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On the Generation of Large Passive Macromodels
for Complex Interconnect Structures
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Abstract—This paper addresses some issues related to the
passivity of interconnect macromodels computed from measured
or simulated port responses. The generation of such macromodels
is usually performed via suitable least squares fitting algorithms.
When the number of ports and the dynamic order of the macro-
model is large, the inclusion of passivity constraints in the fitting
process is cumbersome and results in excessive computational
and storage requirements. Therefore, we consider in this work
a post-processing approach for passivity enforcement, aimed at
the detection and compensation of passivity violations without
compromising the model accuracy. Two complementary issues
are addressed. First, we consider the enforcement of asymptotic
passivity at high frequencies based on the perturbation of the
direct coupling term in the transfer matrix. We show how poten-
tial problems may arise when off-band poles are present in the
model. Second, the enforcement of uniform passivity throughout
the entire frequency axis is performed via an iterative perturba-
tion scheme on the purely imaginary eigenvalues of associated
Hamiltonian matrices. A special formulation of this spectral
perturbation using possibly large but sparse matrices allows the
passivity compensation to be performed at a cost which scales only
linearly with the order of the system. This formulation involves a
restarted Arnoldi iteration combined with a complex frequency
hopping algorithm for the selective computation of the imaginary
eigenvalues to be perturbed. Some examples of interconnect
models are used to illustrate the performance of the proposed
techniques.

Index Terms—Admittance, Arnoldi algorithm, complex fre-
quency hopping, eigenvalues, Hamiltonian matrices, hybrid,
impedance, linear macromodeling, passivity, perturbation theory,
scattering, singular values, sparse matrices.

I. INTRODUCTION

THE ELECTRICAL design of high-speed information and
communication systems requires accurate and efficient

models for all critical components. In particular, the nonideal
behavior of electrical interconnects and packaging structures
at high frequency needs to be carefully taken into account
to insure the signal integrity of the whole system. Therefore,
much attention has been devoted in the literature to macromodel
generation algorithms. Several techniques are available (see,
e.g., [1]–[8]) for the construction of SPICE-ready macromodels
starting from various forms of native characterization such as
direct measurements or electromagnetic simulation, both in
time and frequency domain. Most of these techniques lead
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to excellent results in terms of accuracy and efficiency when
the structure under consideration has a limited port count and
dynamic order. However, some difficulties arise when realistic
structures such as connectors or via arrays are considered, since
the port count that is needed to include all significant couplings
may be quite large. Similarly, a possibly large dynamic order
is required by the extended frequency band over which an
accurate representation is necessary.

This paper addresses some difficulties that arise during the
construction of large macromodels, both in terms of port count
and dynamic order. Common macromodeling algorithms, such
as vector fitting [8], are based on some least squares fitting to the
data for the computation of the macromodel poles and residues.
For a large macromodel, the whole transfer matrix cannot be
fitted at the same time, since the resulting least squares system
would require prohibitive computing time and storage. There-
fore, a common approach is to fit separately subsets of port re-
sponses, and to collect them subsequently into a global macro-
model [9], [10] (many commercial tools also use this approach).
This strategy leads generally to excellent accuracy on each spe-
cific entry of the transfer matrix. Unfortunately, no control over
macromodel passivity is possible, since passivity is a global fea-
ture of the transfer matrix and requires its consideration as a
whole. Passivity is a fundamental property of any macromodel,
since a nonpassive model may lead to unstable transient sim-
ulations depending on its termination networks [11], [12]. An
illustrative example is included in this paper. Conversely, pas-
sive models guarantee stability under any termination condition
[13], [14], thus insuring successful system-level simulations.

The main focus of this work is on the enforcement of pas-
sivity for a given large macromodel. Several techniques for
passivity enforcement are available. The techniques proposed
in [2] and [5] do not guarantee a passive macromodel al-
though care is taken during its computation. Other approaches
aimed at enforcing passivity by construction [15] may lead
to overtreatment with significant loss of accuracy. Better so-
lutions are based on formulation of passivity enforcement as
the solution of linear and quadratic programming problems
and, more generally, of convex optimization problems. Some
of these techniques are based on passivity enforcement only
at selected frequency points [16] and are, therefore, unable to
guarantee passivity over the entire frequency spectrum. Some
other techniques work directly on a state-space realization of
the macromodel [17]–[19]. They do guarantee passivity, but
their application is mainly limited by the problem size due to
computational cost and storage requirements. The approach
that we follow in this paper is based on the Hamiltonian matrix
associated to the macromodel. Since passivity violations are
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implied by the existence of purely imaginary eigenvalues of
the Hamiltonian matrix [20]–[22], we adopt an iterative per-
turbation scheme [21], [23] aimed at the direct displacement
of these eigenvalues from the imaginary axis. This passivity
enforcement scheme is based on the iterative determination
of the eigenvalues of the Hamiltonian matrix, combined with
the solution of small underdetermined linear least squares
problems.

There are three main difficulties associated with this pas-
sivity enforcement scheme that arise when dealing with large
macromodels. First, the algorithm assumes asymptotic pas-
sivity at high frequencies. However, this condition cannot be
guaranteed if the macromodel is constructed in separate parts.
Section III shows how asymptotic passivity can be enforced
and highlights the conditions on the macromodel poles that
need to be insured so that this procedure is numerically stable.
The second difficulty is associated to the computation of the
controllability Gramian of the macromodel. This is needed
in order to guarantee preservation of accuracy throughout the
iterations. However, the Gramian is computed by solving a
Lyapunov equation [14], [24], which is well known to require
considerable computational resources. Section IV shows that
this is not an issue for the general class of macromodels that
is considered in this paper, for which the Gramian is available
analytically and results sparse and block-diagonal. The third
and main difficulty is related to the actual computation of the
Hamiltonian eigenvalues. Indeed, the associated computational
cost scales as the third power of the problem size and becomes
excessive for large macromodels. To overcome this problem,
we employ here a restarted Arnoldi algorithm [25], [26] with
shift-and-invert spectral transformation, combined with an
iterative selection of multiple complex shifts similar to the
well-known complex frequency hopping [27] algorithm. This
results in an automatic algorithm that is capable of extracting
all imaginary eigenvalues and associated eigenvectors with
arbitrary precision. The resulting computational cost scales
only linearly with the problem size, thus allowing applicability
for large-sized macromodels. This eigenvalue computation
algorithm is presented in Section V. Validations and numerical
results are finally presented in Section VI.

II. BACKGROUND AND NOTATIONS

A. Sparse Macromodels

We consider a linear multiport structure with an arbitrary and
possibly large number of ports . The main objective of this
paper is to check and enforce passivity of a macromodel of the
structure, derived via some fitting algorithm such, e.g., vector
fitting [8]. We assume that this macromodel is characterized by
a rational transfer matrix expressed as

(1)

The most common representation for used for the con-
struction of macromodels is the scattering form. We will con-
sider in the following also hybrid representations, which include
admittance and impedance as particular cases [13].

A common set of poles for all transfer matrix entries would
be desirable under a theoretical standpoint. However, this condi-
tion requires the consideration of all responses at the same time
in the derivation of the macromodel. Obviously, this is not pos-
sible when is large, due to excessive storage and CPU time
requirements. Therefore, a common approach is to fit separately
subsets of port responses and to combine the results into a global
macromodel. When this strategy is pushed to the limit, in-
dependent sets of poles and residues are obtained, one for each
single transfer matrix entry. This choice optimizes speed and ac-
curacy in the computation of the macromodel, but results into a
very large number of poles. In this paper, we follow a more
general splitting strategy, which is outlined below. This strategy
will lead to a state-space realization of (1) which results partic-
ularly convenient due to its sparsity pattern.

We assume that the complete set of port responses is de-
noted as

(2)

where refers to the th row and th column of the transfer
matrix . This set is partitioned as

(3)

where

(4)

Each subset is, therefore, characterized by a fixed exci-
tation (corresponding to the index ) and by multiple outputs
indexed by . Note that in the particular case for all ,
this corresponds to a columnwise partition of the transfer ma-
trix, a common choice in the macromodeling literature [28]. It
can be easily verified that the entire transfer matrix can be re-
covered as

(5)

where is the submatrix corresponding to , i.e.,
part of column of , is the th Euclidean unit vector,
and is a port selector matrix having a single unitary
entry in each row located at column , with all the other
entries vanishing.

This splitting strategy allows to process independently all
subsets in the generation of the rational approximation, leading
to independent partial macromodels of the form

(6)

A state-space realization for each is easily constructed.
Denoting with the single port excitation, with the out-
puts, and with the state vector, we have

(7)
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where diag , is a vector with all unitary
entries, stacks the residues vectors in its columns, and

. Using now (5), a global state-space realization is
obtained for the entire macromodel as

(8)

where tiles in its diagonal the blocks . Moreover, if the port
subsets are ordered for increasing values of excitation index

, we have the general structure

blkdiag (9)

where

diag (10)

collects all poles for the th column of , and

blkdiag (11)

The state-space realization (8) is characterized by complex
matrices. However, an obvious coordinate change [24], [29] can
be applied to recover a purely real realization

(12)

with , , , and (su-
perscript denoting complex conjugate transpose). The uni-
tary matrix is block-diagonal with 1 1 unitary blocks cor-
responding to real poles and with 2 2 blocks

(13)

corresponding to complex conjugate pairs. This coordinate
change induces the same block structure in , and preserves
the sparsity pattern of in . This will be important in the
following derivations.

B. Passivity Characterization via Hamiltonian Matrices

The real state-space realization of the macromodel in (12)
is our starting point, with the associated transfer matrix being
obtained directly from the state matrices as

(14)

We assume in the following that all poles, or equivalently the
eigenvalues of , are strictly stable. Consequently, the transfer
matrix is nonsingular for . Since all state ma-
trices are real, the passivity of can be checked only on the
purely imaginary axis via energy conditions that depend
on the adopted representation. In the common case of scattering
representations, passivity requires that all the singular values of

the transfer matrix must be uniformly bounded by one at any
frequency

(15)

whereas for the impedance, admittance, and hybrid cases the
eigenvalues of the Hermitian part of the transfer matrix

(16)

must be nonnegative at any frequency

(17)

Asymptotic (strict) passivity for large frequencies is insured
when the direct coupling matrix satisfies

(18)

for the scattering case, and

(19)

for the impedance, admittance, and hybrid cases, where and
denote the symmetric and skew-symmetric parts of ac-

cording to

(20)

It is well known that a direct application of the above criteria
to check and possibly enforce passivity may be cumbersome
and misleading, since all frequencies must be considered. For-
tunately, the Hamiltonian matrices associated to the state-space
realization (12) provide an effective tool for deriving the pas-
sivity conditions in a purely algebraic form. Let us first recall the
definitions of the Hamiltonian matrices for the scattering case,

(21)

with and , and for the
hybrid cases

(22)

with . Both matrices depend on a scalar
parameter, which is related to the spectrum of frequency-depen-
dent singular values ( , scattering case) or eigenvalues ( , hy-
brid cases) of the transfer matrix . We have the following
two theorems [20] expressing this relation via the eigenspec-
trum of the Hamiltonian matrix.

Theorem 1 (Scattering Representation): Assume has no
imaginary eigenvalues, is not a singular value of , and

. Then, if and only if .
Theorem 2 (Impedance, Admittance, and Hybrid represen-

tations): Assume has no imaginary eigenvalues, is not an
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Fig. 1. Graphical illustration of Theorem 1, holding for the scattering case. The figure shows the one-to-one correspondence between the purely imaginary
eigenvalues of the Hamiltonian matrix (right panel) and the frequencies where one of the singular values of the transfer matrix crosses or touches the threshold
level 
 (left panel).

eigenvalue of , and . Then, if and
only if .

Fig. 1 gives a schematic illustration of Theorem 1 for the
scattering case. The scalar parameter acts as a threshold for
the singular values of . Theorem 1 states that the purely
imaginary eigenvalues of the Hamiltonian matrix pinpoint pre-
cisely the frequencies at which a singular value of
crosses or touches the threshold . Setting this threshold to the
critical value for passivity ( for the scattering case and

for the hybrid case), results in the algebraic passivity
condition based on the Hamiltonian eigenspectrum, expressed
by the following corollary.

Corollary 1: Assume that has no imaginary eigenvalues
and that satisfies the asymptotic passivity conditions (18) or
(19). Then, the macromodel (12) is passive if the associated
Hamiltonian matrix (scattering case) or (hybrid
case) has no purely imaginary eigenvalues.

The proof of all the above theorems (including some technical
conditions for applicability) can be found in [20], [21], and [23].
We remark that in the very common case of multiple singular
values exceeding the threshold in some frequency interval, as
depicted in the left panel of Fig. 1, some ambiguity may arise in
the determination of the actual frequency bands where passivity
violations occur, since the only knowledge of the crossing points

is not sufficient. However, the results in [21] and [23] show
that a simple first-order perturbation analysis of the Hamiltonian
eigenspectrum is sufficient for resolving this ambiguity.

C. Passivity Enforcement via Perturbation
of Hamiltonian Matrices

Since imaginary eigenvalues of the Hamiltonian matrix in-
dicate passivity violations, any passivity compensation scheme
is aimed, either directly or indirectly, at eliminating them. Our
approach, which follows from [23], is aimed at the direct pertur-
bation of these eigenvalues in order to displace them from the
imaginary axis. The full details of the algorithm are reported in
[21] and [23]. We only recall here the main steps that are rele-
vant for this work. These steps are summarized in Algorithm 1
and briefly commented as follows.

Algorithm 1 (passivity compensation): Compute a passive
macromodel via iterative perturbation of imaginary
eigenvalues of Hamiltonian matrix
Require: state-space matrices , , ,

1: compute the set of imaginary eigenvalues of
(scattering) or (hybrid)

2: compute the controllability Gramian
3: while do
4: determine the violation bandwidths from the imaginary

eigenvalues in [21]
5: set the desired perturbation of the imaginary eigen-

values (see [23])
6: solve (24) for with the constraint (25)
7:
8: compute the set of imaginary eigenvalues of

(scattering) or (hybrid)
9: compute the controllability Gramian
10:end while

The main objective is the determination of a new macromodel
obtained by suitable modifications of the state matrices. We
assume asymptotic passivity and we retain the system poles.
Therefore, the only modification that is strictly necessary ap-
plies to state matrix . The form of the new macromodel is thus

(23)

The key point of the compensation scheme is a first-order per-
turbation analysis [23], [30], which allows to relate the entries
of the unknown perturbation matrix to the location of the per-
turbed imaginary eigenvalues of the Hamiltonian matrix associ-
ated to (23). The following linear expression is obtained:

(24)

where the operator vec stacks the columns of its argument,
and the entries in vector are the perturbations of the imag-
inary eigenvalues. Matrix stems from the perturbation anal-
ysis [23]. The perturbed eigenvalues in (24) are selected a priori
to move inwards into the violation bandwidths, as sketched in
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Fig. 2. Passivity compensation for scattering representations. Perturbation of
eigenvalues of Hamiltonian matrixM (b) and its induced effect on the singular
values of the macromodel (a). Iterative application leads to displacement
of the eigenvalues off the imaginary axis (d) and consequently to passivity
enforcement (c).

Fig. 2, and the underdetermined linear system (24) is solved by
minimizing

(25)

where denotes the matrix trace and is the controlla-
bility Gramian [31]. This condition is very important, since it
guarantees the minimal impact on the macromodel accuracy
[23]. Iterative solution of (24) and (25) leads to the elimina-
tion of all imaginary eigenvalues and, consequently, to passivity
enforcement. Although the convergence properties of the algo-
rithm are still under study, extensive experience has demon-
strated that it is quite effective in the elimination of passivity
violations that are not excessively large. Several examples of
application of the scheme are available in [21], [23], and [32].
Other examples will be reported in Section VI.

D. Difficulties Arising With Large Macromodels

We outline here the main difficulties that arise in the applica-
tion of the techniques of Section II for the passivity enforce-
ment of large-sized macromodels. Three main points can be
considered.

• The passivity enforcement scheme in Algorithm 1 is only
able to process macromodels that are asymptotically pas-
sive for large frequencies. However, the response-splitting
strategy (see Section II-A) that one is forced to employ

for the derivation of a large-sized macromodel does
not provide any control on asymptotic passivity. This
problem is particularly relevant when the structure under
consideration is nearly lossless up to the highest available
frequency. Section III addresses this problem showing
how can be corrected to enforce asymptotic passivity.
We also investigate in this section some issues related
to the sensitivity of the macromodel with respect to this
correction.

• The control over the accuracy in the iterative perturbation
scheme in Algorithm 1 is provided by minimization of
a matrix norm weighted by the controllability Gramian
(25). This condition insures that no overtreatment occurs,
and that macromodel accuracy is preserved through
the iterations. However, the actual computation of the
Gramian may require considerable computing resources,
as well as its inclusion in the least-squares solution
of (24). Section IV shows that the adopted structured
state-space realization results in a block-diagonal con-
trollability Gramian, which can be computed analytically.
Therefore, the Gramian computation is not an issue for
present formulation.

• The main tool for the formulation of the passivity com-
pensation scheme is a first-order perturbation of the
Hamiltonian eigenvalues. This requires computation of
both imaginary eigenvalues and associated eigenvectors
at each iteration. It is well known that the computational
cost for this evaluation scales as the third power of the
matrix size, which is for the Hamiltonian matrix.
Therefore, a large-sized macromodel requires prohibitive
computing time. However, we show in Section V that the
Hamiltonian matrix itself can be expressed as a low-rank
perturbation of an almost-diagonal matrix. This allows
an efficient application of a restarted Arnoldi scheme
[26] with shift-and-invert spectral transformation for the
computation of few selected eigenvalues close to a given
point (shift) in the complex plane. Then, an iterative
selection of multiple shifts similar to the well-known
complex frequency hopping (CFH) algorithm [27] is
used to extract all purely imaginary eigenvalues. The
overall algorithm has a complexity that scales only lin-
early with the problem size, thus allowing its application
for passivity compensation of large-sized macromodels
at a moderate computational cost. A detailed description
of the sparse eigenvalue solver, first introduced in [32],
can be found in Section V.

III. ENFORCING ASYMPTOTIC PASSIVITY

We present here a simple scheme based on [16] for asymptotic
passivity enforcement for both scattering [see (18)] and hybrid
(19) representations. In addition, we give evidence of some crit-
ical issues related to the sensitivity of the macromodel accuracy
with respect to asymptotic passivity enforcement.

We begin with the case of scattering representations. Let the
singular value decomposition of be expressed as

(26)
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with left and right singular vectors stored in orthogonal matrices
and , and with diagonal collecting the singular values

in decreasing order. In case so that passivity is violated, a
simple correction is achieved by retaining the geometrical struc-
ture of , i.e., by preserving its singular vectors, and by thresh-
olding its singular values to a maximum value less than one. We
can define a new set of thresholded singular values

(27)

Collecting the in a diagonal matrix , we obtain a modified
and strictly passive direct coupling matrix as

(28)

Note that the positive parameter determines a “safety
margin” for asymptotic passivity. For close to 0, small in-
duced perturbations are obtained on the macromodel, which
will be allowed to be characterized by an almost lossless be-
havior for large frequencies. Conversely, for close to 1, larger
perturbations are applied, with a more dissipative behavior of
the macromodel for large frequencies.

For impedance, admittance, and hybrid representations, the
same correction scheme can be applied. The eigendecomposi-
tion of the symmetric part of direct coupling matrix reads

(29)

with collecting its purely real eigenvalues . If some of these
eigenvalues are negative, a new asymptotically passive direct
coupling matrix can be defined as

(30)

where the new thresholded eigenvalues are obtained as

(31)

and is the largest magnitude among all . A similar cor-
rection strategy can be found in [16].

A perturbation of the direct coupling matrix as in (28)
or (30) determines a translation of each transfer matrix entry
by a constant amount throughout the frequency axis. Even for
small perturbations, the resulting loss of accuracy of the macro-
model can be quite significant. Therefore, after the redefinition
of into , a new fitting stage is required to adjust the macro-
model parameters and to recover a good accuracy within the
macromodel bandwidth. There are two possibilities. One is re-
tain the macromodel poles and to recompute only the associated
residues by constraining the values of the direct coupling con-
stants. Alternatively, one can use one or more iterations of a pole
relocation algorithm, such as vector fitting [8], in order to refine
also the poles estimates. In all cases, the direct coupling con-
stants must be kept fixed at their values obtained in (28) or (30).
Both approaches lead generally to good results. However, when
high-frequency poles are present in the macromodel, a sensi-
tivity problem related to the high condition number of some ma-
trices to be inverted may lead to a significant loss of accuracy
and to larger passivity violations. In the following paragraphs,
we investigate this issue via a simple but representative test case,

Fig. 3. Poles distribution (crosses) of a synthetic rational function employed
for the sensitivity test. Dots indicate the frequency samples.

noting that for more complex situations encountered in practice
the same conclusions will hold.

We consider a scalar one-port transfer function specified via
a set of linearly spaced frequency samples

(32)

throughout the modeling bandwidth . Note
that we include both positive and negative frequencies for
simplicity in the presentation. The expression that we assume
for the transfer function is

(33)

with the poles defined as

(34)

All poles share the same negative real part and have a
linearly spaced imaginary part throughout the modeling band-
width, except for the highest frequency ones , which are
displaced by a relative amount outside . This setup (see
Fig. 3 for a schematic illustration) is intended to illustrate the
sensitivity of high-frequency poles to the perturbations induced
by asymptotic passivity corrections.

The least squares system allowing to compute both residues
and direct coupling term reads

(35)

where and collect the unknown residues and the frequency
samples , respectively. The entries in matrix block are

(36)
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Fig. 4. Sensitivities of residues corresponding to in-band and out-of-band poles for various parameter configurations. Also, the condition number of the fitting
matrix is reported in all panels.

Suppose now a solution has been obtained by solving (35)
via standard least squares. A correction is applied to the direct
coupling constant

(37)

and a new least squares fit is formulated to recompute the
residues with the prescribed value for . The induced pertur-
bation on the residues can be expressed as

(38)

and can be computed as the solution of

(39)

This solution, always in least-squares sense, reads

(40)

The elements of vector give the first-order perturbation
terms on each residue induced by the correction in the direct
coupling constant. These will be improperly denoted as sen-
sitivities even though they represent absolute and not relative
perturbations.

Fig. 4 reports the sensitivities of all residues for some dif-
ferent parameter configurations. The number of frequency sam-
ples is kept fixed with . The plots indicate that the
sensitivities associated to the in-band poles are always less
than one. This indicates good numerical stability of the associ-
ated residues under perturbation of the direct coupling constant.
A different behavior is observed for the out-of-band poles. The
associated sensitivities grow with the displacement of the
poles outside the maximum frequency . Even for a small
relative distance , the sensitivity becomes larger than one, de-
pending on the number of poles and on their more or less res-
onant character. The plots also report the condition number of
matrix , which results highly dependent on the parameter .
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Fig. 5. Frequency response of two models (with and without out-of-band
poles) obtained after asymptotic passivity correction, compared to the original
data. Only the portion around the edge of the bandwidth (10 GHz) is shown.

These results confirm that occurrence of out-of-band poles (see
[33] for a thorough discussion) should be carefully avoided in
the generation of macromodels. When these poles appear, e.g.,
due to the poles relocation stages of vector fitting iterations, they
should be either removed or displaced in order to avoid numer-
ical difficulties.

Further evidence for the effects of out-of-band poles is pre-
sented in Fig. 5. The plot reports a comparison between orig-
inal (scattering) data characterizing a two-port structure and
two different models, differing only for the presence of out-of-
band poles. A first model was obtained by vector fitting. Model
was checked for asymptotic passivity, failing the test since the
maximum singular value of the direct coupling matrix was
1.024, slightly larger than one. The proposed correction scheme
was applied by constraining the largest singular value of to
0.9999, and the residues were recomputed via an additional least
squares fit. This model was characterized by the presence of two
pairs of complex conjugate poles located slightly outside the
bandwidth of available frequency samples, in this case 10 GHz.
For this reason, a second model was generated by first removing
these poles and then by repeating the entire correction process.
The magnitude responses of for the two models are com-
pared to the original data in Fig. 5. The plot clearly shows the
sensitivity problem for the model including out-of-band poles,
which exploits significant perturbations in the frequency region
beyond 10 GHz. Instead, the model without out-of-band poles
has a smooth and regular behavior throughout the frequency
axis. Note also that the in-band behavior of both models is ex-
cellent. This example shows that a correction of asymptotic pas-
sivity may lead to dramatic passivity violations outside the mod-
eling bandwidth when out-of-band poles are present. With these
new induced violations, application of any passivity compensa-
tion scheme appears problematic. Therefore, any out-of-band
poles should be removed before proceeding in the passivity en-
forcement. Note that in this case, it is not possible to circum-

vent this problem by extending the bandwidth of the model, as
suggested in [33], since the frequency response of the original
structure beyond the maximum available frequency is unknown.

IV. SPARSE EVALUATION OF CONTROLLABILITY GRAMIAN

As mentioned in Section II-C, a key step in the passivity
compensation scheme is the evaluation of the controllability
Gramian associated to the state-space realization (12). It is
well known that this step requires significant computational re-
sources in case of large systems. Instead, we show that compu-
tation of the Gramian can be performed very efficiently due to
the particular sparse structure adopted for the state matrices
and .

The controllability Gramian is the solution of Lyapunov
equation

(41)

First, we note that is related to the corresponding Gramian
associated to the complex state-space realization (8) via

(42)

where

(43)

This second form is very convenient since is diagonal. Due
to the block-diagonal form of , we also have that the right-
hand term is block-diagonal. More precisely

...
. . .

...
(44)

with the th block having size and all entries equal
to one. Using the same induced block-partition for as

...
. . .

...
(45)

we can easily show that (43) decouples into the following set of
smaller Lyapunov equations

(46)

(47)

The solution to each of these equations is available in analyt-
ical form due to the diagonal form of in (10). A straightfor-
ward derivation leads to an expression for the generic element

of each diagonal block

(48)

Note that under the working assumptions of simple and strictly
stable poles , the above solution is well defined since the
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denominator cannot vanish. The same argument can be used to
show that all elements in the off-diagonal blocks are vanishing,
since (47) is nonsingular and homogeneous

(49)

In summary, the controllability Gramian is expressed in
block-diagonal form as

blkdiag (50)

This structure is preserved also when the coordinate change in
(42) is applied to recover the Gramian of the real realization
(12). Note that this coordinate change requires negligible com-
puting time since is almost diagonal. As a result, steps 2 and 9
in Algorithm 1 can be performed at a computational cost which
is negligible with respect to the other passivity compensation
steps. The main bottleneck remains the evaluation of the imag-
inary eigenvalues of the Hamiltonian matrix. This issue is ad-
dressed next.

V. EVALUATION OF IMAGINARY HAMILTONIAN EIGENVALUES

The discussion of Section II pointed that the computation of
purely imaginary eigenvalues of Hamiltonian matrices plays a
crucial role in checking and enforcing passivity of the associated
macromodels. The simplest approach for this computation is to
use a full eigenvalue solver in order to find the complete eigen-
spectrum of the Hamiltonian matrices, and to extract a poste-
riori the imaginary eigenvalues via thresholding of the real part.
This approach is feasible only when the size of the problem is
not too large, since the associated computational cost scales as
the third power of the matrix size. Consequently, the overall cost
for passivity check and compensation using Algorithm 1 would
be excessive, since several eigenvalue computations are required
per iteration [23].

We present in the following an algorithm for the selective
computation of purely imaginary eigenvalues of Hamiltonian
matrices associated to large and sparse macromodels. In fact,
since the eigenvalues with a nonvanishing real part are of no
interest, no computational effort should be spoiled to compute
them. The basic numerical tool that we use is the well-known
Arnoldi iteration [25], [26] with shift-and-invert spectral trans-
formation, explicit restarts and deflation. This algorithm allows
to find a small number of eigenvalues that are closest to a spe-
cific point in the complex plane. An iterative selection of mul-
tiple shifts located on the positive imaginary axis, similar to the
CFH algorithm [27], is then used to focus on the eigenvalues
that are lying on or very close to the imaginary axis. Note that
although structure-preserving methods exploiting the symmetry
of the Hamiltonian eigenspectrum are available [34], we employ
here a nonstructured Arnoldi iteration for the sake of simplicity.

First, we recall few basic facts about Hamiltonian matrices.
These are actually the enabling factors for all subsequent deriva-
tions. We start with the Shermann–Morrison–Woodbory iden-
tity, proposed in the following Lemma [35].

Lemma 1 (Shermann–Morrison–Woodbury Formula): Let
. Then

(51)

This result allows to compute efficiently the inverse of a low-
rank perturbation of a matrix , provided that is easy to
compute and that the number of columns of and is small.
Introduction of this Lemma is justified by the following decom-
positions of the Hamiltonian matrices (21) and (22), which can
be derived by simple algebraic manipulations. In the scattering
case we have

(52)

whereas, for impedance, admittance, and hybrid representations

(53)
Since we consider in this work only sparse state-space re-

alizations with almost diagonal (see Section II-A), the first
block in (52) and (53) can be inverted analytically, and results
in an almost diagonal inverse. Moreover, the inner matrices that
need to be inverted in (52) and (53) have a small size ( and

, respectively) compared to the size of . As a consequence,
application of Lemma 1 allows to compute quite efficiently the
inverse of the Hamiltonian matrices. More generally, if we in-
troduce a generic complex shift , a straightforward derivation
leads to an expression for the so-called shifted inverse of both
Hamiltonian matrices

(54)

and

(55)

where and . The
number of operations required by the above computations has
a leading term which scales as , where is the
total number of nonvanishing entries in and . This cost is,
therefore, linear in the number of macromodel states .

The above results are now used for the determination of the
Hamiltonian eigenvalues. Since the basic scheme is applicable
with no difference both to scattering and hybrid representations,
we use the generic notation to denote the Hamiltonian matrix
(52) or (53). The fast evaluation of the shifted Hamiltonian in-
verse via (54) or (55) allows a straightforward application of
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the basic shifted Arnoldi process (see [26], [36] for an excellent
review and a complete bibliographic database). This algorithm
builds a -dimensional orthogonal basis

(56)

of the Krylov subspace

(57)

starting from an initial vector . This is performed by con-
structing one vector of the sequence (57) at the time and or-
thonormalizing it with respect to previous vectors, e.g., using a
modified Gram–Schmidt procedure. During the iterations, also
the Hessemberg matrix

(58)

is constructed. This is a low-order Galerkin projection onto the
Krylov subspace. It can be shown [36] that a few eigenvalues

(less than ) of provide good approximations to some
true eigenvalues of the original matrix close to the shift

(59)

An estimate of the corresponding eigenvectors is easily de-
rived, since these span the same Krylov subspace generated by
vectors . It can be shown that

(60)

where represent the eigenvectors of the projected matrix .
For present application, the orthogonalization stage is the

most demanding part of the basic Arnoldi scheme, requiring
approximately operations. Therefore, it is desirable
to use a small dimension of the Krylov subspace in order
to limit the computational cost. However, this choice might
seriously impair convergence. Therefore, we use the scheme
outlined in Algorithm 2, which employs explicit restarting and
deflation [26], [37]. For the seek of clarity in the presentation,
we focus on the restarting scheme first and we postpone the de-
scription of the deflation process, although they are intermixed
in the various steps of Algorithm 2.

Algorithm 2 (Arnoldi iteration with explicit restarts and
deflation): compute eigenvalues of matrix close to a
given shift
Require: a matrix , a shift .
Require: control parameters (number of desired eigen-
values), (dimension of Krylov subspace), (tolerance)

1:
2: while do
3: pick a random starting vector , ,

with
4: for do

5:
6: for do
7:
8:
9: end for
10:
11:
12:end for
13:compute the approximate eigenpairs (59)–(60) and pick

the one with smallest residual norm (61)
14:orthonormalize the eigenvector against all previous vec-

tors: , and
15: if then
16: ,
17: {accept eigenpair and go to the next}
18:else
19:go to step 4 {restart the iterations}
20:end if
21:end while
The restarting scheme is best understood by setting ,

as in step 1. The first step is the selection of a random starting
vector with unitary norm (step 3). Since in the first pass
of the while loop (step 2), there are no previous vectors for
the orthogonality enforcement in step 3. Steps 4–12 perform the
standard Arnoldi iterations by constructing the orthogonal vec-
tors and the Hessemberg matrix . The approx-
imate eigenpairs are then computed via (59) and (60),
and the one with least residual norm

(61)

is selected. This eigenpair is denoted in the following as
in step 13. Two cases may apply at this point. If the

residual norm is still larger than a prescribed accuracy , the
eigenpair needs refinement. Therefore, a new starting vector
is defined from the eigenvector , and the Arnoldi iterations
are restarted (step 19). This strategy is effective since this new
starting vector is expected to have a large component in the
dominant eigenspace that is being computed. Instead, if the
residual norm is sufficiently accurate, the eigenpair
is accepted (step 17) and deflation is performed to achieve
convergence of other eigenpairs.

Deflation is performed by the loop in step 2. The main idea
is to lock the already converged vectors for
while computing the th eigenpair. New Krylov vectors
are added to this existing set, by completing the space via

Arnoldi steps (step 4). This procedure leads to “modi-
fied” Krylov subspace

(62)

where only the last components are added and orthogo-
nalized with respect to all existing vectors (steps 5–9). The ini-
tial starting vector in step 3 is chosen to be orthogonal to the
locked vectors, in order to guarantee convergence of different
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Fig. 6. Multishift iterations. Left: placement of two shifts (dots) at the edges of the frequency band. Middle: first bisection iteration. Right: termination condition
with the convergence circles covering all frequency band. In all panels, the squares denote all Hamiltonian eigenvalues, and the crosses denote converging
eigenvalues from the single-shift iterations.

eigenvalues. We remark that in the actual implementation of Al-
gorithm 2, we test convergence of multiple eigenpairs instead
of only one (steps 13–15) for each deflation step. Therefore, the
number of passes in the main deflation loop (step 2) may be sig-
nificantly less than the number of desired eigenpairs.

It is well known [26] that the closer is an eigenvalue to the
shift, the faster is its convergence rate. However, it is not guar-
anteed (although very likely) that the eigenvalues that are
returned by Algorithm 2 are really the closest to the shift. This
condition, however, is essential for the subsequent derivations,
which require for a given shift the accurate identification of
all eigenvalues within a circular region

(63)

of the complex plane. The radius is of course both problem-
and shift-dependent, and must be determined together with the
eigenvalues. We deal with this issue by defining an initial radius
as

(64)

from the set of converged eigenvalues after deflation
steps. Then, all eigenpairs computed at step 13 in subsequent
deflation passes are tested not only for convergence but also for
their inclusion in . If some eigenvalues appear within the
circle without sufficient accuracy, they are refined until conver-
gence is achieved.

Algorithm 2 with the optimizations discussed above leads
to all eigenvalues of the Hamiltonian matrix within a circle

. We denote this scheme as single-shift iterations. The
number of converging eigenvalues as well as the radius
depends on the entire eigenspectrum of and on the location
of the shift . In order to compute the complete set of purely
imaginary eigenvalues of , we apply a bisection scheme,
which we call multishift iterations, similar to the well-known
CFH algorithm of [12], [27]. We only give an outline here since
the CFH algorithm is well documented in the literature.

An illustrative description of the multishift scheme can be
found in Fig. 6. First, an estimate of the largest magnitude

among all Hamiltonian eigenvalues is obtained by
applying Algorithm 2 (actually, a simplified version without
deflation is sufficient) to matrix instead of its shifted inverse

[26]. Then, two single-shift iterations are performed by placing
one shift at the origin of the complex plane, and the other at

. The results are depicted in the left panel of Fig. 6,
where converging eigenvalues and convergence circles are
highlighted. Then, a bisection process is started by placing iter-
atively new shifts on the imaginary axis, close to the center of
the frequency bands that are not covered by circles. Algorithm
2 is then applied (middle panel of Fig. 6) for each shift of the
binary tree and the process is iterated. The algorithm stops
when the entire portion of the imaginary axis is
covered by a collection of circles (right panel in Fig. 6).

The multishift iterations lead to a collection of estimates
for the eigenvalues that are close to the imaginary axis, as the
set of all converging eigenvalues from all employed shifts. Since
only the purely imaginary eigenvalues are of interest, these must
be extracted by a suitable thresholding criterion. The simplest
approach is to set a stringent threshold for the real part, and to
retain only those eigenvalues such that

(65)

The choice of this threshold may be critical, since (65) does
not take into account the accuracy of the obtained eigenvalue
estimates. However, an accuracy measure is actually available
via the residual norms in (61). These can be used to obtain, via
a first-order perturbation analysis, the following estimate:

(66)

where is the exact eigenvalue, is the eigenvector of
corresponding to the same eigenvalue , and is its associ-
ated residual norm. The (left) eigenvectors can be computed
by applying Algorithm 2 to matrix , i.e., the in-
verse of the transposed Hamiltonian matrix shifted in the com-
puted eigenvalues. Since it is expected that is very close to
a true eigenvalue, the convergence rate is very fast and few it-
erations are sufficient. The quantity can be used as an in-
dication of the accuracy of the computed eigenvalues . Note
that the factor at the denominator in (66), which is related to the
angle between left and right eigenvectors, determines an ampli-
fication factor for the residual norms. To summarize, a better
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Fig. 7. Transient SPICE simulation of case IV macromodel before and after
passivity enforcement. The same termination (a 143-m
 resistor in series with a
parallel connection of a 17.4-k
 resistor and a 2.13-nF capacitor) is used for all
ports. This load induces a pair of unstable poles p = (0:0018�j0:628) Grad/s
in the nonpassive macromodel. A current source i (t) = I e sin(2�f t)
with I = 1 mA, � = 0:01 ns , and f = 0:1 GHz injects energy at port
4, exciting the unstable pole of the nonpassive model. As expected, the passive
model remains stable.

(additional) criterion for the discrimination of the purely imag-
inary eigenvalues could be defined by comparing the real part
with the accuracy

(67)

where is a suitable constant. If this condition is not sat-
isfied, the eigenvalue is flagged as non purely imaginary and
rejected. The actual test that was implemented is the simpler
(65), since we have never experienced any eigenvalue misiden-
tification during the many performed validations. However, it is
conceivable that particular cases with a strongly ill-conditioned
eigenspectrum may require more advanced testing conditions,
such as (67).

In summary, all steps of both single-shift and multishift it-
erations require a computational cost which scales linearly with
the number of macromodel states . It is clear that since several
nested iterations are required, the leading term in the operation
count is , where the constant is problem-dependent
and possibly large. However, we show in Section VI that the
gain in efficiency arising from application of the proposed al-
gorithm with respect to a standard full eigensolver can be quite
significant.

VI. NUMERICAL RESULTS

Numerical results will be presented for five different macro-
models of various size, listed in Table I. All models were ob-
tained by various implementations of the well-known vector fit-
ting algorithm [8], applied to frequency-dependent scattering
matrices. In particular, cases I and II are high-speed packaging
structures (courtesy of Sigrity, Inc.). These two cases were al-
ready analyzed in [32]. Case III is also a model of a six-port
interconnected system including two power/ground conductors

TABLE I
SPECIFICATION OF FIVE NONPASSIVE MACROMODELS. THE LARGEST

SINGULAR VALUES FOR EACH MODEL AND FOR THE CORRESPONDING RAW

DATA ARE REPORTED IN THE LAST TWO COLUMNS, RESPECTIVELY

(ports 1 and 2), and two signal conductors, terminated by ports
3–6. The raw data for this structure was obtained using a full-
wave solver based on finite integration in time domain (CST Mi-
crowave Studio), and fast Fourier transform (FFT) was used to
extract the frequency-dependent scattering matrix. Cases IV and
V are two macromodels of a 20-port via field under a land grid
array (LGA) connector, generated from the same frequency-de-
pendent scattering matrix (courtesy of IBM), computed via a
full-wave solver based on finite elements (Ansoft HFSS). These
two models differ only for the number of poles that were used
in the rational approximation. Some selected responses for each
test case are depicted in Fig. 9.

Most of the model passivity violations (fourth column in
Table I) are generated in the first model fit to the raw data, al-
though in some cases (case III) also the raw data is nonpassive.
The main reason for this loss of passivity is due to the almost
lossless character of most interconnect structures, especially at
low frequencies. It is obvious that good quality data (i.e., pas-
sive or almost passive) helps in the derivation of a good model,
since the model passivity violations will be mostly due to the
fitting error. In fact, in all cases the model passivity violations
are quite limited, since the maximum singular value ex-
ceeds the threshold by a small amount. Nonetheless, it is
guaranteed [14] that there exists a passive termination network
that drives the model to instability, as demonstrated in Fig. 7
for Case IV. Therefore, passivity enforcement is mandatory.

We begin by showing the advantages of the scheme proposed
in Section IV for the evaluation of the controllability Gramian

. The Gramian was computed for each of the five test cases
using three different algorithms. The first scheme neglected the
sparse structure of the state-space matrices and , and the
standard Schur decomposition approach [38] for the solution of
the Lyapunov equation (41) was used. The second scheme used
a dedicated Schur decomposition exploiting the sparse (almost
diagonal) structure of . However, no hypotheses on the spar-
sity of were applied, leading to a nonsparse representation of
the Gramian . Finally, the third scheme is the one proposed
in Section IV. The CPU time required by the three schemes is
reported in Table II. The algorithms were run within Matlab en-
vironment on a Pentium IV-based notebook running at 2.2 GHz.
The results show clearly that the proposed scheme gives the best
performance, whereas other implementations that do not take
advantage of the structured state-space realization are quite in-
efficient. The speedup factor for these tests ranges from 44 to
289 for the largest model (Case II).

We turn now to the application of the complete passivity en-
forcement scheme (Algorithm 1), in order to quantify the im-
provements that can be achieved using the sparse eigenvalue
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Fig. 8. Full spectrum of Hamiltonian eigenvalues for test cases I-IV. The total number of eigenvalues is 1640 (case I), 2976 (case II), 900 (case III), and 1200
(case IV).

TABLE II
CPU TIME IN SECONDS REQUIRED BY THE EVALUATION OF THE

CONTROLLABILITY GRAMIAN. ALL COMPUTATIONS WERE PERFORMED WITH

A PENTIUM IV (2.2 GHz)-BASED NOTEBOOK

solver proposed in Section V. The results are summarized in
Table III. The second column of the table reports the number of
iterations required by the compensation algorithm to reach pas-
sivity (this iteration count is independent on the adopted eigen-
value solver for the Hamiltonian matrix). The CPU time re-
quired for the passivity compensation run using either a standard
eigensolver or the proposed optimized eigensolver are also re-
ported in Table III (see the caption for hardware details). These
results show that in all cases, the proposed sparse solver leads
to a speedup in CPU time with respect to a standard full solver.

TABLE III
RESULTS OF PASSIVITY COMPENSATION SCHEMES APPLIED TO THE SAME

TEST CASES OF TABLE II. MODELS I AND II WERE ANALYZED USING

A PC WITH A 1.8-GHz PENTIUM IV CPU, WHILE FOR THE OTHER

MODELS A FASTER 3-GHz PC WAS USED

However, looking at the particular speedup factors that were
achieved, one can easily subdivide the models into two different
classes. Cases I and II show a significant gain, ranging between
one and two orders of magnitude. The other cases show instead a
moderate advantage, with a speedup factor ranging between two
and three. This difference is easily understood from the distribu-
tion of the Hamiltonian eigenvalues in the complex plane. Fig. 8
shows the complete Hamiltonian eigenspectrum for cases I-IV
(case V being very similar to case IV). In all panels, identical
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Fig. 9. Comparison of models before and after passivity compensation. For each case, the responses characterized by the largest deviations between nonpassive
and passive models are reported.

scales for the real and the imaginary part have been chosen. This
figure highlights the different nature of cases I and II, reported
in the top panels, and cases III, IV, reported in the bottom panels.
The former are characterized by a Hamiltonian eigenspectrum
that is well separated from the imaginary axis, with a real part
that is comparable to the imaginary part. In this case, a small
number of complex shifts is sufficient to cover completely the
relevant portion of the imaginary axis. In other words, the mul-
tishift iterations require few bisection steps. The latter models,
instead, have a spectrum of eigenvalues that is very close to the
imaginary axis. Consequently, a large number of small circles is
needed to cover uniformly the imaginary axis and to terminate
the multishift bisection process. The actual number of required
shifts and bisection levels required by the computation of the
imaginary eigenvalues for each of the test models are reported
in Table IV. Since the CPU time is roughly proportional to the
number of shifts and to the size of the Hamiltonian matrix, the
moderate speedup factor for some of the models is easily under-

TABLE IV
COMPUTATION OF IMAGINARY EIGENVALUES. FOR EACH MODEL, THE

NUMBER OF SHIFTS, THE BISECTION LEVEL, AND THE NUMBER OF

IMAGINARY EIGENVALUES OF THE HAMILTONIAN MATRIX ARE REPORTED.
THE LAST COLUMN REPORTS THE MAXIMUM RESIDUAL NORM (61)

AMONG ALL COMPUTED EIGENVALUES

stood. Note also that the number of imaginary eigenvalues has
a negligible influence on the CPU time.

We complete the presentation by comparing in Fig. 9 a few
representative scattering responses of the passive models to the
corresponding ones of the nonpassive models before applying
the compensation scheme. For each case, the three responses
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characterized by the largest modifications induced from the pas-
sivity compensation algorithm are depicted in magnitude and
phase. The results reported in all panels show that, thanks to the
accuracy constraint represented by (25), the deviation between
the two models is hardly visible. This confirms that the passivity
compensation is performed without compromising the accuracy,
and that no overtreatment occurs.

VII. CONCLUSION

We have discussed several issues arising when enforcing pas-
sivity of macromodels characterized by a large number of poles
and/or ports. In such cases, the main difficulties come from
the excessive computational resources, both in terms of storage
and CPU time, required by standard passivity compensation al-
gorithms. Therefore, we adopted here a particular structured
state-space form for the macromodels. This form allowed us
to reformulate the critical steps of a recently developed pas-
sivity enforcement algorithm based on the spectral perturbation
of Hamiltonian matrices. On one hand, this new formulation al-
lows to compute efficiently the controllability Gramian, which
is required to control the macromodel accuracy during the pas-
sivity compensation. On the other hand, it allows an efficient im-
plementation of an iterative multishift restarted Arnoldi scheme
for the selective evaluation of the purely imaginary eigenvalues
of the Hamiltonian matrix. These eigenvalues are indeed the key
parameters upon which the passivity enforcement is based. Fi-
nally, the preexisting restriction of asymptotic passivity at high
frequencies is also released in this work, due to a specific correc-
tion strategy for the direct coupling matrix of the macromodel.
As a result, the spectral perturbation approach for the Hamil-
tonian matrices has been extended and is now also applicable to
large macromodels within a reasonable CPU time. The numer-
ical results reported in this paper for a few cases of high-speed
interconnects show indeed a significant increase in efficiency
with respect to previous formulations.
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