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ABSTRACT 

This thesis describes the design, development, and 

installation of a computer program which compiles unit 

clauses generated in a Prolog-based environment at Argonne 

National Laboratories into Warren Abstract Machine (WAM) 

code. The program enhances the capabilities of the 

environment by providing rapid unification and subsumption 

tests for the very significant class of unit clauses. This 

should improve performance substantially for large programs 

that generate and use many unit clauses. 

vi 



Chapter 1 

INTRODUCTION 

1.1 THESIS ORGANIZATION 

This thesis deals with the design, development, and use of a 

computer program which was written to enhance the 

capabilities of a PROLOG-based environment at Argonne 

National Laboratories (ANL). 

Part 1.2 of chapter 1 of this thesis presents an overview of 

the problem. Part 1.3 of chapter 1 presents a review of 

literature pertinent to the topic. 

Chapter 2 presents a discussion of the design of the 

programming procedures used. It also provides a discussion 

of the methods used in testing the completed program. 

Chapter 3 describes the installation of the program, and 

discusses changes that were necessary for its successful 

operation. 
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Finally, chapter 4 presents an evaluation of the obtained 

results and suggests changes that may enhance the program's 

operation. 

1.2 PROBLEM REVIEW 

1.2.1 Computational Logic 

Computational logic has proved to be valuable in dealing 

with a wide range of applications. The obvious application 

would be automated reasoning, in particular, automated 

theorem proving. It is not a great leap to see the 

application of logic to the inference capabilities of expert 

systems. Logic is an obvious tool when dealing with formal 

languages. It is therefore not surprising to find logic 

used to handle natural language processing as well. What 

may be surprising is that any computational task can be 

reduced to proving a theorem in first order logic 

[Levesque84]. This makes logic one among the many 

formalisms that support general computation. 

Why should logic be chosen rather than one of the competing 

formalisms for tasks that are not obviously "logical"? One 

of the great services logic has provided to computation has 

been to bring to it a declarative semantics [Cohen82]. The 

clauses of a logic program can be given a declarative 
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reading as descriptive statements about entities and 

relations. This means that programs about real world 

problems can be written by making assertions about real 

world entities and their relationships to one another. This 

is a very natural and powerful way to view a problem and it 

has been argued that for some problems, it is the only way 

[Moore82]. Logic programs take problems out of the 

procedural thickets common to other computational 

formalisms. This is not to say that logic programs do not 

have a procedural interpretation. When executed by an 

interpreter, these programs behave as if they were 

performing a deduction in a very formal manner, using the 

clauses of the program as axioms. So logic separates the 

declarative and procedural components of a problem, 

which is to say, problem representation and control become 

distinct issues. 

Given these excellent properties then, why would anyone 

consider any approach other than logic? Perhaps the most 

abiding criticism of logic is its perceived inefficiency. 

Theorem-proving can be seen as a search of a "theorem­

space". As ordinarily implemented, backtracking is employed 

to exhaustively search this space. For even relatively 

small problems, the search space can be enormous. Under 

some circumstances, the search may never terminate. 

Furthermore, the pattern-matching capability known as 
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unification used by logic interpreters, can require 

exponential time [Lloyd84]. 

There are several paths to improved performance in 

computational logic [Butler86]. They are clause 

compilation, multiprocessing, database indexing, and clause­

set "compaction". Using Sam's Lemma, a classic problem in 

lattice theory for the theorem proving literature, as a 

benchmark problem, it was shown that a better than order-of­

magnitude improvement in processing time could be achieved 

using these techniques. The clause compilation approach is 

taken in this paper, and, to understand it better, it will 

be useful to look more carefully at the techniques employed 

by typical computational logic environments. 

1.2.2 Resolution and Unification 

Before moving deeper into our topic, let us define some of 

the terms with which we shall be dealing. A Horn clause is 

a clause of the form 

where m > 0 and each Pi is atomic. Horn clauses are the 

basic representation used in PROLOG. A unit clause is a 

Horn Clause with m = 0. That is, there are no antecedents 
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to the above implication. Unit clauses are therefore 

unconditional clauses. 

Proof in a computational logic environment usually means 

establishing a contradiction. Starting with the negation of 

the assertion to be proved, consequences are derived until 

one of these consequences yields a contradiction. The 

contradiction always evidences itself when two unifiable 

unit clauses, one of which is positive and the other 

negative, are derived. Testing for unit clause conflict is 

therefore a basic automated inference procedure. 

The inference mechanism employed by most computational logic 

environments to generate consequences is the resolution 

principle [Robinson65A]. This principle generalizes the 

classical inference rules of modus ponens and modus tolens 

[Winston84]. To get a clear idea of how this principle 

works, let us first restrict our attention to the 

propositional calculus rather than the full first-order 

predicate calculus. Consider modus ponens in this arena: 

((P -> Q) & P) 1- Q. 

Implication can be translated into a disjunctive form by the 

rule: 
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(P -> Q) <-> (-P V Q). 

Now let us rephrase modus ponens by putting its implication 

in disjunctive form or synonymously, clausal form, that is: 

( ( -P V Q) & P) l- Q • 

Let us do the same for the modus tolens rule: 

((P -> Q) & -Q) l- -P, 

which becomes: 

((-P V Q) & -Q) l- -P. 

Finally, take the case of the transitivity of implication 

((P -> Q) & (Q -> R)) l- (P -> R), 

which becomes: 

( (-P V Q) & ( -Q V R) l - (-P V R) • 

What has happened in each of these instances is that in 

each case where both the positive and negative of some 

proposition occurs in different conjuncts on the left of the 
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"I-", they "cancel out" yielding the disjunction of the 

remaining propositions to the right of the "I-"· This is 

the essence of the resolution principle [Cohen82]. 

To generalize this to the first-order predicate calculus, 

more apparatus is needed. In the first-order predicate 

calculus, there are variables, predicates, and quantifiers 

with which to contend. The expression P(x) means that the 

predicate P is true for x. If P means "is prime" then P(3) 

is true but P(6) is false. The universal and existential 

quantifiers will be represented here as Ux P(x) and Ex P(x), 

and will be read as "for all x P(x)" and "for some x P(x)", 

respectively. In order to apply the resolution principle in 

first-order predicate calculus, it will be necessary to 

convert to clausal form and eliminate quantifiers. The 

conversion to clausal form is very similar to that used in 

propositional calculus earlier. To eliminate quantifiers, 

skolemization is used. 

Skolemization is essentially the elimination of existential 

quantifiers in favor of appropriately chosen functions. A 

function is appropriate if it is unique to the particular 

quantifier being eliminated and does not occur elsewhere in 

any clause. Also the function must have an arity equal to 

the number of universal quantifiers that precede the 

replaced existential quantifier in the clause (functions of 
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arity zero are constants). Once this is done, the universal 

quantifiers can be eliminated as well by subscribing to the 

convention that all remaining variables are universally 

quantified. For example, consider the clause: 

Ex Uy Uz Ew (-P(x,y,z) V Q(y,z,w)). 

When skolemized, this becomes: 

(-P(a,y,z) V Q(y,z,f(y,z))), 

where "a" is a constant and "f" is a function of arity two. 

Once our predicates have been skolemized and put in clausal 

form, there is one further complication that must be 

handled. When using the propositional calculus, the notion 

that two propositions are the same but of opposite polarity, 

that is to say, complementary, is quite clear, but 

variables, constants, and functions muddy the situation 

somewhat. Instead of requiring that two predicates (often 

called literals in this context) be identical in every 

respect, we now require only that they be unifiable. By 

this we mean that there is a substitution for the variables 

in both predicates that makes the predicates identical. A 

valid substitution must not contain within it the variable 

for which it is being substituted. The test in a 
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unification algorithm for this condition is known as an 

occurs check. The occurs check is necessary in order to 

preserve the soundness of resolution. Nonetheless, it is 

often omitted in PROLOG implementations. This is a pragmatic 

matter, for the most part. The occurs check is rarely 

needed in non-theorem proving applications, and its omission 

makes for a faster unification algorithm. Some 

practitioners [Colmeraurer82] [Eggert83] have even used the 

absence of the occurs check to work with infinite terms! The 

following are examples of the unification process: 

P(a,x,h(g(z))) and P(z,h(y),h(y)) are unifiable via the 

substitution {z/a, x/h(g(a)), y/g(a)} ("/"means "is 

substituted by"), but P(f(a),g(x)) and P(y,y) are not 

unifiable [Lloyd84]. 

Now all the elements are present to complete the picture of 

resolution in the first-order predicate calculus. First two 

complementary literals are unified. The substitution 

generated by the unification is applied to the remaining 

literals and the disjunction of these becomes the inference. 

For example: 

yield 

(-P(x) V Q(x)) and 

P(a) V R(z)) 

Q(a) V R(z)). 
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1.2.3 Subsumption 

Another technique commonly used in theorem proving 

environments is subsumption. Theorem provers can generate a 

huge number of clauses. Many of the clauses generated are 

actually instances of more gen~ral clauses that are derived 

earlier in the deduction. Subsumption eliminates these less 

general clauses. A clause subsumes another clause if the 

variables in the first clause can be instantiated in such a 

way that the resulting literals all occur in the second 

clause [Wos84]. The procedure by which the variables are 

instantiated is called half-matching and is very similar to 

unification except that substitutions can only be generated 

for variables in one of the clauses. 

1.2.4 Applications and Unit Clauses 

Now that some of the techniques of computational logic have 

been reviewed, we can take a look at how some important 

applications use unit clauses. These applications are 

theorem proving, expert systems, and databases. 

1.2.4.1 Theorem Proving 

We have already made mention of the notion of unit clause 

conflict in theorem proving. Since unit clause conflict is 
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so basic, the generation of unit clauses must also be a 

priority of a theorem prover. Inference rules that generate 

unit clauses rapidly are hence of great value. Further, 

unit clauses feed inference rules effectively. If one or 

more of the clauses involved in a particular inference are 

unit clauses, an inference made by a resolution-type 

inference rule will be shorter than the longest clause 

involved. Indeed, the Unit-Resulting Resolution (UR­

Resolution) inference rule generates only unit clauses and 

feeds on at most one non-unit clause at a time. 

Strategically, unit clauses are once again in the forefront. 

One of the simplest strategies for improving performance in 

theorem proving is the unit preference strategy. Here the 

theorem prover attempts to resolve unit clauses before non­

units. Even weighting strategies, while they do not 

specifically mandate the selection of unit clauses, will 

tend to prefer them by virtue of the simple fact that fewer 

symbols generally mean a smaller weight. 

Non-resolution inference rules also utilize unit clauses 

heavily. Paramodulation and Demodulation are driven by unit 

equality clauses. 

Generation of unit clauses is not sufficient for effective 

theorem proving. As mentioned earlier, many clauses are 
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generated which are redundant versions of clauses already 

present. Also new clauses may be more general than clauses 

currently in the database. If these clauses are added to 

(or respectively, left in) the database, there will be many 

more clauses to resolve against, but which will provide no 

more information than is already available. Forward 

Subsumption is the technique which prevents redundant new 

clauses from being added to the database and Backward 

Subsumption deletes from the database old clauses which are 

less general than a newly generated clause. Without 

Subsumption, the number of clauses in the database for even 

a reasonably sized problem will increase explosively and the 

progress toward a proof will be slowed dramatically. 

Unit clauses are ideal for subsumption. If a unit clause 

half-matches any literal in a multi-literal clause, that 

clause is subsumed. Also more general unit clauses will 

subsume less general unit clauses. Thus a database with 

many unit clauses will tend asymptotically to contain only 

quite general unit clauses. This unit clause-rich database 

then provides a fertile situation for unit clause conflict, 

which is another way of describing an environment ideal for 

proving theorems. 
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1.2.4.2 Expert Systems 

Expert systems bear certain superficial similarities to 

theorem provers. Both are based on inference and work with 

a kind of database. The theorem prover's initial database 

generally consists of several lists of clauses, known as 

axioms, set of support, have-been-given, and demodulators. 

This database is then augmented as inferences are made. The 

initial database of an expert system is referred to as a 

knowledge base [Jackson86]. It generally does not change in 

the course of the inferences made by the system, but rather 

affects the state of the expert system often by modifying a 

special type of memory called the working memory. One 

knowledge representation commonly found in expert systems is 

the production rule. A production rule has the form of a 

set of conditions called antecedents or if-parts, together 

with a set of actions which are called the then-parts. 

Production rules therefore look very much like logical 

implications. Other forms of knowledge representation have 

a far less logical look to them. Among these are frames, 

objects, and semantic nets. The form of knowledge 

representation which will most interest us in this 

discussion is called a fact. Facts are essentially unit 

clauses. In production rule systems, it is common to use a 

resolution-like mode of inference which matches antecedents 

to conditions in the working memory and facts. So 
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unification with unit clauses is important in production 

systems. Systems based on frames, objects, and semantic 

nets can be thought of as having two separate components: a 

control component and an information component. The control 

component dictates the conditions under which access to data 

in the information component is allowed. But once access to 

the information component has been achieved, the data will 

generally be factual data; that is, unit clauses. 

Subsumption plays little role in the operation of a typical 

expert system; although, given what we know about theorem 

provers, perhaps it should. The literature on knowledge 

acquisition, the process by which the knowledge base for a 

particular expert system is acquired, does make mention of 

subsumption. Knowledge bases tend to be built up on a 

rather ad hoc basis, and often redundant knowledge and less 

general knowledge than is already contained in the knowledge 

base is added. This sort of knowledge only makes the 

operation of an expert system less efficient. Systems have 

been proposed that will, among other things, check knowledge 

to be added to a knowledge base for subsumption [Nguyen87]. 
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1.2.4.3 Database Systems 

Database systems present a somewhat different picture than 

theorem provers or expert systems. The suitability of logic 

for database applications has long been recognized 

[Gallaire78] [Gallaire84]. The relational database model 

fits particularly neatly into the logic programming paradigm 

[Codd70]. The definition of the logic programming form of 

a database given in [Levesque84] is as a collection of Horn 

clauses (as defined earlier) where m = 0 and the arguments 

to the predicates are all constants. Thus the database form 

is nothing other than a collection of unit clauses with 

constant arguments! A database query is typically a 

conjunction of clauses which may contain variables. If 

these clauses can be satisfied by unification with clauses 

in the database, the query succeeds. Technically, it should 

be noted that full unification is not necessary, since only 

the query can contain variables. Half-matching will suffice 

for database queries. 

These by no means exhaust the applications of logic. Nor 

have the uses of unit clauses, unification, and half­

matching within logic been used up. However, these 

applications are very important, and they all make heavy use 

of unit clauses and unification. Half-matching has found 

significant use in these applications as well. If there is 
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some means of improving the performance of unification and 

half-matching for unit clauses, there will be great benefits 

for computational logic. 

1.3 LITERATURE REVIEW 

1.3.1 The Prehistory of Computational Logic 

The idea of a mechanical procedure for deciding the truth or 

falsity of a given proposition dates from the seventeenth 

century with the Analytic Geometry of Descartes [Davis83]. 

Descartes' method introduced a coordinate system with which 

geometrical figures could be represented using equations and 

those equations could be manipulated algebraically. 

Descartes contrasted his method with the axiomatic method of 

Euclid: 

... it is possible to construct all the problems 
of ordinary geometry by doing no more than the 
little covered in the four figures that I have 
explained. This is one thing which I believe the 
ancients did not notice, for otherwise they would 
not have put so much labor into writing so many 
books in which the very sequence of the 
propositions showed that they did not have a sure 
method of finding all ... 

Descartes had in an important way mechanized geometry. It 

was Leibniz, however, who envisioned the mechanization of 

reasoning. To this end, he proposed a calculus of reason 

(calculus ratiocinator) imbedded in a universal language 
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(lingua characteristica). A problematic proposition would 

be formulated in the lingua characteristica and subsequently 

decided by manipulations using the calculus ratiocinator (in 

the words of Leibniz, "Let us Calculate"). Though Leibniz 

made little progress toward the achievement of his grand 

conception, he had planted the seed that was to germinate 

into mathematical logic and ultimately into automated 

reasoning. 

The first substantive progress toward the realization of 

Leibniz' program was the work of George Boole two centuries 

later. That Boole had indeed mechanized logic was 

recognized by Stanley Jevons, an economist and logician who 

constructed a cash register-like machine capable of 

verifying Boolean identities. 

The next landmark on the way toward Leibniz' dream was the 

Begriffsschrift of Gottlieb Frege. Frege develops the 

predicate calculus by explicating the use of quantifiers 

about which there had been no clear conception. Frege's 

work is the first example where the syntax of an artificial 

language is laid out in detail and thus is the ancestor of 

all formal languages, especially computer programming 

languages. He also pointed out the importance of modus 

ponens as a rule of inference. Unfortunately, Frege's work 

was regarded as too obscure and it is the notation developed 
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by Peano that we use today. However, Peano's work, done a 

decade after Begriffsschrift, lacks the syntactic clarity 

and appreciation for quantifiers and rules of inference of 

the earlier work. 

The reputed obscurity of Frege's work was the least of the 

problems mathematical logic faced in its formative years. 

Mathematics itself was in a great ferment over its 

foundations. The work of Cantor in set theory and 

Weierstrass and Dedekind in analysis was regarded as 

expanding the boundaries of mathematics by many of their 

contemporaries, while Kronecker, Poincare and Brouwer heaped 

contempt on this same work. A key issue in this dispute 

revolved around the role of existence proofs in mathematics. 

The classical camp felt free to accept a proof in which 

mathematical existence was proved without the construction 

of an actual example. Brouwer, the founder of Intuitionism, 

on the contrary demanded that every mathematical proof 

purporting to demonstrate existence do so by constructing an 

example in a finite number of steps. In opposition to 

Brouwer was David Hilbert who felt the Intuitionists were 

rejecting too much that was valuable in mathematics. 

Hilbert therefore proposed a dramatic program, called 

metamathematics, to provide a basis for classical 

mathematics that even an Intuitionist would be forced to 

accept. What was needed first was a formal calculus in 
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which classical mathematics could be expressed. This step 

was accomplished by Whitehead and Russell in their 

monumental Principia Mathematica. Then a constructive 

consistency proof would be provided for this calculus. 

Although this program never achieved its aim, it was 

nonetheless highly influential. 

Hilbert and Ackermann posed two key problems for the 

metamathematical program. The first is the problem of 

completeness: that every valid sentence is derivable from 

the axioms. The second is the Entscheidungsproblem: that 

there is an algorithm for determining whether or not a given 

sentence is valid. 

Skolem showed that a quantified predicate has no 

interpretation that makes it true if and only if a finite 

conjunction of sentences which contain Skolem functions in 

place of existential quantifiers is unsatisfiable. This is 

essentially the proof procedure used in automated theorem­

provers. This method relies on the axiom of choice however 

and is not therefore constructive because there is no 

algorithm providing the value of the Skolem functions given 

some constant arguments. 

Kurt Goedel settled the completeness problem by establishing 

the equivalent of Skolem's result without recourse to the 
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axiom of choice. Herbrand also provided a proof of the 

completeness theorem which is valid for a wider class of 

sentences than are the results of Skolem and Goede!. He 

also produced the basic idea for a unification algorithm 

which is fundamental to the operation of automated theorem­

provers. 

Doubts about the solvability of the Entscheidungsproblem 

were raised by Goedel's undecidability theorem. His famous 

proof establishes that all consistent formulations of number 

theory include valid sentences for which there can be no 

demonstration in a finite number of steps. The actual 

unsolvability of the Entscheidungsproblem was established 

independently by Alan Turing and Alonzo Church. Turing used 

his well-known "machines" to show the unsolvability of the 

halting problem. If the Entscheidungsproblem were solvable, 

its algorithm could be used to solve the halting problem. 

Since the halting problem is unsolvable, so is the 

Entscheidungsproblem. Church derives a similar 

undecidability result using his lambda-calculus. 

1.3.2 Early Theorem Provers 

At about this time general purpose digital computers were 

invented and it was not long before attempts to test the 

potential of these devices by programming theorem provers 
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was made [Davis83] [Loveland78] [Chang73]. The two earliest 

attempts at theorem proving on a digital computer were the 

"logic machine" of Newell, Shaw, and Simon and a system 

implementing a decision procedure for Presburger arithmetic 

by Davis. The former took the approach of a human problem 

solver to prove theorems in the propositional calculus using 

the axiomatization in Russell and Whitehead's Principia 

Mathematica. Something approaching the notion of 

unification came out of this program. The latter program 

took a more rigorous approach but proved to be very slow. 

This is not surprising since it is now known the Presburger 

decision procedure is worse than exponential in complexity. 

These programs set the tone for work that was to follow by 

emphasizing heuristic sophistication in the first case, and 

mathematical sophistication in the latter. 

The next important attempt was the "geometry machine" of 

Gelernter. This program was more in the spirit of the 

"logic machine" and managed to rediscover a proof unknown to 

Gelernter of a theorem on isosceles triangles. In order to 

make any real headway though, the program had to rely on 

guidance from the techniques of analytical geometry. 

The idea of using methods based on Herbrand's theorem can be 

attributed to Abraham Robinson where he made suggestive 
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remarks about the constructions used to prove geometry 

theorems as being elements of the Herbrand universe for the 

problem. Davis and Putnam proposed a theorem prover based 

on these ideas and introduced Skolem functions and the 

clausal form for the initial clauses in the database. The 

work proved disappointing, however, since it unleashed the 

combinatorial explosion inherent in these procedures, 

leading them to comment: 

" the most fruitful future results will come 
from ... excluding ... 'irrelevant' quantifier­
free lines from the Herbrand expansion." 

The logician Hao Wang used methods he had developed through 

proof theory and solvable cases of the Entscheidungsproblem. 

He wrote a program that proved all the theorems in Principia 

Mathematica that belonged to the pure predicate calculus 

with equality. What Wang showed was not that the techniques 

used were particularly powerful, but rather that the 

problems being attacked were fairly easy, requiring very 

little of the resources of the domain. 

Prawitz in 1960 came up with the idea to produce terms of 

the Herbrand expansion only when they were actually needed. 

This is a very powerful idea on which all later work 

depends. His idea leads to the notion of a unification 

algorithm but he was not quite able to see this. The 
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observation was made independently by Dunham and North in 

1962 and Davis in 1963. 

The road was now paved for J. A. Robinson to introduce the 

resolution principle [Robinson65A] [Robinson83]. He was 

further able to show that this rule of inference is 

complete. With resolution, a single combinatorial principle 

was shown to be adequate for all inference. Related 

principles were also developed including hyperresolution 

[Robinson65B]. 

The resolution principle does not entirely eliminate the 

problem of combinatorial explosion, however. To limit this 

problem, heuristics are still necessary. The team of L. 

Wos, D. Carson, and G. A. Robinson at Argonne National 

Laboratories (ANL) developed approaches that give certain 

clauses special treatment and thereby dramatically limit 

search [Wos64] [Wos65]. 

An important theorem proving system was developed by Boyer 

and Moore [Boyer79]. The central formulas operated on by 

the theorem prover are treated as functions rather than 

predicates. The system operates by rewriting the current 

formula and never backtracks or changes any decision once 

made. The rewriting process is guided by heuristics, which 

though sound, render the system incomplete. The system is 
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capable of performing induction, a capability not common in 

predicate calculus-based theorem provers. 

The Interactive Theorem Prover (ITP) was developed by 

Argonne National Laboratories as a general purpose theorem 

proving environment [Wos84] [Lusk84]. It is a descendant of 

the Automated Reasoning Assistant (AURA). AURA was a very 

fast and powerful theorem prover. Because it was written in 

IBM 360/370 Assembly Language and PL/I, it was not portable. 

To address this lack of portability, Logic Machine 

Architecture (LMA) was written in Pascal. LMA is not itself 

a theorem prover, but provides procedures that can be 

tailored into automated reasoning programs. ITP was the 

first major system implemented within the LMA framework 

[Lusk82]. The crowning achievement of ITP was to settle 

some open questions in mathematics, logic, and circuit 

design [Winker81] [Winker82] [Kabat82] [Wojciechowski83]. 

Here was a theorem prover that was surpassing human 

capacities, not just demonstrating a few human-like problem 

solving capabilities. This is not to say that ITP is 

somehow an ultimate theorem proving system. There are still 

many problems for which it is not suitable or that are 

intractable. 
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1.3.3 Logic Programming 

Theorem proving was an obvious application for computational 

logic. However, John McCarthy [McCarthy63] realized that 

the execution of an applicative program can be thought of as 

proving an identity (f(xl, ... ,xn) =result) by applying 

various axioms of identity according to a fixed control 

regime [Cohen82]. The idea of logic programming per se is 

attributable to C. Green in his thesis [Green69], where he 

used a method now referred to as Green's trick to derive 

operator sequences. The idea of logic programming was 

popularized by R. Kowalski [Kowalski79a]. He advanced the 

concept of an algorithm as being made up of a logic 

component and control component [Kowalski79b]. The logic 

component describes the problem and the control component 

specifies the manner in which the definitions will be used. 

Kowalski argued that once these components are isolated, 

programs can more readily be improved and modified. Nils 

Nilsson has proposed that artificial intelligence is most 

properly thought of as applied logic [Nilsson80]. 

1.3.4 PROLOG 

Today, the primary vehicle for logic programming is the 

PROLOG language, which was developed by Alain Colmerauer and 

his associates [Colmerauer73A] [Colmeraurer73B] who were 
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primarily interested in a vehicle for natural language 

processing. PROLOG resembles the Microplanner language 

[Sussman71] which in turn derives from the Planner language, 

proposed by Carl Hewitt [Hewitt69]. Eventually, the syntax 

and techniques of PROLOG became relatively standardized 

[Clocksin84]. Terry Winograd's blocks world program SHRDLU 

demonstrated the power of logic programming [Winograd72]. 

However, there were many who scoffed at the slowness of 

early PROLOG interpreters arguing that LISP was the only 

language for serious artificial intelligence programming. 

The rebuttal to this position came in a paper by David 

Warren, Luis Pereira, and Fernando Pereira [Warren77a]. 

Several linguistic advantages of PROLOG over LISP are given: 

1. General record structures take the place of LISP 

s-expression. 

2. Pattern matching takes the place of selector and 

constructor functions in LISP. 

3. PROLOG procedures can have multiple outputs as 

well as multiple inputs. 

4. Inputs and outputs do not have to be distinguished 

in advance, so PROLOG procedures are multi­

functional. 

5. Through backtracking PROLOG can present many 

alternative results. This is a high-level form of 

iteration. 
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n. Unification in conjunction with the logical 

variable is much more powerful than simpler forms 

of pattern matching. 

7. There is no inherent distinction between program 

and data. 

8. There is a natural declarative semantics in 

addition to a procedural semantics. 

9. The procedural semantics of a syntactically 

correct program is totally defined. 

The really crucial point, however, is that all these 

advantages can be had without a significant sacrifice of 

performance. In particular, through the compilation of 

logic, PROLOG compares favorably with LISP. This 

performance is achieved through various implementation 

approaches, such as the compilation of "special purpose" 

unification procedures, clause indexing, structure sharing 

and a distinction between local and global stacks. The 

innovations described in Warren's paper were further honed 

in subsequent approaches to PROLOG implementation 

[Warren77b, Warren80], culminating with the Warren Abstract 

Machine [Warren83]. 

1.3.5 Warren Abstract Machine 

The Warren Abstract Machine (WAM) provides a framework into 

which any PROLOG program can be mapped. This machine could 
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be implemented as an interpreter for a bytecode into which 

the WAM instructions have been translated, as a set of 

macroinstructions which could be compiled, or in hardware or 

firmware. The bytecode interpreter is the approach most 

often adopted. WAM makes use of several distinguishable 

types of data. These are variables, constants, lists, and 

structures. The data areas used are the code area, the heap 

(or global stack), the local stack, and the trail. There is 

also a small push-down list used for unification. The heap 

contains all the complex data structures (lists and 

structures). The local stack contains information used only 

by the current procedure. The trail contains information 

about variables that have been bound but will have to be 

unbound when backtracking occurs. WAM uses a number of 

registers to keep track of the various data areas, to pass 

arguments to procedures, and to hold the values of temporary 

variables used by a clause. The WAM instruction set is made 

up of get instructions, put instructions, unify 

instructions, procedural instructions, and indexing 

instructions. The first three types of instructions handle 

unification, and the last two types of instructions deal 

with control. The get instructions are used for matching 

against the head of a clause. Conversely, the put 

instructions load the arguments that will be passed in a 

procedure call. The unify instructions handle unifications 

with the arguments of a structure or list whether the 
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structure or list already exists or is being created. The 

procedural instructions handle control transfer and 

environment allocation. The indexing instructions filter 

out those clauses in a procedure definition that cannot 

possibly match a given procedure call. 

This is exactly the toolbox needed to improve the 

performance of logic programs. One of the hallmarks of the 

WAM architecture is its set of specialized unification 

primitives. These primitives avoid the overhead of a 

general unification algorithm by focusing only on exactly 

what is needed in a particular situation. For example, a 

variable will unify with anything. It makes no difference 

that the symbol with which the variable is to be unified is 

a constant, a variable, a structure, or a list, unification 

will succeed. So a primitive for unifying with a variable 

can take this knowledge into account. Similarly, a constant 

will only unify with a symbol that is exactly equal to that 

constant or a variable. Once again this knowledge can be 

used to make constant unification as simple and 

straightforward as possible. 

The primitives are further specialized as to the context of 

the unification. Head unification, which is used only for 

arguments of a called procedure, is distinguished from a 

kind of unification designed to build arguments for calling 
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routines and a third type of unification for any other 

purpose. Each of these typically will have certain 

implementation consequences when WAM is coded for a 

particular machine. 
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Chapter 2 

METHODS AND PROCEDURES 

2.1 PLAN OF ATTACK 

2.1.1 Background. 

We have seen that unit conflict checking and inference rules 

rely on a pattern matching capability called unification. 

Subsumption relies on a related form of pattern matching 

called half-matching. In a typical theorem prover, for 

example, these pattern matching activities are done in a 

manner similar to an interpreter. Every time a clause is 

unified (or half-matched) with a second clause, a general 

algorithm for unification (or half-matching) is invoked. 

Unit clause compilation builds a special purpose unification 

(or half-matching) algorithm tailored specifically to a 

particular clause. This reduces the computational cost of 

performing pattern matching. 

Unit clause compilation may therefore be viewed as an 

investment. The cost of compiling a clause is amortized 

against pattern matching efficiency. To achieve the best 
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"return on investment", one must get the best gains possible 

while holding down the cost of compilation. 

This is an important reason for having a special compiler 

for handling only unit clauses. The compilation process for 

unit clauses is simpler than that for non-unit clauses. 

Therefore, a unit clause compiler will require less 

resources than a full WAM compiler. So the "return on 

investment" is amplified by reducing initial compilation 

costs. Also unit clauses tend to be more enduring than non­

unit clauses. Clearly, it is less likely that a unit clause 

will be subsumed (only a more general unit clause can 

subsume a unit clause, while non-unit clauses can be 

subsumed by unit clauses or even other non-unit clauses). 

Therefore, the gains from unit clause compilation will tend 

to accrue for a larger proportion of the time during which 

the theorem prover is active. Also gains from unit conflict 

checking are simply not available to non-unit clauses. The 

sheer prevalence of unit clauses guarantees that little will 

be lost by excluding non-units from compilation. Of course, 

it is still possible to compile non-unit clauses using a 

full WAM compiler. The expected return will simply be much 

lower than the that for unit clauses. 

WAM appears to be a vehicle for generating custom 

unification code. But to be applicable to a theorem proving 
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context, there must be some modifications. Theorem proving 

and PROLOG, while related, are not the same thing. The most 

important consideration is the absence of the occurs-check 

in PROLOG. Also subsumption requires half-matching and not 

unification. Otherwise, unit clauses in PROLOG and a 

theorem prover are very similar. Further, the nature of the 

problem of compiling unit clauses into WAM requires that 

only a small subset of the WAM instruction set be used. 

Fortunately, ANL has implemented a version of the Warren 

Abstract Machine referred to as ANLWAM. The ANLWAM 

environment has facilities for switching an occurs-check on 

and off or switching from unification to half-matching and 

vice-versa. ANLWAM also has excellent facilities for 

handling the interface between special programs like the 

unit clause compiler and the external environment which 

includes the theorem prover. 

It should be noted that this is not the only reasonable 

approach to handling the occurs-check and half-match 

problem. An alternative would be to extend WAM to include 

additional special instructions that have the occurs-check 

and still more instructions to perform half-matching. There 

is a tradeoff in these approaches. The latter approach will 

be more efficient at execution time since no switch checking 

needs to be done in the generated code. However, the code 
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generated by this approach can be used for only one purpose, 

so if both unification with occurs-check and half-matching 

are needed, two separate compilations must be done. In the 

first approach the same code serves all purposes. This 

tradeoff needs careful consideration when choosing a 

particular implementation. For example, a database 

application would probably need only unification without an 

occurs check. So one would be best advised to take the 

latter route. Theorem proving clearly needs both 

unification with occurs-check and half-matching. So the 

former path would be preferable. In an expert system 

application the decision would depend on details of the 

particular system. 

The ANLWAM interface is designed for use by programs written 

in C. This is consistent with the earlier mentioned goal of 

portability. C has the advantages of high-level language 

constructs with low-level access to machine functions. This 

provides the ability to write comprehensible programs that 

sacrifice little to assembler language programs with regard 

to function and performance. This is ideal for the current 

application where both portability and speed are important. 

In summary, this paper describes a program that compiles 
' 

unit clauses generated by an application into WAM to speed 

unification and half-matching. This will find application 
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in computational logic problems of sufficient size to 

warrant the investment of time necessary for unit clause 

compilation. For very large problems, the investment should 

pay-off handsomely. Perhaps problems that were once too 

large will become accessible to computational logic. 

2.1.2 Interaction with Environment 

The ANLWAM environment that was used for this project runs 

on a 16 processor Balance system running the UNIX operating 

system. The unit clause compiler is a built in predicate of 

the ANLWAM environment, named "ucc". It can therefore be 

called from PROLOG code run in the ANLWAM environment or 

from other predicates in the ANLWAM environment that use the 

foreign subroutine facility. 

The "ucc" predicate has arity two. The first argument 

passes the unit clause to be compiled. This will look like 

a structure to the unit clause compiler. Anything other 

than a structure in the first argument will cause the "ucc" 

predicate to fail. The second argument is a variable which 

will be instantiated by "ucc" to a structure one of whose 

arguments is a list containing the WAM code for the unit 

clause passed as the first argument. If the second argument 

fails to unify with the list that "ucc" builds, the 

predicate will fail. 
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The format of the structure containing the WAM code is the 

same as that produced by the full WAM compiler in the ANLWAM 

environment. This means that the same tools that would be 

used in conjunction with the full WAM compiler, can be used 

with "ucc". In particular, the same assembler is used to 

generate bytecode. This bytecode can then be executed on 

the bytecode interpreter. 

2.1.3 Basic Design 

One of the primary concerns of a compiler writer is how to 

handle parsing. Given the nature of this problem, with 

relatively few productions with which to deal, the recursive 

descent approach was taken [Aho79] [Calingaert79]. The 

ability to write recursive functions in C, made this a very 

feasible approach. 

The lexical analysis of the incoming text is another problem 

that compiler writers need to face. In this case, the 

problem was greatly simplified by the c macros provided in 

the foreign subroutine interface to ANLWAM. It is 

impossible to say enough about these macros. One would 

expect that the input would come in the form of a string 

that would have to be broken down into tokens. With the 

ANLWAM foreign subroutine interface, the situation is 
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somewhat different. The arguments passed by ANLWAM are of 

necessity PROLOG data types. The available list of types is 

an extension of the list of data types presented earlier in 

the discussion of the Warren Abstract Machine. They are 

variables (known as value cells or simply vcells), lists, 

structures, and constants; but constants are of three 

subtypes: strings, integers, and floating point. In 

addition, there is a special type for the nil list. To 

access an argument, one first determines the type of data by 

using the TYPE FORMULA macro. This returns an integer which 

represents the data type of the argument. This integer can 

be used to vector to a routine for handling the data type 

which the integer represents. If the data type is a string, 

integer, floating point constant, one uses the ACC_STRING, 

ACC_INTEGER, or ACC_FLOAT, respectively to gain access to 

the actual value of the argument. If the data type is a nil 

list, there is no further need to access data, since the 

exact nature of the data is known. For a non-nil list, one 

must use the ACC HEAD and ACC TAIL to gain pointers to the 

head and tail of the list respectively. The head and tail 

of the list can be accessed by going through the 

TYPE FORMULA macro again and proceeding as above. 

Structures also have two macros ACC ARITY and ACC STRUCT. 

The ACC_ARITY macro gives the number of arguments in the 

structure. The function/predicate symbol can be accessed by 

using the argument number zero with the ACC STRUCT macro. 
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The arguments are accessed by giving to the ACC STRUCT macro 

the argument number of the argument to which access is 

desired. One of the great beauties of the ANLWAM foreign 

subroutine interface is that the arguments of a structure 

can be processed using a "for" loop, something which can 

hardly be imagined in a typical lexical analysis situation! 

The recursive nature of the list and structure data types is 

clearly highlighted through these macros. It is strongly 

recommended that anyone attempting to work with PROLOG data 

structures in a C or for that matter any other language 

environment make use of any macro or subroutine facilities 

for operating on these data structures that may be provided. 

If such facilities do not exist, the effort to create them 

will be time well spent. 

The mechanism for code generation is accomplished through 

the difference list technique [Bratko86] [Sterling86] and 

implemented through more facilities of the ANLWAM foreign 

subroutine interface. For each data type, there is a macro 

to build an element of that data type. The macros of 

interest for the current application are BLD_VCELL, 

BLD_SYMBOL, BLD_NIL, and BLD LIST. Initially, the pointer 

to the vcell which will contain the instruction list that 

will be embedded in the second argument of "ucc" is stored. 

Each time a new instruction is to be output, BLD SYMBOL 

establishes a pointer to the instruction and BLD VCELL is 
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invoked to create a new variable. A BLD LIST is then done 

giving the symbol which contains the instruction as the head 

of the list, and the new variable as the tail. The stored 

vcell pointer referred to earlier is then retrieved and the 

newly created list is bound to that vcell. The pointer to 

the variable that became the tail of the new list then 

replaces the pointer to the vcell to which the list was 

bound. When all of the code has been generated, a BLD_NIL 

is used to create a nil list and this is bound to the vcell 

at the tail of the code list. The list is then a complete 

list of the generated WAM code. 

2.1.4 Design Considerations 

An important consideration in designing a Warren Abstract 

Machine code compiler is register usage. There are several 

excellent references on the Warren Abstract Machine 

[Warren83] [Gabriel85] [Turk85]. There is even a good 

reference on efficient register usage [Debray84]. The 

difficulty is that these references do not focus on the 

problem that becomes most acute when working with unit 

clauses. Under many circumstances, unit clauses will be 

well-behaved with respect to register usage. Since the 

Warren Abstract Machine has only a finite number of 

registers, unit clauses which are lush with complex 

arguments, that is, structures and lists, pose a potential 
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problem of register exhaustion. These kind of unit clauses 

commonly occur in theorem proving applications. Because 

some situations will require registers beyond those used to 

pass arguments, it is important to reclaim registers that 

are no longer needed as soon as possible. 

Consider a nested structure in a unit clause: 

p(f(g(a,b),h(c,d))). 

Here, the structure f has two arguments, g and h, which are 

themselves structures with two arguments. We can use the 

WAM instruction get_structure to process f. The 

get_structure instruction cannot, however, be applied to g, 

the first argument of the structure f, since get_structure 

can only handle arguments which are in a WAM register. The 

solution is to move the structure g to its own register, 

using the WAM instruction unify_x_variable, and then apply 

the get_structure instruction to g in its new location. The 

case of the h structure is somewhat more hospitable. The 

WAM instruction unify_structure can be employed directly to 

h, without moving h to a new register. Because it is the 

last argument of the structure, the unify_structure 

instruction does not need a new register. It can treat the 

current register as a scratch register for the new structure 
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since there are no subsequent arguments of the old structure 

with which there might be interference. 

Lists, in turn, being a kind of structure, are handled in a 

similar way. A list can be thought of as a structure of 

arity two with the name "·"· The head of the list is the 

first argument of the structure, and the tail of the list is 

another list which is the second argument of the structure. 

The tail may be the special list"[]", the empty list. WAM 

does not employ the structure "·" to represent lists, but if 

one keeps the structure representation in mind, it makes the 

approach very comprehensible. Consider the list: 

[[a],b]. 

Here we have a list whose head is in turn the list [a], and 

whose tail is the list [b]. Analogously to structures, a 

list is processed with the WAM instruction get_list. Also 

the head of a list, if it is itself a list, must be moved to 

a new register to be processed. So in the example, the list 

[a] must be moved with a unify_x_variable instruction, and 

then processed with the get_list instruction in the new 

register. The list [b], can be processed with the 

unify_list command, since it is the tail of our original 

list, or, to put it another way, the last argument of the 

" " . structure . 
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It should be noted that lists can be arguments of 

structures, and vice versa, so we must be prepared to handle 

all these instances within the guidelines put forth. All 

complex arguments occurring as the last argument, may be 

handled with the appropriate unify instruction; otherwise, 

they must be moved to a new register and processed with the 

appropriate get instruction. In the latter case, the move 

must be done immediately, but the get processing must be 

delayed until sometime after the processing of all the other 

arguments is completed. This delay is implemented by 

enqueueing the information needed to process the moved 

argument. When the processing of a structure or list is 

completed, the register which it occupied is freed. 

Variables pose an additional problem. When a variable 

appears as the argument of the unit clause, one of two 

things must be done. If it has not appeared earlier, it is 

only necessary to note the name of the variable and the 

register in which it is located. No code needs to be 

generated. However, if it has appeared earlier, the WAM 

instruction get_value is generated and the register it 

occupies may be marked as available for use. But when 

variables appear as arguments in structures or lists, the 

situation changes somewhat. If the variable has appeared 

earlier, the instruction unify_x_value is generated, and 
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processing continues; but, if the variable has not appeared 

earlier, there are two cases. If the variable does not 

appear anywhere else in the unit clause, the unify_void 

instruction is generated; otherwise, the variable must be 

moved to a new register in order to preserve its value by 

generating the unify_x_variable instruction. The problem 

here is that one does not yet know whether the variable at 

hand will appear later. One could make an initial scan of 

the entire unit clause to determine exactly which variables 

occurred more than once. The implementation described here 

does not take this approach. Instead, a unify_x_variable 

instruction is generated in all situations. The 

justification for this is that situations where the 

unify_void instruction are useful are relatively infrequent. 

Generating a unify_x_variable instruction causes no harm 

beyond the use a register that would otherwise be free and 

the minor run time consequences due to the differences in 

the two instructions. On the positive side, there is the 

saving of a complete scan of the unit clause. This is 

important since this unit clause compiler is built for 

speed. An alternative approach will be described later in 

the recommendations for future enhancement. To mitigate the 

effects of this design decision somewhat, variables used as 

arguments to the unit clause are located first. Since these 

variables already occupy a register, they require no new 

register. Subsequent occurrences of these variables in 
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lists and structures can be handled by generating the 

get_x_value instruction for argument variables and the 

unify_x_value instruction elsewhere. 

Constants and the empty list, when they occur as arguments 

of the unit clause, provide the opportunity to free 

registers immediately after generating the appropriate WAM 

get instruction. When they occur in lists and structures, 

the appropriate WAM unify instruction needs to be generated, 

and processing can simply continue. 

In summary, structures, lists, and variables that appear in 

structures and lists as other than the last argument consume 

additional registers. Completion of processing of an 

argument, other than a variable that has not occurred 

before, frees the register occupied by that argument. 

2.2 CODING AND IMPLEMENTATION 

2.2.1 Detailed Design 

The particulars of the design of this unit clause compiler 

are dictated by the discussions of the previous sections. 

There are some noteworthy data structures employed. 
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An array, indexed by register number, is used to keep track 

of register usage and variables. To accomplish both of 

these functions simultaneously, it was necessary to make an 

assumption which is valid in the ANLWAM environment and 

probably in most other conceivable environments, but which 

should be checked by implementors following this approach. 

The data in the array may be the name of a variable, or an 

indicator that the register is either in use or free. The 

assumption is that zero can indicate a free register, and 

that the number one can indicate a used register and that no 

valid variable name is either zero or one. A variable name 

is taken to be a pointer to the dereferenced value of the 

variable. To understand what the dereferenced value is, it 

is important to realize that variables can be bound to other 

variables. Thus the pointer of a variable may not point to 

the value of the variable, but to another variable. The 

process by which a pointer to the actual value of a variable 

is obtained is called dereferencing. In the ANLWAM 

environment, the pointers provided to the unit clause 

compiler are always dereferenced, and importantly to this 

discussion, never have the values zero or one. A pass is 

made through the arguments of the unit clause to determine 

if any are variables. Those that are not variables are 

marked as being in use. For those that are variables, the 

name of the variable is placed in the array, unless that 

name is already in the array, in which case the register is 
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marked as free after generating a get_value instruction. To 

check whether a variable has already been encountered, the 

array is searched from zero to max var. Max var is the 

highest register known to contain a variable and is 

initially set to negative one. Once all the arguments have 

been examined, the remaining registers are marked as being 

available. When any routine completes processing on a 

register, it simply sets the value in the array for that 

register to zero. The get scratch function is used to 

acquire a free register. The routine scans the array for 

the first available register, marks it as used, and returns 

the register as the value of the parameter passed to the 

function. If the register can be acquired, the function 

returns TRUE; otherwise, it prints an error message and 

returns ERROR. 

The unit clause which is input to the compiler determines to 

a large extent the flow of control. The input is examined 

to determine if in fact it is a unit clause. If it is not, 

the compilation is terminated with an error message. It has 

already been described how a pass is made of the arguments 

of the unit clause for the purpose of initializing the 

register array. After this, the business of compilation 

really begins. Each non-variable argument is examined and 

code appropriate to it is generated. The non-trivial case 

is that of structures and lists. These are recursively 
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defined data structures, and fittingly the functions which 

process them are recursive. The recursion occurs only in 

the case that a structure or list is encountered as the last 

argument in a structure or non-nil list (the last argument 

of a list is always a list). This is not to say that lists 

or structures cannot occur in other than the last argument 

of a list or structure. That case is handled later. There 

is a difference in the first call to process a list or 

structure and later recursive calls. The first call always 

generates a get instruction. The later calls generate a 

unify instruction. Also the first call must free its 

register when its processing is complete. Otherwise they 

are identical. The difference is handled by passing a 

switch as a parameter to the processing function. The 

initial call passes zero, and all recursive calls pass the 

value one. 

Another significant data structure is the queue. As 

indicated in the previous section, when a structure or list 

is encountered as other than the last argument to a 

structure or list, it must be moved to a new register and 

processed later. The pointer to the argument, its type, and 

the register to which it has been moved are stored in the 

queue for later processing. The queue is implemented as a 

simple linked list. To place an entry on the queue, the 

function enqueue is used. After all of the arguments of the 
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unit clause have been processed, the items on the queue, if 

any, are processed one at a time until the queue is 

exhausted. It should be noted that items on the queue may 

cause new items to be placed on the queue. 

The final data structure worth note is the one associated 

with the output variable of the unit clause compiler. It 

has already been described how the code is placed into what 

amounts to a difference list, which when complete, is 

instantiated to an ordinary list by binding the final 

variable to the empty list. This list, in turn, is bound 

into a structure which represents the output of the unit 

clause compiler. Finally, the structure is bound to the 

output variable. This data structure has a variety of 

routines associated with it. There is essentially one 

function for each type of WAM instruction. There are also 

some supporting routines for handling general problems, like 

converting strings and integers to symbols and structures 

which can be used by WAM. 

2.2.2 Testing 

Testing of the unit clause compiler was accomplished via a 

suite of test unit clauses. The clauses ranged from a 

variety of relatively trivial instances, to some very 

complex, deeply nested cases. These cases were compiled 
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using the full WAM compiler, and the results compared with 

the output from the unit clause compiler. There was no 

requirement that the code match exactly, since there are 

many ways to generate correct code for a typical unit 

clause. The key consideration is that the code be 

functionally equivalent. For example, the arguments of a 

unit clause may be handled in any order. The assignment of 

variables, lists, and structures, can be made to an 

arbitrary work register so long as that register is not 

currently in use. Some WAM instructions are interchangeable 

in certain circumstances. Finally, it has been noted 

earlier that the unit clause compiler in some instances will 

generate sub-optimal code. Given that this is taken into 

account by the design of the compiler, the sub-optimality is 

tolerated for the sake of speed. 

Beside accuracy of results, the other significant factor in 

the unit clause compiler is speed. The standard of 

comparison is once again the full WAM compiler. Timings of 

the results were made in order to establish whether a 

special purpose unit clause compilation process can indeed 

achieve superior performance. The unit clause compiler 

averaged fifty times faster than the full compiler. 
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3.1 INSTALLATION 

Chapter 3 

RESULTS 

The unit clause compiler was installed in the ANLWAM 

environment in 1987. The unfortunate situation is that the 

ANLWAM environment is being superceded by a new WAM 

environment. 

ANLWAM was developed as a research tool and has served that 

purpose well. Nonetheless, attention is now shifting to the 

new environment, and the prospects of there being any 

significant use made of the unit clause compiler in the 

ANLWAM environment are quite dim. It is hoped that a unit 

clause compiler will be written for the new environment 

using the experience gained through the ANLWAM 

implementation described here. 

3.2 NECESSARY CHANGES 

The changes in the unit clause compiler resulted mainly from 

the exigencies of working in a research setting. 

Documentation is sometimes incomplete or in flux. The 
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working documents for the ANLWAM foreign subroutine 

interface, for example, were drafts, not final documents. 

Given this, it is not too surprising that there were 

occasional problems. 

The only serious problem occurred when it was discovered 

that the unit clause compiler would generate correct code 

for certain deeply nested unit clauses in one instance and 

incorrect code in other instances. Sometimes an infinite 

loop would occur and sometimes a hard failure due to a 

pointer error would occur. How one situation differed from 

the others was not at all clear. The solution to the 

problem came with the realization that ANLWAM was not 

reloading the unit clause compiler each time it was invoked. 

Initializations not made by run time assignments were not 

done after the first invocation of the program. When all 

initializations were made by run time assignments, the 

condition disappeared. 
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Chapter 4 

CONCLUSIONS AND RECOMMENDATIONS 

4.1 EVALUATION 

Because of the move to replace the ANLWAM environment, there 

is little to report about the experiences of users of the 

unit clause compiler. In spite of this, testing reveals 

that the idea of unit clause compilation is sound. By 

providing a special purpose compiler for unit clauses, it is 

possible to reduce the cost associated with compilation. 

The research presented by [Warren??] and particularly 

[Butler86] provides the justification for the compilation of 

logic. 

Since the compilation of logic is an important component of 

Argonne National Laboratory's efforts to achieve a high 

performance logic environment, the concepts advanced here 

should receive considerable attention in the future. 
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4.2 RECOMMENDATIONS FOR FUTURE ENHANCEMENT 

The implementation described here is satisfactory in most 

respects, except that it accepts the generation of sub­

optimal code. The justification presented earlier was that 

this was a conscious trade off of compile time speed for 

execution time speed. The idea was that it would take a 

second pass of the entire input unit clause to gain the 

information necessary to generate optimal code. The cost of 

this second pass was not felt to be justified since there 

would be no improvement in the great majority of input 

instances even after the extra pass. 

An insight into this problem came after the current 

implementation was completed. The value of the ANLWAM 

foreign subroutine facilities has been pointed out earlier. 

They essentially embed PROLOG capabilities in a C program. 

The key insight is precisely that thinking of the above 

problem in PROLOG terms provides an elegant solution. 

To solve the problem in one pass, it is necessary to modify 

the code generation process a little. When the situation 

arises where the decision must be made as to whether to 

generate a unify_x_variable instruction or a unify_void 

instruction, the information needed to make this decision 
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will not be available until the unit clause has been 

completely processed. So one delays the decision by 

generating an uninstantiated variable as the "code" and 

storing in a list the information that procedures invoked 

later in the compilation will use to generate the correct 

code and then instantiate the variable to that code. The 

information stored in the list would be the pointer to the 

"code" variable and a scratch register which will be used in 

the event the unify_x_variable instruction is ultimately 

generated. If later in the compilation, it is seen that one 

of the variables in the list appears again, a unify_x_value 

instruction is generated for that variable and the "code" 

variable in the list is instantiated to a unify_x_variable 

instruction which uses the register stored in the list. The 

entry is then deleted from the list. At the end of the 

compilation, there will be only unreferenced variables 

remaining in the list. The "code" variables for these are 

all instantiated to unify_void instructions. 

The hope is that the above discussion provides additional 

impetus for future implementors to develop and utilize the 

sort of macros and routines in the ANLWAM foreign subroutine 

interface. It is obviously not impossible to accomplish the 

above without such facilities, but it is certainly not 

desirable. The delayed binding exemplified above provides 

support for the power of logical variables and the 
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desirability of providing them even in conventional 

procedural language environments. 

Another improvement to the unit clause compiler would be to 

generate object code directly. Once a compiler can generate 

WAM code successfully, it is not a huge step to generate 

"byte code", which could be interpreted directly without the 

intermediate step of assembly. Indeed, given some of the 

complications involved with generating WAM code, it may well 

provide even faster compilation. With the success of WAM 

implementations, it will not be surprising to see firmware 

or even hardware implementations of WAM in the near future. 

These provide further motivation toward the attainment of 

very high performance logic environments. 

4.3 CONCLUSIONS 

Logic is becoming an extremely important computational 

paradigm. Logic provides a clear declarative and procedural 

semantics that lends itself to a wide variety of 

applications. 

The most frequent criticism of logic, is that 

implementations of logic are too slow. This criticism has 

been addressed by the work of David Warren in the 

compilation of logic. A unit clause compiler such as the 

- 55 -



one described in this paper, further refines the advantages 

of logic compilation by providing a low overhead method for 

compiling the very significant class of unit clauses. 

An implementation of a unit clause compiler, particularly 

one with the recommended enhancements, will help 

computational logic environments to achieve high levels of 

performance. 
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