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ABSTRACT

Automakers are developing end-to-end three-dimensional (3D) mapping system for Ad-

vanced Driver Assistance Systems (ADAS) and autonomous vehicles (AVs). Using geo-

matics, artificial intelligence, and SLAM (Simultaneous Localization and Mapping) sys-

tems to handle all stages of map creation, sensor calibration and alignment. It is crucial

to have a system highly accurate and efficient as it is an essential part of vehicle controls.

Such mapping requires significant resources to acquire geographic information (GIS and

GPS), optical laser and radar spectroscopy, Lidar, and 3D modeling applications in order

to extract roadway features (e.g., lane markings, traffic signs, road-edges) detailed enough

to construct a “base map”. To keep this map current, it is necessary to update changes

due to occurring events such as construction changes, traffic patterns, or growth of vege-

tation. The information of the road play a very important factor in road traffic safety and

it is essential for for guiding autonomous vehicles (AVs), and prediction of upcoming road

situations within AVs. The data size of the map is extensive due to the level of information

provided with different sensor modalities for that reason a data optimization and extrac-

tion from three-dimensional (3D) mobile laser scanning (MLS) point clouds is presented

in this thesis. The research shows the proposed hybrid filter configuration together with the

dynamic developed mechanism provides significant reduction of the point cloud data with

reduced computational or size constraints. The results obtained in this work are proven by

a real-world system.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Autonomous vehicles (AV) are getting much attention in recent years, due to significant

development efforts and dramatic progress made by big companies such as Google, Gen-

eral Motors, Ford, Tesla, and other European manufacturers. This area of research has been

growing rapidly and encompasses different domains, including robotics, computer science,

cybersecurity, and of course engineering. Furthermore, it should be noted that manufactur-

ers and different automotive suppliers who do not always publicly disclose the details on

their approaches or algorithms, owing to commercial sensitivity, have made scientific ad-

vances. Although general use of autonomous vehicles for widespread use on public roads is

likely years away, these vehicles are already being operated in a limited form on highways

or suburban district.

1.2 Problem Description

People through many years of experience, have developed a great intuitive sense for nav-

igation and spatial awareness. With this intuition, people are able to apply a near rules

based approach to their driving. With a transition to autonomous driving, these intuitive

skills need to be taught to the system that makes perception the most fundamental and crit-

ical task. One of the major challenges for autonomous vehicles is accurately knowing the

position of the vehicle relative to the world frame. Currently, this is achieved by utilizing

expensive sensors such as a differential GPS or Real-Time Kinematic (RTK) that provides

centimeter accuracy, or by using computationally taxing algorithms to attempt to match

live input data from LiDARs or cameras to previously recorded data or maps. Within this
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research an algorithm and accompanying hardware stack is proposed to reduce the compu-

tational load on the localization of the robot relative to a prior map.

Some of the major difficulties and challenges worked on solving were:

• Noise: All sensors are noisy. There are a few types of noise that include point per-

turbations and outliers. This means that a point has some probability to be within a

sphere of a certain radius around the place it was sampled (perturbations) or it may

appear in a random position in space (outliers).

• Rotation: a car turning left and the same car turning right will have different point

clouds that represent the same car.

• Computation: 3D scanning representation of the environment required a high perfor-

mance computing processor.

• Data Size: Point cloud data obtained from LiDAR sensors are large.

• Missing data: The scanned models are usually occluded and parts of the data are

missing.

1.3 Novelty of the Research

The novelty of this research came from searching for solutions to solve issues mainly re-

ported in autonomous applications such as complex 3D object interpretation and geometric

reconstruction of real-world environments. A novel solution to optimize large dataset with-

out disturbing the quality was presented, as follows:

• Hybrid Filter: A novel filtering solution is proposed that limits the size of the point

clouds used for pose initial acquisition and tracking to allow for better autonomous

on-board operation.

• Through experimentation, the proposed hybrid filter is demonstrated to exceed avail-

able and known filters specifically applied on point cloud data.
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• Dynamically Configurable Cascaded Filtering Mechanism: is proposed and imple-

mented.

• Through experimentation it is demonstrated that the system can be applied on differ-

ent filtering techniques and algorithms and it can be expanded to be used in various

applications and different sensors.

A filter that divides scattered point cloud data into multiple grids is the hybrid solu-

tion that combines down-sampling and clustering techniques into one based input space

sampling using a grid of 3D voxels. A density threshold was implemented for erasing all

unnecessary data within a given box with a dynamic ROS environment.

1.4 Thesis Organization

Chapter 2 elaborates the fundamentals of laser scan technology and its used in different

industries. At the beginning of the chapter, point-based system was discussed that includes

a representation of laser trackers. Then, multi-channel LiDAR technology is discussed.

It is important to describe this technology as it is frequently encountered in multiple en-

gineering applications and various disciplines. The chapter then elaborates on area-based

(Time of Flight) ToF that is used in consumer grade products followed by ToF system

characterization. An experimental section is presented to go over photogrammetry versus

ToF for some specific applications. Towards the end of the chapter, data fusion for mobile

application is briefly described.

Chapter 3 illustrates the basic concepts and principles of 3D scan system that was de-

veloped using a 16 channels LiDAR, GPS, and IMU sensors installed on top of an automo-

bile vehicle. DAQ used in this research and the initial process of sensor fusion specifically

for these applications were elucidated to determine the absolute position and orientation

of the vehicle sign information provided by GPS, INS and odometer. In addition, SLAM

algorithm and understanding all the detail aspect of this model is presented to generate HD
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Map for autonomous and active safety applications.

Chapter 4 tackles the main issues of multiple applications in automotive, manufactur-

ing, agriculture, construction, and other industries that require scanning of complex three-

dimensional object, interpretation, and geometric 3D reconstruction of real-world environ-

ments to incorporate into a computer-based processing. To reach the final result, multiple

algorithms and known filters were experimented for the environment. Some of the major

filter techniques for point cloud data and reasoning behind the method used are covered.

This chapter provides a comprehensive review of each filter used for this research. Note

that each filter used is fully integrated within the developed system and it is graphically

displayed with each projection process and steps.

Chapter 5 covers the overall process taken to reach the main goal and outcome. Since

one voxel can represent numerous points, using a voxel grid for spatial representation can

dramatically reduce data size, when compared to representing the same space with points.

Depending on accuracy requirement, a voxel grid is a down-sampled version of a point

cloud. The point cloud could contain inaccuracies based on how a point cloud is ac-

quired. This is a problem when it comes to mapping, calibration, and sensor alignment

for autonomous vehicle. This chapter provides a rundown of the system design and ap-

proach taken to development different filtering methods and a comparison analysis with

other known filter designs.

Chapter 6 provides a report presentation of each filter output used in this research. A

quantitative comparison and analysis is presented between raw data of Rotational Multi-

Beam LiDAR Sensor (RMBL) and results after applying the hybrid filter. In addition, an

explanation of Design for Six Sigma (DFSS) approach to ensure that all design aspects and

selection process are considered, from market research through the design phase, process

implementation, and product development.

Chapter 7 summarizes the entire work with an outlook on future work. This chapter

contains conclusions, limitations, and investigations that could be led in the future. It dis-
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cusses where the study may be extended to solve some of the challenges in the autonomous

field.
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CHAPTER 2

ACTIVE REMOTE SENSING SYSTEM

Active Three-dimensional (3D) imaging systems use artificial illumination in order to cap-

ture and record digital representations of objects. The use of artificial illumination allows

the acquisition of dense and accurate range images of textureless objects. An active 3D

imaging system can be based on different measurement principles that include Time-of-

Flight (ToF), triangulation and interferometry. The different time-of-flight technologies

allow the development of a plethora of systems that can operate at a range of a few meters

to many kilometers (reference chapter 4 from 3D Imaging Analysis And Application). In

this chapter we will focus on ToF technologies that operate from a few meters to a few

hundred meters. The characterization of this systems is discussed and experimental results

related to various construction and engineering industries are presented.

2.1 Background

3D vision systems capture and record a digital representation of the geometry and appear-

ance (e.g. color-texture) information of visible 3D surfaces of people, animals, plants,

objects and sites. Active 3D imaging systems use an artificial illumination (visible or in-

frared) to acquire dense range maps with a minimum of ambiguity. The different ToF

technologies allow the development of a plethora of systems that can operate from a range

of a few meters to many kilometers. Systems that operate up to a few meters (approx. 5

m) are typically called range cameras or RGB-D cameras and are typically dedicated to

indoor application. Systems that operate at greater range are called Lidar (Light Detection

and Ranging). Lidar started as a method to directly and accurately capture digital elevation

data for Terrestrial (TLS) and Airborne (ALS) Laser Scanning applications. In the last few

years, the appealing feature in Lidar attracted automotive industry and it became one of
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the most important sensors in active safety and autonomous applications where it is call

Mobile Laser Scanning (MLS).

Terrestrial, airborne, and mobile laser scanning differ in terms of data capture mode,

typical project size, scanning mechanism and obtainable accuracy and resolution; however,

they share many features. In this chapter, we will focus on time-of-flight technology that

operates from a few meters to a few hundred meters.

2.2 Historical Context

The fundamental work on ToF systems can be traced back to the era of RADAR (Radio

Detection And Ranging), which is based on radio waves. With the advent of lasers in the

late 1950s, it became possible to image a surface with angular and range resolutions much

higher than possible with radio waves. This new technology was named Lidar. One of the

initial use of Lidar was for mapping particles in the atmosphere [1]. During the 1980s,

the development of the Global Positioning System (GPS) opened up the applications to

moving sensors (airborne Lidar). Bathymetric Lidar was actually one of the first uses of

airborne Lidar [2]. The early 1990s saw the improvement of the inertial measurement unit

(IMU) and the ability to begin achieving decimeter accuracies. Some of the earlier non-

bathymetric airborne applications were in the measurement of glaciers and how they were

changing [3]. Terrestrial Lidar Systems (TLS) are also beginning to be used as a way to

densely map the three-dimensional nature of features and ground surfaces to a high level of

accuracy [4]. TLS is now an important tool in the construction and engineering industry.

Many modern Lidar system works in the near and short-wave infrared regions of the

electromagnetic spectrum. Some sensors also operate in the green band to penetrate water

and detect bottom features. In recent years, the automotive industry was exposed to the

usage of Lidar and this remote sensing technology is now an essential technology for Au-

tomated and Advanced Driver Assistance Systems. Also in recent years, the entertainment

industry was exposed to the usage of Lidar system. The progressive addition of motion
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sensitive interface to gaming platforms and the desired to personalize the gaming expe-

rience led to the development of a short-range time-of-flight cameras targeted at a large

demography of cost-sensitive consumers.

2.3 Basic Measurement Principles

Active 3D imaging systems can be based on different measurement principles. The three

most used principles of commercially available systems are triangulation, interferometry

and time-of-flight. Seitz describes triangulation as a method based on geometry, interfer-

ometry as one that uses accurate wavelengths and time-of-flight as based on an accurate

clock [5]. Figure 2.1 summarizes the typical accuracy of each type of active 3D imaging

system technology found on the market as a function of the operating distance.

It can be observed that each optical technique covers a particular range of operations.

Many in-depth classifications of optical distance measurement principles have been pub-

lished in important references in the field of 3D vision, e.g. [6, 7, 8, 9]. Both active and

passive triangulation systems are based on the same geometric principle: intersecting light

rays in 3D space. Typically, an active system replaces one camera of a passive stereo

system by a projection device. This projection device can be a digital video projector,

an analog slide projector or a laser. Interferometry is based on the superposition of two

beams of light [8]. Typically, a laser beam is split into two paths. One path is of known

length, while the other is of unknown length. The difference in path lengths creates a phase

difference between the light beams. The two beams are then combined together before

reaching a photo-detector. The interference pattern seen by the detector resulting from the

superposition of those two light beams depends on the path difference (i.e. the distance).

2.4 Time-of-Flight Methods

Most Time-Of-Flight (ToF) technologies presented in this chapter are classified as active

optical non-contact 3D imaging systems because they emit light into the environment and
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Figure 2.1: Expected depth (range) measurement uncertainty level as a function of depth-
of-field/object size for different non-contact 3D imaging methods[10].
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use the reflected optical energy to estimate the distance to a surface in the environment.

The distance is computed from the round-trip time which may be estimated directly using a

high-resolution clock to measure the time between outgoing and incoming pulses (Pulsed-

based ToF), or indirectly by measuring the phase shift of an amplitude-modulated optical

signal (Phase-based ToF) [11].

There are many ways to classify ToF sensors, according to their components, applica-

tion fields and performance. One of the key dimensions within this taxonomy is the way

in which the active 3D imaging system illuminates the scene. Some measurement systems

are points based and need to scan the laser spot along two axes in order to acquire a range

image, other systems used multiples laser spot and require the scanning along a single axis

to obtain a range image. Finally, some systems illuminated simultaneously the entire scene.

The first family of systems that we present are point-based scanners. A large subset

within this family are known as Terrestrial Lidar Systems (TLS) and have multiple appli-

cations within the construction and engineering industry. Many TLS contains a biaxial

leveling compensator used to align the coordinate system of the generated range image

with respect to gravity.

A second type of point-based systems frequently encounter in the construction and en-

gineering industry is the laser tracker (LT) which is the only type of systems presented in

this chapter that is classified as a contact ones because the light emitted into the environ-

ment is reflected by a retroreflector, which is placed in contact with a surface at the time of

measurement.

Systems using multiple laser spots are typically referred as multi-channel Lidar. Those

systems are encountered in automotive applications. Multi-channel Lidar is considered by

many automakers as a key technology required for autonomous driving. In the automotive

industry, the technology is known as Mobile Lidar Systems (MLS).

It emits multiple laser beams that are contained within a plane. Each acquisition gen-

erates a profile contained within that plane and by modifying the orientation or position of
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this plane it is possible to generate a range image.

Systems that illuminate simultaneously the entire scene are now frequently encountered

in consumer grade applications. Those systems are referred as an area-based system and

the detection of the incoming light is done by a two-dimensional (2D) array of detectors.

Typically, because of constraints imposed by eye safety requirements for consumer grade

products, their operational range is smaller than the other type of ToF systems.

ToF systems measure the distance to a point by calculating the round-trip time of light

reflected from the surface[12, 11], based on an assumption of the speed at which the light

is able to travel through the medium (typically air). Factors such as air temperature and

pressure[13, 14], relative humidity , CO2 concentration[12], atmospheric turbulence[15],

and the presence of particulate matter[12, 16] or fog[17] can all affect the speed at which

light can travel through the medium, further complications by gradients in these factors

along the beam path [18].

Moreover, the measurement quality is strongly dependent on the surface being mea-

sured due to factors such as reflectance factor[19] , surface orientation[18] , optical pene-

tration[20, 21, 22], and materials like water on the surface[23, 24].

The output of a ToF system is typically referred as a point cloud or range image. A

point cloud is an unorganized set of 3D points, while a range image is an organized array

of 3D points that implicitly encoded the neighborhood relation between points. This neigh-

borhood structure is related to the physical acquisition process. As an example, for a range

image produced by a multi-channel Lidar, one axis represents the laser beam index while

the other represents the angular position of the laser beam along the scanning axis.

When working with coherent light sources (lasers) eye-safety is of paramount impor-

tance and one should never operate laser-based 3D imaging sensors without appropriate

eye-safety training. Many 3D imaging systems use a laser in the visible spectrum where

fractions of a milliwatt are sufficient to cause eye damage, since the laser light density

entering the pupil is magnified, at the retina, through the lens. For an operator using any
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laser, an important safety parameter is the maximum permissible exposure (MPE) which

is defined as the level of laser radiation to which a person may be exposed without haz-

ardous effect or adverse biological changes in the eye or skin [25]. The MPE varies with

wavelength and operating conditions of a system.

One possible mitigation strategy used by scanner manufacturers is to use a laser at 1.55

µm. At this wavelength, the light is absorbed by the eye fluids before being focused on the

retina. This tends to increase the maximum permissible exposure to the laser source. Eye

safety is extensively referred in American National Standard for Safe use of Lasers [25].

2.5 Point-based Systems

Those systems measure the distance of one point at a time and need to be scanned along two

axes in order to acquire a range image. A large subset of system within this family is known

as TLS. This section will mostly focus on this type of system that is now commonly used as

a survey method for monitoring large structures such as bridges and building information

modeling. TLS can be used for forensics applications in large environments, and they are

regularly used to document cultural heritage sites.

In TLS, the scanning is performed by two rotating components. One control the el-

evation, while the other determined the azimuth. Many TLS contains a biaxial leveling

compensator used to align the coordinate system of the generated range image with respect

to gravity.

One configuration that can be encountered uses a galvanometer with a mirror to control

the elevation and the azimuth controlled by rotating the complete scanner head. Using

this configuration, the elevation can be scanned at a higher frequency than the azimuth. A

typical configuration could have a 360-degree field of view in the azimuth and 30 to 120

degrees of field of view in elevation.

In the idealized case, each time a distance measurement is made, the value of the optical

encoder of the rotating head and the readout value for the galvanometer are recorded. When
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the system is calibrated, those values can be converted into angles. Using the distance

measurement and the angles it is possible to compute the position of the 3D points.

In the non-idealized case the rotation axis of the scanner head and the one of the gal-

vanometer may not be perpendicular and some small translation offsets can result from

the misalignment of the laser and galvanometer with respect to the rotation center of the

scanner head.

Pulse-based systems perform a direct measurement of the time required by the light

to do round trip between the scanner and the scene. Whereas the phase-based systems

perform an indirect measurement of the time by measuring a phase offset.

2.6 Pulsed-based Systems

Pulsed-based system continually pulse a laser, and measures how long it takes for each

light pulse to reach a surface within the scene and return to the sensor. Typically, the pulse

has a Gaussian shape with a half-beam width of 4 ns to 10 ns. Because the speed of light is

known, the range r(∆t) of the scene surface is defined as

r(∆t) =
c∆t

2
(2.1)

where c is the speed of light, and ∆t is the time between the light being emitting and

it being detected. Typically, the detector performed a sampling of the signal every 1 or 2

ns. Different algorithms that perform the detection of pulses in the incoming signal are

discussed in Section 2.6.2.

In many applications, the detection of the peak of a pulse with a sub-nanosecond accu-

racy is critical as the pulse travels approximately 30 cm in one nanosecond.

The simplest implementation assumes that a detected pulse corresponds to the last pulse

emitted. In some situation, the ordering of the outgoing pulses may be different from the

order of the returning pulses. This can occur in scenes with large depth variations. A pulse
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can reach a distant surface and by the time the pulse return to the sensor a second pulse

is emitted to a close surface and back to the sensor. In order to avoid this situation, the

maximum pulsing rate fp of a pulse-based system is limited by the maximum range Rmax

of the system using

fp ≤
c

2Rmax

. (2.2)

As an example, a system having a maximum range of 1.5 km is expected to generate at

most 100,000 range measurements per second.

2.6.1 Multiple Returning Pulses

A property of pulse-based system is that it may register multiple return signals per emitted

pulse. An emitted laser pulse may encounter multiple reflecting surfaces and the sensor

may register as many returns as there are reflective surfaces (i.e. the laser beam diameter is

not infinitely thin[26]).

This situation is frequently encountered in airborne applications related to forester and

archaeology where it may simultaneously register the top of the vegetation and the ground

[27, 28, 29]. Note that a pulse can hit a thick branch on its way to the ground and it

may not actually reach the ground. For terrestrial applications, the analysis of multiple

return signals can sometime allow detecting building behind vegetation or detecting both

the position of a building’s window and a surface within the building. Finally, some system

records the complete return signal which forms a vector of intensity values where each

value is associated with a time stamp. Those systems are known as waveform Lidar[30].

Waveform Lidar is capable of measuring the distance of several objects within the laser

footprint and this allows characterizing the vegetation structure [28, 31, 32].

Finally, some detected pulses can be the result of an inter-reflection within the scene.

This situation is illustrated in Figure 2.2. In this figure, a part of the laser light emitted

by the system is first reflected on the ground and then reflected on the road sign before

reaching the sensor. Typically, multi-channel and area-based systems are more sensitive to
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Figure 2.2: Spurious data points induced by inter-reflection

inter-reflection artifacts then point-based systems.

2.6.2 Detecting a Returning Pulse

The detection of the peak of the returning signal with a sub-nanosecond accuracy is critical

for many commercially available systems and scanner manufacturers provides few imple-

mentation details. Implementation details about the peak detector of experimental systems

developed for the landing of spacecraft are discussed in [33, 34]. In [33], the returning

signal is convolved with a Gaussian and the peaks are located by examining the derivative.

The standard deviation of the Gaussian is derived from the physical characteristic of the

system. In [34], a 6 degree polynomial is fitted on the returning signal. Waveform lidar

record the complete return signal and make it available to the end user. The end user can

implement specialized peak detectors adapted to specific applications. A significant body

of knowledge about peak detection for waveform lidar is available [30]. One approach is to

model the waveform as a series of Gaussian pulses. The theoretical basis for this modeling

is discussed in [35].

2.7 Phase-Based Systems

Phase-based system emits an amplitude-modulated (AM) laser beam [36]. The systems

presented in this section are also known as continuous-wave ToF system. Frequency Mod-
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Figure 2.3: Spurious data points induced by inter-reflection

ulation (FM) is rarely used so it is not considered here1. The range is deduced from the

phase difference between the detected signal and the emitted signal. Fig 2.3 illustrates the

principle of the phase-based system.

The temporal intensity profile Is(t) for the illumination source is

Is(t) = As +Bs cos(φ(t) + θs) (2.3)

whereAs,Bs and θs are constant and φ(t) = 2πtfcw where fcw is the modulation frequency.

The temporal intensity profile Id(t) for the detected signal is

Id(t) = Ad +Bd cos(φ(t) + θd + δφ) (2.4)

where δφ is the phase offset related to the range. Note that Ad, Bd depend on As, Bs the

scene surface properties and the sensor characteristics. In general, the value of θs and θd

are assumed to be constant but their values are unknown. The conversion from phase offset

to range can be achieved using

r(δφ) =
cδφ

4πfcw
(2.5)

where c is the speed of light in the medium. The range over which the system can per-

1FM systems for small measurement volume exist.
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form unambiguous measurement can be computed from the modulation frequency. This

unambiguous range rmax is defined as

rmax = r(2π) =
c

2fcw
. (2.6)

Increasing the modulation frequency fcw will simultaneously reduce the value of rmax and

the measurement uncertainty.

2.7.1 Measuring Phase Offset

Phase-Based System combined the detected signal with the emitted signal in order to per-

form the phase offset measurement. At this point, one should realize a similarity with

interferometry. A unified presentation of phase-based ToF and interferometry can be found

in [37]. Combining the detected signal with the emitted signal is mathematically equiva-

lent to the cross-correlation between eq. 2.3 and eq. 2.4 which results in another sinusoidal

function Ic(t) defined as

Ic(t) = Ac +Bc cos(φ(t) + θc + δφ) (2.7)

where Ac, Bc and δφ are unknown and φ(t) and θc are known. Typically, θc it is assumed to

be zero during the processing of the signal as a non-zero value simply creates a bias in the

range measurement that can be compensated by the calibration. By sampling eq. 2.7 three

or more times with different values of ti, it is possible to construct an equation system that

allows to solve for Ac, Bc and δφ. This is done similarly as described in section 3.4.2 and

the details are are not repeated here. When selecting the different sampling time ti such

that φ(ti) = 2πi
N

where N is the number of samples,

Ac =
1

N

N−1∑
i=0

I(ti), (2.8)
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Bc =

√
(
∑N−1
i=0 I(ti) sin(2iπ

N
))2 + (

∑N−1
i=0 I(ti) cos(2iπ

N
))2

N
(2.9)

and

δφ = arctan(
N−1∑
i=0

I(ti) sin(
2iπ

N
),
N−1∑
i=0

I(ti) cos(
2iπ

N
)) (2.10)

where arctan(n, d) represents the usual arctan(n/d) where the sign of n and d are used to

determinate the quadrant.

Removing the Phase Offset Ambiguity

Once the phase difference ∆Φ is computed, the range is defined as

r(∆Φ) =
c (∆Φ + 2kπ)

4πfcw
(2.11)

where k is an unknown integer that represents the phase ambiguity. The value of k must

be recovered in order to compute the location of the 3D points. A simple method uses

multiple modulation frequencies denote as f icw with i > 0. When using this scheme, a

value of ki must be recovered for each f icw. The lower modulation frequencies are used to

remove the range ambiguity while the higher ones are used to improve the accuracy of the

measurement. In that scheme, the value of f 1
cw and rmax are selected such that k1 is always

zero and the value of ∆Φi for i > 1 can be used to determinate the value of ki+1 (assuming

that f icw < f i+1
cw ).

2.8 Multi-Channel Systems

Typically, a multi-channel LiDAR emits multiple laser beams that are contained within a

plane. Each acquisition generates a profile contained within that plane and by modifying

the orientation or position of this plane it is possible to generate a range image. Multi-

channel LiDAR is now considered by many automakers as a key technology required for
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autonomous driving and for the remainder , e.g. VLP-16 2,of this section we will focus on

imaging systems typically encounter in autonomous driving vehicles. Two variants of this

concept are presented in the remaining of this section. The first one uses physical scanning,

while the second one uses a time multiplexing strategy to perform digital scanning. In both

cases, the distance measurement is performed using a pulse-based method.

A simple modification to the point-based approach is the integration into a single scan-

ning head of multiple point-based systems having their laser beams contained within a

plane. By scanning the head perpendicularly to this plane, it is possible to generate a range

image. This configuration limits the lateral resolution and/or field of view along one axis,

but allows a higher sampling rate than point-based system. This type of system is well

adapted to navigation applications where the horizontal orientation requires a larger field

of view and higher resolution than the vertical one.

A typical system for navigation could be generated by rotating 16-channel scanner head,

a 360-degree range image that contains an array of 20000×16 3D points . The 3D informa-

tion along the vertical is used to verify that the proper clearance is available for the vehicle,

while the other orientation is used for obstacles avoidance. For some autonomous driving

applications, the desired vertical field of view is about 30 degrees.

As shown in Figure 2.4, a 30 degree vertical field of view allows the detection of ob-

jects on the road just in front of the autonomous vehicle, approaching hills and it allows

the monitoring of the vertical clearance of garage entrances and other structures. For mov-

ing vehicle, the limitation of vertical lateral resolution can be compensated by integrating

multiple range image into a single point cloud.

2.9 Characterization of ToF Systems

Before presenting the characterization of time-of-flight systems, it is essential to under-

stand the definition of uncertainty, accuracy, precision, repeatable, reproducible and lateral

2https://velodynelidar.com/vlp-16.html
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Figure 2.4: Left) A 30-Degree field-of-view collision avoidance system on the top of a
vehicle. Middle) Vehicle just before driving uphill. Right) Vehicle just before driving
downhill.

resolution. Those terms are not interchangeable as they are not exactly the same.

The uncertainty is the expression of the statistical dispersion of the values associated to

a measured quantity. There are two types of uncertainty defined in [38]. Type A uncertain-

ties are obtained using statistical methods (standard deviation), while Type B is obtained

by other means than statistical analysis (a frequently encounter example is the maximum

permissible error). In metrology, a measured quantity must be reported with an uncertainty.

For a meteorologist, an accuracy is a qualitative description of the measured quantity.

However, many manufacturers are referring to quantitative values that they described as

the accuracy of theirs systems. Note that often accuracy specifications provided by the

manufacturer do not include information about the test procedures used to obtain these

values. For many applications the measured quantities need to be geo-referenced and the

reader may encounter the terms relative and absolute accuracy. Relative Accuracy is the

position of something relative to another landmark. It is how close a measured value to a

standard value on relative terms. For example, you can give your location by referencing

a known location such as 100KM east of City of Toronto. Absolute Accuracy describes

a fixed position that never changes, regardless of your current location. It is identified by

specific coordinates, such as latitude and longitude. Manufacturers are usually referring to

accuracy specifications of their system as relative and not absolute. Relative measurement

is generally better than absolute for a given acquisition.

Intuitively, precision is how close multiple measurements are to each other. Precise

measurements are both repeatable and reproducible. You can call it repeatable if you can

get the same measurement using the same operator and instrument. It is reproducible if you
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Figure 2.5: The throwing darts represent the measurement process. The position of the
throwing darts on the far left board is precise but not accurate, on the middle it is precise
and the accurate, and the far right it is imprecise and inaccurate.

can get the same measurement using multiple operators and instruments. In Figure 2.5, the

difference between precision and accuracy is shown with a dart board example. Precision is

grouping of the shots on average to each other. Whereas accuracy is how close on average

to the bullseye are the darts.

Intuitively, the lateral resolution is the capability of a scanner to discriminate two adja-

cent structures on the surface of a sample. The lateral resolution is limited by two factors:

structural resolution and spatial resolution. The knowledge of beam footprint on the scene

allows one to determine the structural component of the lateral resolution of the system.

The spatial resolution is the smallest possible variation of the scan angle. Increasing the

resolution of the scan angle can improve the lateral resolution as long as the spatial resolu-

tion does not exceed the structural one.
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CHAPTER 3

THEORETICAL FOUNDATIONS

In AV, many important sensors have been utilized, but the two most researched and debated

are LiDAR and camera sensors. LiDAR is a light-based RADAR. The sensor sends out

short pulses of invisible laser light, and times how long it takes to see the reflection. From

this, both the brightness of the target, and how far away is it, with good accuracy can

be determined. Some LiDARs installed on mobile platforms are used for acquiring high-

resolution mapping of urban environment, while others are used for the navigating purpose

of AV.

This chapter summarizes the basic concepts and principles of 3D scans that were ob-

tained using a 16-channel LiDAR, GPS, and IMU sensors installed on top of a automobile

vehicle. Simultaneous Localization and Mapping (SLAM) algorithm and all the details of

this model needed to generate High Definition (HD) maps for autonomous and active safety

applications will be explained.

3.1 Mobile LiDAR Systems (MLS)

The automatic extraction of road layouts from MLS makes possible the availability of de-

tailed digital road maps that contain precise information on widely used geometric param-

eters, such as horizontal (straight lines, circular curves and clothoids) and vertical (slope,

vertical curves and super-elevations). A number of authors recently employed mobile map-

ping systems (MMS) to derive precise information on horizontal and vertical road param-

eters.

MLS allows for a wide range of possible applications and features. A surface model

can be obtained for planning and design of roads that can be captured using Grafe model

[39]. Ai and Tsai presented a method that can correctly detect 94.0% and 91.4% of the
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traffic signs on both roadways, respectively, with less than 7 false positive cases. Ai and

Tsai methods demonstrate that the presented solution using 3D LiDAR point cloud data

is promising for traffic sign inventory [40]. In 2011, El-Halawany and Lichti presented a

research to automatically determine the position and the dimension of the poles. The data

are 3D point cloud collected by a vehicle-based laser scanning system named TITAN. This

method is based on the eigenvalue analysis of the covariance matrix in a local neighbour-

hood [41]. In 2012, Yang et al. presented a novel approach to extract automatically road

markings from mobile LiDAR point clouds. The method generates georeferenced feature

image of the point cloud that isolate the points of road surfaces. An algorithm is then used

to separate these laser beams within a range according to their strength of reflection [42]. In

2013, Wang et al. is focused on obtaining point cloud data on excavation volume extraction

for road construction through MLS data processing [43].

3.2 Static Scan

In Figure 3.1, a 360-degree range and a front facing camera image are presented. These

were obtained while the automobile vehicle was parked. Generally, cameras must deal

with lighting variation and objects are moving shadows. This is a significant disadvan-

tage of cameras. LiDAR can provide a 3D representation of the surrounding environment

independent of ambient light.
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Figure 3.1: Snapshot of an area using a camera (top) and a view of the same area using
VLP-16 LiDAR (bottom). Note the stop sign, the Street Sign the street light pole contained
respectively in the red, purple and yellow rectangles.

Another example of a 360-degree scan is presented in Figure 3.2. The accompanying

image was generated using the panoramic feature on a smart phone.
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Figure 3.2: Top) a panoramic picture taken by a smartphone. Bottom) 3D data collected by
a Velodyne VLP-16 LiDAR from the same location.

3.2.1 Simultaneous Localization and Mapping (SLAM)

A typical robot integrated with a SLAM system will build a model of the surrounding en-

vironment and estimate its trajectory simultaneously. SLAM system relies on several key

algorithms, like feature extraction, registration and loop closure detection. SLAM is one of

the main challenges in robotics is navigating autonomously through large, unknown, and

unstructured environments. In recent years, SLAM became an important research topics

that has been investigated heavily [44]. In autonomous vehicles and robotics applications,

both cameras and the LiDAR can be used for localization [45]. Laser scanners have the

advantage of being independent of external lighting and making use of full 3D representa-

tion. Figure 3.2 shows the result of a building a map of the environments using Velodyne

VLP-16 LiDAR, which was previously used. Note that the SLAM method that produced
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this result exploited the 360-degree field of view of the VLP-16 LiDAR and the availability

odometry data.

Currently the most robust implementations of SLAM leverages LiDAR systems to re-

late a 360-degree field of view 3D point clouds to 6D spatial points (x,y,z-position, and the

roll, yaw, and pitch angles) with the assistance of auxiliary odometry sensors. Figure 3.3

explains the concept of SLAM [46].

Figure 3.3: SLAM is the process by which a robot builds a map of the environment and,
at the same time, uses this map to compute its location.Typical, the robot reports its (x,y)
position in some Cartesian coordinate system and also reports the current bearing/heading.
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Figure 3.4: 3D Map of the Collip Circle road located in London (Canada) generated using
a SLAM Algorithm. The trajectory of the vehicle is shown using a dotted line.

3.3 Sensors Fusion and Navigation

Sensor fusion is the process of integrating data from different sensors in order to construct

a more accurate perception of the environment than the ones obtained using the indepen-

dent sensors. In recent year, progress has been made in the development of autonomous

driving vehicle and Advanced Driver-Assistance System (ADAS). LiDAR is an important

sensor that made this progress possible. Nevertheless, LiDAR data must be fused with

other sensors’ data in order to improve the situational awareness and the overall reliability

and security of autonomous vehicles. see figure 3.5.
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Figure 3.5: Combination of multiple sensors to generate a HD map to be used in AV ap-
plications. The sensors are not accurate so the robot will not exactly know its location.
nevertheless, the fusion of those sensors estimate better than relying on odometry alone.

For autonomous driving, ADAS and navigation application sensors may include stereo

camera, camera,radar, sonar, LiDAR, GPS, Inertia Navigation System (INS), etc. Radar

is one of the most reliable sensor. It can operates through various conditions such as fog,

snow, rain, and dust when most optical sensors fail. However, radar has a limited lateral

resolution. Cameras are cheap and have high resolution, but are affected by ambient illu-

mination. Stereo camera are inexpensive to purchase, but are computational expensive and

do not cope well with low-texture areas. Sonar is useful for parking assistance, but has a

limited range. The main disadvantage of sensor fusion is that different sensors can have

incompatible perceptions of the environment: some may detect an obstacle while others

may not.

In autonomous systems and ADAS, all sensors data are feed to the Data Acquisition

System (DAQ). The gathering of the data by the DAQ can also be used for testing, develop-

ing, improving efficiency, ensuring reliability and safely. Figure 3.6 explains the collabora-

tion of the main sensors in autonomous or ADAS applications. The sensor fusion process

starts by using information provided by GPS, INS, and the odometer in order to determine
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the absolute position and orientation of the vehicle. Then sensors information from cam-

eras and LiDARs are compared to known maps that are downloaded from the cloud (Web

Security Services). The cloud-based information is typically refereed as High Definition

(HD) map and it allows the driving to adapt to potential obstacles, including traffic, in order

to avoid potential accidents. An HD map consists of geo-spatial coordinates of the static

elements that describe roadway features such as lane markings, traffic signs, landmarks,

road-edges, etc. In order to construct these maps, special mapping vehicles are augmented

with a number of high-accuracy perception sensors [47]. This allows for acquisition of

a geo-spatial representation of the roadways that can be used by autonomous vehicles or

ADAS that can use cheaper perception sensors. However, this HD-map approach creates

significant data storage, computation, data delivery, and cyber-security issues that fall out-

side the scope of this chapter.

Figure 3.6: Data acquisition is a sampling process that measures real world physical condi-
tions and converting the resulting samples into a digital representation recorded on the Data
Acquisition System (DAQ). In automotive applications, the data from the different sensors
are typically transferred on a data bus known as a Controller Area Network or CANbus.

The Global Positioning System is not as accurate as the Global Navigation Satellite Sys-

tem/Inertia Navigation System (GNSS/INS) that is heavily used in various autonomous ap-
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plications. A GNSS receiver provides accurate position and time to the navigation system.

When the GNSS signal deteriorates, the INS sensor provides the position and navigation

until the GNSS conditions improve. A GNSS/INS is expensive and, for some applications,

GPS is the only economically viable geo-location solution. To reach a high accuracy po-

tential, LiDAR system must be well calibrated and equipped with a high-end GNSS/INS

navigation unit. Typical LiDAR sensor range accuracy is 1-5 cm; GPS accuracy is 2-5 cm;

INS accuracy for pitch/roll is 0.005 degree and for heading is 0.008 degree with the laser

beam divergence being 0.25 to 5 milliradian. However, the final vertical and horizontal

accuracies are in an order of 5 to 15 cm and 15-50 cm (one sigma). Note that; some sys-

tematic errors may be due to miss-alignment of the laser with respect to the vehicle roll,

pitch and yaw axis or a measurement error of the relative position of the GPS antenna with

respect to the INS reference system.

30



CHAPTER 4

POINT CLOUD FILTERING

4.1 Introduction

This chapter will tackle an issue that faces multiple applications in automotive, manu-

facturing, agriculture, construction, and other industries that require scanning of complex

three-dimensional object, interpretation, and geometric 3D reconstruction of real-world en-

vironments to incorporate them into a computer-based processing. A large amount of data

laying on objects’ surfaces is called point cloud set representation of the boundary of 3D

objects and generates a large population of data points. In addition, handling a large num-

ber of points produces error distortion that causes error-estimation. The developed and

implemented approach for this issue is based on a point cloud filtering techniques that re-

duce the amount of noise and outliers in large-scale urban point cloud data sets derived

from remote sensing.

4.2 Related Work

Point cloud data obtained through a computer vision is unbalanced in density and it includes

a lot of noise and outliers. This issue will greatly reduce point cloud search efficiency and

affect the surface reconstruction. Filtering routine is one of the key aspects that needs to be

considered when working with point cloud data.

The development of a laser-scanning device and enhancement of computer vision tech-

nology and point cloud technology has been widely used in surface reconstruction and 3D

simulation. Massive cloud data collected are very dense, and usually not uniform because

of the interference factors with the superposition of many outliers and noises, which will

seriously affect the subsequent work such as point cloud data search or 3D reconstruction
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process. Filtering for point cloud data mainly includes the algorithms based on mathemat-

ical morphology, the triangulation, wavelet transform etc. Structured light vision systems

have been successfully used for accurate measurement of 3D surfaces in computer vision.

However, their applications are mainly limited to scanning stationary objects [48, 49]. Chen

et al. (2008) presented an idea for real-time acquisition of 3D surface data by a specially

coded vision system. To achieve 3D measurement for a dynamic scene, the data acquisition

must be performed with only a single image.

Light detection and ranging (LiDAR) technology allow rapid and inexpensive measure-

ments of topography over large areas. This technology is becoming a primary method for

generating high-resolution digital terrain models (DTMs) that are essential to numerous

applications such as flood modeling and landslide prediction. Airborne LiDAR systems

usually return a three-dimensional cloud of point measurements from reflective objects

scanned by the laser beneath the flight path. In order to generate a DTM, measurements

from nonground features such as buildings, vehicles, and vegetation, they must be classified

and removed. In 2003, Zhang et al.published a progressive morphological filter that was

developed to detect nonground LiDAR measurements. By gradually increasing the window

size of the filter and using elevation difference thresholds, the measurements of vehicles,

vegetation, and buildings are removed, while ground data are preserved. Datasets from

mountainous and flat urbanized areas were selected to test the progressive morphological

filter. The results show that the filter can remove most of the nonground points effectively

[50].

A point obtained by laser altimetry represents points from not only the ground surface

but also objects found on it. For civil works applications points representing the surface

of non-ground objects must be removed from the point set in a filtering process. In 2001,

Sithole described modifications made to an existing “slope based” filtering algorithm, and

presents some results obtained from the use of the filter. Sithole resampled the discrete

point cloud to generate regular grid data and then filtered the data using the method of
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image processing. This method is superior in terms of processing speed, and can make use

of mature image processing theory. The shortcomings are yet the need of interpolation and

resampling for the point cloud data, which will lose some accuracy [51].

Many filtering techniques have been presented, but as technology evolves, more re-

search is needed. As the outlier detection is an integral part of data, it has attracted great

attention. [52] proposed a new method for evaluating outlierness called the Local Corre-

lation Integral (LOCI). It offers the following advantages and novelties: (a) It provides an

automatic, data-dictated cutoff to determine whether a point is an outlier in contrast. (b) It

can provide a LOCI plot for each point; the plot summarizes many information on the data,

determining clusters, micro-clusters, diameters and inter-cluster distances. None of the ex-

isting outlier-detection methods can match this specific feature, because they results with

a single number for each point that is outlierness, (c) The LOCI method can be computed

as quickly as the best previous methods, (d) Moreover, LOCI leads to a practically linear

approximate method, and aLOCI (for approximate LOCI) provides fast highly-accurate

outlier detection. Domestic and foreign scholars have studied the identification and filter-

ing of outliers of the discrete point cloud. Recognition methods of outlier are mainly based

on depth, distribution, distance, and density [53].

Similar to this current situation, Breunig [54] put forward Local Outlier Factor (LOF)

that can deal with general scattered point cloud data and must first estimate outlier density

according to the point cloud density change. It is local in that the degree depends on

how isolated the object is with respect to the surrounding neighborhood. These references

about filtering algorithm are based mostly on the point cloud data acquired from LiDAR.

Using real-world datasets demonstrates that LOF can be used to find outliers that appear

to be meaningful, but can otherwise not be identified with existing approaches. However,

domestic and foreign research on he point cloud data based on computer vision is still in

its infancy stage both domestically and internationally. [55]

Due to the various questions and the problematic noise of 3D point cloud data, a novel

33



method is proposed to accurately filter series of 3D scans. It is developed specifically to

create high definition maps for autonomous and active safety applications but it is not lim-

ited to be used on other applications such as 3D imaging models. This model presents a

method of filtering point cloud data to reduce noise and unwanted elements while main-

taining desirable geometric features. The data, as it is presented in Euclidean Velodyne

coordinate, includes intensity and channel number and uses Cartesian coordinates of X, Y

and Z in the domain of real numbers. To be able to deal with large sparse data, a voxeliza-

tion method was created that can store necessary point cloud data with calculated ”density”

of each box; depending on the threshold, can either keep or delete the points inside the box.

4.3 Major Filters

To reach the final result, multiple algorithms were tested and known filters for our envi-

ronment. The work done is mainly to contain the typical errors and the natural variations

or unexpected changes in the behaviour of the system. Some of the major filters for point

cloud data and the reasons for a new solution are provided.

4.4 Parametric Model

Projecting point cloud data on a parametric model have been used with increasing fre-

quency in many computer vision tasks such as optical flow calculation [56, 57], range

image segmentation [58, 59], estimating the fundamental matrix [60, 61], and tracking

[62]. Figure 4.1 displays the flowchart of this model that uses a projection model called

”ProjectInliers” and a set of inlier indices from a point cloud to project them into a separate

point cloud. A basic filter method that implements the need to set the output such as data,

row step, point step, width, height, and density is used. Then, the ProjectInliers object and

Model Coefficients defines projection onto the model to project. The final step is to show

the content of the projected cloud.
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Figure 4.1: A Step-by-Step Flowchart of the Parametric Model on Point Cloud Data

In other words, Parametric Model Filter projects all the point clouds data onto a surface.

This filter is currently compatible with only flat planes, but future updates may include

parabolic, hyperbolic, spherical, and any other figure that can be written as a standard
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multi-variable equation.

A graphical display of the projection process is shown in details in Figure 4.2. The

first step is to import point cloud data location as a parameter and the project onto a given

surface. After generating the surface, then all points above or below a given plane are

eliminated. This will provide a filtered point cloud that matches only what is selected.

Figure 4.2: An example of a Parametric Model Filter that uses a surface plane to filter
certain points

The following parameters were used in the example:

1. Name: “Parametric Filter”
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2. Input Vector

• Minimum Number of points (4)

– ax + by + cz = d

– (a, b, c, d) are the parameters

3. Display summary

4. Display PCL

Listing 4.1: Parametric Model Example Command and output

1 # i n c l u d e ” P C L F i l t e r s . h ”

2 i n t main ( i n t a rgc , c h a r ∗∗ a rgv )

3 {

4 s t d : : v e c t o r<P C L F i l t e r> i n p u t = {

5 P C L F i l t e r ( ” P a r a m e t r i c F i l t e r ” , {0 , 0 , 1 , 3} , t r u e ,

f a l s e ) ,

6 / / 0x + 0y + z = 3 } ;

7 f i l t e r s = P C L F i l t e r s ( i n p u t , ” / home / i s m a i l / summary . csv ” )

;

8 ROSRUN( argc , argv , ” / home / i s m a i l / b a g f i l e s / f i l t e r e d P C L .

bag ” ) ;

9 r e t u r n EXIT SUCCESS ;

10 }

4.5 Passthrough Filter

In automotive and road information field, the precision is limited due to 1) a lack of direct

high-density three-dimensional (3D) coordinate information, 2) shadows caused by trees

and moving vehicles, and 3) visibility of road surfaces and subsidiaries. [63]
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Passthrough filter input points through certain constraints are based on a particular field.

It iterates through the entire point cloud once, performing two operations. First, it removes

non-finite points. Second, it removes any points that lie outside the specified interval for

the specified field. For example, a programmer is able to set the field so it refers to the

z-dimension (depth) and set the limit so that the filter removes any points that are half a

meter away from the sensor. [64]

The aforementioned studies mentioned used feasible methods to extract road character-

izations and to investigate the potential of MLS in road applications. Wang et al. (2018)

findings have contributed to more comprehensive approaches for describing and check-

ing road networks. Inspired by these investigations and suggestions, estimated road curbs

using GPS trajectory-based segmentation and extracted road markings with a passthrough-

statistical-radius-filter (multi-filter) in the expressway point clouds. [63]

In [50], a study was done on airborne LiDAR technology that allowed rapid and inex-

pensive measurements of topography over large areas. It provided a primary method for

generating high-resolution digital terrain models (DTMs) that are essential to numerous

applications such as flood modeling and landslide prediction. A complete description of

the algorithm can be found in the article. For this purpose a modified algorithm was used

to apply it on road information from vehicle level. Figure 4.3 presents the modified version

of the passthough filter to extract road curbs and road markings from mobile laser scanning

(MLS) point clouds.
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Figure 4.3: A Step-by-Step Flowchart of the Passthrough Filter for MLS Point Cloud Data

In general, a passthrough filter is used to eliminate all points above or below a set multi-

variable threshold. This filter was used only on filtering below the XY plane as shown

Figure 4.4.
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Figure 4.4: Passthough filter eliminates all points in selected plane

The following parameters are used in the example. Please note that this filter only works

on filtering the XY plane:

1. Name: “Passthrough Filter”

2. Input Vector

• Z1, Z2

3. Display summary

4. Display PCL

Listing 4.2: Passthrough Filter Example Command and output

1 # i n c l u d e ” P C L F i l t e r s . h ”

2 i n t main ( i n t a rgc , c h a r ∗∗ a rgv )

3 {

4 s t d : : v e c t o r<P C L F i l t e r> i n p u t = {

5 P C L F i l t e r ( ” P a s s t h r o u g h F i l t e r ” , {−10 , 0} , t r u e , f a l s e )

, } ;

6 f i l t e r s = P C L F i l t e r s ( i n p u t , ” / home / i s m a i l / b a g f i l e s /

summary 1 . csv ” ) ;
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7 ROSRUN( argc , argv , ” / home / i s m a i l / b a g f i l e s / f i l t e r e d P C L 1

. bag ” ) ;

8 r e t u r n EXIT SUCCESS ;

9 }

4.6 K-means Clustering

A method based on an algorithm able to classify or group a set of (3D) points into K

groups using attributes/features. The grouping is done by minimizing the sum of squares

of distances between a point and the corresponding cluster centroid. The original K-means

algorithm presented by MacQueen et al. (1967) [65] was then exploited for point clouds by

various researchers (Comaniciu and Meer, 2002 [66]; Lavoue et al., 2005 [67]; Yamauchi

et al., 2005 [68]; Zhang et al., 2008 [69]; LeCun et al., 2015 [70].

K-means Clustering is the number one filtering option for compact clusters. The K-

mean clustering algorithm is used for partitioning the high-dimensional data, as each parti-

tioning is considered a cluster. It is sensitive to outliers and noise and uses only numerical

attributes. The input of K-means algorithm is a set of feature vectors which can be defined

by X as a set of x1, x2, ..., xN and another input is the number of clusters to be detected the

algorithm which is defined by the variable K and also the convergence threshold ς .

X = x1, x2, ..., xN (4.1)

The k-means cluster algorithm works in the following 5 steps:

Step 1: Define an initial (random) solution as vectors of means. This solution is defined

randomly and it can be defined by the following vector of means using the first

iteration at t = 0 which is composed by K, per this equation:
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m(t = 0) = [m1,m2, ...mK ]T (4.2)

Step 2: This step is used to created a solution to classify each input data according tom(t).

In classifying all input data, there were going to be too many input data with a class

that is associated to one of the K classes.

Step 3: The classification obtained in Step 2 is used to re-compute the vectors of means in

order to compute the vector at 4.3

m(t+ 1) (4.3)

Step 4: Updates the time stamp to 4.3 and then create a test to check the convergence.

t = t+ 1 (4.4)

Step 5: In the last step, a test was made to check the convergence or continue to recompute

the means up to conversions using the following code:

Algorithm 1 K-means Clustering Algorithm

1: if ||m(t)−m(t− 1)|| < ς (convergence) then

2: m(t) as a solution

3: else

4: Go back to Step 2

In other words, K-means filter takes the point cloud and searches for all the neighbors to

every point and if there is a certain number of points which in total is below the threshold,

that point is filtered out.
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Figure 4.5: K-means filter takes the point cloud and searches for all the neighbors to every
point

Figure 4.5 is a simplified version of the algorithm that was run for the test. First, define

the collected point cloud data using circular shape and the threshold of number of points.

Note that in 3D space, the circle refers to that of a sphere. Then, check the number of

neighbors for every point, and if they do not have at least the minimum number of points as

in the threshold, then delete that point. The following parameters were used in this project:

1. Name: “K Means Filter”

2. Input Vector

• Minimum Number of points

• Radius of Search

3. Display summary

4. Display PCL

Listing 4.3: K-means Clustering Example Command and output

1 # i n c l u d e ” P C L F i l t e r s . h ”

2 i n t main ( i n t a rgc , c h a r ∗∗ a rgv )

3 {

4 s t d : : v e c t o r<P C L F i l t e r> i n p u t = {
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5 P C L F i l t e r ( ”K Means F i l t e r ” , {25 , 0 . 0 5} , t r u e , f a l s e ) , } ;

6 f i l t e r s = P C L F i l t e r s ( i n p u t , ” / home / i s m a i l / summary . csv ” ) ;

7 ROSRUN( argc , argv , ” / home / i s m a i l / b a g f i l e s / f i l t e r e d P C L .

bag ” ) ;

8 r e t u r n EXIT SUCCESS ;

9 }

4.7 Voxel Grid Filter

Standard Voxel Grid filter assembles a 3D box over the entire input data. This means that

a set of cubes is placed over the entire point cloud. For each individual voxel, the points

that lie within are down-sampled with respect to their centroid. This approach has a few

drawbacks: (i) it requires a slightly longer processing time as opposed to using the voxel

center, (ii) it is sensitive to noisy input spaces, and (iii) it does not represent the underlying

surface accurately [71]. This filter is good for rapid non-specific filtering technique of large

point cloud data set.

In this example, a cuboid was used for symmetry reasons and to avoids fitting problems

while grouping and also minimized the effect of voxel shape during feature extraction.

Multiple test were run for the voxel size, but the actual voxel sizes varied according to the

maximum and minimum values of the neighboring points found along each axis to ensure

the profile of the structure. Figure 4.6 shows the 2D voxel grid that average point cloud

data in each generated box.
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Figure 4.6: Converting the point cloud into a 3D grid. (left) This is the first step that divide
the point cloud data into a grid with boxes of a given dimensions. (right) Then, average all
the points within each individual box for a singular output.

Figure 4.7 represents a 2D voxel filter over a 2D point cloud containing uniformly

dispersed points. Each axis was divided into 5 regions resulting in 25 voxels. The points

are down-sampled by taking the centroid of the points within each voxel. The centroids are

shown in red asterisks. The centers of the voxels are shown in green squares [72].
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Figure 4.7: A 2D Voxel Grid with red stars representing the voxel centroids

Figure 4.8 explains the general process of such filter. The voxel grid filters down-

samples the point cloud data by taking a spatial average of the points in the cloud. This

method can be applied in 2D dataset.
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Figure 4.8: Voxel grid filter process associated filter based limit
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The parameters used in this voxel filter are specifically for point cloud data. Using cu-

bical representation for further processing has distinct advantages in data size, processing

time, noise suppression, and easier volumetric manipulations. Using a voxel grid for spatial

representation can dramatically reduce data size, when compared to representing the same

space with points, since one voxel can represent numerous points. Depending on accu-

racy requirement, a voxel grid is a down-sampled version of a point cloud. The following

parameters were used in this example:

1. Name: “Voxel Grid Filter”

2. Input Vector

• Length

• Width

• Height

3. Display summary

4. Display PCL

Listing 4.4: Standard Voxel Example Command and output

1 # i n c l u d e ” P C L F i l t e r s . h ”

2 i n t main ( i n t a rgc , c h a r ∗∗ a rgv )

3 {

4 s t d : : v e c t o r<P C L F i l t e r> i n p u t = {

5 P C L F i l t e r ( ” Voxel Gr id F i l t e r ” , {0 . 7 5 , 0 . 7 5 , 0 . 7 5} , t r u e

, f a l s e ) , } ;

6 f i l t e r s = P C L F i l t e r s ( i n p u t , ” / home / i s m a i l / summary . csv ” ) ;

7 ROSRUN( argc , argv , ” / home / i s m a i l / b a g f i l e s / f i l t e r e d P C L .

bag ” ) ;
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8 r e t u r n EXIT SUCCESS ;

9 }

4.8 Hybrid Filter

In automotive industry and point cloud engineering design, one of the commonly used fil-

ters for point cloud data is quantized in a process known as voxelization. While results

have been rather impressive, a 3D representation is inherently cubic and can quickly be-

come unmanageable as the point cloud grows, even with optimizations. Further-more, most

of the computations are wasted as the 3D grid is very sparse, i.e., most of the volume is

empty. Figure 4.9 shows a raw representation of a road in London, ON. Please note that

this sensor’s motor is set to rotate 1200 RPM. It can be changed but the data collection was

run with this setting. One rotation, in Velodyne’s sensors, can be referred to as a single

“frame” of data, beginning and ending at approximately 0◦ azimuth. The number of frames

per second of data generated depends entirely on the RPM setting, e.g. 600 RPM / 60 s/min

= 10 frames per second.
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Figure 4.9: Raw point cloud data presented using 16 channel Velodyne LiDAR

The hybrid solution is utilizing Voxel Grid down-sampling and K-means techniques

combined into one filter based on the input space sampling using a grid of 3D voxels. A

threshold for erasing all unnecessary data within a give box was implemented. In other

words, this filter divides the point cloud into multiple grids. Every box’s ‘density’ will be

calculated [number of points within box / volume of box] and will only be kept if the box’s

density is above a given threshold. The following figures display a simplified version of the

process for general understanding. This study utilized and combined multiple solutions to

provide the best optimal solution without losing importance of the data. Figure 4.10 shows

the first step to convert the point cloud data into boxes. In Figure 4.11 a threshold of the

density required was set for the data. Figure 4.12 shows the application of the threshold

and then reconstruction of the boxes back together in Figure 4.13.
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Figure 4.10: Turn point cloud data into a 3D grid of boxes

Figure 4.11: Check the density of each box (number of points / box volume)
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Figure 4.12: Erase all points in boxes with a “density” less than the set threshold
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Figure 4.13: Put the boxes back together and remove all boxes less than threshold

It is important to understand the problem of consistently aligning various 3D point cloud

data views into a complete model. This is an issue known as point cloud registration. It

aligns various points to find the relative positions and orientations of the separately acquired

views in a global coordinate framework, such that the intersecting areas between them

overlap perfectly. In other words, registration is the process of aligning 3D point clouds on

each other to give a complete model. Therefore, the idea came from here and a software

was implemented based on that idea. In the following, Figure 4.14 shows the main idea

and the steps taken for the results:

53



Figure 4.14: Flowchart Hybrid Filer

The following parameters are used in our example:

1. Name: “Hybrid Filter”

2. Input Vector

• Length of an individual box

• Width of an individual box

• Height of an individual box

• Threshold for erasing all PCL data within any given box

3. Display summary

4. Display PCL

Listing 4.5: Hybrid Filter Example Command and output

1 # i n c l u d e ” P C L F i l t e r s . h ”
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2 i n t main ( i n t a rgc , c h a r ∗∗ a rgv )

3 {

4 s t d : : v e c t o r<P C L F i l t e r> i n p u t = {

5 P C L F i l t e r ( ” Hybr id F i l t e r ” , {5 , 10 , 5 , 20} , t r u e , f a l s e )

, } ;

6 f i l t e r s = P C L F i l t e r s ( i n p u t , ” / home / i s m a i l / summary . csv ” )

;

7 ROSRUN( argc , argv , ” / home / i s m a i l / b a g f i l e s / f i l t e r e d P C L .

bag ” ) ;

8 r e t u r n EXIT SUCCESS ;

9 }
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CHAPTER 5

PROPOSED APPROACH

5.1 Introduction

Using cubical representation for further processing has distinct advantages in data size, pro-

cessing time, noise suppression, and easier volumetric manipulations. Since one voxel can

represent numerous points, using a voxel grid for spatial representation can dramatically

reduce data size when compared to representing the same space with points. Depending

on accuracy requirement, a voxel grid is a down-sampled version of a point cloud. The

point cloud could contain inaccuracies based on how the point cloud is acquired. This is a

problem when it comes to mapping for autonomous vehicle. For example, using an open

source Robotic Operating System (ROS) and RVIZ software for real-time visualizing and

processing of 3D data from Velodyne 16 Channel LiDAR (VLP-16) sensors for processing

are assumed to have accuracy of +/- 3cm, which is typical. It is deducible that noise should

become a reasonable concern when one attempts to obtain results from the point cloud.

5.2 Methodology

The systematic analysis of the methods applied to this project is represented in Figure 5.1.

It outlines the direction this research used and undertook to achieve the final results. The

design process describes the general methodology starting with the collection process of

raw data passing through the filter design to obtain specific results. The process started

with designing the DAQ system that combines three major sensors. Then, a filter system

was designed to reduce point cloud data based on specific parameters. The last phased of

this design was to extract the clusters generated by the previous step.
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Figure 5.1: The design process for carrying out this research

To understand the whole process in details, a methodology process is presented in a

modeling system architecture approach in Figure 5.2. The key architectural decision of the

system design is based on the combination of volume representations of multiple filters. In

this research, the concept is illustrated in prepossessing model, voxelization, system input

in different forms, and possible applications.

The implementation model of commonly-used functionality, message-passing between

processes, and package management were all done in ROS environment. This design, from

the file-system level to the processing level, was brought together with the ROS infrastruc-

ture tools. As is can be implemented in any modern programming language, ROS frame-

work was developed. In this case, C++ programming language was used for designing a

point cloud filter. In addition to utilizing Point Cloud Library (PCL), C++ is a procedural

programming language intended for intensive functions of CPU and control over hardware.
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Figure 5.2: System architecture is divided to three major models

5.3 Performance Evaluation

In order to conduct a survey of different filtering methods and compare the performances,

an experiment was developed to measure certain characteristics for comparison. Since this

research is toward autonomous vehicle applications, a lightweight and ground-optimized

lidar odometry and mapping method, LeGO-LOAM, was used for real-time six degree-of-

freedom pose estimation with ground vehicles [73]. LeGO-LOAM can achieve real-time

pose estimation on a low-power embedded system. LeGO-LOAM leverages the presence

of a ground plane in segmentation and optimization steps. Initially, point cloud segmenta-

tion was applied to filter out noise, and then feature extraction to obtain distinctive planar

and edge features. Then, a two-step Levenberg-Marquardt method was implemented to

solve different components of the six degree-of-freedom transformation across consecutive

scans. At the last stages, a comparison of the results was performed on the recorded data,

gathered from Canadian roads using a ground-truth vehicle system. In addition, an exper-

58



imental analysis of several filter algorithms was carried out to determine which accurately

represents an object reducing the noise influence in the detection procedure. An obser-

vation of similar or better accuracy with reduced computational expense when applying

hybrid filter solution.

5.3.1 Mapping Formulation

The fundamental components of mobile terrestrial mapping, GPS/INS-based direct geo-

referencing and digital imaging sensor(s), are usually modeled separately while further

differentiating the laser and optical imaging sensors. Figure, 5.3 shows the coordinate

system definitions; note that the sensor frame is defined according to the conventional

LiDAR notation, which is rotated 180◦ around the X-axis compared to the standard image

sensor frame. Also, a polar coordinate system definition (α , β ) is used to allow for a

common treatment of the laser and image sensors.
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Figure 5.3: Here a combined representation is provided for the sensor model that can be
equally applied to laser and optical camera systems, including both frame and line camera
models

The mapped object point coordinates are computed according to the sensor equation:
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rM(tp, dS(tp)) = rM,INS(tp)+RM
INS(tp)(R

INS
S RY (α(tp))RX(β(tp))dS(tp)+ bINS) (5.1)

where:
rM(tp) = 3D coordinates of the sensed object point in the mapping frame

rM,INS(tp) = 3D INS coordinates in the mapping frame, provided by GPS/INS

RM
INS(tp) = Rotation matrix between the INS body and mapping frame

RINS
S = Boresight matrix between the sensor frame and INS body frame

RS
X , R

S
Y = Rotation matrix of the sensor frame

α(tp) = Sensing direction angle from the Y axis of the sensor frame

β(tp) = Sensing direction angle from the X axis of the sensor frame

dS(tp) = Distance from sensor reference point to object point

bINS = Boresight offset vector

By defining an error boundary envelope, this formulation provides the first estimate for

the geospatial positioning accuracy of a system. For LiDAR systems, all the parameters

and measurements are known, so except for the effect of the footprint size and various

object-space specific conditions, the accuracy estimates can be directly computed. For op-

tical imagery, the scale (object distance) is unknown, so only a line with an error can be

computed the line on which the object point should lie. Then depending on the method,

such as intersection with another line (stereo technique) or surface (DEM), additional com-

putations are needed to determine the accuracy estimate of an object point; more details

can be found in [74].

5.3.2 System Architecture

To move towards autonomous driving, a 2018 Ford Edge was retrofitted with a data acqui-

sition suite to capture normal Canadian operating conditions and environments. For map
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creations, a 3D LiDAR and an IMU were used running on a laptop with Robot Operating

System (ROS) [75], and a global position system (GPS). However, the system also includes

other sensors that were utilized for other activities such as testing and evaluation of active

safety and autonomous vehicles features. Figure 5.4 showcases the vehicle and sensor suite

used within this study. Figure 5.5 presents an overview picture of the system used to con-

struct the HD Map; however, this was not the full DAQ system initially developed. The

LiDAR, IMU, and the GPS were utilized to generate a map but also other sensors were

used for different applications [76].

GPS LiDAR IMUGPS LiDAR IMU

Figure 5.4: Data Acquisition Hardware Stack
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Figure 5.5: A highlight of the Sensors Used for This Experiment

5.3.3 Data Acquisition System

DAQ system was developed to test, evaluate, and compare different methodologies in terms

of the survey devices, filtering algorithms, and data sources that can be used to quantify

certain part of the roads such as center of curvature, radius of existing roads, as well as

road edges. It was pursued to help investigate and analyze vehicle accidents and crashes on

Canadian roads.

DAQ system is a process that measures real world physical conditions and converts

resulting samples into digital numeric values. This system typically converts analog wave-

forms into digital values for processing purposes. The main components of data acquisition

systems include the following:

• Sensors, to convert physical parameters to electrical signals.

• Actuators, to convert electrical control signals into physical actions.

• Signal conditioning circuitry, to convert sensor signals into a form that can be con-

verted to digital values.
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• Analog-to-digital converters (ADC), to convert conditioned sensor signals to digital

values.

• A computer running DAQ software [76, 77, 78].

A DAQ system, along with a sensor package, was designed and installed on 2018 Ford

Edge to gather data of the surrounding environment. The data collected through the de-

veloped system include GPS route, full vehicle CAN Bus, video recording, point cloud

data, angular rate, and magnetic field. Figure 5.6 shows the full block diagram of the DAQ

system that was used and currently working on integrating additional sensors such as a

thermal camera for night vision applications and a long range 77GHz radar to test object

detection performance in critical mission day and night, in sunny or rainy weather, for short

and long-range, and other weather conditions. The system is used to test precision of au-

tonomous vehicles and active safety applications. As autonomous driving on public roads

requires high precise localization with the range of few centimeters [79], a precision system

to test the accuracy of the generated map for all road elements relative to ground truth is

being built. This system can be coupled with precise positioning (localization) software,

which can be enhanced with additional sensor data (e.g., radar, GNSS/INS, or a higher

level LiDAR with more laser channels) for a more robust performance.
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Figure 5.6: DAQ Block Diagram

Figure 5.7: Power Distribution System

For this application, it was necessary to build a power distribution system (PDS), Figure

5.7, which is flexible and easy-to-use in order to power the subsystem on a test vehicle.

The PDS can support multiple independent DC relay channels (10-12 channels) that can

each draw a continuous ∼20 amps and an onboard customizable computer to monitor each

channel, report its electrical current and health status, along with a diagnostic software to
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checks for open and short circuit conditions. The PDS system is setup in a way to avoid

power outage especially while running a test or using the DAQ system. It has the capability

to regulate power flow at a desired voltage and different frequency level, meeting load

demands, and is adaptable to changes in situation.

5.3.4 Sensor and Computing Suite

A 3D Velodyne VLP-16 LiDAR unit was mounted on the top of the vehicle. The LiDAR

utilizes a 903 nm wavelength laser to capture range data up to 100m and provides 16 unique

channels acting between ± 15.0 degrees with a vertical angular resolution of 2.0 degrees.

The laser scanner provides a 360-degree field of view with a horizontal angular resolution

ranging between 0.1 to 0.4 degrees and a scanning rate ranging between 5 and 20 Hz.

The Velodyne LiDAR was provided with a Garmin 18x LVC GPS Receiver that was

pre-configured for optimized operation. The receiver plugs directly into the Interface port

and is used to synchronize the sensor’s timestamp with precision GPS time. This gen-

eration of GPS sensors includes the capability of FAA Wide Area Augmentation System

(WAAS) differential GPS. Even though the accuracy of this sensor is <3m, it is not enough

for autonomous and active safety applications. This is one of the areas were future de-

velopment will be required to integrate and use high precision Global Navigation Satellite

System (GNSS) technology that provides the accuracy, availability and reliability that a

vehicle requires to be self-driving.[80]

One of the features that was developed was a tracking system using a python library

to integrate high-level functions at a certain timestamp in the application. It combined

OSM (Open Street Map) layer and QT Creator to generate tracking GPS point application

within the DAQ system as shown in Figure 5.8. A fully autonomous vehicle needs an

accurate localization solution paired with the confidence that the localization solution is

correct. This GNSS technology is capable of providing decimeter-level accuracy to ensure

a vehicle stays in its lane, or a safe distance from other vehicles.
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Figure 5.8: GPS Tracker on OSM Layer

For the purpose of external odomoetry measurement, an MTi-G-710 IMU was inte-

grated into the system. This IMU contains a set of accelerometers (±20 g), gyroscopes

(±450◦/s), magnetometer (±8 G), barometer (300-1100 hPa), and a GNSS receiver (2.5m

horizontal accuracy). For a computing platform, ROS Kinetic distribution was selected for

this study and was running on a laptop utilizing an i7-6820HQ CPU running at 2.70GHz.

The vendor-provided ROS packages were used for transferring data from the sensor in-

terfaces into ROS topics. The IMU was configured to broadcast the Global Navigation

Satellite System (GNSS) signals, orientation, position, linear and angular accelerations,

and velocities. In addition, the LiDAR package was configured to match what was reported

in [73].

5.3.5 Software Architecture

The software architecture that was used in this study is presented in Figure 5.9. The LeGO-

LOAM algorithm as depicted within the block diagram has been reported in [73]. This

algorithm produces maps and LiDAR odometry with assistance from an IMU. The block

diagram of the LeGO-LOAM algorithm is presented in Figure 5.10.
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socketcan
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MTI-G-710

CANable

Figure 5.9: ROS Software Architecture

accuracy motion estimation. The two estimates are fused
together to produce a single motion estimate at both high
frequency and high accuracy. LOAM’s resulting accuracy is
the best achieved by a lidar-only estimation method on the
KITTI odometry benchmark site [21].

In this work, we pursue reliable, real-time six degree-
of-freedom pose estimation for ground vehicles equipped
with 3D lidar, in a manner that is amenable to efficient
implementation on a small-scale embedded system. Such
a task is non-trivial for several reasons. Many unmanned
ground vehicles (UGVs) do not have suspensions or powerful
computational units due to their limited size. Non-smooth
motion is frequently encountered by small UGVs driving on
variable terrain, and as a result, the acquired data is often
distorted. Reliable feature correspondences are also hard to
find between two consecutive scans due to large motions
with limited overlap. Besides that, the large quantities of
points received from a 3D lidar poses a challenge to real-time
processing using limited on-board computational resources.

When we implement LOAM for such tasks, we can obtain
low-drift motion estimation when a UGV is operated with
smooth motion admist stable features, and supported by suf-
ficient computational resources. However, the performance
of LOAM deteriorates when resources are limited. Due to
the need to compute the roughness of every point in a dense
3D point cloud, the update frequency of feature extraction on
a lightweight embedded system cannot always keep up with
the sensor update frequency. Operation of UGVs in noisy
environments also poses challenges for LOAM. Since the
mounting position of a lidar is often close to the ground on
a small UGV, sensor noise from the ground may be a constant
presence. For example, range returns from grass may result
in high roughness values. As a consequence, unreliable edge
features may be extracted from these points. Similarly, edge
or planar features may also be extracted from points returned
from tree leaves. Such features are usually not reliable for
scan-matching, as the same grass blade or leaf may not be
seen in two consecutive scans. Using these features may lead
to inaccurate registration and large drift.

We therefore propose a lightweight and ground-optimized
LOAM (LeGO-LOAM) for pose estimation of UGVs in
complex environments with variable terrain. LeGO-LOAM
is lightweight, as real-time pose estimation and mapping
can be achieved on an embedded system. Point cloud seg-
mentation is performed to discard points that may represent
unreliable features after ground separation. LeGO-LOAM
is also ground-optimized, as we introduce a two-step opti-
mization for pose estimation. Planar features extracted from
the ground are used to obtain [tz, θroll, θpitch] during the
first step. In the second step, the rest of the transformation
[tx, ty, θyaw] is obtained by matching edge features extracted
from the segmented point cloud. We also integrate the ability
to perform loop closures to correct motion estimation drift.
The rest of the paper is organized as follows. Section II
introduces the hardware used for experiments. Section III
describes the proposed method in detail. Section IV presents
a set of experiments over a variety of outdoor environments.

(a) Jackal UGV (b) System overview

Fig. 1: Hardware and system overview of LeGO-LOAM.

II. SYSTEM HARDWARE

The framework proposed in this paper is validated using
datasets gathered from Velodyne VLP-16 and HDL-64E 3D
lidars. The VLP-16 measurement range is up to 100m with
an accuracy of ± 3cm. It has a vertical field of view (FOV)
of 30◦(±15◦) and a horizontal FOV of 360◦. The 16-channel
sensor provides a vertical angular resolution of 2◦. The
horizontal angular resolution varies from 0.1◦ to 0.4◦ based
on the rotation rate. Throughout the paper, we choose a scan
rate of 10Hz, which provides a horizontal angular resolution
of 0.2◦. The HDL-64E (explored in this work via the KITTI
dataset) also has a horizontal FOV of 360◦ but 48 more
channels. The vertical FOV of the HDL-64E is 26.9◦.

The UGV used in this paper is the Clearpath Jackal. Pow-
ered by a 270 Watt hour Lithium battery, it has a maximum
speed of 2.0m/s and maximum payload of 20kg. The Jackal
is also equipped with a low-cost inertial measurement unit
(IMU), the CH Robotics UM6 Orientation Sensor.

The proposed framework is validated on two computers:
an Nvidia Jetson TX2 and a laptop with a 2.5GHz i7-
4710MQ CPU. The Jetson TX2 is an embedded computing
device that is equipped with an ARM Cortex-A57 CPU. The
laptop CPU was selected to match the computing hardware
used in [19] and [20]. The experiments shown in this paper
use the CPUs of these systems only.

III. LIGHTWEIGHT LIDAR ODOMETRY AND MAPPING

A. System Overview

An overview of the proposed framework is shown in
Figure 1. The system receives input from a 3D lidar and
outputs 6 DOF pose estimation. The overall system is divided
into five modules. The first, segmentation, takes a single
scan’s point cloud and projects it onto a range image for
segmentation. The segmented point cloud is then sent to
the feature extraction module. Then, lidar odometry uses
features extracted from the previous module to find the
transformation relating consecutive scans. The features are
further processed in lidar mapping, which registers them to
a global point cloud map. At last, the transform integration
module fuses the pose estimation results from lidar odometry
and lidar mapping and outputs the final pose estimate. The
proposed system seeks improved efficiency and accuracy for
ground vehicles, with respect to the original, generalized
LOAM framework of [19] and [20]. The details of these
modules are introduced below.
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Figure 5.10: LeGO-LOAM software stack [73]

An (over)simplified model of the system is presented in 5.11. The system was designed

with an option for the user to select different filters in order to sample point cloud data. In

addition, the filter designs and algorithms were integrated into Robotic Operation System

(ROS) in order to test the performance of the selected programs. From a visual perspective,
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this system works as shown in Figure 5.12. It is up to the user to input the parameters and

determine which filter to apply on the point cloud data. It can combined multiple filters at

once with different inputs:
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Figure 5.11: (Over)simplified visual model. User can use multiple filters to sample point
cloud data.
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Figure 5.12: From a classes and visual perspective from start to finish
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Color Function

Blue User Functions

Green ROS Functions

Purple Individual PCL Filter

Yellow Class of PCL Filters

Red Pointer to and from Cloud

Table 5.1: Color code for the function used in the flowchart 5.12
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CHAPTER 6

EXPERIMENTAL RESULTS AND PERFORMANCE STUDY

6.1 Introduction

This chapter presents the results of each filter used in this research for comparison and

analysis. It provides a general quantitative analysis between the raw data of a Rotational

Multi-Beam LiDAR Sensor (RMBL) whose rotation axis is parallel to one of the frame

axes and the results after applying Hybrid filter. As stated in previous chapters and without

loss of generality, VLP-16 was considered for this work for the addition of a rotation mech-

anism. This Multi-Beam LiDAR (MBL) sensor is especially suitable for its cost, lighter

weight, symmetric FOV, and compact size.

6.2 Parametric Model

Figures 6.1 and 6.2 represent a snapshot of the point cloud data before and after Parametric

filter was applied. The red circles are only to identify and examine the difference before

raw data and filtered data.
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Figure 6.1: Parametric filter applied on point cloud data from a bird-view
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Figure 6.2: Parametric filter applied on point cloud data from a side-view

A general comparison between raw data of Rotational Multi-Beam LiDAR Sensor

(RMBL) where the rotation axis is parallel to one of the frame axes and the results af-

ter applying Parametric filtered. Figure 6.3 presents the comparison.
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Figure 6.3: Raw point cloud data versus Parametric Filter. The blue colored legend is the
raw data without any filter and the orange colored legend is after applying the Parametric
filter. The Y-axis is the number of point clouds collected per rotation (X-axis).

Table 6.1 displays the data averaging results before and after applying Parametric filter

for a frame.

Raw Data Parametric Filter

Number of Points (millions) 23.5 23.5

Table 6.1: Summary Table of raw point cloud versus Parametric filter data

After applying the Parametric filter to the data, a major reduction of data was noticed.

The Parametric filter projects all collected points on plan selected by the user. In this

example, the ground plane is selected for this study and to visualize the data. There are

many used cases for this filter but does not provide a solution to the main complications.

6.3 Passthrough Filter

Figures 6.4 and 6.5 represent a snapshot of the point cloud data before and after Passthrough

filter was applied. The red circles are only to identify and examine the difference before

raw data and filtered data.
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Figure 6.4: Passthrough filter applied on point cloud data from a bird-view
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Figure 6.5: Passthrough filter applied on point cloud data from a side-view

A general comparison between raw data of Rotational Multi-Beam LiDAR Sensor

(RMBL) where the rotation axis is parallel to one of the frame axes and the results af-

ter applying Passthrough filter. Figure 6.6 presents the comparison.
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Figure 6.6: Raw point cloud data versus Passthrough Filter. The blue colored legend is the
raw data without any filter and the orange colored legend is after applying the Passthrough
filter. The Y-axis is the number of point clouds collected per rotation (X-axis).

Table 6.2 displays the data averaging results before and after applying Passthrough filter

for a frame.

Raw Data Passthrough Filter

Number of Points (millions) 23.5 14.1

Table 6.2: Summary Table of raw point cloud versus Passthrough filter data

6.4 K-means Clustering

Figures 6.7 and 6.8 represent a snapshot of the point cloud data before and after K-means

filter was applied. The red circles are only to identify and examine the difference before

raw data and filtered data.
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Figure 6.7: K-means Clustering filter applied on point cloud data from a bird-view
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Figure 6.8: K-means Clustering filter applied on point cloud data from a side-view

A general comparison between raw data of Rotational Multi-Beam LiDAR Sensor

(RMBL) where the rotation axis is parallel to one of the frame axes and the results af-

ter applying K-means filter. Figure 6.9 presents the comparison.
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Figure 6.9: Raw point cloud data versus K-means Filter. The blue colored legend is the raw
data without any filter and the orange colored legend is after applying the K-means filter.
The Y-axis is the number of point clouds collected per rotation (X-axis).

Table 6.3 displays the data averaging results before and after applying K-means filter

for a frame.

Raw Data K-means Filter

Number of Points (millions) 23.5 16.8

Table 6.3: Summary Table of raw point cloud versus K-means filter data

6.5 Voxel Grid Filter

One of the commonly used filters for point cloud data is quantized in a process known as

voxelization. While some positive results have been presented using 3D, it is fundamentally

cubic, and can immediately become troublesome dealing with large point cloud data. In

addition, computation is misdirected as the 3D grid is extremely scattered, i.e., most of the

volume is empty. Figures 6.10 and 6.11 shows the before and after applying the filter.
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Figure 6.10: Voxel Grid filter applied on point cloud data from a bird-view

83



Figure 6.11: Voxel Grid filter applied on point cloud data from a side-view

A general comparison between raw data of Rotational Multi-Beam LiDAR Sensor

(RMBL) where the rotation axis is parallel to one of the frame axes and the results af-

ter applying a Voxel Grid filter. Figure 6.12 presents the comparison.
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Figure 6.12: Raw point cloud data versus Voxel Grid Filter. The blue colored legend is the
raw data without any filter and the orange colored legend is after applying the Voxel Grid
filter. The Y-axis is the number of point clouds collected per rotation (X-axis).

Table 6.4 displays the data averaging results before and after applying Voxel Grid filter

for a frame.

Raw Data Voxel Grid Filter

Number of Points (millions) 23.5 5.6

Table 6.4: Summary Table of raw point cloud versus Voxel Grid filter data

6.6 Hybrid Filter

Figures 6.13 and 6.14 below; represent the results after going through a hybrid-designed

filter. The highlighted red circles clearly present differences that are unique to this filter.

There are various point cloud methods and algorithm discussing how data can be optimized

but the decision was made to develop a filter that it flexible enough to be adjusted to the

environment and to the user selection. As stated earlier, this filter can be modified to be

used on other applications such as 3D imaging models.
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Figure 6.13: Hybrid filter applied on point cloud data from a bird-view
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Figure 6.14: Hybrid filter applied on point cloud data from a side-view

Figure 6.15 provides a general comparison between a raw data of a Rotational Multi-

Beam LiDAR Sensor (RMBL) where the rotation axis is parallel to one of the frame axes

and the results after applying a Hybrid filter.
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Figure 6.15: Raw point cloud data versus Hybrid Filter. The blue colored legend is the raw
data without any filter and the orange colored legend is after applying the Hybrid filter. The
Y-axis is the number of point clouds collected per rotation (X-axis).

Additionally, a measuring results of data with other filtering techniques is presented.

Those results can be found in 7.1, Table 7.1. Below table, Table 6.5 showcase the data

averaging results before and after applying Hybrid filter for a frame.

Raw Data Hybrid Filter

Number of Points (millions) 23.5 11.5

Table 6.5: Summary Table of raw point cloud versus Hybrid filter data

6.7 Six Sigma Implementation Process

The analysis used in this research employs Design for Six Sigma (DFSS) process. DFSS is

an enhancement to an existing new product development (NPD) tool. It provides a struc-

tural way to manage the deliverables, resources, and trade-offs. It employs strategic and

tactical method to enhance existing design to achieve entitlement performance. Since there

are several competing concepts, a measuring system is essential to determine the amplifica-

tion that will allow for testing the performance of the system for important design attributes

[81].
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In this research, Six Sigma technique is used to measure and compare key performance

attributes of each filter impeded in this design configuration. This involves ranking each

item of importance with a quantified value of intended importance for each item discussed

in the evaluation matrix.

6.7.1 Pugh Matrix

A Pugh matrix is a decision-matrix method or concept selection that was invented by Stuart

Pugh [82]. It is a qualitative technique used to rank the multi-dimensional options of an

option set. It provides a basic decision matrix consisting of establishing a set of criteria

options that are scored and summed to gain a total score which can then be ranked.

For this work, different filters to measure their importance based on specific criteria

believed to be important to the design aspects. Table 6.6 present the first round of a decision

matrix that consists set of a criteria options that are scored and summed for a total score.
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Data Size + + + + +
Flexibility D + + + + +
Computation A + + + + +
Accuracy T + - S S +
Ease of Control U S S + + +
Noise Monitoring M S + + + +∑

+ (Positives) 4 4 5 5 6∑− (Negatives) 0 1 0 0 0∑
S (”Sames”) 2 1 1 1 0

Table 6.6: Pugh Matrix of Raw point cloud data versus all other filters worked on in this
research. ”+”, ”-”, and ”S” represent if concept is SIGNIFICANTLY better, worse, or same
as the datum concept.
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Table 6.6 provides the criteria chosen for this research. It is intended to compare the

size, flexibility, computation, accuracy, easiness, and noise. The accuracy of this table

is related to the positional accuracy of the point cloud. The less noise and data there is

to analyze, the higher the positional accuracy. Laser scans typically generate point cloud

datasets of varying point densities. Additionally, measurement errors lead to sparse outliers

that corrupt the results even more. In the table, a dataset measurement of the noise level

and outliers is mentioned.

By improving the data size in a more controllable and manageable situation, the scoring

for using new filtering technique becomes higher. To have better results, a comparison of

the highest scores is proceeded. Table 6.7 compares K-means and Voxel Grid filtering to

the newly designed Hybrid filter using the same criteria assigned in the previous table.

Criteria
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Data Size - +
Flexibility D - -
Computation A - +
Accuracy T - -
Ease of Control U - -
Noise Monitoring M - -∑

+ (Positives) 0 2∑− (Negatives) 6 4∑
S (”Sames”) 0 0

Table 6.7: Pugh Matrix of Hybrid Filter versus. K-means clustering and Voxel Grid filtering
methods. ”+”, ”-”, and ”S” represent if concept is SIGNIFICANTLY better, worse, or same
as the datum concept.

Based on the results presented, the Hybrid solution has the best performance when it

comes to data size, flexibility, computation, accuracy, ease of control, and noise. It is clear
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that the number of negatives compared with K-means and Voxel Grid filters are more than

the positives. This is one of the main reasons the Hybrid filter solution exceed the perfor-

mance of other filers. It combines k-means and voxel techniques and adds an essential step

that examine the density of the point cloud data. The research shows that proposed filter

configuration together with the developed control algorithm provide significant reduction

of the point cloud data. The results obtained in simulations are proven by a laboratory

analysis on a real system.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This chapter covers the conclusion and contribution derived from this research. Followed

by future work recommendation that can complement this work. In this dissertation, a novel

way of optimizing raw point cloud data within ROS environment was presented. Since it

has both a theoretical and practical component, a discussion of the main conclusions, the

bigger picture, and future directions.

In Chapter 3, a real-time data acquisition system with LiDAR perception system was

developed and assembled on a vehicle for this application. The LiDAR plays an important

role in decision making for autonomous vehicle implementation. Keeping with the goal to

achieve an optimized, robust, and reliable solution of point cloud data, this approach has

been presented, validated, and demonstrated in a real-time implementation.

The effects of the sparse outlier analysis and removal of point cloud data have been

presented to include a comparison, in Chapter 4 and 5, between original dataset, and before

and after filtering. As stated in previous chapters and without loss of generality, VLP-16

was considered for this work for the addition of a rotation mechanism. This Multi-Beam

LiDAR (MBL) sensor was especially suitable for its cost, lighter weight, symmetric FOV,

and compact size. Chapter 2 provided deep understanding of LiDAR sensor and point cloud

data.

In this dissertation, a combined of multiple solutions and techniques provided to ensure

the optimal results without losing important point cloud data. As presented in Chapter 4

and 5, a flexible system based on ROS was used as a tool to add/remove filters/programs

as required. During this work great understanding of point cloud data usage, structure, and
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data-mining was learned and discovered that provided the opportunity to control the dataset

by reducing noise and size.

To move towards robust fully autonomous driving systems, high definition static maps

need to be constructed and shared between vehicles and supporting infrastructure. From

experience relating to mapping and from the literature reviewed, it is apparent that an ele-

ment of data reduction must be considered to handle the volume of data produced by the

point clouds generated by technologies such as LiDARs and Stereo-cameras. In addition

to the data sizes, localization is often handled through highly computationally expensive

algorithms focused on matching the current perception frames to past frames. When deal-

ing with high quantities of points, these algorithms are forced to operate at much lower

frequencies, potentially limiting the top speed of the vehicle. This research presents a fu-

sion solution of Voxel and K-Means that ensures only highly dense areas are recorded and

the remainder of the points is eliminated. As showcased in Table 6.5 in Chapter 6, total

point count was reduced from 23.5 to 11.5 million. Within the same frame, critical features

were maintained after the hybrid-filtering approach. This filtering mythology provides a

basis for lightweight maps in which landmarks are emphasized for efficient localization,

and updates to the static layer of the vehicles maps.

Table 7.1 summarizes the work and compares it with other known point cloud filter

configurations. The Voxel Grid filter stand-alone provides the lowest number of point cloud

data but based on the analysis and research it reduces the size of the data but does not

eliminate the outliers.

Raw Parametric Passthrough K-Means Voxel Hybrid

Data Points 23.5 23.5 14.1 16.8 5.6 11.5

Table 7.1: Summary Table of raw point cloud data versus multiple filtered data in millions
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7.2 Future Work

The performance of the proposed point cloud filtering approach is primarily dependent on

the environment used to collect the data. The approach was not evaluated in harsh weather

conditions that definitely would affect the collected data. The system might reduce the data

size and eliminate noise but the original data quality might be poor.

Director of Mcity – University of Michigan, Dr. Huei Peng, said that although auto-

mated driving features are coming soon, “it may be decades before a vehicle can drive itself

safely at any speed on any road in any weather.” Gill Pratt, CEO of the Toyota Research

Institute (TRI) and former MIT professor stated, “Level 5 autonomy—when a car can drive

completely autonomously in any traffic or weather condition is a wonderful goal but none

of us in the automobile or IT industries are close to achieving true Level 5 autonomy.”

Additional testing is necessary on different road types such as country, urban, and sub-

urban roads. The system is flexible enough to allow the user to choose certain parameters

such as length, width, height of an individual box, and density threshold for erasing point

clouds data within a given box. However, this has not been tested to suggest what parame-

ters to use in different environment.

The mapping technology has moved from print to digital and autonomous applications

are moving to high definition (HD) maps that will provide sub-meter accuracy. The more

accurate it is, the more data will be used for autonomous driving. Pushing this data up to

the cloud to maintain its freshness will require a fast internet service. This area of work

needs to be evaluated to understand what level of filtering is required or acceptable.
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