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Chapter 1

Background and motivation

The demand for electron devices with higher performances is growing at high rate. One
of the main causes is the success of portable devices like tablet and smart-phones which
has enhanced the request of high performances with low consumption. This request
can be translated into technology scaling because smaller devices need lower voltages
supply, leading to lower consumption and higher speed, and high reliability .
The progressive down-scaling has been the driving force behind the integrated circuit
(IC) industry for several decades, continuously delivering higher component densities
and greater chip functionality, while reducing the cost per function from one CMOS
technology generation to the next. Moore’s law boosts IC industry profits by constantly
releasing high-quality and inexpensive electronic applications into the market using
new technologies. From the 1 µm gate lengths of the eighties to the 35 nm gate lengths
of contemporary 22 nm technology, the industry successfully achieved its scaling goals,
not only miniaturizing devices but also improving device performance.
However, the years of happy scaling are over. Several challenges are facing the further
miniaturization of the transistors in Si chips. First, there are the process challenges of
continued scaling including, among others, sub-wavelength patterning and the formation
of ultra-shallow junctions. Continual process innovation is needed, including immersion
optical lithography, and the flash lamp and laser annealing implemented from the 45 nm
CMOS technology to achieve high-fidelity patterns and high-activation/low dopant
diffusion. Secondly, the scaling of contemporary deep-decananometer gate length
transistors results in the deterioration of electrical characteristics due to short-channel,
quantum mechanical and transport effects. Countermeasures like halo-doping can
suppress the short-channel effect in conventional MOSFETs but at the expense of
increased quantum effects and reduced mobility. Novel MOSFET structures such
as fully-depleted silicon-on-insulator or or 3D (FINFET) FETs devices are required
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Background and motivation

to achieve a fundamental improvement in electrostatic integrity. Finally, intrinsic
parameter fluctuations, resulting from the discreteness of charge and the granular
nature of matter in real decanano devices, hamper the integration of scaled transistors.
Statistical variability unavoidably increases drastically with further scaling. It requires
the introduction of novel device architectures and the adaptation of smarter circuit and
system design strategies.
In order to achieve these results, not only the silicon industry, but also emerging
technologies, have to optimize the process and to investigate deeply the physical
limitations. Physical simulations have an important role in the reduction of the number
of trials and errors during the development of new products, reducing thus the time and
the cost of new device development. Starting from the material characteristics to the
final circuit, simulations are used to study complex systems and investigate new way of
optimization [1].

1.1 Scaling trends

The scaling of the MOSFET devices has continued from its first introduction in inte-
grated circuits four decades ago. This has resulted in doubling the components density
on a single chip by proportionally scaling of the transistor dimensions over a period
of time, this scaling trend following the famous Moore’s law [2]. The scaling directly
improves performance while controlling the power consumption by reducing the supply
voltage and carefully tuning the design.
Figure 1.1 shows a MOSFET draft which consists of two back-to-back connected p-n

junctions. The gate voltage applied across metal-oxide-semiconductor (MOS) capacitor
creates an inversion channel connecting the source and the drain, and controls the carrier
density in it. The MOSFET has two critical structural parameters from an operational
point of view, namely gate length and gate dielectric thickness. MOSFET scaling affects
both lateral, the gate length, and vertical, the oxide thickness, device dimensions. While
the reduction of the lateral dimensions increases the transistor density in a chip, the
reduction of the oxide thickness is needed to ensure good electrostatic integrity.

1.1.1 Transistor dimensions

At each new tecnology generation, the bulk MOSFET area is reduced of one half, that
means a lateral scaling of a factor 1/

√
2, doubling the circuit density and enhancing
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1.1 Scaling trends

Figure 1.1: Schematic MOS representation
The MOSFET has two critical structural parameters from an operational point of
view, namely gate length Lg and gate dielectric thickness tox

functionality. In contemporary MOSFETs the drain current Id is determined by

Id

W
= COX(V g − Vth)ν (1.1)

where W is the channel width, COX is the gate capacitance per unit area, and ν is the
source end carrier velocity. The saturation transconductance gm may be obtained by

gm

W
=

∂Id

∂V g

1

W
=
εox
tox

ν (1.2)

where εox is the oxide permittivity. The carrier velocity is usually saturated in short-
channel MOSFETs, thus gm/W is an index of gate oxide thickness tox. Device current
and saturation transconductance are closely related to oxide thickness by the capacitance
Cox which is inversely proportional to oxide thickness.

1.1.2 Voltage scaling

As illustrated in Figure 1.2 the supply voltage has been continuously reduced with
the advance of CMOS technology. In addition, the threshold voltage has also been
reduced to maintain appropriate gate voltage overdrive. However, the reduction of
supply voltage and threshold voltage has lagged the gate length and gate dielectric
thickness scaling. The slower reduction of the threshold voltage is due to a combination
of factors including increasing channel doping needed to control short-channel effects.
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Figure 1.2: Voltage scaling trend
Supply voltage V dd, threshold voltage Vth, gate oxide thickness tox and gate length
Lg scaled down toghether. Gate electric field increased rapidly.

The sub-linear threshold voltage scaling in turn has retarded the scaling of the supply
voltage.

1.1.3 Doping scaling

With device scaling the MOSFET substrate doping increase and it has reached more
than 2 × 1018 cm−3 in contemporary 32 nm gate length MOSFET. In addition to the
average increase of the channel doping, the design of the vertical doping profile has also
changed. Retrograde doping has been introduced to short channel devices to control
short-channel effects and to achieve simultaneously low threshold voltage and elevate
mobility by reducing impurity scattering [3]. Short channel effect are reduced with
Halo doping that blocks lateral field penetration from source and drain without affecting
adversely the threshold voltage [4].
At source and drain regions structure modification have been made, e.g. lightly doped
drain and shallow extensions. Lightly doped drain LDD was introduced to alleviate
reliability concerns during the 5 V supply voltage period where impact ionization effect
where caused by high field near the drain junction. Shallow source/drain extensions have
been introduced to manage short-channel effects in successive technologies reducing
the coupling between the drain voltage and the carrier concentration in the channel.
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1.2 Variability

1.1.4 Nowadays MOSFET scaling

Further advancement of the MOSFET technology becomes complicated, as gate length
enters within sub-100 nm nanometer regime at the 130nm technology generation, a
commonly accepted critical dimension for nanoelectronics. At such dimensions, perfor-
mance deterioration issues associated with transport property limitations of Si started
to emerge. From the technological point of view imaging and patterning has become
extremely challenging. As optical lithography is the ’work horse’ of the semiconductor
sector, sub-wavelength patterning is pushed to adopt resolution enhancement techniques
(RET), such as optical proximity correction (OPC), to print finer lines and increase
fidelity of pattern transfer [18]. Due to extreme oxide thickness scaling, the gate ox-
ide direct tunnelling through oxides thinner than 2 nm started to dominate the gate
leakage, and poses a challenge for further gate oxide scaling. Simultaneously intrinsic
parameter fluctuations due to the discreteness of charge and matter, including random
discrete dopants, line edge roughness, and poly-silicon granularity, introduce statistical
variability in the electrical characteristics of nanoscale MOSFETs, influencing device
performance and circuit yield [7].

1.2 Variability

In contemporary MOSFETs with sub-50 nm channel length, the number of dopants in
the active area depleted region is of the order of a hundred, and the number of interface
traps is of order of ten. The exact number and location of the discrete dopants and traps
fluctuate from device to device. In addition, resist-defined gate line edge roughness
is unavoidable. The gate material granularity and the oxide thickness fluctuation of 1
interatomic layer of the Si crystal lattice, also contribute to the microscopic differences
in devices with identical macroscopic parameters. These microscopic fluctuations origi-
nate either from uncontrollable process aspects or from intrinsic material granularity.
All these factors result in uncontrollable statistical variations in the electrical charac-
teristics of nominally identical devices. Therefore, the characteristics of an idealised
uniform transistor lose their representative meaning. Instead, a statistically significant
ensemble of device characteristics has to be obtained to aid the design of circuits and
systems, based on devices with statistical variability in mind.
In 1962 Shockley analysed random fluctuations in junction breakdown [5] . Its concept
was extended to MOS devices by Keyes who modelled the effect of fluctuation in the
number of impurity dopant in the depletion layer of a FET [6] . Process variation has
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Figure 1.3: A schematic representation of Variability classification [9]
Variability can be classified by its correlation between multiple transistor placed at
different positions. This figure classify the following variations: (a) Wafer-to-wafer,
(b) Wafer level, (c) Die level, (d) Layout dependent and (e) random variations.

been a continuing active research field throughout semiconductor history, but now, the
continuing decreasing of feature sizes to atomic dimensions and light wavelengths,
suggests that the variation management will play a significant role in future technology
scaling.

The miniaturization process is attracting more attention on variability sources [7].
With the device scaling and the high reliability request, new sources of variations are
becoming more important, since small perturbations increase in relevance as the devices
are scaled.
Variability is usually classified by its correlation between multiple transistor placed at
different positions and Fig. 1.3 is a schematic representation of this classification. The
following five categories can be identified:

a Wafer to Wafer variation: a possible cause is variation in the machine conditions
along time of the manufacturing apparatus.

b Wafer level variation: possibles causes may be search in on-wafer process varia-
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tion, gas flow etc..

c Die level variation: typically from lithography steps, because pattern exposure
is performed die-by-die. It may be caused either by imperfection in reticles or
non-ideality in lens systems.

d Layout dependent: variation exhibits spatial periodicity, as does die level vari-
ations, but is different in that it is strongly correlated with the specific layout
of patterns, such as density, distance from the neighbouring patterns, etc. Ex-
istence of nearby patterns may affect final transistor shapes during lithography
(optical proximity effect) and etching (micro loading effect). Pattern dependence
of mechanical stress and annealing temperature may be also responsible.

e Random Fluctuation: is the kind of variability that exhibits no spatial correlation.
The absence of correlation suggests that it is caused by some microscopic pertur-
bations, such as random placement of discrete charges, atomic scale irregularity
of gate dielectrics, and so on. Since the change of FET characteristics caused by
a fixed amount of perturbation increases (i.e. sensitivity increases) as the FET
size is reduced, random fluctuation rapidly increases as FETs are shrunk, which
may result in failure of further scaling down of integrated circuits.

Categories (a) and (b) have always been a concern in circuit manufacturing, while the
others are becoming more relevant as the miniaturization continue. Reduced device
dimensions increase device sensitivity to any perturbation, while reduced supply volt-
ages suffer of larger impact for the same amount of variation with respect to the same at
higher voltages.
Furthermore, the wavelength widely used for lithography is 193 nm, which is much
larger than the minimum feature sizes of state-of-the art LSIs (Large Scale Integration
refer to chip with thousands of transistors). This results in increased die level and
layout dependent variability of exposed pattern shapes. Though this can be, in part,
offset by resolution enhancement techniques (RET) and mask data handling called
optical proximity correction (OPC), layout dependence will remain to some extent.
The use of mechanical stress to enhance drive performance of FETs increase layout
dependence. New fabrication techniques like short thermal annealing time to reduce
impurity diffusion results in non equilibrium heating, a long time of annealing as the
consequence of a higher thermal uniformity, of the wafer increasing variability.
From (a) to (d) variability is directly caused by process variations or non optimal design
so it can be directly controlled by introducing improvement in the process and optimiz-
ing the design. However, random fluctuations (e) seem to be not controllable due to

7



Background and motivation

Figure 1.4: Line edge and line width roughness (LER and LWR)
A schematic representation of LER and LWR which are variations at the atomic
scale of the gate line edge and width.

their microscopic origin and, for some extent, their intrinsic nature. Therefore, it is very
important to quantitative understand the origins of random fluctuation. In the following
paragraph we’ll discuss about the main sources of random variations

1.2.1 Critical sources of random variations

Now we will briefly review the principal sources of random variations studied in the
recent years [8].

Line Edge and Width roughness

Line edge and width roughness (LER and LWR) are fluctuation in the pattering line of
the gate in MOS devices, see Fig.1.4 [10] . Variations in poly-gate are associated with
increase in the sub threshold current as well as degradation in thethreshold voltage (VT)
characteristics. LER and LWR induce fluctuations that have a strong dependence on the
channel length [11] [12] and are expected to overcome the effect of RDF as devices are
scaled to shorte dimensions.
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Figure 1.5: Typical profile of the random Si/SiO2 interface
(a) Typical profile of the random Si/SiO2 interface, (b) equiconcentration contour
and (c) potential distribution

Gate Oxide variations

The reduced gate oxide thickness, also with the help of new materials like high-k
dielectrics, has enhanced variations due to fluctuation of the gate dielectric. Effect of
fluctuations at the atomic scale roughness of the gate interfaces has been simulated in
[13], see Fig. 1.5 . Their simulations have shown that local variations of the oxide
thickness induce threshold voltage variations comparable to RDF for 30 nm MOS and
below. A scaling limits of 0.8 nm gate oxide thickness has been extracted in [14], where
it has been shown that important threshold voltage fluctuations, due to gate-tunneling
leakage current, occur when the gate oxide tunnel resistance becomes comparable to
the gate poly-Si resistance.
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Fixed Charge and Traps

Mobility and threshold voltage can be affected by the presence of fixed charge in the
high-k layer. In [15] the authors estimated the fixed charge components in high-k stacks
by varying both the SiO2 and high-k dielectric thickness. In high-k dielectrics the
presence of traps and defects induce electron mobility degradation and Vth instability
caused by the fast transient charging by electron traps. In [16] the authors give a
deep investigation of the problem to reduce the equivalent oxide thickness (1 nm EOT
implies a physical thickness of 5 nm of HfO2) using alternative materials and pointed
out the presence of defects in high-k material (the most used is HfO2) due to oxigen
atom vacancy. It has been demonstrated that process optimization step can reduce this
problem [17].

Patterning Proximity Effect

Advanced technology require aggressive lithographic and this results in pattering prox-
imity effects, see Fig. 1.6 . To improve lithographic pattering and reduce variations OPC
can be used [18]. OPC pre-distorts the mask data following specific algorithms in order
to achieve a desired pattern on the wafer. OPC is based on a highly phenomenological
process model that incorporates lumped optics, resist, wafer stack, and mask effects.
This model generates a mask-to-wafer optical transfer function, and an OPC algorithm
is written to invert the transfer function. An OPC recipe is developed using an iterative
algorithm that modifies the starting database in order to achieve the desired pattern on
the mask.

Chemical Mechanical Polish

Chemical mechanical polish is a critical step in device manufacturing which occur both
in the front-end and back-end process. Many variations can occur in these steps, but
they can be controlled improving the technique. One commonly applied method for
improvement of variation in any CMP process is the addition of dummy features. In
[19] the authors review some of the historical approaches to dummy-feature placement
and modeling and present a time-dependent relation between post-CMP topography
and layout pattern density for CMP in STI.
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Figure 1.6: Optical proximity correction OPC
OPC pre-distorts the mask data in order to achieve a desired pattern on the wafer
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Strain

During the 1980s, researchers began to explore channel strain approaches for transistor
enhancement where thin Si layers were grown on relaxed SiGe substrates such that the
thin Si layer would take the larger lattice constant of the SiGe and create biaxial tensile
stress in the channel. In the early 2000s, a new class of transistor strain approaches
was developed that used process features external to the transistor (rather than strain in
the channel itself as with the biaxial approaches) to strain the transistor. Among these
approaches were high-stress capping layers and the use of embedded SiGe in the PMOS
source-drain regions. Process strain creates a number of new variation challenges,
both random and systematic. Researchers are beginning to focus both theoretically
and experimentally on quantifying the magnitude of strain-induced variation. In [20]
the authors develop an analytical model to predict threshold variation as a function
of Ge fraction, layer thickness, channel length, and doping profile. This model was
verified with simulations and experimental data for n- and p-MOSFETs in both single
and dual-channel architectures.

Implant and Anneal

During implant and anneal process not only random dopant fluctuation can be caused,
but there are other variation sources that can be created. Implant tool conditions are a
significant source of transistor variation. Al-Bayati et al. [21] have studied the device
sensitivity of ultra-shallow junction processes to tool-related implant and annealing
parameters. In their work, NMOS and PMOS devices were studied to quantify variation
as a function of the accuracy of dose, purity of dose, spike anneal peak temperature, and
the ramp-up and cool-down rates. An additional variation mechanism related to implant
technology arises from the poly-crystalline nature of conventional gates. Enhanced
diffusion, variations in dopant activation, and implant channeling along grain boundaries
can all cause increased variation. Fukutome et al. [22] have investigated the effect of
randomly oriented and rotated poly-Si gate grains on lateral carrier profiles of extension
regions in sub-50nm MOSFETs by direct observations and electrical measurements. By
optimizing the grain boundary they were able to demonstrate a reduction in threshold
voltage variation.

We have seen variation sources that can cause systematic and random variations. All
these variations can cause so wide distribution of transistor threshold voltage Vth that
cannot be correct during the design. Fig. 1.7 [9] illustrates the random variation of the
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1.2 Variability

Figure 1.7: Random Vth Fluctuation on 4k transistor [9]
Random threshold voltage fluctuation measure on closely located indetically de-
signed 4k transistor

threshold voltage on 4k identically designed transitor and the absence of correlation
suggest the presence of random perturbation as the ones depicted above.

The classical approach to characterize random perturbation, also called Variability
analysis, is through multiple characterizations of statistically different device samples.
The Monte Carlo method is well suited for this purpose [23] [24], but dispite the great
accurancy it is quite time consuming and require large computational resources. A more
efficient method is the so called Impedence Field Method (IFM) [25] [26] that allows to
calculate the variation on the device terminal due to local parameters fluctuation through
Green’s function calculation. This is a linearised technique, so only variations which
induce small fluctuation can be evaluated correctly with this method. The computational
cost is that of small-signal analysis so it is possible to avoid repeated simulations and
earn time for result analysis.

13



Background and motivation

1.3 Sensitivity

As discussed at the beginning of the chapter, the request of higher performances with
high reliability has enhanced the device technological progress. In the above section
we have discussed of variability problem caused by small differences in the device
characteristics. Now we want to discuss about the sensitivity of the device to some
parameters. Sensitivity analysis is a powerful tool, especially in the optimization pro-
cess, which aims at calculating the derivative of some electrical parameters, like drain
current, threshold voltage etc., as a function of some internal physical or technological
parameter, like dopant concentration, oxide thickness etc. .
Consider for example the shape optimization of a novel device structure. The designer
must consider many different material properties, among other parameters, with respect
to their dimensions and performances. In order to do this, the designer must proceed
by successive steps. The first step is to identify the major dimensioning configuration,
design variables and constraints on a reference design. The next step is to improve
the performances or relax key constraints of the reference design by tuning physically
significant design parameters. At this second level, mathematical programming tech-
niques can be used to analyse the sensitivity of the basic design to local changes of the
parameters and improve the first draft within the identified constraints.
Sensitivity analysis can be used in many different fields and can be done through differ-
ent mathematical framework. In chapter 4 we will show the geometrical optimization
of a Field Plate MESFET analysing its geometrical sensitivity with a Green’s Function
approach.

1.4 Green’s function method

This thesis aims at applying the Green’s function method described in [26] [27] to the
variability and sensitivity analysis. In [26] the Green’s function approach is used to
numerically simulate the noise behavior of bipolar solid-state electron devices through
a physics-based multidimensional device model. Here we want to describe how this
method can be applied with succes for variability analysis and thus we present its
application on the charcterization of random dopant fluctuations and random telegraph
noise. Although we present the method only for two sources it can be applied on all
the variability sources described above, so far as the effect are small enough to be
linearized.
We will also present the use of the Green’s function to the sensitivity analysis. Despite
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their different purposes, small-change parametric sensitivity and variability analysis of
semiconductor devices have a common background: both analyses require obtaining
the small-signal response of the device to an equivalent distributed charge impressed
either into the volume of the device or into its surface.

1.5 Outline

This work is divided in four parts.
Chapter 2 gives a general introduction to the Drift-Diffusion model which is at the
base of our analysis and presents the Impedence Field Method used to characterize
MOS variability and to evaluate geometrical sensitivity. This chapter is completed with
appendix A which discusses mesh problems and presents my work on a meshgenerator.
Chapter 3 gives a general presentation on random fluctuations in MOS. A completed
analysis of Random Doping Fluctuations and Random Telegraph Noise on MOS devices
is presented with the use of the Impedence Field Method.
Chapter 4 presents the evaluation of the geometrical sensitivity on a Field Plate MESFET
with a Green’s function approach. Theory and formulation of the Green’s function
approach to study geometrical sensitivity is presented. Validation and results are
analyzed at the end of the chapter.
Chapter 5 is devoted to a general conclusion on the presented results and on further
possibility of this work.





Chapter 2

Green’s function approach to
variability

In the previous chapter we have discussed about variability and sensitivity analysis. In
this chapter we will present a novel method which allows to characterize variability and
evaluate the device sensitivity.
The study of random fluctuation can be done through experiments [30] or simulations.
In simulations the most common technique is the Monte Carlo analysis where all process
parameters can be varied individually or simultaneously in a more realistic approach.
Despite its great accuracy, this method is time consuming and need large computational
resources.
A non conventional approach is the use of the Impedence Field Method (IFM) [25] to
treat the variations of physical parameters inside the device like linear perturbation of
the system. IFM is a method based on the Green’s function technique thus is suited
to evaluate the response of a linear system at a distributed source. Computing the
Green’s function of the system allows to study fluctuations at the terminals due to local
perturbation of the parameters inside the device.
In the following we will describe the Green’s function approach applied to the Drift-
Diffusion model used in our simulations to characterize random variations.

2.1 The Impedence Field Method

The Impedence Field Method (IFM) was first proposed by Shockley [25] and then
extended to include the noise analysis of any multiport device. IFM is a fast alternative
to modeling fluctuations since only a single device needs to be simulated. Rather than
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solving the full nonlinear Poisson and drift diffusion equations completely for a large
number of random device realizations, we obtain the solution only once, using the
reference device parameters. The IFM is based on the Green’s function which allows to
evaluate the effect of perturbations caused by internal physical parameters fluctuations
at the device terminal, e.g. we can evaluate directly the variations caused by random
doping fluctuations on the drain current or the threshold voltage. The Green’s function
does not depend on the variation source, but is computed from the full solution of
the reference device, therefore must be computed only once. The IFM has long been
known from noise analysis, thus using the IFM for variability or sensitivity analysis is a
noiselike approach.
We want to use IFM not for evaluating noise, but to perform a statistical sampling using
a large number of realizations to characterise the device variability. The basic idea of
this approach, which can be called sIFM [28] , is to evaluate the Green’s function once
on the reference device and to use it within a convolution integral on a large number of
realizations of a perturbed device. Moreover, the effect of different variability sources
can be summed if they are uncorrelated and this is the case for RDF and RTN.
The sIFM method is much faster than atomistic methods. For atomistic method, the
total simulation time is directly proportional to the number of realizations of device
structures in the statistical sample. For sIFM, the main computation time is spent in
computing the solution for the reference device as well as the Green’s function. The
contribution of one additional convolution integral computation to include an additional
randomization, on the other hand, is quite negligible.

2.2 Formulation

2.2.1 Drift-Diffusion model

It is well known that device can be treated at the microscopic level by Boltzmann
equation, whose unknown is the distribution function of carriers, can be solved with
the Monte Carlo method or with PDE models. Partial differential equations involving
the central moments can be derived from Boltzmann and Poisson equations leading to
a set of simplified physical models. The first three central moments can be related to
the carrier concentration, the carrier average momentum and the carrier energy. This
system involves the continuity equation of charge, momentum and energy which are
also connected to the heat-flow of the carrier distribution. Although this system can be
exploited to derive PDE systems , the computational complexity makes the approach
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hardly advantageous with respect to the full Monte Carlo method when the number of
moments involved is higher than three.
The full Hydrodynamic model is the higher order with some computational advantages
over the Monte Carlo method. It involves carrier, momentum and energy conservation
together with the Poisson equation. This model can be still simplified in order to
obtain models with less computational problems. Considering the average momentum
dynamics fast and the average energy dynamics slow, leads to turning the momentum
equation in a energy dependent relationship for the carrier velocity, thus this model is
called Energy Balance. Mobility and diffusivity are energy dependent and the carrier
temperature is different from the lattice temperature. A final simplification step is to
neglect time dependent and space dependent variations in energy transport equation,
thus relating the average carrier energy to the local electric field. Carrier mobility and
diffusivity become functions of the local and instantaneous electric field. According to
this model the electron and hole transport current densities are expressed as the sum of
a drift and diffusion term, which together with Poisson and continuity equations make
the so called Drift Diffusion model.

∇2φ = −q
ε

(p− n+N+) (2.1a)

∂n

∂t
=

1

q
∇Jn − Un (2.1b)

∂p

∂t
=

1

q
∇Jp − Up (2.1c)

Jn = qnµn∇φ+ qDn∇n (2.1d)

Jp = qnµp∇φ+ qDp∇p (2.1e)

where φ is the potential, q is the elctron charge, ε si the dielectric constant, p and n
are, respectively, the hole and electron concetration density, N+ is the ionized doping
concentration, Jn and Jp are respectively the electron and hole current density, Un and
Up are the net recombination rates for electrons and holes, µn and µp are respectively
the electron and hole mobility and Dn and Dp are respectively the electron and hole
diffusivity.
Equations 2.1a, 2.1b and 2.1c are respectively the Poisson equation, electron and hole
current continuity equations. Equations 2.1d and 2.1e are the electron and hole transport
current densities equations where µ is the mobility and D is the diffusivity for electrons
and holes.
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Figure 2.1: Discretization scheme
Discretization scheme where: Σi is the Voronoi area, lij is the length of the box
side lying between node i and node j, sik is the distance between node i and node
k, and Γi is the boundary of Σi

2.2.2 Finite element Box Discretization

Partial differential equations are approximated through spatial discretization by a dis-
crete system of ordinary differential equations for numerical simulation. The most
popular spatial discretization, in device simulation and not only, is the Scharfetter-
Gummel finite box.
For simplicity, consider a two dimensional domain Ω discretized through a proper

triangular grid, see a schematic reppresentation in Fig. 2.1. where Σi is the Voronoi
area, lij is the length of the box side lying between node i and node j, and Γi is the
boundary of Σi and n its external normal versor. Applying the Gauss theorem and
approximating through a first order approach, one obtain for a scalar f and a vector F :

∫
Σ

f ≈ fiΣi (2.2)
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∫
Γ

F · n̂dγ ≈
∑
j

lij〈F · n̂〉ij (2.3)

The finite-boxes discretization can be directly applied to Poisson’s equation assuming
that the permittivity is constant, which reads, in divergence form:

∇ϕ =
q

ε

(∑
k

C+
Dk + p− n

)
(2.4)

whereC+
Dk is the net equivalent ionized donor concentration. Assuming that the potential

is linear between two adjacent nodes, the resulting discretized Poisson equation is:

∑
j

lij
ϕi − ϕj
sij

=
q

ε

(∑
k

C+
Dki + pi − ni

)
Σi (2.5)

where sij is the distance between node i and j.
Now, consider electron continuity equation, the same can be done for the hole continuity
equation.

∂n

∂t
=

1

q
∇Jn − Un (2.6)

the discretization described above yields to

∂ni
∂t

Σi =
1

q

∑
j

lij〈Jn · n̂〉 − UniΣi (2.7)

Side averaging 〈Jnn〉 can be carried out by taking into account that, according to the
drift-diffusion model:

Jn · n̂ = (−qnµn∇φ+ qDn∇n) · n̂ (2.8)

Assuming that the current density is constant between neighboring nodes, which means
assuming that Jn is constant between node i and j, and defining a reference frame u
running from node i to node j, current equation can be written as an ordinary differential
equation:

(Jn · n̂)ij = −qnµn
dφ

du
+ qDn

dn

du
≈ −qnµn

ϕi − ϕj
sij

+ qDn
dn

du
(2.9)

The equation can be solved applying the following boundary conditions n = ni,
concentration at node i, for u = 0 and n = nj for u = sij .

n(u) = ni [1− g (u,∆ij)] + njg (u,∆ij) (2.10)
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where
g (u,∆ij) =

1− exp(∆iju/sij)

1− exp(∆ij

∆ij =
ϕi − ϕj
vT

(2.11)

Except for a potential difference near vT , the above equation is strongly non linear.
Inserting the approximation 2.10 into 2.9 one obtains, since the normal component of
the current density is assumed to be constant between neighboring nodes:

1

q
〈Jn · n̂〉ij ≈

Dn

sij
[njB(∆ij)− niB(−∆ij)] (2.12)

where B is the Bernoulli function

B(x) =
x

exp(x)− 1
(2.13)

Finally, the Scharfetter and Gummel approximation for the electron continuity equation
in node i reads:

∂ni
∂t

Σi −
∑
j

Dnlij
sij

nj [njB(∆ij)− niB(−∆ij)] = −UniΣi (2.14)

The complete discretized drift-diffusion model for node i is:

∂ni
∂t

Σi −
∑
j

Dnlij
sij

nj [njB(∆ij)− niB(−∆ij)] = −UniΣi (2.15)

∂pi
∂t

Σi −
∑
j

Dplij
sij

pj [pjB(∆ij)− piB(−∆ij)] = −UpiΣi (2.16)

∑
j

lij
ϕi − ϕj
sij

=
q

ε

(∑
k

C+
Dki + pi − ni

)
Σi (2.17)

∂C+
Dki

∂t
+
∑
j 6=k

(pjki − pkji) = 0, for all k (2.18)

where the summations on index j refer to the nodes directly connected to node i.

2.2.3 Newton Method

The Newton Method, also known as Newton-Raphson method, is an iterative method
for finding approximations to the roots (or zeroes) of a real function. It can also be
applied to non linear systems at the condition to known how to calculate the function
and its derivative in all the domain. It is widely use to solve PDE problems like the
drift-diffusion model presented above 2.15.
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2.2 Formulation

In order to make a general discussion on the Newton method we rewrite 2.15 in a more
general implicit form

F (x) = 0 (2.19)

where F is a vector mapping corresponding to the discretized model and x is a vector
corresponding to the values of the indipendent variables, that in our case are φ, n and p.
The process of non linear solving consist in finding a vector of indipendent variables x∗

which is a root of F (x). The computational approach is via iterative step, beginning
with an initial guess to x∗ call x0 and generating a new extimate x1, that can be written

xk+1 = H(xk) (2.20)

where k = 0, 1, 2, ... and H(x) is an iterative function that have to be chosen such that

lim
k→∞

xk = x∗ x∗ = H(x∗) (2.21)

The most common choice of iteration function is

H(x) = x− S−1F (x) xk+1 = xk − S−1F (xk) (2.22)

where S is a vector operator to be chosen. In the Newton’s method S = F ′(xk) com-
monly referred to as the Jacobian. Rewriting it in a more computationally convenient
form, e.g. avoiding the inversion of the Jacobian matrix, Newton’s method is defined at
iteration k as

F ′(xk)δxk+1 = −F (xk) xk+1 = xk + δxk+1 (2.23)

Therefore, two computations are performed per iteration.
A linear system of the form Ay = b is solved where

A = F ′(xk) y = δxk+1 b = −F (xk) (2.24)

followed by the solution step 2.23. Figure 2.2 shows a schematic reppresentation of
a general algorithm using the iterative Newton method to find the solution. Having
as input the geometry and the mesh with the discretized physical and geometricla
quantities, the first step consist in evaluating the Jacobian with a first solution x0 on
the mesh nodes. When assembling the Jacobian one calculates the residual. If the
residual is smaller than the imposed tollerance value, normally smaller than 1× 10−10,
the solution is well approximated, else the program updates the solution following
2.23 incrementing the iteration number. If the number of iteration has not reached the
maximum, the Jacobian is calculated with the latest updated solution and new residual
is caluclated. The algorithm stops if convergence is reached, the residual is smaller than
the tollerance, or if the number of iteration has exceed its maximum, in this case the
solution is not reliable.
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Figure 2.2: Schematic reppresentation of the solve algorithm
The scheme represent a schematic reppresentation of a general solve function which
use the iterative Newton method
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2.2.4 Green’s formulation

The Impedence Field Method (IFM) was first proposed by Shockley [25] and then
extended to include the noise analysis of any multiport device. It’s based on the Green’s
function method and so it can be exploited in conjuction with every device modelling
that is performed by means of the partial differential equation.

The Green’s function in simple

Suppose we have to solve the system

Ax = b (2.25)

where A is a differential operator and x is the array of solutions. The inverse of a
differential operator is an integral operator, whose kernel is called the Green’s function
of the differential operator.

AG = δ (2.26)

where δ is the Dirac delta distribution.

x =

∫
Gb (2.27)

From a physical point of view we can see the Green’s function as the system response
to a localized perturbation source (in this case static).

Application of the Green’s function on the Drift Diffusion model

We want to apply the Green’s function approach to the drift-diffusion model 4.17
described before. For simplicity we now express the drift-diffusion with the boundary
conditions as the vector system

F(φ, n, p, ṅ, ṗ) = 0 (2.28)

b(φ, n, p, ṅ, ṗ, se) = 0 (2.29)

where ẋ =
∂x

∂t
and b represents the set of boundary conditions including external

electrical sources se.
Assuming a small perturbation, the system can be linearized around the working point.
Let φ0, n0, p0 be the working point solution and δφ, δn, δp the linear response to an
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external perturbation. Adding the microscopic noise sources s to the right-hand side of
the system and adding the corresponding fluctuations to the working point, the system
becomes

F(φ0 + δφ, n0 + δn, p0 + δp, δṅ, δṗ) = s (2.30)

b(φ0 + δφ, n0 + δn, p0 + δp, δṅ, δṗ, se0) = 0 (2.31)

No other noise sources on the device boundary are taken into account, otherwise a
further source term must be added at 2.31.
Perturbations must be small enough to linearly excite the device so the system can be
linearized around the working point :

∂F

∂φ
|0δφ+

∂F

∂n
|0δn+

∂F

∂p
|0δp+

∂F

∂ṅ
|0δṅ+

∂F

∂ṗ
|0δṗ = s (2.32)

∂b

∂φ
|0δφ+

∂b

∂n
|0δn+

∂b

∂p
|0δp+

∂b

∂ṅ
|0δṅ+

∂b

∂ṗ
|0δṗ = s (2.33)

The system 2.32 2.33 can be solved through a Green’s function approach. Let us define
the Green’s function Gα,β(r, r1; t, t1) (α, β = φ, n, p) for equation α and input variable
β, i.e. the response in variable α to unit source δ(r − r1)δ(t− t1) injected in equation
β. Like 2.27 we can calculate the fluctuations δα induced by the vector source s as the
spatial and temporal convolution integrals:

δα(r, t) =
∑

β=φ,n,p

∫
Ω

∫ t

−∞
Gα,β(r, r1; t, t1)sβ(r1, t1)dt1dr1 (2.34)

where Ω is the system volume.

2.2.5 Advantages of the Green’s function approach

To evaluate the Green’s functions corresponding to the impedance field, the number of
solutions required is 2N , where N is node number, as the unit source must be added
at the right-hand side of the continuity equations in each of the mesh points. The
procedure is very inefficient because each time only the elements of the solution vector
corresponding to the observation nodes on the contacts are relevant, while the solution
on the internal nodes is discarded. From a numerical viewpoint, this procedure (also
called direct method) requires one factorization of the (3N +Nc) · (3N +Nc), where
Nc is the number contacts, of matrix equation and 3N back-substitutions. Taking into
account the great number of grid points, it is evident that the CPU time required makes
this procedure incompatible with a more efficient tools.
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As opposed to the direct method, different approaches for the numerical evaluation of the
Green function have been proposed in the literature, which only require the factorization
of the system matrix and Nc back-substitutions. The most general approach is the
so-called Branin’s Method. This method, originally introduced for the analysis of finite
dimensional algebraic linear systems [31], was applied for the first time to the physics-
based noise analysis in [26]. The Branin’s method can be applied to the discretized
systems of equations arising either from the drift diffusion model or any other higher-
order model and is well-suited for implementation in any multidimensional device
simulator. Under this respect, it provides a generalization of the so-called adjoint
method [32]. The latter in fact, requires the formulation of an adjoint problem with
suitable adjoint boundary conditions.
The most prominent advantage of the proposed method is that the IFM is applicable to
large device structures. The computational resource requirements depend only weakly
on the number of randomized devices included in the statistical sample. In [28] the
authors have analysed the simulation time for 3D 6T SRAM computing the sIFM
for 1000 realizations of RDF. The total simulation time was of 40h which 50% was
consumed for the DC sweep, 46% for the Green function computation and only 4% for
the computation of the linear responses. It is clear that the method is more efficient as
the number of realizations increase, and this is counter trend with atomistic approach.

2.3 Software Tools

In this section we will describe the tools of the Synopsis commercial simulator and the
in-house developed code used to evaluate variability and sensitivity. These are the two
physical device simulator software that we have used for our analysis. There are many
other commercial and open-source simulator which allow to investigate physical device.
In variability analysis a powerful tool named Gold Standard Simulation (GSS Ltd)
was developed by the Glasgow group of Prof. Asenov. The GSS atomistic simulator,
GARAND, is a statistical 3D simulator uniquely designed for the investigation of
statistical variability introduced by the discreteness of charge and atomicity of matter.
The majority of device simulator based on finite element use the drift diffusion model
and only a small part of them have implemented higher order models. The drift diffusion
model is still valid for ultra scaled devices, but quantum correction must be taken into
account.
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2.3.1 Synopsis tools

Synopsis provides a set of tools to simulate electron devices starting from process to
operative environment named TCAD Sentaurus.
Sentaurus Process is a complete and flexible process modeling environment. It is
calibrated to a wide range of the latest technology and can be used for modern silicon
and nonsilicon technologies. A process flow is simulated by issuing a sequence of
commands that corresponds to the individual process steps, like annealing, implantation,
etching, deposit and many others. This allow to investigate the process environment,
but also to create more realistic devices.
Sentaurus Structure Editor can be used as a 2D or 3D structure editor, and as a 3D
process emulator to create TCAD devices. In Sentaurus Structure Editor, structures are
generated or edited interactively using the graphical user interface (GUI) or in batch
mode using script, useful for parametrized device structure. It is also possible to define
doping profiles and meshing strategies configuring and calling the Synopsys meshing
engines. In addition, it generates the necessary input files for the meshing engines.
Mesh Generation Tools is a suite of tools that produce finite-element meshes and it is
composed by three mesh generation engines:

• Sentaurus Mesh is a robust mesh generator capable of producing either axis-
aligned meshes or tensor-product meshes in 2D and 3D.

• Noffset3D is an advancing front mesh generator, capable of producing triangular
meshes in 2D and tetrahedral meshes in 3D. The meshes produced by Noffset3D
can contain layers of elements that are nearly-parallel to given surfaces of a
semiconductor device structure.

• Mesh is an axis-aligned mesh generator capable of producing meshes in 1D, 2D,
and 3D.

The mesh generation is a crucial step because influences many aspect of the simulation.
The computational cost and time is directly proportional to the number of nodes and the
convergence to the solution is faster for a good mesh which needs less iterative steps.
For example, for a 3D MOS device which present curved surfaces the best choice is
of Noffset3D that creates element layers parallel to the surfaces. In 2D devices the
difference between the mesh generators is not so appreciable [29].
Sentaurus Device is capable of simulating the electrical behaviour of a single semicon-
ductor device self-standing or a few physical devices, maximum eight, combined in a
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Figure 2.3: Synopsis tool flow
Typical tool flow with device simulation using Sentaurus Device. Sentaurus Struc-
ture Editor allow to create geometry and mesh process simulation if needed. The
output is saved in the grid file. Sentaurus Device use the grid file to run physical
simulations. Results are written in two separeted file. The plot des.tdr file contains
internal physical paramteres, e.g. potential, electric field etc. and the current des.plt
file contains terminal charcteristics, e.g. drain current, gate voltage etc.

circuit. Terminal currents, voltages, and charges are computed based on a set of physi-
cal device equations that describe the carrier distribution and conduction mechanisms.
Sentaurus device needs at least the grid file of the structure and the command file as
input, see Fig. 2.3 where a typical tool flow is represented. Extra input files can be
defined to use non-standard parameters. The command file is mainly divided into three
parts where to specify the physical model, the mathematical options and the operative
conditions, plus other minor parts used to specify the I/O variables and formats. Refer
to the Sentaurus Device manual for all the details [50].
Once parametrized the command file, simulations are run and one must handle a large

amount of data files. Synopsis designed a powerful tool named Sentaurus Workbench
which makes the use of Synopsys TCAD tools easier. It frees the user from typing
system commands for the handling of data files or starting applications. One of its main
advantages over a traditional simulation session is the possibility of parametrizing input
files to run groups of simulation automatically with the corresponding data flow. Fig.
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Figure 2.4: Sentaurus Workbench screen shot
Sentaurus Workbench screen shot which allows to run sequences of simulations
giving the possibility to easily handle many data.

2.4 show an example of Sentaurus Workbench tool flows.
Despite all this powerful tools it’s not always easy to do what one needs. For example,

I had to modify the charge on a single node, which is a very simple task to do in
our in-house code, but not in the commercial software. It seems that there’s no free
access to all data and no more the possibility to modify certain data on the structure file.
Among others, it’s for this reason that many research group decide to develop their own
simulator.

2.3.2 In-house simulator - POLITOFBZ

The need of researches groups to simulate novel models, or to completely manage the
simulation files as described in the above section, has lead to the development of specific
simulation software. The principal problem of these tools is that the main objective
is only a small part of all the simulator software, e.g. the physical simulation engine,
so one has to spent a lot of time in creating a user interface and algorithms to absolve
task that are not of primary interest. The software structure is normally not optimized
because of lack in programming techniques and so simulations are slower and with
a lower reliability compared to commercial tools. Despite these reasons, scientific
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Figure 2.5: FEM GUI simulator PolitoFBZ screen shot
Example of a FEM GUI screen shot of the PolitoFBZ simulator which allows to
create 2D structures and the relative mesh.

programmer has created powerful tools has the one created within our simulation group.
The in-house simulator implements the 2D Drift-Diffusion model, in Matlab and Fortan,
with a box discretization as described in 2.2.2 to model the system. The solution of the
system is evaluated through the iterative Newton method which allows to calculate an
approximation of the non linear system solution only if it’s possible to calculate the
function and its Jacobian in all the domain.
Structure and simulations can be handled through a simple GUI 2.5 and a command file.
The mesh generator is simple, but give good results. A more powerful grid generator,
also adapt for 3D extension, implemented during my thesis work is presented in the
appendix A.
The main characteristics of this simulation tool is the implementation of a small and
large signal solver using the harmonic balance. It also implement the Green’s function
formulation previously described including trap rate equation, in combination with
recombination and mobility models.
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Chapter 3

Random Fluctuations

In the first chapter we have briefly described many sources of random variability. Now
we want to characterize more in detail the effect of two of them, Random Dopant
Fluctuations and Random Telegraph Noise. The first is recognized as the major source
of variability in actual device technology, while the second plays a major role in memory
devices.
Random fluctuations are the real challenge of further scaling because of their micro-
scopic nature. The fluctuation in the number of dopants in the channel, of the order
of three/four atoms, will not influence the 130 nm node where the dopants are a few
hundreds, while the same amount of fluctuation will have a great influence in the 22 nm
node where the dopants are of a few decades. Also the dopant position becomes impor-
tant for a small number of dopants. The results are devices with large distribution of
electrical characteristics, e.g. the threshold voltage Vth or the drain current Id, which
cannont be controlled by design.
Random dopants fluctuations influence, more or less, nearly all devices. In memory
devices a major problem, in addition to RDF, is represented by the presence of traps
in the gate oxide. The presence of a single trap, and the consequent trapping and
detrapping of electrons, in some position can have a great influence on the threshold
voltage causing a possible error in the reading operation. Naturally, the presence of a
trap in the Si-SiO2 interface between channel and gate will not have a great influence on
a gate length of 1 µ m, but the same trap has a great influence on gate length of 22nm.
Moreover, as the device is scaled the threshold voltage is reduced, so the same amount
of variation caused by trapping and detrapping of the trap, has a different influence
on the actual reference value: a Vth shift of 50mV for a Vth = 1, 5V corresponds to a
variation of 3% while for a Vth = 0, 7V corresponds to a variation of 7%.
In this chapter we will present a variability analysis using the statistical Impedance
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Field Method on a MOS device in 2D and 3D dimensions, considering RDF and RTN
together and self standing.

3.1 Simulation setup

The tested device is the MOS device represented in Fig. 3.1, subpart of a floating
memory device. The structure has been created with Sentuarus Structure Editor using
the process emulator. The complete command file can be found in the appendixB.
The structure represented in Fig. 3.1 present a substrate region with a uniform doping
Na = 2e18 cm−3 thickness 500 nm and section 64 nm× 64 nm. The nominal MOS gate
length is Lg = 32 nm, width W = 32 nm and the oxide thickness is Tox = 0, 8 nm.
This structure is a basic structure that can represent also memory , for example replacing
the gate oxide with a ONO box (Oxide-Nitride-Oxide). Drain and Source are created
using a Gaussian profile with a peak value of doping of 1e20 cm−3 of depth 25 nm and
a ratio factor of 0, 5.
The mesh is created using Noffset3D which is the best choice. Fig. 3.1(b) shows the
generated mesh that presents a high density of nodes in the silicon region at the Si-SiO2

interface. The mesh smoothly relaxes in the oxide region where we have the interest to
fully characterize the electrostatic effect of trapped charge. Drain and source are also
regions with a dense mesh, while it relax along the bottom of the substrate.
The 2D structure, see Fig. 3.2, has been extracted from the 3D structure with a cut at

center of the channel. In this case the simulator considers the width W equal to 1 µm.
The 2D MOS has been used as a first step, before the 3D simulations, to validate the
presented model and have more accurate grid.
Simulations are run with Sentaurus Device, an example of a complete command file
can be found in appendixB. No specials physical models have been activated except for
the mobility where dependeces on electrical field and doping have been activated.
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(a) MOS 3D

(b) MOS 3D mesh

Figure 3.1: 3D MOS device
3D MOS device zoom of the channel region. The red regions are isolation stacks
of polysilicon. (a) shows the doping concentration. (b) shows the mesh where the
oxide and poly silicon regions are transparent.
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(a) MOS 2D

(b) MOS 2D mesh

Figure 3.2: 2D MOS device
2D MOS device zoom of the channel region. (a) shows the doping concentration.
(b) shows the mesh
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3.2 Random Dopant Fluctuations

The steady lowering of supply voltages, to reduce the power consumption and to
hold the reliability, makes the systems based on MOS based devices more sensitive
to fluctuations in the device characteristics. As the device is scaled the number of
dopants is reduced, see Fig. 3.3 , and lead to a major influence of random fluctuations
of the relatively small number and their placement in the channel, inducing significant
variations on the threshold voltage and drive current.
Dopant atoms fluctuations issue has been pointed out in [33] [6] and a first analitically

approach has been presented in [34]. RDF has been largely studied in the recent
decade and is identified as one of the major sources of variability in nominally identical
adjacent devices. Analytical models attempting to estimate the threshold voltage
standard deviation σVth are based on the variance in dopant number in the channel
region of the transistors, which is known to follow a Poisson distribution. The analytical
formulation, Stolk’s formulation, that is recognized to better charcterize RDF has been
presented in [35]

σVTh =

(
4
√

4q3εnSiφB
2

EOT

εox

4
√
N√

WeffLeff

)
(3.1)

where φB = 2kBT ln(N/ni) (with kB Boltzmann’s constant, T the absolute temperature,
ni the intrinsic carrier concentration, q the elementary charge, EOT is the equivalent
oxide thickness, N is the substrate doping, and εSi and εox are the permittivity of the
silicon and oxide respectively. The effective channel length Leff and width Weff are
used instead of the physical values in order to correct for offsets in the active device
area. However, equation 3.1 underestimates σVth. Full scale numerical simulations have
shown [36] that the dopant number fluctuation is insufficient to explain the true magni-
tude of the threshold voltage fluctuation. The randomness in the dopant arrangement
in devices with having identical number of dopants in the depletion region contributes
further to Vth variability due to the spatial inhomogeneities in the potential and corre-
sponding current percolations.
However, the analytical models capture essential aspects of threshold voltage variability.
It is inversely proportional to the oxide capacitance, and increases with the substrate
doping. Therefore, further reduction of EOT reduces Vth variability, but the benefits of
this scaling trend are cancelled by the faster increase in channel doping that is needed
to maintain the electrostatic integrity of a planar bulk MOSFET,i.e. short channel effect
SCE. In addition, the area reduction of a bulk MOSFET with scaling also contributes to
increasing Vth variability.
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Figure 3.3: Average number of dopants atom Average number of dopants atom in the channel
in function of the technology node [8]. It give a clear idea in dopant number
differences.

Through simulations results it has been demonstrated in [37] that RDF is v 65% of the
total NMOSσVth for the 65nm node and v 60% of the total PMOSσVth for the 45nm
node. To properly evaluate variations between two adiacent devices, additional effect
must be added to the above formula, as it has been demonstrated also in [30] suggesting
that there are other important sources of fluctuations, e.g. LER and LWR.

In the atomistic method of simulating effects due to RDFs in a device, a large
set of 3D devices that have microscopically different doping profiles is simulated.
The key point in this kind of simulations is the method used to generate the dopant
randomization. It is possible to use a Monte Carlo process simulation. Atomistic MC
methods developed for the simulation of implantation and annealing steps, are widely
used in TCAD simulations for the simplicity of implementation and their accuracy.
However, they are not suitable for a RDF analysis where a large ensemble of devices
has to be modelled. Models that do not require such a large CPU time and that avoid
processing simulation steps are preferable for RDF analysis. They are used under the
assumption of a uniform doping concentration and then the doping profile is randomized
according to the desired method. A powerful tool for the analysis of RDF is randomize
a continuum doping profile using different methods such as Sano [38], nearest grid point
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(NGP) that assigns the doping of a particle to the nearest mesh node, or cloud-in-cell
(CIC) where the doping of a particle is distributed to the vertex nodes of the element in
which the particle is located. Such methods may in general predict the physics of RDF,
but they rely on the assumptions of each type of model, and particular care has to be
taken because are parameter dependent.
In [39] the dopant density varies at each mesh node in accordance with the number of
dopants generated in each mesh via the Poisson distribution. This approach has been
extended to the extreme atomistic regime, where most meshes contain no dopant or, at
most, one dopant, in order to represent the graininess of the dopants [40]. However,
it is not at all clear whether such a naive extension of the conventional dopant model
expressed by continuous to the atomistic where all dopants inside the entire device
regions are treated as being discrete, is consistent with the physics presumed in the DD
simulation scheme.
In [38] Sano proposed a method which relies on the assumption that the dopant atoms
produce long and short range Coulomb interactions that give rise to screening between
each dopant. The characteristic length scale that separates the range of these interactions
is given by the mean separation of dopants lc , called screening length:

lc ≈ 1

2
N−1/3
a (3.2)

where Na is substrate doping.
The inverse of the screening length is the screening factor kcwhich is a cut-off parameter,
that is

kc ≈ 2N1/3
ac (3.3)

It is obvious that this model strongly relies on the choice of the screening length, due to
the fact that eqs. 3.2 and 3.3 represent magnitude orders estimations. The dependence
on the screening length is evident from the fact that if lc is too small compared to the
average meshing step size, then screened charges are highly localized in the regions
where each dopant atom resides. In this case the dominant part of the interaction is
represented by the short-range screened potential. On the other hand, if lc is too high,
screening effects are averaged out and the doping profile appears smooth, and the
decaying long-range potential represents the dominating part of the interaction. In the
first limit lc −→ 0 the dopant density resembles a δ-function, whose peaks reside in the
position of each atom. In the opposite limit lc −→ ∞ the doping profile resembles a
continuous and uniform doping concentration.
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Figure 3.4: Example of RDF realization
Sentaurus device can create a large number of random realization as the one
represented in the figure.

3.2.1 Green’s function approach to RDF

To analyse RDF we propose the impedance field method which represent a fast alter-
native to modeling RDFs since a single simulation is sufficient. In the IFM, the local
doping fluctuations are assumed to be small enough to alow the equation system to
be linearized around working point condition. The IFM can be used to compute the
fluctuations of the terminal characteristics as a result of RDFs and also allows to identify
the location of the dominant fluctuations contributions within a semiconductor device
and, therefore, in principle to design RDF-resistant devices.
To characterize random dopant fluctuations we have used the Impedence Field Method

implemented in Synopsis [50] . This method generates a large number of randomized
doping profiles from the average doping profiles present in the grid file of the simulated
device, see Fig. 3.4. Acceptor and donor concentrations are randomized independently,
assuming dopants are spatially uncorrelated and using a Poisson distribution function.
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So the probability to find exactly k dopants in the box for vertex i is:

Pi(k) =
(NiVi)

k

k!
exp(−NiVi) (3.4)

where i is the index of the vertex with volume Vi and an average doping concentration
Ni. This method must be specified in command file of Sentaurus Device defining the
number of random samples and the seed for the random number generator.
For costant voltage at contact c, the fluctuation of the current at contact c due to RDF,
fluctuation in the doping profile Nv(r)−Nref is linear and can be evaluated through
the following equation as generally presented in chapter 2.2.4 :

δIc =

∫
Ω

d3rGIc(r)[Nv(r)−Nref (r)] (3.5)

where Ω is the device volume, GIc is the Green’s function of c contact current, Nref

is the reference doping distribution and Nv is each of the random doping realizations.
The Green’s function depends on whether the change in current or voltage is being
computed, the bias conditions, and the transport equations. It also depends on the
device structure, mesh,models and their parameters. However, the Green’s function
is independent of specific random doping profiles. Due to linearization, only one full
device simulation is required to obtain the Green’s function, from which the change of
terminal characteristics for any given doping variation can be computed easily.
This model has been validated by Synopsis in the application note [41] and it has began
to be used by other authors [42].

3.3 Random Telegraph Noise

Random Telegraph Noise (RTN) is known since the days of vacuum electronics and
it was also called burst or popcorn noise when observed on bipolar devices. RTN has
become an important challenge in submicron technologies. Indeed, with aggressive
CMOS scaling and increased parameter variability, RTN has emerged as a critical
limiting factor producing transient failures in SRAMs, DRAMs, oscillators, PLLs, and
many radio frequency (RF) circuits. The first observation of RTN in MOSFETs has
been reported in 1984 [43]. An RT signal consists of the random switching of the
current through a device between a high and a low state. In this two-level case, the
RTN is characterized by three parameters: the up time τup, the down time τdown and the
amplitude δId. While the up and down times are randomly distributed, the amplitude is
usually fixed and can be determined through experiment. When analysing the RTN for
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Figure 3.5: RTN schematic representation
The presence of a trapped charge in the gate oxide can be evaluated through the
Green’s function.

a sufficiently long period of time, one can establish the probability distribution function
of the switching times, which appear to be Poisson distributed [44], and, hence, can be
described by:

P1(t) =
1

τ1

exp(−t/τ1) (3.6)

with τ1 the average time constant and P1(t)dt the probability that the high state 1

will not make a transition for time t, then will make one in the interval t and t + dt.
The average time constant depends generally on the operating conditions of the MOS
transistor and based on this dependence, one can identify the average up and down time
constants with the capture τc and the emission τe time constants of the responsible trap,
which usually resides in the gate oxide or at the interface. RTN can be also seen as a
useful tool to study oxide traps, revealing information on their energy level, capture
cross section and even depth and lateral location [45].
While invaluable information on trap behavior in gate dielectrics has been gathered
over the years by lengthy, time-consuming RTN studies on single transistors [43] [44]
[45] [46], it has become clear that in order to quantify its possible impact on the circuit
level, a statistical approach is required, whereby a large set of devices is measured in a
reasonable time. This is mainly related to the fact that RTN amplitude exhibits a wide
range of values. This has been explained by considering the non-uniform potential
landscape at the Si/SiO2 interface induced by the random distribution of fixed oxide
charge in the gate dielectric and by the random dopant fluctuations in the substrate [51].
This leads to current filamentation in weak inversion and anomalously large RTNs when
the trap is located in a strategic position controlling a percolation path [47].
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Nowdays, Random Telegraph Noise is attracting the attention of the nonvalatile memory
community and becomes one of the main issues to be considered in the development
of future floating-gate and charge-trap technologies. The severe scaling process of
nonvolatile memory boosts the attention on RTN which has a great influence in Vth
stability. In fact the presence of spurious charge trapped in the tunnel oxide (being
process-induced or resulting from cell operation) influences, in a non negligible way,
both the program/erase (P/E) transients and the trapping/detrapping dynamics after P/E,
i.e., when a nonstationary trap-filling condition exists. Second, and more remarkable,
even when the tunnel oxide traps have reached their equilibrium condition, the threshold
voltage Vth may result unacceptably unstable. The magnitude of RTN grows as 1/WL, a
rate much faster than many other sources of variability [49]. In the future, therefore, it
is expected that RTN will affect more adversely.
Random variations of cell Vth may in principle give rise to erroneous data reads or
erroneous program operations in non-volatile memories, since programming algorithms
include verification steps which can fail in presence of large Vth fluctuations.

Green’s function approach to RTN

Here, we want to present a novel approach to study RTN using the Green’s function
method described in chapter 2.2.4. We consider the presence of a single trap in the Gate
oxide region which can be full or empty, neglecting trapping and detrapping dynamics.
The presence of a trapped charge in the oxide influence the right hand side of the
Poisson equation. So the Green’s function that we have to calculate is the one relative to
the Poisson equation at the trap position. What we want to characterize is the influence
of RTN on the threshold voltage shift Vth. To do this we evaluate the drain current shift
with the relative Green’s function of the Poisson equation GD,φ and the convolution
integral formula described in chapter 2. In this case, the local perturbation of the trapped
charge is a Dirac delta δ(xtrap) localized at the trap position, so the convolution integral
is reduced to a simple product

∆ID,IFM = qtrap ∗GD,φ(xtrap) (3.7)

where qtrap is the trapped charge, usually one electron, and GD,φ(xtrap) is the green
function evaluated at the working point that correspond to the nominal threshold working
point condition. Once we have the drain current shift ∆ID,IFM we use the Ydg parameter
extracted by a small-signal analysis to evaluate the voltage shift at the Gate.
The method is vary simple and fast. Summarinzing, the first step is to calculate the
Green’s function of the Poisson equation relative to the drain current on the refercence
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device with no traps at the working point of interest, e.g. at the threshold voltage. The
second step is to use the value of the calculated Green’s function at the position where
we want to place the trapped charge and multipling it with the trapped charge value,
obtaining the drain current shift. The final step consist in using the Ydg calculated by
the small signal analysis to translate the drain current shift in the threshold shift.

3.3.1 Green’s function validation

The Green’s function approach to RTN described in 3.3 has been validate on the MOS
structure described in 3.1. The Green’s function GD,φ has been calculated and extracted
from Sentaurus device simulations results.
First we have validated the Green’s function approach in 2D simulations, comparing
our approach with direct simulations of the trap effect for different positions, named
incremental approach. The incremental approach consist in directly evaluating the trap
effect running simulation adding the effect of a trap in varying positions and calculating
the drain current ID,trap.
Sentaurus Device provides several trap types (electron and hole traps, fixed charges),
different types of energetic distribution, and various models for capture and emission
rates. Traps are available for both bulk and interfaces. Fixed Charge traps are the type
of traps that are always occupied. This last it’s not our goal.In addition to the fixed
charge we have used the single trap option which is used to mimic the behavior of a
single fixed-charge trap selecting between negative or positive charge type. Naturally,
when defining the trap characteristics is possible to choice every positions in the device,
also at the interfaces, and the fixed charge is set on the nearest mesh node.
The drain current shift is thus calculated differentiating the reference drain current with
the ones calculated with the filled trap ∆ID = ID,empty − ID,trap. The trap positions has
been varied from source to drain and at three different distances from the interface: the
first row of mesh nodes under the Si-SiO2 interface in the channel region fig. 3.7, on the
Si-SiO2 interface fig. 3.6, and at the first row of mesh nodes over the Si-SiO2 interface
in the oxide region fig. 3.8. These positions represent the most potentially critical ones.
The comparison has been made at different working point conditions, at VGS = 0, 86 V
and VDS = 0, 1 V that is at threshold condition, at VGS = 5 V and VDS = 0, 1 V and at
VGS = 0, 86 V and VDS = 2.5 V. The three figures 3.7, 3.6 and 3.8 show an excellent
agreement between the Green’s function approach (blu line) and the direct evaluation
of the trap effect (red symbols) in all the tested conditions. The agreement between the
two approach demonstrates that RTN induces fluctuations that can be linearised, thus it
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is possible to use the Green’s function approach.
From the figures it is also possible to analyse the dependence of the trap positions
along the channel on the drain current. Near threshold conditions VGS = 0, 86 V and
VDS = 0, 1 V the traps in the middle of the channel have a stronger effect then the ones
positioned a the sides of the channel. For high gate voltage VGS = 5 V the average
effect is reduced.

We have also tested our approach on the 3D MOS structure, but meeting some
problems. The Green’s function approach eq. 3.7 is not coherent with the incremental
of the trap effect. The error is of nearly the 50%, but we haven’t understood if it is
a problem of the implementetion or if it is due to the fact the RTN effect can not be
linearised. In the 2D simulations the device extends for 1 µm in the width direction
while in the 3D the width is 32 nm. We have also tried to work around the problem
inserting a small amount of charge on the single node to test the Green’s function alone
as a function of the grid, but the simulation software doesn’t allow to control the amount
of node trap charge.
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Figure 3.6: Comparison between incremental and Green’s function. Si-SiO2 interface.
Comparison between the incremental (symbols) and Green’s function (line) esti-
mation of (minus) the relative drain current variation ∆Id/Id. Trap placed at the
interface between Si-SiO2.
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Figure 3.7: Comparison between incremental and Green’s function. Traps in the Si re-
gion. Comparison between the incremental (symbols) and Green’s function (line)
estimation of (minus) the relative drain current variation ∆Id/Id. Trap placed in
the Si region.
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Figure 3.8: Comparison between incremental and Green’s function. Traps in the SiO2

region. Comparison between the incremental (symbols) and Green’s function
(line) estimation of (minus) the relative drain current variation ∆Id/Id. Trap placed
in the SiO2 region.
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3.4 Results

Following [51], where Monte Carlo simulation have been used to statistically describe
the effect of RTN and RDF together, we have characterized the device variability ex-
tracting the slope λ[mV/dec.] of the threshold voltage shift cumulative distribution. The
cumulative distribution is calculated using the Green’s function approach statistically.
The GD,φ has been extracted from Sentaurus Device simulation of the nominal device in
threshold voltage condition and then we have randomly chosen one thousand of nodes
at the Si-SiO2 interface. To do this we had to increse the mesh density in that zones, but
there aren’t counter effects. So, we have calculated the drain current shift using eq. 3.7
multipling the value of GD,φ on the selected nodes with the trapped charge that is the
electron elementary charge. Using Ydg we have been able to extract the threshold shift
distribution, from the drain current shifts and one thousand of convolution integrals.
Fig. 3.9 represents the example of the extraction of the slope of cumulative distribution
for the nominal case, Lg = 32 nm Tox = 0, 8 nm Na = 2e18 cm−3, by mean of a
linear interpolation implemented in MATLAB. The fitting is cut for higher value of
∆Vth which have a low probability.
From here on, we will use the parameter lambda λ to characterize variability and it’s

separated sources. The lambda parameter, or the slope of the cumulative distribution
on a semi logarithmic graph, is chosen as a crucial parameter which allows to easily
describe and compare the scaling trends due to different variability sources.

3.4.1 2D results

In this section we will analyse the results of RTN and RDF simulated on the 2D
structure discribed in the paragraph 3.1 . In all the figures which follows the black line
corresponds to RTN fluctuations only, the red line correspond only to RDF fluctuation
and the blu line correspond to the total effect of RTN plus RDF. The number of sample
used to extract the lambda is of one thousands. We want to stress the fact that we have
only spent the run time of one simulation to calculate the Green’s function and then
made one thousands of product, the time needed is negligible in comparison to one
thousand of simulations, to extract one value of lambda.
Fig. 3.10 shows the dependence of lambda on the oxide thickness. The reduction of

the oxide thickness enhances the electrostatic control of the gate on the channel. The
augmented control of the gate reduce the effect of both RDF and RTN, which show
a reduction of nearly 70% in front of an oxide thickness reduction of 75% from the
nominal value of 0, 8 nm.
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Figure 3.9: Extraction of the slope λ
Example of the evaluation of the slope λ[mV/dec]. The red line is the linear fitting
of the cumulative distribution.

Figure 3.10: Lambda as a function of the oxide thickness
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Figure 3.11: Lambda as a function of the substrate doping

Figure 3.12: Lambda as a function of the gate length

Fig. 3.11 represents the dependence of lambda on the substrate doping. RTN doesn’t
present any effect while RDF show a small dependence. RDF is augmented of the 30%

for a Na variation from the nominal value of 2e18 cm−3 to 5e18 cm−3.
Fig. 3.12 doesn’t show a strong dependence on gate length variations in both RDF and

RTN for lambda.
In all the presented cases the the total effect is dominated by RDF, while RTN play a
minor role.

3.4.2 3D results

In this section we will analyse the results of RTN and RDF simulated on the complete
3D structure discribed in paragraph 3.1 . In all the figures which follows the black line
corresponds to only RTN fluctuations, the red line corresponds only to RDF fluctuation
and the blu line correspond to the total effect of RTN plus RDF. The procedure is the
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Figure 3.13: Lambda in function of the oxide thickness

same described in the above section.
As explained in paragraph 3.3, we have experienced some incoherence with the Green’s
function calculated by Sentaurus Device and the incremental to evaluate the effect of
the trap on the drain current. The difference between the two approach is up to 50%.
Despite this, the simulations have been repeated in the 3D case and due to the small
variation caused by RTN compared to the variation caused by RDF the analysis is still
reliable.
Fig. 3.13 shows the dependence of λ on the thickness oxide in the case of the 3D

structure. The effect of the oxide thickness reduction is the same seen in the 2D structure
despite the effects are stronger for every case.
Fig. 3.14 represents the dependence of λ on the substrate doping. In this case λ doesn’t

present any special dependence on the substrate doping variation. RTN show a linear
dependence to the reduction of Na.
Fig. 3.15 shows the dependence of lambda on the gate length and also on the width

that have the same value of Lg. The effect of RDF duplicate for from the 32 nm node
to 22 nm.
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Figure 3.14: Lambda in function of the substrate doping

Figure 3.15: Lambda in function of the gate length
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Chapter 4

Geometrical sensitivity

In the first chapter we have introduced the subject of device sensitivity analysis as a
powerful tool for device optimization. The aggressive device scaling and the request of
always better performances, in terms of consumption and realibility, requests higher
attention to device design optimization. Due to insufficient accuracy of predictive tools
set of simulations with a variety of geometry of the device under investigation are used.
This approach requires large computational resources due to the large number of trials
and the high number of grid points required.
In the framework of device sensitivity analysis as an optimization tool, we will describe
as an example geometrical sensitivity analysis run with a novel and efficient Green’s
function approach. Geometrical sensitivity analysis accounts for random displacement
interfaces, LER and LWR can also be included in this framework, and for deterministic
variation of the geometry, e.g. field plate dimension. The geometrical optimization
tool presented in this chapter can be used to do both the analysis described before,
but, for time reasons, we have applyied it on the size optimization of a field plate
FPMESFET. The application of a Field Plate on a MESFET enhanced the breakdown
voltage characteristics [52], yielding it useful for power applications. The application
of the FP technique is used also on HEMT [53], after its original proposal in the context
of high voltage planar p-n junctions [54].

Power devices requirements

In the field of electric power conversion, transistors should behave as an ideal switch.
High breakdown voltage and low energy losses are the most important requirements
in power switching applications such as factory automation, telecommunications and
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motor control [55]. The energy losses of a switching device are divided into static losses
and dynamic losses. The static losses are the losses when the transistor is in the on-state
and off-state. In the on-state a transistor should demonstrate very low on-resistance in
order to decrease the conduction losses. In the off-state the transistor should behave
as a perfect open but, inevitably, some leakage current flows. This leakage current
should be very low in order to reduce the standby power consumption. The switching
losses are due to the capacitance and the switching from the on-state to the off-state and
vice versa which should be fast. Another requirement for the switching transistors is
related to the passive elements such as capacitances, inductances and filters which form
the power conversion system. By increasing the operation frequency, it is possible to
reduce the size of the passive elements used, which results in a size reduction of the
power conversion system. Therefore, the higher operation frequency is required as an
important specification of a switching device.
Finally, the requirements for an electric power switching device can be summarized as
follows:

• High blocking voltage, which expands the utilization field

• Low specific on-resistance, which reduces the device conduction losses

• Low capacitance, which reduces the switching losses and increases the operation
frequency

• High operation frequency, which reduces the apparatus size

4.1 Theory

In [56] Gnudi et al. presented a sensitivity analysis technique for device design using
a linearized method. In the following we give a brief review of this first linearized
technique and then we will present our novel approach. Our study is based on 2D
simulations, but the model is easily to extend to 3D simulations. For simplicity, we
rewrite the drift-diffusion model 4.17 in the form

Fφ(φ, n, p;ND, NA,Ω, A) = 0 (4.1)

Fn(φ, n, p;ND, NA,Ω, A) = 0 (4.2)

Fp(φ, n, p;ND, NA,Ω, A) = 0 (4.3)

56



4.1 Theory

where 4.1 refers to Poisson equation, 4.2 and 4.3 refer to electron and hole continuity
equations. φ, n, p are nodal values of the electric potential and of the carrier concentra-
tions; NA, ND are the nodal values of the acceptor and donor impurity concetration, Ω

andA are the cell areas and the cross-section to side-length ratios of a node, respectively.
We have put in evidence geometrical variables because are necessary to explain the
model.
Now assume that the device geometry is varied uniformly so that the mesh nodes
undergo a small variation.

xi = x0
i + δxi (4.4)

yi = y0
i + δyi (4.5)

The choice of δxi and δyi is not unique. However, it is not critical as far as the mesh
continue to well describe the device topology and the perturbation is small enoough to
be linearized.
The change of nodes coordinate will modify the geometrical parameters Ωi and Aij as
follows:

Ωi = Ω0
i +

Nc∑
k=1

(
∂Ωi

∂xk
δxk +

∂Ωi

∂yk
δyk

)
(4.6)

Aij = A0
ij +

Nc∑
k=1

(
∂Aij
∂xk

δxk +
∂Aij
∂yk

δyk

)
(4.7)

where Nc is the number of nodes excluding those at ohmic contacts. This changes
induce variations to the electrical potential and carrier concentrations:

φ = φ0 + δφ (4.8)

n = n0 + δn (4.9)

p = p0 + δp (4.10)

The system of equations 4.1 4.2 4.3 becames

Fφ(φ0 + δφ, n0 + δn, p0 + δp;ND, NA,Ω + δΩ, A+ δA) = 0 (4.11)

Fn(φ0 + δφ, n0 + δn, p0 + δp;ND, NA,Ω + δΩ, A+ δA) = 0 (4.12)

Fp(φ
0 + δφ, n0 + δn, p0 + δp;ND, NA,Ω + δΩ, A+ δA) = 0 (4.13)
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The above system can be linearized as follows:

(
∂Fφ
∂φ

)
0

(
∂Fφ
∂n

)
0

(
∂Fφ
∂p

)
0(

∂Fn
∂φ

)
0

(
∂Fn
∂n

)
0

(
∂Fn
∂p

)
0(

∂Fp
∂φ

)
0

(
∂Fp
∂n

)
0

(
∂Fp
∂p

)
0


δφδn
δp

 = −



(
∂Fφ
∂Ω

)
0(

∂Fn
∂Ω

)
0(

∂Fp
∂Ω

)
0

 δΩ−


(
∂Fφ
∂A

)
0(

∂Fn
∂A

)
0(

∂Fp
∂A

)
0

 δA
(4.14)

The left hand side of the system is the Jacobian of the system which is already available
since it is used in Newton Method to solve the system equation in nominal conditions.
Hence, to find the parameters variations δφ, δn and δp only the assembly of the right
hand side of the system and one back substitution are required.
Summarizing, the variations of a geometrical paramters like the oxide thickness, in-
duce variation in the three mains physicals variables φ, n and p that can be evaluated
linearising the variation and calculating the right hand side of the system 4.14. This last
is composed by geometrical parameters variations.
Following Gnudi et al. [56] where the authors calculate the geometrical sensitivity,
variation of an electrical parameter in function of a geometrical variation, through the
cell area and cross-section derivative. Instead, we use the Green’s function formulation
of the local sensitivity, to calculate the geometrical sensitivity.

4.2 Green’s function based method for geometrical sen-
sitivity

Numerical device simulation is performed by solving the discrete Drift-Diffusion model,
eq. 4.17, which can be written in implicit mode as follow

Fφ(φ, n, p, xi, yi) = 0 Poisson Eq. (4.15)

Fn(φ, n, p, xi, yi) = 0 Electron continuity Eq. (4.16)

Fp(φ, n, p, xi, yi) = 0 Hole continuity Eq. (4.17)

where φ, n and p are, respectively, the discrete potential and carrier concentration
distribution inside the device and {xi, yi} are the 2D node coordinates. In reality the
descritized equations depends on the ratio of bi secants and edges {Dij/lij} and on the
cells areas eq. 4.1, see Fig. 2.1. In the numerical and Green’s function formulation is
not necessary to do any assumption and so we consider the generic dependence on 2D
node coordinates. So, if we assume to make a small variation in the device geometry
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Figure 4.1: Proportional variation of the mesh points
Rectmesh allow to proportionally varies the node coordinates when the mesh is
shrink or stretch

(to perturbed the geometry ) so that the corresponding mesh is always valuable, and this
is possible only with a small variation of the nodal coordinates, we can write the novel
coordinates (the perturbed coordinates) as

xp = x0
i + δxi, yi = y0

i + δyi (4.18)

where δxi and δyi are the small node variations which has to maintain the validity
of the grid on the geometry. We can enlarge a region of the device, moving all the
nodes so that they move uniformly, see 4.1. In the MATLAB function that we use,
part of the in-house code POLITO FBZ, this procedure is automatically done by the
grid generator, rectmesh.m. We vary the length of the region and re-compute the mesh
maintaining the same division number in the region and so the grid maintain the same
proportion, numeration and structure of the old nodes, but it results more stretched
along the direction of the geometry variation.
Corresponding to small variation in the geometry we have small variation of the physical
parameters

φ = φ0 + δφ, n = n0 + δn, p = p0 + δp (4.19)
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where δφ, δn and δp are small-change variations.
We can now rewrite the 4.15 of the Drift-Diffusion model as

Fφ(φ0 + δφ, n0 + δn, p0 + δp, x0
i + δxi, y

0
i + δyi) = 0 (4.20)

Fn(φ0 + δφ, n0 + δn, p0 + δp, x0
i + δxi, y

0
i + δyi) = 0 (4.21)

Fp(φ
0 + δφ, n0 + δn, p0 + δp, x0

i + δxi, y
0
i + δyi) = 0 (4.22)

For simplicity in the rest of the text we take as example the Poisson equation, but the
same can be done for the carrier continuity equation easily.
If we linearize the Poisson equation around the nominal physical value (physical values
of the unperturbed system), we approximatively obtain

Fφ(φ0, n0, p0, x0
i , y

0
i ) + · · · 1st term

∂Fφ
∂φ

∣∣∣∣
0

δφ+
∂Fφ
∂n

∣∣∣∣
0

δn+
∂Fφ
∂p

∣∣∣∣
0

δp+
∂Fφ
∂xi

∣∣∣∣
0

δxi +
∂Fφ
∂yi

∣∣∣∣
0

δyi = 0 2nd term (4.23)

The first term is the equation evaluated with the unperturbed parameters, 0th order, and
is zero for assumption while the others are the perturbed terms and can be divided in
two groups as illustrated in the follow equation.

∂Fφ
∂φ

∣∣∣∣
0

δφ+
∂Fφ
∂n

∣∣∣∣
0

δn+
∂Fφ
∂p

∣∣∣∣
0

δp = −∂Fφ
∂xi

∣∣∣∣
0

δxi −
∂Fφ
∂yi

∣∣∣∣
0

δyi (4.24)

The terms on the left are the Jacobian of the Poisson equation evaluated with the
nominal physical parameters and without grid variation terms. The terms on the right
represent the variations of the Poisson equation due only to the grid variation with the
nominal physical values. This term is equivalent to the right hand terms in 4.14 which
represent geometrical variation through cell areas and cross-section. These terms are
the consequence of the residual variation of the Poisson equation calculated with the
nominal physical values.

∆RHS = Fφ(φ0, n0, p0, x0
i + δxi, y

0
i + δyi)− Fφ(φ0, n0, p0, x0

i , y
0
i ) (4.25)

The last term of the equation is zero for assumption and the first term is easy to be
extracted with the following alghorithm:

a calculate the system solution at the working point of interest with a Newton
method. At the end you will have a Jacobian matrix and the values of the main
variables φ0, n0 and p0 that make Fφ(φ0, n0, p0, x0

i , y
0
i ) = 0. In this case the

residual is zero.

60



4.3 Case Study

b modify the geometry

c move the mesh to fit the novel geometry

d re-assemble the Jacobian matrix with the physical parameters calculated in the
first step to the new mesh points. In this case the residual is different from zero
and the variations is due to the geometry variation.

So we can write:

∂Fφ
∂φ 0

δφ+
∂Fφ
∂n 0

δn+
∂Fφ
∂p 0

δp = −Fφ(φ0, n0, p0, x0
i +δxi, y

0
i +δyi) = ∆RHS (4.26)

We have demonstrated how the perturbation induced by the perturbed coordinates can
be easely evaluated through the residual variation induced by the application of the
Jacobian to the modify mesh.
Now, we are able to calculate the effect of the geometric pertubation to the device
terminal characteristics using the Green’s function Gα where α is a given terminal
observable. The Green’s function has to be extracted from the nominal device at the
working point of interest, which must be the same used for the Jacobian evaluation
descripted above.
Toghether with the Green’s function we can evaluate the perturbation on the device
terminal

δα = −
∫

Ω

GαFφdσ =
∑
i−node

Gi,αFi,φAi =
∑
i−node

Gi,α∆RHSi (4.27)

where α is terminal observable, Ω is the device volume, Ai is the control area of the
i-esimo node and ∆RHSi is the residual of the i node.

4.3 Case Study

4.3.1 Field Plate MESFET

We have tested our method on a Field Plate (FP) MESFET, see Fig. 4.2 . FP technology
employed on GaAs metal-semiconductor fiel effect transistor FPFET, where the field-
modulating plate FP, whose potential is kept equal to that of the Schottky gate, or of
source/drain, is placed on the passivation film between the gate and the drain recess
edge, has been extensively exploited to improve the device breakdown voltage > 40 V
and microwave power performance at high drain voltages > 20 V [57].
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Geometrical sensitivity

Figure 4.2: Field Plate MESFET structure
Field PLate solutions have been extensively exploited to improve the device break-
down voltage. This structure is a perfect example how geometrical sensitivity is a
powerful tool for device optimization.

The presence of the field plate impairs RF device features, thus requiring a trade off
between breakdown voltage and device speed defined under terms of FP design such as
oxide physical dimensions (thickness, length, bias etc.). In this respect, the availability
of simulation tools with geometric sensitivity capabilities would widely improve the
fine tuning of the device design, and in principle should allow for automated device
optimization through gradient-based techniques.
The tested structure is a standard GaAs FPMESFET with a FP as represented in figure
4.2. The Gate length is Lg = 0.9 µm whith a distance of 2.5 µm from the drain
and 0.9 µm from the source. The layer is GaAs film thick 0.3 µm and n-type doped
2e17 cm−3. An FP electrode is placed on the dielectric film of SiO2, thick 1 µm,
between the gate and the drain edge. We define three important FP parameters: LFP ,
LFG and Tox , which are the FP length, the FP distance from the gate and the SiO2

thickness under FP, respectively. The device output characteristics with and without
FP are shown in Fig. 4.3 and show how the presence fot he field plate doubled the
brakdown voltage Vbr.
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4.3 Case Study

(a) Id vs Vd (b) Ig vs Vd

Figure 4.3: MESFET vs FPMESFET characteristic
Device output characteristics with and without FP are shown. The presence of the
Field Plate doubled the breakdown voltage.

Figure 4.4: Geometrical sensitivity validation
Comparison between the incremental approach of simulate every oxide thickness
and the Green’s function approach obtained in one simulation.
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Geometrical sensitivity

4.3.2 Model Validation

The Green’s function technique was applied in order to monitor the variation of the
drain current at the onset of breakdown conditions, see mark in Fig. 4.3(a), as a function
of the FP thickness, FP length and FP distance from gate electrode.
The Green’s function approach has been validated on the FPMESFET described in the
above section using the in-house code described in 2.3.2 including avalanche generation.
The electric field dependence of the electron and hole ionization coefficients was in-
cluded by fitting the measurements by Bulman [58]. This code was complemented with
the Green’s function sensitivity analysis both in small signal and large-signal conditions.
Figure 4.4 represent the comparison between incremental and the linearized Green’s
function approach concerning the drain current Id in function of oxide thickness Tox
variations. The direct numerical approach consist in running simulations for every
oxide thickness of interest and compute the relative drain current variations. The agree-
ment between the two methods is good and the linearized approach was accurate up to
15− 20% variation of the geometrical parameters with respect to nominal values. This
mean that the physical variable variations induced by geometrical variations are small
enough to be linearised and that our method can be used to run geometrical sensisitivty
analysis.

4.3.3 Analysis of the results

Field Plate length variations

Figures 4.5(a) and 4.5(b) show, respectively, the variations of the drain and gate current
as a function of the FP length variation. It is clearly seen that the sensitivity is much
lower for FP length higher than 1 µm. Further increase of the FP length does not lead
to significant reduction in the drain avalanche current.

Oxide Thickness variations

Figures 4.6(a) and 4.6(b) show, respectively, the variations of the drain and gate current
as a function of the field plate oxide thickness. The trend is the same of LFP where the
sensitivity is much lower for oxide thickness higher than 1 µm.
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4.3 Case Study

(a) Id vs LFP (b) Ig vs LFP

Figure 4.5: Id and Ig versus field plate length
The black line refers to variations of the FP around the nominal value of 0, 6 µm.
The red squares refers to variations of the FP around the nominal value of 1, 4 µm.
The drain and gate current is calculate in breakdown conditions.

(a) Id vs LFP (b) Ig vs LFP

Figure 4.6: Id and Ig versus xide thickness variations
The black line refers to variations of the FP around the nominal value of 0, 8 µm.
The red squares refers to variations of the FP around the nominal value of 1, 2 µm.
The drain and gate current is calculate in breakdown conditions.
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(a) Id vs LFP (b) Ig vs LFP

Figure 4.7: Field Plate distance from gate variations
The black line refers to variations of the FP around the nominal value of 0, 5 µm.
The red squares refers to variations of the FP around the nominal value of 0, 8 µm.
The drain and gate current is calculate in breakdown conditions.

Field Plate distance from gate variations

Figures 4.7(a) and 4.7(b) shows, respectively, the variations of the drain and gate current
as a function of the distance between gate and field plate. Results shows that for a
positive variation of this parameter around a nominal value of 0.5 µm, the sensitivity of
the drain current is negative (and the opposite holds for the gate current): this means
that by further separting the gate and FP contacts the FP effect is enhanced and the
breakdown current decreases. On the other hand for a nominal value of 0.8 µm the
sensitivity sign is changed, thus suggesting that an optimum value of this parameter
can be found at an intermediate value of the gate-FP distance. Notice however that the
sensitivity absolute value is lower than in the other two cases.

In such simulations a direct link has been established between the breakdown condi-
tion and the device geometry. Despite similar simulation efforts have been demonstrated
in previous works both for GaAs and GaN FETs [52] [53], such papers show that a
direct analysis of device performances in breakdown conditions is extremely numeri-
cally intensive. On the contrary, the proposed approach, based on the linearization of
the device equations with respect to mesh variations allows for a dramatic reduction of
simulation time.
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Appendix A

Mesh Generator and the mesh problem

Creating a mesh is the first step in a wide range of applications, including scientific
computing and computer graphics. Here we want to dicuss the mesh problem for finite
element method used in electron device simulations.
Grid generators must be based both on geometrical and numerical considerations.
Some general guidelines can be suggested in order to minimize the discretization error,
produced in the passage from continuos algebra to discrete systems. I have found some
guidelines in articles and book which discuss about mesh:

• The grid should accourately describe the device topology, considering also impu-
rity profiles and other critical zones for the main variables (potential, local charge,
recombination etc.)

• the grid should vary as smoothly as possible because the local truncation error is
proportional to node distance

• the presence of angles above 90 must be minimized and the minimum interior
angle should be maximized in order to have well conditioned matrices

• whenever possible, element edges should be aligned to the direction of current
flow

• in case of a triangular grid, equilateral triangles are preferred

• for computational reasons, the mesh should have small elements to resolve the
fine details of the geometry, but larger sizes where possible, to reduce the total
number of nodes

Many different mesh generation algorithms have been developed, and some of the most
popular ones are described in the surveys by Bern and Plassmann [59] and Owen [60].
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In the following we will discribe the two mesh genrator that I have used and modified
in order to improve the performances of the in-house code discribed in the thesis.

Rectmesh

Rectmesh is a simple 2D meshgenerator included in the in-house code POLITOFBZ
which allows to create a triangular mesh after dividing the domain in rectangular
elements. After dividing the total domain in rectangular region, the user must set a
division number for the direction x and y for every region. The matlab code to generate
the node takes only few lines and is:
fork = 1 : length(geom.divx),

x(index : sum(geom.divx(1 : k)) + 1) = linspace(xb(k), xb(k+ 1), geom.divx(k) +

1);

index = index+ geom.divx(k); end

index = 1;

fork = 1 : length(geom.divy),

y(index : sum(geom.divy(1 : k)) + 1) = linspace(yb(k), yb(k + 1), geom.divy(k) +

1);

index = index+ geom.divy(k); end

mesh.xgrid = x;mesh.ygrid = y;

where geom.div is an array with division number for every device region and xb and yb
are the coordinates that define the region boundaries.
With this data it is easy to extract the nodes coordinates which form a rectangular grid.
This rectangular grid can be easly tranformed into a right triangular grid defining one
more edge for every rectangle.
Figure 8 shows an example of a mesh generated with rectmesh for a p-n junction. In

theory there’s must be a higher density node at the junction and the mesh must smoothly
relaxes as more is far from the junction. The figure shows that an high density of nodes
can be set near the junction, but the mesh doesn’t relax smoothly and there are also many
nodes far from the junction. Despite, in theory, this is not a good mesh, the solution is
in agreement with other simulators. This is probably due to Newton alghorithm which
is very powerful and can solve also some mesh defects without lossing in reliability and
performances.
The principal problem of this type of mesh remains the high number of nodes in region
where are not necessary and if in 2D simulations the problem is acceptable, in 3D it
will create a very large number of nodes where are not necessary. In the end, rectmesh,
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(a) Rectmesh p-n junction

(b) Rectmesh p-n junction zoom

Figure 8: Rectmesh p-n junction
(a) shows an example of a mesh generated by rectmesh on a p-n junction (b) shows a
zoom of (a) in the junction zone
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is a simple and efficient meshgenerator for 2D simulations, but can’t be applied in 3D
simulations.

Trimesh

Persson et al. present in [61] a simple mesh generators implemented in Matlab and
easy to extend for any purpose. The authors want to fill the lack in the use of mesh
generators which, normally, tend to be black boxes and I agree with that assumption.
For this purpose they have created a simple algorithm for mesh generation that we have
modified to be adopted in our in house simulator.
The proposed algorithm implements an iterative technique based on the physical anal-
ogy between a simplex mesh and a truss structure. Meshpoints are nodes of the truss.
Assuming an appropriate force-displacement function for the bars in the truss at each
iteration, we solve for equilibrium. The two essential steps are the nodes displacement
under the bar forces and the Delaunay triangulation algorithm that adjusts the topology
defining the edges. The resulting mesh is surprisingly well-shaped.
Without goin into the details because we want to present the general algorithm and the
results obtained.

The algorithm

In this section we will explain the 2D algorithm, but it can be easely expanded to the
3D case. In the plane any set of points can be triangulated by the Delaunay algorithm
[62]. In the physical model, the edges of the triangles (the connections between pairs of
points) correspond to bars, and the points correspond to joints of the truss. Each bar has
a force-displacement relationship f(l, l0) where l is the current bar lenght and l0 is its
unextended length.
The positions of the joints are our principal unknowns and are found by solving for a
static force equilibrium in the structure. To solve for the force equilibrium, collect the
nodes coordinates of all meshpoints into an p:

p = [x, y] (28)

The force vector F (p) has horizontal and vertical components at each meshpoint:

F (p) = [Fint,x(p)Fint,y(p)] + [Fext,x(p)Fext,y(p)] (29)

where Fint contains the internal forces from the bars, and Fext are the external forces
(reactions from the boundaries). The first column of F contains the x-components of the
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forces, and the second column contains the y-components.
Note that F (p) depends on the topology of the bars connecting the joints given by the
Delaunay triangulation of the meshpoints. The Delaunay algorithm determines non-
overlapping triangles that fill the convex hull of the input points, such that every edge is
shared by at most two triangles, and the circumcircle of every triangle contains no other
input points. In the plane, this triangulation is known to maximize the minimum angle
of all the triangles. The force vector F (p) is not a continuous function of p, since the
topology is changed by Delaunay as the points move at every iteration.
The system F (p) = 0 has to be solved for a set of equilibrium positions p. This is a
relatively hard problem, partly because of the discontinuity in the force function and
partly because of the external reaction forces at the boundaries.
A simple approach to solve F (p) = 0 is to introduce an artificial discretized time-
dependence. At the discretized time tn = n∆t, the approximate solution pn ≈ p(tn) is
updated by

pn+1 = pn + ∆tF (pn) (30)

This means that the force F is applied to mesh structure for a time ∆t moving the nodes
from the position pn to pn+1. When evaluating the force function, the positions pn are
known and therefore also the truss topology. The external reaction forces enter in the
following way: All points that go outside the region during the update from pn to pn+1

are moved back to the closest boundary point. This conforms to the requirement that
forces act normal to the boundary. The points can move along the boundary, but not go
outside.
There are many alternatives for the force function f(l, l0) in each bar. Good results can
be obtained with piecewise linear force as

f(l, l0) =

(l − l0) for l < l0

0 for l > l0
(31)

The proposed treatment of the boundaries means that no points are forced to stay at the
boundary, they are just prevented from crossing it. It is therefore important that most
of the bars give repulsive forces f > 0, to help the points spread out across the whole
geometry. This means that f(l, l0) should be positive when is near the desired length,
which can be achieved by choosing l0 slightly larger than the length we actually desire.
The desired edge length distribution is provided by the user as an element size function
fh(x, y). Note that hfh(x, y) does not have to equal the actual size; it gives the relative
distribution over the domain. This avoids an implicit connection with the number of
nodes, which the user is not asked to specify. fh(x, y) could also be created using
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Figure 9: Schematic reppresentation of the Trimesh algorithm
The scheme represent a schematic reppresentation of the Trimesh orginal algorithm.
This flow is the core function of the mesh generator. The complete original source
code is added at the end of this chapter.

adaptive logic to follow physical quantities variations in the device, e.g. the electric
field.
The initial node positions p0 can be chosen in many ways. A random distribution of
the points usually works well, but when a non-uniform size distribution is desired, the
convergence is faster if the initial distribution is weighted by probabilities proportional
to 1/fh(x, y)2 which represent the density.

Implementation

Figure 9 reppresent a schematic reppresentation of the principal step contained in
the core function of the original algorithm. In order to adapt the meshgenerator to
POLITOFBZ wrap functions have been created to manage input and output data. A few
options have been added in order to optimize the feature of the mesh to the use in device
simulations, i.e. density gradient applyied to fh(x, y) in order to obtain smoother
meshes.
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The core alghorithm starts with the generation of a random distribution of points p0

that can follow the the density of nodes reppresented by 1/fh(x, y)2 or any other
distribution of interest. The points can be generated in a box greater than the device
geometry. This feature can be useful for non regulare geometry, i.e. ringa, or for moving
boundaries analysis. Points outside the device are removed. Once created a first point
distribution the main loop starts. First, we use the Delauny algorithm implemented
in Matlab which gives as results triangles and bars. At this step we have to calculate
the difference between the actual bar lenghts and the one described in fh. With the
difference we can calculate the force to apply at each node. Once the nodes are moved
by the force we have to bring back points that gone outside the device region. At this
point we apply a termination criterion. Normally, the loop finishes when all interior
nodes moved less than tollerance set from the user. If the criteria is not matched the
loop restarts from the delaunay triangulation of the new points, else the loop stops.
This algorithm gives back to the user a set of points that can be triangulated with the
Delaunay algorithm resulting in a mesh strucutre.

Results of Trimesh

The meshes generated by Trimesh are high quality meshes with many triangles almost
equilateral. A first test has been made using as fh a 2D cosine, where we want to have
a high density of nodes on the cosine. Figure 10(a) show the fh function of a 2D cosine.
The fh function is defined by the user and is foundamental to obtain a well shaped
mesh which discrebed the device topology. With the fh showed in 10(a) the mesh 10(b)
is obtained. The resulting mesh is of high quality, with an high density of nodes on the
cosine which varies smoothly.
To obtain a mesh which varies so smoothly we have also implemented a gradient
limiting function which act on fh imposing a maximum gradient defined by the user.
Once tested the mesh generator, we have applied it on a p-n junction and linked it

with POLITOFBZ. Figure 11 shows the mesh and the potential calculated on it of a p-n
junction. Despite the high quality of the mesh no further improvement has been seen
compared to the use of rectmesh. The number of iteration step and solution doesn’t
vary. On the contrary, the mesh generated with trimesh has a larger number of nodes.
The Trimesh algorithm is a very good mesh generator, but need further improvement to
be used in device simulation. Probably it will be more efficient in 3D simulations.
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(a) fh cosine function

(b) Cosine mesh

Figure 10: Trimesh example of a cosine mesh
(a) shows an fh function of a 2D cosine mesh obtained using density gradient
algorithm to smooth the mesh (b) the mesh generated with the fh represented in (a)
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(a) Trimesh example of p-n junction - Mesh

(b) Trimesh example of p-n junction - Potential

Figure 11: Trimesh example of a p-n junction
(a) shows the mesh of a p-n junction obtained with Trimesh (b) shows the potential
of the p-n junction obtained with the mesh (a)
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Original Trimesh code

Here we reported the original Matlab code as written in [61] where the function is called
distmesh2d.

function [p,t]=distmesh2d(fd,fh,h0,bbox,pfix,varargin)

dptol=.001; ttol=.1; Fscale=1.2; deltat=.2; geps=.001*h0;

deps=sqrt(eps)*h0;

% 1. Create initial distribution in bounding box

[x,y]=meshgrid(bbox(1,1):h0:bbox(2,1),

bbox(1,2):h0*sqrt(3)/2:bbox(2,2));

x(2:2:end,:)=x(2:2:end,:)+h0/2; % Shift even rows

p=[x(:),y(:)]; % List of node coordinates

% 2. Remove points outside the region, apply the rejection method

p=p(feval(fd,p,varargin{:})<geps,:); % Keep only d<0 points

r0=1./feval(fh,p,varargin{:}).^2; % Probability to keep point

p=[pfix; p(rand(size(p,1),1)<r0./max(r0),:)]; % Rejection method

N=size(p,1); % Number of points N

pold=inf; % For first iteration

while 1

% 3. Retriangulation by the Delaunay algorithm

if max(sqrt(sum((p-pold).^2,2))/h0)>ttol % Any large movement?

pold=p; % Save current positions

t=delaunayn(p); % List of triangles

pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:))/3; % Compute centroids

t=t(feval(fd,pmid,varargin{:})<-geps,:); % Keep interior triangles

% 4. Describe each bar by a unique pair of nodes

bars=[t(:,[1,2]);t(:,[1,3]);t(:,[2,3])]; % Interior bars duplicated

bars=unique(sort(bars,2),âC™rowsâC™); % Bars as node pairs

% 5. Graphical output of the current mesh

trimesh(t,p(:,1),p(:,2),zeros(N,1))

view(2),axis equal,axis off,drawnow

end

% 6. Move mesh points based on bar lengths L and forces F

barvec=p(bars(:,1),:)-p(bars(:,2),:); % List of bar vectors

L=sqrt(sum(barvec.^2,2)); % L = Bar lengths
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hbars=feval(fh,(p(bars(:,1),:)+p(bars(:,2),:))/2,varargin{:});

L0=hbars*Fscale*sqrt(sum(L.^2)/sum(hbars.^2)); % L0 = Desired lengths

F=max(L0-L,0); % Bar forces (scalars)

Fvec=F./L*[1,1].*barvec; % Bar forces (x,y components)

Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2],

[Fvec,-Fvec],N,2));

Ftot(1:size(pfix,1),:)=0; % Force = 0 at fixed points

p=p+deltat*Ftot; % Update node positions

% 7. Bring outside points back to the boundary

d=feval(fd,p,varargin{:}); ix=d>0; % Find points outside (d>0)

dgradx=(feval(fd,[p(ix,1)+deps,p(ix,2)],varargin{:})-d(ix))/deps;

dgrady=(feval(fd,[p(ix,1),p(ix,2)+deps],varargin{:})-d(ix))/deps;

% Project back to boundary

p(ix,:)=p(ix,:)-[d(ix).*dgradx,d(ix).*dgrady];

% 8. Termination criterion:

%All interior nodes move less than dptol (scaled)

if max(sqrt(sum(deltat*Ftot(d<-geps,:).^2,2))/h0)<dptol, break; end

end
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Appendix B

Sentaurus Command Files

Sentaurus Device IdVg sweep

Device NMOS {

Electrode {

{ name="Source" voltage= 0.0 }

{ name="Drain" voltage= 0.0 }

{ name="Bulk" voltage= 0.0 }

#if @< [string compare Poly @Poly_or_Elec@] >@ == 0

{ name="FGate" voltage= 0.0 }

#else

{ name="FGate" voltage= 0.0 barrier=-0.55}

#endif

}

File {

Grid = "@tdr@"

Current = "@plot@"

Plot = "@dat@"

}

Physics {

Recombination ( SRH(DopingDep)

# Avalanche

# Band2Band

79



# NonLocal

)

Mobility ( DopingDep

Enormal

HighFieldSaturation

)

EffectiveIntrinsicDensity ( oldSlotboom NoFermi )

#if @< [string compare yes @DG@] >@ == 0

eQuantumPotential

hQuantumPotential

#endif

Noise ( Doping Traps )

}

#if @< [string compare intern @Trap@] >@ == 0

Physics (MaterialInterface="Silicon/Oxide") {

Traps(

(SingleTrap FixedCharge Conc=-1 SpaceMid=(@x0@,@y0@,@z0@))

)

}

#endif

#if @< [string compare Toxiden @Trap@] >@ == 0

Physics (Material="Oxide") {

Traps(

(SingleTrap FixedCharge Conc=-1 SpaceMid=(@x0@,@y0@,@z0@))

)

}

#endif

#if @< [string compare TSin @Trap@] >@ == 0

Physics (Material="Silicon") {

Traps(
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(SingleTrap FixedCharge Conc=-1 SpaceMid=(@x0@,@y0@,@z0@))

)

}

#endif

Plot {

DopingConcentration

Potential

eDensity hDensity

eTemperature hTemperature

LatticeTemperature

eAvalanche hAvalanche

eAlphaAvalanche hAlphaAvalanche

ElectricField/Vector

eMobility hMobility

eCurrent/Vector hCurrent/Vector

eVelocity/Vector hVelocity/Vector

SpaceCharge

eJouleHeat

eQuasiFermi hQuasiFermi

eGradQuasiFermi/Vector hGradQuasiFermi/Vector

eTrappedCharge hTrappedCharge

eInterfaceTrappedCharge hInterfaceTrappedCharge

ConductionBandEnergy

ValenceBandEnergy

SRH

Band2Band

RandomizedDoping

#if @< [string compare yes @DG@] >@ == 0

eQuantumPotential hQuantumPotential

#endif

}
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#if @< [string compare Poly @Poly_or_Elec@] >@ == 0

CurrentPlot {

SpaceCharge(Maximum(Region="Poly1") Average(Region="Poly1")

Minimum(Region="Poly1"))

eDensity(Maximum(Region="Poly1") Average(Region="Poly1")

Minimum(Region="Poly1"))

hDensity(Maximum(Region="Poly1") Average(Region="Poly1")

Minimum(Region="Poly1"))

eQuasiFermi(Maximum(Region="Poly1") Average(Region="Poly1")

Minimum(Region="Poly1"))

hQuasiFermi(Maximum(Region="Poly1") Average(Region="Poly1")

Minimum(Region="Poly1"))

Potential(Maximum(Region="Poly1") Average(Region="Poly1")

Minimum(Region="Poly1"))

#

SpaceCharge(Maximum(Region="Poly2") Average(Region="Poly2")

Minimum(Region="Poly2"))

eDensity(Maximum(Region="Poly2") Average(Region="Poly2")

Minimum(Region="Poly2"))

hDensity(Maximum(Region="Poly2") Average(Region="Poly2")

Minimum(Region="Poly2"))

eQuasiFermi(Maximum(Region="Poly2") Average(Region="Poly2")

Minimum(Region="Poly2"))

hQuasiFermi(Maximum(Region="Poly2") Average(Region="Poly2")

Minimum(Region="Poly2"))

Potential(Maximum(Region="Poly2") Average(Region="Poly2")

Minimum(Region="Poly2"))

}

#endif

}

Math {
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Method=ils

Digits=4

Iterations=8

Error(circuit)=1e-20

Error(contact)=1e-20

Error(poisson)=1e-16

Error(electron)=1e-10

Error(hole)=1e-10

Extrapolate

Notdamped=50

RhsMin=1e-20

AvalDerivatives

Number_of_Threads = maximum

Derivatives

NoSRHPerPot

RelErrControl

ErrEff(Electron)=1e+6

ErrEff(Hole)=1e+6

RandomizedVariation (

NumberOfSamples= 100

Randomize= 133707

)

}

NoisePlot {CurPotReACGreenFunction CurPotImACGreenFunction

PoPotReACGreenFunction

PoPotImACGreenFunction ReLNVXVSD ImLNVXVSD}

System {

NMOS trans (Drain=d Source=s FGate=g Bulk=0)

Vsource_pset vd (d 0) {dc=0.1}

Vsource_pset vs (s 0) {dc=0}

Vsource_pset vg (g 0) {dc=@Vmax@}

}
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Solve {

Load(FilePrefix="9_Vth")

*- Creating initial guess:

ACCoupled (

StartFrequency=0.001 EndFrequency=0.001

NumberOfPoints=1 Decade

Node(d s g) Exclude(vd vs vg)

ObservationNode (d g)

NoisePlot="n@node@_3D_@W@"

ACExtraction = "n@node@_3D_@W@"

ACExtract="acplot"

ACMethod=Blocked ACSubMethod("1d")=ParDiSo

){ Poisson }

}
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