1,771 research outputs found

    Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor

    Get PDF
    In this report, we propose algorithms which interpret and display 3D environments.The input of this procedure is a LiDAR sensor mounted atop of a car. The sensor outputs a data stream covering more than 100 meters radius of space, collecting data at 15Hz. The recording is done in real environment on the streets of Budapest in real time, while the processing is offline, implemented on CPU keeping in mind the future implementation on GPUs to reach real time data processing. The aim is to segment several region classes (such as roads, building walls, vegetation) and to identify specified objects (such as people, vehicles, traffic signs) in the point clouds through a presegmentation step. To achieve this classification, we need several features such as the color and geometrical properties of the specified objects and their possible geometrical and physical interactions. Also, we need to take into account the time domain features calculated based on the LiDAR data stream. After this presegmentation step we are able to reconstruct building facades in 3D and to track the detected objects in the 3D space. Also, in the future, this processed data set can be registered against 2D images provided by conventional cameras to reproduce realistic, colored 3D virtua

    Automated Classification of Airborne Laser Scanning Point Clouds

    Full text link
    Making sense of the physical world has always been at the core of mapping. Up until recently, this has always dependent on using the human eye. Using airborne lasers, it has become possible to quickly "see" more of the world in many more dimensions. The resulting enormous point clouds serve as data sources for applications far beyond the original mapping purposes ranging from flooding protection and forestry to threat mitigation. In order to process these large quantities of data, novel methods are required. In this contribution, we develop models to automatically classify ground cover and soil types. Using the logic of machine learning, we critically review the advantages of supervised and unsupervised methods. Focusing on decision trees, we improve accuracy by including beam vector components and using a genetic algorithm. We find that our approach delivers consistently high quality classifications, surpassing classical methods

    Discovering Regularity in Point Clouds of Urban Scenes

    Full text link
    Despite the apparent chaos of the urban environment, cities are actually replete with regularity. From the grid of streets laid out over the earth, to the lattice of windows thrown up into the sky, periodic regularity abounds in the urban scene. Just as salient, though less uniform, are the self-similar branching patterns of trees and vegetation that line streets and fill parks. We propose novel methods for discovering these regularities in 3D range scans acquired by a time-of-flight laser sensor. The applications of this regularity information are broad, and we present two original algorithms. The first exploits the efficiency of the Fourier transform for the real-time detection of periodicity in building facades. Periodic regularity is discovered online by doing a plane sweep across the scene and analyzing the frequency space of each column in the sweep. The simplicity and online nature of this algorithm allow it to be embedded in scanner hardware, making periodicity detection a built-in feature of future 3D cameras. We demonstrate the usefulness of periodicity in view registration, compression, segmentation, and facade reconstruction. The second algorithm leverages the hierarchical decomposition and locality in space of the wavelet transform to find stochastic parameters for procedural models that succinctly describe vegetation. These procedural models facilitate the generation of virtual worlds for architecture, gaming, and augmented reality. The self-similarity of vegetation can be inferred using multi-resolution analysis to discover the underlying branching patterns. We present a unified framework of these tools, enabling the modeling, transmission, and compression of high-resolution, accurate, and immersive 3D images

    Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing

    Get PDF
    We have monitored a large landslide that causes extensive damage by using Terrestrial Laser Scanners (TLS) and Global Positioning System (GPS) receivers. Our surveys have confirmed that the slope undergoes a continuous change. When using TLS some operational difficulties arise. We have used different TLSs types to better evaluate the reliability of our surveys; a full wave TLS has allowed to make easier the data filtering. All surveys have been framed in the same absolute reference system; this has been done by connecting both targets and laser stations to a Global Navigation Satellite System (GNSS) Permanent Reference Stations network. A direct comparison among the DEMs allows to infer the movements of the landslide

    Terrestrial laser scanning for vegetation analyses with a special focus on savannas

    Get PDF
    Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome

    Road Surface Feature Extraction and Reconstruction of Laser Point Clouds for Urban Environment

    Get PDF
    Automakers are developing end-to-end three-dimensional (3D) mapping system for Advanced Driver Assistance Systems (ADAS) and autonomous vehicles (AVs). Using geomatics, artificial intelligence, and SLAM (Simultaneous Localization and Mapping) systems to handle all stages of map creation, sensor calibration and alignment. It is crucial to have a system highly accurate and efficient as it is an essential part of vehicle controls. Such mapping requires significant resources to acquire geographic information (GIS and GPS), optical laser and radar spectroscopy, Lidar, and 3D modeling applications in order to extract roadway features (e.g., lane markings, traffic signs, road-edges) detailed enough to construct a “base map”. To keep this map current, it is necessary to update changes due to occurring events such as construction changes, traffic patterns, or growth of vegetation. The information of the road play a very important factor in road traffic safety and it is essential for for guiding autonomous vehicles (AVs), and prediction of upcoming road situations within AVs. The data size of the map is extensive due to the level of information provided with different sensor modalities for that reason a data optimization and extraction from three-dimensional (3D) mobile laser scanning (MLS) point clouds is presented in this thesis. The research shows the proposed hybrid filter configuration together with the dynamic developed mechanism provides significant reduction of the point cloud data with reduced computational or size constraints. The results obtained in this work are proven by a real-world system

    Forest structure from terrestrial laser scanning – in support of remote sensing calibration/validation and operational inventory

    Get PDF
    Forests are an important part of the natural ecosystem, providing resources such as timber and fuel, performing services such as energy exchange and carbon storage, and presenting risks, such as fire damage and invasive species impacts. Improved characterization of forest structural attributes is desirable, as it could improve our understanding and management of these natural resources. However, the traditional, systematic collection of forest information – dubbed “forest inventory” – is time-consuming, expensive, and coarse when compared to novel 3-D measurement technologies. Remote sensing estimates, on the other hand, provide synoptic coverage, but often fail to capture the fine- scale structural variation of the forest environment. Terrestrial laser scanning (TLS) has demonstrated a potential to address these limitations, but its operational use has remained limited due to unsatisfactory performance characteristics vs. budgetary constraints of many end-users. To address this gap, my dissertation advanced affordable mobile laser scanning capabilities for operational forest structure assessment. We developed geometric reconstruction of forest structure from rapid-scan, low-resolution point cloud data, providing for automatic extraction of standard forest inventory metrics. To augment these results over larger areas, we designed a view-invariant feature descriptor to enable marker-free registration of TLS data pairs, without knowledge of the initial sensor pose. Finally, a graph-theory framework was integrated to perform multi-view registration between a network of disconnected scans, which provided improved assessment of forest inventory variables. This work addresses a major limitation related to the inability of TLS to assess forest structure at an operational scale, and may facilitate improved understanding of the phenomenology of airborne sensing systems, by providing fine-scale reference data with which to interpret the active or passive electromagnetic radiation interactions with forest structure. Outputs are being utilized to provide antecedent science data for NASA’s HyspIRI mission and to support the National Ecological Observatory Network’s (NEON) long-term environmental monitoring initiatives

    Landslide monitoring using multitemporal terrestrial laser scanning for ground displacement analysis

    Get PDF
    In the analysis of the temporal evolution of landslides and of related hydrogeological hazards, terrestrial laser scanning (TLS) seems to be a very suitable technique for morphological description and displacement analysis. In this note we present some procedures designed to solve specific issues related to monitoring. A particular attention has been devoted to data georeferencing, both during survey campaigns and while performing statistical data analysis. The proper interpolation algorithm for digital elevation model generation has been chosen taking into account the features of the landslide morphology and of the acquired datasets. For a detailed analysis of the different dynamics of the hillslope, we identified some areas with homogeneous behaviour applying in a geographic information system (GIS) environment a sort of rough segmentation to the grid obtained by differentiating two surfaces. This approach has allowed a clear identification of ground deformations, obtaining detailed quantitative information on surficial displacements. These procedures have been applied to a case study on a large landslide of about 10 hectares, located in Italy, which recently has severely damaged the national railway line. Landslide displacements have been monitored with TLS surveying for three years, from February 2010 to June 2012. Here we report the comparison results between the first and the last survey
    • …
    corecore