
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1987

Compiling Unit Clauses for the Warren Abstract
Machine
George D. Herbert
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 1987 All Rights Reserved

Suggested Citation
Herbert, George D., "Compiling Unit Clauses for the Warren Abstract Machine" (1987). UNF Graduate Theses and Dissertations. 571.
https://digitalcommons.unf.edu/etd/571

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

COMPILING UNIT CLAUSES
FOR THE

WARREN ABSTRACT MACHINE

by

George D. Herbert

A thesis submitted to the
Division of Computer and Information Sciences

in partial fulfillment of the
requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA

December, 1987

The thesis "Compiling Unit Clauses for the Warren Abstract
Machine" submitted by George D. Herbert in partial
fulfillment of the requirements for the degree of Master of
Science in Computer and Information Sciences has been

Approved by the thesis committee: Date

and Committee

Accepted for the Division of Computer and Information
Sciences:

Division Director

Accepted for the University:

ii

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

The author extends his sincere thanks to Dr. Ralph
Butler for his guidance and support throughout the writing
of this thesis. I wish to thank Argonne National
Laboratories for the use of their computer facilities
through Dr. Butler's account.

The efforts of Dr. Charles Winton and Dr. Paul
Mullenix, as members of the thesis committee, are also
greatly appreciated.

I especially wish to thank my wife, Sallie, for her
support throughout my graduate education.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iii

ABSTRACT

Chapter 1: INTRODUCTION ...

1.1 THESIS ORGANIZATION .

1.2 PROBLEM REVIEW

1.2.1 Computational Logic

1.2.2

1.2.3

1.2.4

Resolution and Unification

Subsumption

Applications and Unit Clauses .

1.2.4.1

1.2.4.2

1.2.4.3

Theorem Proving . . .

Expert Systems

Database Systems . .

vi

1

1

2

2

4

10

10

10

13

15

1.3 LITERATURE REVIEW 16

1.3.1 The Prehistory of Computational

1.3.2

1.3.3

1.3.4

1.3.5

Logic

Early Theorem Provers .

Logic Programming .

PROLOG

Warren Abstract Machine . .

iv

16

20

25

25

27

Chapter 2: METHODS AND PROCEDURES 31

2.1 PLAN OF ATTACK 31

2.1.1 Background. 31

2.1.2 Interaction with Environment . . . 35

2.2

2.1.3

2.1.4

Basic Design

Design Considerations .

CODING AND IMPLEMENTATION .

2.2.1 Detailed Design .

2.2.2 Testing

Chapter 3: RESULTS ...

3.1 INSTALLATION

3.2 NECESSARY CHANGES .

Chapter 4: CONCLUSIONS AND RECOMMENDATIONS

4.1 EVALUATION

4.2 RECOMMENDATIONS FOR FUTURE ENHANCEMENT

4.3 CONCLUSIONS ..

BIBLIOGRAPHY

VITA

v

36

39

44

44

48

50

50

50

52

52

53

55

57

62

ABSTRACT

This thesis describes the design, development, and

installation of a computer program which compiles unit

clauses generated in a Prolog-based environment at Argonne

National Laboratories into Warren Abstract Machine (WAM)

code. The program enhances the capabilities of the

environment by providing rapid unification and subsumption

tests for the very significant class of unit clauses. This

should improve performance substantially for large programs

that generate and use many unit clauses.

vi

Chapter 1

INTRODUCTION

1.1 THESIS ORGANIZATION

This thesis deals with the design, development, and use of a

computer program which was written to enhance the

capabilities of a PROLOG-based environment at Argonne

National Laboratories (ANL).

Part 1.2 of chapter 1 of this thesis presents an overview of

the problem. Part 1.3 of chapter 1 presents a review of

literature pertinent to the topic.

Chapter 2 presents a discussion of the design of the

programming procedures used. It also provides a discussion

of the methods used in testing the completed program.

Chapter 3 describes the installation of the program, and

discusses changes that were necessary for its successful

operation.

- 1 -

Finally, chapter 4 presents an evaluation of the obtained

results and suggests changes that may enhance the program's

operation.

1.2 PROBLEM REVIEW

1.2.1 Computational Logic

Computational logic has proved to be valuable in dealing

with a wide range of applications. The obvious application

would be automated reasoning, in particular, automated

theorem proving. It is not a great leap to see the

application of logic to the inference capabilities of expert

systems. Logic is an obvious tool when dealing with formal

languages. It is therefore not surprising to find logic

used to handle natural language processing as well. What

may be surprising is that any computational task can be

reduced to proving a theorem in first order logic

[Levesque84]. This makes logic one among the many

formalisms that support general computation.

Why should logic be chosen rather than one of the competing

formalisms for tasks that are not obviously "logical"? One

of the great services logic has provided to computation has

been to bring to it a declarative semantics [Cohen82]. The

clauses of a logic program can be given a declarative

- 2 -

reading as descriptive statements about entities and

relations. This means that programs about real world

problems can be written by making assertions about real

world entities and their relationships to one another. This

is a very natural and powerful way to view a problem and it

has been argued that for some problems, it is the only way

[Moore82]. Logic programs take problems out of the

procedural thickets common to other computational

formalisms. This is not to say that logic programs do not

have a procedural interpretation. When executed by an

interpreter, these programs behave as if they were

performing a deduction in a very formal manner, using the

clauses of the program as axioms. So logic separates the

declarative and procedural components of a problem,

which is to say, problem representation and control become

distinct issues.

Given these excellent properties then, why would anyone

consider any approach other than logic? Perhaps the most

abiding criticism of logic is its perceived inefficiency.

Theorem-proving can be seen as a search of a "theorem­

space". As ordinarily implemented, backtracking is employed

to exhaustively search this space. For even relatively

small problems, the search space can be enormous. Under

some circumstances, the search may never terminate.

Furthermore, the pattern-matching capability known as

- 3 -

unification used by logic interpreters, can require

exponential time [Lloyd84].

There are several paths to improved performance in

computational logic [Butler86]. They are clause

compilation, multiprocessing, database indexing, and clause­

set "compaction". Using Sam's Lemma, a classic problem in

lattice theory for the theorem proving literature, as a

benchmark problem, it was shown that a better than order-of­

magnitude improvement in processing time could be achieved

using these techniques. The clause compilation approach is

taken in this paper, and, to understand it better, it will

be useful to look more carefully at the techniques employed

by typical computational logic environments.

1.2.2 Resolution and Unification

Before moving deeper into our topic, let us define some of

the terms with which we shall be dealing. A Horn clause is

a clause of the form

where m > 0 and each Pi is atomic. Horn clauses are the

basic representation used in PROLOG. A unit clause is a

Horn Clause with m = 0. That is, there are no antecedents

- 4 -

to the above implication. Unit clauses are therefore

unconditional clauses.

Proof in a computational logic environment usually means

establishing a contradiction. Starting with the negation of

the assertion to be proved, consequences are derived until

one of these consequences yields a contradiction. The

contradiction always evidences itself when two unifiable

unit clauses, one of which is positive and the other

negative, are derived. Testing for unit clause conflict is

therefore a basic automated inference procedure.

The inference mechanism employed by most computational logic

environments to generate consequences is the resolution

principle [Robinson65A]. This principle generalizes the

classical inference rules of modus ponens and modus tolens

[Winston84]. To get a clear idea of how this principle

works, let us first restrict our attention to the

propositional calculus rather than the full first-order

predicate calculus. Consider modus ponens in this arena:

((P -> Q) & P) 1- Q.

Implication can be translated into a disjunctive form by the

rule:

- 5 -

(P -> Q) <-> (-P V Q).

Now let us rephrase modus ponens by putting its implication

in disjunctive form or synonymously, clausal form, that is:

((-P V Q) & P) l- Q •

Let us do the same for the modus tolens rule:

((P -> Q) & -Q) l- -P,

which becomes:

((-P V Q) & -Q) l- -P.

Finally, take the case of the transitivity of implication

((P -> Q) & (Q -> R)) l- (P -> R),

which becomes:

((-P V Q) & (-Q V R) l - (-P V R) •

What has happened in each of these instances is that in

each case where both the positive and negative of some

proposition occurs in different conjuncts on the left of the

- 6 -

"I-", they "cancel out" yielding the disjunction of the

remaining propositions to the right of the "I-"· This is

the essence of the resolution principle [Cohen82].

To generalize this to the first-order predicate calculus,

more apparatus is needed. In the first-order predicate

calculus, there are variables, predicates, and quantifiers

with which to contend. The expression P(x) means that the

predicate P is true for x. If P means "is prime" then P(3)

is true but P(6) is false. The universal and existential

quantifiers will be represented here as Ux P(x) and Ex P(x),

and will be read as "for all x P(x)" and "for some x P(x)",

respectively. In order to apply the resolution principle in

first-order predicate calculus, it will be necessary to

convert to clausal form and eliminate quantifiers. The

conversion to clausal form is very similar to that used in

propositional calculus earlier. To eliminate quantifiers,

skolemization is used.

Skolemization is essentially the elimination of existential

quantifiers in favor of appropriately chosen functions. A

function is appropriate if it is unique to the particular

quantifier being eliminated and does not occur elsewhere in

any clause. Also the function must have an arity equal to

the number of universal quantifiers that precede the

replaced existential quantifier in the clause (functions of

- 7 -

arity zero are constants). Once this is done, the universal

quantifiers can be eliminated as well by subscribing to the

convention that all remaining variables are universally

quantified. For example, consider the clause:

Ex Uy Uz Ew (-P(x,y,z) V Q(y,z,w)).

When skolemized, this becomes:

(-P(a,y,z) V Q(y,z,f(y,z))),

where "a" is a constant and "f" is a function of arity two.

Once our predicates have been skolemized and put in clausal

form, there is one further complication that must be

handled. When using the propositional calculus, the notion

that two propositions are the same but of opposite polarity,

that is to say, complementary, is quite clear, but

variables, constants, and functions muddy the situation

somewhat. Instead of requiring that two predicates (often

called literals in this context) be identical in every

respect, we now require only that they be unifiable. By

this we mean that there is a substitution for the variables

in both predicates that makes the predicates identical. A

valid substitution must not contain within it the variable

for which it is being substituted. The test in a

- 8 -

unification algorithm for this condition is known as an

occurs check. The occurs check is necessary in order to

preserve the soundness of resolution. Nonetheless, it is

often omitted in PROLOG implementations. This is a pragmatic

matter, for the most part. The occurs check is rarely

needed in non-theorem proving applications, and its omission

makes for a faster unification algorithm. Some

practitioners [Colmeraurer82] [Eggert83] have even used the

absence of the occurs check to work with infinite terms! The

following are examples of the unification process:

P(a,x,h(g(z))) and P(z,h(y),h(y)) are unifiable via the

substitution {z/a, x/h(g(a)), y/g(a)} ("/"means "is

substituted by"), but P(f(a),g(x)) and P(y,y) are not

unifiable [Lloyd84].

Now all the elements are present to complete the picture of

resolution in the first-order predicate calculus. First two

complementary literals are unified. The substitution

generated by the unification is applied to the remaining

literals and the disjunction of these becomes the inference.

For example:

yield

(-P(x) V Q(x)) and

P(a) V R(z))

Q(a) V R(z)).

- 9 -

1.2.3 Subsumption

Another technique commonly used in theorem proving

environments is subsumption. Theorem provers can generate a

huge number of clauses. Many of the clauses generated are

actually instances of more gen~ral clauses that are derived

earlier in the deduction. Subsumption eliminates these less

general clauses. A clause subsumes another clause if the

variables in the first clause can be instantiated in such a

way that the resulting literals all occur in the second

clause [Wos84]. The procedure by which the variables are

instantiated is called half-matching and is very similar to

unification except that substitutions can only be generated

for variables in one of the clauses.

1.2.4 Applications and Unit Clauses

Now that some of the techniques of computational logic have

been reviewed, we can take a look at how some important

applications use unit clauses. These applications are

theorem proving, expert systems, and databases.

1.2.4.1 Theorem Proving

We have already made mention of the notion of unit clause

conflict in theorem proving. Since unit clause conflict is

- 10 -

so basic, the generation of unit clauses must also be a

priority of a theorem prover. Inference rules that generate

unit clauses rapidly are hence of great value. Further,

unit clauses feed inference rules effectively. If one or

more of the clauses involved in a particular inference are

unit clauses, an inference made by a resolution-type

inference rule will be shorter than the longest clause

involved. Indeed, the Unit-Resulting Resolution (UR­

Resolution) inference rule generates only unit clauses and

feeds on at most one non-unit clause at a time.

Strategically, unit clauses are once again in the forefront.

One of the simplest strategies for improving performance in

theorem proving is the unit preference strategy. Here the

theorem prover attempts to resolve unit clauses before non­

units. Even weighting strategies, while they do not

specifically mandate the selection of unit clauses, will

tend to prefer them by virtue of the simple fact that fewer

symbols generally mean a smaller weight.

Non-resolution inference rules also utilize unit clauses

heavily. Paramodulation and Demodulation are driven by unit

equality clauses.

Generation of unit clauses is not sufficient for effective

theorem proving. As mentioned earlier, many clauses are

- 11 -

generated which are redundant versions of clauses already

present. Also new clauses may be more general than clauses

currently in the database. If these clauses are added to

(or respectively, left in) the database, there will be many

more clauses to resolve against, but which will provide no

more information than is already available. Forward

Subsumption is the technique which prevents redundant new

clauses from being added to the database and Backward

Subsumption deletes from the database old clauses which are

less general than a newly generated clause. Without

Subsumption, the number of clauses in the database for even

a reasonably sized problem will increase explosively and the

progress toward a proof will be slowed dramatically.

Unit clauses are ideal for subsumption. If a unit clause

half-matches any literal in a multi-literal clause, that

clause is subsumed. Also more general unit clauses will

subsume less general unit clauses. Thus a database with

many unit clauses will tend asymptotically to contain only

quite general unit clauses. This unit clause-rich database

then provides a fertile situation for unit clause conflict,

which is another way of describing an environment ideal for

proving theorems.

- 12 -

1.2.4.2 Expert Systems

Expert systems bear certain superficial similarities to

theorem provers. Both are based on inference and work with

a kind of database. The theorem prover's initial database

generally consists of several lists of clauses, known as

axioms, set of support, have-been-given, and demodulators.

This database is then augmented as inferences are made. The

initial database of an expert system is referred to as a

knowledge base [Jackson86]. It generally does not change in

the course of the inferences made by the system, but rather

affects the state of the expert system often by modifying a

special type of memory called the working memory. One

knowledge representation commonly found in expert systems is

the production rule. A production rule has the form of a

set of conditions called antecedents or if-parts, together

with a set of actions which are called the then-parts.

Production rules therefore look very much like logical

implications. Other forms of knowledge representation have

a far less logical look to them. Among these are frames,

objects, and semantic nets. The form of knowledge

representation which will most interest us in this

discussion is called a fact. Facts are essentially unit

clauses. In production rule systems, it is common to use a

resolution-like mode of inference which matches antecedents

to conditions in the working memory and facts. So

- 13 -

unification with unit clauses is important in production

systems. Systems based on frames, objects, and semantic

nets can be thought of as having two separate components: a

control component and an information component. The control

component dictates the conditions under which access to data

in the information component is allowed. But once access to

the information component has been achieved, the data will

generally be factual data; that is, unit clauses.

Subsumption plays little role in the operation of a typical

expert system; although, given what we know about theorem

provers, perhaps it should. The literature on knowledge

acquisition, the process by which the knowledge base for a

particular expert system is acquired, does make mention of

subsumption. Knowledge bases tend to be built up on a

rather ad hoc basis, and often redundant knowledge and less

general knowledge than is already contained in the knowledge

base is added. This sort of knowledge only makes the

operation of an expert system less efficient. Systems have

been proposed that will, among other things, check knowledge

to be added to a knowledge base for subsumption [Nguyen87].

- 14 -

1.2.4.3 Database Systems

Database systems present a somewhat different picture than

theorem provers or expert systems. The suitability of logic

for database applications has long been recognized

[Gallaire78] [Gallaire84]. The relational database model

fits particularly neatly into the logic programming paradigm

[Codd70]. The definition of the logic programming form of

a database given in [Levesque84] is as a collection of Horn

clauses (as defined earlier) where m = 0 and the arguments

to the predicates are all constants. Thus the database form

is nothing other than a collection of unit clauses with

constant arguments! A database query is typically a

conjunction of clauses which may contain variables. If

these clauses can be satisfied by unification with clauses

in the database, the query succeeds. Technically, it should

be noted that full unification is not necessary, since only

the query can contain variables. Half-matching will suffice

for database queries.

These by no means exhaust the applications of logic. Nor

have the uses of unit clauses, unification, and half­

matching within logic been used up. However, these

applications are very important, and they all make heavy use

of unit clauses and unification. Half-matching has found

significant use in these applications as well. If there is

- 15 -

some means of improving the performance of unification and

half-matching for unit clauses, there will be great benefits

for computational logic.

1.3 LITERATURE REVIEW

1.3.1 The Prehistory of Computational Logic

The idea of a mechanical procedure for deciding the truth or

falsity of a given proposition dates from the seventeenth

century with the Analytic Geometry of Descartes [Davis83].

Descartes' method introduced a coordinate system with which

geometrical figures could be represented using equations and

those equations could be manipulated algebraically.

Descartes contrasted his method with the axiomatic method of

Euclid:

... it is possible to construct all the problems
of ordinary geometry by doing no more than the
little covered in the four figures that I have
explained. This is one thing which I believe the
ancients did not notice, for otherwise they would
not have put so much labor into writing so many
books in which the very sequence of the
propositions showed that they did not have a sure
method of finding all ...

Descartes had in an important way mechanized geometry. It

was Leibniz, however, who envisioned the mechanization of

reasoning. To this end, he proposed a calculus of reason

(calculus ratiocinator) imbedded in a universal language

- 16 -

(lingua characteristica). A problematic proposition would

be formulated in the lingua characteristica and subsequently

decided by manipulations using the calculus ratiocinator (in

the words of Leibniz, "Let us Calculate"). Though Leibniz

made little progress toward the achievement of his grand

conception, he had planted the seed that was to germinate

into mathematical logic and ultimately into automated

reasoning.

The first substantive progress toward the realization of

Leibniz' program was the work of George Boole two centuries

later. That Boole had indeed mechanized logic was

recognized by Stanley Jevons, an economist and logician who

constructed a cash register-like machine capable of

verifying Boolean identities.

The next landmark on the way toward Leibniz' dream was the

Begriffsschrift of Gottlieb Frege. Frege develops the

predicate calculus by explicating the use of quantifiers

about which there had been no clear conception. Frege's

work is the first example where the syntax of an artificial

language is laid out in detail and thus is the ancestor of

all formal languages, especially computer programming

languages. He also pointed out the importance of modus

ponens as a rule of inference. Unfortunately, Frege's work

was regarded as too obscure and it is the notation developed

- 17 -

by Peano that we use today. However, Peano's work, done a

decade after Begriffsschrift, lacks the syntactic clarity

and appreciation for quantifiers and rules of inference of

the earlier work.

The reputed obscurity of Frege's work was the least of the

problems mathematical logic faced in its formative years.

Mathematics itself was in a great ferment over its

foundations. The work of Cantor in set theory and

Weierstrass and Dedekind in analysis was regarded as

expanding the boundaries of mathematics by many of their

contemporaries, while Kronecker, Poincare and Brouwer heaped

contempt on this same work. A key issue in this dispute

revolved around the role of existence proofs in mathematics.

The classical camp felt free to accept a proof in which

mathematical existence was proved without the construction

of an actual example. Brouwer, the founder of Intuitionism,

on the contrary demanded that every mathematical proof

purporting to demonstrate existence do so by constructing an

example in a finite number of steps. In opposition to

Brouwer was David Hilbert who felt the Intuitionists were

rejecting too much that was valuable in mathematics.

Hilbert therefore proposed a dramatic program, called

metamathematics, to provide a basis for classical

mathematics that even an Intuitionist would be forced to

accept. What was needed first was a formal calculus in

- 18 -

which classical mathematics could be expressed. This step

was accomplished by Whitehead and Russell in their

monumental Principia Mathematica. Then a constructive

consistency proof would be provided for this calculus.

Although this program never achieved its aim, it was

nonetheless highly influential.

Hilbert and Ackermann posed two key problems for the

metamathematical program. The first is the problem of

completeness: that every valid sentence is derivable from

the axioms. The second is the Entscheidungsproblem: that

there is an algorithm for determining whether or not a given

sentence is valid.

Skolem showed that a quantified predicate has no

interpretation that makes it true if and only if a finite

conjunction of sentences which contain Skolem functions in

place of existential quantifiers is unsatisfiable. This is

essentially the proof procedure used in automated theorem­

provers. This method relies on the axiom of choice however

and is not therefore constructive because there is no

algorithm providing the value of the Skolem functions given

some constant arguments.

Kurt Goedel settled the completeness problem by establishing

the equivalent of Skolem's result without recourse to the

- 19 -

axiom of choice. Herbrand also provided a proof of the

completeness theorem which is valid for a wider class of

sentences than are the results of Skolem and Goede!. He

also produced the basic idea for a unification algorithm

which is fundamental to the operation of automated theorem­

provers.

Doubts about the solvability of the Entscheidungsproblem

were raised by Goedel's undecidability theorem. His famous

proof establishes that all consistent formulations of number

theory include valid sentences for which there can be no

demonstration in a finite number of steps. The actual

unsolvability of the Entscheidungsproblem was established

independently by Alan Turing and Alonzo Church. Turing used

his well-known "machines" to show the unsolvability of the

halting problem. If the Entscheidungsproblem were solvable,

its algorithm could be used to solve the halting problem.

Since the halting problem is unsolvable, so is the

Entscheidungsproblem. Church derives a similar

undecidability result using his lambda-calculus.

1.3.2 Early Theorem Provers

At about this time general purpose digital computers were

invented and it was not long before attempts to test the

potential of these devices by programming theorem provers

- 20 -

was made [Davis83] [Loveland78] [Chang73]. The two earliest

attempts at theorem proving on a digital computer were the

"logic machine" of Newell, Shaw, and Simon and a system

implementing a decision procedure for Presburger arithmetic

by Davis. The former took the approach of a human problem

solver to prove theorems in the propositional calculus using

the axiomatization in Russell and Whitehead's Principia

Mathematica. Something approaching the notion of

unification came out of this program. The latter program

took a more rigorous approach but proved to be very slow.

This is not surprising since it is now known the Presburger

decision procedure is worse than exponential in complexity.

These programs set the tone for work that was to follow by

emphasizing heuristic sophistication in the first case, and

mathematical sophistication in the latter.

The next important attempt was the "geometry machine" of

Gelernter. This program was more in the spirit of the

"logic machine" and managed to rediscover a proof unknown to

Gelernter of a theorem on isosceles triangles. In order to

make any real headway though, the program had to rely on

guidance from the techniques of analytical geometry.

The idea of using methods based on Herbrand's theorem can be

attributed to Abraham Robinson where he made suggestive

- 21 -

remarks about the constructions used to prove geometry

theorems as being elements of the Herbrand universe for the

problem. Davis and Putnam proposed a theorem prover based

on these ideas and introduced Skolem functions and the

clausal form for the initial clauses in the database. The

work proved disappointing, however, since it unleashed the

combinatorial explosion inherent in these procedures,

leading them to comment:

" the most fruitful future results will come
from ... excluding ... 'irrelevant' quantifier­
free lines from the Herbrand expansion."

The logician Hao Wang used methods he had developed through

proof theory and solvable cases of the Entscheidungsproblem.

He wrote a program that proved all the theorems in Principia

Mathematica that belonged to the pure predicate calculus

with equality. What Wang showed was not that the techniques

used were particularly powerful, but rather that the

problems being attacked were fairly easy, requiring very

little of the resources of the domain.

Prawitz in 1960 came up with the idea to produce terms of

the Herbrand expansion only when they were actually needed.

This is a very powerful idea on which all later work

depends. His idea leads to the notion of a unification

algorithm but he was not quite able to see this. The

- 22 -

observation was made independently by Dunham and North in

1962 and Davis in 1963.

The road was now paved for J. A. Robinson to introduce the

resolution principle [Robinson65A] [Robinson83]. He was

further able to show that this rule of inference is

complete. With resolution, a single combinatorial principle

was shown to be adequate for all inference. Related

principles were also developed including hyperresolution

[Robinson65B].

The resolution principle does not entirely eliminate the

problem of combinatorial explosion, however. To limit this

problem, heuristics are still necessary. The team of L.

Wos, D. Carson, and G. A. Robinson at Argonne National

Laboratories (ANL) developed approaches that give certain

clauses special treatment and thereby dramatically limit

search [Wos64] [Wos65].

An important theorem proving system was developed by Boyer

and Moore [Boyer79]. The central formulas operated on by

the theorem prover are treated as functions rather than

predicates. The system operates by rewriting the current

formula and never backtracks or changes any decision once

made. The rewriting process is guided by heuristics, which

though sound, render the system incomplete. The system is

- 23 -

capable of performing induction, a capability not common in

predicate calculus-based theorem provers.

The Interactive Theorem Prover (ITP) was developed by

Argonne National Laboratories as a general purpose theorem

proving environment [Wos84] [Lusk84]. It is a descendant of

the Automated Reasoning Assistant (AURA). AURA was a very

fast and powerful theorem prover. Because it was written in

IBM 360/370 Assembly Language and PL/I, it was not portable.

To address this lack of portability, Logic Machine

Architecture (LMA) was written in Pascal. LMA is not itself

a theorem prover, but provides procedures that can be

tailored into automated reasoning programs. ITP was the

first major system implemented within the LMA framework

[Lusk82]. The crowning achievement of ITP was to settle

some open questions in mathematics, logic, and circuit

design [Winker81] [Winker82] [Kabat82] [Wojciechowski83].

Here was a theorem prover that was surpassing human

capacities, not just demonstrating a few human-like problem

solving capabilities. This is not to say that ITP is

somehow an ultimate theorem proving system. There are still

many problems for which it is not suitable or that are

intractable.

- 24 -

1.3.3 Logic Programming

Theorem proving was an obvious application for computational

logic. However, John McCarthy [McCarthy63] realized that

the execution of an applicative program can be thought of as

proving an identity (f(xl, ... ,xn) =result) by applying

various axioms of identity according to a fixed control

regime [Cohen82]. The idea of logic programming per se is

attributable to C. Green in his thesis [Green69], where he

used a method now referred to as Green's trick to derive

operator sequences. The idea of logic programming was

popularized by R. Kowalski [Kowalski79a]. He advanced the

concept of an algorithm as being made up of a logic

component and control component [Kowalski79b]. The logic

component describes the problem and the control component

specifies the manner in which the definitions will be used.

Kowalski argued that once these components are isolated,

programs can more readily be improved and modified. Nils

Nilsson has proposed that artificial intelligence is most

properly thought of as applied logic [Nilsson80].

1.3.4 PROLOG

Today, the primary vehicle for logic programming is the

PROLOG language, which was developed by Alain Colmerauer and

his associates [Colmerauer73A] [Colmeraurer73B] who were

- 25 -

primarily interested in a vehicle for natural language

processing. PROLOG resembles the Microplanner language

[Sussman71] which in turn derives from the Planner language,

proposed by Carl Hewitt [Hewitt69]. Eventually, the syntax

and techniques of PROLOG became relatively standardized

[Clocksin84]. Terry Winograd's blocks world program SHRDLU

demonstrated the power of logic programming [Winograd72].

However, there were many who scoffed at the slowness of

early PROLOG interpreters arguing that LISP was the only

language for serious artificial intelligence programming.

The rebuttal to this position came in a paper by David

Warren, Luis Pereira, and Fernando Pereira [Warren77a].

Several linguistic advantages of PROLOG over LISP are given:

1. General record structures take the place of LISP

s-expression.

2. Pattern matching takes the place of selector and

constructor functions in LISP.

3. PROLOG procedures can have multiple outputs as

well as multiple inputs.

4. Inputs and outputs do not have to be distinguished

in advance, so PROLOG procedures are multi­

functional.

5. Through backtracking PROLOG can present many

alternative results. This is a high-level form of

iteration.

- 26 -

n. Unification in conjunction with the logical

variable is much more powerful than simpler forms

of pattern matching.

7. There is no inherent distinction between program

and data.

8. There is a natural declarative semantics in

addition to a procedural semantics.

9. The procedural semantics of a syntactically

correct program is totally defined.

The really crucial point, however, is that all these

advantages can be had without a significant sacrifice of

performance. In particular, through the compilation of

logic, PROLOG compares favorably with LISP. This

performance is achieved through various implementation

approaches, such as the compilation of "special purpose"

unification procedures, clause indexing, structure sharing

and a distinction between local and global stacks. The

innovations described in Warren's paper were further honed

in subsequent approaches to PROLOG implementation

[Warren77b, Warren80], culminating with the Warren Abstract

Machine [Warren83].

1.3.5 Warren Abstract Machine

The Warren Abstract Machine (WAM) provides a framework into

which any PROLOG program can be mapped. This machine could

- 27 -

be implemented as an interpreter for a bytecode into which

the WAM instructions have been translated, as a set of

macroinstructions which could be compiled, or in hardware or

firmware. The bytecode interpreter is the approach most

often adopted. WAM makes use of several distinguishable

types of data. These are variables, constants, lists, and

structures. The data areas used are the code area, the heap

(or global stack), the local stack, and the trail. There is

also a small push-down list used for unification. The heap

contains all the complex data structures (lists and

structures). The local stack contains information used only

by the current procedure. The trail contains information

about variables that have been bound but will have to be

unbound when backtracking occurs. WAM uses a number of

registers to keep track of the various data areas, to pass

arguments to procedures, and to hold the values of temporary

variables used by a clause. The WAM instruction set is made

up of get instructions, put instructions, unify

instructions, procedural instructions, and indexing

instructions. The first three types of instructions handle

unification, and the last two types of instructions deal

with control. The get instructions are used for matching

against the head of a clause. Conversely, the put

instructions load the arguments that will be passed in a

procedure call. The unify instructions handle unifications

with the arguments of a structure or list whether the

- 28 -

structure or list already exists or is being created. The

procedural instructions handle control transfer and

environment allocation. The indexing instructions filter

out those clauses in a procedure definition that cannot

possibly match a given procedure call.

This is exactly the toolbox needed to improve the

performance of logic programs. One of the hallmarks of the

WAM architecture is its set of specialized unification

primitives. These primitives avoid the overhead of a

general unification algorithm by focusing only on exactly

what is needed in a particular situation. For example, a

variable will unify with anything. It makes no difference

that the symbol with which the variable is to be unified is

a constant, a variable, a structure, or a list, unification

will succeed. So a primitive for unifying with a variable

can take this knowledge into account. Similarly, a constant

will only unify with a symbol that is exactly equal to that

constant or a variable. Once again this knowledge can be

used to make constant unification as simple and

straightforward as possible.

The primitives are further specialized as to the context of

the unification. Head unification, which is used only for

arguments of a called procedure, is distinguished from a

kind of unification designed to build arguments for calling

- 29 -

routines and a third type of unification for any other

purpose. Each of these typically will have certain

implementation consequences when WAM is coded for a

particular machine.

- 30 -

Chapter 2

METHODS AND PROCEDURES

2.1 PLAN OF ATTACK

2.1.1 Background.

We have seen that unit conflict checking and inference rules

rely on a pattern matching capability called unification.

Subsumption relies on a related form of pattern matching

called half-matching. In a typical theorem prover, for

example, these pattern matching activities are done in a

manner similar to an interpreter. Every time a clause is

unified (or half-matched) with a second clause, a general

algorithm for unification (or half-matching) is invoked.

Unit clause compilation builds a special purpose unification

(or half-matching) algorithm tailored specifically to a

particular clause. This reduces the computational cost of

performing pattern matching.

Unit clause compilation may therefore be viewed as an

investment. The cost of compiling a clause is amortized

against pattern matching efficiency. To achieve the best

- 31 -

"return on investment", one must get the best gains possible

while holding down the cost of compilation.

This is an important reason for having a special compiler

for handling only unit clauses. The compilation process for

unit clauses is simpler than that for non-unit clauses.

Therefore, a unit clause compiler will require less

resources than a full WAM compiler. So the "return on

investment" is amplified by reducing initial compilation

costs. Also unit clauses tend to be more enduring than non­

unit clauses. Clearly, it is less likely that a unit clause

will be subsumed (only a more general unit clause can

subsume a unit clause, while non-unit clauses can be

subsumed by unit clauses or even other non-unit clauses).

Therefore, the gains from unit clause compilation will tend

to accrue for a larger proportion of the time during which

the theorem prover is active. Also gains from unit conflict

checking are simply not available to non-unit clauses. The

sheer prevalence of unit clauses guarantees that little will

be lost by excluding non-units from compilation. Of course,

it is still possible to compile non-unit clauses using a

full WAM compiler. The expected return will simply be much

lower than the that for unit clauses.

WAM appears to be a vehicle for generating custom

unification code. But to be applicable to a theorem proving

- 32 -

context, there must be some modifications. Theorem proving

and PROLOG, while related, are not the same thing. The most

important consideration is the absence of the occurs-check

in PROLOG. Also subsumption requires half-matching and not

unification. Otherwise, unit clauses in PROLOG and a

theorem prover are very similar. Further, the nature of the

problem of compiling unit clauses into WAM requires that

only a small subset of the WAM instruction set be used.

Fortunately, ANL has implemented a version of the Warren

Abstract Machine referred to as ANLWAM. The ANLWAM

environment has facilities for switching an occurs-check on

and off or switching from unification to half-matching and

vice-versa. ANLWAM also has excellent facilities for

handling the interface between special programs like the

unit clause compiler and the external environment which

includes the theorem prover.

It should be noted that this is not the only reasonable

approach to handling the occurs-check and half-match

problem. An alternative would be to extend WAM to include

additional special instructions that have the occurs-check

and still more instructions to perform half-matching. There

is a tradeoff in these approaches. The latter approach will

be more efficient at execution time since no switch checking

needs to be done in the generated code. However, the code

- 33 -

generated by this approach can be used for only one purpose,

so if both unification with occurs-check and half-matching

are needed, two separate compilations must be done. In the

first approach the same code serves all purposes. This

tradeoff needs careful consideration when choosing a

particular implementation. For example, a database

application would probably need only unification without an

occurs check. So one would be best advised to take the

latter route. Theorem proving clearly needs both

unification with occurs-check and half-matching. So the

former path would be preferable. In an expert system

application the decision would depend on details of the

particular system.

The ANLWAM interface is designed for use by programs written

in C. This is consistent with the earlier mentioned goal of

portability. C has the advantages of high-level language

constructs with low-level access to machine functions. This

provides the ability to write comprehensible programs that

sacrifice little to assembler language programs with regard

to function and performance. This is ideal for the current

application where both portability and speed are important.

In summary, this paper describes a program that compiles
'

unit clauses generated by an application into WAM to speed

unification and half-matching. This will find application

- 34 -

in computational logic problems of sufficient size to

warrant the investment of time necessary for unit clause

compilation. For very large problems, the investment should

pay-off handsomely. Perhaps problems that were once too

large will become accessible to computational logic.

2.1.2 Interaction with Environment

The ANLWAM environment that was used for this project runs

on a 16 processor Balance system running the UNIX operating

system. The unit clause compiler is a built in predicate of

the ANLWAM environment, named "ucc". It can therefore be

called from PROLOG code run in the ANLWAM environment or

from other predicates in the ANLWAM environment that use the

foreign subroutine facility.

The "ucc" predicate has arity two. The first argument

passes the unit clause to be compiled. This will look like

a structure to the unit clause compiler. Anything other

than a structure in the first argument will cause the "ucc"

predicate to fail. The second argument is a variable which

will be instantiated by "ucc" to a structure one of whose

arguments is a list containing the WAM code for the unit

clause passed as the first argument. If the second argument

fails to unify with the list that "ucc" builds, the

predicate will fail.

- 35 -

The format of the structure containing the WAM code is the

same as that produced by the full WAM compiler in the ANLWAM

environment. This means that the same tools that would be

used in conjunction with the full WAM compiler, can be used

with "ucc". In particular, the same assembler is used to

generate bytecode. This bytecode can then be executed on

the bytecode interpreter.

2.1.3 Basic Design

One of the primary concerns of a compiler writer is how to

handle parsing. Given the nature of this problem, with

relatively few productions with which to deal, the recursive

descent approach was taken [Aho79] [Calingaert79]. The

ability to write recursive functions in C, made this a very

feasible approach.

The lexical analysis of the incoming text is another problem

that compiler writers need to face. In this case, the

problem was greatly simplified by the c macros provided in

the foreign subroutine interface to ANLWAM. It is

impossible to say enough about these macros. One would

expect that the input would come in the form of a string

that would have to be broken down into tokens. With the

ANLWAM foreign subroutine interface, the situation is

- 36 -

somewhat different. The arguments passed by ANLWAM are of

necessity PROLOG data types. The available list of types is

an extension of the list of data types presented earlier in

the discussion of the Warren Abstract Machine. They are

variables (known as value cells or simply vcells), lists,

structures, and constants; but constants are of three

subtypes: strings, integers, and floating point. In

addition, there is a special type for the nil list. To

access an argument, one first determines the type of data by

using the TYPE FORMULA macro. This returns an integer which

represents the data type of the argument. This integer can

be used to vector to a routine for handling the data type

which the integer represents. If the data type is a string,

integer, floating point constant, one uses the ACC_STRING,

ACC_INTEGER, or ACC_FLOAT, respectively to gain access to

the actual value of the argument. If the data type is a nil

list, there is no further need to access data, since the

exact nature of the data is known. For a non-nil list, one

must use the ACC HEAD and ACC TAIL to gain pointers to the

head and tail of the list respectively. The head and tail

of the list can be accessed by going through the

TYPE FORMULA macro again and proceeding as above.

Structures also have two macros ACC ARITY and ACC STRUCT.

The ACC_ARITY macro gives the number of arguments in the

structure. The function/predicate symbol can be accessed by

using the argument number zero with the ACC STRUCT macro.

- 37 -

The arguments are accessed by giving to the ACC STRUCT macro

the argument number of the argument to which access is

desired. One of the great beauties of the ANLWAM foreign

subroutine interface is that the arguments of a structure

can be processed using a "for" loop, something which can

hardly be imagined in a typical lexical analysis situation!

The recursive nature of the list and structure data types is

clearly highlighted through these macros. It is strongly

recommended that anyone attempting to work with PROLOG data

structures in a C or for that matter any other language

environment make use of any macro or subroutine facilities

for operating on these data structures that may be provided.

If such facilities do not exist, the effort to create them

will be time well spent.

The mechanism for code generation is accomplished through

the difference list technique [Bratko86] [Sterling86] and

implemented through more facilities of the ANLWAM foreign

subroutine interface. For each data type, there is a macro

to build an element of that data type. The macros of

interest for the current application are BLD_VCELL,

BLD_SYMBOL, BLD_NIL, and BLD LIST. Initially, the pointer

to the vcell which will contain the instruction list that

will be embedded in the second argument of "ucc" is stored.

Each time a new instruction is to be output, BLD SYMBOL

establishes a pointer to the instruction and BLD VCELL is

- 38 -

invoked to create a new variable. A BLD LIST is then done

giving the symbol which contains the instruction as the head

of the list, and the new variable as the tail. The stored

vcell pointer referred to earlier is then retrieved and the

newly created list is bound to that vcell. The pointer to

the variable that became the tail of the new list then

replaces the pointer to the vcell to which the list was

bound. When all of the code has been generated, a BLD_NIL

is used to create a nil list and this is bound to the vcell

at the tail of the code list. The list is then a complete

list of the generated WAM code.

2.1.4 Design Considerations

An important consideration in designing a Warren Abstract

Machine code compiler is register usage. There are several

excellent references on the Warren Abstract Machine

[Warren83] [Gabriel85] [Turk85]. There is even a good

reference on efficient register usage [Debray84]. The

difficulty is that these references do not focus on the

problem that becomes most acute when working with unit

clauses. Under many circumstances, unit clauses will be

well-behaved with respect to register usage. Since the

Warren Abstract Machine has only a finite number of

registers, unit clauses which are lush with complex

arguments, that is, structures and lists, pose a potential

- 39 -

problem of register exhaustion. These kind of unit clauses

commonly occur in theorem proving applications. Because

some situations will require registers beyond those used to

pass arguments, it is important to reclaim registers that

are no longer needed as soon as possible.

Consider a nested structure in a unit clause:

p(f(g(a,b),h(c,d))).

Here, the structure f has two arguments, g and h, which are

themselves structures with two arguments. We can use the

WAM instruction get_structure to process f. The

get_structure instruction cannot, however, be applied to g,

the first argument of the structure f, since get_structure

can only handle arguments which are in a WAM register. The

solution is to move the structure g to its own register,

using the WAM instruction unify_x_variable, and then apply

the get_structure instruction to g in its new location. The

case of the h structure is somewhat more hospitable. The

WAM instruction unify_structure can be employed directly to

h, without moving h to a new register. Because it is the

last argument of the structure, the unify_structure

instruction does not need a new register. It can treat the

current register as a scratch register for the new structure

- 40 -

since there are no subsequent arguments of the old structure

with which there might be interference.

Lists, in turn, being a kind of structure, are handled in a

similar way. A list can be thought of as a structure of

arity two with the name "·"· The head of the list is the

first argument of the structure, and the tail of the list is

another list which is the second argument of the structure.

The tail may be the special list"[]", the empty list. WAM

does not employ the structure "·" to represent lists, but if

one keeps the structure representation in mind, it makes the

approach very comprehensible. Consider the list:

[[a],b].

Here we have a list whose head is in turn the list [a], and

whose tail is the list [b]. Analogously to structures, a

list is processed with the WAM instruction get_list. Also

the head of a list, if it is itself a list, must be moved to

a new register to be processed. So in the example, the list

[a] must be moved with a unify_x_variable instruction, and

then processed with the get_list instruction in the new

register. The list [b], can be processed with the

unify_list command, since it is the tail of our original

list, or, to put it another way, the last argument of the

" " . structure .

- 41 -

It should be noted that lists can be arguments of

structures, and vice versa, so we must be prepared to handle

all these instances within the guidelines put forth. All

complex arguments occurring as the last argument, may be

handled with the appropriate unify instruction; otherwise,

they must be moved to a new register and processed with the

appropriate get instruction. In the latter case, the move

must be done immediately, but the get processing must be

delayed until sometime after the processing of all the other

arguments is completed. This delay is implemented by

enqueueing the information needed to process the moved

argument. When the processing of a structure or list is

completed, the register which it occupied is freed.

Variables pose an additional problem. When a variable

appears as the argument of the unit clause, one of two

things must be done. If it has not appeared earlier, it is

only necessary to note the name of the variable and the

register in which it is located. No code needs to be

generated. However, if it has appeared earlier, the WAM

instruction get_value is generated and the register it

occupies may be marked as available for use. But when

variables appear as arguments in structures or lists, the

situation changes somewhat. If the variable has appeared

earlier, the instruction unify_x_value is generated, and

- 42 -

processing continues; but, if the variable has not appeared

earlier, there are two cases. If the variable does not

appear anywhere else in the unit clause, the unify_void

instruction is generated; otherwise, the variable must be

moved to a new register in order to preserve its value by

generating the unify_x_variable instruction. The problem

here is that one does not yet know whether the variable at

hand will appear later. One could make an initial scan of

the entire unit clause to determine exactly which variables

occurred more than once. The implementation described here

does not take this approach. Instead, a unify_x_variable

instruction is generated in all situations. The

justification for this is that situations where the

unify_void instruction are useful are relatively infrequent.

Generating a unify_x_variable instruction causes no harm

beyond the use a register that would otherwise be free and

the minor run time consequences due to the differences in

the two instructions. On the positive side, there is the

saving of a complete scan of the unit clause. This is

important since this unit clause compiler is built for

speed. An alternative approach will be described later in

the recommendations for future enhancement. To mitigate the

effects of this design decision somewhat, variables used as

arguments to the unit clause are located first. Since these

variables already occupy a register, they require no new

register. Subsequent occurrences of these variables in

- 43 -

lists and structures can be handled by generating the

get_x_value instruction for argument variables and the

unify_x_value instruction elsewhere.

Constants and the empty list, when they occur as arguments

of the unit clause, provide the opportunity to free

registers immediately after generating the appropriate WAM

get instruction. When they occur in lists and structures,

the appropriate WAM unify instruction needs to be generated,

and processing can simply continue.

In summary, structures, lists, and variables that appear in

structures and lists as other than the last argument consume

additional registers. Completion of processing of an

argument, other than a variable that has not occurred

before, frees the register occupied by that argument.

2.2 CODING AND IMPLEMENTATION

2.2.1 Detailed Design

The particulars of the design of this unit clause compiler

are dictated by the discussions of the previous sections.

There are some noteworthy data structures employed.

- 44 -

An array, indexed by register number, is used to keep track

of register usage and variables. To accomplish both of

these functions simultaneously, it was necessary to make an

assumption which is valid in the ANLWAM environment and

probably in most other conceivable environments, but which

should be checked by implementors following this approach.

The data in the array may be the name of a variable, or an

indicator that the register is either in use or free. The

assumption is that zero can indicate a free register, and

that the number one can indicate a used register and that no

valid variable name is either zero or one. A variable name

is taken to be a pointer to the dereferenced value of the

variable. To understand what the dereferenced value is, it

is important to realize that variables can be bound to other

variables. Thus the pointer of a variable may not point to

the value of the variable, but to another variable. The

process by which a pointer to the actual value of a variable

is obtained is called dereferencing. In the ANLWAM

environment, the pointers provided to the unit clause

compiler are always dereferenced, and importantly to this

discussion, never have the values zero or one. A pass is

made through the arguments of the unit clause to determine

if any are variables. Those that are not variables are

marked as being in use. For those that are variables, the

name of the variable is placed in the array, unless that

name is already in the array, in which case the register is

- 45 -

marked as free after generating a get_value instruction. To

check whether a variable has already been encountered, the

array is searched from zero to max var. Max var is the

highest register known to contain a variable and is

initially set to negative one. Once all the arguments have

been examined, the remaining registers are marked as being

available. When any routine completes processing on a

register, it simply sets the value in the array for that

register to zero. The get scratch function is used to

acquire a free register. The routine scans the array for

the first available register, marks it as used, and returns

the register as the value of the parameter passed to the

function. If the register can be acquired, the function

returns TRUE; otherwise, it prints an error message and

returns ERROR.

The unit clause which is input to the compiler determines to

a large extent the flow of control. The input is examined

to determine if in fact it is a unit clause. If it is not,

the compilation is terminated with an error message. It has

already been described how a pass is made of the arguments

of the unit clause for the purpose of initializing the

register array. After this, the business of compilation

really begins. Each non-variable argument is examined and

code appropriate to it is generated. The non-trivial case

is that of structures and lists. These are recursively

- 46 -

defined data structures, and fittingly the functions which

process them are recursive. The recursion occurs only in

the case that a structure or list is encountered as the last

argument in a structure or non-nil list (the last argument

of a list is always a list). This is not to say that lists

or structures cannot occur in other than the last argument

of a list or structure. That case is handled later. There

is a difference in the first call to process a list or

structure and later recursive calls. The first call always

generates a get instruction. The later calls generate a

unify instruction. Also the first call must free its

register when its processing is complete. Otherwise they

are identical. The difference is handled by passing a

switch as a parameter to the processing function. The

initial call passes zero, and all recursive calls pass the

value one.

Another significant data structure is the queue. As

indicated in the previous section, when a structure or list

is encountered as other than the last argument to a

structure or list, it must be moved to a new register and

processed later. The pointer to the argument, its type, and

the register to which it has been moved are stored in the

queue for later processing. The queue is implemented as a

simple linked list. To place an entry on the queue, the

function enqueue is used. After all of the arguments of the

- 47 -

unit clause have been processed, the items on the queue, if

any, are processed one at a time until the queue is

exhausted. It should be noted that items on the queue may

cause new items to be placed on the queue.

The final data structure worth note is the one associated

with the output variable of the unit clause compiler. It

has already been described how the code is placed into what

amounts to a difference list, which when complete, is

instantiated to an ordinary list by binding the final

variable to the empty list. This list, in turn, is bound

into a structure which represents the output of the unit

clause compiler. Finally, the structure is bound to the

output variable. This data structure has a variety of

routines associated with it. There is essentially one

function for each type of WAM instruction. There are also

some supporting routines for handling general problems, like

converting strings and integers to symbols and structures

which can be used by WAM.

2.2.2 Testing

Testing of the unit clause compiler was accomplished via a

suite of test unit clauses. The clauses ranged from a

variety of relatively trivial instances, to some very

complex, deeply nested cases. These cases were compiled

- 48 -

using the full WAM compiler, and the results compared with

the output from the unit clause compiler. There was no

requirement that the code match exactly, since there are

many ways to generate correct code for a typical unit

clause. The key consideration is that the code be

functionally equivalent. For example, the arguments of a

unit clause may be handled in any order. The assignment of

variables, lists, and structures, can be made to an

arbitrary work register so long as that register is not

currently in use. Some WAM instructions are interchangeable

in certain circumstances. Finally, it has been noted

earlier that the unit clause compiler in some instances will

generate sub-optimal code. Given that this is taken into

account by the design of the compiler, the sub-optimality is

tolerated for the sake of speed.

Beside accuracy of results, the other significant factor in

the unit clause compiler is speed. The standard of

comparison is once again the full WAM compiler. Timings of

the results were made in order to establish whether a

special purpose unit clause compilation process can indeed

achieve superior performance. The unit clause compiler

averaged fifty times faster than the full compiler.

- 49 -

3.1 INSTALLATION

Chapter 3

RESULTS

The unit clause compiler was installed in the ANLWAM

environment in 1987. The unfortunate situation is that the

ANLWAM environment is being superceded by a new WAM

environment.

ANLWAM was developed as a research tool and has served that

purpose well. Nonetheless, attention is now shifting to the

new environment, and the prospects of there being any

significant use made of the unit clause compiler in the

ANLWAM environment are quite dim. It is hoped that a unit

clause compiler will be written for the new environment

using the experience gained through the ANLWAM

implementation described here.

3.2 NECESSARY CHANGES

The changes in the unit clause compiler resulted mainly from

the exigencies of working in a research setting.

Documentation is sometimes incomplete or in flux. The

- 50 -

working documents for the ANLWAM foreign subroutine

interface, for example, were drafts, not final documents.

Given this, it is not too surprising that there were

occasional problems.

The only serious problem occurred when it was discovered

that the unit clause compiler would generate correct code

for certain deeply nested unit clauses in one instance and

incorrect code in other instances. Sometimes an infinite

loop would occur and sometimes a hard failure due to a

pointer error would occur. How one situation differed from

the others was not at all clear. The solution to the

problem came with the realization that ANLWAM was not

reloading the unit clause compiler each time it was invoked.

Initializations not made by run time assignments were not

done after the first invocation of the program. When all

initializations were made by run time assignments, the

condition disappeared.

- 51 -

Chapter 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 EVALUATION

Because of the move to replace the ANLWAM environment, there

is little to report about the experiences of users of the

unit clause compiler. In spite of this, testing reveals

that the idea of unit clause compilation is sound. By

providing a special purpose compiler for unit clauses, it is

possible to reduce the cost associated with compilation.

The research presented by [Warren??] and particularly

[Butler86] provides the justification for the compilation of

logic.

Since the compilation of logic is an important component of

Argonne National Laboratory's efforts to achieve a high

performance logic environment, the concepts advanced here

should receive considerable attention in the future.

- 52 -

4.2 RECOMMENDATIONS FOR FUTURE ENHANCEMENT

The implementation described here is satisfactory in most

respects, except that it accepts the generation of sub­

optimal code. The justification presented earlier was that

this was a conscious trade off of compile time speed for

execution time speed. The idea was that it would take a

second pass of the entire input unit clause to gain the

information necessary to generate optimal code. The cost of

this second pass was not felt to be justified since there

would be no improvement in the great majority of input

instances even after the extra pass.

An insight into this problem came after the current

implementation was completed. The value of the ANLWAM

foreign subroutine facilities has been pointed out earlier.

They essentially embed PROLOG capabilities in a C program.

The key insight is precisely that thinking of the above

problem in PROLOG terms provides an elegant solution.

To solve the problem in one pass, it is necessary to modify

the code generation process a little. When the situation

arises where the decision must be made as to whether to

generate a unify_x_variable instruction or a unify_void

instruction, the information needed to make this decision

- 53 -

will not be available until the unit clause has been

completely processed. So one delays the decision by

generating an uninstantiated variable as the "code" and

storing in a list the information that procedures invoked

later in the compilation will use to generate the correct

code and then instantiate the variable to that code. The

information stored in the list would be the pointer to the

"code" variable and a scratch register which will be used in

the event the unify_x_variable instruction is ultimately

generated. If later in the compilation, it is seen that one

of the variables in the list appears again, a unify_x_value

instruction is generated for that variable and the "code"

variable in the list is instantiated to a unify_x_variable

instruction which uses the register stored in the list. The

entry is then deleted from the list. At the end of the

compilation, there will be only unreferenced variables

remaining in the list. The "code" variables for these are

all instantiated to unify_void instructions.

The hope is that the above discussion provides additional

impetus for future implementors to develop and utilize the

sort of macros and routines in the ANLWAM foreign subroutine

interface. It is obviously not impossible to accomplish the

above without such facilities, but it is certainly not

desirable. The delayed binding exemplified above provides

support for the power of logical variables and the

- 54 -

desirability of providing them even in conventional

procedural language environments.

Another improvement to the unit clause compiler would be to

generate object code directly. Once a compiler can generate

WAM code successfully, it is not a huge step to generate

"byte code", which could be interpreted directly without the

intermediate step of assembly. Indeed, given some of the

complications involved with generating WAM code, it may well

provide even faster compilation. With the success of WAM

implementations, it will not be surprising to see firmware

or even hardware implementations of WAM in the near future.

These provide further motivation toward the attainment of

very high performance logic environments.

4.3 CONCLUSIONS

Logic is becoming an extremely important computational

paradigm. Logic provides a clear declarative and procedural

semantics that lends itself to a wide variety of

applications.

The most frequent criticism of logic, is that

implementations of logic are too slow. This criticism has

been addressed by the work of David Warren in the

compilation of logic. A unit clause compiler such as the

- 55 -

one described in this paper, further refines the advantages

of logic compilation by providing a low overhead method for

compiling the very significant class of unit clauses.

An implementation of a unit clause compiler, particularly

one with the recommended enhancements, will help

computational logic environments to achieve high levels of

performance.

- 56 -

BIBLIOGRAPHY

[Aho79]
Aho, Alfred V., and Jeffrey D. Ullman, Principles of
Compiler Design, Addison-Wesley Publishing Co., Reading
Massachusetts, 1979.

[Boyer79]
Boyer, Roberts., and J. Strother Moore, A
Computational Logic, Academic Press, New York, 1979.

[Bratko86]
Bratko, Ivan, PROLOG Programming for Artificial
Intelligence, Addison-Wesley Publishing Company,
Wokingham England, 1986.

[Butler86]
Butler, Ralph, et al,"Paths to High-Performance
Automated Theorem Proving", Technical Report,
Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne Illinois, 1986.

[Butler87]
Butler, et al, "ANLWAM: A parallel Implementation of
the Warren Abstract Machine", Technical Report,
Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne Illinois, 1987.

[Calingaert79]
Calingaert, Peter, Assemblers, Compilers, and Program
Translation, Computer Science Press, Rockville
Maryland, 1979.

[Chang73]
Chang, Chin-Liang, and Richard Char-Tung Lee, Symbolic
Logic and Mechanical Theorem Proving, Academic Press,
New York, 1973.

[Charniak85]
Charniak, Eugene, and Drew McDermott, Artificial
Intelligence, Addison Wesley, Reading Massachusetts,
1985.

[Clocksin84]
Clocksin, w. F., and c. s. Mellish, Programming in
PROLOG, Springer Verlag, Berlin, 1984.

[Codd70]
Codd, E. F., "A relational model for large shared
databases", Communication of the ACM 13 (6), pp. 377-
387, June 1970.

[Cohen82]
Cohen, Paul R., and Edward A. Feigenbaum, The Handbook
of Artificial Intelligence, William Kaufmann, Inc.,
1982.

- 57 -

[Colmeraurer73A]
Colmeraurer, Alain, "Les systemes-Q ou un Formalisme
pour Analyser et Synthesizer des Phrases sur
Ordinateur", Publication Interne No. 43, Dept.
d'Informatique, Universite de Montreal, Canada, 1973.

[Colmeraurer73B]
Colmeraurer, A., et al, "Un Systeme de Comunication
Homme-machine en Francaise", Research Report, Groupe
Intelligence Artificielle, Universite d'Aix-Marseille
II, 1973.

[Colmeraurer82]
Colmeraurer, A., "PROLOG and Infinite Trees", in <C. L.
Clark and s.-A. Tarnlund>, eds., Logic Programming,
Academic Press, London, 1982.

[Davis83]
Davis, M., "The Prehistory and Early History of
Automated Deduction," in <Jorg Siekmann and Graham
Wrightson>, eds., Automation of Reasoning, Springer
Verlag, Berlin, 1983.

[Debray84]
Debray, Saumya K. "Efficient Register Allocation for
Temporary Variables in the Warren PROLOG Engine",
Technical Report, Dept. of Computer Science, SUNY at
Stony Brook, August 1984.

[Eggert83]
Eggert, P. R., and K. P. Chow, "Logic Programming
Graphics with Infinite Terms", Technical Report,
University of California, Santa Barbara 83-02, 1983.

[Gabriel84]
Gabriel, J., et al, "A Short Note on Achievable LIP
rates Using the Warren Abstract PROLOG Machine",
Technical Report, Mathematics and Computer Science
Division Technical Memo #36, Argonne National
Laboratory, Argonne, Illinois, September 1984.

[Gabriel85]
Gabriel, John, et al, "A Tutorial on the Warren
Abstract Machine for Computational Logic", Technical
Report, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne Illinois, June
1985.

[Gallaire78]
Gallaire, H., and J. Minker, Logic and Databases,
Plenum Publishing Co., New York, 1978.

[Gallaire84]
Gallaire, H. J. Minker, and J. M. Nicolas, "Logic and
Databases: A Deductive Approach", Computing Surveys
(16), pp. 153-185, 1984.

- 58 -

[Jackson86]
Jackson, Peter, Introduction to Expert Systems, Addison
Wesley, Wokingham England, 1986.

[Kabat82]
Kabat, W. c., and A. S. Wojcik, "Automated Synthesis of
combinational logic using theorem proving techniques,"
Proceedings of the Twelfth International Symposium on
Multiple-values Logic, pp. 178-199, May 1982.

[Kelley84]
Kelley, Al, and Ira Pohl, A Book on C, The
Benjamin/Cummings Publishing Co., Menlo Park, 1984.

[Kowalski74]
Kowalski, Robert, "Predicate Logic as a Programming
Language," in <J. L. Rosenfeld>, ed, Information
Processing 74, North-Holland Publishing Co., Amsterdam,
1974, pp. 569-574.

[Kowalski??]
Kowalski, Robert, "Algorithm= Logic+ Control",
Communications of the ACM, pp 424-436, July 1977.

[Kowalski79]
Kowalski, Robert, Logic for Problem Solving, Elsevier
North Holland, New York, 1979.

[Kowalski85]
Kowalski, Robert, "The relation between logic
programming and logic specification", in <C. A. R.
Hoare>, ed., Mathematical Logic and Programming
Languages, Prentice-Hall International, Englewood
Cliffs New Jersey, 1985.

[Levesque84]
Levesque, Hector J., "A Fundamental Tradeoff in
Knowledge Representation and Reasoning," Proceedings
CSCCSI-84, London Ontario, pp. 141-152, 1984.

[Loveland78]
Loveland, Donald w., Automated Theorem Proving: A
Logical Basis, North-Holland Publishing Co., Amsterdam,
1978.

[Lloyd84]
Lloyd, J. W., Foundations of Logic Programming,
Springer Verlag, Berlin, 1984.

[Lusk82]
Lusk, Ewing, and Ross A. Overbeek, "An LMA-based
theorem prover," Technical Report, ANL-82-75, Argonne
National Laboratories, Argonne Illinois, December 1982.

[Lusk84]
Lusk, Ewing, and Ross A. Overbeek, "The Automated
Reasoning System ITP," Technical Report, ANL-84-27,
Argonne National Laboratories, Argonne Illinois, April
1984.

- 59 -

[McCarthy67]
McCarthy, John, "A basis for a mathematical theory of
computation," in <Bratfort, P. and D. Hirschberg>,
eds., Computer Programming and Formal Systems, North­
Holland Publishing Co., Amsterdam, 1967.

[Moore82]
Moore, Robert c., "The Role of Logic in Knowledge
Representation and Commonsense Reasoning," Proceedings
AAAI-82, Pittsburgh Pennsylvania, 1982, pp. 428-433.

[Nguyen87]
Nguyen, Tin A., Walton A. Perkins, Thomas J Laffey, and
Deanne Pecora, "Knowledge Base Verification", AI
Magazine, Summer 1987, pp. 69-75. --

[Pugh85]
Pugh, Kenneth, C Language for Programmers, Scott
Foresman and Company, Glenview Illinois, 1985.

[Robinson65A]
Robinson, J., "A machine-oriented logic based on the
resolution principle," Journal of the ACM (12), 1965,
pp. 23-41.

[Robinson65B]
Robinson, J., "Automatic deduction with hyper­
resolution," International Journal of Computer
Mathematics (1), 1965, pp. 227-234.

[Robinson83]
Robinson, J., "The Generalized Resolution Principle,"
in <Jorg Siekmann and Graham Wrightson>, eds.,
Automation of Reasoning, Springer Verlag, Berlin, 1983.

[Sobell85]
Sobell, Mark G., A Practical Guide to UNIX System V,
Benjamin/Cummings Publishing Co., Menlo Park, 1985.

[Sterling86]
Sterling, Leon, and Ehud Shapiro, The Art of PROLOG,
The MIT Press, Cambridge Massachusetts, 1986.

[Turk85]
Turk, Andrew K., "Compiler Optimizations for the WAM,"
Technical Report, School of Computer and Information
Science, Syracuse University, November 1985.

[Walker87]
Walker, Adrian, ed., Michael McCord, John F. Sowa, and
Walter G. Wilson, Knowledge Systems and PROLOG,
Addison-Wesley, Reading Massachusetts, 1987.

[Warren77A]
Warren, David H. D., "Applied Logic- its use and
implementation as programming tool.," Ph.D. Thesis,
University of Edinburgh, Scotland, 1977.

- 60 -

[Warren77B]
Warren, David H. D., Luis Pereira, and Fernando
Pereira, "PROLOG -The language and its implementation
compared with LISP", Proceeding of the Symposium on
Artificial Intelligence and Programming Languages,
SIGPLAN Notices ACM 12 (8); SIGART Newsletters ACM
(64), August 1977, pp. 109-115.

[Warren80]
Warren, David H. D., "An improved PROLOG implementation
which optimizes tail recursion," Research Paper 156,
Dept. of Artificial Intelligence, University of
Edinburgh, Scotland, 1980.

[Warren86]
Warren, David H. D., "Optimizing Tail Recursion in
PROLOG," in <van Caneghem and Warren>, eds., Logic
Programming and its Applications, 1986.

[Warren83]
Warren, David H. D., "An Abstract PROLOG Instruction
Set," Technical Note 309, SRI International, Menlo Park
CA, October 1983.

[Winston84]
Winston, Patrick Henry, Artificial Intelligence,
Addison-Wesley, Reading Massachusetts, 1984.

[Winker81]
Winker, s., L. Wos, and E. Lusk, "Semigroups,
antiautomorphisms, and involutions: a computer solution
to an open problem, I," Mathematics of Computation 37
(156), pp.533-545, October 1981.

[Winker82]
Winker, s., "Generation and verification of finite
models and counterexamples using an automated theorem
prover answering two open questions." Journal of the
ACM 29 (2), April 1982, pp. 273-284.

[Wojciechowski83]
Wojciechowski, W. S, and A. s. Wojcik, "Automated
design of multiple-valued logic circuits by automated
theorem proving techniques." IEEE Transactions on
Computers, September 1983.

[Wos64]
Wos, L., D. Carson, and G. Robinson, "The unit
preference strategy in theorem proving," Proceedings of
the Fall Joint Computer Conference, Thompson Book
Company, New York, 1964, pp. 615-621.

[Wos65]
Wos, L., D. Carson, and G. Robinson, "Efficiency and
completeness of the set-of-support strategy in theorem
proving," Journal of the ACM (12), 1965, pp. 536-541.

[Wos84]
Wos, Larry, et al, Automated Reasoning: Introduction
and Applications, Prentice-hall, Inc., Englewood Cliffs
New Jersey, 1984.

- 61 -

VITA

George Donald Herbert was born on September 13, 1948 in

Chicago, Illinois. He received his primary education in

Chicago and Elk Grove Village, Illinois. He received his

secondary education at St. Viator High School in Arlington

Heights, Illinois, where he received the Auxilium Latinum

award for Latin scholarship and the school Mathematics

award. He received his Bachelor of Science degree in

Mathematics from the University of Illinois in Champaign­

Urbana. He has worked for 17 years with J. M. Family

Enterprises, mostly with their data processing subsidiary

Carnett. He currently holds the position of Manager of

Special Projects.

He married his wife, Sallie, in 1973, and they have three

daughters: Roberta, age 9, Catherine, age 7, and Lyndon, age

4.

He has been enrolled in the Graduate School of the

University of North Florida since August 1985. He is a

member of the Institute of Electrical and Electronics

Engineers and the Computer Society of the I.E.E.E. He is

also a student member of the Association for Computing

- 62 -

Machinery, American Association for Artificial Intelligence

and the American Mathematical Association. Recently, his

paper, "Relating Two Forms of Ackermann's Function", was

accepted for publication subject to revision by the American

Mathematical Monthly.

- 63 -

	UNF Digital Commons
	1987

	Compiling Unit Clauses for the Warren Abstract Machine
	George D. Herbert
	Suggested Citation

	Title Page

	Signatures

	Acknowledgement

	Table of Contents

	Abstract

	Chapter 1 Introduction

	1.1 Thesis Organization

	1.2 PROBLEM REVIEW

	1.2.1 Computational Logic

	1.2.2 Resolution and Unification

	1.2.3 Subsumption

	1.2.4 Applications and Unit Clauses

	1.2.4.1 Theorem Proving

	 1.2.4.2 Expert Systems

	1.2.4.3 Database Systems

	1.3 LITERATURE REVIEW

	1.3.1 The Prehistory of Computational Logic
	1.3.2 Early Theorem Provers
	1.3.3 Logic Programming
	1.3.4 PROLOG
	1.3.5 Warren Abstract Machine

	Chapter 2 METHODS AND PROCEDURES

	2.1 PLAN OF ATTACK
	2.1.1 Background

	2.1.2 Interaction with Environment
	2.1.3 Basic Design
	2.1.4 Design Considerations

	2.2 CODING AND IMPLEMENTATION
	2.2.1 Detailed Design
	2.2.2 Testing

	Chapter 3 RESULTS
	3.1 INSTALLATION
	3.2 NECESSARY CHANGES

	Chapter 4 CONCLUSIONS AND RECOMMENDATIONS

	4.1 EVALUATION
	4.2 RECOMMENDATIONS FOR FUTURE ENHANCEMENT
	4.3 CONCLUSIONS

	BIBLIOGRAPHY

