1,033 research outputs found

    Frequency-Selective Geometry Upsampling of Point Clouds

    Full text link
    The demand for high-resolution point clouds has increased throughout the last years. However, capturing high-resolution point clouds is expensive and thus, frequently replaced by upsampling of low-resolution data. Most state-of-the-art methods are either restricted to a rastered grid, incorporate normal vectors, or are trained for a single use case. We propose to use the frequency selectivity principle, where a frequency model is estimated locally that approximates the surface of the point cloud. Then, additional points are inserted into the approximated surface. Our novel frequency-selective geometry upsampling shows superior results in terms of subjective as well as objective quality compared to state-of-the-art methods for scaling factors of 2 and 4. On average, our proposed method shows a 4.4 times smaller point-to-point error than the second best state-of-the-art PU-Net for a scale factor of 4.Comment: 5 pages, 3 figures, International Conference on Image Processing (ICIP) 202

    A perceptual approach for stereoscopic rendering optimization

    Get PDF
    Cataloged from PDF version of article.The traditional way of stereoscopic rendering requires rendering the scene for left and right eyes separately: which doubles the rendering complexity. In this study, we propose a perceptually-based approach for accelerating stereoscopic rendering. This optimization approach is based on the Binocular Suppression Theory, which claims that the overall percept of a stereo pair in a region is determined by the dominant image on the corresponding region. We investigate how binocular suppression mechanism of human visual system can be utilized for rendering optimization. Our aim is to identify the graphics rendering and modeling features that do not affect the overall quality of a stereo pair when simplified in one view. By combining the results of this investigation with the principles of visual attention, we infer that this optimization approach is feasible if the high quality view has more intensity contrast. For this reason, we performed a subjective experiment, in which various representative graphical methods were analyzed. The experimental results verified our hypothesis that a modification, applied on a single view, is not perceptible if it decreases the intensity contrast, and thus can be used for stereoscopic rendering. (C) 2009 Elsevier Ltd. All rights reserved

    Sparse Volumetric Deformation

    Get PDF
    Volume rendering is becoming increasingly popular as applications require realistic solid shape representations with seamless texture mapping and accurate filtering. However rendering sparse volumetric data is difficult because of the limited memory and processing capabilities of current hardware. To address these limitations, the volumetric information can be stored at progressive resolutions in the hierarchical branches of a tree structure, and sampled according to the region of interest. This means that only a partial region of the full dataset is processed, and therefore massive volumetric scenes can be rendered efficiently. The problem with this approach is that it currently only supports static scenes. This is because it is difficult to accurately deform massive amounts of volume elements and reconstruct the scene hierarchy in real-time. Another problem is that deformation operations distort the shape where more than one volume element tries to occupy the same location, and similarly gaps occur where deformation stretches the elements further than one discrete location. It is also challenging to efficiently support sophisticated deformations at hierarchical resolutions, such as character skinning or physically based animation. These types of deformation are expensive and require a control structure (for example a cage or skeleton) that maps to a set of features to accelerate the deformation process. The problems with this technique are that the varying volume hierarchy reflects different feature sizes, and manipulating the features at the original resolution is too expensive; therefore the control structure must also hierarchically capture features according to the varying volumetric resolution. This thesis investigates the area of deforming and rendering massive amounts of dynamic volumetric content. The proposed approach efficiently deforms hierarchical volume elements without introducing artifacts and supports both ray casting and rasterization renderers. This enables light transport to be modeled both accurately and efficiently with applications in the fields of real-time rendering and computer animation. Sophisticated volumetric deformation, including character animation, is also supported in real-time. This is achieved by automatically generating a control skeleton which is mapped to the varying feature resolution of the volume hierarchy. The output deformations are demonstrated in massive dynamic volumetric scenes

    Automated 3D model generation for urban environments [online]

    Get PDF
    Abstract In this thesis, we present a fast approach to automated generation of textured 3D city models with both high details at ground level and complete coverage for birds-eye view. A ground-based facade model is acquired by driving a vehicle equipped with two 2D laser scanners and a digital camera under normal traffic conditions on public roads. One scanner is mounted horizontally and is used to determine the approximate component of relative motion along the movement of the acquisition vehicle via scan matching; the obtained relative motion estimates are concatenated to form an initial path. Assuming that features such as buildings are visible from both ground-based and airborne view, this initial path is globally corrected by Monte-Carlo Localization techniques using an aerial photograph or a Digital Surface Model as a global map. The second scanner is mounted vertically and is used to capture the 3D shape of the building facades. Applying a series of automated processing steps, a texture-mapped 3D facade model is reconstructed from the vertical laser scans and the camera images. In order to obtain an airborne model containing the roof and terrain shape complementary to the facade model, a Digital Surface Model is created from airborne laser scans, then triangulated, and finally texturemapped with aerial imagery. Finally, the facade model and the airborne model are fused to one single model usable for both walk- and fly-thrus. The developed algorithms are evaluated on a large data set acquired in downtown Berkeley, and the results are shown and discussed

    Gear modifications for bycatch reduction in the Bay of Biscay demersal trawl fishery

    Get PDF
    Bottom trawl fisheries have great social and economic importance for coastal communities in the Basque Country. However, the activity of the demersal trawl fishery in the Bay of Biscay, which includes the coastline of the Basque country, can be compromised due to its multispecies nature, high proportion of unwanted species in the catch, and the increasingly strict legislation implemented aiming to ensure sustainable fisheries. In this scenario, developing gear modifications to reduce unwanted bycatch is increasingly important. This thesis presents results from six selectivity research papers that address unwanted catch issues in the Bay of Biscay bottom trawl fishery. Hake (Merluccius merluccius), horse mackerel (Trachurus trachurus), blue whiting (Micromesistius poutassou), and mackerel (Scomber scombrus) are some of the most relevant species for the bottom trawl fishery in the Bay of Biscay and constitute the main choke species in the fishery. Papers I and II present selectivity results for different square mesh panel (SMP) designs aimed to improve fish-SMP contact probability and release efficiency for these species. Among the designs tested, the results demonstrate that modifying SMP size and position can increase fish contact probability with the SMP. Paper III investigates the size selection process through SMP and codend meshes for blue whiting based on fish morphology and behavior. The results demonstrate that SMP size selection can be explained by different fish contact angles with SMP meshes, which allows making accurate predictions for fish size selectivity. Paper IV explores the effect of alternative SMP and codend mesh combinations on the size selectivity of hake and blue whiting and on the fishery exploitation pattern for a variety of fish population scenarios. The results demonstrate that changes both in SMP and, especially, codend designs can have a significant effect on the size selectivity and exploitation patterns of hake and blue whiting. This paper also outlines new ways for investigating and illustrating the effect of multiple gear changes on the size selectivity and exploitation pattern indicators by means of diagrams named treatment trees. These may aid in the identification of promising gear designs and help the industry in the pursuit of specific catch goals. In Paper V a trawl configuration for species separation is tested. This new configuration intends to guide those species that hold themselves close to the lower panel of the trawl through a horizontal grid into a lower codend, while the rest of the species are directed to an upper codend. The findings in Paper V demonstrate that, under the conditions in which this fishery operates, the trawl configuration tested is not able to efficiently separate species based on their behavior. Finally, in Paper VI the effect of shortening codend lastridge ropes on codend size selectivity compared to a standard codend is tested, and fish escape chances estimated based on fish morphology. The results show that a codend with shortened lastridge ropes can improve the size selectivity of horse mackerel and blue whiting, while the selectivity of hake was not affected. The results indicate species-dependent variability in the ability to utilize open meshes located at different places. In general, the work presented in this thesis provides technological advances and knowledge that contributes with guidance on how to reduce unwanted bycatch and generate alternative exploitation patterns in the Bay of Biscay demersal trawl fishery

    Dynamic hypergraph convolutional network for no-reference point cloud quality assessment

    Get PDF
    With the rapid advancement of three-dimensional (3D) sensing technology, point cloud has emerged as one of the most important approaches for representing 3D data. However, quality degradation inevitably occurs during the acquisition, transmission, and process of point clouds. Therefore, point cloud quality assessment (PCQA) with automatic visual quality perception is particularly critical. In the literature, the graph convolutional networks (GCNs) have achieved certain performance in point cloud-related tasks. However, they cannot fully characterize the nonlinear high-order relationship of such complex data. In this paper, we propose a novel no-reference (NR) PCQA method with hypergraph learning. Specifically, a dynamic hypergraph convolutional network (DHCN) composing of a projected image encoder, a point group encoder, a dynamic hypergraph generator, and a perceptual quality predictor, is devised. First, a projected image encoder and a point group encoder are used to extract feature representations from projected images and point groups, respectively. Then, using the feature representations obtained by the two encoders, dynamic hypergraphs are generated during each iteration, aiming to constantly update the interactive information between the vertices of hypergraphs. Finally, we design the perceptual quality predictor to conduct quality reasoning on the generated hypergraphs. By leveraging the interactive information among hypergraph vertices, feature representations are well aggregated, resulting in a notable improvement in the accuracy of quality pediction. Experimental results on several point cloud quality assessment databases demonstrate that our proposed DHCN can achieve state-of-the-art performance. The code will be available at: https://github.com/chenwuwq/DHCN

    Image synthesis based on a model of human vision

    Get PDF
    Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision

    Neural Representations of Visual Motion Processing in the Human Brain Using Laminar Imaging at 9.4 Tesla

    Get PDF
    During natural behavior, much of the motion signal falling into our eyes is due to our own movements. Therefore, in order to correctly perceive motion in our environment, it is important to parse visual motion signals into those caused by self-motion such as eye- or head-movements and those caused by external motion. Neural mechanisms underlying this task, which are also required to allow for a stable perception of the world during pursuit eye movements, are not fully understood. Both, perceptual stability as well as perception of real-world (i.e. objective) motion are the product of integration between motion signals on the retina and efference copies of eye movements. The central aim of this thesis is to examine whether different levels of cortical depth or distinct columnar structures of visual motion regions are differentially involved in disentangling signals related to self-motion, objective, or object motion. Based on previous studies reporting segregated populations of voxels in high level visual areas such as V3A, V6, and MST responding predominantly to either retinal or extra- retinal (‘real’) motion, we speculated such voxels to reside within laminar or columnar functional units. We used ultra-high field (9.4T) fMRI along with an experimental paradigm that independently manipulated retinal and extra-retinal motion signals (smooth pursuit) while controlling for effects of eye-movements, to investigate whether processing of real world motion in human V5/MT, putative MST (pMST), and V1 is associated to differential laminar signal intensities. We also examined motion integration across cortical depths in human motion areas V3A and V6 that have strong objective motion responses. We found a unique, condition specific laminar profile in human area V6, showing reduced mid-layer responses for retinal motion only, suggestive of an inhibitory retinal contribution to motion integration in mid layers or alternatively an excitatory contribution in deep and superficial layers. We also found evidence indicating that in V5/MT and pMST, processing related to retinal, objective, and pursuit motion are either integrated or colocalized at the scale of our resolution. In contrast, in V1, independent functional processes seem to be driving the response to retinal and objective motion on the one hand, and to pursuit signals on the other. The lack of differential signals across depth in these regions suggests either that a columnar rather than laminar segregation governs these functions in these areas, or that the methods used were unable to detect differential neural laminar processing. Furthermore, the thesis provides a thorough analysis of the relevant technical modalities used for data acquisition and data analysis at ultra-high field in the context of laminar fMRI. Relying on our technical implementations we were able to conduct two high-resolution fMRI experiments that helped us to further investigate the laminar organization of self-induced and externally induced motion cues in human high-level visual areas and to form speculations about the site and the mechanisms of their integration
    • …
    corecore