1,414 research outputs found

    Multivariate Adaptive Regression Splines in Standard Cell Characterization for Nanometer Technology in Semiconductor

    Get PDF
    Multivariate adaptive regression splines (MARSP) is a nonparametric regression method. It is an adaptive procedure which does not have any predetermined regression model. With that said, the model structure of MARSP is constructed dynamically and adaptively according to the information derived from the data. Because of its ability to capture essential nonlinearities and interactions, MARSP is considered as a great fit for high-dimension problems. This chapter gives an application of MARSP in semiconductor field, more specifically, in standard cell characterization. The objective of standard cell characterization is to create a set of high-quality models of a standard cell library that accurately and efficiently capture cell behaviors. In this chapter, the MARSP method is employed to characterize the gate delay as a function of many parameters including process-voltage-temperature parameters. Due to its ability of capturing essential nonlinearities and interactions, MARSP method helps to achieve significant accuracy improvement

    Reliability and Data Analysis of Wearout Mechanisms for Circuits

    Get PDF
    The objective of this research is to develop methodologies for the failure analysis of circuits, as well as investigate the factors for accelerating testing for front-end-of-line time-dependent dielectric breakdown (FEOL TDDB). The separation of wearout mechanisms for circuits will be investigated, and the identification of failure modes for the failure samples will be analyzed. SRAMs and ring oscillators will be used to study the failure modes. The systematic and random errors for online monitoring of SRAMS will also be examined. Furthermore, the testing plans for acceleration testing will also be explored for ring oscillators. Error reduction through sampling will also be used to find the best testing conditions for accelerated testing. This work provides a way for engineers to better understand aging monitoring of circuits, and to design better testing to collect failure data.Ph.D

    Developement of simulation tools for the analysis of variability in advanced semiconductor electron devices

    Get PDF
    The progressive down-scaling has been the driving force behind the integrated circuit (IC) industry for several decades, continuously delivering higher component densities and greater chip functionality, while reducing the cost per function from one CMOS technology generation to the next. Moore’s law boosts IC industry profits by constantly releasing high-quality and inexpensive electronic applications into the market using new technologies. From the 1 m gate lengths of the eighties to the 35 nm gate lengths of contemporary 22 nm technology, the industry successfully achieved its scaling goals, not only miniaturizing devices but also improving device performance

    Improving the Reliability of Microprocessors under BTI and TDDB Degradations

    Get PDF
    Reliability is a fundamental challenge for current and future microprocessors with advanced nanoscale technologies. With smaller gates, thinner dielectric and higher temperature microprocessors are vulnerable under aging mechanisms such as Bias Temperature Instability (BTI) and Temperature Dependent Dielectric Breakdown (TDDB). Under continuous stress both parametric and functional errors occur, resulting compromised microprocessor lifetime. In this thesis, based on the thorough study on BTI and TDDB mechanisms, solutions are proposed to mitigating the aging processes on memory based and random logic structures in modern out-of-order microprocessors. A large area of processor core is occupied by memory based structure that is vulnerable to BTI induced errors. The problem is exacerbated when PBTI degradation in NMOS is as severe as NBTI in PMOS in high-k metal gate technology. Hence a novel design is proposed to recover 4 internal gates within a SRAM cell simultaneously to mitigate both NBTI and PBTI effects. This technique is applied to both the L2 cache banks and the busy function units with storage cells in out-of-order pipeline in two different ways. For the L2 cache banks, redundant cache bank is added exclusively for proactive recovery rotation. For the critical and busy function units in out-of-order pipelines, idle cycles are exploited at per-buffer-entry level. Different from memory based structures, combinational logic structures such as function units in execution stage can not use low overhead redundancy to tolerate errors due to their irregular structure. A design framework that aims to improve the reliability of the vulnerable functional units of a processor core is designed and implemented. The approach is designing a generic function unit (GFU) that can be reconfigured to replace a particular functional unit (FU) while it is being recovered for improved lifetime. Although flexible, the GFU is slower than the original target FUs. So GFU is carefully designed so as to minimize the performance loss when it is in-use. More schemes are also designed to avoid using the GFU on performance critical paths of a program execution

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    FinFET Cell Library Design and Characterization

    Get PDF
    abstract: Modern-day integrated circuits are very capable, often containing more than a billion transistors. For example, the Intel Ivy Bridge 4C chip has about 1.2 billion transistors on a 160 mm2 die. Designing such complex circuits requires automation. Therefore, these designs are made with the help of computer aided design (CAD) tools. A major part of this custom design flow for application specific integrated circuits (ASIC) is the design of standard cell libraries. Standard cell libraries are a collection of primitives from which the automatic place and route (APR) tools can choose a collection of cells and implement the design that is being put together. To operate efficiently, the CAD tools require multiple views of each cell in the standard cell library. This data is obtained by characterizing the standard cell libraries and compiling the results in formats that the tools can easily understand and utilize. My thesis focusses on the design and characterization of one such standard cell library in the ASAP7 7 nm predictive design kit (PDK). The complete design flow, starting from the choice of the cell architecture, design of the cell layouts and the various decisions made in that process to obtain optimum results, to the characterization of those cells using the Liberate tool provided by Cadence design systems Inc., is discussed in this thesis. The end results of the characterized library are used in the APR of a few open source register-transfer logic (RTL) projects and the efficiency of the library is demonstrated.Dissertation/ThesisMasters Thesis Computer Engineering 201

    STUDY OF RADIATION EFFECTS IN GAN-BASED DEVICES

    Get PDF
    Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore the gate dielectric degradation mechanism further. Transient device simulations determined ion-induced peak transient electric field and duration for a variety of ion LET, ion injection locations, and applied drain voltages. Results demonstrate that the peak transient electric fields exceed the breakdown strength of the gate dielectric, leading to dielectric defect generation and breakdown. GaN power device lifetime degradation caused by neutron irradiation is reported. Hundreds of devices were stressed in the off-state with various drain voltages from 75 V to 400 V while irradiated with a high-intensity neutron beam. Observing a statistically significant number of neutron-induced destructive single-event-effects (DSEEs) enabled an accurate extrapolation of terrestrial field failure rates. Nuclear event and electronic simulations were performed to model the effect of terrestrial neutron secondary ion-induced gate dielectric breakdown. Combined with the TCAD simulation results, we believe that heavy-ion-induced SEGR and neutron-induced SEGR share common physics mechanisms behind the failures. Overall, experimental data and simulation results provide evidence supporting the idea that both radiation-induced SBD and HBD are associated with defect-related conduction paths formed across the dielectric, in response to radiation-induced charge injection. A percolation theory-based dielectric degradation model is proposed, which explains the dielectric breakdown behaviors observed in heavy-ion irradiation experiments

    Device and Circuit Level EMI Induced Vulnerability: Modeling and Experiments

    Get PDF
    Electro-magnetic interference (EMI) commonly exists in electronic equipment containing semiconductor-based integrated circuits (ICs). Metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the ICs may be disrupted under EMI conditions due to transient voltage-current surges, and their internal states may change undesirably. In this work, the vulnerabilities of silicon MOSFETs under EMI are studied at the device and the circuit levels, categorized as non-permanent upsets (``Soft Errors'') and permanent damages (``Hard Failures''). The Soft Errors, such as temporary bit errors and waveform distortions, may happen or be intensified under EMI, as the transient disruptions activate unwanted and highly non-linear changes inside MOSFETs, such as Impact Ionization and Snapback. The system may be corrected from the erroneous state when the EMI condition is removed. We simulate planar silicon n-type MOSFETs at the device level to study the physical mechanisms leading to or complicate the short-term, signal-level Soft Errors. We experimentally tested commercially available MOSFET devices. Not included in regular MOSFET models, exponential-like current increases as the terminal voltage increases are observed and explained using the device-level knowledge. We develop a compact Soft Error model, compatible with circuit simulators using lumped (or compact-model) components and closed-form expressions, such as SPICE, and calibrate it with our in-house experimental data using an in-house extraction technique based on the Genetic Algorithm. Example circuits are simulated using the extracted device model and under EMI-induced transient disruptions. The EMI voltage-current disruptions may also lead to permanent Hard Failures that cannot be repaired without replacement. One type of Hard Failures, the MOSFET gate dielectric (or ``oxide'') breakdown, can result in input-output relation changes and additional thermal runaway. We have fabricated individual MOSFET devices at the FabLab at the University of Maryland NanoCenter. We experimentally stress-test the fabricated devices and observe the rapid, permanent oxide breakdown. Then, we simulate a nano-scale FinFET device with ultra-thin gate oxide at the device level. Then, we apply the knowledge from our experiments to the simulated FinFET, producing a gate oxide breakdown Hard Failure circuit model. The proposed workflow enables the evaluation of EMI-induced vulnerabilities in circuit simulations before actual fabrication and experiments, which can help the early-stage prototyping process and reduce the development time

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level
    • …
    corecore