische System

e

C
annot

open
file
D

:\athe
ne_sw

_
150x17
9.bm

p

M
CU

 TI C
C

2531

+2.5V

V
C

C
5

D
-

4

D
+

3

N
C

2

G
N

D
1

usbc

U
SB

 M
IN

I B
 R

EC
P

100
R

61

FPG
A

_1

FPG
A

_0

A
D

C
_6

1
2JS3

FPG
A

_6

1 3
2

J6H
D

R
_JM

P

1 3
2

J7H
D

R
_JM

P

P0_7

P1_0

LED
_1

LED
_2

FPG
A

_7

FPG
A

_8

G
N

D

FEED

PC
B

_A
nt

A
ntenna

0 O
hm

R
ant1

0 O
hm

R
ant2

G
N

D

PIAnt01

COAnt

PIC5101 PIC5102
COC51

PIC5201 PIC5202
COC52PIC5301 PIC5302

COC53

PIC5401PIC5402
COC54

PIC5501
PIC5502

COC55

PIC5601
PIC5602

COC56

PIC5701
PIC5702

COC57

PIC5801 PIC5802
COC58

PIC5901 PIC5902
COC59

PIC6001
PIC6002 COC60

PIC6101 PIC6102
COC61

PIC6401 PIC6402
COC64

PIC6501 PIC6502
COC65PIC6601 PIC6602

COC66PIC6701 PIC6702
COC67PIC6801 PIC6802

COC68

PIC6901 PIC6902
COC69

PIC7001PIC7002
COC70

PIC7101PIC7102
COC71

PIC7201 PIC7202
COC72

PIC7301 PIC7302
COC73

P
I
D
1
0
1

P
I
D
1
0
2

COD1

P
I
D
2
0
1

P
I
D
2
0
2

COD2

PID301PID302
COD3 PID401PID402

COD4

P
I
F
M
e
m
0
1

P
I
F
M
e
m
0
2

P
I
F
M
e
m
0
3

PIFMem04

P
I
F
M
e
m
0
5

P
I
F
M
e
m
0
6

PIFMem07

P
I
F
M
e
m
0
8

COFMem

PIHPROG01
PIHPROG02

PIHPROG03
PIHPROG04

PIHPROG05
PIHPROG06

PIHPROG07
PIHPROG08

PIHPROG09
PIHPROG010

COHPROG

PIJ601

PIJ602

PIJ603

COJ6PIJ701

PIJ702

PIJ703

COJ7

PIJS101
PIJS102COJS1 PIJS201

PIJS202COJS2 PIJS301
PIJS302COJS3

PIL5601
PIL5602

COL56

PIL5701 PIL5702COL57

PIPB101

PIPB102
PIPB103

PIPB104 COPB1

PIPCB0Ant0FEED

PIPCB0Ant0GND COPCB0Ant

PIR5101
PIR5102 COR51

PIR5201
PIR5202 COR52

PIR5301 PIR5302COR53

PIR5401
PIR5402 COR54

PIR5501
PIR5502

COR55

PIR5601
PIR5602

COR56

PIR6101 PIR6102COR61

PIRant101
PIRant102 CORant1

PIRant201PIRant202 CORant2

P
I
R
F
S
o
C
0
1

P
I
R
F
S
o
C
0
2

P
I
R
F
S
o
C
0
3

P
I
R
F
S
o
C
0
4

P
I
R
F
S
o
C
0
5

P
I
R
F
S
o
C
0
6

P
I
R
F
S
o
C
0
7

P
I
R
F
S
o
C
0
8

P
I
R
F
S
o
C
0
9

P
I
R
F
S
o
C
0
1
0

PIRFSoC011PIRFSoC012PIRFSoC013PIRFSoC014PIRFSoC015PIRFSoC016PIRFSoC017PIRFSoC018PIRFSoC019PIRFSoC020

P
I
R
F
S
o
C
0
2
1

P
I
R
F
S
o
C
0
2
2

PIRFSoC023

P
I
R
F
S
o
C
0
2
4

PIRFSoC025

P
I
R
F
S
o
C
0
2
6

P
I
R
F
S
o
C
0
2
7

P
I
R
F
S
o
C
0
2
8

P
I
R
F
S
o
C
0
2
9

PIRFSoC030

PIRFSoC031
PIRFSoC032

PIRFSoC033
PIRFSoC034

PIRFSoC035
PIRFSoC036

PIRFSoC037
PIRFSoC038

PIRFSoC039
PIRFSoC040

CORFSoC

P
I
U
1
0
1

PIU102

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
5

COU1

P
I
u
s
b
c
0
1

P
I
u
s
b
c
0
2

P
I
u
s
b
c
0
3

P
I
u
s
b
c
0
4

P
I
u
s
b
c
0
5

COusbc

PIXtal101

PIXtal102
PIXtal103

PIXtal104COXtal1

PIXtal201
PIXtal202

PIXtal203
PIXtal204

COXtal2

PIC6401

PIC6502
PIC6602

PIC6702
PIC6802

P
I
D
1
0
1

P
I
D
2
0
1

P
I
F
M
e
m
0
3

PIFMem07

P
I
F
M
e
m
0
8

PIHPROG02

PIR6102

P
I
R
F
S
o
C
0
1
0

P
I
R
F
S
o
C
0
2
1

P
I
R
F
S
o
C
0
2
4

P
I
R
F
S
o
C
0
2
7

P
I
R
F
S
o
C
0
2
8

P
I
R
F
S
o
C
0
2
9

PIRFSoC031
PIRFSoC039

NL0205V

PIC5301

PIC6902

PID301

PIR5302

P
I
R
F
S
o
C
0
4

P
I
U
1
0
5

NL303VCC0USB

PIJS101

PIRFSoC019

NLADC00

PIJS201

PIRFSoC018

NLADC01

PIJS301 PIRFSoC013NLADC06
P
I
F
M
e
m
0
1

P
I
R
F
S
o
C
0
9

NLCS0FLASH

P
I
R
F
S
o
C
0
8

PIHPROG03

PIRFSoC034

NLDC0PROG

PIRFSoC038

PIHPROG04

PIRFSoC035

NLDD0PROG

PIRFSoC037

PIJS102 PIJS202

PIRFSoC017
PIRFSoC016

PIRFSoC015
PIRFSoC014

PIJS302
PIJ603

PIJ703

PIC5102

PIC5202

PIC5401

PIC5801

PIC5901
PIC6101

PIC6402

PIC6501
PIC6601

PIC6701
PIC6801

PIC6901

PIC7002
PIC7102

PIC7202
PIC7302

PID302

PID402

PIFMem04 PIHPROG01

PIL5702

PIPCB0Ant0GND

PIR5401
P
I
R
F
S
o
C
0
1

PIU102

P
I
u
s
b
c
0
1

PIJ601

PIR5502

NLLED01

PIJ701

PIR5602

NLLED02

PIXtal204

PIXtal202

PIXtal103
PIXtal102

P
I
u
s
b
c
0
2

P
I
U
1
0
1

PIR5402
PIRFSoC030

PIR5202

P
I
u
s
b
c
0
4

PIR5102

PIR5301

P
I
u
s
b
c
0
3

PIPCB0Ant0FEED
PIRant101

PIPB104

PIPB103

PIPB101
PIR6101

PIHPROG010

PIHPROG08

PIHPROG06
PIHPROG05

PID401
PIHPROG09

P
I
D
2
0
2

PIR5601

P
I
D
1
0
2

PIR5501

PIC7301

PIRFSoC032

PIXtal101

PIC7201PIRFSoC033

PIXtal104

PIC7101

PIRFSoC023

PIXtal203

PIC7001

P
I
R
F
S
o
C
0
2
2

PIXtal201

PIC6001PIC6102 PIRant102
PIRant202

PIC5702

PIC5902

PIC6002

PIL5602
PIC5602

PIC5802

PIL5601
PIC5601

PIRFSoC025

PIC5502
PIC5701

PIL5701
PIC5501

P
I
R
F
S
o
C
0
2
6

PIC5402PIRFSoC040
PIC5201

PIR5201

P
I
R
F
S
o
C
0
3

PIC5101

PIC5302

PIR5101

P
I
R
F
S
o
C
0
2

PIAnt01PIRant201

PIJ602

PIRFSoC012NLP007

PIJ702

PIRFSoC011NLP100

PIPB102

PIRFSoC036 NLPUSH0BUTTON
PIHPROG07

PIRFSoC020

NLRESET

P
I
F
M
e
m
0
2

P
I
R
F
S
o
C
0
6

NLSPI0MISO
P
I
F
M
e
m
0
5

P
I
R
F
S
o
C
0
5

NLSPI0MOSI

P
I
F
M
e
m
0
6

P
I
R
F
S
o
C
0
7

NLSPI0SCK

P
I
U
1
0
3

P
I
U
1
0
4

P
I
u
s
b
c
0
5NLVCC0USB

Figure A.4.: HaLOEWEn schematics - RF SoC

157

B Details of implemented algorithms

B.1 High-Diffusion

The general flow-chart of the High-Diffusion algorithm [MNS06] is depicted in Figure B.1. Only a specific
case of the High-Diffusion algorithm with specifications suitable for the utilization in a wireless sensor
network is described here. The algorithm takes a 128 bits plaintext data as input, which is encrypted and
coded to a 192 bits ciphertext with a 128 bits key. The structure of the algorithm is close to the Rijndael
AES [Nat11].

All operations take place in the GF(256) Galois Field with Rijndael generator polynomial g(x) =
x8 + x4 + x3 + x + 1. A block data is arranged in a u× v matrix of bytes. The algorithm is based on ten
successive rounds composed of the following operations:

• Key mixing operation σ: the key mixing operation at a round r is a bitwise XOR operation of the
state x r

σ with the round key kr resulting in x r+1
γ :

x r+1
γ =

�

x r
σ ⊕ kr

�

(B.1)

• Substitution operation γ: this operation is non-linear reversible transformation identical to the
Rijndael S-Box denoted Sγ. The extended S-Box operation applies the substitution on a 192 bits array.
The output x r

π of the substitution operation at round r follows:

x r
π = Sγ

�

x r
γ

�

(B.2)

• Transpose operation π: this operation intends to diffuse non-linear effect to all elements of the state
matrix. The output x r

θ
of the transpose operation at round r follows:

x r
θ =

�

x r
π

�T
(B.3)

• High-Diffusion encoding operation θ : each column of the input matrix x r
θ

is coded with an HD code
[4, 4,256] and the generator matrix G:

G =

1 1 3 2
2 1 1 3
3 2 1 1
1 3 2 1

(B.4)

During the ninth round, the High-Diffusion code [4,6,256] with the generator matrix Gex t is used:

Gex t =

1 1 3 2 203 127
2 1 1 3 86 141
3 2 1 1 64 189
1 3 2 1 42 101

(B.5)

Both G and Gex t are MDS matrices. If ci(x) denotes the ith column of the matrix x , the High-Diffusion
encoding operation is such that:

ci(x
r
σ) =

¨
�

ci(x r
θ
)T · G

�T
r ∈ [0,8], i = 0 . . . 4

�

ci(x r
θ
)T · Gex t

�T
r = 9, i = 0 . . . 4

(B.6)

159

Plaintext (128 bits)

Key (128 bits)

S-Box

Transpose

Mix Columns

S-Box

Transpose

Mix Columns
Code

Key Expansion

Key Expansion
Extended

S-Box
Extended

Transpose
Key Expansion

Extended

Cipher Text (192 bits)

9th round

10th round

Figure B.1.: Flow chart of the High Diffusion algorithm

160 B. Details of implemented algorithms

The key scheduling process is the same as the one used
for Rijndael AES. However, after the ninth round, the size
of the data is extended to 192 bits because of the mixing
with the extended MDS matrix. For a secure key mixing
procedure, the size of the key is then extended as well using
the same procedure as the AES-192 cipher. Similarly, extended
mixing in earlier rounds for enhanced error correction can
be supported at the key mixing level with AES-256 key
scheduling schemes.

Deciphering and decoding are performed in the reverse
way by using inverse S-Box and inverse Matrix Mixing Ginv

(Eq. 1). Decoding is performed row-wise during the second
round. When extended MDS Matrix Mixing has been used
several times for encoding, decoding on rows and columns is
then similarly performed during successive rounds. Each row
is serially decoded using a specific High-Diffusion decoder.
This core handles the computation of the syndrome, the
computation of the error locator polynomial by using the
Euclid’s algorithm and the computation of the roots of this
polynomial by using Chien search algorithm [8]. Data is then
deciphered through eighth inverse rounds. If one row was not
be successfully decoded, the error will be propagated during
the deciphering process (avalanche effect), making the whole
packet unusable.

One of the main advantages of applying this algorithm
to real communication systems resides in the support of
encryption-decryption or coding-decoding processes detached
one from another. This can be achieved by either perform-
ing the Matrix Mixing operation only with the square ma-
trix (encryption-decryption only) or using the multiplication
with Gext, the decoder and inverse Matrix Mixing operation
(coding-decoding only).

The feasibility and the functionalities of this algorithm
have been successfully validated using a MATLAB model.
However, the security level and the error correction capability
must be evaluated further.

III. EVALUATION

This section aims to evaluate the expected features of
the joined “cryptographic” / “error correction” algorithm via
standardized statistical tests. First, the randomness of the
generated data has been assessed (Section III-A), followed by
an estimation of the error correction capability of the code
(Section III-B).

A. Cipher

One of the most used criteria to evaluate the security of
an encryption algorithm is based on the pseudo-randomness
measurement of the encrypted data. The major risk of intro-
ducing redundancy through the coding operation is the ap-
parition of linearity in the data. Any notable relation between
the plaintext and the ciphertext is a weakness that can be
exploited to retrieve the key. During the AES selection process,
randomness tests were applied to the candidate algorithms in
order to verify the pseudo-randomness of their output for nine

Fig. 2. Results of NITS Randomness Tests

different scenarios [9]. Fifteen randomness indicators were
then evaluated for each given scenario.

We performed the test suite provided by the US National
Institute of Standards and Technology (NITS) [10] on the re-
sults obtained from our implementation of the High-Diffusion
code (one extended Matrix Mixing round only). Each scenario
was evaluated via at least 128 sequences 1,000,000-bits long
similarly to the official tests perfomed for the AES algorithm
selection [9]. Statistical analysis is performed on the results
in order to evaluate or detect any relation between input and
output data. For each test, specific patterns are applied on the
input key or on the input data. If no pattern or feature can be
extracted from the output data, the test is considered as passed.
As it can be observed on Figure 2, all tests on the presented
algorithm were successfully passed in all given scenarios, thus
guaranteeing the pseudo-randomness of the output data and
the quality of the encryption algoritm. Each input pattern is
represented by a different mark on the graph. The X-axis
lists the different features analyzed on the output data. Each
evaluation gives a result in form of a P-Value indicating the
proportion of passed tests. According to the recommandations
of NITS [10], a threshold of acceptable proportions has been
set using a significance level α = 0.01.

As shown in [3], the linear and differential cryptanalysis of
the here designed cipher shows similar security as the Rijndael
AES. The strong non-linearity of the S-Box coupled to the
high diffusion attribute particularly contributes to its resistance
to classical attacks. In particular, the utilization of longer keys
for the last rounds of the encryption process increases the
security of the algorithm.

B. Error Correction Capability

The maximum error correction capability of this High-
Diffusion algorithm can be analytically evaluated based on
its equivalence with a Reed-Solomon code. The code allows
to correct up to four errors s or eight erasures r (errors with
known positions). The total number of correctable errors s and
erasures r is described by Equation 3.

Figure B.2.: Results of NIST pseudo-randomness tests for the High-Diffusion algorithm

• Key Extension operation: this operation is identical to the AES-128 key scheduling algorithm [Nat11].
During round 9 and round 10, the extended key scheduling algorithm as used for the AES-192 block
cipher is used. If the same key is used for consecutive block encryption, the extended key needs to
be computed only once if sufficient memory is available to hold the complete vector.

Deciphering and decoding is performed in the reverse way by using the equivalent inverse function at
each step. In particular, this implies the utilization of the inverse S-Box S−1 for the substitution and the
inverse generator matrix Ginv for the High-Diffusion Decoding:

Ginv =

11 14 9 13
13 11 14 9
9 13 11 14
14 9 13 11

. (B.7)

Error detection and error correction must be performed by a regular decoder core similar to the one used
for Reed-Solomon codes.

A mandatory requirement to validate the security of an encryption algorithm is to demonstrate the
pseudo-randomness of the ciphertext. For this purpose, the US National Institute of Standards and
Technology (NIST) made a series of benchmark tests available. In each test scenario, a set of randomness
metrics are evaluated for a statistically significant amount of input vectors. These metrics must stay in a
predefined range in order to demonstrate pseudo-randomness. The results of this test performed on the
presented HD code are visible in Figure B.2.

B.1. High-Diffusion 161

Hyperbolic Linear Circular

y → 0

δi = sgn(x i yi) δi = sgn(x i yi) δi = sgn(yi)
x → Kh

q

x2
0 − y2

0 x → x0 x → Kc

q

x2
0 + y2

0
z→ z0 + tanh−1(y0

x0
) z→ z0 +

y0
x0

z→ z0 + atan2(y0, x0)
�

�

�tanh−1(y0
x0
)
�

�

�≤ 1.1182
�

�

�

y0
x0

�

�

�≤ 1 |atan2(y0, x0)| ≤ 1.7433

z→ 0

δi = − sgn(zi) δi = − sgn(zi) δi = − sgn(zi)
x → Kh [x0 cosh(z0)− y0 sinh(z0)] x → x0 x → Kc [x0 cos(z0)− y0 sin(z0)]
y → Kh [x0 cosh(z0) + y0 sinh(z0)] y → y0 + x0z0 y → Kc [x0 cos(z0) + y0 sin(z0)]

�

�tanh−1(z0)
�

�≤ 1.1182 |z0| ≤ 1 |z0| ≤ 1.7433

Table B.1.: CORDIC modes of operation

B.2 Range-extended CORDIC

The generalized CORDIC algorithm is based on the set of three iterative equations [HHB91]:
�

x i+1
yi+1

�

=
�

1 mδi2
−i

−δi2
−i 1

��

x i
yi

�

(B.8)

zi+1 = zi +δiθi (B.9)

where m ∈ {−1, 0,1} determines the class of functions being evaluated (respectively hyperbolic, linear
and circular), δi ∈ {0, 1} is an internal parameter selected such that y (vectoring mode) or z (rotation
mode) is converging towards zero and

θi =

tanh−1(2−i) i f m= −1

2−i i f m= 0

tan−1(2−i) i f m= 1.

(B.10)

The six different operation modes of CORDIC result in the functionalities summarized in Table B.1
where

Kc =
n
∏

i=0

p

1+ 2−2i, (B.11)

Kh =
n
∏

i=0

p

1− 2−2i. (B.12)

According to Hu & al. [HHB91], the convergence range of the CORDIC by adding iterations for negative
indexes such that for i ≤ 0:

�

x i+1
yi+1

�

=
�

1 mδi(1− 2i−2)
−δi(1− 2i−2) 1

��

x i
yi

�

(B.13)

and

θi =

tanh−1(1− 2i−2) i f m= −1

2−i i f m= 0

tan−1(1− 2i−2) i f m= 1.

(B.14)

Using six additional iterations [HHB91], the convergence range can be increased such as
�

�

�tanh−1(y0
x0
)
�

�

� or
�

�tanh−1(z0)
�

�≤ 12.4264 in hyperbolic mode,
�

�

�

y0
x0

�

�

� or |z0| ≤ 32 in linear mode. Three additional iterations

are sufficient to cover the full angle range in circular mode [HHB91]. It must be noted that the value of
Kc and Kh must be adapted to the new iterations.

162 B. Details of implemented algorithms

-

-

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

-

-

-

-

-

-

-

-

-

-

Figure B.3.: 8-FFT decimation in frequency with perfect shuffle address pattern

B.3 Corrected fixed-point Fast Fourier Transform

The discrete Fourier Transform of a complex sequence a = [a0, a1, . . . , aN−1] of length N is the complex
sequence c = [c0, c1, . . . , cN−1] defined by

c =F [a] (B.15)

c j =
N−1
∑

k=0

akW jk j = 0,1, . . . , N − 1 (B.16)

with W = e−2πi/N .
When N = 2M , one can rewrite the expression of F by decomposing the indexes j and k. This

results in so-called radix-2 FFTs where one can distinguish between Decimation-In-Time (DIT) and
Decimation-In-Frequency (DIF) formats. A radix-2 DIF FFT can be written as [Arn10]

F [a](even) N/2
= F

�

a(left) + a(right)
�

(B.17)

F [a](odd) N/2
= F

�

S
�

a(left) − a(right)
��

(B.18)

where F [a](even) and F [a](odd) denote respectively the length N/2 subsequences of F [a] with even and
odd indexes, F [a](left) and F [a](right) denote the first and second half of F [a] and S · a denotes the
sequence with elements ake−πik/N . The basis operation of equations B.18 is known as the radix-2 DIF
butterfly. By applying indexes substitution such as in [Sto71], butterfly operations can be arranged in
a perfect shuffle network as depicted by Figure B.3 for an FFT of size N = 8. The FFT is then computed
upon M sequences Am, m= 1, . . . , M of length N such as

Aeven
m+1

N/2
= Aleft

m + Aright
m (B.19)

Aodd
m+1

N/2
= Wm

�

Aleft
m − Aright

m

�

(B.20)

The implementation of the butterfly with finite word length implies that the results must be rounded or
truncated after each operation. When considering the complex multiplication z1z2 = (a1 + i b1)(a2 + i b2),

B.3. Corrected fixed-point Fast Fourier Transform 163

the rounded or truncated result denoted by [.]T is usually such as [z1z2]T = [a1a2 − b1 b2]T + i[a1 b2 +
b1a2]T . Only the case of truncation is considered here since rounding operations cost a significant
amount of logic that is not affordable within the function units considered in the frame of this thesis.
The data is assumed to be in the fixed-point format Q0.(b − 1) where b is the word length. If the
LSBs of the input data are uniformly distributed, the variance of the error caused by the truncation is
such as σT = 2−2b/12. Besides, a common method to avoid overflow in additions is to shift the array
Am by one bit before Am+1 is computed. This operation causes an additional loss of accuracy. In the
end, the sequence ĉ[k], k = 0, . . . , N − 1 computed by the fixed-point FFT has an non-zero mean error
ε[k] = ĉ[k]− c[k], k = 0, . . . , N − 1 such as [TTL76]:

ε[k] =
−2−(b−1)

2

¨

(1+ i)(N(M − t(k))) +
M−2
∑

m=1

km

�

Nδ(m, t(k))− (1+ (−1)km+1)2m
�

«

(B.21)

with

k =
M
∑

j=1

k j2
j−1,

t(k) =

¨

0 k = 0

max {i : ki = 1} otherwise,

δ(x , y) =

¨

0 x 6= y
1 x = y.

Figure B.4 shows the power spectrum of a 512-FFT from a sinus signal at the normalized frequency 0.2π
radians per sample processed by the radix-2 fixed-point DIF FFT. The non-zero mean error introduced by
the implementation is compensated.

164 B. Details of implemented algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0
M

ag
ni

tu
de

 (
10

*lo
g 1

0(
|X

|²)

Normalized Frequency (π rad/sample)

Uncorrected Q0.15 Spectrum
Corrected Q0.15 Spectrum
Double precision Spectrum

(a) Magnitude spectrum of the signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ag

ni
tu

de
 (

|X
|)

Normalized frequency (π rad/sample)

Absolute error corrected spectrum
Absolute error original spectrum
Correction function

(b) Magnitude spectrum of the absolute error

Figure B.4.: Error correction for fixed-point FFT

B.3. Corrected fixed-point Fast Fourier Transform 165

References
[Adi] ADIS16000/ADIS16229 Digital MEMS Vibration Sensor with Embedded RF Transceiver. Rev.

0. Analog Devices. Norwood, MA, USA, 2013. URL: http://www.analog.com/static/
imported-files/data_sheets/ADIS16000_16229.pdf.

[Adr] LOEWE-Zentrum AdRIA - Home page. URL: http://www.loewe-adria.de/.

[AGP09] R. S. Allgayer, M. Götz, and C. E. Pereira. “FemtoNode: Reconfigurable and Customiz-
able Architecture for Wireless Sensor Networks”. In: Anal., Architectures and Modelling
of Embedded Syst., Proc. 3rd IFIP TC 10 Int. Embedded Syst. Symp. (IESS). Ed. by A. Ret-
tberg et al. Vol. 310. Langenargen, Germany: Springer, Sept. 2009, pp. 302–309. DOI:
10.1007/978-3-642-04284-3_28.

[Ahm10] J. Ahmad. “A fractional open circuit voltage based maximum power point tracker for
photovoltaic arrays”. In: Proc. 2nd Int. Conf. on Software Technology and Eng. (ICSTE). Vol. 1.
San Juan, PR, USA: IEEE, Oct. 2010, pp. V1–247–V1–250. DOI: 10.1109/ICSTE.2010.
5608868.

[Aho+07] T. Ahola et al. “Wearable FPGA Based Wireless Sensor Platform”. In: Proc. 29th Annu. Int.
Conf. of the IEEE Eng. in Medicine and Biology Soc. (EMBS). Lyon, France: IEEE, Aug. 2007,
pp. 2288–2291. DOI: 10.1109/IEMBS.2007.4352782.

[Aky+02] I. F. Akyildiz et al. “A Survey on Sensor Networks”. In: IEEE Commun. Mag. 40.8 (2002),
pp. 102–114. ISSN: 0163-6804. DOI: 10.1109/MCOM.2002.1024422.

[Alt] Embedded Design Handbook. ver 2.9. Altera. San Jose, CA, USA, July 2011. URL: http:
//www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf.

[AM12] H. Ahmed and M. Masmoudi. “Compute intensive in advanced wireless sensor node:
Potential solution”. In: Proc. Int. Conf. Commun., Comput. and Applicat. (MIC-CCA). Is-
tanbul, Turkey: IEEE, Oct. 2012, pp. 77–83. URL: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=6516787.

[ANT13] ANT™. ANT Message Protocol and Usage. D00000652 Rev 5.0. Jan. 2013. URL: http:
//www.thisisant.com/resources/ant-message-protocol-and-usage.

[Ard] Arduino - Home page. URL: www.arduino.cc.

[Ard+10] W. Arden et al. More-than-Moore. White Paper. International Technology Roadmap for
Semiconductors, 2010. URL: http://www.itrs.net/Links/2010ITRS/IRC-ITRS-MtM-
v2%203.pdf.

[Arn10] J. Arndt. “Matters Computational; Ideas, Algorithms, Source Code”. Chap. The Fourier
Transfom, pp. 410-439. [online]. 2010. URL: http://www.jjj.de/fxt/fxtbook.pdf.

[Atm] ATMEGA128RFA1, 8-bit Microcontroller with Low Power 2.4GHz Transceiver for ZigBee
and IEEE 802.15.4. Revision D. Preliminary. Atmel. San Jose, CA, USA, July 2012. URL:
http://www.atmel.com/Images/doc8266.pdf.

[Avr] Atmel AVR2016: RZRAVEN Hardware User’s Guide [Application Note]. 8117E-AVR-07/12.
Atmel. San Jose, CA, USA, 2012. URL: http://www.atmel.com/Images/doc8117.pdf.

[Bac+10] A. Bachir et al. “MAC Essentials for Wireless Sensor Networks”. In: IEEE Commun. Surveys
and Tutorials 12.2 (2010), pp. 222–248. ISSN: 1553-877X. DOI: 10.1109/SURV.2010.
020510.00058.

167

http://www.analog.com/static/imported-files/data_sheets/ADIS16000_16229.pdf
http://www.analog.com/static/imported-files/data_sheets/ADIS16000_16229.pdf
http://www.loewe-adria.de/
http://dx.doi.org/10.1007/978-3-642-04284-3_28
http://dx.doi.org/10.1109/ICSTE.2010.5608868
http://dx.doi.org/10.1109/ICSTE.2010.5608868
http://dx.doi.org/10.1109/IEMBS.2007.4352782
http://dx.doi.org/10.1109/MCOM.2002.1024422
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6516787
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6516787
http://www.thisisant.com/resources/ant-message-protocol-and-usage
http://www.thisisant.com/resources/ant-message-protocol-and-usage
www.arduino.cc
http://www.itrs.net/Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf
http://www.itrs.net/Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf
http://www.jjj.de/fxt/fxtbook.pdf
http://www.atmel.com/Images/doc8266.pdf
http://www.atmel.com/Images/doc8117.pdf
http://dx.doi.org/10.1109/SURV.2010.020510.00058
http://dx.doi.org/10.1109/SURV.2010.020510.00058

[Bau+03] V. Baumgarte et al. “PACT XPP - A Self-Reconfigurable Data Processing Architecture”.
In: J. Supercomput. 26.2, Kluwer Academic Publishers (Sept. 2003), pp. 167–184. ISSN:
0920-8542. DOI: 10.1023/A:1024499601571.

[Bei12] T. Bein. Maintenance on Demand - MoDe - Advanced Maintenance Concepts for Commercial
Vehicles. presented at the Automotive Future Innovations Conf. Galway, Ireland, July 2012.

[Bel+05] S. J. Bellis et al. “Development of Field Programmable Modular Wireless Sensor Network
Nodes for Ambient Systems”. In: Comput. Commun. 28.13, Elsevier (Aug. 2005), pp. 1531–
1544. ISSN: 0140-3664. DOI: 10.1016/j.comcom.2004.12.045.

[Bel+08] A. Bellini et al. “High Frequency Resolution Techniques for Rotor Fault Detection of In-
duction Machines”. In: IEEE Trans. Ind. Electron. 55.12 (Dec. 2008), pp. 4200–4209. ISSN:
0278-0046. DOI: 10.1109/TIE.2008.2007004.

[Bel08] G. Bell. “Bell’s Law for the Birth and Death of Computer Classes”. In: Commun. ACM 51.1
(Jan. 2008), pp. 86–94. ISSN: 0001-0782. DOI: 10.1145/1327452.1327453.

[BGN08] C. Brunelli, F. Garzia, and J. Nurmi. “A coarse-grain reconfigurable architecture for mul-
timedia applications featuring subword computation capabilities”. In: J. Real-Time Image
Processing 3.1-2, Springer Verlag (2008), pp. 21–32. ISSN: 1861-8200. DOI: 10.1007/s11554-
008-0071-3.

[Bha+05] S. Bhatti et al. “MANTIS OS: An Embedded Multithreaded Operating System for Wireless
Micro Sensor Platforms”. In: Mob. Netw. Appl. 10.4, Kluwer Academic Publishers (Aug.
2005), pp. 563–579. ISSN: 1383-469X. DOI: 10.1007/s11036-005-1567-8.

[BL12] A. Brant and G.G.F. Lemieux. “ZUMA: An Open FPGA Overlay Architecture”. In: Proc.
IEEE 20th Ann. Int. Symp. Field-Programmable Custom Computing Mach. (FCCM). Toronto,
Canada: IEEE, Apr. 2012, pp. 93–96. DOI: 10.1109/FCCM.2012.25.

[Blu10] Bluetooth®. Specification of the Bluetooth System. Version 4.0. June 2010. URL: https:
//www.bluetooth.org/en-us/specification/adopted-specifications.

[BMR02] F. Burghardt, S. Mellers, and J. M. Rabaey. The PicoRadio Test Bed. Tech. Rep. Berkeley, CA,
USA: Berkeley Wireless Research Center, Dec. 2002. URL: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.61.4795.

[Bob07] C. Bobda. “Introduction to Reconfigurable Computing”. In: ed. by C. Bobda. Architectures,
Algorithms, and Applications. Springer Netherlands, 2007. Chap. Introduction, pp. 1–14.
ISBN: 978-1-4020-6100-4. URL: http://www.springer.com/engineering/circuits+%26+
systems/book/978-1-4020-6088-5.

[Bou+07] F. Bouwens et al. “Architectural Exploration of the ADRES Coarse-Grained Reconfigurable Ar-
ray”. In: Reconfigurable Computing: Architectures, Tools and Applicat., Proc. 3rd Int. Workshop
(ARC). Ed. by Pedro C. Diniz et al. Vol. 4419. Lecture Notes in Computer Science. Mangarat-
iba, Brazil: Springer Berlin Heidelberg, Mar. 2007, pp. 1–13. ISBN: 978-3-540-71430-9. DOI:
10.1007/978-3-540-71431-6_1.

[Bro+11] A. Brokalakis et al. “RESENSE: An Innovative, Reconfigurable, Powerful and Energy Efficient
WSN Node”. In: Proc. IEEE Int. Conf. on Commun. (ICC). Kyoto, Japan: IEEE, June 2011, 5
pages. DOI: 10.1109/icc.2011.5963499.

[BS10] O. Berder and O. Sentieys. “PowWow: Energy-efficient HW/SW techniques for Wireless Sen-
sor Networks”. In: Proc. Workshop on Ultra-Low Power Sensor Networks (WUPS). Hannover,
Germany, Feb. 2010. URL: http://geodes.ict.tuwien.ac.at/PowerSavingHandbook/
WUPS/WUPS%202010/05_WUPS2010_Berder.pdf.

168 References

http://dx.doi.org/10.1023/A:1024499601571
http://dx.doi.org/10.1016/j.comcom.2004.12.045
http://dx.doi.org/10.1109/TIE.2008.2007004
http://dx.doi.org/10.1145/1327452.1327453
http://dx.doi.org/10.1007/s11554-008-0071-3
http://dx.doi.org/10.1007/s11554-008-0071-3
http://dx.doi.org/10.1007/s11036-005-1567-8
http://dx.doi.org/10.1109/FCCM.2012.25
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.4795
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.4795
http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4020-6088-5
http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4020-6088-5
http://dx.doi.org/10.1007/978-3-540-71431-6_1
http://dx.doi.org/10.1109/icc.2011.5963499
http://geodes.ict.tuwien.ac.at/PowerSavingHandbook/WUPS/WUPS%202010/05_WUPS2010_Berder.pdf
http://geodes.ict.tuwien.ac.at/PowerSavingHandbook/WUPS/WUPS%202010/05_WUPS2010_Berder.pdf

[CA12] Davor Capalija and Tarek S. Abdelrahman. “A Coarse-Grain FPGA Overlay for Executing
Data Flow Graphs”. In: Proc. Workshop on the Intersections of Comput. Architecture and
Reconfigurable Logic (CARL). Category 2. Portland, OR, USA, June 2012, 5 pages. URL:
http://www.eecg.toronto.edu/~davor/papers/capalija_carl2012.pdf.

[Cal+05] R. B. Caldas et al. “Low power/high performance self-adapting sensor node architecture”.
In: Proc. 10th IEEE Conf. Emerging Technologies and Factory Automation (ETFA). Vol. 2.
Catania, Italy: IEEE, Sept. 2005, pp. 973–976. DOI: 10.1109/ETFA.2005.1612777.

[Car+09] A. Caracas et al. “Mote Runner: A Multi-language Virtual Machine for Small Embedded
Devices”. In: Proc. 3rd Int. Conf. on Sensor Technologies and Applications (SENSORCOMM).
Athens, Glyfada, Greece: IEEE, June 2009, pp. 117–125. DOI: 10.1109/SENSORCOMM.2009.
27.

[Car+11] A. Caracas et al. “Energy-efficiency through Micro-Managing Communication and Opti-
mizing Sleep”. In: Proc 8th Annu. IEEE Commun. Soc. Conf. on Sensor, Mesh and Ad Hoc
Commun. and Networks (SECON). Salt Lake City, UT, USA: IEEE, June 2011, pp. 55–63. DOI:
10.1109/SAHCN.2011.5984943.

[Cc2a] CC2431, System-on-Chip for 2.4 GHz ZigBee®/ IEEE 802.15.4 with Location Engine. Rev.
2.01. Texas Instruments. Dallas, TX, USA, May 2007. URL: http://www.ti.com/lit/ds/
symlink/cc2431.pdf.

[Cc2b] CC2530, A True System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee Applications.
Texas Instruments. Dallas, TX, USA, Apr. 2009. URL: http://www.ti.com/lit/ds/
swrs081b/swrs081b.pdf.

[Cha+08] A. Chattopadhyay et al. “High-level Modelling and Exploration of Coarse-grained Re-
configurable Architectures”. In: Proc. Design, Automation and Test in Europe Conf. (DATE).
Munich, Germany: EDAA, Mar. 2008, pp. 1334–1339. DOI: 10.1109/DATE.2008.4484864.

[CLP06] B. W. Cook, S. Lanzisera, and K. S. J. Pister. “SoC Issues for RF Smart Dust”. In: Proc. IEEE
94.6 (June 2006), pp. 1177–1196. ISSN: 0018-9219. DOI: 10.1109/JPROC.2006.873620.

[Con] Contiki: The Open Source OS for the Internet of Things - Home page. URL: www.contiki-
os.org.

[CSM08] G. Chalivendra, R. Srinivasan, and N.S. Murthy. “FPGA based re-configurable wireless
sensor network protocol”. In: Proc. Int. Conf. Electronic Design (ICED). Penang, Malaysia:
IEEE, Dec. 2008, 4 pages. DOI: 10.1109/ICED.2008.4786652.

[CSS11] A. Chefi, A. Soudani, and G. Sicard. “Hardware compression solution based on HWT for
low power image transmission in WSN”. In: Proc. Int. Conf. on Microelectronics (ICM).
Hammamet, Tunisia: IEEE, Dec. 2011, 5 pages. DOI: 10.1109/ICM.2011.6177387.

[CTA08] S. Commuri, V. Tadigotla, and M. Atiquzzaman. “Reconfigurable Hardware Based Dynamic
Data Aggregation in Wireless Sensor Networks”. In: Int. J. of Distributed Sensor Networks 4.2,
Hindawi Publishing Corporation (2008), pp. 194 –212. DOI: 10.1080/15501320802001234.

[CY+13] E. Cabal-Yepez et al. “Reconfigurable Monitoring System for Time-Frequency Analysis on
Industrial Equipment Through STFT and DWT”. In: IEEE Trans. Ind. Informat. 9.2 (May
2013), pp. 760–771. ISSN: 1551-3203. DOI: 10.1109/TII.2012.2221131.

[DGV04] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki - A Lightweight and Flexible Operating System
for Tiny Networked Sensors”. In: Proc. 29th Annu. IEEE Int. Conf. on Local Comput. Networks
(LCN). Tampa, FL, USA: IEEE, Nov. 2004, pp. 455–462. DOI: 10.1109/LCN.2004.38.

[Dig] Digilent Inc. - Digital Design Engineer’s Source - Home page. URL: http://www.digilentinc.
com/.

169

http://www.eecg.toronto.edu/~davor/papers/capalija_carl2012.pdf
http://dx.doi.org/10.1109/ETFA.2005.1612777
http://dx.doi.org/10.1109/SENSORCOMM.2009.27
http://dx.doi.org/10.1109/SENSORCOMM.2009.27
http://dx.doi.org/10.1109/SAHCN.2011.5984943
http://www.ti.com/lit/ds/symlink/cc2431.pdf
http://www.ti.com/lit/ds/symlink/cc2431.pdf
http://www.ti.com/lit/ds/swrs081b/swrs081b.pdf
http://www.ti.com/lit/ds/swrs081b/swrs081b.pdf
http://dx.doi.org/10.1109/DATE.2008.4484864
http://dx.doi.org/10.1109/JPROC.2006.873620
www.contiki-os.org
www.contiki-os.org
http://dx.doi.org/10.1109/ICED.2008.4786652
http://dx.doi.org/10.1109/ICM.2011.6177387
http://dx.doi.org/10.1080/15501320802001234
http://dx.doi.org/10.1109/TII.2012.2221131
http://dx.doi.org/10.1109/LCN.2004.38
http://www.digilentinc.com/
http://www.digilentinc.com/

[Dre10] J. Drew. Energy Harvester Produces Power from Local Environment, Eliminating Batteries in
Wireless Sensors. Design Note 483. Milpitas, CA, USA: Linear Technologies, Oct. 2010. URL:
http://cds.linear.com/docs/en/design-note/DN483.pdf.

[Dun+06a] A. Dunkels et al. “Protothreads: Simplifying Event-driven Programming of Memory-
constrained Embedded Systems”. In: Proc. 4th Int. Conf. on Embedded Networked Sensor
Syst. (SenSys). Boulder, CO, USA: ACM, Oct. 2006, pp. 29–42. ISBN: 1-59593-343-3. DOI:
10.1145/1182807.1182811.

[Dun+06b] A. Dunkels et al. “Run-time Dynamic Linking for Reprogramming Wireless Sensor Networks”.
In: Proc. 4th Int. Conf. on Embedded Networked Sensor Syst. (SenSys). Boulder, CO, USA:
ACM, Oct. 2006, pp. 15–28. ISBN: 1-59593-343-3. DOI: 10.1145/1182807.1182810.

[Dun+07] A. Dunkels et al. “Software-based On-line Energy Estimation for Sensor Nodes”. In: Proc.
4th Workshop on Embedded Networked Sensors (EmNets). Cork, Ireland: ACM, June 2007,
pp. 28–32. ISBN: 978-1-59593-694-3. DOI: 10.1145/1278972.1278979.

[Dun11] A. Dunkels. The ContikiMAC Radio Duty Cycling Protocol. Tech. Rep. T2011:13. Stockholm,
Sweden: SICS, Dec. 2011. URL: http://dunkels.com/adam/dunkels11contikimac.pdf.

[EGF96] C. Ebeling, D. C. Green, and P. Franklin. “RaPiD - Reconfigurable Pipelined Datapath”.
In: Field-Programmable Logic: Smart Applicat., New Paradigms, and Compilers. 6th Int.
Workshop on Field-Programmable Logic and Applicat. (FPL). Ed. by R. W. Hartenstein and
M. Glesner. Darmstadt, Germany: Springer - Verlag, Sept. 1996, pp. 126–125. URL: http:
//dl.acm.org/citation.cfm?id=741212.

[EK09] A. El Kateeb. “Hardware Reconfiguration Capability for Third-Generation Sensor Nodes”.
In: IEEE Computer 42.5, IEEE Computer Society (May 2009), pp. 95–97. ISSN: 0018-9162.
DOI: 10.1109/MC.2009.159.

[EKD06] D. Efstathiou, K. Kazakos, and A. Dollas. “Parrotfish: Task Distribution in a Low Cost
Autonomous ad hoc Sensor Network through Dynamic Runtime Reconfiguration”. In: Proc.
14th Annu. IEEE Symp. on Field-Programmable Custom Computing Mach. (FCCM). Napa, CA,
USA: IEEE, Apr. 2006, pp. 319–320. DOI: 10.1109/FCCM.2006.56.

[ELK11] A. Engel, B. Liebig, and A. Koch. “Feasibility Analysis of Reconfigurable Computing in Low-
power Wireless Sensor Applications”. In: Proc. 7th Int. Conf. on Reconfigurable Computing:
Architectures, Tools and Applicat. (ARC). Belfast, UK: Springer-Verlag, Mar. 2011, pp. 261–
268. ISBN: 978-3-642-19474-0. URL: http://dl.acm.org/citation.cfm?id=1987535.
1987570.

[ELK12a] A. Engel, B. Liebig, and A. Koch. “Energy-efficient heterogeneous reconfigurable sensor
node for distributed structural health monitoring”. In: Proc. Conf. on Design and Archi-
tectures for Signal and Image Processing (DASIP). Karlsruhe, Germany: IEEE, Oct. 2012,
8 pages. URL: http://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/
AndreasKochPublications/2012_DASIP.pdf.

[ELK12b] A. Engel, B. Liebig, and A. Koch. “HaLOEWEn: A heterogeneous reconfigurable sensor
node for distributed structural health monitoring”. In: Proc. Conf. on Design and Archi-
tectures for Signal and Image Processing (DASIP). Karlsruhe, Germany: IEEE, Oct. 2012,
2 pages. URL: http://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/
AndreasKochPublications/2012_DASIP-D.pdf.

[Els10] D. Elsberkirch. MoDe Project - Report on the low power sensor interface platform concept.
Deliverable D3.2. Fraunhofer Institute for Integrated Circuits, 2010.

[Els12] D. Elsberkirch. MoDe Project - Evaluation prototype for dynamic sensor node reconfiguration.
Deliverable D3.6. Fraunhofer Institute for Integrated Circuits, 2012.

170 References

http://cds.linear.com/docs/en/design-note/DN483.pdf
http://dx.doi.org/10.1145/1182807.1182811
http://dx.doi.org/10.1145/1182807.1182810
http://dx.doi.org/10.1145/1278972.1278979
http://dunkels.com/adam/dunkels11contikimac.pdf
http://dl.acm.org/citation.cfm?id=741212
http://dl.acm.org/citation.cfm?id=741212
http://dx.doi.org/10.1109/MC.2009.159
http://dx.doi.org/10.1109/FCCM.2006.56
http://dl.acm.org/citation.cfm?id=1987535.1987570
http://dl.acm.org/citation.cfm?id=1987535.1987570
http://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/AndreasKochPublications/2012_DASIP.pdf
http://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/AndreasKochPublications/2012_DASIP.pdf
http://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/AndreasKochPublications/2012_DASIP-D.pdf
http://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/AndreasKochPublications/2012_DASIP-D.pdf

[Eri+09] J. Eriksson et al. “COOJA/MSPSim: Interoperability Testing for Wireless Sensor Networks”.
In: Proc. 2nd Int. Conf. on Simulation Tools and Techniques (SIMUTools). Rome, Italy: ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
Mar. 2009, 27:1–27:7. ISBN: 978-963-9799-45-5. DOI: 10.4108/ICST.SIMUTOOLS2009.
5637.

[ERR05] A. Eswaran, A. Rowe, and R. Rajkumar. “Nano-RK: An Energy-Aware Resource-Centric
RTOS for Sensor Networks”. In: Proc. 26th IEEE Int. Real-Time Systems Symp. (RTSS). Miami,
FL, USA: IEEE, Dec. 2005, 10 pages. DOI: 10.1109/RTSS.2005.30.

[Fav12] B. Favre. “Public Service Review: Maintenance on Demand”. In: Transport 29 (2012),
pp. 76–77.

[FGV13] A. Fatecha, J. Guevara, and E. Vargas. “Reconfigurable architecture for smart sensor node
based on IEEE 1451 standard”. In: Proc. IEEE Sensors Conf. Baltimore, MD, USA: IEEE, Nov.
2013, 4 pages. DOI: 10.1109/ICSENS.2013.6688425.

[FK11] M. O. Farooq and T. Kunz. “Operating Systems for Wireless Sensor Networks: A Survey”. In:
Sensors 11.6, MDPI - Open Access Publishing (May 2011), pp. 5900–5930. ISSN: 1424-8220.
DOI: 10.3390/s110605900.

[FRL09] C.-L. Fok, G.-C. Roman, and C. Lu. “Agilla: A Mobile Agent Middleware for Self-adaptive
Wireless Sensor Networks”. In: ACM Trans. Auton. Adapt. Syst. 4.3 (July 2009), 16:1–16:26.
ISSN: 1556-4665. DOI: 10.1145/1552297.1552299.

[Gas+11a] L. Gasparini et al. “FPGA Implementation of a People Counter for an Ultra-low-power
Wireless Camera Network node”. In: Proc. 7th Conf. on Ph.D. Research in Microelectronics
and Electronics (PRIME). Trento, Italy: IEEE, July 2011, pp. 169–172. DOI: 10.1109/PRIME.
2011.5966244.

[Gas+11b] L. Gasparini et al. “An Ultralow-Power Wireless Camera Node: Development and Perfor-
mance Analysis”. In: IEEE Trans. Instrum. Meas. 60.12 (Dec. 2011), pp. 3824–3832. ISSN:
0018-9456. DOI: 10.1109/TIM.2011.2147630.

[Gay+03] D. Gay et al. “The nesC Language: A Holistic Approach to Networked Embedded Systems”.
In: SIGPLAN Not. 38.5 (May 2003), 11 pages. ISSN: 0362-1340. DOI: 10.1145/780822.
781133.

[GGK10] C. U. Grosse, S. D. Glaser, and M. Krüge. “Initial development of wireless acoustic emission
sensor Motes for civil infrastructure state monitoring”. In: Smart Structures and Systems 6.3,
Techno-Press (2010), pp. 197–209. URL: http://glaser.berkeley.edu/glaserdrupal/
pdf/SS&S%20Cambridge.pdf.

[GGRG09] R. Garcia, A. Gordon-Ross, and A. D. George. “Exploiting Partially Reconfigurable FPGAs for
Situation-Based Reconfiguration in Wireless Sensor Networks”. In: Proc. 17th IEEE Symp.
on Field Programmable Custom Computing Mach. (FCCM). Napa, CA, USA: IEEE, Apr. 2009,
pp. 243–246. DOI: 10.1109/FCCM.2009.45.

[GK07] A. Giridhar and P. R. Kumar. “Wireless Sensor Networks: Signal Processing and Com-
munications Perspectives”. In: ed. by A. Swami et al. John Wiley & Sons Ltd, 2007.
Chap. In-Network Information Processing in Wireless Sensor Networks, pp. 43–68. ISBN:
978-0-470-03557-3. URL: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
0470035579.html.

[Gol+99] S. C. Goldstein et al. “PipeRench: a coprocessor for streaming multimedia acceleration”.
In: Proc. 26th Int. Symp. on Computer Architecture (ISCA). Atlanta, GA, USA: IEEE, 1999,
pp. 28–39. DOI: 10.1109/ISCA.1999.765937.

171

http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5637
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5637
http://dx.doi.org/10.1109/RTSS.2005.30
http://dx.doi.org/10.1109/ICSENS.2013.6688425
http://dx.doi.org/10.3390/s110605900
http://dx.doi.org/10.1145/1552297.1552299
http://dx.doi.org/10.1109/PRIME.2011.5966244
http://dx.doi.org/10.1109/PRIME.2011.5966244
http://dx.doi.org/10.1109/TIM.2011.2147630
http://dx.doi.org/10.1145/780822.781133
http://dx.doi.org/10.1145/780822.781133
http://glaser.berkeley.edu/glaserdrupal/pdf/SS&S%20Cambridge.pdf
http://glaser.berkeley.edu/glaserdrupal/pdf/SS&S%20Cambridge.pdf
http://dx.doi.org/10.1109/FCCM.2009.45
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470035579.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470035579.html
http://dx.doi.org/10.1109/ISCA.1999.765937

[GS12] P. R. Grassi and D. Sciuto. “Energy-Aware FPGA-based Architecture for Wireless Sensor
Networks”. In: Proc. 15th Euromicro Conf. on Digital System Design (DSD). Izmir, Turkey:
IEEE, Sept. 2012, pp. 866–873. DOI: 10.1109/DSD.2012.50.

[H.+09] Chao H. et al. “A novel FPGA-based wireless vision sensor node”. In: Proc. IEEE Int. Conf.
on Automation and Logistics (ICAL). Shenyang, China: IEEE, Aug. 2009, pp. 841–846. DOI:
10.1109/ICAL.2009.5262805.

[Han+09] S. Hanson et al. “A Low-Voltage Processor for Sensing Applications With Picowatt Standby
Mode”. In: IEEE J. Solid-State Circuits 44.4 (Apr. 2009), pp. 1145–1155. ISSN: 0018-9200.
DOI: 10.1109/JSSC.2009.2014205.

[Hay+12] A. Hayek et al. “FPGA-based wireless sensor network platform for safety systems”. In: Proc.
19th Int. Conf. on Telecommun. (ICT). Jounieh, Lebanon: IEEE, Apr. 2012, 6 pages. DOI:
10.1109/ICTEL.2012.6221281.

[HB12] L. Hou and N. W. Bergmann. “Novel Industrial Wireless Sensor Networks for Machine
Condition Monitoring and Fault Diagnosis”. In: IEEE Trans. Instrum. Meas. 61.10 (Oct.
2012), pp. 2787–2798. ISSN: 0018-9456. DOI: 10.1109/TIM.2012.2200817.

[HBW11] M. Hempstead, D. Brooks, and G.-Y. Wei. “An Accelerator-Based Wireless Sensor Network
Processor in 130 nm CMOS”. In: IEEE J. Emerging and Selected Topics in Circuits and Syst.
1.2 (June 2011), pp. 193–202. ISSN: 2156-3357. DOI: 10.1109/JETCAS.2011.2160751.

[HC02] J. L. Hill and D. E. Culler. “Mica: A Wireless Platform for Deeply Embedded Networks”. In:
IEEE Micro 22.6 (Nov. 2002), pp. 12–24. ISSN: 0272-1732. DOI: 10.1109/MM.2002.1134340.

[Her+02] M. Herz et al. “Memory addressing organization for stream-based reconfigurable comput-
ing”. In: Proc. 9th Int. Conf. on Electronics, Circuits and Syst. (ICECS). Vol. 2. Dubrovnik,
Croatia: IEEE, Sept. 2002, pp. 813–817. DOI: 10.1109/ICECS.2002.1046298.

[HHB91] X. Hu, R. G. Harber, and S. C. Bass. “Expanding the range of convergence of the CORDIC
algorithm”. In: IEEE Trans. Comput. 40.1 (Jan. 1991), pp. 13–21. ISSN: 0018-9340. DOI:
10.1109/12.67316.

[HHP13] P.-H. Horrein, C. Hennebert, and F. Pétrot. “An environment for (re)configuration and
execution management of heterogeneous flexible radio platforms”. In: Microprocessors and
Microsystems 37.6-7, Elsevier (Aug. 2013), pp. 701–712. ISSN: 0141-9331. DOI: 10.1016/j.
micpro.2012.06.002.

[Hil+04] J. Hill et al. “The Platforms Enabling Wireless Sensor Networks”. In: Commun. ACM 47.6
(June 2004), pp. 41–46. ISSN: 0001-0782. DOI: 10.1145/990680.990705.

[Hil00] J. Hill. Hardware Profiles - [online]. JHL Labs. Capistrano Beach, CA, USA, 2000. URL:
http://www.jlhlabs.com/hardware.htm.

[Hil10] D. Hillenbrand. “A Flexible Design Space Exploration Platform for Wireless Sensor
Networks”. PhD thesis. Karlsruhe Institute of Technology (KIT), Jan. 2010. URL: http:
//digbib.ubka.uni-karlsruhe.de/volltexte/documents/1200911.

[Hin+08] H. Hinkelmann et al. “A Reconfigurable Prototyping Platform for Smart Sensor Networks”.
In: Proc. 4th Southern Conf. on Programmable Logic (SPL). San Carlos de Bariloche, Ar-
gentina: IEEE, Mar. 2008, pp. 125–130. DOI: 10.1109/SPL.2008.4547743.

[Hin11] H. Hinkelmann. “Entwurf und Energieeffizienzanalyse von dynamisch rekonfigurierbaren
Architekturen für drahtlose Sensorknoten”. PhD thesis. TU Darmstadt, 2011. ISBN: 978-3-
8439-0331-8.

[Hit] Hitex. Brochure - PowerScale With ACM Technology - The truly innovative energy profiling tool.
Karlsruhe, Germany. URL: http://www.hitex.com/fileadmin/pdf/products/hardware_
tools/b0-powerscale.pdf.

172 References

http://dx.doi.org/10.1109/DSD.2012.50
http://dx.doi.org/10.1109/ICAL.2009.5262805
http://dx.doi.org/10.1109/JSSC.2009.2014205
http://dx.doi.org/10.1109/ICTEL.2012.6221281
http://dx.doi.org/10.1109/TIM.2012.2200817
http://dx.doi.org/10.1109/JETCAS.2011.2160751
http://dx.doi.org/10.1109/MM.2002.1134340
http://dx.doi.org/10.1109/ICECS.2002.1046298
http://dx.doi.org/10.1109/12.67316
http://dx.doi.org/10.1016/j.micpro.2012.06.002
http://dx.doi.org/10.1016/j.micpro.2012.06.002
http://dx.doi.org/10.1145/990680.990705
http://www.jlhlabs.com/hardware.htm
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1200911
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1200911
http://dx.doi.org/10.1109/SPL.2008.4547743
http://www.hitex.com/fileadmin/pdf/products/hardware_tools/b0-powerscale.pdf
http://www.hitex.com/fileadmin/pdf/products/hardware_tools/b0-powerscale.pdf

[How+06] S. L Howard et al. “Error Control Coding in Low-Power Wireless Sensor Networks: When
Is ECC Energy-Efficient?” In: EURASIP J. Wireless Commu. and Networking 2006.1 (May
2006). Article ID 74812, pp. 1 –14. ISSN: 1687-1499. DOI: 10.1155/WCN/2006/74812.

[HRG08] H. Hinkelmann, A. Reinhardt, and M. Glesner. “A Methodology for Wireless Sensor Network
Prototyping with Sophisticated Debugging Support”. In: Proc. 19th IEEE/IFIP Int. Symp.
on Rapid Syst. Prototyping (RSP). Monterey, CA, USA: IEEE, June 2008, pp. 82–88. DOI:
10.1109/RSP.2008.13.

[HWH12] C.-M. Hsieh, Z. Wang, and J. Henkel. “A Reconfigurable Hardware Accelerated Platform for
Clustered Wireless Sensor Networks”. In: Proc. IEEE 18th Int. Conf. on Parallel and Distributed
Syst. (ICPADS). Singapore: IEEE, Dec. 2012, pp. 498–505. DOI: 10.1109/ICPADS.2012.74.

[HWH13] C.-M. Hsieh, Z. Wang, and J. Henkel. “DANCE: Distributed application-aware node con-
figuration engine in shared reconfigurable sensor networks”. In: Proc. Design, Automation
and Test in Europe Conf. (DATE). Grenoble, France: IEEE, Mar. 2013, pp. 839–842. DOI:
10.7873/DATE.2013.177.

[HZG10] H. Hinkelmann, P. Zipf, and M. Glesner. “Dynamically Reconfigurable Systems. Architec-
tures, Design Methods and Applications.” In: ed. by M. Platzner, J. Teich, and N. Wehn.
Springer Netherlands, 2010. Chap. Dynamically Reconfigurable Systems for Wireless Sensor
Networks, pp. 315–334. ISBN: 978-90-481-3485-4. DOI: 10.1007/978-90-481-3485-4_15.

[Hüb+11] M. Hübner et al. “A Heterogeneous Multicore System on Chip with Run-Time Reconfigurable
Virtual FPGA Architecture”. In: Proc. IEEE Int. Symp. on Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW). Shanghai, China: IEEE, May 2011, pp. 143–149. DOI:
10.1109/IPDPS.2011.135.

[IEC12] IEC. ISO/IEC 14543-3-10:2012 Information technology – Home Electronic Systems (HES) –
Part 3-10: Wireless Short-Packet (WSP) protocol optimized for energy harvesting – Architecture
and lower layer protocols. 2012.

[Igla] IGLOO FPGA Fabric User’s Guide. Revision 4. Microsemi. Aliso Viejo, CA, USA, 2012.

[Iglb] IGLOO2 and SmartFusion2 SoC FPGAs Datasheet. Revision 1. Microsemi. Aliso Viejo, CA,
USA. URL: http://www.microsemi.com/document- portal/doc_download/132042-
igloo2-fpga-datasheet.

[Iis] Fraunhofer Institute for Integrated Circuits - Wireless Sensor Networks - Home page. URL:
http://www.iis.fraunhofer.de/en/bf/ec/dk/sn.html.

[Imo] IMote2 Datasheet. Rev. A. Document Part Number: 6020-0117-02. Crossbow Technology,
Inc. Milpitas, CA, USA. URL: http://web.univ-pau.fr/~cpham/ENSEIGNEMENT/PAU-
UPPA/RESA-M2/DOC/Imote2_Datasheet.pdf.

[Ind+03] L. S. Indrusiak et al. “Ubiquitous Access to Reconfigurable Hardware: Application Scenarios
and Implementation Issues”. In: Proc. Design, Automation and Test in Europe Conf. (DATE).
Munich, Germany: IEEE Computer Society, Mar. 2003, pp. 940–945. ISBN: 0-7695-1870-2.
DOI: 10.1109/DATE.2003.1253726.

[Iri] IRIS Datasheet. 6020 - 0124 - 02 Rev. A. MEMSIC Inc. Andover, MA, USA. URL: http:
//www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf.

[IS11] M. Ilic and M. Stojccev. “Address generation unit as accelerator block in DSP”. In: Proc. 10th
Int. Conf. on Telecommun. in Modern Satellite Cable and Broadcasting Services (TELSIKS).
Vol. 2. Nis, Serbia: IEEE, Oct. 2011, pp. 563–566. DOI: 10.1109/TELSKS.2011.6143177.

[Jan+10] J. Jankkari et al. MoDe Project - Report on the self monitoring concept and platform. Deliver-
able D3.3. VTT, 2010.

173

http://dx.doi.org/10.1155/WCN/2006/74812
http://dx.doi.org/10.1109/RSP.2008.13
http://dx.doi.org/10.1109/ICPADS.2012.74
http://dx.doi.org/10.7873/DATE.2013.177
http://dx.doi.org/10.1007/978-90-481-3485-4_15
http://dx.doi.org/10.1109/IPDPS.2011.135
http://www.microsemi.com/document-portal/doc_download/132042-igloo2-fpga-datasheet
http://www.microsemi.com/document-portal/doc_download/132042-igloo2-fpga-datasheet
http://www.iis.fraunhofer.de/en/bf/ec/dk/sn.html
http://web.univ-pau.fr/~cpham/ENSEIGNEMENT/PAU-UPPA/RESA-M2/DOC/Imote2_Datasheet.pdf
http://web.univ-pau.fr/~cpham/ENSEIGNEMENT/PAU-UPPA/RESA-M2/DOC/Imote2_Datasheet.pdf
http://dx.doi.org/10.1109/DATE.2003.1253726
http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
http://dx.doi.org/10.1109/TELSKS.2011.6143177

[Jel+11] V. Jelicic et al. “MasliNET: A Wireless Sensor Network based environmental monitoring
system”. In: Proc. of the 34th Int. Conv. Inform. and Commun. Technology, Electronics and
Microelectronics (MIPRO). Opatija, Croatia: IEEE, May 2011, pp. 150–155. ISBN: 978-1-4577-
0996-8. URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5967041.

[Kad+10] M. L. Kaddachi et al. “Efficient hardware solution for low power and adaptive image-
compression in WSN”. In: Proc. 17th IEEE Int. Conf. on Electronics, Circuits, and Syst. (ICECS).
Athens, Greece: IEEE, Dec. 2010, pp. 583–586. DOI: 10.1109/ICECS.2010.5724579.

[Kar+04] T. C. Karalar et al. “A low power localization architecture and system for wireless sensor
networks”. In: IEEE Workshop on Signal Processing Syst. (SIPS). Austin, TX, USA: IEEE, Oct.
2004, pp. 89–94. DOI: 10.1109/SIPS.2004.1363030.

[KC11] J. Kwong and A. P. Chandrakasan. “An Energy-Efficient Biomedical Signal Processing
Platform”. In: IEEE J. Solid-State Circuits 46.7 (July 2011), pp. 1742–1753. ISSN: 0018-9200.
DOI: 10.1109/JSSC.2011.2144450.

[Khe+09] A. Khezzar et al. “On the Use of Slot Harmonics as a Potential Indicator of Rotor Bar
Breakage in the Induction Machine”. In: IEEE Trans. Ind. Electron. 56.11 (Nov. 2009),
pp. 4592–4605. ISSN: 0278-0046. DOI: 10.1109/TIE.2009.2030819.

[Khu+11] K. Khursheed et al. “Exploration of Tasks Partitioning between Hardware Software and
Locality for a Wireless Camera Based Vision Sensor Node”. In: Proc. 6th Int. Symp. on
Parallel Computing in Elect. Eng. (PARELEC). Luton, UK: IEEE, Apr. 2011, pp. 127–132. DOI:
10.1109/PARELEC.2011.21.

[Kim+12] C. Kim et al. “ULP-SRP: Ultra low power Samsung Reconfigurable Processor for biomedical
applications”. In: Proc. Int. Conf. on Field-Programmable Technology (FPT). Seoul, South
Korea: IEEE, Dec. 2012, pp. 329–334. DOI: 10.1109/FPT.2012.6412157.

[KK06] T. T.-O. Kwok and Y.-K. Kwok. “Computation and Energy Efficient Image Processing in
Wireless Sensor Networks Based on Reconfigurable Computing”. In: Proc. Int. Conference
on Parallel Processing (ICPP), Workshop on Parallel and Distributed Multimedia (PDM).
Columbus, OH, USA: IEEE Computer Society, Aug. 2006, pp. 43–50. ISBN: 0-7695-2637-3.
DOI: 10.1109/ICPPW.2006.30.

[KM10] Y. Kim and R. N. Mahapatra. “Dynamic Context Compression for Low-Power Coarse-Grained
Reconfigurable Architecture”. In: IEEE Trans. on Very Large Scale Integr. (VLSI) Syst. 18.1
(Jan. 2010), pp. 15–28. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2008.2006846.

[KM11] Y. Kim and R. N. Mahapatra. “Design of Low-Power Coarse-Grained Reconfigurable Archi-
tectures”. In: CRC Press, 2011. Chap. Dynamic Context Compression for Low-Power CGRA,
pp. 101–122. ISBN: 9781439825105. URL: http://www.crcpress.com/product/isbn/
9781439825105.

[Kos+10] J. Koskinen et al. “Wireless Sensor Networks for infrastructure and industrial monitoring
applications”. In: Proc. Int. Conf. on Inform. and Commun. Technology Convergence (ICTC).
Jeju, South Korea: IEEE, Nov. 2010, pp. 250–255. DOI: 10.1109/ICTC.2010.5674672.

[Kra+11] Y. E. Krasteva et al. “Embedded Runtime Reconfigurable Nodes for Wireless Sensor Networks
Applications”. In: IEEE Sensors J. 11.9 (Sept. 2011), pp. 1800–1810. ISSN: 1530-437X. DOI:
10.1109/JSEN.2011.2104948.

[Kri+05] L. Krishnamurthy et al. “Design and Deployment of Industrial Sensor Networks: Experiences
from a Semiconductor Plant and the North Sea”. In: Proc. 3rd ACM Int. Conf. on Embedded
Networked Sensor Syst. (SenSys). San Diego, CA, USA: ACM, Nov. 2005, pp. 64–75. ISBN:
1-59593-054-X. DOI: 10.1145/1098918.1098926.

174 References

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5967041
http://dx.doi.org/10.1109/ICECS.2010.5724579
http://dx.doi.org/10.1109/SIPS.2004.1363030
http://dx.doi.org/10.1109/JSSC.2011.2144450
http://dx.doi.org/10.1109/TIE.2009.2030819
http://dx.doi.org/10.1109/PARELEC.2011.21
http://dx.doi.org/10.1109/FPT.2012.6412157
http://dx.doi.org/10.1109/ICPPW.2006.30
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://www.crcpress.com/product/isbn/9781439825105
http://www.crcpress.com/product/isbn/9781439825105
http://dx.doi.org/10.1109/ICTC.2010.5674672
http://dx.doi.org/10.1109/JSEN.2011.2104948
http://dx.doi.org/10.1145/1098918.1098926

[Kul10] J. Kullaa. “Vibration-Based Structural Health Monitoring Under Variable Environmental
Operational Conditions”. In: New Trends in Vibration Based Structrual Health Monitoring.
Ed. by A. Deraemaeker and K. Worden. Vol. 520. CISM Courses and Lectures. SpringerWi-
enNewYork, 2010, pp. 107–181. DOI: 10.1007/978-3-7091-0399-9_4.

[KW07a] H. Karl and A. Willig. “Protocols and Architectures for Wireless Sensor Networks”. In: John
Wiley & Sons, Ltd, 2007. Chap. Communication Protocols, pp. 83–436. ISBN: 978-0-470-
09510-2. URL: http://www.wiley.com//legacy/wileychi/wsn/.

[KW07b] H. Karl and A. Willig. “Protocols and Architectures for Wireless Sensor Networks”. In: John
Wiley & Sons, Ltd, 2007. Chap. Network Architecture, pp. 59–81. ISBN: 978-0-470-09510-2.
URL: http://www.wiley.com//legacy/wileychi/wsn/.

[KW07c] H. Karl and A. Willig. “Protocols and Architectures for Wireless Sensor Networks”. In:
John Wiley & Sons, Ltd, 2007. Chap. Localization and positioning, pp. 231–250. ISBN:
978-0-470-09510-2. URL: http://www.wiley.com//legacy/wileychi/wsn/.

[KW07d] H. Karl and A. Willig. “Protocols and Architectures for Wireless Sensor Networks”. In: John
Wiley & Sons, Ltd, 2007. Chap. Single-node architecture, pp. 17–58. ISBN: 978-0-470-09510-
2. URL: http://www.wiley.com//legacy/wileychi/wsn/.

[Lav11] A. Lavado. “Adaptive Differential Microphone Array and its Implementation on FPGA”.
Master Thesis. TU Darmstadt, Oct. 2011.

[LC02] P. Levis and D. Culler. “Maté: A Tiny Virtual Machine for Sensor Networks”. In: SIGARCH
Comput. Archit. News 30.5, ACM (Oct. 2002), pp. 85–95. ISSN: 0163-5964. DOI: 10.1145/
635506.605407.

[Led+09] A. Ledeczi et al. “Wireless Acoustic Emission Sensor Network for Structural Monitoring”. In:
IEEE Sensors J. 9.11 (Nov. 2009), pp. 1370–1377. ISSN: 1530-437X. DOI: 10.1109/JSEN.
2009.2019315.

[Lee+13] Y. Lee et al. “A Modular 1mm3 Die-Stacked Sensing Platform With Low Power I2C Inter-Die
Communication and Multi-Modal Energy Harvesting”. In: IEEE J. Solid-State Circuits 48.1
(2013), pp. 229–243. ISSN: 0018-9200. DOI: 10.1109/JSSC.2012.2221233.

[Leo07a] M. Leopold. HogthrobV0 User’s Manual. Tech. Rep. no. 07/05. Copenhagen, Denmark: Dept.
of Computer Science, University of Copenhagen, Sept. 2007. URL: http://www.diku.dk/
~leopold/work/leopold07htv0.pdf.

[Leo07b] M. Leopold. “Sensor Network Motes: Portability & Performance”. PhD thesis. Department
of Computer Science, Faculty of Science, University of Copenhagen, Dec. 2007. URL: http:
//www.diku.dk/~leopold/work/leopold08motes_u.pdf.

[Lev+05] P. Levis et al. “TinyOS: An Operating System for Sensor Networks”. In: Ambient Intelligence.
Ed. by W. Weber, J. M. Rabaey, and E. Aarts. Part II. Springer Berlin Heidelberg, 2005,
pp. 115–148. ISBN: 978-3-540-23867-6. DOI: 10.1007/3-540-27139-2_7.

[Li+12] Y. Li et al. “Hardware reconfigurable wireless sensor network node with power and area
efficiency”. In: IET Wireless Sensor Syst. 2.3 (2012), pp. 247–252. ISSN: 2043-6386. DOI:
10.1049/iet-wss.2011.0162.

[Lia+13] J. Liao et al. “FPGA based wireless sensor node with customizable event-driven architecture”.
English. In: EURASIP J. Embedded Syst. 2013.1 (Apr. 2013), pp. 1–11. DOI: 10.1186/1687-
3963-2013-5.

[Liba] Libelium - Home page. URL: www.libelium.com.

[Libb] Libero SoC User’s Guide. v.11.3. Microsemi. Aliso Viejo, CA, Mar. 2014.

175

http://dx.doi.org/10.1007/978-3-7091-0399-9_4
http://www.wiley.com//legacy/wileychi/wsn/
http://www.wiley.com//legacy/wileychi/wsn/
http://www.wiley.com//legacy/wileychi/wsn/
http://www.wiley.com//legacy/wileychi/wsn/
http://dx.doi.org/10.1145/635506.605407
http://dx.doi.org/10.1145/635506.605407
http://dx.doi.org/10.1109/JSEN.2009.2019315
http://dx.doi.org/10.1109/JSEN.2009.2019315
http://dx.doi.org/10.1109/JSSC.2012.2221233
http://www.diku.dk/~leopold/work/leopold07htv0.pdf
http://www.diku.dk/~leopold/work/leopold07htv0.pdf
http://www.diku.dk/~leopold/work/leopold08motes_u.pdf
http://www.diku.dk/~leopold/work/leopold08motes_u.pdf
http://dx.doi.org/10.1007/3-540-27139-2_7
http://dx.doi.org/10.1049/iet-wss.2011.0162
http://dx.doi.org/10.1186/1687-3963-2013-5
http://dx.doi.org/10.1186/1687-3963-2013-5
www.libelium.com

[LL06] J. P. Lynch and K. J. Loh. “A Summary Review of Wireless Sensors ans Sensor Networks for
Structural Health Monitoring”. In: The Schock and Vibration Digest 38.2, SAGE Publications
(Mar. 2006), pp. 91–128. URL: http://www-personal.umich.edu/~jerlynch/papers/
SVDReview.pdf.

[Lom+12] M. Lombardo et al. “Power management techniques in an FPGA-based WSN node for high
performance applications”. In: Proc. 7th Int. Workshop on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC). York, UK: IEEE, July 2012, 8 pages. DOI: 10.1109/
ReCoSoC.2012.6322888.

[Lot] Lotus Datasheet. 6020 - 0705 - 01 Rev. A. MEMSIC Inc. Andover, MA, USA. URL: http:
//www.memsic.com/userfiles/files/Datasheets/WSN/6020-0705-01_A_LOTUS.pdf.

[LPZ07] D. Lymberopoulos, N.B. Priyantha, and Feng Zhao. “mPlatform: A Reconfigurable Architec-
ture and Efficient Data Sharing Mechanism for Modular Sensor Nodes”. In: Proc. 6th Int.
Symp. on Inform. Processing in Sensor Networks (IPSN). Cambridge, MA, USA: ACM, Apr.
2007, pp. 128–137. DOI: 10.1109/IPSN.2007.4379672.

[LSR03] S.-F. Li, R. Sutton, and J. M. Rabaey. “Low Power Operating System for Heterogeneous
Wireless Communication System”. In: Compilers and Operating Systems for Low Power.
Ed. by L. Benini, M. Kandemir, and J. Ramanujam. Springer US, 2003, pp. 1–16. ISBN:
1-4020-7573-1. DOI: 10.1007/978-1-4419-9292-5_1.

[Ltc] LTC6900: Low Power, 1kHz to 20MHz Resistor Set SOT-23 Oscillator. Linear Technology.
Milpitas, CA, USA. URL: http://cds.linear.com/docs/en/datasheet/6900fa.pdf.

[Lu+09] S. Lu et al. “Design and Implementation of an ASIC-based Sensor Device for WSN applica-
tions”. In: IEEE Trans. Consum. Electron. 55.4 (Nov. 2009), pp. 1959–1967. ISSN: 0098-3063.
DOI: 10.1109/TCE.2009.5373756.

[Mar+06] P. J. Marrón et al. “Challenges of Complex Data Processing in Real World Sensor Network
Deployments”. In: Proc. ACM Workshop on Real-World Wireless Sensor Networks (REALWSN).
Uppsala, Sweden: ACM, June 2006, pp. 43–48. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.71.6789.

[Mar+14] J. Martinez et al. “A 2D FEM analysis of electromechanical signatures in induction motors
under dynamic eccentricity”. In: Int. J. Numerical Modelling: Electronic Networks, Devices and
Fields 27.3, John Wiley & Sons, Ltd. (May 2014), pp. 555 –571. DOI: 10.1002/jnm.1942.

[May+14] D. Mayer et al. “Recent Developments in Adaptronics, Results from the LOEWE Center
Adaptronics - Research, Innovation, Application (AdRIA)”. In: ed. by T. Bein. Springer, 2014
(to be published). Chap. Structural Health Monitoring, 16 pages.

[MCP09] G.-G. Mplemenos, P. Christou, and I. Papaefstathiou. “Using reconfigurable hardware devices
in WSNs for accelerating and reducing the power consumption of header processing tasks”.
In: Proc. IEEE 3rd Int. Symp. on Advanced Networks and Telecommun. Syst. (ANTS). New
Dehli, India: IEEE, Dec. 2009, 3 pages. DOI: 10.1109/ANTS.2009.5409874.

[MD08] T. X. Mei and X. J. Ding. “New condition monitoring techniques for vehicle suspensions”.
In: Proc. 4th IET Int. Conf. on Railway Condition Monitoring. Derby, UK: IET, June 2008, 6
pages. URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4580869.

[Med+10] L. M. C. Medina et al. “FPGA-Based Multiple-Channel Vibration Analyzer for Industrial
Applications in Induction Motor Failure Detection”. In: IEEE Trans. Instrum. Meas. 59.1 (Jan.
2010), pp. 63–72. ISSN: 0018-9456. DOI: 10.1109/TIM.2009.2021642.

176 References

http://www-personal.umich.edu/~jerlynch/papers/SVDReview.pdf
http://www-personal.umich.edu/~jerlynch/papers/SVDReview.pdf
http://dx.doi.org/10.1109/ReCoSoC.2012.6322888
http://dx.doi.org/10.1109/ReCoSoC.2012.6322888
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0705-01_A_LOTUS.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0705-01_A_LOTUS.pdf
http://dx.doi.org/10.1109/IPSN.2007.4379672
http://dx.doi.org/10.1007/978-1-4419-9292-5_1
http://cds.linear.com/docs/en/datasheet/6900fa.pdf
http://dx.doi.org/10.1109/TCE.2009.5373756
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.6789
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.6789
http://dx.doi.org/10.1002/jnm.1942
http://dx.doi.org/10.1109/ANTS.2009.5409874
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4580869
http://dx.doi.org/10.1109/TIM.2009.2021642

[Mei+03] B. Mei et al. “ADRES: An Architecture with Tightly Coupled VLIW Processor and Coarse-
Grained Reconfigurable Matrix”. In: Proc. 13th Int. Conf. on Field Programmable Logic and
Applicat. (FPL). Ed. by P. Cheung and G. A. Constantinides. Vol. 2778. Lecture Notes in
Computer Science. Lisbon, Portugal: Springer Berlin Heidelberg, 2003, pp. 61–70. ISBN:
978-3-540-40822-2. DOI: 10.1007/978-3-540-45234-8_7. URL: http://dx.doi.org/10.
1007/978-3-540-45234-8_7.

[Mem] Memsic - Home page. URL: www.memsic.com.

[Meu+08] G. de Meulenaer et al. “On the Energy Cost of Communication and Cryptography in Wireless
Sensor Networks”. In: Proc. IEEE Int. Conf. on Wireless and Mobile Computing, Networking
and Commun. (WIMOB). Avignon, France: IEEE Computer Society, Oct. 2008, pp. 580–585.
DOI: 10.1109/WiMob.2008.16.

[Mica] Mica2 Datasheet. Document Part Number: 6020-0042-04. Crossbow Technology, Inc. Mil-
pitas, CA, USA. URL: http://www.eol.ucar.edu/isf/facilities/isa/internal/
CrossBow/DataSheets/mica2.pdf.

[Micb] MicaZ Datasheet. 6020 - 0065 - 05 Rev. A. MEMSIC Inc. Andover, MA, USA. URL: http:
//www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf.

[Mic12] MicroStrain. Heavy-Vehicle Condition-Based Maintenance - Home page. 2012. URL: http://
www.microstrain.com/applications/vehicle-health-monitoring/heavy-vehicle-

condition-based-maintenance.

[Mic13] Microsemi. CoreFFT v6.3 Handbook. 50200267-3/09.13. Aliso Viejo, CA, USA, 2013. URL:
http://www.actel.com/ipdocs/CoreFFT_HB.pdf.

[Min+00] R. Min et al. “An Architecture for a Power-Aware Distributed Microsensor Node”. In: Proc.
IEEE Workshop on Signal Processing Systems (SiPS). Lafayette, LA, USA: IEEE, Oct. 2000,
pp. 581–590. DOI: 10.1109/SIPS.2000.886756.

[Min+01] R. Min et al. “Low-power wireless sensor networks”. In: Proc. 14th Int. Conf. on VLSI Design.
Bangalore, India: IEEE Computer Society, Jan. 2001, pp. 205–210. DOI: 10.1109/ICVD.
2001.902661.

[MKS12] M. Mahmudimanesh, A. Khelil, and N. Suri. “Intellingent Sensor Networks: The Integration
of Sensor Networks, Signal Processing and Machine Learning”. In: ed. by F. Hu and Q. Hao.
CRC Press, Taylor & Francis Group, 2012. Chap. Compressive Sensing for Wireless Sensor
Networks, pp. 379–395. ISBN: 9781439892817. URL: http://www.crcpress.com/product/
isbn/9781439892817.

[MNS06] C. N. Mathur, K. Narayan, and K. P. Subbalakshmi. “On the Design of Error-Correcting
Ciphers”. In: EURASIP J. Wireless Commun. and Networking 2006, Hindawi Publishing
Corporation (2006), pp. 1–12. DOI: 10.1155/WCN/2006/42871.

[Mod] FP7 Maintenance on Demand project - Home page. URL: www.fp7-mode.eu.

[Moo98] G. E. Moore. “Cramming More Components Onto Integrated Circuits”. In: Proc. IEEE 86.1
(Jan. 1998), pp. 82–85. ISSN: 0018-9219. DOI: 10.1109/JPROC.1998.658762.

[MPB11] S. McGettrick, K. Patel, and C. Bleakley. “High Performance Programmable FPGA Over-
lay for Digital Signal Processing”. In: Reconfigurable Computing: Architectures, Tools and
Applications; Proc. 7th Int. Symp. (ARC). Ed. by A. Koch et al. Vol. 6578. Lecture Notes in
Computer Science. Belfast, UK: Springer Berlin Heidelberg, Mar. 2011, pp. 375–384. ISBN:
978-3-642-19474-0. DOI: 10.1007/978-3-642-19475-7_39.

[MR08] P. Muralidhar and C. B. R. Rao. “Reconfigurable wireless sensor network node based on Nios
core”. In: Proc. 4th Int. Conf. on Wireless Commun. and Sensor Networks (WCSN). Allahabad,
India: IEEE, Dec. 2008, pp. 67–72. DOI: 10.1109/WCSN.2008.4772684.

177

http://dx.doi.org/10.1007/978-3-540-45234-8_7
http://dx.doi.org/10.1007/978-3-540-45234-8_7
http://dx.doi.org/10.1007/978-3-540-45234-8_7
www.memsic.com
http://dx.doi.org/10.1109/WiMob.2008.16
http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://www.microstrain.com/applications/vehicle-health-monitoring/heavy-vehicle-condition-based-maintenance
http://www.microstrain.com/applications/vehicle-health-monitoring/heavy-vehicle-condition-based-maintenance
http://www.microstrain.com/applications/vehicle-health-monitoring/heavy-vehicle-condition-based-maintenance
http://www.actel.com/ipdocs/CoreFFT_HB.pdf
http://dx.doi.org/10.1109/SIPS.2000.886756
http://dx.doi.org/10.1109/ICVD.2001.902661
http://dx.doi.org/10.1109/ICVD.2001.902661
http://www.crcpress.com/product/isbn/9781439892817
http://www.crcpress.com/product/isbn/9781439892817
http://dx.doi.org/10.1155/WCN/2006/42871
www.fp7-mode.eu
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1007/978-3-642-19475-7_39
http://dx.doi.org/10.1109/WCSN.2008.4772684

[Msa] Flash*Freeze Control Using an Internal Oscillator. Application Note AC332. Actel Corporation.
Mountain View, CA, USA, June 2009.

[Nac+05] L. Nachman et al. “The Intel™Mote Platform: a Bluetooth-based Sensor Network for
Industrial Monitoring”. In: Proc. 4th Int. Symp. on Inform. Processing in Sensor Networks
(IPSN). Los Angeles, CA, USA: IEEE, Apr. 2005, pp. 437–442. DOI: 10.1109/IPSN.2005.
1440968.

[Nac+08] L. Nachman et al. “IMOTE2: Serious Computation at the Edge”. In: Proc. Int. Wireless
Commun. and Mobile Computing Conf. (IWCMC). Crete, Greece: IEEE, Aug. 2008, pp. 1118–
1123. DOI: 10.1109/IWCMC.2008.194.

[Nah+07] A. Nahapetian et al. “Dynamic Reconfiguration in Sensor Networks with Regenerative
Energy Sources”. In: Proc. Design, Automation and Test in Europe Conf. (DATE). Nice, France:
EDAA, Apr. 2007, 6 pages. DOI: 10.1109/DATE.2007.364433.

[Nan+11] S. Nandi et al. “Detection of Eccentricity Faults in Induction Machines Based on Nameplate
Parameters”. In: IEEE Trans. Ind. Electron. 58.5 (May 2011), pp. 1673–1683. ISSN: 0278-
0046. DOI: 10.1109/TIE.2010.2055772.

[NTL05] S. Nandi, H. A. Toliyat, and Xiaodong Li. “Condition monitoring and fault diagnosis of
electrical motors-a review”. In: IEEE Trans. Energy Convers. 20.4 (Dec. 2005), pp. 719–729.
ISSN: 0885-8969. DOI: 10.1109/TEC.2005.847955.

[O’F+05] B. O’Flynn et al. “The Development of a Novel Minaturized Modular Platform for Wireless
Sensor Networks”. In: Proc. 4th Int. Symp. on Inform. Processing in Sensor Networks (IPSN).
Los Angeles, CA, USA: IEEE, Apr. 2005, pp. 370–375. ISBN: 0-7803-9202-7. DOI: 10.1109/
IPSN.2005.1440951.

[Okm11] Y. Okmen. “SIMD Floating Point Extension for Ray Tracing”. MA thesis. Computer Engineer-
ing, Department of Electrical Engineering, Faculty of Electrical Engineering, Mathematics
and Computer Science: Delft University of Technology, 2011. URL: http://www.asam-
project.org/information/yokmen2011msc.pdf.

[OM+08] A. Ordaz-Moreno et al. “Automatic Online Diagnosis Algorithm for Broken-Bar Detection
on Induction Motors Based on Discrete Wavelet Transform for FPGA Implementation”.
In: IEEE Trans. Ind. Electron. 55.5 (May 2008), pp. 2193–2202. ISSN: 0278-0046. DOI:
10.1109/TIE.2008.918613.

[One] ONE-NET Low Power Wireless Protocol - Home Page. 2009. URL: http : / / one - net .
sourceforge.net/.

[Ost+06] F. Osterlind et al. “Cross-Level Sensor Network Simulation with COOJA”. In: Proc. 31st IEEE
Conf. on Local Computer Networks (LCN). Tampa, FL, USA: IEEE, Nov. 2006, pp. 641–648.
DOI: 10.1109/LCN.2006.322172.

[PA11] D. M. Pham and S. M. Aziz. “FPGA architecture for object extraction in Wireless Multimedia
Sensor Network”. In: Proc. 7th Int. Conf. on Intelligent Sensors, Sensor Networks and Inform.
Processing (ISSNIP). Adelaide, Australia: IEEE, Dec. 2011, pp. 294–299. DOI: 10.1109/
ISSNIP.2011.6146563.

[PBT12] A. de la Piedra, A. Braeken, and A. Touhafi. “Sensor Systems Based on FPGAs and Their
Applications: A Survey”. In: Sensors 12.9, MDPI (Sept. 2012), pp. 12235–12264. ISSN:
1424-8220. DOI: 10.3390/s120912235.

[PCB00] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. “The Cricket Location-support
System”. In: Proc. 6th Annu. Int. Conf. on Mobile Computing and Networking (MobiCom).
Boston, MA, USA: ACM, Aug. 2000, pp. 32–43. ISBN: 1-58113-197-6. DOI: 10.1145/345910.
345917.

178 References

http://dx.doi.org/10.1109/IPSN.2005.1440968
http://dx.doi.org/10.1109/IPSN.2005.1440968
http://dx.doi.org/10.1109/IWCMC.2008.194
http://dx.doi.org/10.1109/DATE.2007.364433
http://dx.doi.org/10.1109/TIE.2010.2055772
http://dx.doi.org/10.1109/TEC.2005.847955
http://dx.doi.org/10.1109/IPSN.2005.1440951
http://dx.doi.org/10.1109/IPSN.2005.1440951
http://www.asam-project.org/information/yokmen2011msc.pdf
http://www.asam-project.org/information/yokmen2011msc.pdf
http://dx.doi.org/10.1109/TIE.2008.918613
http://one-net.sourceforge.net/
http://one-net.sourceforge.net/
http://dx.doi.org/10.1109/LCN.2006.322172
http://dx.doi.org/10.1109/ISSNIP.2011.6146563
http://dx.doi.org/10.1109/ISSNIP.2011.6146563
http://dx.doi.org/10.3390/s120912235
http://dx.doi.org/10.1145/345910.345917
http://dx.doi.org/10.1145/345910.345917

[Pee+07] B. Peeters et al. “Operational Modal Analysis for Estimating the Dynamic Properties of
a Stadium Structure during a Football Game”. In: Shock and Vibration 14.4, Hindawi
Publishing Corporation (2007), pp. 283–303. DOI: 10.1155/2007/531739.

[Pee11] B. Peeters. MoDe Project - Report on multi-layer processing. Deliverable D6.2. LMS Int., 2011.

[Pee12] B. Peeters. MoDe Project - Report with condition monitoring concept for considered test cases.
Deliverable D6.1. LMS Int., 2012.

[Phi+14] F. Philipp et al. “Embedded Monitoring System for Online Motor Current Signature Analysis”.
In: IEEE Trans. Ind. Electron. X (2014), 8 pages.

[Phi09] F. Philipp. “Modeling and Implementation of Distributed Algorithms for Acoustic Localiza-
tion in a Wireless Sensor Network”. Diploma Thesis. TU Darmstadt, Mar. 2009.

[Ple+03] C. Plessl et al. “The Case for Reconfigurable Hardware in Wearable Computing”. In: Personal
Ubiquitous Comput. 7.5, Springer-Verlag (Oct. 2003), pp. 299–308. ISSN: 1617-4909. DOI:
10.1007/s00779-003-0243-x.

[PMB11] K. Patel, S. McGettrick, and C. J. Bleakley. “SYSCORE: A Coarse Grained Reconfigurable
Array Architecture for Low Energy Biosignal Processing”. In: Proc. IEEE 19th Annu. Int.
Symp. on Field-Programmable Custom Computing Mach. (FCCM). Salt Lake City, UT, USA:
IEEE Computer Society, May 2011, pp. 109–112. DOI: 10.1109/FCCM.2011.38.

[Pon12] S. Pongyupinpanich. “Optimal Design of Fixed-Point and Floating-Point Arithmetic Units for
Scientific Applications”. PhD thesis. TU Darmstadt, 2012. URL: http://tuprints.ulb.tu-
darmstadt.de/3091/.

[Por+06a] J. Portilla et al. “A Hardware Library for Sensors/Actuators Interfaces in Sensor Networks”.
In: Proc. 13th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS). Nice, France:
IEEE, Dec. 2006, pp. 1244–1247. DOI: 10.1109/ICECS.2006.379687.

[Por+06b] J. Portilla et al. “A Modular Architecture for Nodes in Wireless Sensor Networks”. In: J. of
Universal Comput. Science 12.3 (Mar. 2006), pp. 328–339. DOI: 10.3217/jucs-012-03-
0328. URL: http://www.jucs.org/jucs_12_3/a_modular_architecture_for.

[PP12] S. Padaraju and F. Philipp. HaLOEWEn User’s Guide. Tech. Rep. Darmstadt, Germany:
Microelectronic Systems Design Group, TU Darmstadt, 2012.

[PSC05] J. Polastre, R. Szewczyk, and D. Culler. “Telos: Enabling Ultra-low Power Wireless Research”.
In: Proc. 4th Int. Symp. on Inform. Processing in Sensor Networks (IPSN). Los Angeles, CA,
USA: IEEE, Apr. 2005, pp. 364–369. DOI: 10.1109/IPSN.2005.1440950.

[Pso] PSoC 5LP: CY8C58LP Family Datasheet. Document Number: 001-84932 Rev. *F. Cypress.
San Jose, CA, USA, 2014. URL: http://www.cypress.com/?docID=49437.

[Rab+00] J. M. Rabaey et al. “PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking”. In:
IEEE Computer 33.7, IEEE Computer Society (July 2000), pp. 42–48. ISSN: 0018-9162. DOI:
10.1109/2.869369.

[Rab+06] J. M. Rabaey et al. “Ultra-Low-Power Design”. In: IEEE Circuits Devices Mag. 22.4 (July
2006), pp. 23–29. ISSN: 8755-3996. DOI: 10.1109/MCD.2006.1708372.

[Ram+07] H. Ramamurthy et al. “Wireless Industrial Monitoring and Control Using a Smart Sensor
Platform”. In: IEEE Sensors J. 7.5 (May 2007), pp. 611–618. ISSN: 1530-437X. DOI: 10.
1109/JSEN.2007.894135.

[RCN96] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. “Digital Integrated Circuits: A Design
Perspective”. In: Prentice-Hall, 1996. Chap. The Static CMOS Inverter, pp. 176–228.

[Rei11] A. Reinhardt. “Designing Sensor Networks for Smart Spaces”. PhD thesis. TU Darmstadt,
2011. URL: http://tuprints.ulb.tu-darmstadt.de/2844/.

179

http://dx.doi.org/10.1155/2007/531739
http://dx.doi.org/10.1007/s00779-003-0243-x
http://dx.doi.org/10.1109/FCCM.2011.38
http://tuprints.ulb.tu-darmstadt.de/3091/
http://tuprints.ulb.tu-darmstadt.de/3091/
http://dx.doi.org/10.1109/ICECS.2006.379687
http://dx.doi.org/10.3217/jucs-012-03-0328
http://dx.doi.org/10.3217/jucs-012-03-0328
http://www.jucs.org/jucs_12_3/a_modular_architecture_for
http://dx.doi.org/10.1109/IPSN.2005.1440950
http://www.cypress.com/?docID=49437
http://dx.doi.org/10.1109/2.869369
http://dx.doi.org/10.1109/MCD.2006.1708372
http://dx.doi.org/10.1109/JSEN.2007.894135
http://dx.doi.org/10.1109/JSEN.2007.894135
http://tuprints.ulb.tu-darmstadt.de/2844/

[RFB10] R. K. Raval, C. H. Fernandez, and C. J. Bleakley. “Low-power TinyOS Tuned Processor
Platform for Wireless Sensor Network Motes”. In: ACM Trans. Des. Autom. Electron. Syst.
15.3 (June 2010), 23:1–23:17. ISSN: 1084-4309. DOI: 10.1145/1754405.1754408.

[RM10] M. Rullmann and R. Merker. “Dynamically Reconfigurable Systems. Architectures, Design
Methods and Applications”. In: ed. by M. Platzner, J. Teich, and N. Wehn. Springer Nether-
lands, 2010. Chap. Design Methods and Tools for Improved Partial Dynamic Reconfiguration,
pp. 161–182. ISBN: 978-90-481-3485-4. DOI: 10.1007/978-90-481-3485-4_8.

[SBB06] S. Shukla, N. W. Bergmann, and J. Becker. “QUKU: a two-level reconfigurable architecture”.
In: Proc. IEEE Comput. Soc. Annu. Symp. on Emerging VLSI Technologies and Architectures
(ISVLSI). Karlsruhe, Germany: IEEE Computer Society, Mar. 2006, 6 pages. DOI: 10.1109/
ISVLSI.2006.76.

[SBW09] D. Schmidt, M. Berning, and N. Wehn. “Error correction in single-hop wireless sensor
networks - A case study”. In: Proc. Design, Automation and Test in Europe Conf. (DATE). Nice,
France: EDAA, Apr. 2009, pp. 1296–1301. DOI: 10.1109/DATE.2009.5090865.

[SC01] A. Sinha and A. Chandrakasan. “Dynamic power management in wireless sensor networks”.
In: IEEE Des. Test of Comput. 18.2 (Mar. 2001), pp. 62–74. ISSN: 0740-7475. DOI: 10.1109/
54.914626.

[Sch+08] T. Schmid et al. “The True Cost of Accurate Time”. In: Proc. Workshop on Power Aware
Computing and Syst. (HotPower). San Diego, CA, USA: USENIX Association, Dec. 2008, 5
pages. URL: https://www.usenix.org/legacy/event/hotpower08/tech/full_papers/
schmid/schmid.pdf.

[Sen] Sensinode - Home page. URL: www.sensinode.com.

[SFN00] S. Scalera, M. Falco, and B. Nelson. “A reconfigurable computing architecture for microsen-
sors”. In: Proc. IEEE Symp. on Field-Programmable Custom Computing Mach. (FCCM). Napa
Valley, CA, USA: IEEE Computer Society, Apr. 2000, pp. 59–67. DOI: 10.1109/FPGA.2000.
903393.

[She+06] M. Sheets et al. “A Power-Managed Protocol Processor for Wireless Sensor Networks”. In:
Dig. Tech. Papers, Symp. on VLSI Circuits. Honolulu, HI, USA: IEEE, June 2006, pp. 212–213.
DOI: 10.1109/VLSIC.2006.1705385.

[She+12] Z. Shelby et al. Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs). Internet Engineering Task Force (IETF), RFC 6775. Nov. 2012.
URL: http://www.rfc-editor.org/rfc/pdfrfc/rfc6775.txt.pdf.

[Sim+04] G. Simon et al. “Sensor Network-based Countersniper System”. In: Proc. 2nd Int. Conf. on
Embedded Networked Sensor Syst. (SenSys). Baltimore, MD, USA: ACM, Nov. 2004, 12 pages.
ISBN: 1-58113-879-2. DOI: 10.1145/1031495.1031497.

[Sin+00] H. Singh et al. “MorphoSys: an integrated reconfigurable system for data-parallel and
computation-intensive applications”. In: IEEE Trans. Comput. 49.5 (May 2000), pp. 465–
481. ISSN: 0018-9340. DOI: 10.1109/12.859540.

[SLL11] Y. Sun, L. Li, and H. Luo. “Design of FPGA-Based Multimedia Node for WSN”. In: Proc.
7th Int. Conf. on Wireless Commun., Networking and Mobile Computing (WiCOM). Wuhan,
China: IEEE, Sept. 2011, pp. 1–5. DOI: 10.1109/wicom.2011.6040365.

[Sou+07] D. Soudris et al. “Fine- and Coarse-Grain Reconfigurable Computing”. In: ed. by S. Vassiliadis
and D. Soudris. Part II. Springer Netherlands, 2007. Chap. A Low-Energy FPGA Architecture
and Supporting CAD Tool Design Flow, pp. 153–180. DOI: 10.1007/978-1-4020-6505-7_3.

180 References

http://dx.doi.org/10.1145/1754405.1754408
http://dx.doi.org/10.1007/978-90-481-3485-4_8
http://dx.doi.org/10.1109/ISVLSI.2006.76
http://dx.doi.org/10.1109/ISVLSI.2006.76
http://dx.doi.org/10.1109/DATE.2009.5090865
http://dx.doi.org/10.1109/54.914626
http://dx.doi.org/10.1109/54.914626
https://www.usenix.org/legacy/event/hotpower08/tech/full_papers/schmid/schmid.pdf
https://www.usenix.org/legacy/event/hotpower08/tech/full_papers/schmid/schmid.pdf
www.sensinode.com
http://dx.doi.org/10.1109/FPGA.2000.903393
http://dx.doi.org/10.1109/FPGA.2000.903393
http://dx.doi.org/10.1109/VLSIC.2006.1705385
http://www.rfc-editor.org/rfc/pdfrfc/rfc6775.txt.pdf
http://dx.doi.org/10.1145/1031495.1031497
http://dx.doi.org/10.1109/12.859540
http://dx.doi.org/10.1109/wicom.2011.6040365
http://dx.doi.org/10.1007/978-1-4020-6505-7_3

[SSS10] M. Sun, W. J. Staszewski, and R. N. Swamy. “Smart Sensing Technologies for Struc-
tural Health Monitoring of Civil Engineering Structures”. In: Advances in Civil Engineering
2010.724962, Hindawi Publishing Corporation (May 2010), pp. 1 –13. DOI: 10.1155/2010/
724962.

[Sta] Stargate Developer’s Guide. Rev. B. Document 7430-0317-13. Crossbow Technology, Inc.
Milpitas, CA, USA, Jan. 2006. URL: http://www.cse.nd.edu/~cpoellab/teaching/
cse40815/Stargate_Manual_7430-0317-13_B.pdf.

[Sto71] H. S. Stone. “Parallel Processing with the Perfect Shuffle”. In: IEEE Trans. Comput. C-20.2
(Feb. 1971), pp. 153–161. ISSN: 0018-9340. DOI: 10.1109/T-C.1971.223205.

[Sun] Sun™SPOT Main Board Technical Datasheet. Rev 8.0. Sun Labs. Redwood City, CA, USA, Oct.
2010. URL: http://sunspotworld.com/docs/Yellow/eSPOT8ds.pdf.

[Sun10] P. Sundararajan. High Performance Computing Using FPGAs. White Paper WP375. San Jose,
CA, USA: Xilinx, Sept. 2010. URL: http://www.xilinx.com/support/documentation/
white_papers/wp375_HPC_Using_FPGAs.pdf.

[Sut05] H. Sutter. “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”.
In: Dr. Dobb’s J. 30 (Mar. 2005), pp. 1 –7. URL: http://www.gotw.ca/publications/
concurrency-ddj.htm.

[Swt] SWT: The Standard Widget Toolkit - Home page. URL: http://www.eclipse.org/swt/.

[Szi+13] S. Szilvasi et al. “Marmote SDR: Experimental Platform for Low-Power Wireless Protocol
Stack Research”. In: J. Sensor and Actuator Networks 2.3, MDPI (Sept. 2013), pp. 631–652.
ISSN: 2224-2708. DOI: 10.3390/jsan2030631.

[Tan+08] S. Tanaka et al. “Reconfigurable Hardware Architecture for Saving Power Consumption on
a Sensor Node”. In: Proc. Int. Conf. on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP). Sydney, Australia: IEEE, Dec. 2008, pp. 405–410. DOI: 10.1109/
ISSNIP.2008.4762022.

[TB09] F. Thoma and J. Becker. “Dynamic System Reconfiguration in Heterogeneous Platforms:
The MORPHEUS Approach”. In: ed. by N. Voros, A. Rosti, and M. Hübner. Vol. 40. Lecture
Notes in Electrical Engineering. Springer Netherlands, 2009. Chap. Control of Dynamic
Reconfiguration, pp. 129–137. URL: http://www.springer.com/engineering/circuits+
%26+systems/book/978-90-481-2426-8.

[TD11] P. Turcza and M. Duplaga. “Low power FPGA-based image processing core for wireless
capsule endoscopy”. In: Sensors and Actuators A: Physical 172.2, Elsevier (Dec. 2011),
pp. 552 –560. ISSN: 0924-4247. DOI: 10.1016/j.sna.2011.09.026.

[Tel] TelosB Datasheet. 6020 - 0094 - 03 Rev. A. MEMSIC Inc. Andover, MA, USA. URL: http:
//www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf.

[Ton+09] J. Tong et al. “Design of Wireless Sensor Network Node with Hyperchaos Encryption Based
on FPGA”. In: Proc. Int. Workshop on Chaos-Fractals Theories and Applications (IWCFTA).
Shenyang, China: IEEE Computer Society, Nov. 2009, pp. 190–194. DOI: 10.1109/IWCFTA.
2009.47.

[TSV07] G. Theodoridis, D. Soudris, and S. Vassiliadis. “Fine- and Coarse-Grain Reconfigurable
Computing”. In: ed. by S. Vassiliadis and D. Soudris. Springer Netherlands, 2007. Chap. A
Survey of Coarse-Grain Reconfigurable Architectures and CAD Tools, pp. 89 –149. ISBN:
978-1-4020-6504-0. DOI: 10.1007/978-1-4020-6505-7_2.

[TTL76] Tran-Thong and B. Liu. “Fixed-point fast Fourier transform error analysis”. In: IEEE Trans.
on Acoust., Speech, Signal Process. 24.6 (Dec. 1976), pp. 563–573. ISSN: 0096-3518. DOI:
10.1109/TASSP.1976.1162875.

181

http://dx.doi.org/10.1155/2010/724962
http://dx.doi.org/10.1155/2010/724962
http://www.cse.nd.edu/~cpoellab/teaching/cse40815/Stargate_Manual_7430-0317-13_B.pdf
http://www.cse.nd.edu/~cpoellab/teaching/cse40815/Stargate_Manual_7430-0317-13_B.pdf
http://dx.doi.org/10.1109/T-C.1971.223205
http://sunspotworld.com/docs/Yellow/eSPOT8ds.pdf
http://www.xilinx.com/support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf
http://www.xilinx.com/support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.eclipse.org/swt/
http://dx.doi.org/10.3390/jsan2030631
http://dx.doi.org/10.1109/ISSNIP.2008.4762022
http://dx.doi.org/10.1109/ISSNIP.2008.4762022
http://www.springer.com/engineering/circuits+%26+systems/book/978-90-481-2426-8
http://www.springer.com/engineering/circuits+%26+systems/book/978-90-481-2426-8
http://dx.doi.org/10.1016/j.sna.2011.09.026
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://dx.doi.org/10.1109/IWCFTA.2009.47
http://dx.doi.org/10.1109/IWCFTA.2009.47
http://dx.doi.org/10.1007/978-1-4020-6505-7_2
http://dx.doi.org/10.1109/TASSP.1976.1162875

[Ull+04] M. Ullmann et al. “An FPGA run-time system for dynamical on-demand reconfiguration”.
In: Proc. 8th Int. Parallel and Distributed Processing Symp. (IPDPS). Santa Fe, NM, USA:
IEEE Computer Society, Apr. 2004, 8 pages. DOI: 10.1109/IPDPS.2004.1303106.

[Val+12a] J. Valverde et al. “Using SRAM Based FPGAs for Power-Aware High Performance Wireless
Sensor Networks”. In: Sensors 12.3, MDPI (Feb. 2012), pp. 2667–2692. ISSN: 1424-8220.
DOI: 10.3390/s120302667.

[Val+12b] J. Valverde et al. “Wireless Sensor Network for Environmental Monitoring: Application in a
Coffee Factory”. In: Int. J. Distributed Sensor Networks 2012.638067, Hindawi Publishing
Corporation (Nov. 2012), pp. 1 –18. DOI: 10.1155/2012/638067.

[Ven+08] P. J. C. Ventura et al. “An embedded system to assess the automotive shock absorber
condition under vehicle operation”. In: Proc. IEEE Sensors Conf. Lecce, Italy: IEEE, Oct.
2008, pp. 1210–1213. DOI: 10.1109/ICSENS.2008.4716660.

[Vir+05] K. Virk et al. “Design of a development platform for HW/SW codesign of wireless integrated
sensor nodes”. In: Proc. 8th Euromicro Conf. on Digital System Design (DSD). Porto, Portugal:
IEEE Computer Society, Aug. 2005, pp. 254–260. DOI: 10.1109/DSD.2005.32.

[Vol+07] P. Volgyesi et al. “Shooter Localization and Weapon Classification with Soldier-wearable
Networked Sensors”. In: Proc. 5th Int. Conf. on Mobile Syst., Applicat. and Services (MobiSys).
San Juan, PR, USA: ACM, June 2007, pp. 113–126. ISBN: 978-1-59593-614-1. DOI: 10.
1145/1247660.1247676.

[Vol+10] P. Volgyesi et al. “Software Development for a Novel WSN Platform”. In: Proc. ICSE Workshop
on Software Eng. for Sensor Network Applicat. (SESENA). Cape Town, South Africa: ACM,
May 2010, pp. 20–25. ISBN: 978-1-60558-969-5. DOI: 10.1145/1809111.1809119.

[VS+10] L. A. Vera-Salas et al. “Reconfigurable Node Processing Unit for a Low-Power Wireless
Sensor Network”. In: Proc. Int. Conf. on Reconfigurable Computing and FPGAs (ReConFig).
Quintana Roo, Mexico: IEEE Computer Society, Dec. 2010, pp. 173–178. DOI: 10.1109/
ReConFig.2010.48.

[Wan+01] M. Wan et al. “Design Methodology of a Low-Energy Reconfigurable Single-Chip DSP
System”. In: J. VLSI signal processing systems for signal, image and video technology 28.1-
2, Kluwer Academic Publishers (2001), pp. 47–61. ISSN: 0922-5773. DOI: 10.1023/A:
1008159121620.

[Wan+13a] W. Wang et al. “Thermoelectric Energy Harvesting for Building Energy Management Wireless
Sensor Networks”. In: Int. J. Distributed Sensor Networks 2013.232438, Hindawi Publishing
Corporation (May 2013), pp. 1 –14. DOI: 10.1155/2013/232438.

[Wan+13b] Y. S. Wang et al. “Hierarchical representation of on-chip context to reduce reconfiguration
time and implementation area for coarse-grained reconfigurable architecture”. In: Science
China Information Sciences 56.11, Springer Berlin Heidelberg (Nov. 2013), pp. 1–20. ISSN:
1674-733X. DOI: 10.1007/s11432-013-4842-5.

[War+01] B. Warneke et al. “Smart Dust Communicating with a Cubic-Millimeter Computer”. In: IEEE
Computer 34.1 (Jan. 2001), pp. 44–51. ISSN: 0018-9162. DOI: 10.1109/2.895117.

[WC02] A. Wang and A. Chandrakasan. “Energy-efficient DSPs for wireless sensor networks”. In:
IEEE Signal Processing Mag. 19.4 (July 2002), pp. 68–78. ISSN: 1053-5888. DOI: 10.1109/
MSP.2002.1012351.

[Wei+09] J. Wei et al. “Design and Implementation of Wireless Sensor Node based on Open Core”. In:
Proc. IEEE Youth Conf. on Inform., Computing and Telecommun. (YC-ICT). Beijing, China:
IEEE, Sept. 2009, pp. 102–105. DOI: 10.1109/YCICT.2009.5382416.

182 References

http://dx.doi.org/10.1109/IPDPS.2004.1303106
http://dx.doi.org/10.3390/s120302667
http://dx.doi.org/10.1155/2012/638067
http://dx.doi.org/10.1109/ICSENS.2008.4716660
http://dx.doi.org/10.1109/DSD.2005.32
http://dx.doi.org/10.1145/1247660.1247676
http://dx.doi.org/10.1145/1247660.1247676
http://dx.doi.org/10.1145/1809111.1809119
http://dx.doi.org/10.1109/ReConFig.2010.48
http://dx.doi.org/10.1109/ReConFig.2010.48
http://dx.doi.org/10.1023/A:1008159121620
http://dx.doi.org/10.1023/A:1008159121620
http://dx.doi.org/10.1155/2013/232438
http://dx.doi.org/10.1007/s11432-013-4842-5
http://dx.doi.org/10.1109/2.895117
http://dx.doi.org/10.1109/MSP.2002.1012351
http://dx.doi.org/10.1109/MSP.2002.1012351
http://dx.doi.org/10.1109/YCICT.2009.5382416

[Wei99] M. Weiser. “The Computer for the 21st Century”. In: SIGMOBILE Mob. Comput. Commun.
Rev. 3.3, ACM (July 1999), pp. 3–11. ISSN: 1559-1662. DOI: 10.1145/329124.329126.

[Wil+07] J. Wilder et al. “Wireless Sensor Networks for Updating Reprogrammable Logic Designs
in Real-time”. In: Proc. Reconfigurable Syst., Microsystems, and Nanotechnology Workshop
(RSMN). Redstone Arsenal, AL, USA, May 2007, 7 pages. URL: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.143.2168.

[Wir] IEC 62951 WirelessHART®System Engineering Guide. HCF_LIT-161, Revision 1.0. HART
Communication Foundation. Austin, TX, USA, May 2013. URL: http://www.hartcomm.org/
protocol/training/training_resources_wihart.html.

[WN10] Q. Wu and S. Nandi. “Fast Single-Turn Sensitive Stator Interturn Fault Detection of Induction
Machines Based on Positive- and Negative-Sequence Third Harmonic Components of Line
Currents”. In: IEEE Trans. Ind. Appl. 46.3 (May 2010), pp. 974–983. ISSN: 0093-9994. DOI:
10.1109/TIA.2010.2045329.

[Xia08] F. Xia. “QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks”. In:
Sensors 8.2, MDPI (Feb. 2008), pp. 1099–1110. DOI: 10.3390/s8021099.

[Xila] Embedded System Tools Reference Manual. UG111 (v14.6). Xilinx. San Jose, CA, USA, June
2013. URL: http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_
7/est_rm.pdf.

[Xilb] LogiCORE IP Fast Fourier Transform v8.0. DS808. Xilinx. San Jose, CA, USA, July 2012. URL:
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.

pdf.

[Xm1] XM1000 Specifications. Advanticsys. Madrid, Spain, 2011. URL: http://www.advanticsys.
com/shop/asxm1000-p-24.html.

[Z1] Z1 Datasheet. v.1.1. Zolertia. Barcelona, Spain, Mar. 2010. URL: http://zolertia.com/
sites/default/files/Zolertia-Z1-Datasheet.pdf.

[Zha+04] P. Zhang et al. “Hardware Design Experiences in ZebraNet”. In: Proc. 2nd Int. Conference
on Embedded Networked Sensor Syst. (SenSys). Baltimore, MD, USA: ACM, Nov. 2004,
pp. 227–238. ISBN: 1-58113-879-2. DOI: 10.1145/1031495.1031522.

[Zha11] G. Zhang. “Aviation Manufacturing Equipment Based WSN Security Monitoring System”.
In: Proc. 9th Int. Conf. on Reliability, Maintainability and Safety (ICRMS). Guiyang, China:
IEEE, June 2011, pp. 499–503. DOI: 10.1109/ICRMS.2011.5979351.

[Zha12b] P. Zhao. “Energy Harvesting Techniques for Autonomous WSNs/RFID with a Focus on RF
Energy Harvesting”. PhD thesis. TU Darmstadt, 2012. URL: http://tuprints.ulb.tu-
darmstadt.de/3102/1/phd_diss_ZhaoPing.pdf.

[Aer] Aeroflex Gaisler. LEON3 Processor - Home page. URL: http://www.gaisler.com/index.
php/products/processors/leon3.

[Cen] Centro de Electrónica Industrial. Cookies WSN - Home page. Universidad Politécnica de
Madrid. URL: http://cookieswsn.wordpress.com/.

[IEE03] IEEE Computer Society. IEEE Standard for Information technology - Telecommunications
and information exchange between systems - Local and metropolitan area networks - Specific
requirements. IEEE Std 802.15.3™-2003. Sept. 2003. URL: http://standards.ieee.org/
getieee802/download/802.15.3-2003.pdf.

[IEE11] IEEE Computer Society. IEEE Standard for Local and metropolitan area networks. Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std 802.15.4™-2011. Sept.
2011. URL: http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf.

183

http://dx.doi.org/10.1145/329124.329126
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.2168
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.2168
http://www.hartcomm.org/protocol/training/training_resources_wihart.html
http://www.hartcomm.org/protocol/training/training_resources_wihart.html
http://dx.doi.org/10.1109/TIA.2010.2045329
http://dx.doi.org/10.3390/s8021099
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/est_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/est_rm.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf
http://www.advanticsys.com/shop/asxm1000-p-24.html
http://www.advanticsys.com/shop/asxm1000-p-24.html
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf
http://dx.doi.org/10.1145/1031495.1031522
http://dx.doi.org/10.1109/ICRMS.2011.5979351
http://tuprints.ulb.tu-darmstadt.de/3102/1/phd_diss_ZhaoPing.pdf
http://tuprints.ulb.tu-darmstadt.de/3102/1/phd_diss_ZhaoPing.pdf
http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3
http://cookieswsn.wordpress.com/
http://standards.ieee.org/getieee802/download/802.15.3-2003.pdf
http://standards.ieee.org/getieee802/download/802.15.3-2003.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf

[IEE12] IEEE Computer Society. IEEE Standard for Information technology - Telecommunications
and information exchange between systems - Local and metropolitan area networks - Specific
requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE Std 802.11™-2012. Mar. 2012. URL: http://standards.ieee.org/
getieee802/download/802.11-2012.pdf.

[Int05] International Technology Roadmap for Semiconductors. Executive Summary. Tech. rep. 2005
Edition. ITRS, 2005. URL: http://www.itrs.net/Links/2005itrs/Execsum2005.pdf.

[Int11] International Society of Automation (ISA). ANSI ISA-100.11a-2011 Wireless Systems for
Industrial Automation: Process Control and Related Applications. 2011.

[Nat11] National Institute of Standards and Technology - Federal Information Processing Standards
Publications. Advanced Encryption Standard (AES). FIPS 197. Nov. 2011. URL: http://csrc.
nist.gov/publications/fips/fips197/fips-197.pdf.

[Zig08] ZigBee Alliance. ZigBee Specification. Document 053474r17. Jan. 2008.

184 References

http://standards.ieee.org/getieee802/download/802.11-2012.pdf
http://standards.ieee.org/getieee802/download/802.11-2012.pdf
http://www.itrs.net/Links/2005itrs/Execsum2005.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

List of Own Publications

Journal Articles

[PG13c] F. Philipp and M. Glesner. “Low Power Reconfigurable Computing for Biomedical Signal
Processing”. In: Int. J. of Applied Biomedical Eng. 6.1 (Dec. 2013), pp. 47–55. ISSN: 1906-
4063. URL: http://www.ijabme.org/images/stories/ijabme/2013/ijabme-6-n0-8-
2013.pdf.

[Pon+12] S. Pongyupinpanich et al. “Improvement of Standard and Non-Standard Floating-Point
Operators”. In: ECTI Trans. Comp. and Information Technology (ECTI-CIT) 6.1, ECTI Asso-
ciation (May 2012), pp. 19–32. URL: http://www.ecti-thailand.org/assets/papers/
1279_pub_44.pdf.

Book Chapter

[PG14c] F. Philipp and M. Glesner. “The Handbook of Electronic Medicine, Electronic Health,
Telemedicine, Telehealth and Mobile Health”. In: ed. by H. Eren and J. G. Webster. CRC
Press, 2014. Chap. Context-Aware Biomedical Smart Systems, 15 pages.

Conference Papers

[Bei+14] T. Bein et al. “Maintenance on Demand Concepts for Commercial Vehicles: The MoDe
Project”. In: Proc. Transport Research Arena Conference (TRA). Paper ID 17920. Paris, France,
Apr. 2014, 10 pages. URL: http://www.traconference.eu/papers/pdfs/TRA2014_
Fpaper_17920.pdf.

[Erd+12] D. Erdenechimeg et al. “Implementation and outcomes of FPGA-based system design in
Mongolian education”. In: Proc. 22nd Int. Conf. Field Programmable Logic and Applicat.
(FPL). Oslo, Norway: IEEE, Sept. 2012, pp. 491–494. DOI: 10.1109/FPL.2012.6339181.

[Mar+13] J. Martinez et al. “An Accurate and Fast Technique for Correcting Spectral Leakage in
Motor Diagnosis”. In: Proc. 9th IEEE Int. Symp. on Diagnostics for Electrical Machines, Power
Electronics & Drives (SDEMPED). Valencia, Spain: IEEE, Aug. 2013, pp. 215–220. DOI:
10.1109/DEMPED.2013.6645719.

[PG11a] F. Philipp and M. Glesner. “A Multi-level Reconfigurable Architecture for a Wireless Sensor
Node Coprocessing Unit”. In: Proc. IEEE Int. Symp. Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW). Anchorage, AK, USA: IEEE Computer Society, May
2011, pp. 334–337. DOI: 10.1109/IPDPS.2011.162.

[PG11b] F. Philipp and M. Glesner. “Mechanisms and Architecture for the Dynamic Reconfiguration
of an Advanced Wireless Sensor Node”. In: Proc. 21st Int. Conf. Field Programmable Logic
and Applicat. (FPL). Chania, Greece: IEEE, Sept. 2011, pp. 396–398. DOI: 10.1109/FPL.
2011.78.

185

http://www.ijabme.org/images/stories/ijabme/2013/ijabme-6-n0-8-2013.pdf
http://www.ijabme.org/images/stories/ijabme/2013/ijabme-6-n0-8-2013.pdf
http://www.ecti-thailand.org/assets/papers/1279_pub_44.pdf
http://www.ecti-thailand.org/assets/papers/1279_pub_44.pdf
http://www.traconference.eu/papers/pdfs/TRA2014_Fpaper_17920.pdf
http://www.traconference.eu/papers/pdfs/TRA2014_Fpaper_17920.pdf
http://dx.doi.org/10.1109/FPL.2012.6339181
http://dx.doi.org/10.1109/DEMPED.2013.6645719
http://dx.doi.org/10.1109/IPDPS.2011.162
http://dx.doi.org/10.1109/FPL.2011.78
http://dx.doi.org/10.1109/FPL.2011.78

[PG12] F. Philipp and M. Glesner. “(GECO)2: A graphical tool for the generation of configuration
bitstreams for a smart sensor interface based on a Coarse-Grained Dynamically Reconfi-
gurable Architecture”. In: Proc. 22nd Int. Conf. Field Programmable Logic and Applicat. (FPL).
Oslo, Norway: IEEE, Sept. 2012, pp. 679–682. DOI: 10.1109/FPL.2012.6339176.

[PG13a] F. Philipp and M. Glesner. “A Reconfigurable Wireless Platform for Biomedical Signal
Processing”. In: Proc. 6th Biomedical Eng. Int. Conf. (BMEiCON). Amphur Muang, Thailand:
IEEE, Oct. 2013, 5 pages. DOI: 10.1109/BMEiCon.2013.6687692.

[PG13b] F. Philipp and M. Glesner. “An Event-based Middleware for the Remote Management of
Runtime Hardware Reconfiguration”. In: Proc. 23rd Int. Conf. Field Programmable Logic
and Applicat. (FPL). Porto, Portugal: IEEE, Sept. 2013, 4 pages. DOI: 10.1109/FPL.2013.
6645578.

[PG14b] F. Philipp and M. Glesner. “High-Level Abstraction for Teaching Embedded System De-
sign with Modular Plug-and-Play Hardware”. In: Proc. 10th Workshop on Microelectronics
Education (EWME). Tallinn, Estonia: IEEE, 2014, 5 pages.

[Phi+12a] F. Philipp et al. “A Smart Wireless Sensor for the Diagnosis of Broken Bars in Induction
Motors”. In: Proc. 13th Biennial Baltic Electron. Conf. (BEC). Tallinn, Estonia: IEEE, Oct.
2012, pp. 119–122. DOI: 10.1109/BEC.2012.6376830.

[Phi+12b] F. Philipp et al. “Adaptive Wireless Sensor Networks Powered by Hybrid Energy Harvesting
for Environmental Monitoring”. In: Proc. IEEE 6th Int. Conf. on Information and Automation
for Sustainability (ICIAfS). Beijing, China: IEEE, Sept. 2012, pp. 285–289. DOI: 10.1109/
ICIAFS.2012.6419918.

[Phi+12c] F. Philipp et al. “Hardware acceleration of combined cipher and forward error correc-
tion for low-power wireless applications”. In: Proc. 7th Int. Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC). York, UK: IEEE, July 2012, 7 pages. DOI:
10.1109/ReCoSoC.2012.6322886.

[PSG11a] F. Philipp, F. A. Samman, and M. Glesner. “Design of an Autonomous Platform for Distributed
Sensing-Actuating Systems”. In: Proc. 22nd IEEE Int. Symp. on Rapid System Prototyping
(RSP). Karlsruhe, Germany: IEEE, May 2011, pp. 85–90. DOI: 10.1109/RSP.2011.5929980.

[SPG11] F. A. Samman, F. Philipp, and M. Glesner. “Reconfigurable Interconnect Infrastructure
for Multi-FPGA-based Adaptive Multiprocessing Systems”. In: Proc. 1st Int. Workshop
on Computing in Heterogeneous, Autonomous ’N’ Goal-Oriented Environments (CHANGE).
Newport Beach, CA, USA: IEEE Computer Society, Mar. 2011, 8 pages. DOI: 10.1109/
CHANGE.2011.6172451.

[Tov+12] E. Tovar et al. “Networked Embedded Systems for Active Flow Control in Aircraft”. In:
Proc. 11th Int. Workshop on Real Time Networks (RTN). Pisa, Italy: Université de Toulouse
- IRIT/INPT/ENSEEIHT, France, July 2012, pp. 18–23. URL: http://irt.enseeiht.fr/
scharbarg/rtn2012/ProcRTN12.pdf.

Extended Abstracts

[GP13] M. Glesner and F. Philipp. “Embedded Systems Design for Smart System Integration”. In:
Proc. 13th Int. Symp. "Topical Problems in the Field of Electrical and Power Engineering"
and "Doctoral School of Energy and Geotechnology II". Pärnu, Estonia: Tallinn University of
Technology, Jan. 2013, p. 7. URL: http://egdk.ttu.ee/files/parnu2013/Parnu_2013_
007-007.pdf.

186 List of Own Publications

http://dx.doi.org/10.1109/FPL.2012.6339176
http://dx.doi.org/10.1109/BMEiCon.2013.6687692
http://dx.doi.org/10.1109/FPL.2013.6645578
http://dx.doi.org/10.1109/FPL.2013.6645578
http://dx.doi.org/10.1109/BEC.2012.6376830
http://dx.doi.org/10.1109/ICIAFS.2012.6419918
http://dx.doi.org/10.1109/ICIAFS.2012.6419918
http://dx.doi.org/10.1109/ReCoSoC.2012.6322886
http://dx.doi.org/10.1109/RSP.2011.5929980
http://dx.doi.org/10.1109/CHANGE.2011.6172451
http://dx.doi.org/10.1109/CHANGE.2011.6172451
http://irt.enseeiht.fr/scharbarg/rtn2012/ProcRTN12.pdf
http://irt.enseeiht.fr/scharbarg/rtn2012/ProcRTN12.pdf
http://egdk.ttu.ee/files/parnu2013/Parnu_2013_007-007.pdf
http://egdk.ttu.ee/files/parnu2013/Parnu_2013_007-007.pdf

[PG14a] F. Philipp and M. Glesner. “Enhancing Industrial Applications with Wireless Sensor
Networks”. In: Proc. 14th Int. Symp. "Topical Problems in the Field of Electrical and Power
Engineering" and "Doctoral School of Energy and Geotechnology II". Pärnu, Estonia: Tallinn
University of Technology, Jan. 2014, 1 page.

[Phi+11] F. Philipp et al. “Demonstration: Monitoring and Control of a Dynamically Reconfigurable
Wireless Sensor Node Powered by Hybrid Energy Harvesting”. In: Proc. Design, Automation
& Test in Europe Conf. (DATE), University Booth. Grenoble, France: EDAA, Mar. 2011, 1
page.

[PSG11b] F. Philipp, F. A. Samman, and M. Glesner. “Real-time Characterization of Noise Sources
with Computationally Optimised Wireless Sensor Networks”. In: Fortschritte der Akustik -
DAGA 2011, Proc. 37th German Annual Conf. on Acoustics. Düsseldorf, Germany: Deutsche
Gesellschaft für Akustik e.V, Mar. 2011, pp. 713–714. ISBN: 978-3-939296-02-7. URL: http:
//www.dega-akustik.de/publikationen/daga/daga_2011_inhalt.pdf.

[PSG12] F. Philipp, F. A. Samman, and M. Glesner. “Simulation Environment For FPGA-Based Sensor-
Actuators for Active Vibration Control”. In: Fortschritte der Akustik - DAGA 2012, Proc.
38th German Annual Conf. on Acoustics. Darmstadt, Germany: Deutsche Gesellschaft für
Akustik e.V., Mar. 2012, pp. 735–736. ISBN: 978-3-939296-04-1. URL: http://www.dega-
akustik.de/publikationen/daga/daga_2012_inhalt.pdf.

Extended Abstracts 187

http://www.dega-akustik.de/publikationen/daga/daga_2011_inhalt.pdf
http://www.dega-akustik.de/publikationen/daga/daga_2011_inhalt.pdf
http://www.dega-akustik.de/publikationen/daga/daga_2012_inhalt.pdf
http://www.dega-akustik.de/publikationen/daga/daga_2012_inhalt.pdf

Supervised Theses
[Abd13] Haithem Ben Abdelkader. “Design of an FPGA Wavelet Analyzer for the Diagnosis of Broken

Bars in Induction Motors”. Master Thesis. TU Darmstadt, Dec. 2013.

[Bah12] Ismail Bahri. “A Library of Signal Processing Algoritms for TmoteSky”. Internship. TU
Darmstadt, July 2012.

[Bol11] Tobias Boll. “Modellierung des Energieverbrauchs eines drahtlosen Sensornetzwerkes”.
Bachelor Thesis. TU Darmstadt, Apr. 2011.

[Bor11] Alexander Bornschein. “Hardwarearchitektur zur energieeffizienten Datenkompression”.
Student Research Project. TU Darmstadt, Feb. 2011.

[Bor13] Alexander Bornschein. “An Evolvable, Time-Multiplexed, Functional Unit for DSP Applica-
tions”. Diploma Thesis. TU Darmstadt, June 2013.

[Ehr12] Daniel Ehrhard. “Performance Analysis of Simultaneous Data Transmission on Multiple
Wireless Channels”. Bachelor Thesis (co-supervised by Faizal A. Samman). TU Darmstadt,
Sept. 2012.

[ERA13] Tarek Yasser El-Rifai and Yara Mahmound Mohamed Abdelsayed. “A Smart Sensor for the
Condition Monitoring of an Induction Motor”. Bachelor Thesis. TU Darmstadt, German
University in Cairo, Aug. 2013.

[Fat12] Mohammed Reda Fathia. “Design and Implementation of Floating-Point Logarithmic and
Exponent Functions”. Bachelor Thesis (co-supervised by Faizal A. Samman and Surapong
Pongyupinpanich). TU Darmstadt, Sept. 2012.

[Gre14] Aude Gressier. “Handbewegungserkennung in Echtzeit mittels Implementierung von Klassi-
fikatoren auf einem FPGA”. Master Thesis. TU Darmstadt, Mar. 2014.

[Isl13] Musfiqul Islam. “AMS Models for Application of Piezoelectric Patch Transducers”. Master
Thesis. TU Darmstadt, Aug. 2013.

[Jun13] Lukas Johannes Jung. “Management of Orphaned Nodes in Wireless Sensor Networks
Powered by Energy Harvesting”. Master Thesis (co-supervised by Saman Halgamuge (The
University of Melbourne)). TU Darmstadt, The University of Melbourne, Apr. 2013.

[KA12] Fidel Sam Louis Kaldas and Ahmed Osama Hamed Aboudonia. “Online Gesture Classifica-
tion on an EZ-430 Watch”. Internship. TU Darmstadt, German University in Cairo, Sept.
2012.

[Kha13] Salman Khalid. “Communication versus Computation Tradeoffs in Wireless Sensor
Networks”. Master Thesis. TU Darmstadt, Apr. 2013.

[Kly11] Conrad Klytta. “Eine symmetrische Chiffre mit integrierter Kanalkodierung”. Master Thesis.
TU Darmstadt, June 2011.

[Kur11] Anne Kurasiak. “Evaluation of a Multi-Source Energy Harvesting Circuit for a Wireless
Sensor Node”. Internship. TU Darmstadt, INSA Strasbourg, July 2011.

[Man12a] Roman Mandryka. “Timerbasierte Schätzung des Energieverbrauchs eines System-on-Chip
in Echtzeit”. Bachelor Thesis. TU Darmstadt, July 2012.

[Man12b] Antonio Jesús Moreno Mantas. “A Smart Wireless Sensor for Gestures to MIDI Conversion”.
Master Thesis. TU Darmstadt, Sept. 2012.

189

[Mou13] Jude Ngepi Mouafo. “Energieeffiziente online Merkmalsextraction für einen tragbaren
intelligenten drahtlosen Sensor”. Bachelor Thesis. TU Darmstadt, Feb. 2013.

[Mäd12] Sascha Mäder. “Modellierung und Simulation von heterogenen Systemen für Energy
Harvesting Anwendungen”. Bachelor Thesis (co-supervised by Faizal A. Samman). TU
Darmstadt, Apr. 2012.

[Mün13] Mathieu Münch. “Kanalzugriffsprotokolle mobiler drahtloser Kommunikationsnetze für
den Einsatz in Notfallszenarien”. Diploma Thesis (co-supervised by Franck Scheidemann
(MSA-Auer GmbH)). TU Darmstadt, July 2013.

[Naj11] Houdhiel Najjar. “Design and Evaluation of Power and Area Efficient FIR Filters based on
Fixed-Point Arithmetic”. Diploma Thesis. TU Darmstadt, July 2011.

[Pér12] José Seguí Pérez. “A Resource-constrained Wireless MIDI Digital Synthesizer based on
FPGA”. Master Thesis. TU Darmstadt, Nov. 2012.

[Rad13] Hauke Radtki. “Entwicklung eines inertialen, drahtlosen 9DOF Sensorknotens zur Erfassung
und Auswertung von Trainingsdaten im Kraftsport”. Bachelor Thesis. TU Darmstadt, Dec.
2013.

[Rie11] Patrick Riedel. “FPGA-Based Configurable Interface for an Acceleration Sensor”. Bachelor
Thesis. TU Darmstadt, Jan. 2011.

[Rüc13] Tobias Rückelt. “Development of a Transverse Feedback System for SIS18/100”. Master The-
sis (co-supervised by Mouhammad Alhumaidi (Signal Processing Group)). TU Darmstadt,
Aug. 2013.

[San12] Jorge Lopez Sanz. “VHDL-AMS Modeling and Simulation of a PMSM Control System
for Automotive Applications”. Master Thesis (co-supervised by Faizal A. Samman). TU
Darmstadt, Sept. 2012.

[Sei12] Mohamed Osama Ahmed Seif. “A Contiki Driver for USB Communication on HaLOEWEn”.
Internship. TU Darmstadt, German University in Cairo, Sept. 2012.

[Yua12] Weichen Yuan. “A Wireless Sensor Network based on Adaptive TDMA for Structural Health
Monitoring”. Master Thesis. TU Darmstadt, Jan. 2012.

[Zha12a] Weibin Zhang. “A Reconfigurable Functional Unit based on an ALU Array”. Master Thesis.
TU Darmstadt, Jan. 2012.

190 Supervised Theses

Curriculum Vitae
Personal Data

Name François Philipp

Date of birth 4. December 1985

Place of birth Forbach, France

Education

09/1991–06/1996 Ecole du Creutzberg, Forbach, France

09/1996–06/2000 Collège Jean Moulin, Forbach, France

09/2000–06/2003 Lycée Jean Moulin, Forbach, France

09/2003–06/2005 Classes Préparatoires aux Grandes Ecoles, specialty Mathematics and Physics,
Lycée Henri Poincaré, Nancy, France

09/2005–06/2007 Electronic Engineer Curriculum, Ecole Nationale Supérieure de
l’Electronique et de ses Applications (ENSEA), Cergy, France

09/2007–03/2009 Double Diploma ENSEA – Technische Universität Darmstadt, Department of Electrical
Engineering and Information Technology, specialty Datentechnik

Work Experience

04/2009–06/2014 Research and Teaching Staff, Microelectronic Systems Research Group, Technische
Universität Darmstadt

191

	Affidavit
	Acknowledgments
	Abstract
	Kurzfassung
	Table of Contents
	List of Symbols
	List of Abbreviations
	List of Figures
	List of Tables
	Context and Motivation for Reconfigurable Hardware in Wireless Sensor Networks
	Introduction
	Background
	Research scope and objectives
	Thesis outline

	High-Bandwidth Sensing Wireless Networks
	Origins of wireless sensor networks
	Bell's law
	Moore and more
	Ubiquitous computing

	The design space of wireless sensor networks
	Operation of a wireless sensor network
	General principle
	System-level metrics

	Sensing
	Processing
	Processing hardware
	In-network processing
	Operating systems for wireless sensor networks

	Wireless communication in wireless sensor networks
	Energy consumption of a wireless sensor node
	Limits of wireless communication and in-networking processing for high-bandwidth sensing on standard motes

	Conclusion

	Reconfigurable Hardware for Low-Power Embedded Systems
	Features of reconfigurable hardware systems
	Technology
	Granularity
	Reconfiguration processes

	Estimating the power consumption of reconfigurable hardware devices
	Low-power duty cycling for FPGAs
	Conclusion
	Summary of the considerations on reconfigurable hardware
	Outlook on the following part

	Design of a Framework Enabling Reconfigurable Hardware Acceleration in Wireless Sensor Networks
	FPGA-based Hardware Acceleration for Wireless Sensor Nodes
	Related work
	Wireless sensor nodes using an FPGA for SoC prototyping
	Wireless sensor nodes with standalone FPGA
	Wireless sensor nodes with a co-processing unit based on programmable logic
	General considerations on related work

	Design of a modular FPGA-based low-power mote
	Core architecture
	The HaLOEWEn platform
	Main board
	Extensions
	Software

	MoDe LPSIP

	Performance evaluation
	Power consumption
	Autonomous control of sleep mode
	Hardware abstraction layer
	Application examples
	FFT processing
	Localization
	Combined channel coding and cryptography

	Conclusion

	Design of a Virtually Reconfigurable FPGA Overlay Architecture for Resource-Constrained Devices
	Introduction
	Related work
	Low-power coarse-grained reconfigurable architectures
	Virtually reconfigurable hardware
	Dynamic reconfiguration for Flash-based devices

	Template architecture
	Overview
	Producer-consumer transactions and interconnect
	Sensor interfaces
	Memory elements
	Processing elements
	Reconfigurable multiply-accumulate unit
	CORDIC unit
	ALU unit
	Other units

	Reconfiguration layer
	Difference-based reconfiguration
	Context flow
	Meta-reconfiguration

	Clock and power management

	Evaluation
	Resources
	Performance

	Conclusion

	Tools for Generation and Online Dissemination of Dynamically Reconfigurable Hardware Accelerators
	General overview
	Graphical configuration interface
	Related work
	Architecture editor
	Data flow editor
	Evaluation
	Methodology for application-specific customization and programming of the architecture

	Middleware for configuration management
	Related work
	General overview
	Middleware components
	Event-based reconfiguration
	Middleware commands
	Implementation
	Application examples

	Conclusion

	Application of Wireless Sensor Networks Strengthened with Reconfigurable Hardware to Condition Monitoring Systems
	Condition Monitoring of a Shock Absorber for Predictive Maintenance
	Concept
	General overview
	Condition monitoring of the damping system

	Motivation for on-demand reconfiguration
	Implementation and results
	Conclusion

	Diagnosis of Induction Motors
	Concept
	Detection of broken bars
	Detection of dynamic eccentricity
	Detection of inter-turn short circuit

	Motivation for on-demand reconfiguration
	Implementation and results
	Implementation on HaLOEWEn
	Diagnosis results

	Conclusion

	Conclusion
	Contributions of the work
	Outlook
	Final conclusion

	Appendix
	HaLOEWEn Design Files
	Details of implemented algorithms
	High-Diffusion
	Range-extended CORDIC
	Corrected fixed-point Fast Fourier Transform

	References
	List of Own Publications
	Supervised Theses
	Curriculum Vitae

