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ABSTRACT 
 
The human brain can be divided into multiple areas, each responsible for different aspects of 

behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in 

recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this 

paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a 

technique capable of imaging electrophysiological brain activity with good (~5mm) spatial resolution 

and excellent (~1ms) temporal resolution. The rich information content of MEG facilitates many 

disparate measures of connectivity between spatially separate regions and in this paper we discuss a 

single metric known as power envelope correlation. We review in detail the methodology required 

to measure power envelope correlation including i) projection of MEG data into source space, ii) 

removing confounds introduced by the MEG inverse problem and iii) estimation of connectivity 

itself. In this way, we aim to provide researchers with a description of the key steps required to 

assess envelope based functional networks, which are thought to represent an intrinsic mode of 

coupling in the human brain. We highlight the principal findings of the techniques discussed, and 

furthermore, we show evidence that this method can probe how the brain forms and dissolves 

multiple transient networks on a rapid timescale in order to support current processing demand. 

Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into 

network coordination and is proving to be of significant value in elucidating the neural dynamics of 

the human connectome in health and disease. 
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1) INTRODUCTION: 

Magnetoencephalography (MEG; Cohen, 1968, 1972) is a non-invasive technique to image electrical 

activity in the human brain, based upon assessment of the changes in magnetic field induced by 

synchronised neural current flow. These magnetic fields are of order ~10-14 T in magnitude, but are 

detectable using superconducting quantum interference devices (SQUIDs; Zimmerman et al., 1970; 

Hämäläinen et al., 1993). The fundamental principle is to place an array of detectors around the 

head and measure moment-to-moment changes in the spatial topography of the extra-cranial 

magnetic fields. Appropriate mathematical modelling of these field data facilitates reconstruction of 

a set of 3-dimensional current density images, which depict spatio-temporal changes in neuro-

electrical activity across the brain volume, while a subject undertakes some mental task. The last 

decade has seen MEG technology ‘come of age'; this is in part fuelled by improved hardware 

(modern MEG systems now allow whole head coverage with in excess of 300 detectors). However, 

equally important has been a marked improvement in the utility of modelling algorithms that are 

available to mathematically model MEG data, and a rapid enhancement of computer processing 

power, which is required to deal with the vast data generated. MEG systems, alongside advanced 

modelling strategies, now facilitate metrics of brain activity with unprecedented spatiotemporal 

accuracy, which are allowing novel insights into human brain function in health and disease. The 

data recorded by MEG systems are dominated by “neural oscillations”, which comprise periodic 

signals in the 1-200 Hz frequency range and are generated by rhythmic electrical activity 

synchronised across neuronal assemblies. Oscillatory effects of this nature were first reported by 

Berger in 1924 (Berger, 1929), who measured the electric field at the scalp surface and noted the 

existence of an 8-13 Hz “alpha” rhythm. Further prominent frequency ranges have since been 

identified including the delta (1-4 Hz), theta (4-8 Hz), beta (13-30 Hz) and gamma (30-200 Hz) bands. 

These spontaneous rhythms are present even when the brain is apparently at rest (i.e. when a 

subject is asked to “do nothing”). For many years such effects were considered “brain noise” with 

little or no relevance to neural computation. However more recently it has been suggested that 

oscillations may play an important role in co-ordinating brain activity, with subtle and focal changes 

in oscillatory dynamics being linked to stimulus presentation (Stevenson et al., 2011), attentional 

shifts (Bauer et al., 2014) and task performance (Puts et al., 2011).  

 

Recent years have seen a paradigm shift in functional neuroimaging following the discovery that 

spontaneous brain “activity” (i.e. brain activity recorded when a subject isn’t apparently doing 

anything) contains meaningful spatio-temporal structure. The first demonstrations of such structure 

were generated using functional magnetic resonance imaging (fMRI; Biswal et al., 1995) and 
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positron emission tomography (PET; Raichle et al., 2001) The primary finding showed that, even in 

the absence of a task, brain activity measured in spatially separate, functionally specific, regions 

exhibits temporal correlation. Such statistical interdependencies, now termed functional 

connectivity, allowed for elucidation of spatial patterns showing networks of brain regions that 

appear to work in concert. The principal observation is that the brain contains a relatively small set 

of “resting state networks” (RSNs). Some RSNs are associated with sensory processing (e.g. the visual 

or sensorimotor networks) whilst others appear to support attention and cognition (e.g. the dorsal 

attention or default mode networks). What is clear is that these patterns are important for healthy 

brain function and abnormal in disease. RSN structure and function has been predominantly 

investigated using fMRI. However the link between neural oscillations and co-ordination of brain 

activity led a number of groups to hypothesise that neural oscillations are an intrinsic mode of 

electrophysiological coupling between regions (Schnitzler and Gross, 2005; Schoffelen and Gross, 

2009; Engel et al., 2013). Indeed, MEG based assessment of functional connectivity has been 

achieved by a number of groups, based upon measurement of oscillations (Tass et al., 1998; 

Ioannides et al., 2000; Gross et al., 2001; Gross et al., 2002; Jerbi et al., 2007; Gow et al., 2008; 

Brookes et al., 2011b; Hipp et al., 2012; Brookes et al., 2012a; Luckhoo et al., 2012; Marzetti et al., 

2013; Tewarie et al., 2013; Baker et al., 2014; O'Neill et al., 2015). The high information content of 

MEG signals means that functional connectivity can be derived in many different ways (see 

Scholvinck et al., 2013 for a review) and whilst a number of types of coupling have become 

prominent, two in particular have become popular. The first arises from a fixed phase relationship 

between band-limited oscillatory signals (i.e. phase synchronisation); the second is the result of 

synchronisation between the amplitude envelopes of band limited oscillations (see Figure 1). 

Envelope based coupling has shown that spatial patterns, with similar topography to fMRI based 

RSNs, can be generated using MEG - this finding has now been verified by a number of groups (Liu et 

al., 2010; de Pasquale et al., 2010; Brookes et al., 2011a; Brookes et al., 2011b; Hipp et al., 2012; 

Luckhoo et al., 2012; Brookes et al., 2012a; Hall et al., 2014; Hall et al., 2013; Wens et al., 2014a; 

Hipp and Siegel, 2015).  

 

MEG has distinct advantages for the characterisation of RSNs when compared to other imaging 

methods. Firstly, by assessing electrophysiological changes, MEG facilitates a more direct inference 

on neuro-electrical processes compared with modalities such as fMRI, which measure only 

metabolic consequences of electrical activity. This is particularly important given the evidence that 

neural oscillations might represent an intrinsic physiological process by which connectivity is 

mediated. Secondly, the richness of the MEG signal offers the potential to uncover a hierarchy of 
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functional connections across a range of spatial and temporal scales; these include the phase and 

envelope connectivity metrics mentioned above which may occur within different frequency ranges, 

and also cross frequency (Florin and Baillet, 2015) and nonlinear (Wibral et al., 2014) coupling 

mechanisms. Finally, a shift in connectivity research towards assessment of transient coupling 

(Hutchison et al., 2013) (i.e. functional networks that form and dissolve over short (even sub-second) 

time frames) means that MEG, which exhibits millisecond temporal resolution, offers natural 

advantages over fMRI where the measured blood oxygenation level dependent (BOLD) 

haemodynamic signal has a temporal resolution of around 5 s. These arguments, coupled with good 

spatial resolution of MEG, which can be 5mm or better in brain regions with a high signal to noise 

ratio (SNR) (Troebinger et al., 2014), suggest that it should be a method of choice for investigation of 

the human connectome. However, a number of significant technical challenges exist, in particular 

the MEG inverse problem (inferring 3D distributions of moment to moment change in neural current 

based only on extra cranial magnetic fields) is ill posed (Hadamard, 1902). This means that estimated 

timecourses of brain current at spatially separate regions are not necessarily independent. As a 

result, estimated functional connectivity between regions can be artefactually inflated. This 

significant confound makes connectivity modelling using MEG non-trivial. 

 

 

Figure 1: Schematic diagram of phase and envelope based connectivity analyses based upon neural oscillations. A) Envelope 

coupling is based upon correlation between the oscillatory envelopes of two band limited sources. B) Phase coupling seeks a 

constant phase lag between signals, in this case a difference of π.  

 

In this article, we aim to provide a technical review on the use of MEG as a way to quantify 

functional connectivity in the human brain. We choose to focus our article on envelope correlation 

since i) it exhibits close correspondence with fMRI based RSNs and ii) phase based measurements 

have been reviewed previously (Schnitzler and Gross, 2005; Scholvinck et al., 2013; Engel et al., 

2013). The reader should note however that in focussing on envelope methods we do not 

undermine the importance of phase based coupling metrics. It is also worth noting that whilst we 
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focus on MEG, the methodology here is (in theory) compatible with electroencephalography (EEG). 

In what follows, section 2 introduces the advantages of source space modelling over sensor space 

methods and describes mathematical means by which source space projection is achieved. Section 3 

introduces the problems of artefactual connectivity generated as a result of the inverse problem, 

and section 4 discusses possible solutions.  Section 5 reviews current literature on envelope based 

networks in MEG and their concordance with other imaging modalities. Finally, section 6 shows how 

MEG allows insight into rapidly evolving network dynamics.  

  

2) FROM SENSOR TO SOURCE SPACE 

The magnetic fields that form the basis of MEG are measured using ~300 discrete detectors placed 

~2cm from the scalp surface. It is possible to undertake functional connectivity analysis in “sensor 

space” via assessment of correlation between signals measured at separate detectors. However, this 

comes with two distinct disadvantages: 

i) Field spread: The spatial extent of magnetic fields around a current dipole means that 

multiple sensors will detect signals from a single source (analogous to volume 

conduction in EEG). This is well known (Nunez and Srinivasan, 2006; Schoffelen and 

Gross, 2009b) and means that a single MEG sensor records a complex mixture of signals 

generated by many sources, making connectivity assessment between sensors difficult 

to interpret (see Figure 2A). 

ii) Interference: The magnetic fields generated by the brain are smaller than those 

generated by external environmental interference (e.g. 50/60 Hz mains electricity). In 

addition, biological interference, for example from the heart, is larger than the 

neuromagnetic fields of interest. Interference typically affects many MEG sensors, and 

hence is highly likely to artificially increase functional connectivity which is calculated as 

statistical dependency between sensors.  

The limitations with sensor space analysis are well documented (Schoffelen and Gross, 2009). Whilst 

highly successful and meaningful connectivity analyses have been undertaken in this way (Stam, 

2004; Bassett et al., 2006; Liu et al., 2010), the inference is usually based on a global parameter (i.e. 

an integrated measure of global connectivity collapsed across all possible sensor pairs). This means 

that sensor analysis provides only limited means of interpreting precisely which brain regions or 

networks are involved. 

 

The most successful means to ameliorate the confounds of sensor based connectivity analysis is to 

apply source space modelling (Schoffelen and Gross, 2009). This essentially involves mathematically 
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reconstructing the timecourses of electrical activity across many locations (voxels (Hipp et al., 2012) 

or parcellated regions (Tewarie et al., 2014b)) in the brain prior to assessment of connectivity 

between signals reconstructed at those locations. As noted in our introduction, there has been rapid 

progress in this area over recent years and, despite the fact that this projection is mathematically ill 

posed, there now exists verifiable ways by which to achieve accurate spatial localisation of neural 

sources. These methods have been reviewed at length in previous papers (Hillebrand et al., 2005; 

Greenblatt et al., 2005; Sekihara and Nagarajan, 2008); here we describe a single framework known 

as beamforming, that has become popular for use with MEG connectivity measurements (Van 

Drongelen et al., 1996; Van Veen et al., 1997; Robinson and Vrba, 1998; Gross et al., 2001; Brookes 

et al., 2008). 

 

Beamforming is a spatial filtering approach to inverse modelling. The electrical activity, 𝑞̂𝜽(𝑡), for a 

given dipole location and orientation, 𝜽, somewhere in the brain, is estimated as a weighted sum of 

the magnetic field data, 𝒃(𝑡). If 𝒃(𝑡) is an 𝑁 × 1 vector of magnetic field measurements recorded at 

all N MEG sensors at time t, then mathematically, 

𝑄̂𝜽(𝑡) =  𝒘𝜽
𝑇𝒃(𝑡),         (1) 

where 𝒘𝜽 represents an 𝑁 ×  1 vector of weighting parameters tuned to 𝜽. Note that most inverse 

solutions can be formulated in this way (Sekihara and Nagarajan, 2008), and they differ only in the 

way the weights, 𝒘𝜽 are derived. In beamforming, the weights are derived based on power 

minimisation: we spatially filter unwanted signals by minimising the total power in the output signal, 

with the linear constraint that the power from the target location/orientation, 𝜽, remains. 

Mathematically: 

min𝒘𝜽
[𝐸〈𝑄̂𝜽

2〉]  subject to 𝒘𝜽
𝑇𝒍𝜽 = 1       (2) 

where 𝐸〈𝑄̂𝜽
2〉 is the expectation value of reconstructed power 𝑄̂𝜽

2. 𝒍𝜽 is known as the forward vector 

and contains a model of the magnetic fields that would be measured if there was a unit current at 𝜽. 

The forward vector can be generated analytically using Maxwell’s Equations and the linear constraint 

(𝒘𝜽
𝑇𝒍𝜽 = 1, which is a simple consequence of the definition of the forward solution) ensures unit 

gain at 𝜽. The source power, 𝐸〈𝑄̂𝜽
2〉 =  𝐸〈𝒘𝜽

𝑇〈𝒃(𝑡)𝒃(𝑡)𝑇〉𝒘𝜽〉 can be approximated as 𝐸〈𝑄̂𝜽
2〉 =

 𝒘𝜽
𝑇𝑪 𝒘𝜽, where 𝑪 represents the N x N data covariance matrix, whose 𝑖𝑗th element indexes the 

covariance between channels 𝑖 and 𝑗. Equation 2 can be rewritten, 

min𝒘𝜽
[𝒘𝜽

𝑇𝑪 𝒘𝜽]  subject to 𝒘𝜽
𝑇𝒍𝜽 = 1,       (3) 

which can be solved to give 

𝒘𝜽
𝑇 =  

𝒍𝜽
𝑇𝑪−𝟏

𝒍𝜽
𝑇𝑪−𝟏𝒍𝜽

.          (4) 
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Sequential application of Equations 1 and 4 to all locations and orientations of interest in the brain 

allows for reconstruction of timecourses of electrical activity at those locations. Subsequent 

calculation of connectivity between regional timecourses can then be undertaken.  

 

 

Figure 2: Beamforming. A) Schematic diagram showing the fundamental principle of beamforming. The left hand plot 

shows a set of sensor space magnetic fields which can be turned into source space estimates of neural current via 

application of the beamformer algorithm. B) An example of interference rejection by beamforming. The four plots show 

correlation between the measured electrocardiogram and MEG data. The pink lines show correlation at the sensor level 

whereas the blue lines show correlation at the source level. The separate plots show different brain locations – the source 

space analysis was undertaken at brain locations indicated by the red markers. The sensor space analysis at the 5 nearest 

sensors with the largest magnitude forward vectors  for a ROI. Note the excellent reduction in cardiac interference afforded 

by beamforming. 

 

Source localisation, in part, overcomes the limitations of sensor space measurements. Firstly, it 

allows results to be formed in source space and overlaid directly onto structural brain images, thus 

allowing direct interpretation of connectivity with respect to anatomy (see Figure 2A). Secondly, 

source space projection offers an improved signal to noise ratio: this is true of all source localisation 

algorithms, but beamforming is particularly efficient at rejecting interference (Sekihara et al., 2001; 
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Sekihara et al., 2006). At a basic level, the spatial topography of interference does not resemble the 

spatial topography of a neural source. The minimisation term in Equations 2 and 3 acts to minimise 

all signals other than those exhibiting a specific source pattern, 𝒍𝜽. This means that the artefacts 

with spatial topographies orthogonal to 𝒍𝜽 can be supressed significantly.  

 

Figure 2B shows an example of interference rejection via beamforming. Here, 600 s of MEG data 

have been recorded from a single subject using a 275 channel CTF MEG system (MISL, Coquitlam, BC, 

Canada). In addition, the subject’s electrocardiogram (ECG) has been recorded concurrently. The 

magnetic fields generated by the heart are well known to affect MEG data and here the effect of this 

on sensor space and source space signals has been calculated. The four plots in Figure 2B show 

correlation between the ECG and MEG data, plotted as a function of frequency. The pink lines show 

correlation at the sensor level whereas the blue lines show correlation at the source level after 

reconstruction, via beamforming, at the locations shown by the red markers. The separate plots 

show the four different locations. Sensor space analysis was undertaken at the 5 sensors 

corresponding to the largest absolute elements of the forward vectors from the chosen source space 

locations, with results averaged over sensors. This example shows clearly the effectiveness of 

beamforming as an interference rejection methodology: frequency filtered MEG data correlates 

relatively highly at the sensor level with the (equivalently filtered) ECG. This is particularly true in the 

low (delta and theta) frequency bands where, correlation coefficients are as high as 0.6. However 

when moving into source space, these correlation coefficients are reduced to < 0.1 across all 

frequency bands and locations studied. This interference rejection is of significant utility; if common 

mode signals are allowed to interfere with MEG signals from separate locations, then artefactual 

connectivity will necessarily result. By reducing this interference, source space estimates of 

connectivity are likely to be more accurate reflections of true coupling between regions.  

 

It is important to note that although beamforming has been discussed here, other source 

localisation techniques are available and equally valid for functional connectivity analysis. For 

example, Minimum Norm Estimators (MNE; (Hamalainen and Ilmoniemi, 1994; Fuchs et al., 1999; 

Dale et al., 2000; Pascual-Marqui, 2002) have been used extensively and successfully in many 

connectivity studies (de Pasquale et al., 2010; Palva et al., 2010; Marzetti et al., 2013; Wens et al., 

2014b) and in some cases offer advantages over beamforming. Specifically, it is well known that 

beamforming supresses spatially separate but temporally correlated sources and, in principle, this 

may confound connectivity metrics. For example, multiple studies have shown that beamforming 

fails to reconstruct bilateral auditory steady state evoked sources (Dalal et al., 2006; Brookes et al., 
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2007; Popescu et al., 2008; Diwakar et al., 2011) due to correlation between signals generated in 

opposite hemispheres. Such a failure in reconstruction would clearly lead to artefactual task induced 

auditory connectivity estimates, and may also impact upon resting state investigations. In such cases 

MNE would prove advantageous since it is able to reconstruct correlated sources. This said, it should 

be noted that for beamformer suppression to take place, zero time lagged correlation must exist 

between source signals. In fact, zero-time-lag correlated signals potentially reflect source leakage 

(see below). Therefore it follows that, rather than the beamformer suppression of correlated 

sources acting as a confound, it may act in a positive way to supress artefacts. (See also section 3: 

Signal Leakage in Source Space for more details). 

 

Although there are subtle advantages and disadvantages to different inverse methodologies, in 

practice there is similarity between functional networks generated using the same data with 

different underlying source localisation approaches. Figure 3 shows example results, with functional 

networks generated using resting state MEG data from 9 subjects (600 seconds of data per subject). 

Data were frequency filtered in the beta (13-30 Hz) band and sources were reconstructed using both 

beamformer and MNE at the vertices of an isotropic 8mm grid across the brain. Amplitudes of the 

signals were calculated, downsampled to 1 Hz, and analysed using temporal independent 

component analysis (tICA) to generate envelope networks. ICs were matched using Pearson 

correlation to identify which BF and MNE components were the most similar in time (rT). Figure 3 

shows ICs with the highest rT values. Results show clear similarity in terms of spatial topography, 

which is reflected in their high spatial correlations (rS). This implies that, whilst different inverse 

methods may offer specific advantages, resulting network patterns can be highly similar. 

 

 

Figure 3: Beamforming and minimum norm derived networks from the same MEG data. Spatial topographies of 3 networks 

(Visual, Motor and Fronto-Parietal) are shown. Networks were identified using ICA and matched by temporal correlation of 

IC timecourses (O'Neill et al., 2013). Note the similarity across the two inverse methods.  
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3) SIGNAL LEAKAGE IN SOURCE SPACE 

Despite the advantages of source space estimation, a significant problem remains, which is typically 

termed “signal leakage”. The ill-posed nature of the MEG inverse problem causes a degree of spatial 

blurring in source space reconstruction. This means that a single point source will appear to spread 

across a finite volume. In addition to this spread, it is also possible for sources to be mislocalised, for 

example due to inaccuracies in modelling the forward vector or deviation from the assumptions 

driving the inverse model. These effects mean that if two independent sources, whose orthogonal 

timecourses are described by 𝒒1 and 𝒒2, are reconstructed via beamforming, the resultant 

estimated timecourses 𝒒̂1 and 𝒒̂2 may no longer be orthogonal. In other words, signals originating 

from one brain location can “leak" into the estimated signals from a separate brain region. This can 

lead to spurious functional connectivity estimates and so it is of significant importance to measure, 

and if possible eliminate, the likely effects of signal leakage before assessing functional connectivity. 

 

In order to better understand the leakage effect, a simple analytical analysis proves helpful. Consider 

a case of two sources: 𝒒1 is of dimension 1 ×  𝑃 and represents the timecourse from a test location, 

𝒓1. 𝒒2 is also of dimension 1 ×  𝑃 and represents the timecourse at a seed location, 𝒓2. 𝑃 denotes 

the number of time samples in the data. Assume that 𝒒1 and 𝒒2 are completely independent 

sources so that 
1

𝑃
𝒒1𝒒2

𝑇 = 0 (i.e. the covariance calculated between the two sources is zero). If we 

assume that there are no other electrophysiological sources in the brain, then the 𝑁 × 𝑃 matrix of 

MEG data can be described as 

𝒎 =  𝒍1𝒒1 + 𝒍2𝒒2 + 𝒆,         (5) 

where 𝒍1 and 𝒍2 (both dimension 𝑁 × 1) represent the forward vectors for sources 𝒒1 and 𝒒2 

respectively. 𝒆 has dimension 𝑁 × 𝑃 and represents sensor noise. We can now employ a 

beamformer to reconstruct an estimate of 𝒒1. Using Equation 1, 

𝒒̂1 = 𝒘1
𝑇𝒎          (6) 

where 𝒘1 represents the beamformer weights vector for location 𝒓1. Substituting for the MEG data 

using Equation 5, and noting the linear constraint for beamformer weights that 𝒘1
𝑻𝒍1 = 1, 

𝒒̂1 =  𝒘1
𝑻𝒍1𝒒1 + 𝒘1

𝑻𝒍2𝒒2 = 𝒒1 + 𝒘1
𝑻𝒍2𝒒2.      (7) 

This means that the beamformer reconstruction for source 1 is only independent of source 2, if 

𝒘1
𝑻𝒍2 = 0. A similar argument can be made so that the beamformer reconstruction of source 2 is: 

𝒒̂2 =  𝒒2 + 𝒘2
𝑻𝒍1𝒒1.           (8) 
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Given that the underlying true sources are independent (
1

𝑃
𝒒̂1𝒒̂2

𝑇 = 0), it follows that an estimate of 

the source leakage, s, can be generated by calculation of the covariance between reconstructed 

timecourses (i.e. 𝑠 =
1

𝑃
𝒒̂1𝒒̂2

𝑇). Simple substitution of Equations 7 and 8 gives: 

𝑠 = 𝒘2
𝑻𝒍1𝜐1 + 𝒘1

𝑻𝒍2𝜐2         (9) 

where 𝜐1 and 𝜐2 are the variances of 𝒒1 and 𝒒2 respectively. This analysis shows that, even in a two 

source simulation, the leakage term will only drop to zero if 𝒘2
𝑻𝒍1 = 0 and 𝒘1

𝑻𝒍2 = 0. In other words, 

the weights for source 1, and forward vector for source 2 must be orthogonal, and vice versa. It 

should be noted that this analysis assumes effectively zero noise (i.e. we have ignored 𝒆 in Equation 

5). The addition of sensor level noise will tend to reduce covariance between the beamformer 

estimated timecourses, and for this reason Equation 9 represents an upper limit on leakage. 

 

It proves instructive to extend this model in simulation. Our simulations were based on a two source 

model equivalent to that described above. In all cases a seed source (𝒒2) was placed approximately 

in the right primary sensorimotor cortex. 2781 iterations of the simulation were run, and on each 

iteration the test source (𝒒1) was simulated in a different voxel. Voxels were placed on an 8 mm 

cubic grid spanning the entirety of brain space. Dipole orientation was allowed to vary smoothly with 

position in order to mimic dipole orientations in real MEG data. The source magnitudes were 8 nAm 

and source timecourses were generated from a beamformer reconstruction of a resting state MEG 

experiment. Source timecourses were phase randomised (Prichard and Theiler, 1994) so as to have 

zero correlation between them. The geometry for the simulation was based upon a 275 channel CTF 

axial gradiometer MEG system (MISL, Coquitlam, BC, Canada) operating in third order synthetic 

gradiometer configuration. The location of the MEG sensors with respect to brain anatomy was 

based on a real experimental recording session. Two separate noise models were used, in case 1, 

sensor noise was drawn from a Gaussian random process (meaning noise was uncorrelated across 

sensors). In case 2, real MEG noise was employed (where interference is correlated across MEG 

sensors). This was generated via the recording of 300 s of real MEG data with no subject in the 

system. 

 

The results of this simulation are shown in Figure 4. Figure 4A shows images of the magnitude of 

leakage between the seed source, and test sources at all other locations. The upper panels show the 

analytical case (which reflects an upper limit on leakage based on Equation 9) whereas the lower 

panels show results from the actual simulation. The left hand panel shows Gaussian sensor noise 

whereas the right hand panel shows realistic noise. Note that in all cases source leakage is at its 

worst in brain areas adjacent to the seed. Note also that leakage worsens when using a realistic 
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noise model. Figure 4B shows equivalent leakage images for shallow (upper panel) and deep (lower 

panel) grey matter sources. It is clear that source leakage worsens for deeper sources due to their 

lower signal to noise ratio. Finally in Figure 4C the upper panel shows the relationship between the 

analytical model in Equation 9, and the actual simulation where the analytical model gives an upper 

limit on leakage. The lower panel of Figure 4C shows leakage magnitude as a function of Euclidian 

distance between the seed and test voxels. Note that even sources separated by as much as 5 cm 

can exhibit a large amount of signal leakage, which would significantly confound any attempt at 

functional connectivity analysis.  

 

 

Figure 4: Examples of source space signal leakage. A) Images showing the magnitude of leakage between a simulated source in the primary 

sensorimotor cortex (blue dot), and equivalent simulated sources placed at all other brain locations. The upper panels show the analytical 

worst-case scenario whereas the lower panels show results from the actual simulation. The left hand panel shows simulated Gaussian 

sensor level noise (i.e. the noise is uncorrelated across channels) whereas the right hand panel shows realistic noise (which is correlated 

across the channels). Note in all cases that source leakage is worst close to the seed and typically spreads asymmetrically around the seed. 

Note also that leakage worsens with a realistic noise model. B) Equivalent images for a shallow cortical source (upper panel) and a deep 

source (lower panel); leakage worsens for deeper sources which exhibit a lower signal to noise ratio. C) Upper panel shows the relation 

between the analytical model in Equation 9, and the actual simulation for every test voxel in the simulation; note the analytical model gives 

a “worst case scenario” regarding the leakage, which is reduced in the simulation via the addition of sensor level noise. The lower panel 

shows leakage magnitude as a function of Euclidian distance between the seed and the test voxels. 
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As shown by the above simulation, signal leakage differs depending on the brain area being studied, 

the signal to noise ratio of the data and the sensor level noise model. In addition, it depends on the 

inverse solution being used, and the number of dipoles active in the brain. As can be seen from the 

images in Figure 4A, the spatial profile of leakage is asymmetric around the seed location. 

 

4) REDUCING SIGNAL LEAKAGE AND CONNECTIVITY ESTIMATION 

Leakage reduction 

Over the last decade, a number of potential solutions to the source leakage problem have been 

proposed. Although separate methods have different modes of operation, they are all based on the 

observation that leakage generates inflated connectivity between estimated sources, which 

manifests as a zero-phase-lag correlation. Indeed this is shown by Equations 7 and 8, which imply 

that leakage results in a weighted addition of a distal source. Genuine connectivity, on the other 

hand, is more likely to incorporate a time lag, generated as electrical signals travel between different 

brain regions. This means that elimination of all zero-phase-lag correlations in source space should 

result in the elimination of leakage, albeit at the expense of a loss of genuine zero-phase-lag 

connectivity. As noted above, paradoxically the fact that beamforming supresses temporally 

correlated sources potentially aids in leakage reduction. However for such suppression to occur, 

sources must be highly correlated (r > ~0.7 – which is unlikely for anything other than driven steady 

state responses) and therefore even after beamforming, further steps must be taken if leakage 

artefacts are to be reduced. In phase based connectivity metrics (see Figure 1), leakage reduction 

methods usually circumvent zero-phase (and conversely 𝜋-phase) connections by assessing only the 

imaginary component of coherence between timecourses (Nolte et al., 2004; Nolte et al., 2008; 

Ewald et al., 2012; Marzetti et al., 2013) or by focusing on the asymmetry of the phase difference 

distribution (Stam et al., 2007; Vinck et al., 2011). In the current paper, our aim is to focus on 

envelope based metrics of connectivity. In such cases, different methodologies are employed to 

remove zero-phase-lag effects (Hipp et al., 2012; Brookes et al., 2012b; Maldjian et al., 2014; 

Brookes et al., 2014a; Colclough et al., 2015; O'Neill et al., 2015).  

 

Connectivity estimation via envelope correlation traditionally involves first band pass filtering the 

data to a frequency band of interest. Next, the envelope of the oscillations is generated via some 

non-linear transform and connectivity between regions is estimated by correlation between 

envelopes. However, in order to reduce leakage, an extra step must be employed whereby, prior to 

envelope computation, zero-phase-lag correlations in the underlying signal (i.e. the oscillations 

themselves) are removed via linear regression. Consider again two beamformer estimated 



15 

 

timecourses 𝒒̂1 and 𝒒̂2, representative of two underlying sources with a linear zero-phase-lag 

relationship caused by leakage. To mitigate the leakage, we remove a linear projection of the seed 

voxel, 𝒒̂2, from the test voxel 𝒒̂1. Mathematically we employ a general linear model so that 

𝒒̂1𝑀 = 𝒒̂1 − 𝛽𝒒̂2,         (10) 

where 𝛽 represents the effect size and relates directly to the magnitude of the leakage. 𝒒̂1𝑀 is the 

residual measurement, which represents our leakage-suppressed timecourse for the test location 

(i.e. 𝒒̂1𝑀 is the beamformer estimate of activity in 𝒒̂1, but with any linear dependence on 𝒒̂2 [i.e. 

leakage] removed). 𝛽 can be estimated as,  

𝛽̂ = 𝒒̂1𝒒̂2
+,          (11) 

where the superscript + denotes the Moore-Penrose pseudo-inverse. This method has been 

employed in several studies (Hipp et al., 2012; Brookes et al., 2012b; Maldjian et al., 2014; O'Neill et 

al., 2015) with a variety of implementations. One difference between implementations is that some 

studies assume stationarity (Brookes et al., 2012b), and perform a single leakage correction step for 

the whole dataset, whereas others propose a dynamic approach correcting small time-windows 

individually (Hipp et al., 2012; O'Neill et al., 2015). A second difference is that some studies perform 

leakage reduction between point locations (i.e. 𝒒̂1 and 𝒒̂2 are dimension 1 ×  𝑃), whereas others 

work in a multivariate framework for cluster based corrections (i.e. 𝒒̂1 and 𝒒̂2 are matrices 

containing timecourses from multiple voxels within two spatially distinct clusters; (Brookes et al., 

2014a)). In all cases, leakage reduction offers significantly improved connectivity estimates 

compared to uncorrected methods. 

 

Following leakage reduction, there are several ways in which the amplitude envelope of a signal can 

be found in order to compute connectivity. The most common is the Hilbert transform, which has 

been well documented in the electrophysiological literature (Tass et al., 1998; Le Van Quyen et al., 

2001; Freeman, 2004; Kiebel et al., 2005). Briefly, assuming a source reconstructed timecourse signal 

𝑞̂(𝑡), then its complex “analytic signal” is given by 

𝑧̂(𝑡) =  𝑞̂(𝑡) + 𝑖𝐻[𝑞̂(𝑡)],        (12) 

where H is the Hilbert transform and is defined as, 

𝐻[𝑞̂(𝑡)] = 𝑃 [
1

𝜋
∫

𝑞̂(𝑢)

𝑡−𝑢
𝑑𝑢

∞

−∞
].        (13) 

𝑃 is the Cauchy principal value of the integral, which is necessary to account for the singularity which 

occurs when 𝑡 = 𝑢. The signal envelope is then given by 

𝐸(𝑞̂(𝑡)) = √(𝑞̂(𝑡))
2

+ (𝐻[𝑞̂(𝑡)])2.       (14) 
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Note that 𝐸(𝑞̂(𝑡)), is a non-linear and non-reversible transform of 𝑞̂(𝑡). The instantaneous phase 

data contained within 𝑞̂(𝑡), which can be obtained directly from the Hilbert transform as 𝑡𝑎𝑛(𝜙) =

𝐻[𝑞̂(𝑡)] 𝑞̂(𝑡)⁄ , is discarded by Equation 14 and is not used on envelope based connectivity metrics. 

In addition to the band-pass filter and Hilbert transform, there are several alternative methods 

which could be used, for example the continuous (Morlet) wavelet transform (Le Van Quyen et al., 

2001; Kiebel et al., 2005) or the S-transform (Stockwell et al., 1996). Following envelope calculation, 

connectivity can be estimated simply: if 𝑿 = 𝐸[𝒒̂1𝑀] is a 1 ×  𝑃 vector representing the envelope of 

the leakage corrected test source, and likewise 𝒀 = 𝐸[𝒒̂2] is a 1 ×  𝑃 vector representing the 

envelope of the seed source, connectivity can then be estimated as  

𝑟(𝑿, 𝒀) =  
𝑿𝒀𝑇

√𝑿𝑿𝑇√𝒀𝒀𝑇
,         (15) 

where 𝑿 and 𝒀 must be mean corrected. Note that Equation 15 simply represents a Pearson 

correlation coefficient computed between envelopes.  

 

Figure 5A shows an example of envelope based functional connectivity taken from a real MEG 

recording in a single subject. Five minutes of MEG data were recorded using a 275 channel MEG 

system (these data were first presented in (Brookes et al., 2012b), and this figure is reproduced with 

permission). The subject was asked to lie in the system and “think of nothing” whilst connectivity 

was assessed, over all time, between a seed location in left sensorimotor cortex and all other voxel 

locations in the brain. In the upper panel, connectivity was computed between the seed and all 

other test voxels with no leakage reduction applied. In the lower panel, leakage reduction has been 

employed using the method outlined above. In both cases, envelopes of beta band (13-30 Hz) 

oscillations were employed. It is clear that a functional network of brain regions exists in the data, 

with the beta band envelope in left motor cortex showing high levels of correlation with equivalent 

envelopes in homologous regions of right sensorimotor cortex. In addition, note the significant 

advantages afforded by the reduction in zero-phase-lag correlation. In the uncorrected case, regions 

showing high connectivity extend from the seed voxel towards the centre of the brain as well as into 

the left temporal lobe. The spatial profile of leakage is in good agreement with the simulation 

presented in Figure 4. This blurring around the seed location is reduced when applying leakage 

reduction. 

 

Despite the advantages of leakage reduction strategies, they have significant limitations, which 

should be discussed. Firstly, the regression method does not make the modified test timecourse, 

𝒒̂1M, a faithful reconstruction of the true source timecourse 𝒒1. In fact, the modified timecourse 

retains an element of leakage from 𝒒2. Only the magnitude of that leakage is altered, in such a way 
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as to ensure orthogonality between 𝒒̂1M and 𝒒̂2 (Brookes et al., 2014). Second, as noted above, the 

method also means the removal of true zero-phase connections; this is significant, particularly given 

that invasive recordings show significant genuine zero-phase-lag effects in the brain (Singer, 1999). 

Finally, for the regression method to work, the data need to be Gaussian distributed. This is 

highlighted in Figure 5B which shows results from a simple simulation. Two signals, 𝑿 and 𝒀, were 

generated as linear mixtures of independent timecourses, 𝑺1 and 𝑺2. The first mixture was defined 

as 𝑿 = 𝑺1 − 𝑘𝑺2 and the second as 𝒀 = 𝑺2 + 𝑘𝑺1. The parameter 𝑘 is a positive constant and 

controls the degree of leakage in the simulation; this was set to 0.2. Three separate simulations were 

undertaken in which 𝑺1 and 𝑺2 were drawn from a) Gaussian distributed noise b) leptokurtic noise 

(Gaussian3) and c) uniformly distributed platykurtic noise. Leakage reduction was applied to 𝒀 and 

the result should be zero correlation between timecourses following correction. A phase 

randomisation approach (Prichard and Theiler, 1994) was employed to test the significance of any 

non-zero correlation observed and the false positive count was calculated as the number of 

significant measures of correlation observed across 1000 iterations of the simulation. Results show 

clearly that if the underlying processes (𝑺1 and 𝑺2) are normally distributed, the false positive rate 

(FPR) follows the expected trend (black line). However, if 𝑺1 and 𝑺2 are either leptokurtic or 

platykurtic, leakage is poorly accounted for. Overall, the Gaussian assumption is reasonable; indeed 

it is an assumption at the heart of many of the source localisation methodologies employed in MEG. 

However situations exist where this is not the case, for example epileptic seizures (Prendergast et 

al., 2013) and for this reason care should be taken when deploying the regression method to correct 

for leakage. 
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Figure 5: A) An illustration of leakage correction. Top Panel: Envelope correlation in real data between a seed in right motor 

cortex and all other brain locations, prior to reduction of leakage. Bottom Panel: Envelope correlation for the same data, 

post leakage reduction. B) Results of a simulation characterising the effectiveness of linear regression as a technique for 

leakage reduction. Left: The statistical distributions used to generate the underlying independent timecourses 𝑆1 and 𝑆2. 

Right: The false positives detected and compared to the theoretical values. Note that only underlying Gaussian distributed 

data result in agreement between the calculated and theoretical false positive rates and the other distributions return false 

positives over 96% of the time. Panel A reproduced from (Brookes et al., 2014b). 

 

Finally, readers should note that the GLM based leakage reduction method is best deployed in 

pairwise assessments of functional connectivity. It works well for: 1) Calculation of functional 

connectivity between two spatially separated point locations. 2) Calculation of functional 

connectivity between two spatially separate voxel clusters (although a multivariate extension is 

required). 3) Computation of images showing functional connectivity between a seed location or 

cluster, and all other voxels in the brain (similar to those in Figure 5A). This said, there is a current 

trend in the neuroimaging literature to move towards “all-to-all” assessment of connectivity. This 

means that the brain is parcellated into 𝐷 regions, and electrophysiological timecourses are derived 
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on a region-by-region basis. Connectivity is then calculated between all region pairs in order to 

generate a 𝐷 × 𝐷 connectivity matrix (Hillebrand et al., 2012; Tewarie et al., 2014a). In such cases, 

to avoid leakage problems, no single region timecourse should exhibit any linear zero-phase-lag 

dependence on any other timecourse. In other words, all 𝐷 timecourses should be orthogonal to 

each other, prior to envelope calculation and connectivity estimation. Whilst the pairwise 

orthogonalisation method could, in principle, be deployed to achieve this (by the regression of every 

regional timecourse from every other regional timecourse) this brings about significant concerns 

regarding the order in which the regression is done. In these cases a much more elegant solution is 

to use the multivariate orthogonalisation procedure proposed recently by (Colclough et al., 2015). 

This method, based upon Löwdin's symmetrical orthogonalisation (Mayer, 2002; Lowdin, 1950), is 

able to reduce linear relations between multiple separate timecourses in one calculation. Although 

this might be considered a more ‘aggressive’ procedure (i.e. the resulting timecourses are further 

from the original beamformed data than might be the case for pairwise correction), this technique 

should be considered the method of choice for inter-regional all-to-all metrics of functional 

connectivity.  

 

5) ELECTROPHYSIOLOGICAL RSNs AND THEIR RELATIONSHIP TO EXISTING LITERATURE 

The pioneering work of (Biswal et al., 1995) showed, that even when the human brain is apparently 

at rest, meaningful spatial and temporal structure exists in functional imaging data. Specifically, 

Biswal et al. used fMRI to show that, if a blood oxygenation level dependent (BOLD) signal is 

extracted from left motor cortex, and correlated with voxel timecourses from every other brain 

region, the areas showing highest correlation were in homologous regions of right sensorimotor 

cortex. Since this time, the fMRI community have been responsible for a revolution in the way in 

which researchers approach neuroimaging. Indeed, using similar techniques with seed voxels placed 

at different cortical locations, multiple networks of connectivity have been robustly extracted from 

fMRI data (Corbetta, 1998; Raichle et al., 2001; Beckmann et al., 2005; Fox and Raichle, 2007; Fox et 

al., 2005; Smith et al., 2009; Deco et al., 2011). These networks have been shown to be core to the 

function of the human brain. Moreover, they are perturbed in a number of different diseases 

(Schnitzler and Gross, 2005; Kessler et al., 2014; Friston, 1998; Palaniyappan and Liddle, 2012); for 

example an important hypothesis underlying symptoms of schizophrenia is one of dysconnectivity 

between regions, and recent work has shown that the salience network (a commonly observed 

network of functional connectivity in fMRI which incorporates bilateral insula and cingulate cortices) 

is abnormal (both in structure and function) in schizophrenia patients (Palaniyappan and Liddle, 

2012). This is just one of a large number of observations implicating abnormal network structure or 
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function in diseases ranging from developmental disorders (Haneef et al., 2014; Kessler et al., 2014; 

Maccotta et al., 2013; Tomasi and Volkow, 2012) to neurodegeneration (Allen et al., 2007; Hacker et 

al., 2012; Grady et al., 2001; Wang et al., 2007; Hawellek et al., 2011; Leavitt et al., 2014).   

 

The disadvantage of fMRI based network connectivity estimates is that the BOLD response is a 

haemodynamic process and is therefore an indirect reflection of electrical brain activity. It exhibits 

limited temporal resolution since the changes in blood flow in response to evoked changes in brain 

activity, lags the electrical response by ~5-8 s. In addition, artefactual correlation between spatially 

separate regions could result purely from changes in haemodynamics. For example, changes in heart 

rate or respiration are known to evoke BOLD changes that are correlated across cortical regions and 

resemble, to a degree, functional networks (Birn, 2012; Murphy et al., 2013; Tong et al., 2015).  It 

therefore follows that significant advantages can be gained by moving to MEG, which bypasses the 

haemodynamic response and directly accesses the neural processes that are thought to play a core 

role in mediating connectivity. Even prior to the growth in functional connectivity analysis, there was 

a large body of work probing relationships between the haemodynamic response and changes in 

amplitude of neural oscillations. The primary finding is that good spatial correlation exists between 

haemodynamic and electrical oscillatory activity, across a broad range of frequencies (Logothetis et 

al., 2001; Singh et al., 2002; Moradi et al., 2003; Brookes et al., 2005; Mukamel et al., 2005; Winterer 

et al., 2007; Muthukumaraswamy and Singh, 2008; Zumer et al., 2010; Stevenson et al., 2011; 

Stevenson et al., 2012). In addition, there is a general trend for a negative relationship between 

BOLD and low (alpha and beta) frequency oscillations (i.e. when alpha and beta oscillations decrease 

in power, the BOLD response typically increases) and a concomitant positive correlation between 

BOLD and high frequency (gamma band) oscillations (Zumer et al., 2010; Mukamel et al., 2005; Hall 

et al., 2014). These relationships are primarily based on task induced changes in brain activity. 

However, logically one might hypothesise that similar relationships persist in the resting state, and 

this has led the MEG community to investigate the relationship between envelope based networks 

and fMRI derived RSNs.  

 

Figure 6 reproduces (with permission) a selection of results generated by application of the methods 

described in sections 2, 3 and 4 to MEG data in order to quantify the spatial distribution of networks 

based on electrophysiological (envelope) connectivity. Figure 6A shows the auditory (left), 

sensorimotor (centre) and visual (right) RSNs (reproduced from Hipp et al., 2012). In all cases the 

seed location is shown by the white circle; the colour overlay depicts a leakage corrected map 

showing regions most highly correlated with the seed envelope; the maximum peak in contralateral 
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hemisphere is shown by the black cross. These networks show clearly that spatiotemporal structure 

exists in envelope data. Importantly, the spatial structure is specific to certain oscillatory frequencies 

and this is shown, for the same auditory, sensorimotor and visual networks, in Figure 6B (again from 

Hipp et al.). The plot shows functional connectivity between hemispheres plotted as a function of 

frequency band; note that connectivity in the visual network peaks in the alpha band, whereas 

connectivity in the other two networks peaks in the beta band. Figure 6C again shows a 

sensorimotor network, identified in an equivalent way and reproduced from Hall and colleagues 

(Hall et al., 2013); we include this to show the robustness of these spatial maps across a number of 

studies. Figure 6D shows a spatial comparison of RSNs identified in MEG and fMRI. The default 

mode, left fronto-parietal, right fronto-parietal and sensorimotor networks are shown and are 

selected at random from 8 networks observed by (Brookes et al., 2011b) to have a higher than 

chance correlation with fMRI RSNs. Here, networks have been extracted using temporal ICA rather 

than seed based correlation. However, the ICA method is applied to the envelopes of neural 

oscillations and in this way results are equivalent to those in Figures 6A and C. It is clear that a 

degree of spatial agreement exists between the haemodynamic and electrophysiological findings, 

however note that source space projection and appropriate compensation for source leakage are 

key to all of the results presented.  
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Figure 6: A) Auditory (left), sensorimotor (centre) and visual (right) RSNs. In all cases the seed location is shown by the white 

circle and the maximum peak in contralateral hemisphere shown by the black cross. B) The spectral signature of functional 

connectivity. For the three networks in A, connectivity between homologous regions in opposing hemispheres is plotted as a 

function of frequency, showing clear spectral specificity. C) The sensorimotor network again identified in an equivalent way 

in Hall et al. D) Shows a direct spatial comparison of RSNs identified in MEG and fMRI. The four networks shown are the 

default mode, left fronto-parietal, right fronto-parietal and sensorimotor. Panel A and B reproduced from (Hipp et al., 

2012), Panel C reproduced from (Hall et al., 2013) and Panel D reproduced from (Brookes et al., 2011b). 

 

The fact that electrophysiological RSNs are in some spatial agreement with fMRI based RSNs is 

important since it shows that the haemodynamic measurements are not simply a result of correlated 

haemodynamics that could be driven, for example, by changes in respiration or heart rate. Rather 

the MEG/fMRI agreement implies that these networks are of neuronal origin. In addition, MEG 

allows a new dimension for investigation of RSNs: as shown by Figure 6B, RSN structure is not 

maintained across all frequencies but rather exists within specific (albeit broad) frequency bands. If 

connectivity between separate pairs of cortical regions is spectrally specific, this represents one way 

in which, potentially, the brain may build a hierarchical structure of interconnected networks, 

separated in frequency as well as space. MEG offers a means to probe that complex structure, 
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although, an important consideration is that the signal to noise ratio (SNR) across different 

oscillatory frequencies changes with, for example, the high (gamma) bands exhibiting a low SNR 

compared to the lower frequency alpha and beta range in which connectivity is at maximum. For this 

reason, the extent to which the spectrally resolved nature of connectivity reflects genuine brain 

processes, versus simple changes in SNR, is still open to discussion. Early signs suggest this is likely, 

as recent work from Hipp and Siegel (2015) shows that accounting for SNR reveals frequency specific 

connections in MEG data ranging from 2-~100 Hz consistently correlating with fMRI-derived 

topographies rather than just the typical relationship between 8-30 Hz. What is clear is that the large 

body of published work exploring the neural underpinnings of the haemodynamic response will 

benefit from these observations. Indeed, the resting state connectome offers a new way in which to 

investigate the relationship between neuro-electrical and haemodynamic activity. In addition, these 

results open up a new opportunity to, for the first time, link disease induced perturbations in RSN 

structure measured in fMRI with altered patterns of neural oscillations, which are a consistent 

feature of the many neurological disorders. Given the proposed core role of oscillations in mediating 

functional connectivity, this has the potential to significantly enhance our understanding of the 

neuro-pathophysiology underlying a range of disorders. 

 

6) FUTURE PROSPECTS: THE DYNAMIC CONNECTOME 

The vast majority of RSN studies are based on the assumption that functional connectivity is 

stationary: that is, connectivity (correlation over time between two regions) is assessed based on an 

entire experiment, usually comprising several minutes of recorded data. This necessarily implies that 

functional coupling between two distal regions can be captured by a single parameter. However, the 

human brain is a dynamic system and the strong likelihood is that mental activity is supported by the 

formation and dissolution of many transient functional networks, on a rapid timescale. This means 

that brain networks, and the functional connectivities that define them, are likely to be time 

dependent. In a paper by Chang and Glover (2010), the authors employed a sliding window analysis, 

in which connectivity was assessed in many small time windows, that were allowed to shift in time 

across an fMRI dataset. Their results revealed that the strength of functional connectivity varied 

markedly, depending on which time window they assessed. Using fast acquisition methods in fMRI, 

Smith and colleagues (2012) showed that previously established networks were in fact formed from 

multiple transient components. In addition Allen and colleagues (2014), also using a sliding window 

analysis, showed significant departures from the spatial structure of canonical RSNs, if transient 

connectivity was taken into account. These promising results (and many others, see Hutchison et al., 

2013 for a review) are in agreement with the hypothesis of a dynamic connectome, and suggest that 
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future neuroimaging methodologies should be developed to capture transient rather than time 

averaged connectivity. The millisecond temporal resolution of MEG therefore offers immediate 

advantages. 

 

A small but growing number of studies are now beginning to show that dynamic assessment of 

electrophysiological connectivity using MEG implies the existence of significant non-stationarity. In 

early work, a study by a team lead by de Pasquale (2010) showed that by incorporating non-

stationarity into their data processing pipeline, they were able to better resolve the default mode 

and dorsal attention networks. Brookes and colleagues showed that, in the sensorimotor network, a 

sliding window analysis showed significant fluctuation in the strength of functional connectivity 

between motor cortices (Brookes et al., 2011a). This work was extended by Baker and colleagues 

(2012) who used a similar technique to reveal a bi-stable nature of envelope correlation, with near-

zero levels of connectivity interspersed with periods of high connectivity. A further study by Baker et 

al in 2014 (Baker et al., 2014) was able to exploit the excellent temporal resolution of MEG more 

fully, using a Hidden Markov Model (HMM). This approach, which identifies the points in time at 

which unique patterns of electrophysiological activity recur, revealed transient (100–200 ms) brain 

states with spatial topographies similar to RSNs (see Figure 7A). Taken together, these studies begin 

to demonstrate that within-network functional connectivity is underpinned by coordinated dynamics 

that fluctuate in time. Importantly, these fluctuations occur at a much more rapid timescale than has 

previously been envisaged (Baker et al., 2014). 

 

The existence of temporal structure in functional connectivity brings with it considerations for the 

spatial dynamics of RSNs. Consider Figure 7B which depicts a simple model of a network: at time 

point 1, regions α and β exhibit a strong connection; at time point 2, regions α and γ exhibit a strong 

connection. This simple example reflects a transient spatial reorganisation of the network, and 

illustrates how temporal and spatial analyses can be confounded. Firstly, if connectivity is computed 

over all time, for example via seed based correlation taking region α as the seed, then this will result 

in the blurring together of regions β and γ. Secondly, if a sliding window analysis is undertaken 

between point locations (e.g. between regions α and β) then this captures a dynamic change in 

functional connectivity (i.e. it results in the blue line in Figure 7Bii), but misses the fact that the 

spatiotemporal dynamics actually reflect a spatial reorganisation. Thirdly, if cluster metrics are 

undertaken such that regions β and γ are collapsed together, then this results in a temporal blurring 

of the dynamics (i.e. the result is the purple dashed line in Figure 7Bii). It therefore follows that 

methods to capture the true nature of spatiotemporal network dynamics are non-trivial. 
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Nevertheless methods do exist and an example is given in Figures 7C and 7D. Here, a multivariate 

technique known as canonical correlation analysis has been employed to calculate functional 

connectivity between voxel clusters (shown by the green overlay in Figure 7D). The method uses a 

sliding window, and within each window, the strength of correlation is assessed along with a 

measure of which voxels maximally contribute to that correlation. The result is effectively a movie 

showing spatial and spectro-temporal changes in connectivity between the highlighted clusters. In 

Figure 7C, the time-frequency decomposition of sensorimotor network connectivity in a single 

subject is shown, where the brighter colours illustrate high levels of connectivity. Note that there is 

marked temporal structure, with periods of high connectivity interspersed with windows of close to 

zero connectivity. Note also that in agreement with Figure 6B, the highest levels of coupling occur in 

the beta frequency band. Figure 7D shows the associated spatial patterns for 7 time windows chosen 

at random. Note that the spatial signature of sensorimotor network connectivity changes in time 

with multiple spatially distinct transient networks forming and dissolving depending on the time 

point (and frequency band) examined (Brookes et al., 2014a; O'Neill et al., 2015).  

 

These assesments of the dynamic connectome are in their infancy. However, results are already 

beginning to show that novel insights into how brain networks are dynamically recruited in order to 

support ongoing mental activity can be gained using MEG. In addition, rapidly forming and dissolving 

connections are being incorporated into computational models of RSNs, with results showing that 

these transient connections can explain the switching of networks seen in resting state studies 

(Ponce-Alvarez et al., 2015; Hansen et al., 2015).  Given the high level of importance, for both clinical 

and basic science, attached to static network assessments, it is likely that these dynamic estimations 

will find equal application in the characterisation of human brain function in health and disease.  
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Figure 7: A) Example transient network patterns observed via application of a hidden Markov model to MEG data. These 

spatial patterns resemble RSNs and were shown to form and dissolve on a time scale of just a few hundred milliseconds, 

much faster than previously thought. B) A simple model of a functional network. C) Time-frequency decomposition of 

sensorimotor network connectivity in a single subject, showing the temporal and spectral structure of envelope correlation 

between clusters in left and right hemispheres. D) The spatial signatures associated with sensorimotor network connectivity 

shown in C. 7 time windows chosen at random are shown; note the high degree of spatial inhomogeneity across windows. 

Panel A reproduced from (Baker et al., 2014), Panels C and D reproduced from (Brookes et al., 2014a). 

 

7) CONCLUSION 

In this technical review, we have outlined the emerging field of electrophysiological RSN 

characterisation using envelope based connectivity metrics applied to MEG data. We have shown 

that MEG has distinct advantages over other methods when characterising network connectivity. 

Specifically: 1) MEG allows direct measurement of neural oscillations, which are thought to be 

integral to the mediation of functional coupling. 2) The extremely high temporal resolution of MEG 

allows for an assessment of network dynamics on a timescale not accessible to fMRI. This said, we 

have also outlined how the ill-posed MEG inverse problem leads to difficulties in the accurate 

characterisation of connectivity. This means that source localisation and leakage reduction 

algorithms are essential if accurate models of connectivity are to result. This is a key point that must 

be addressed in all future MEG connectivity studies. We have reviewed a growing body of literature 

suggesting that, envelope based metrics of connectivity show spatial similarity to the established 
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RSNs observable using fMRI. Finally, we have briefly summarised the emerging topic of dynamic 

connectivity, highlighting the exciting potential of MEG to uncover the means by which brain 

networks form and dissolve in support of ongoing moment to moment changes in mental activity. 

Taken together, the evidence suggests that if appropriate modelling is employed, MEG offers a 

unique and verifiable means to gain novel insights into brain network coordination. These methods, 

will be of significant value to elucidate the underlying neural dynamics of brain function in health 

and disease. 
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