11 research outputs found

    Dynamic recruitment of resting state sub-networks

    Get PDF
    Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our understanding of RSN dynamics. We describe a methodology which exploits the direct nature and high temporal resolution of magnetoencephalography (MEG). This technique, which builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct (electrophysiological) measurement of dynamic functional networks. Our results show that, when functional connectivity is assessed in small time windows, the canonical sensorimotor network can be decomposed into a number of transiently synchronising sub-networks, recruitment of which depends on current mental state. These rapidly changing sub-networks are spatially focal with, for example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The likely interpretation is that the larger canonical sensorimotor network most often seen in neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the spatial, temporal and spectral signature of the human connectome in health and disease

    Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure

    No full text
    Resting state networks (RSNs) are sets of brain regions exhibiting temporally coherent activity fluctuations in the absence of imposed task structure. RSNs have been extensively studied with fMRI in the infra-slow frequency range (nominally <10(-1) Hz). The topography of fMRI RSNs reflects stationary temporal correlation over minutes. However, neuronal communication occurs on a much faster time scale, at frequencies nominally in the range of 10(0)-10(2) Hz. We examined phase-shifted interactions in the delta (2-3.5 Hz), theta (4-7 Hz), alpha (8-12 Hz) and beta (13-30 Hz) frequency bands of resting-state source space MEG signals. These analyses were conducted between nodes of the dorsal attention network (DAN), one of the most robust RSNs, and between the DAN and other networks. Phase shifted interactions were mapped by the multivariate interaction measure (MIM), a measure of true interaction constructed from the maximization of imaginary coherency in the virtual channels comprised of voxel signals in source space. Non-zero-phase interactions occurred between homologous left and right hemisphere regions of the DAN in the delta and alpha frequency bands. Even stronger non-zero-phase interactions were detected between networks. Visual regions bilaterally showed phase-shifted interactions in the alpha band with regions of the DAN. Bilateral somatomotor regions interacted with DAN nodes in the beta band. These results demonstrate the existence of consistent, frequency specific phase-shifted interactions on a millisecond time scale between cortical regions within RSN as well as across RSNs. (c) 2013 Elsevier Inc. All rights reserved

    Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods

    Get PDF
    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5mm) spatial resolution and excellent (~1ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including i) projection of MEG data into source space, ii) removing confounds introduced by the MEG inverse problem and iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease

    Detecting large-scale networks in the human brain using high-density electroencephalography

    Get PDF
    High‐density electroencephalography (hdEEG) is an emerging brain imaging technique that can be used to investigate fast dynamics of electrical activity in the healthy and the diseased human brain. Its applications are however currently limited by a number of methodological issues, among which the difficulty in obtaining accurate source localizations. In particular, these issues have so far prevented EEG studies from reporting brain networks similar to those previously detected by functional magnetic resonance imaging (fMRI). Here, we report for the first time a robust detection of brain networks from resting state (256‐channel) hdEEG recordings. Specifically, we obtained 14 networks previously described in fMRI studies by means of realistic 12‐layer head models and exact low‐resolution brain electromagnetic tomography (eLORETA) source localization, together with independent component analysis (ICA) for functional connectivity analysis. Our analyses revealed three important methodological aspects. First, brain network reconstruction can be improved by performing source localization using the gray matter as source space, instead of the whole brain. Second, conducting EEG connectivity analyses in individual space rather than on concatenated datasets may be preferable, as it permits to incorporate realistic information on head modeling and electrode positioning. Third, the use of a wide frequency band leads to an unbiased and generally accurate reconstruction of several network maps, whereas filtering data in a narrow frequency band may enhance the detection of specific networks and penalize that of others. We hope that our methodological work will contribute to rise of hdEEG as a powerful tool for brain research.Funding Information: - Chinese Scholarship Council. Grant Number: 201306180008 - Swiss National Science Foundation. Grant Number: 320030_146531 and P1EZP3_165207 - Seventh Framework Programme European Commission. Grant Number: PCIG12‐334039 - KU Leuven Special Research Fund. Grant Number: C16/15/070 Research Foundation Flanders (FWO). Grant Number: G0F76.16N and G0936.16

    Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity

    Get PDF
    The topic of functional connectivity in neuroimaging is expanding rapidly and many studies now focus on coupling between spatially separate brain regions. These studies show that a relatively small number of large scale networks exist within the brain, and that healthy function of these networks is disrupted in many clinical populations. To date, the vast majority of studies probing connectivity employ techniques that compute time averaged correlation over several minutes, and between specific pre-defined brain locations. However, increasing evidence suggests that functional connectivity is non-stationary in time. Further, electrophysiological measurements show that connectivity is dependent on the frequency band of neural oscillations. It is also conceivable that networks exhibit a degree of spatial inhomogeneity, i.e. the large scale networks that we observe may result from the time average of multiple transiently synchronised sub-networks, each with their own spatial signature. This means that the next generation of neuroimaging tools to compute functional connectivity must account for spatial inhomogeneity, spectral non-uniformity and temporal non-stationarity. Here, we present a means to achieve this via application of windowed canonical correlation analysis (CCA) to source space projected MEG data. We describe the generation of time–frequency connectivity plots, showing the temporal and spectral distribution of coupling between brain regions. Moreover, CCA over voxels provides a means to assess spatial non-uniformity within short time–frequency windows. The feasibility of this technique is demonstrated in simulation and in a resting state MEG experiment where we elucidate multiple distinct spatio-temporal-spectral modes of covariation between the left and right sensorimotor areas

    Aberrant MEG multi-frequency phase temporal synchronization predicts conversion from mild cognitive impairment-to-Alzheimer's disease

    Get PDF
    Many neuroimaging studies focus on a frequency-specific or a multi-frequency network analysis showing that functional brain networks are disrupted in patients with Alzheimer's disease (AD). Although those studies enriched our knowledge of the impact of AD in brain's functionality, our goal is to test the effectiveness of combining neuroimaging with network neuroscience to predict with high accuracy subjects with mild cognitive impairment (MCI) that will convert to AD. In this study, eyes-closed resting-state magnetoencephalography (MEG) recordings from 27 stable MCI (sMCI) and 27 progressive MCI (pMCI) from two scan sessions (baseline and follow-up after approximately 3 years) were projected via beamforming onto an atlas-based set of regions of interest (ROIs). Dynamic functional connectivity networks were constructed independently for the five classical frequency bands while a multivariate phase-based coupling metric was adopted. Thus, computing the distance between the fluctuation of functional strength of every pair of ROIs between the two conditions with dynamic time wrapping (DTW), a large set of features was extracted. A machine learning algorithm revealed 49 DTW-based features in the five frequency bands that can distinguish the sMCI from pMCI with absolute accuracy (100%). Further analysis of the selected links revealed that most of the connected ROIs were part of the default mode network (DMN), the cingulo-opercular (CO), the fronto-parietal and the sensorimotor network. Overall, our dynamic network multi-frequency analysis approach provides an effective framework of constructing a sensitive MEG-based connectome biomarker for the prediction of conversion from MCI to Alzheimer's disease

    Aberrant MEG multi-frequency phase temporal synchronization predicts conversion from mild cognitive impairment-to-Alzheimer's disease

    Get PDF
    Many neuroimaging studies focus on a frequency-specific or a multi-frequency network analysis showing that functional brain networks are disrupted in patients with Alzheimer's disease (AD). Although those studies enriched our knowledge of the impact of AD in brain's functionality, our goal is to test the effectiveness of combining neuroimaging with network neuroscience to predict with high accuracy subjects with mild cognitive impairment (MCI) that will convert to AD. In this study, eyes-closed resting-state magnetoencephalography (MEG) recordings from 27 stable MCI (sMCI) and 27 progressive MCI (pMCI) from two scan sessions (baseline and follow-up after approximately 3 years) were projected via beamforming onto an atlas-based set of regions of interest (ROIs). Dynamic functional connectivity networks were constructed independently for the five classical frequency bands while a multivariate phase-based coupling metric was adopted. Thus, computing the distance between the fluctuation of functional strength of every pair of ROIs between the two conditions with dynamic time wrapping (DTW), a large set of features was extracted. A machine learning algorithm revealed 49 DTW-based features in the five frequency bands that can distinguish the sMCI from pMCI with absolute accuracy (100%). Further analysis of the selected links revealed that most of the connected ROIs were part of the default mode network (DMN), the cingulo-opercular (CO), the fronto-parietal and the sensorimotor network. Overall, our dynamic network multi-frequency analysis approach provides an effective framework of constructing a sensitive MEG-based connectome biomarker for the prediction of conversion from MCI to Alzheimer's disease

    Excitatory-inhibitory balance in children with 22q11.2 deletion syndrome

    Get PDF
    22q11.2 deletion syndrome (22q11.2DS) is a copy number variant syndrome affecting approximately 1 in 4000 live births. It has a variable phenotype in terms of its physical, cognitive and psychiatric manifestations. People with 22q11.2DS have a range of cognitive difficulties. They also have extremely high rates of psychopathology, particularly attention deficit hyperactivity disorder, autism spectrum disorder, anxiety disorders and psychotic disorders. The mechanisms underlying the risks of cognitive impairment and psychopathology are not wellunderstood. The balance between excitation and inhibition in the brain may be affected in 22q11.2DS and could underlie its cognitive and psychiatric features. In this thesis markers of excitatory-inhibitory (E-I) balance were investigated in children with 22q11.2DS (probands) and typically developing children (controls). It was hypothesised that probands would have alterations in E-I balance and that the severity of these alterations would be associated with cognitive and psychiatric features. The phenotypes of children taking part in the brain imaging study was first compared to those of children who did not participate in brain imaging to assess the representativeness of the imaging sample. Resting-state brain networks and visually-induced gamma oscillations were then investigated using magnetoencephalography (MEG) and gamma-amino-butyric acid (GABA) concentrations were investigated using magnetic resonance spectroscopy (MRS). Between-group comparisons were performed and the relationships between markers of E-I balance, psychopathology and cognitive impairment were explored using linear regression. The phenotypes of children with 22q11.2DS who participated in brain imaging were broadly similar to those who did not participate, suggesting that the imaging sample does not represent a highly-functioning subsample. Compared with controls, probands had alterations in resting-state networks in the delta, alpha and beta bands which were associated with anxiety, social communication problems and cognitive deficits. In the gamma band, there were reductions in the total induced gamma power in probands, which was similarly associated with social communication and cognitive difficulties. There were no alterations in GABA concentrations in 22q11.2DS, suggesting that further work is needed to better understand the mechanisms underlying excitatory-inhibitory imbalance in 22q11.2DS
    corecore