178 research outputs found

    Set theory and nominalisation, part 2

    Get PDF

    Semantics in a frege structure

    Get PDF

    Facets and Levels of Mathematical Abstraction

    Get PDF
    International audienceMathematical abstraction is the process of considering and manipulating operations, rules, methods and concepts divested from their reference to real world phenomena and circumstances, and also deprived from the content connected to particular applications. There is no one single way of performing mathematical abstraction. The term "abstraction" does not name a unique procedure but a general process, which goes many ways that are mostly simultaneous and intertwined ; in particular, the process does not amount only to logical subsumption. I will consider comparatively how philosophers consider abstraction and how mathematicians perform it, with the aim to bring to light the fundamental thinking processes at play, and to illustrate by significant examples how much intricate and multi-leveled may be the combination of typical mathematical techniques which include axiomatic method, invarianceprinciples, equivalence relations and functional correspondences.L'abstraction mathématique consiste en la considération et la manipulation d'opérations, règles et concepts indépendamment du contenu dont les nantissent des applications particulières et du rapport qu'ils peuvent avoir avec les phénomènes et les circonstances du monde réel. L'abstraction mathématique emprunte diverses voies. Le terme " abstraction " ne désigne pasune procédure unique, mais un processus général où s'entrecroisent divers procédés employés successivement ou simultanément. En particulier, l'abstraction mathématique ne se réduit pas à la subsomption logique. Je vais étudier comparativement en quels termes les philosophes expliquent l'abstraction et par quels moyens les mathématiciens la mettent en oeuvre. Je voudrais parlà mettre en lumière les principaux processus de pensée en jeu et illustrer par des exemples divers niveaux d'intrication de techniques mathématiques récurrentes, qui incluent notamment la méthode axiomatique, les principes d'invariance, les relations d'équivalence et les correspondances fonctionnelles

    Marriages of Mathematics and Physics: A Challenge for Biology

    Get PDF
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of “geometric judgments” from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) “space” should be revisited for the purposes of life sciences

    On content

    Get PDF

    Compiling Unit Clauses for the Warren Abstract Machine

    Get PDF
    This thesis describes the design, development, and installation of a computer program which compiles unit clauses generated in a Prolog-based environment at Argonne National Laboratories into Warren Abstract Machine (WAM) code. The program enhances the capabilities of the environment by providing rapid unification and subsumption tests for the very significant class of unit clauses. This should improve performance substantially for large programs that generate and use many unit clauses

    NATURAL DEDUCTION AS HIGHER-ORDER RESOLUTION

    Get PDF
    An interactive theorem prover, Isabelle, is under development. In LCF, each inference rule is represented by one function for forwards proof and another (a tactic) for backwards proof. In Isabelle, each inference rule is represented by a Horn clause. Resolution gives both forwards and backwards proof, supporting a large class of logics. Isabelle has been used to prove theorems in Martin-L\"of's Constructive Type Theory. Quantifiers pose several difficulties: substitution, bound variables, Skolemization. Isabelle's representation of logical syntax is the typed lambda-calculus, requiring higher- order unification. It may have potential for logic programming. Depth-first subgoaling along inference rules constitutes a higher-order Prolog

    Finitism--an essay on Hilbert's programme

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Linguistics and Philosophy, 1991.Includes bibliographical references (p. 213-219).by David Watson Galloway.Ph.D

    Poincaré's philosophy of mathematics

    Get PDF
    The primary concern of this thesis is to investigate the explicit philosophy of mathematics in the work of Henri Poincare. In particular, I argue that there is a well-founded doctrine which grounds both Poincare's negative thesis, which is based on constructivist sentiments, and his positive thesis, via which he retains a classical conception of the mathematical continuum. The doctrine which does so is one which is founded on the Kantian theory of synthetic a priori intuition. I begin, therefore, by outlining Kant's theory of the synthetic a priori, especially as it applies to mathematics. Then, in the main body of the thesis, I explain how the various central aspects of Poincare's philosophy of mathematics - e.g. his theory of induction; his theory of the continuum; his views on impredicativiti his theory of meaning - must, in general, be seen as an adaptation of Kant's position. My conclusion is that not only is there a well-founded philosophical core to Poincare's philosophy, but also that such a core provides a viable alternative in contemporary debates in the philosophy of mathematics. That is, Poincare's theory, which is secured by his doctrine of a priori intuitions, and which describes a position in between the two extremes of an "anti-realist" strict constructivism and a "realist" axiomatic set theory, may indeed be true
    corecore