6,416 research outputs found

    Passivity Enforcement via Perturbation of Hamiltonian Matrices

    Get PDF
    This paper presents a new technique for the passivity enforcement of linear time-invariant multiport systems in statespace form. This technique is based on a study of the spectral properties of related Hamiltonian matrices. The formulation is applicable in case the system input-output transfer function is in admittance, impedance, hybrid, or scattering form. A standard test for passivity is first performed by checking the existence of imaginary eigenvalues of the associated Hamiltonian matrix. In the presence of imaginary eigenvalues the system is not passive. In such a case, a new result based on first-order perturbation theory is presented for the precise characterization of the frequency bands where passivity violations occur. This characterization is then used for the design of an iterative perturbation scheme of the state matrices, aimed at the displacement of the imaginary eigenvalues of the Hamiltonian matrix. The result is an effective algorithm leading to the compensation of the passivity violations. This procedure is very efficient when the passivity violations are small, so that first-order perturbation is applicable. Several examples illustrate and validate the procedure

    On non-normality and classification of amplification mechanisms in stability and resolvent analysis

    Get PDF
    We seek to quantify non-normality of the most amplified resolvent modes and predict their features based on the characteristics of the base or mean velocity profile. A 2-by-2 model linear Navier-Stokes (LNS) operator illustrates how non-normality from mean shear distributes perturbation energy in different velocity components of the forcing and response modes. The inverse of their inner product, which is unity for a purely normal mechanism, is proposed as a measure to quantify non-normality. In flows where there is downstream spatial dependence of the base/mean, mean flow advection separates the spatial support of forcing and response modes which impacts the inner product. Success of mean stability analysis depends on the normality of amplification. If the amplification is normal, the resolvent operator written in its dyadic representation reveals that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes. If the amplification is non-normal, then resolvent analysis is required to understand the origin of observed flow structures. Eigenspectra and pseudospectra are used to characterize these phenomena. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with normal mechanisms and quantification of non-normality using the inverse inner product of the leading forcing and response modes agrees well with the product of the resolvent norm and distance between the imaginary axis and least stable eigenvalue. In turbulent channel flow, structures result from both normal and non-normal mechanisms. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how non-normality is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures

    Beyond the Spectral Theorem: Spectrally Decomposing Arbitrary Functions of Nondiagonalizable Operators

    Full text link
    Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, often the linear operator techniques that one would then use simply fail since the operators cannot be diagonalized. This curse is well known. It also occurs for finite-dimensional linear operators. We circumvent it by developing a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. It extends the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics are relevant, including memoryful stochastic processes, open non unitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator. In particular, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a general method to construct it. We provide new formulae for constructing projection operators and delineate the relations between projection operators, eigenvectors, and generalized eigenvectors. By way of illustrating its application, we explore several, rather distinct examples.Comment: 29 pages, 4 figures, expanded historical citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/bst.ht

    On the Generation of Large Passive Macromodels for Complex Interconnect Structures

    Get PDF
    This paper addresses some issues related to the passivity of interconnect macromodels computed from measured or simulated port responses. The generation of such macromodels is usually performed via suitable least squares fitting algorithms. When the number of ports and the dynamic order of the macromodel is large, the inclusion of passivity constraints in the fitting process is cumbersome and results in excessive computational and storage requirements. Therefore, we consider in this work a post-processing approach for passivity enforcement, aimed at the detection and compensation of passivity violations without compromising the model accuracy. Two complementary issues are addressed. First, we consider the enforcement of asymptotic passivity at high frequencies based on the perturbation of the direct coupling term in the transfer matrix. We show how potential problems may arise when off-band poles are present in the model. Second, the enforcement of uniform passivity throughout the entire frequency axis is performed via an iterative perturbation scheme on the purely imaginary eigenvalues of associated Hamiltonian matrices. A special formulation of this spectral perturbation using possibly large but sparse matrices allows the passivity compensation to be performed at a cost which scales only linearly with the order of the system. This formulation involves a restarted Arnoldi iteration combined with a complex frequency hopping algorithm for the selective computation of the imaginary eigenvalues to be perturbed. Some examples of interconnect models are used to illustrate the performance of the proposed technique

    Recognition and reconstruction of coherent energy with application to deep seismic reflection data

    Get PDF
    Reflections in deep seismic reflection data tend to be visible on only a limited number of traces in a common midpoint gather. To prevent stack degeneration, any noncoherent reflection energy has to be removed. In this paper, a standard classification technique in remote sensing is presented to enhance data quality. It consists of a recognition technique to detect and extract coherent energy in both common shot gathers and fi- nal stacks. This technique uses the statistics of a picked seismic phase to obtain the likelihood distribution of its presence. Multiplication of this likelihood distribution with the original data results in a “cleaned up” section. Application of the technique to data from a deep seismic reflection experiment enhanced the visibility of all reflectors considerably. Because the recognition technique cannot produce an estimate of “missing” data, it is extended with a reconstruction method. Two methods are proposed: application of semblance weighted local slant stacks after recognition, and direct recognition in the linear tau-p domain. In both cases, the power of the stacking process to increase the signal-to-noise ratio is combined with the direct selection of only specific seismic phases. The joint application of recognition and reconstruction resulted in data images which showed reflectors more clearly than application of a single technique

    Analysis of Dynamic Brain Imaging Data

    Get PDF
    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for non-stationarity in the data. Of particular note are (a) the development of a decomposition technique (`space-frequency singular value decomposition') that is shown to be a useful means of characterizing the image data, and (b) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources.Comment: 40 pages; 26 figures with subparts including 3 figures as .gif files. Originally submitted to the neuro-sys archive which was never publicly announced (was 9804003

    Data-adaptive harmonic spectra and multilayer Stuart-Landau models

    Full text link
    Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. The corresponding eigenvalues can be grouped per Fourier frequency, and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey furthermore a variational principle that allows us to define naturally a multidimensional power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum. The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled---provided the decay of temporal correlations is sufficiently well-resolved---within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators. Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise, are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.Comment: 26 pages, double columns; 15 figure
    corecore