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Dynamic Hypergraph Convolutional Network for

No-Reference Point Cloud Quality Assessment
Wu Chen, Qiuping Jiang, Senior Member, IEEE, Wei Zhou, Senior Member, IEEE,

Long Xu, Senior Member, IEEE, and Weisi Lin, Fellow, IEEE

Abstract—With the rapid advancement of three-dimensional
(3D) sensing technology, point cloud has emerged as one of the
most important approaches for representing 3D data. However,
quality degradation inevitably occurs during the acquisition,
transmission, and process of point clouds. Therefore, point cloud
quality assessment (PCQA) with automatic visual quality percep-
tion is particularly critical. In the literature, the graph convo-
lutional networks (GCNs) have achieved certain performance in
point cloud-related tasks. However, they cannot fully characterize
the nonlinear high-order relationship of such complex data. In
this paper, we propose a novel no-reference (NR) PCQA method
with hypergraph learning. Specifically, a dynamic hypergraph
convolutional network (DHCN) composing of a projected image
encoder, a point group encoder, a dynamic hypergraph generator,
and a perceptual quality predictor, is devised. First, a projected
image encoder and a point group encoder are used to extract
feature representations from projected images and point groups,
respectively. Then, using the feature representations obtained by
the two encoders, dynamic hypergraphs are generated during
each iteration, aiming to constantly update the interactive infor-
mation between the vertices of hypergraphs. Finally, we design
the perceptual quality predictor to conduct quality reasoning
on the generated hypergraphs. By leveraging the interactive
information among hypergraph vertices, feature representations
are well aggregated, resulting in a notable improvement in the
accuracy of quality pediction. Experimental results on several
point cloud quality assessment databases demonstrate that our
proposed DHCN can achieve state-of-the-art performance. The
code will be available at: https://github.com/chenwuwq/DHCN.

Index Terms—Point clouds, dynamic hypergraph, no-reference,
quality assessment.

I. INTRODUCTION

THE rapid development of three-dimensional (3D) sensing

technology promotes the wider applications of 3D vision

in many fields, such as autonomous driving [1]–[3], virtual

reality [4], augmented reality [5], point cloud registration [6]–

[8], etc. Such 3D visual data is typically represented in the

forms of point clouds, voxels [9], or meshes [10]. Since the

point cloud can describe 3D objects completely and accurately,

it is regarded as an effective method for 3D data representation.
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A point cloud contains a set of 3D points, each of which

involves geometry information and several attributes, e.g.,

color, normal vector, and so on [11]. Although point clouds

play a significant role in many fields due to their rich and

realistic representation, the large number of point sets makes

it difficult to achieve efficient storage and transmission without

point cloud compression [12]–[14]. Therefore, it is necessary

to encode, downsample, and simplify the point clouds before

transmission, which inevitably leads to distortions. To better

quantify the distortion level of point clouds, designing efficient

point cloud quality assessment (PCQA) methods are in urgent

need.

In general, PCQA methods are classified into subjective

and objective aspects, depending on whether subjects are

involved. The human visual system (HVS) can make accurate

subjective evaluation of point clouds with many kinds of dis-

tortions such as downsampling, Gaussian noise, Octree-based

compression, etc. However, conducting subjective experiments

are expensive and labor-intensive. Thus, objective models are

developed in the literature, which usually adopt subjective

quality scores as ground truth labels to imitate the quality

perception process of the HVS [15]. Similar to conventional

image quality assessment (IQA), objective PCQA models

include full-reference (FR), reduced-reference (RR), and no-

reference (NR) ones based on whether reference point clouds

are employed. Moreover, since the reference point cloud is

not always available, NR-PCQA is more suitable for practical

applications.

Typically, NR-PCQA can be divided into traditional meth-

ods [16]–[20] and deep learning-based methods [21]–[32].

Among them, traditional methods directly extract hand-crafted

features (e.g., geometry and color) of distorted point clouds,

and then predict the visual quality score with conventional

regression algorithms such as support vector regression (SVR),

random forest (RF), etc. Most deep learning-based methods

build convolutional neural networks (CNNs) for automatic

feature learning in a data-driven manner. Despite that CNNs

are very powerful in solving various computer vision tasks

[33]–[35], they cannot handle non-Euclidean data well [36].

To overcome the above-mentioned problem, graph convolu-

tional networks (GCNs) have been applied as an alternative to

CNNs [37] for processing the non-Euclidean data. GCNs allow

graphs to be used as input to the network, extending CNNs

applications to non-Euclidean data with surprising results.

As non-Euclidean data, point cloud typically contains rich

geometric and topological information, with many-to-many

point-to-point relationships. However, the graph only considers
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Fig. 1. Comparison of graphs and hypergraphs in which e1, e2, e3, e4 with
different colors represent four different hyperedges.

the low-order correlation between data, and an edge of the

graph can only connect two vertices, which cannot fully

describe the nonlinear high-order relationship among data.

To this end, researchers have further proposed hypergraphs,

as shown in Fig. 1. Unlike the conventional graph, each

hyperedge of a hypergraph can connect any number of vertices,

and the edge degree of the hypergraph can be much higher than

the edge degree of the graph. Consequently, the hypergraph

extends the data to a higher-dimensional and more complex

nonlinear space, which can more flexibly model the high-

order correlation among the point cloud data [38]. In the

literature, hypergraph has been widely used in the field of

computer vision, such as video segmentation [39], 3D object

classification [40], [41], image retrieval [42], [43], and visual

tracking [44], etc.

Inspired by the high-order modeling capability of hyper-

graphs for non-Euclidean data, we propose a novel Dynamic

Hypergraph Convolutional Network (DHCN) for NR-PCQA.

Our proposed method introduces hypergraph learning into

the PCQA task for the first time. In our proposed DHCN,

there are two key issues to be addressed: 1) how to construct

effective hypergraphs to model the complex interaction among

vertices; 2) how to perform hypergraph learning to extract and

aggregate features from the hypergraphs for quality prediction.

The main contributions of this work are as follows:

1) We devise a novel NR-PCQA method based on DHCN

which can fully utilize of the high-order modeling capa-

bility of hypergraphs for non-Euclidean data, effectively

learning intricate data patterns and mapping feature in-

formation to target scores. To the best of our knowledge,

we are the first to introduce hypergraph learning for the

challenging PCQA task. In addition, we simultaneously

combine the advantages of 2D projection information

and 3D original information to achieve more precise

quality prediction of point clouds through multi-modal

learning.

2) We propose a dynamic hypergraph generator that takes

into account multiple aspects of data correlation, such

as spatial angular distance, radial basis kernel distance,

feature reconstruction correlation, and cosine similarity,

to generate higher quality hypergraph structures. Our

devised hypergraph generator is flexible, allowing fu-

ture update of more efficient methods. The hypergraph

structure is continuously updated in each iteration, en-

suring that the interaction information remains up-to-

date throughout the process.

3) Experimental results substantiate the superiority of our

proposed DHCN method over state-of-the-art NR-PCQA

methods, as it achieves remarkable performance gains

on three widely used PCQA benchmark databases.

The ablation study results prove that hypergraphs play

an important role in our method. In addition, cross-

database validation and computational efficiency exper-

iments show that our method has better generalization

and computational efficiency.

The rest of this paper is organized as follows. In Section

II, we provide an overview of the related work. Section III

presents the technical details of our proposed DHCN method.

In Section IV, we perform extensive experiments and analyze

the results. Finally, we draw conclusions in Section V.

II. RELATED WORK

According to the type of data used by PCQA methods,

existing PCQA methods are mainly divided into PC-based

and projection-based methods. The PC-based methods directly

operate on the raw point cloud by extracting various features

such as geometric and color attributes of the point cloud to

assess its quality score. On the other hand, the projection-based

methods perform quality assessment of the projected images

generated from the corresponding point cloud.

A. PC-based Methods

At the beginning of the development of PCQA meth-

ods, Mekuria and Tian et al. proposed some point-based

quality assessment methods, such as PSNRMSE,p2po and

PSNRHF,p2po [45], PSNRMSE,p2pl and PSNRHF,p2pl

[46]. After that, PSNRY [47] is further proposed to evaluate

the texture distortion of color point clouds. Alexiou et al.

[48] employed the angular similarity between corresponding

points to capture the degradation of the distorted point cloud.

Meynet et al. [49] proposed the PC-MSDM based on local

curvature statistics for quality assessment of point clouds.

Javaheri et al. [50] used the generalized Hausdorff distance as

an important metric for PCQA. Furthermore, color information

has also garnered significant attention. Based on PC-MSDM,

Meynet et al. [51] added color attributes to facilitate prediction.

Viola et al. [52] use global color statistics to assess the

degree of distortion of point clouds. In their work, Alexiou

et al. [53] employed a structural similarity index based on

geometric and color features. In addition, Diniz et al. [54]–[56]

proposed a method for extracting statistical information from

point clouds using local binary pattern (LBP) descriptors and

local luminance pattern (LLP) descriptors. Then, the quality

evaluation is carried out based on the statistical information.

Yang et al. [57], [58] measure the quality score using the

local graph representation and the multiscale potential energy

difference (MPED) of the point cloud. When a complete

reference point cloud is unavailable, the RR method plays

an important role. Viola et al. [59] proposed a new RR

measure to find the best combination of features such as

geometry, brightness, and normal through a linear optimization
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algorithm. Liu et al. [60] similarly proposed an RR method

to predict the quality of V-PCC compressed point clouds

with geometric and color features. Su et al. [61] proposed an

RR point cloud quality assessment method based on SVR.

While the above methods have achieved a certain success,

it is important to note that the reference point cloud is not

always available in real scenarios. Thus, Zhang et al. [17]

propose a NR method that utilizes 3D natural scene statistics

(3D-NSS) to extract geometric and color features and uses

SVR for quality prediction. Zhou et al. [18] proposed a blind

quality assessment method for point clouds based on structure-

guided resampling. Similar to other tasks, the introduction

of deep learning has also prompted further development of

PCQA. Chetouani et al. [21] create a mapping from feature

representations to quality scores using a deep neural network

(DNN). Liu et al. [22] proposed a NR-PCQA method that

utilizes sparse convolutional neural network (SCNN). Shan et

al. [23] proposed a multi-task graph convolutional network

(GPA-Net) to realize no-reference PCQA. Wang et al. [24]

proposed a non-local geometric and color gradient aggregation

graph model, also employing a multi-task learning module.

Tliba et al. [25] proposed a PCQA metric based on a dynamic

graph convolutional neural network (DGCNN) that operates

directly on the entire point cloud. More recently, Su et al. [19]

developed bitstream-based NR model for perceptual quality

assessment of point clouds. Liu et al. [20] proposed a NR

bitstream-layer model for the quality assessment of V-PCC

encoded point clouds.

B. Projection-based Methods

Projection-based methods first project the 3D point cloud

onto a 2D image plane, and then directly evaluate the quality

of the projected images. As a result, existing IQA methods can

be used, including SSIM [62], MS-SSIM [63], IW-SSIM [64],

VIFP [65], and more. Additionally, Hua et al. [16] proposed

a blind quality evaluator for colored point clouds based on

visual perception, which extracts geometric, color, and joint

features by projecting the point cloud onto a plane. Freitas

et al. [66] proposed a novel FR-PCQA metric to accurately

estimate the quality of the point cloud by fusing geometric

and texture information in projected texture maps. According

to the content based saliency projection, Zhou et al. [67]

proposed an RR point cloud quality metric named RR-CAP.

Deep learning techniques and NR methods have also received

extensive attention in projection-based methods. Tao et al. [26]

proposed a multi-scale feature fusion network that weights

the quality scores of local patches in a graph. Inspired by

the multi-task model, Liu et al. [27] used DNN to extract

multi-view features and then predict the probability vector

and quality score vector. Tu et al. [28] proposed a two-

stream CNN that is specifically designed to extract features

from both texture projection maps and geometric projection

maps. Yang et al. [29] introduced unsupervised adversarial

domain adaptation into PCQA to solve the quality assessment

problem by adapting knowledge from the source domain to

the target domain. More recently, Xie et al. [30] proposed

a projection-based multi-modal learning blind quality metric,

TABLE I
COMPARISON OF THE MAIN CHARACTERISTICS (CHS) OF THE EXISTING

PCQA METRICS AND OUR PROPOSED METHOD. WE MAINLY COMPARE

THEM FROM THREE ASPECTS: METHOD TYPE, INPUT DATA TYPE, AND

QUALITY PREDICTOR TYPE.

PCQA methods Method type Input data type Quality predictor type

PSNRMSE,p2po [45]

FR

Point cloud

Distance metric

PSNRHF,p2po [45] Distance metric

PSNRMSE,p2pl [46] Distance metric

PSNRHF,p2pl [46] Distance metric

PSNRY [47] Distance metric

Alexiou et al. [48] Similarity metric

PC-MSDM [49] Distance metric

Javaheri et al. [50] Distance metric

PCQM [51] Distance metric

Viola et al. [52] Distance metric

Alexiou et al. [53] Similarity metric

Diniz et al. [54]–[56] Distance metric

GraphSIM [57] Similarity metric

MPED [58] Distance metric

SSIM [62]

Projected images

Distance metric

MS-SSIM [63] Distance metric

IW-SSIM [64] Distance metric

VIFP [65] Distance metric

Freitas et al. [66] Similarity metric

PCMRR [59]

RR
Point cloud

Distance metric

R-PCQA [60] Linear model

PCQAML [61] Support Vector Regression (SVR)

RR-CAP [67] Projected images Distance metric

3D-NSS [17]

NR

Point cloud

SVR

SGR [18] SVR/Random Forest (RF)

Chetouani et al. [21] Convolutional Neural Network (CNN)

ResSCNN [22] Sparse CNN (SCNN)

GPA-Net [23] Graph convolutional network

Wang et al. [24] Graph convolutional network

PCQA-GraphPoint [25] Graph convolutional network

streamPCQ [19] Linear model

bitstreamPCQ [20] Linear model

BQE-CVP [16]

Projected images

RF

PM-BVQA [26] CNN

PQANet [27] CNN

Tu et al. [28] CNN

IT-PCQA [29] CNN

pmBQA [30] Graph convolutional network

GMS-3DQA [31] Transformer

MM-PCQA [32]
Both

CNN

Ours Hypergraph convolutional network

achieving multi-modal feature fusion through graphs. Zhang

et al. [31] proposed a 3D model quality assessment based on

multi-projection grid mini-patch sampling to reduce resource

consumption. In addition to single-modal methods, Zhang et

al. [32] extracted multi-modal information from 3D point

clouds for better perceptual quality.

We show the main features of of the existing PCQA metrics

and our proposed method in Table I. PC-based methods allows

a more comprehensive understanding of the geometric and

spatial features, while projection-based methods can well take

the advantage of the existing well-established IQA metrics.

However, these two methods fail to characterize the potential

higher-order correlations that exist between the groups of

points within the point cloud as well as between different

projected images, and there are few methods that utilize

both simultaneously. On the other hand, compared with the

traditional methods based on distance metrics and similarity

metrics, learning-based method automatically learns the fea-

ture representation from the data in a data-driven way and

performs better in dealing with complex data. Therefore, in

this paper, we propose a novel NR-PCQA method, which uses

a hybrid-based method to extract richer and more accurate

visual information from both point clouds and projected im-

ages. Additionally, the implicit higher-order correlations of the

above data are effectively modelled by DHCN.
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Fig. 2. Framework of the proposed DHCN method. The whole framework primarily consists of a projected image encoder, a point group encoder, a dynamic
hypergraph generator, and a quality predictor. In the front end of the framework, the point cloud is pre-processed to obtain projection images and point groups,
which are then input into the corresponding encoder, respectively. The feature representations generated by the encoder will be used as vertex vectors for
dynamic hypergraph learning.

III. PROPOSED METHOD

In this section, we first provide an overview of the proposed

DHCN method. Then, its key components and functions are

described in detail. Finally, the details of the training process

will be presented.

A. Overview

The framework of our proposed DHCN method is depicted

in Fig. 2. It can be seen that DHCN is mainly composed of a

projected image encoder, a point group encoder, a dynamic

hypergraph generator, and a quality predictor. Suppose we

have a point cloud P = {px, py, pz} ∈ R
T×3, where T

represents the total number of points in the point cloud,

px, py, pz represents the geometric coordinates of each point

in 3D space. Here, we first resample and project P to generate

N projected images and M point groups as the input of

our network. Then, a projected image encoder and a point

group encoder are used to perform feature extraction on the

projected images and the point groups, respectively. After

that, given the feature representations obtained by the dual

encoders, the hypergraphs are dynamically generated during

each iteration. Finally, the quality predictor aggregates the

feature representation based on the interaction information

between the vertices of the hypergraph, and combines the two

branches to jointly perceive the quality.

B. Multi-modal Data Feature Extraction

Point clouds serve as data carriers to describe 3D objects

realistically through a vast collection of point sets. This

inevitably leads to a strong demand for point cloud storage

img1 img2 img3 img4 img5

img6 img7 img8 img9 img10

projection

Fig. 3. Illustration of the point cloud projection process to obtain projection
images with different viewpoints.

space. To solve this problem, various resampling [68]–[71] and

projection [26]–[29] strategies have been proposed to reduce

the point cloud cost. As discussed in the preceding section,

our method chooses resampling and projection to simplify the

point cloud.

1) Projected Image Encoder: Inspired by the HVS per-

ception process of 3D objects, we utilize multi-view rota-

tional projection to generate projected images. Similar to the

panoramic perception [72] of the human eye, we apply fixed

strides to rotate the point cloud, obtaining different views

of the object, as shown in Fig. 3. Ultimately, we obtain N
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Fig. 4. Architecture of the MAFF module in the projected image encoder.

projected images, defined as:

I = {I1, I2, · · · , IN−1, IN} ∈ R
N×3×H×W , (1)

where Ii denotes the ith projected image, H and W denotes

the height and width of the each projected image. For projected

images I, we construct a projected image encoder to extract

the deep feature representation. Inspired by the success of deep

learning in PCQA, we adopt the pre-trained ResNet [73] as

the projected image encoder to better model the image feature

representation using multi-level feature. The specific process

of multi-level attention feature fusion (MAFF) is shown in Fig.

4 in detail. Among them, MAFF module contains attention

block, global average pooling and fully connected (FC) layer.

Inspired by the human visual, the attention mechanism [74]–

[76] in DNNs directs the network’s focus towards significant

regions of the target. Assume that the multi-level feature

map output by the projected image encoder is defined as

F
i
img ∈ R

Ci
×Hi

×W i

, where i represents the feature map

output from layer ith of the projected image encoder, and at

the same time reflects that the feature maps of different levels

have different shapes. The attentive feature map obtained after

attention block can be expressed as:

F̂
i
img = (δ(φ(Fi

img))× δ(φ(avg(Fi
img))))⊙ F

i
img + F

i
img,

(2)

where avg denotes global average pooling, φ denotes the 2D

convolution, δ(·) denotes the sigmoid function, and ⊙ denotes

pixel-by-pixel multiplication. Finally, each corresponding at-

tentive feature map F̂
i
img is generated. Subsequently, the im-

age feature representation F̄img is obtained by concatenating

the attentive feature maps, which can be formulated as follows:

F̄img =ι(avg(F̂1
img)) ∪ ι(avg(F̂2

img))∪

ι(avg(F̂3
img)) ∪ ι(avg(F̂4

img)),
(3)

where ι represents the FC layer for dimensionality reduction,

and ∪ is the concatenation operator.

2) Point Group Encoder: We adopt the farthest point sam-

pling (FPS) [68] strategy to capture M key points from the

point cloud. Next, we employ the K-nearest neighbor (KNN)

[77] algorithm to identify K neighboring points in close prox-

imity to each key point, thus forming the point group denoted

Resampling

Point cloud

Point groups

Fig. 5. Illustration of the resampling process to obtain point groups with
diverse shapes from the distorted point cloud.

as gi(i ∈ {1, 2, . . . ,M}), as shown in Fig. 5. As can be

seen from the figure, we observe that these point groups come

from different positions of the point cloud, exhibiting diverse

shapes, which can describe more comprehensive information

with fewer points. Eventually, we can obtain M point groups,

defined as:

G = {g1, g2, · · · , gM−1, gM} ∈ R
M×K , (4)

We adopt PointNet++ [78] as the point group encoder,

which is specifically designed to capture 3D point set features.

The encoder consists of three layers with distinct functions,

namely sampling layer, grouping layer, and PointNet layer.

The sampling layer utilizes FPS to downsample the point

group, effectively reducing the size of the input point group.

Based on the key points sampled in the previous step, the

grouping layer employs the ball query algorithm to find

neighbors of fixed size. Finally, the PointNet layer performs

the characterization of the local neighborhood, producing the

final representation of the point group.

C. Dynamic Hypergraph Generator

To capture the correlation between different data effectively,

we construct a hypergraph. A hypergraph denoted as G =
{V, E ,W}, consisting of three parts: vertices V , hyperedges E ,

and hyperedge weights W . We treat different projected images

or point groups as vertices, with the feature representations

generated by the encoder as vertex vectors, thereby capturing

relevant points according to different strategies to generate

hyperedges. A hyperedge can connect multiple vertices, and

there is a many-to-many relationship between the vertices. In

addition, each hyperedge is assigned a weight to represent

its importance in the whole hypergraph. To generate higher

quality hypergraph structures, we employ three strategies for

two types of data, including distance-based methods [79],

[80], representation-based methods [81], [82], and similarity-

based methods. For the projected images, we additionally

adopt spatial-based methods to assess the correlation based on

the angular distance between different viewports. Instances of

these methods are visible in the dynamic hypergraph generator

of Fig. 2. Below, we describe these four methods in detail by

using N projected images as an example.

1) Spatial-Based Method: Spatial-based methods generate

spatial-based hyperedges Espa based on the position of the

viewport in space. When we take the ith vertex as the centroid,
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Fig. 6. Illustration of the dynamic update of image hypergraph in our proposed DHCN. The left is the initial image hypergraph, and the right is the final
image hypergraph. Each image corresponds to a vertex in the hypergraph, and vertices with high-order correlation to the centroid are connected with lines of
the same color. These related vertices ultimately form hyperedges.

the hyperedge eispa ∈ R
1×N of the ith vertex can be generated

by repeating the following formula:

eijspa =

{

1, if DA(vi, vj) ≤ θ

0, otherwise
, (5)

where DA(·) computes the angular distance between two

vertices, vi and vj represents the feature representation corre-

sponding to the ith and jth vertices, θ represents a predefined

threshold, which is set to 36◦ in the experiments. Thus, the

spatial-based hyperedges Espa can be expressed as:

Espa = {e1spa, e
2
spa, · · · , e

N
spa} ∈ R

N×N , (6)

2) Distance-Based Method: The distance-based method

constructs a hyperedge by finding the nearest k neighbor

vertices in the feature space according to the feature represen-

tation of each vertex. This method mainly uses KNN to cal-

culate the distance dij(i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , N})
between two vertices. In order to measure the degree of

correlation between vertices more effectively, we normalize

the distance as:

d̄ij = exp(−
d(vi, vj)

2

σ2
), (7)

where σ represents the median distance of all pairs of ver-

tices, the distance will be normalized to [0,1]. Therefore, the

hyperedge eidis ∈ R
1×N of the ith vertex can be generated by

the following equation:

e
ij
dis =

{

d̄ij , if DR(dij) ≤ k

0, otherwise
, (8)

where DR(·) represents the rank of the distance among all

distances. If the distance ranking between the point and the

centroid is in the top k, then the point is selected as a neighbor,

otherwise the distance is set to 0. Finally, the distance-based

hyperedges Edis can be expressed as:

Edis = {e1dis, e
2
dis, · · · , e

N
dis} ∈ R

N×N , (9)

3) Representation-Based Method: Compared with the more

direct distance-based methods, representation-based methods

capture the correlation between vertices by reconstructing their

features. Specifically, we choose a vertex as a centroid and

use its neighboring vertices for sparse representation, which

effectively captures the relationship between vertices. The

sparse representation is computed as follows:

argmin
c

∥NV (k, c)− vi∥
2
2 + γ∥c∥1, (10)

where NV represents all neighbor vertices, k represents the

available number of neighbors in the sparse representation,

and c = {c1, c2, · · · , ck}(s.t.∀i, ci ≥ 0) represents the

learned reconstruction coefficients of the available neighbors,

γ represents a fixed adjustment parameter. The first term in the

equation is the reconstruction term, which is used to provide

a good reconstruction of the centroid by the neighbor vertices.

The second term is a penalty term, which is used to constrain

the representation of the first term to be sparse. After obtaining

the sparse representation, the hyperedge eirep ∈ R
1×N of the

ith vertex can be generated by the following equation:

eijrep =

{

cj , if vj ∈ NV (k, c)

0, otherwise
, (11)

where cj denotes the corresponding reconstruction coefficient

when the current vertex is used for sparse representation,

at which point they are considered correlated. Similarly, the

representation-based hyperedges Erep can be expressed as:

Erep = {e1rep, e
2
rep, · · · , e

N
rep} ∈ R

N×N , (12)

4) Similarity-Based Method: Similarity is a crucial metric

for assessing the relationship between two vectors. Here, we

adopt cosine similarity to calculate the correlation between

feature representations of vertices as follows:

sij =
vi · vj

∥vi∥2 · ∥vj∥2
, (13)
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Based on this, the hyperedge eisim ∈ R
1×N of the ith vertex

can be generated by the following equation:

e
ij
sim =

{

1, if SR(sij) ≤ k

0, otherwise
, (14)

where SR(·) is similar to the previous and represents the

overall ranking of similarity. Therefore, the similarity-based

hyperedges Esim can be expressed as:

Esim = {e1sim, e2sim, · · · , eNsim} ∈ R
N×N , (15)

5) Dynamic Hypergraph Generation: Due to the extensibil-

ity of hypergraphs, we can easily generate hypergraphs using

multiple hyperedges. The hyperedge of the projected image

Eimg and the point group Egro can be expressed as:

Eimg = {Espa, Edis, Erep, Esim} ∈ R
N×4N , (16)

Egro = {Edis, Erep, Esim} ∈ R
M×3M , (17)

Therefore, the final generated projected image hypergraph

Gimg and point group hypergraph Ggro can be expressed as:

Gimg = {Vimg, Eimg,Wimg}, (18)

Ggro = {Vgro, Egro,Wgro}, (19)

Static hypergraphs are monotone, and dynamic changes in

feature representations during iterations may invalidate static

hypergraphs. To address this issue, we continuously update

the interaction information between hypergraph vertices us-

ing a dynamic hypergraph generator, dynamically learning

the optimal structure of the hypergraph during the iteration

process. In this process, the hypergraph structure is gradu-

ally perfected. The structure of dynamic hypergraph update

includes feature representation of vertices V , hyperedges E and

hyperedge weights W , which makes data-dependent modeling

more accurate. Taking the projection image as an example, the

result of dynamic hypergraph update is shown in Fig. 6. In the

figure, we only plot the hyperedges with higher weights. As

can be seen from the figure, we can observe that the initial

image hypergraph tends to assign larger weights to hyperedges

with small angular distances between vertices. After the op-

timization is completed, more weights will be given to the

hyperedges of two vertices that are closer, more similar and

more correlated in the high-dimensional space. Therefore, the

above method can generate hypergraphs with higher quality,

more accurately describe the high-order correlation between

vertices, and play a more critical role in the process of network

optimization.

D. Quality Predictor

After the dynamic hypergraph generation, we utilize hyper-

graph convolution [83]–[85] to model the complex interactions

between the projected image and the point groups. The quality

predictor has two branches, which are composed of five

hypergraph convolutional layers, and the number of output

channels of each layer is [512,256,128,32,1]. The compo-

nents of hypergraph convolutional layer include hypergraph

convolution, batch normalization, softplus activation function,

Layer-wise Propagation

Residual Connection

Hypergraph 
Convolution

Batch 
Normalization

Softplus 
Function

Fig. 7. Structure of the ResHGC block.

Residual Hypergraph Convolution (ResHGC) block and aver-

age pooling, as shown in Fig. 2. Taking the hyperedge Eimg

of the projected image as an example, we first normalize it as

follows:

Ēimg = D
−

1

2

v EimgWD
−1
e ET

imgD
−

1

2

v , (20)

Dv = diag

{

N
∑

i=0

E1,i, · · · ,
N
∑

i=0

EN,i

}

, (21)

De = diag

{

4N
∑

i=0

ET
1,i, · · · ,

4N
∑

i=0

ET
4N,i

}

, (22)

where Dv ∈ R
N×N is the diagonal matrix of vertex degrees,

De ∈ R
4N×4N is the diagonal matrix of hyperedge degrees.

Then, hypergraph convolutional layer continuously aggregates

neighborhood information based on Ēimg ∈ R
N×N to generate

new feature representations, and its layer-wise propagation

rules are as follows:

M
(l+1) = σ(BN(ĒimgM

(l)
w

(l))), (23)

where σ is the softplus activation function, BN represents

batch normalization, M
(l) is the feature matrix of the lth

layer, w
(l) is a trainable parameter of the lth layer of the

network. Inspired by [86], we also adopt the ResHGC block to

deepen the network structure through the residual connection

to achieve the performance improvement of the network. The

specific structure of the ResHGC block is shown in Fig. 7. We

use multiple residual connections to improve the stability of

layer-wise propagation and the effectiveness of the network.

Finally, we obtain the feature vectors of the projected image

and point groups through the average pooling operation. The

quality score is obtained by weighted summation of the two

feature vectors.

E. Training Setup

The entire network serves as an end-to-end framework for

jointly training two branches: the projection image branch

and the point group branch. The trainable parameters of the

network are optimized by Adam optimizer [87]. The loss

function used to optimize the network l1 is defined as:

l1 =
1

n

n
∑

i=0

|yi − ȳi|, (24)
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TABLE II
PERFORMANCE COMPARISON RESULTS ON SJTU-PCQA, WPC AND SIAT-PCQD DATABASES. ALL INDICATORS ADOPT ABSOLUTE VALUES FOR

PERFORMANCE COMPARISON FOR BETTER VISIBILITY. THE FIRST, SECOND, AND THIRD OF THE FOUR INDICATORS ARE MARKED IN RED, BLUE AND

GREEN, RESPECTIVELY.

Ref Type Metric
SJTU-PCQA WPC SIAT-PCQD

PLCC↑ SRCC↑ KRCC↑ RMSE↓ PLCC↑ SRCC↑ KRCC↑ RMSE↓ PLCC↑ SRCC↑ KRCC↑ RMSE↓

FR

PC-Based

PSNRMSE,p2po [45] 0.7622 0.6002 0.4917 1.4382 0.2673 0.1607 0.1147 20.6947 0.3372 0.1555 0.1236 0.1217

PSNRMSE,p2pl [46] 0.7381 0.5505 0.4375 1.5357 0.2879 0.1182 0.0851 21.1898 0.3369 0.1541 0.1232 0.1214

PSNRHF,p2po [45] 0.7737 0.6744 0.5217 1.4481 0.3555 0.0557 0.0384 20.8197 0.3510 0.2801 0.1995 0.1215

PSNRHF,p2pl [46] 0.7286 0.6208 0.4701 1.6000 0.3263 0.0989 0.0681 21.1100 0.3179 0.2633 0.1837 0.1229

ASMean [48] 0.5297 0.5317 0.3723 2.7129 0.3397 0.2484 0.1801 21.5013 0.1213 0.1303 0.0963 0.1288

ASRMS [48] 0.7156 0.5653 0.4144 1.6550 0.3347 0.2479 0.1802 21.5325 0.1455 0.1559 0.1175 0.1284

ASMSE [48] 0.5115 0.5472 0.3865 2.6431 0.3397 0.2484 0.1801 21.5013 0.1512 0.1559 0.1175 0.1283

PSNRY [47] 0.8124 0.7871 0.6116 1.3222 0.6166 0.5823 0.4164 17.9001 0.5054 0.4071 0.2967 0.1114

PCQM [51] 0.8301 0.7748 0.6152 1.2978 0.6162 0.5504 0.4409 17.9027 0.8176 0.7005 0.5405 0.0721

PointSSIM [53] 0.7422 0.7051 0.5321 1.5601 0.5225 0.4639 0.3394 19.3863 0.5514 0.4405 0.3326 0.1029

GraphSIM [56] 0.9158 0.8853 0.7063 0.9462 0.6833 0.6217 0.4562 16.5107 0.7857 0.6724 0.5134 0.0717

Projection-Based

SSIM [62] 0.8868 0.8667 0.6988 1.0454 0.6690 0.6483 0.4685 16.8841 0.4399 0.3904 0.2764 0.1161

MS-SSIM [63] 0.8930 0.8738 0.7069 1.0091 0.7349 0.7179 0.5385 15.3341 0.4357 0.4491 0.3217 0.1150

IW-SSIM [64] 0.8932 0.8638 0.6934 1.0268 0.7688 0.7608 0.5707 14.5453 0.5343 0.4853 0.3454 0.1088

VIFP [65] 0.8977 0.8624 0.6934 1.0173 0.7508 0.7426 0.5575 15.0328 0.4692 0.4327 0.3082 0.1140

RR
PC-Based PCMRR [59] 0.6699 0.5622 0.4091 1.7589 0.3926 0.3605 0.2543 20.9203 0.7172 0.6945 0.5294 0.0874

Projection-Based RR-CAP [67] 0.7691 0.7577 0.5508 1.5512 0.7307 0.7162 0.5260 15.6485 \ \ \ \

NR

PC-Based

3D-NSS [17] 0.7813 0.7819 0.6023 1.7740 0.6284 0.6309 0.4573 18.1706 0.4022 0.3568 0.2482 0.1186

Wang et al. [24] 0.9400 0.9300 0.7900 \ 0.8100 0.8000 0.6200 \ \ \ \ \

ResSCNN [22] 0.8865 0.8328 0.6514 1.0728 0.4531 0.4362 0.2987 20.2591 0.3826 0.3013 0.2092 0.1198

Projection-Based

PQANet [27] 0.7998 0.7593 0.5796 1.3773 0.6671 0.6368 0.4684 16.6758 0.4779 0.4426 0.3048 0.1140

IT-PCQA [29] 0.8605 0.8286 0.6453 1.1686 0.4870 0.4329 0.3006 19.8960 0.5062 0.2845 0.2166 0.1088

GMS-3DQA [31] 0.9177 0.9108 0.7735 0.7872 0.8338 0.8308 0.6457 12.2292 0.7382 0.6518 0.4881 0.0843

Hybrid-Based
MM-PCQA [32] 0.9226 0.9103 0.7838 0.7716 0.8556 0.8414 0.6513 12.3506 0.6392 0.5561 0.3807 0.0988

Ours 0.9574 0.9421 0.8124 0.6805 0.8659 0.8616 0.6794 11.3910 0.8364 0.7847 0.6049 0.0679

where n is the batch size during training, yi represents the

ground truth score, ȳi represents the predicted score. During

training, the training epoch of the network is set to 100, the

batch size is set to 16, and the initial learning rate is 1e-3,

which is scaled to 0.5 times of the original every 10 epochs.

To avoid overfitting, the training is early stopped when the

network parameters are not updated for 20 consecutive epochs.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first describe the databases used in our

experiments, the performance metrics, and the implementa-

tion details. Next, we conduct performance comparison and

ablation studies to evaluate the effectiveness of the proposed

DHCN method. Finally, we analyze the experimental results

and draw the conclusions.

A. Databases

To evaluate the effectiveness of the proposed method, we

conduct experiments on three publicly available databases,

including SJTU-PCQA [88], WPC [89], and SIAT-PCQD [90].

The SJTU-PCQA database contains 9 reference point

clouds. Based on this, a total of 42 distorted point clouds

are generated for each reference point cloud by applying 7

distortion types (i.e., OT, CN, DS, D+C, D+G, GGN, C+G)

with 6 distortion levels. In the end, 378 distorted point clouds

are generated.

The WPC database contains 20 reference point clouds. Each

reference point cloud in the database generates 37 distorted

point clouds using 5 distortion types (i.e., downsample, gaus-

sian noise, G-PCC(T), V-PCC, G-PCC(O)), resulting in a total

of 740 distorted point clouds.

The unique aspect of the SIAT Point Cloud Quality

Database (SIAT-PCQD), unlike other databases, lies in its

emphasis on exploring the impact of geometric and texture

properties on compression distortion. This database encom-

passes 340 distorted point clouds, generated from 20 distinct

reference point clouds by utilizing 17 varying geometric and

texture quantization parameters (QP).

B. Performance Criteria

We use four criteria for performance evaluation of different

quality metrics, including Spearman Rank Correlation Coeffi-

cient (SRCC), Pearson Linear Correlation Coefficient (PLCC),

Kendall Rank Correlation Coefficient (KRCC), and Root Mean

Squared Error (RMSE). Higher values of SRCC, PLCC,

KRCC and lower value of RMSE indicate better performance

of PCQA metrics. To address the scale discrepancy between

the predicted quality scores and the subjective scores, we

perform a non-linear mapping on the predicted scores by using

a five-parameter logistic function [91] before calculating the

PLCC and RMSE:

ŷ = β1(
1

2
−

1

1 + exp(β2(ȳ − β3))
) + β4ȳ + β5, (25)

where ȳ is the predicted score, ŷ indicates the predicted score

after mapping, βi, i ∈ {1, 2, · · · , 5} are the parameters to be

fitted.
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TABLE III
SRCC PERFORMANCE EVALUATION OF EXISTING PCQA METRICS BASED ON POINT CLOUD CONTENT AND DISTORTION TYPE IS PERFORMED ON THE

SJTU-PCQA DATABASE. ABSOLUTE SRCC IS USED FOR COMPARISON TO OBTAIN BETTER VISIBILITY. THE LETTERS A-R IN THE TABLE STAND FOR

PSNRMSE,p2po , PSNRMSE,p2pl , PSNRHF,p2po , PSNRHF,p2pl , ASRMS , PSNRY , PCQM, POINTSSIM, GRAPHSIM, SSIM, MS-SSIM,
IW-SSIM, VIFP, PCMRR, 3D-NSS, RESSCNN, PQANET, IT-PCQA AND OUR PROPOSED METHOD IN TURN. THE FIRST, SECOND, AND THIRD PLACES

IN THE SPCC INDICATOR ARE MARKED IN RED, BLUE AND GREEN, RESPECTIVELY.

Subset
FR RR NR

A [45] B [46] C [45] D [46] E [48] F [47] G [51] H [53] I [56] J [62] K [63] L [64] M [65] N [59] O [17] P [22] Q [27] R [29] Ours

C
o
n
te

n
t

Redandblack 0.6196 0.5943 0.7421 0.6819 0.5799 0.7478 0.8024 0.6670 0.8702 0.8603 0.8718 0.8911 0.8885 0.6506 0.8647 0.8003 0.8603 0.8557 0.9527

Romanoillamp 0.4247 0.3617 0.7457 0.6032 0.6022 0.4278 0.5145 0.5150 0.8525 0.7509 0.7869 0.7939 0.7882 0.6044 0.6885 0.6193 0.7509 0.7248 0.9686

Loot 0.6738 0.6405 0.7447 0.6391 0.4817 0.7875 0.8426 0.7299 0.8868 0.8693 0.8809 0.8846 0.8619 0.6770 0.8890 0.8780 0.8693 0.8778 0.9626

Soldier 0.6781 0.6478 0.7493 0.6329 0.5404 0.8336 0.8684 0.7718 0.9118 0.8917 0.8843 0.8843 0.8744 0.5809 0.8731 0.9123 0.8917 0.8050 0.9673

ULB Unicorn 0.7085 0.6082 0.8500 0.8081 0.4773 0.8687 0.7496 0.5715 0.8597 0.9084 0.8981 0.8548 0.8514 0.5148 0.4101 0.8364 0.9084 0.9129 0.8832

Longdress 0.6640 0.6437 0.7885 0.7096 0.5704 0.9326 0.8896 0.8608 0.9499 0.9245 0.9191 0.8710 0.8976 0.6474 0.9005 0.8650 0.9245 0.8243 0.9689

Statue 0.5678 0.5362 0.5883 0.5652 0.6291 0.8241 0.7483 0.7391 0.8744 0.8578 0.8663 0.8428 0.8637 0.4181 0.8520 0.9002 0.8578 0.8757 0.9272

Shiva 0.4129 0.4074 0.1168 0.2689 0.7057 0.8375 0.8060 0.7896 0.8595 0.8968 0.8914 0.8744 0.8903 0.4884 0.8198 0.8599 0.8968 0.8243 0.9182

Hhi 0.6526 0.5150 0.7443 0.6785 0.5012 0.8242 0.7524 0.7010 0.9028 0.8409 0.8658 0.8773 0.8462 0.4785 0.7394 0.8240 0.8409 0.7577 0.9306

D
is

to
rt

io
n

OT 0.4407 0.4407 0.3788 0.3524 0.5210 0.3068 0.6495 0.7108 0.7049 0.2198 0.2712 0.3382 0.3743 0.1800 0.4068 0.1683 0.0883 0.0189 0.8638

CN NaN NaN NaN NaN NaN 0.5588 0.6070 0.7660 0.7779 0.6283 0.6453 0.7531 0.7429 0.7157 0.1480 0.2265 0.5507 0.0655 0.9075

DS 0.4495 0.4489 0.6847 0.3286 0.3653 0.4697 0.6990 0.8500 0.8654 0.3246 0.4718 0.4535 0.4546 0.1489 0.5051 0.4292 0.2958 0.0556 0.9395

D+C 0.5735 0.5979 0.7619 0.7499 0.4025 0.7397 0.8014 0.7449 0.8846 0.5062 0.6281 0.6661 0.6932 0.6120 0.5895 0.5158 0.4899 0.0468 0.9648

D+G 0.6779 0.7058 0.7423 0.7196 0.8915 0.5413 0.7476 0.9288 0.8833 0.6920 0.7589 0.8222 0.7989 0.7439 0.7442 0.5263 0.5033 0.0411 0.9723

GGN 0.7008 0.7144 0.7453 0.7328 0.9376 0.5727 0.7143 0.9027 0.9064 0.7436 0.7783 0.8324 0.8436 0.7813 0.8435 0.4497 0.3771 0.0798 0.9624

C+G 0.7577 0.7758 0.8205 0.8025 0.9241 0.6692 0.7078 0.7991 0.9334 0.7307 0.7948 0.8406 0.8463 0.8329 0.8645 0.5523 0.6137 0.1044 0.9582

TABLE IV
SRCC PERFORMANCE EVALUATION OF EXISTING PCQA METRICS BASED ON POINT CLOUD CONTENT AND DISTORTION TYPE IS PERFORMED ON THE

WPC DATABASE. ABSOLUTE SRCC IS USED FOR COMPARISON TO OBTAIN BETTER VISIBILITY. THE LETTERS REPRESENT THE SAME PCQA METRICS

AS THE TABLE ABOVE. THE FIRST, SECOND, AND THIRD PLACES IN THE SPCC INDICATOR ARE MARKED IN RED, BLUE AND GREEN, RESPECTIVELY.

Subset
FR RR NR

A [45] B [46] C [45] D [46] E [48] F [47] G [51] H [53] I [56] J [62] K [63] L [64] M [65] N [59] O [17] P [22] Q [27] R [29] Ours

C
o

n
te

n
t

Bag 0.6669 0.5751 0.4363 0.4365 0.4325 0.8051 0.5955 0.4829 0.7164 0.7300 0.7584 0.7309 0.7093 0.6069 0.7731 0.1603 0.3504 0.6174 0.8326

Banana 0.6471 0.5691 0.1933 0.2033 0.3147 0.6211 0.4649 0.2202 0.5045 0.8011 0.7677 0.7790 0.7771 0.5287 0.6524 0.2475 0.6949 0.2485 0.8224

Biscuits 0.5252 0.4160 0.3085 0.3368 0.3505 0.7764 0.6245 0.5816 0.7198 0.9173 0.9500 0.7992 0.7416 0.4310 0.6645 0.4765 0.6147 0.3570 0.8025

Cake 0.3074 0.1798 0.1724 0.1796 0.0609 0.5180 0.4566 0.3177 0.4251 0.7390 0.7691 0.6534 0.6477 0.3070 0.4547 0.4467 0.5835 0.7300 0.9004

Cauliflower 0.3501 0.2058 0.0918 0.1653 0.1781 0.5927 0.4903 0.4237 0.5529 0.8004 0.8608 0.8182 0.7008 0.4187 0.5517 0.5095 0.6238 0.0593 0.8848

Flowerpot 0.6509 0.5298 0.4348 0.4515 0.3629 0.6385 0.5875 0.3784 0.6609 0.8303 0.9066 0.9047 0.8954 0.0477 0.6958 0.4900 0.2357 0.8127 0.8006

GlassesCase 0.5845 0.4390 0.2020 0.3238 0.4288 0.7826 0.5861 0.5258 0.6546 0.7617 0.7577 0.7304 0.7459 0.3883 0.4790 0.2003 0.7674 0.7750 0.8954

HoneydewMelon 0.4890 0.3299 0.2768 0.2300 0.3228 0.6740 0.4500 0.5609 0.7248 0.8549 0.8917 0.9180 0.8279 0.5742 0.7229 0.4026 0.7418 0.7352 0.8687

House 0.5866 0.4483 0.3429 0.3434 0.4522 0.7798 0.5880 0.5590 0.7373 0.7788 0.7793 0.7357 0.7200 0.4905 0.7646 0.4780 0.8668 0.4201 0.9201

Litchi 0.5109 0.4291 0.3478 0.3204 0.3554 0.7027 0.5965 0.6422 0.6958 0.7748 0.8623 0.7496 0.7018 0.4839 0.8113 0.1994 0.7207 0.0868 0.8803

Mushroom 0.6396 0.5156 0.3486 0.3105 0.2911 0.6550 0.5725 0.5443 0.6802 0.7821 0.8781 0.8160 0.7897 0.2556 0.8153 0.0754 0.5835 0.3570 0.9094

PenContainer 0.7720 0.6688 0.2159 0.3635 0.5465 0.7328 0.6394 0.5948 0.8250 0.8954 0.8758 0.8485 0.8397 0.6830 0.7809 0.5676 0.6470 0.7859 0.8819

Pineapple 0.3777 0.2785 0.1376 0.1831 0.2155 0.7217 0.6427 0.5386 0.6401 0.7307 0.7805 0.5856 0.6441 0.4011 0.6074 0.5275 0.6318 0.5913 0.9064

PingpongBat 0.5924 0.4984 0.4958 0.4357 0.4521 0.5428 0.5783 0.6051 0.7697 0.8054 0.8812 0.7570 0.7539 0.5092 0.6935 0.3518 0.6358 0.4737 0.8452

PuerTea 0.6069 0.4746 0.1173 0.0384 0.4734 0.7639 0.5685 0.4139 0.7999 0.8917 0.8668 0.8359 0.7866 0.4308 0.4763 0.1456 0.7359 0.5467 0.7366

Pumpkin 0.4947 0.3423 0.3092 0.3068 0.3220 0.6901 0.5934 0.5699 0.6517 0.9111 0.8156 0.9042 0.8976 0.3241 0.5768 0.4052 0.7857 0.5536 0.8919

Ship 0.7464 0.6267 0.3404 0.5158 0.4943 0.7786 0.5434 0.4488 0.7558 0.8973 0.8578 0.8340 0.8013 0.4400 0.6935 0.6612 0.5349 0.3777 0.8497

Statue 0.8040 0.6707 0.2450 0.4487 0.4900 0.7001 0.5714 0.5085 0.7390 0.8985 0.9372 0.9099 0.8950 0.1811 0.6368 0.5782 0.3762 0.4976 0.9018

Stone 0.6219 0.5129 0.3551 0.3424 0.3649 0.7115 0.6475 0.6126 0.1920 0.8426 0.8881 0.8587 0.8196 0.3632 0.6968 0.2122 0.8234 0.1790 0.8867

ToolBox 0.3937 0.2969 0.1972 0.1884 0.2984 0.8706 0.6304 0.4927 0.7935 0.7821 0.8255 0.8056 0.7411 0.5239 0.5806 0.5026 0.8653 0.4694 0.9163

D
is

to
rt

io
n

Downsampling 0.4815 0.3251 0.5356 0.4879 0.2465 0.5542 0.4537 0.8319 0.7903 0.8234 0.8834 0.8822 0.8828 0.7407 0.7508 0.2899 0.7234 0.3327 0.9014

Gaussian noise 0.6155 0.6194 0.6149 0.6150 0.6844 0.7644 0.8775 0.5844 0.7469 0.6264 0.7118 0.8560 0.8847 0.7762 0.7460 0.5459 0.7938 0.1718 0.8770

G-PCC (T) 0.3451 0.3568 0.2811 0.3085 0.1342 0.5916 0.7775 0.6745 0.7457 0.4669 0.6042 0.6742 0.6304 0.2702 0.5947 0.2531 0.4710 0.1987 0.8298

V-PCC 0.1602 0.1992 0.2051 0.2370 0.3877 0.3203 0.5534 0.3546 0.5989 0.5141 0.5812 0.7063 0.7410 0.2966 0.3927 0.1028 0.0045 0.0090 0.7717

G-PCC (O) NaN NaN NaN NaN 0.0350 0.8072 0.8944 0.7917 0.8258 0.5290 0.7214 0.7128 0.7116 0.6468 0.2891 0.0247 0.4204 0.1180 0.9196

C. Implementation Details

In the experiments, we use Pytorch1.13.1 deep learning

framework. Specifically, we set the number of projected im-

ages M=10 and the number of point groups N=6. To ensure

the reliability of the experimental results, we follow the k-

fold cross-validation strategy during the training and testing

process. The k-fold cross-validation is a dynamic validation

method that can reduce the impact of data splitting. Firstly, all

the samples are divided into k equal size subsets. Then, we

iterate over each subset in turn, each time using the current

subset as the test set and all other subsets as the train set. The

final performance result is the average results over all test sets.

For the SJTU-PCQA, WPC, and SIAT-PCQD databases, the

number of subsets is set to 9, 5, 5, respectively.

D. Performance Comparison

The performance comparison results on the SJTU-PCQA,

WPC and SIAT-PCQD databases are shown in Table II. In
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TABLE V
SRCC PERFORMANCE EVALUATION OF EXISTING PCQA METRICS BASED ON POINT CLOUD CONTENT IS PERFORMED ON THE SIAT-PCQD DATABASE.

ABSOLUTE SRCC IS USED FOR COMPARISON TO OBTAIN BETTER VISIBILITY. THE LETTERS REPRESENT THE SAME PCQA METRICS AS THE TABLE

ABOVE. THE FIRST, SECOND, AND THIRD PLACES IN THE SPCC INDICATOR ARE MARKED IN RED, BLUE AND GREEN, RESPECTIVELY.

Subset
FR RR NR

A [45] B [46] C [45] D [46] E [48] F [47] G [51] H [53] I [56] J [62] K [63] L [64] M [65] N [59] O [17] P [22] Q [27] R [29] Ours

C
o

n
te

n
t

Andrew 0.3354 0.3354 0.4922 0.4922 0.3791 0.6151 0.5979 0.5979 0.5882 0.6421 0.6519 0.6274 0.5390 0.6039 0.3990 0.4923 0.4926 0.7256 0.7525

AngelSeated 0.1490 0.2066 0.2566 0.2923 0.2747 0.8529 0.7010 0.7794 0.0282 0.5172 0.5539 0.5123 0.4069 0.5672 0.4926 0.2966 0.2010 0.8382 0.9461

Banana 0.2241 0.2241 0.5770 0.5770 0.7774 0.8284 0.8358 0.8186 0.7157 0.9044 0.9461 0.8799 0.8505 0.8294 0.0858 0.3480 0.2721 0.7525 0.5392

Biplane 0.0939 0.0939 0.4770 0.3593 0.5195 0.9828 0.9779 0.9951 0.9877 0.6176 0.7157 0.5833 0.5907 0.6667 0.7819 0.0980 0.3946 0.8725 0.8946

Bush 0.1740 0.1740 0.3017 0.2641 0.3017 0.8578 0.8824 0.8971 0.8995 0.6544 0.6789 0.5172 0.6250 0.8652 0.4632 0.0.2157 0.1324 0.8676 0.9069

Facade 0.0926 0.0926 0.0302 0.0900 0.2203 0.9779 0.9583 0.9779 0.9657 0.9265 0.8971 0.5980 0.5613 0.9187 0.3137 0.0049 0.6373 0.5980 0.9559

Grass 0.1627 0.1627 0.4457 0.1627 0.5884 0.9240 0.9363 0.9510 0.9289 0.8676 0.8775 0.7966 0.7525 0.9632 0.8309 0.0980 0.4583 0.8652 0.7941

House 0.0476 0.0476 0.0832 0.0976 0.0776 0.8407 0.8725 0.9093 0.9289 0.5294 0.5417 0.4069 0.4314 0.3985 0.3554 0.0784 0.4069 0.8162 0.9534

Longdress 0.2228 0.2228 0.4331 0.3956 0.4782 0.8554 0.9093 0.8725 0.8382 0.9093 0.8701 0.7377 0.7647 0.9416 0.6397 0.1324 0.3407 0.8676 0.9044

Loot 0.2103 0.2103 0.2854 0.2103 0.2729 0.9657 0.9191 0.9651 0.9412 0.8652 0.8456 0.7843 0.6299 0.9576 0.4314 0.0294 0.5074 0.6887 0.9093

Nike 0.3593 0.3593 0.4196 0.3393 0.3167 0.9069 0.8725 0.8995 0.9020 0.6495 0.5956 0.5735 0.4877 0.8375 0.5025 0.2770 0.5074 0.1275 0.8995

Phil 0.1645 0.1645 0.4215 0.3753 0.4704 0.7317 0.7833 0.6998 0.7108 0.7980 0.7980 0.7735 0.8201 0.8219 0.5427 0.3339 0.2353 0.7023 0.7377

RedAndBlack 0.1365 0.1365 0.4644 0.3718 0.4770 0.8260 0.8848 0.8235 0.8015 0.8946 0.8848 0.7990 0.7794 0.9142 0.5221 0.3799 0.4657 0.4804 0.8799

Ricardo 0.1645 0.1645 0.3830 0.3701 0.3830 0.5783 0.5684 0.6176 0.5466 0.7084 0.6839 0.7452 0.7354 0.7551 0.5242 0.2149 0.2525 0.7256 0.6275

RomanOillamp 0.2053 0.2053 0.3705 0.3831 0.3330 0.9657 0.9608 0.9730 0.9485 0.7426 0.7819 0.7721 0.6250 0.9761 0.8235 0.2059 0.4828 0.3529 0.9706

Sarah 0.3521 0.3521 0.6529 0.6529 0.6143 0.2922 0.3438 0.1645 0.1838 0.3438 0.4273 0.0.5672 0.5549 0.4017 0.4813 0.4936 0.4706 0.5770 0.3113

Soldier 0.2566 0.2566 0.3468 0.3167 0.2566 0.9608 0.8848 0.9608 0.9608 0.7696 0.7647 0.7206 0.5907 0.8817 0.5735 0.1838 0.1912 0.7010 0.9657

The20sMaria 0.1502 0.1502 0.3055 0.3188 0.3630 0.9559 0.8946 0.9485 0.9044 0.5809 0.6005 0.5441 0.5025 0.8687 0.5956 0.0931 0.3824 0.1005 0.8897

ULBUnicorn 0.0463 0.0463 0.0613 0.0613 0.1314 0.9412 0.9436 0.9069 0.9191 0.5490 0.5662 0.3627 0.6740 0.8302 0.2402 0.0294 0.3554 0.4779 0.8039

UlliWegner 0.2216 0.2216 0.3668 0.4018 0.3918 0.9093 0.8603 0.8676 0.8603 0.8382 0.8701 0.7377 0.7034 0.9118 0.3946 0.0907 0.5637 0.8456 0.8873

the experiments, the performance of our proposed DHCN is

compared with 24 state-ofthe-art PCQA methods, including

PSNRMSE,p2po [45], PSNRMSE,p2pl [46], PSNRHF,p2po

[45], PSNRHF,p2pl [46], ASMean [48], ASRMS [48],

ASMSE [48], PSNRY [47], PCQM [51], PointSSIM [53],

GraphSIM [56], SSIM [62], MS-SSIM [63], IW-SSIM [64],

VIFP [65], PCMRR [59], RR-CAP [67], 3D-NSS [17], Wang

et al. [24], ResSCNN [22], PQANet [27], IT-PCQA [29],

GMS-3DQA [31], and MM-PCQA [32]. The methods are

classified based on data type and the utilization of reference

data. The experimental results presented in Table II lead us to

draw the following conclusions:

• Compared with the existing methods, our proposed

DHCN achieves the best performance on all three bench-

mark databases. Notably, the SRCC of DHCN is 0.0121

higher than that of the second place Wang et al. on SJTU-

PCQA database, 0.0202 higher than that of the second

place MM-PCQA on WPC database, and 0.0842 higher

than that of the second place PCQM on SIAT-PCQD

database.

• Unlike the simple SJTU-PCQA database, the WPC

database involves more complex distortions, and the

SIAT-PCQD database has more quantization parameters

for the compression distortion. Hence, the exceptional

performance of the existing PCQA methods on the SJTU-

PCQA database does not necessarily carry over on the

other two databases. However, the performance of our

proposed DHCN shows excellent performance on all the

three databases and does not show serious performance

degradation, which proves its effectiveness and robust-

ness.

• Both PC-based and projection-based methods can achieve

good performance, while our proposed DHCN with hy-

brid inputs combines the advantages of both methods to

achieve superior performance. The experimental results

show that multi-modal learning is able to learn more

effective feature representations by using feature infor-

mation of data from different modalities.

In addition, to further verify the effectiveness of the PCQA

method, we classify the point clouds in each database by

content and distortion type, and then conduct performance

tests. The detailed experimental results are shown in Table

III, Table IV and Table V. From these tables, we can find

that: (1) On SJTU-PCQA database and WPC database, our

proposed DHCN achieves more top-3 performances, and the

number of best performances is the most among all methods.

(2) On the SIAT-PCQD database, due to the small number

of point clouds in a single subset and the interference of

compression distortion of different parameters, the reference-

based method achieves better results than the no-reference

method. However, our proposed DHCN also achieves good

results as a no-reference method and ranks the second place

in terms of the number of best performances (only less than

PCMRR). (3) On the subset experiments of the first two

databases, the projection-based method performs better, while

on the last database, the PC-based method performs better.

These results further underscore the advantages of both PC-

based and projection-based methods and can be used in suit-

able scenarios. Therefore, our proposed hybrid-based DHCN

integrates the advantages of both to improve the stability and

robustness.

E. Cross-database Evaluation

In order to further validate the generalization capability of

the proposed DHCN, we conducted cross-database evaluation

experiments. The experimental results are shown in Table VI.
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TABLE VI
EXPERIMENTAL RESULTS FOR CROSS-DATABASE EVALUATION. WPC →

SJTU-PCQA REPRESENTS TRAINING ON THE WPC DATABASE AND THEN

TESTING ON THE SJTU-PCQA DATABASE. CONVERSELY, SJTU-PCQA
→ WPC DENOTES TRAINING ON THE SJTU-PCQA DATABASE AND THEN

TESTING ON THE WPC DATABASE. THE BEST PERFORMANCE IS

INDICATED IN BOLD.

Method
WPC → SJTU-PCQA SJTU-PCQA → WPC

PLCC↑ SRCC↑ PLCC↑ SRCC↑

3D-NSS 0.1248 0.1824 0.0731 0.1352

ResSCNN 0.4089 0.4031 0.2771 0.2329

PQANet 0.3245 0.3141 0.3007 0.1177

IT-PCQA 0.3185 0.3105 0.1966 0.1949

Ours 0.7955 0.7295 0.4586 0.4027

TABLE VII
PERFORMANCE RESULTS OF POINT GROUPS, PROJECTED IMAGES, DHCN

ON THE WPC DATABASE. THE BEST PERFORMANCE IS INDICATED IN

BOLD.

Model
WPC

PLCC↑ SRCC↑ KRCC↑ RMSE↓

FC with groups 0.5524 0.5006 0.3484 19.0168

FC with images 0.7819 0.7756 0.5917 14.1605

FC with groups and images 0.8271 0.8219 0.6367 12.7408

DHCN with groups and images 0.8659 0.8616 0.6794 11.3910

TABLE VIII
PERFORMANCE RESULTS OF DIFFERENT HYPERGRAPH GENERATION

METHODS ON THE WPC DATABASE. THE BEST PERFORMANCE IS

INDICATED IN BOLD.

Method
WPC

PLCC↑ SRCC↑ KRCC↑ RMSE↓

Edis 0.8433 0.8364 0.6509 12.2256

Edis + Erep 0.8511 0.8383 0.6509 11.9579

Edis + Erep + Esim 0.8659 0.8616 0.6794 11.3910

Here, our proposed method is contrasted with other NR-PCQA

metrics. From the table, it can be observed that our proposed

DHCN demonstrates stronger model generalization compared

to other metrics.

F. Ablation Study

To prove the effectiveness of both hypergraph, hypergraph

generation and the number of best neighbor vertices, we

conduct ablation studies as follows:

1) Contributions of point groups, projected images, and

hypergraph: To demonstrate the contribution of point groups,

projected images, and hypergraph on the network performance,

we conduct corresponding ablation studies. The final experi-

mental results are shown in Table VII. From the experimental

results, we can find that the combination of point groups and

projection images as inputs can achieve better results than

single input type, and the introduction of hypergraph also

brings performance improvement. This demonstrates that point

clouds, projection images, and DHCN can make a significant

contribution to the performance improvement of the network.

2) Comparison of different hypergraph generation methods:

The extensibility of hypergraphs opens up the possibility of

combining diverse hyperedge methods. In order to verify the

TABLE IX
PERFORMANCE RESULTS OF THE NUMBER k OF NEIGHBOR VERTICES ON

THE WPC DATABASE. THE BEST PERFORMANCE IS INDICATED IN BOLD.

k in img k in gro
WPC

PLCC↑ SRCC↑ KRCC↑ RMSE↓

2

1 0.8537 0.8531 0.6678 11.8423

2 0.8465 0.8464 0.6622 12.1149

4 0.8491 0.8473 0.6660 12.0051

4

1 0.8659 0.8616 0.6794 11.3910

2 0.8332 0.8313 0.6429 12.6408

4 0.8362 0.8334 0.6464 12.4219

6

1 0.8480 0.8488 0.6642 12.0913

2 0.8419 0.8369 0.6536 12.2407

4 0.8356 0.8331 0.6489 12.4245

8

1 0.8405 0.8378 0.6517 12.3164

2 0.8401 0.8380 0.6511 12.3196

4 0.8355 0.8310 0.6435 12.5069

Fig. 8. Results of average computational time versus SRCC on SJTU-PCQA.

effectiveness of the proposed hypergraph generation method,

we conduct experiments to compare the performance across

different methods for hypergraph generation. Since the space-

based method is only used for projected images, we default

that it has been used. The final experimental results are shown

in Table VIII. From this, we can realize that the introduction

of different hyperedge generation methods can bring certain

performance improvement. When three hyperedge generation

methods are introduced at the same time, the performance

improvement is the largest, which is 0.0252 and 0.0233 higher

than that of using one or two methods.

3) Selection of the best number of neighbor vertices: For a

hypergraph, if the number of nodes and edges is not fixed, it is

impossible to directly input the hypergraph into a neural net-

work. Therefore, it is well known that the number of neighbor

vertices k is an important parameter of hypergraph. In order

to select a more reasonable number of neighbor vertices k,

we conduct performance comparison experiments on the WPC

database. Table IX shows the performance comparison results

under different configurations. In the table, the first and second

columns represent the setting of the number of neighbor

vertices in the hypergraph of the projected image and the

hypergraph of the point group, respectively. The experimental
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TABLE X
COMPARISON RESULTS OF POINT CLOUD DENOISING. CD AND P2M

MULTIPLIED BY 104 . THE BEST RESULTS ARE MARKED IN BOLD.

Method

10K points 50K points

1% noise 2% noise 1% noise 2% noise

CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

DGCNN 3.21 1.11 5.97 2.54 1.27 0.79 3.49 2.55

DGCNN+PCQA 3.20 1.11 5.77 2.41 1.14 0.71 2.96 2.11

DGCNNClean Point Cloud Noisy Point Cloud

Q
ua
dr
ic

St
ar

DGCNN+PCQA

P2M:0.14 P2M:3.80 P2M:2.28 P2M:1.89

P2M:0.31 P2M:4.33 P2M:2.24 P2M:1.63

10

0
P2M 

(× 104)

Fig. 9. Visual results on 50K resolution point clouds. The color of each point
in the point cloud represents its P2M, ranging from 0 to 100.

results indicate that the introduction of the hypergraph ensures

a consistently high performance. Among them, the optimal

settings for the number of neighbor vertices on the projected

image and point group are 4 and 1, respectively.

G. Computational Efficiency

For large-scale data such as point cloud, the computational

efficiency of PCQA metric is very important. We mainly

select NR-PCQA metrics for comparison, including 3D-NSS,

ResSCNN, PQANet and IT-PCQA. The computational time

and SRCC performance are shown in Fig. 8 where the av-

erage computational time for each point cloud is reported.

Projection-based methods tend to require more computational

time due to additional operations on the point cloud. ResSCNN

consumes the least computational time, while 3D-NSS con-

sumes the most. Our proposed method achieves optimal SRCC

performance while ensuring suboptimal computation time,

which further proves the superiority of our proposed method

in balancing computational efficiency and metric performance.

In addition, our method only requires 10 ms in average, which

is still able to achieve real-time inference.

H. PCQA for Benchmarking PC Denoising Algorithms

PCQA metrics can be used to extract quality-aware features

of point clouds and guide the optimization of PC denoising

algorithms. Here, we use DGCNN [92] as the baseline model

for PC denoising. Then, we additionally introduce intermediate

quality-aware features to improve the DGCNN model towards

a better PC denoising performance. We conduct verification

experiments on 20 different PCs. The experimental results are

shown in the Table X where lower values of Chamfer distance

(CD) and Point2Mesh distance (P2M) indicate fewer noises

and better quality. We can see that the additional quality-

aware features extracted by our proposed PCQA metric are

effective to promote the performance of PC denoising. The

visual results on two specific 50K-resolution point clouds

are also shown in Fig. 9. The results also demonstrate the

effectiveness of our newly introduced intermediate quality-

aware features learned by the guidance of our PCQA metric.

V. CONCLUSION

In this paper, we propose a novel DHCN for NR-PCQA.

The proposed method leverages the modeling capacity of

hypergraphs to capture high-order correlations between data

and constructs dynamic hypergraphs for point groups and pro-

jected images. It effectively harnesses the learning capability

of multimodal data and the non-linear correlations between

data, and ultimately improves the network performance. The

experimental results on several public point cloud subjective

quality databases demonstrate that the performance results

of our proposed DHCN are significantly better than state-

of-the-art PCQA methods, providing compelling evidence of

its effectiveness. Furthermore, the ablation study verifies the

rationality and effectiveness of the proposed network compo-

nents and architecture. Additionally, while using hypergraphs

can obtain performance gains, it also increases computational

complexity. In future works, we will further explore more

efficient hypergraph learning methods to facilitate PCQA.
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