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ABSTRACT 

The primary concern of this thesis is to investigate 

the explicit philosophy of mathematics in the work of 

Henri Poincarl. In particular, I argue that there is 

a well-founded doctrine which grounds both Poincar{'s 

negative thesis, which is based on constructivist 

sentiments, and his positive thesis, via which he retains 

a classical conception of the mathematical continuum. 

The doctrine which does so is one which is founded on 

the Kantian theory of synthetic apriori int~ition. 

I begin, therefore, by outlining Kant's theory of the 

synthetic apriori, especially as it applies to mathematics. 

Then, in the main body of the thesis, I explain how the 

various central aspects of Poincar~'s philosophy of 

mathematics - e.g., his theory of induction; his theory 

of the continuum; his views on impredicativitYi his 

theory of meaning - must, in general, be seen as an 

adaptation of Kant's position. My conclusion is that 

not only is there a well-founded philosophical core to 

Poincar~'s philosophy, but also that such a core pro­

vides a viable alternative in contemporary debates in 

the philosophy of mathematics. That is, Poincar~'s 

theory, which is secured by his doctrine of apriori 

intuitions, and which describes a position in between 

the two extremes of an "anti-realist" strict constructiv­

ism and a "realist" axiomatic set theory, may indeed be 

true. 
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For my mother 

" this disinterested pursuit of 

truth for its own beauty is also 

wholesome, and can make men better." 

(Poincar~, (1908)) 



"Now the majority of men do not like thinking, and 

this is perhaps a good thing, since instinct guides 

them, and very often better than reason would guide 

a pure intelligence, at least whenever they are 

pursuing an end that is immediate and always the 

same. But instinct is routine, and if it were not 

fertilized by thought, it would advance no further 

with man than with the bee or the ant. It is 

necessary, therefore, to think for those who do not 

like thinking, and as they are many, each one of 

our thoughts must be as useful in as many circum­

stances as possible." 

(Poincar~, (1908)) 

"But all this is ancient history. Mr. Russell has 

realized the danger and is going to reconsider the 

matter. He is going to change everything, and we 

must understand clearly that he is preparing not 

only to introduce new principles which permit of 

operations formerly prohibited, but also to prohibit 

operations which he formerly considered legitimate. 

He is not content with adoring what he once burnt, 

but he is going to burn what he once adored, which 

is more serious. He is not adding a new wing to 

the building, but sapping its foundations." 

(Poincare', (1906)) 



INTRODUCTION 



Jules Henri Poincar~ (1854-1912), the Gauss of modern 

mathematics, was a "universal" mathematician whose contrib­

utions were seminal in the development of contemporary pure 

mathematics, in mathematical physics, and in the philosophical 

foundations of mathematics. The first two claims, concern-

ing his influence in the technical areas, are uncontestable. 

Poincart was the greatest practitioner of mathematics of 

his time, and he is rightly credited for this. In contrast, 

his contribution to the philosophy of mathematics is, in 

general, profoundly underestimated. His thoughts are regarded 

as idiosyncratic and based upon a misunderstanding of the 

logicist tradition which he criticised. This interpretation 

is not, however, entirely unfounded, for at first glance, 

his writings seem glib, not very deep, and at times based 

on an indeed polemical reaction to the work of Russell, 

Zeillmelo, Peano and Couturat. His papers are often based 

on speeches he was requested to give to the scientific 

community, and sometimes, even, to a general audience. This 

results in writings which are often conversational in tone, 

the intent being to amuse as well as to inform. Reading 

them now, therefore, they may on occasion appear glib and 

even sarcastic. However, it is important not to allow the 

manner in which he expresses himself to obscure the depth 

and philosophical import which we may gain from his ideas. 

Since his philosophical work was always quite clearly 
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secondary to his work in mathematics itself, he never 

attempted to expound his ideas in a structured, systematic 

presentation. However, this does not mean that there is 

no general philosophical foundation which properly character-

ises the insights he had into the foundations of his work. 

It just means we must try a little harder to interpret his 

comments in terms of the whole of his philosophy, and thus 

to be cautious in what views we attribute to him. 

Unfortunately, sufficient care is not always taken when 

presenting his views; and interpretations which are in my 

view not entirely fair, are sometimes implied. For instance, 

in the context of a brief survey of the emergence of the 

concept of impredicativity, Kneale and Kneale (1962) comment 

,/ 

on Poincare's view that there is a relation between the 

set-theoretic paradoxes and the attempt to treat infinities 

as completed wholes. Poincar~ did hold such a view; but 

this was not the full extent of his view. Kneale and Kneale 

,/ 

go on to cite a short passage by Poincare to support their 

1 · 1 calm. However, this passage, on its own, is misleading; 
,/ 

and Poincare follows a similar passage on the previous page 

with an explanation of his view: "I must explain myself 

Later, they again comment that 

Poincar{ suggested that the paradoxes 
of the theory of sets were due to the 
fundamental mistake of assuming actually 

1 See Kneale and Kneale, (1962), pp.655-656. 

" 2 Poincare, (1906b), p.194. 
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infinite aggregates. He did not explain 
in detail why ... 3 

In Chapter 4, Section 5, and in Chapter 6, I discuss 

Poincarl's theory of impredic~tivity. 

Chihara, in his book Ontology and the Vicious-Circle 

Principle, is fairer to Poincar{, and devotes a chapter 

to discussing his views in their philosophical context. 

However, he also seems to have a rather superficial grasp 

of Poincar~'s theory of the relation between the belief in 

actual infinity and the contradictions. 4 In addition, he 

concludes that Poincar~ is a "nominalist" with regard to 

mathematics, citing Poincar~'s remarks that the continuum 

is a mere "system of symbols", and that mathematics can 

"give to the physicist only a convenient language".5 This, 

in my view, is a very rash pronouncement. In view of Poin-

/ 
care's theory of the apriori geometric foundations of the 

mathematical theory of the continuum (which is the subject 

of Chapter 5), it seems clear that his remarks on the con-

tinuum being ~ "a system of symbols" is not entirely 

meant in a straightforward sense. And the "language" the 

3 Kneale and Kneale, (1962), pp.672-673. 

4 See p .140. In contrast we may cite Heinzmann, (1985), "Entre 
Intuition et Analyse" for a very detailed and scholarly account 
(though not always philosophically deep in its explanation) of 
the development of the concept of predicativity in Poincar~. 

5 Chihara, p.154-155. 
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mathematician provides for the scientist has - contra-

Chihara - not to do with the fact that physical laws are 

expressed in terms of mathematical symbols and notation. 

Rather, it is a consequence of the strong Kantian nature of 

. / 
POlncare's philosophy: mathematics expresses what is 

necessarily common to all thinking beings; and the best 

science can do, insofar as discovering true relations, is 

to discover mathematical relations which survive the in­

evitable changes in background theory and conventions. 6 

There is no "only" in POincart's view of the language which 

mathematics provides for science; the use of the term 

("only") not being "misleading" (as Chihara claims), but 

surely intended as an irony. 

Perhaps most surprising of all the (mis)interpretations 

of Poincar~'s philosophy, is a claim made by Parsons 7 that 

Poincar~ is an intuitionist, but not a Kantian, because he 

seems "quite uninfluenced" by Kant's notion of pure intuition. 

This is particularly astonishing in view of the calibre, in 

general, of Parsons' scholarship. I devote Chapter 4 to an 

/ 
argument that Poincare, indeed, had a very strong theory of 

"pure intuition", and it is in terms of this theory that we 

must make sense of his very general claims against logicism 

and set theory. 

6 See Giedymin, (1982), for a very good account of the Kantian element 
of Poincare's "conven.tionalism". 

7 In his, (1964), p .108, note 6. 
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There is no doubt that it is not easy to make sense 

of POincart,s remarks 8 , which are often, at first blush, 

paradoxical and even trite. For example, he appears both 

to condone and oppose the formalisation of mathematics. He 

devotes pages to extolling the virtues of the "new" precise 

methods, e.g., those which are involved in the rigorisation 

of the concepts of continuity and limit. Yet never far from 

such praise is a corresponding criticism of formal methods. 

His fear appears to be that the benefits of exactness were 

being bought at the cost of purging our mathematical 

concepts of all intuitive content. 
./ 

Poincare wants both pre-

cision and intuition to be a part of mathematics "proper". 

From his own experience he knows that "creative intuition" 

is hardly a formal matter. The relation between our formal 

characterisations and our intuitive concepts was a tension 

which he sought to resolve. 

There are also prima facie difficulties in coming to 

grips with his views on set theory. Although he was one of 

the first mathematicians to employ Cantor's theory of sets, 

and thus one of the first to reap the benefits of the theory, 

he explicitly rejected its fundamental theorem in its standard 

interpretation - that of a proof of the existence of an un-

countable set. And there is an apparent outrageous incon-

sistency in his attitude towards the continuum. Time and 

8 "I know very well there are disappointments, that the thinker does 
not always find the serenity he should, and even that some scientists 
have thoroughly bad tempers." (Poincare', (1908), p.24.) 
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again he stresses that all infinity is potential, that 

"there is no actual infinity"; that ineliminably impred-

icative specifications must be rejected; and so, the 

greatest cardinal is ~. And yet he wishes to retain a 

classical notion of continuity and the continuum, as he 

does not hesitate to employ, in his proofs, variables which 

range over all the points on the line. Indeed, the notion 

of continuity is one of the most central to his thinking, 

and his greatest theoretical achievements in the develop-

ment of "analysis situs" occurred when he considered what 

happens if certain parameters are allowed to vary continu-

ously. It seems all the points on the line exist, but 

there is no cardinal number of all the points on the line. 

The diversity and global nature of Poincar~'s thinking 

is depicted in the diverse schools of thought, the found-

ations to which he contributed. For instance, his theory 

of meaning - the criterion of verifiability in principle -

became foundational in intuitionism. This theory is the 

subject of Chapter 7. Whereas his theory of impredicativity 

and vicious circles, the subject of Chapter 6, led to the 

development of predicative set theory and predicative 

analysis (as for instance is found in Feferman, (1964), 

and, more recently, in S. Shapiro, (1985)). Chapter 5 

/ 
consists in an examination of Poincare's theory of the 

continuum; the ~roper interpretation of the continuum 

being an open philosophical matter to this day (and, 

perhaps, for a very long time). 
/ 

Poincare's contributions 

also led to a critical reassessment of metamathematics, 
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in general. In Chapter 4 I discuss how, in 
. ;' 

POJ.ncare's 

view, intuitions are epistemologically prior to any 

significant formal structure; and in Chapter 3 I focus, 

. ;' 
with a view to the same end, on POJ.ncare's theory of 

induction. The question of the apriority of mathematics 

(and not only its synthetic apriori character) also stands 

in need of a defence. However, in view of the fact that 

. ;' 

POJ.ncare did not himself explicitly address the topic of 

a modern type of empiricist challenge, I have included 

a defence of the apriori as an appendix. 

My project in this thesis has been to determine whether 

there is a general philosophical core which underpins 
/ 

Poincare's scattered, diverse, yet often profoundly in-

sightful remarks. Is there a foundation which makes even 

his apparently paradoxical views cohere? My answer is 

an unqualified ~. Poincar~'s philosophy is coherent; 

the fundamental key to an appropriate understanding of 

his philosophy on the whole is not to underestimate the 

legacy of Kant in his views. P · ;' d oJ.ncare a opts Kant's view 

that mathematics is synthetic apriori. (He adapts it, too, 

for on his account, contrary to Kant, geometry is not 

synthetic apriori; in fact it is conventional.) His 

philosophical position can, on the whole, be described as 

line 0- Kanti an II • Chapter 2 is a brief introduction to 

Poincar~'s theory of the synthetic apriori. The main body 

of this thesis can, in general, be seen as a description 
/ 

of the way in which Poincare adapts the Kantian thesis, 

with a view to defending Kant from the "Leibnizian" 
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impulses of the time: i.e., Russell, Zermelo, Peano, etc .. 

Our first task will thus be to examine Kant's position; 

to this Chapter 1 is devoted. Throughout, it will be 

important to bear in mind that from the point of view of 

one of the very greatest practicioners of classical mathem­

atics since Gauss, one can see Poincar~'s philosophical 

work as possibly being motivated by a desire to steer a 

middle course between the "Scylla" of triviality and the 

"Charybdis" of contradiction; in fact, to steer a middle 

course between strict constructivism and set theory. 



CHAPTER ONE 

KANT'S PHILOSOPHY OF MATHEMATICS 

(1) The Basic Distinctions 

(2) The Synthetic Apriori 

(3) The Synthetic Apriori Instantiated: Geometry 

(4) The Synthetic Apriori Instantiated: Arithmetic 

(5) The Foundations of the Theory of the Synthetic 

Apriori 

(6) How the Theory Works: Geometry Revisited 

(7) A Precarious Analogy 

(8) The Key to the Synthetic Aspect of the Science 

of Number: Induction 



In order to properly describe and fairly appraise 

Poincar~'s philosophy of mathematics, we must first clarify 

what he thinks, and why he espouses certain Kantian themes 

but not others. He explicitly rejects Kant's thesis that 

Euclidean geometry is synthetic apriori. And he even 

rejects the more minimal Kantian thesis that the three-

dimensionality of space is a synthetic apriori matter. 

However, he follows Kant in asserting that the theorems 

of ~ mathematics have a synthetic apriori status. 

What does Kant mean by saying that mathematics is 

"synthetic apriori,,?l 

all analytic truths. 

First, mathematical truths are not 

./ 
Both Kant and Poincare maintain 

that some mathematical principles are analytic, e.g., 

"a=a" or, more interestingly, "equals added to (or sub­

tracted from) equals provide equal results".2 But bona 

1 For instance, "All n1athematical ·ud ements, without exce tion, are 
sx,I"Jthetic .. ~ In addition, mathematical propositions, strictly 
so called, are always judgements apriori, not empirical, ... " (B P .14) 
and " .•. bodies of apriori synthetic knowledge can be derived 
(Pure mathematics is a brilliant example of such knowledge ... )" 
(B p.55). (References to Kant's Critique of Pure Reason will be 
given by prefixing the page number with the appropriate edition, 
i.e. "A" for 1781 and "B" for 1787.) 

'" 2 See B pp.204-205 and Poincare, (1894a), p.3. 
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fide mathematical judgements must be synthetic (according 

to the above reference). And second, despite the 

non-analytic character of our mathematical judgements, 

the knowledge gained from them is not empirical - it is 

not obtained from experience - but is apriori. The 

invention of the notion of apriori forms of experience 

enables Kant to conjoin synthetic with apriori, and hence, 

to maintain this view. What the synthetic apriori consists 

in and from where it comes will be the main subject of 

this chapter. 

(1) The Basic Distinctions 

Preliminary to understanding Kant's philosophy, there 

are two general claims: one in the theory of meaning, 

and one in epistemology. The first claim is that there 

is a well-defined distinction in our language between 

analytic and synthetic statements (judgements, propositions). 

Our understanding of the content of our propositions is 

such that there are two exclusive classes: the analytic 

and the synthetic. Now this distinction may be explicated 

(or fail to be explicated) in various ways. Kant himself 

wavers between the view that these are types of judgements 

(8 p.lO), and that these are types of propositions (B p.56). 

Most likely, he felt the distinction could be applied to 

propositions as a result of its application to judgements, 

which seems to be primary. For Kant, the distinction 

amounts to the existence of a "containment" relation among 

concepts. 
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Either the predicate 8 belongs to the concept 
A, as something which is (covertly) contained 
in this concept A; or 8 lies outside the 
concept A although it does [in virtue of our 
judgementi indeed stand in connection with it. 
In the one case I entitle the judgement analytic, 
in the other synthetic. (8 p.lO) 

Hence analytic truths are those which, in thinking the 

subject (of the sentence being judged) we cannot help but 

think the predicate. The predicate, thus, gives us no 

new information about the subject, for it is already 

"contained in" the concept of the subject. 

There is no doubt that Kant believed that this relation 

among concepts existed and was well-defined. But this 

claim, since it presupposes determinacy of meaning - the 

objectivity of our linguistic conventions -

is widely contested in most discussions in modern 

philosophy of language. Perhaps the boundary between 

analytic and synthetic is not as straightforward as Kant 

thought; or perhaps Kant's metaphor of "containment" is 

not desirable. Whatever way the distinction is made, 

however - e.g., that the negation of an analytic statement, 

when appropriate definitions are substituted, produces a 

contradiction - it is necessary for an understanding of 

Kant. 

The other major distinction which underlies Kant's 

philosophy is between pure and empirical, or apriori and 

aposteriori knowledge. Whereas analyticity/syntheticity 
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is a linguistic distinction concerning the content of 

our statements (or judgements), the apriori/aposteriori 

distinction is epistemological, and concerns how we can 

come to know the truth of, and how we can justify making, 

our assertions. So all statements are either analytic or 

synthetic; and all knowledge is either apriori (pure) or 

aposteriori (empirical). Apriori knowledge is that which 

is knowable without consulting the world: it is "prior to" 

(in a figurative sense), or independent of, any particular 

experience or set of experiences. In contrast, aposteriori 

knowledge requires sense experience, or investigation into 

the world, before one can have good grounds for accepting 

it. One must be able to cite evidence (facts - usually 

other aposteriori pieces of information) in order to justify 

any knowledge which is aposteriori. The question "How 

do you know," is never adequately answered by "I just do 

know" when referring to knowledge which is thought to be 

aposteriori. 

As with the analytic/synthetic distinction, there are 

problems with the neatness of this dichotomy concerning 

ways of knowing, as was pointed out by the later Wittgen­

stein throughout On certainty.3 However, again, as with 

3 For instance, that the earth existed 100 years ago seems to be a 
piece of aposteriori knowledge. But anything we might be tempted 
to cite as evidence for the statement, itself has no grounding 
(what is the evidence for the evidence?), unless we presuppose the 
original statement is true. In order to believe any of the evidence 
that the world existed 100 years ago (e.g., history books, geological 
methods, parents), I must already believe it is true that the earth 
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the analytic/synthetic distinction we must accept the 

existence of the apriori/aposteriori distinction in 

order to have any chance at all of acquiring a genuine 

understanding of Kant's philosophy. Whether or not we 

possess a clear explication of the concepts, we know the 

distinction exists because we use it. And, in Wang's 

words, "To say tha t analytici ty Lor any distinction] is 

not sharp is quite different from saying it is not in­

telligible".4 

(2) The Synthetic Apriori 

Intuitively, analyticity is usually paired with apriori, 

syntheticity with aposteriori. We do not need to "look 

at the world" ':'0 know "The bachelor is unmarried" is true; 

for, since it is analytic that all bachelors are unmarried, 

it is true in every instance. Justifying it is referring 

to the language, not to the world or experience; so it 

is apriori because it is analytic. Conversely, we cannot 

justify the claim that "There are three people in the 

room next door" - a synthetic statement which informs us -

unless we go and look. We must participate in the extra-

linguistic, sensory world - someone must do something 

did not pop into existence ready made with its history books. 
"Does my telephone call to New York strengthen my conviction 
that the earth exists," (Wittgenstein, (li969), p.240.) The 
answer is it cannot: for in order to believe I have successfully 
phoned New York, I must already believe (implicitly, at least) 
the earth exists. 

4 Wang, (1974), p.278. 
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to act and/or perceive - in order to be in a position 

to justify this statement. Hence, it is aposteriori. 

Famously, Kant disrupts this tidy dichotomy by fusing 

synthetic with apriori. Certain statements about the 

nature of space and time, about substance, and about 

mathematics are said to be synthetic apriori. They are 

synthetic apriori because, although they are not analytic 

(i.e., no containment relation exists between subject and 

predicate), our knowledge of them does not depend upon 

sense experience for its justification. So they are 

apriori and synthetic. An example which Kant gives of a 

synthetic apriori item of knowledge (a synthetic statement, 

the truth of which is knowable apriori) is that space has 

three dimensions. We cannot conclude this inductively 

from observation alone. For in order for an experience 

to count as perception of a spatial entity (external to 

the perceiver), it must be perceived as three-dimensional 

(B p.38). There is no such thing as amassing evidence 

for the three-dimensionality of space; for in order to 

decide whether or not a perception is to count as evidence 

for or against the hypothesis, we must decide whether or 

not it is spatial. And the only method we have for 

deciding this, is to determine whether or not the percep­

tion stems from outside the body. But it is impossible 

to know whether something is external to the body without 

knowing whether it is three-dimensional. Hence, perception 

of three-dimensionality is necessary for a perception 

to count as an external object. 
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Yet it is not logically absurd to conceive of two­

dimensional (or any other dimensional) space, as in plane 

geometry, or analysis situs. So it is not analytic that 

space has three dimensions. We can conceive of alternate 

spaces, we just cannot conceive of ourselves (our bodies) 

living in (experiencing) them. We cannot imagine what 

experience of non-three-dimensional space would be like, 

since any perception we imagine is interpreted or seen 

from a three-dimensional point of view. 

This is an instance of what Kant calls the "form of 

experience" or, in particular, the "apriori form of per­

ception". Perceptions must have a certain form or character 

before they can be counted as perceptions, rather than 

mere imaginations of uninstantiated concepts. Kant argues 

that there must be some "screening off" faculty; other­

wise, for instance, how is it that we are able to distinguish 

sensations stemming from within the body and mental 

activity ("inner appearance") from perceptions of an 

external object ("outer appearance"), where the latter 

are supposed to be caused by something in the world, 

independent of the perceiver? (8 p.38). The objection 

that we are not always. able to distinguish veridical from 

non-veridical perception, is answered by pointing out 

that according to Kant this very distinction (veridical/ 

non-veridical) would be impossible without the apriori 

form of perception. There must in principle be some 

difference of which we can be aware, between an experience 

and the memory of the experience. How the distinction - even 
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if it is not always used accurately - is possible at all, 

is the question with which Kant is concerned. 

The form of all spatial and temporal intuition (or of 

all possible experience) is apriori - prior to sensations 

which are the matter of perception. Knowledge of the 

form of space and time is synthetic apriori; knowledge of 

particulars in space-time is synthetic aposteriori. Space 

and time are apriori forms of experience which take in 

and process the matter of our perceptions, e.g., by providing a 

structure which imposes an ordering relation on our exper­

iences. 

(3) The Synthetic Apriori Instantiated: Geometry 

Kant held that geometrical knowledge is synthetic 

apriori because it consists in synthetic judgements con­

cerning the apriori intuition of space. Since these 

judgements concern only that which is given apriori - i.e., 

they do not concern any accidental properties of actual, 

particular lines, points, triangles, etc. - the knowledge 

obtained from the judgements is apriori also. The 

statements concerned are synthetic because they are not 

analytic; and they are not analytic because they depend 

on something other than logic plus the containment relation 

among concepts .for their truth or proof. In order to 

justify a belief that, say, the angles of a,triarygJe add 

up to 180°, we prove it. And the proof requires an active 

contribution, which is synthetic in nature. 
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Geometric proofs have a constructive form: they depend 

upon the performability in principle of certain construc­

tions. For instance, line segments must be extendable; 

and we must be able to rotate figures or planes 180 0 

around a straight line. So, since the existence of 

indefinitely extendable lines is not satisfied in all 

spaces (e.g., a spatially closed surface with the topology 

of a sphereS), we require intuition to underwrite the 

existential assumptions, which are in turn necessary for 

the constructions to count as evidential steps. The con-

structions will not be evidential unless we have independent 

grounds for believing they are performable, i.e., that 

they are satisfiable in the space in question. In this 

way, the possibility of geometric proofs depends upon 

the satisfiability of certain constructions. Hence, it 

depends upon (geometric) space having certain properties, 

and remaining so over time. 

But since, for Kant, space just is what we are in 

principle able to perceive of the outer world (what we 

are able to perceive, apriori), the proofs depend on nothing 

other than the apriori form of (experiential) space. Our 

apriori intuition of space underwrites our proofs because 

it informs us that the necessary constructions are 

performable. Hence, that in virtue of which geometry is 

synthetic (construction, or existential assumptions) is 

5 Friedman discusses this point in his (1985), p.500. 
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something which is apriori. Geometric theorems are 

synthetic because of the constructive character of their 

proofs; yet they are apriori, because the existence of 

the necessary constructions is guaranteed by apriori 

information. In referring to properties of space given 

by the apriori forms of perception, we are going "outside" 

or "beyond" the geometrical concepts themselves. There is 

thus no relation of containment between the concepts and 

these properties. Yet in going beyond the concepts, our 

constructions do not go into that which can only be given 

empirically (in an aposteriori way). This is because we 

only go "beyond" the concepts by looking at what ~ add 

apriori to the concepts. 

We are not here concerned with analytic 
propositions, which can be produced by mere 
analysis of concepts ... , but with synthetic 
propositions ... For I must not restrict my 
attention to what I am actually thinking in 
my concept of a triangle (this is nothing 
more than the mere definition); I must pass 
beyond it to properties which are not con­
tained in this concept, but yet belong to 
it. (8 p.746) 

If we restrict our attention to the concept of triangle, 

we cannot do geometry. We also must employ properties of 

the embedding space, which inform us that we can bisect 

angles, extend line segements, etc. For Kant, the properties 

of the embedding space "belong to" the concept Cof triangle) 

by virtue of certain apriori judgements concerning space and 

time, by way of the apriori conditions of experience. 

The apriori form of- experience is imposed on (and hence 

"belongs to") - not contained in - our concepts, by re-

stricting the ways in which we can "pass beyond" the concepts. 
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(4) The Synthetic Apriori Instantiated: Arithmetic 

Mathematical reasoning lS reasoning via "construction", 

where some sort of new entity is considered or "synthesized" 

in the process. We have seen how, in the case of geometry, 

this consideration draws from our apriori spatial in-

tuition; it "goes beyond" the (mere) concepts in this 

way. How does "construction" fit into arithmetic or 

algebraic proofs? 

Kant was not as clear about arithmetic as he was about 

geometry. Hence, almost inevitably, when giving an example 

of a construction, he provides a geometric construction. 

He does, however, address the subject of arithmetic con-

struction. Computational truths, like "2+3~5", are 

synthetic because they are statements about constructions 

in time, the truth of which cannot be known merely by 

considering the concepts involved (two, three, plus, 

equals, and five) (8 pp.15-16). The containment relation 

is not satisfied here, because just thinking "two plus 

three" is not sufficient for thinking "five". In order 

to arrive at the concept "five", I must actively put the 

two and the three together by "successive synthesis in time" 

or counting. In the synthesis involved in the successive 

counting of units,6 we find the arithmetic analogue to 

geometric construction. And since counting both actually 

takes time, and conceptually requires the apriori intuition of 

6 See Korner, (1960), p.29. 
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t
. 7 lme , the apriori form or intuition of time is involved 

at the very basis of arithmetic: in grounding our gener-

ating of integers, and hence, in everything we do with the 

integers. From counting we learn addition, and from 

addition we proceed to other methods of manipulating the 

integers. 

The apriori intuition of time (the form of all experience) 

is what enables us to learn the discipline of mathematics 

and to apply arithmetic and mathematics to the world. This 

is because the distinguishing characteristic of the integers 

is their successive nature. The claim is, we could not 

have learned about numbers without the apriori intuition 

of time. We could not have acquired the intuition of 

succession (to ground the concept of succession) were it 

not a form imposed by our minds upon experience. Further-

more, time is what enables us to apply our mathematics 

to the world, for it is what guarantees that our perceptual 

experience will be of a mathematical character (8 p.206). 

As well as for the integers, the distinguishing charac-

teristic of time is that it is successive: 

Time is nothing but the form of inner sense 
It cannot be a determination of outer 

appearances; it has to do neither with shape 
nor position, but with the relation of repre­
sentations in our inner state. And just because 

7 See Kant, (1770), p.62. 
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this inner intuition yields no shape, we 
endeavour to make up for this want by 
analogies. We represent the time-sequence 
by a line progressing to infinity, in which 
the manifold constitutes a series of one­
dimension only; and we can reason from 
the properties of this line to all the 
properties of time, with this one exception, 
that while the parts of the line are 
simultaneous the parts of time are always 
successive. (B pp.49-50) 

The parts of time are entirely successive, or ordered. 

Our knowledge of the parts of time occurs via the relations 

of the representations within this successive framework. 

We can only know parts of time by aposteriori means, for 

there is no possible experience of all of time - of 

the general concept of time, or indefinite succession. 

Hence the intuition of time in general must be apriori. 

Because our intuition of time is apriori, the fact that 

it is successive, or ordered, does not mean it must be 

composed of discrete parts. The parts of time we perceive 

do not make up the whole; on the contrary, our memories 

are carved out of the whole, which must then be intuited 

apriori. 

Space and time are quanta continua, because 
no part of them can be given save as enclosed 
between limits (points or instants), and 
therefore only in such a fashion that this 
part is itself again a space or a time . ... 
Points and instants are only limits, that is, 
mere positions which limit space and time .... 
neither space nor time can be constructed. 
Such magnitudes may also be called flowing, 
since the synthesis of productive imagination 
involved in [producing magnitudes] is a pro­
gression in time, and the continuity of time 
is ordinaril~ designated by the term flowing 
or flowing away. (B p.211- 2 12 .) 
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Space and time are continuous; hence we can only know 

parts of space and time by aposteriori means, as defined 

by the part enclosed between two end points of a repres­

entation. The continuity of time is compared to a "flowing" 

or the movement of a point - thus, it is clear that Kant's 

conception of continuity was not equivalent to mere 

density, and was not unsophisticated for his time. In 

addition, since we have an apriori intuition of time, we 

have an apriori intuition of a mathematically sophisticated 

model. 

That by which we express our apriori intuition of time 

the continuum - is also that which provides a pictorial 

model or geometric analogue of all the real numbers. 

Each real number, like Kant's points and instants, is a 

limit. Hence it is not absurd to hold that Kant's model 

of the intuition of time grounds our modern conception of 

number. 

Kant argues that the intuition of time must be apriori; 

otherwise, we could not have acquired our conception of 

number. For instance, we could not possibly learn the 

notion of indefinite succession by aposteriori means alone 

(by reference only to experience). We could not even 

learn the mere notion of succession by aposteriori means 

alone; for there is no possible perception of succession, 

since succession is merely a relation between perceptions. 

Hence it must be ~mposed, not acquired; and our under­

standing of the corresponding concept must be completely 
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. . 8 aprlorl. If the order of our representations was not 

imposed by the mind, we could not perceive order at all. 

For without the apriori form of inner perception, our 

memory would not ~ ordered - the recollection of our 

experiences would be haphazard and chaotic, unrelated by 

position. Hence, we could not acquire the understanding 

of succession from the perception of order in the memory; 

for there would not be any order if the relation of 

succession (total order) was not impnsed on it. The 

apriori understanding of an object in general, via the 

conditions of thought, ensures that our perceptions are 

of discrete units or objects. In addition, the apriori 

intuition of time ensures that recollections of our 

perceptions are structured as well, by ordering our per-

ceptions as they are inscribed onto the memory. 

Hence, our concept of the domain of integers, or of all 

quantities which are either continuous or successively 

generated, must be grounded in the apriori intuition of 

the temporal form. For the very notionswe employ to 

describe our concepts of numerical domains would themselves 

be devoid of sense in the absence of the temporal form. 

Concepts like indefinite succession, continuity, etc., 

would be devoid of sense without the apriori intuition of 

time, for there is no possible aposteriori experience 

8 For the necessity of a possible experience to ground each concept, 
see next section, this chapter. 
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(intuition) to ground these concepts. Kant's requirement 

that there be an intuition (possible experience) corre-

sponding to every meaningful concept, will be discussed 

in the next section. 

(5) The Foundations of the Theory of the Synthetic Apriori 

Kant had strongly empiricist elements in his theory 

of meaning. Associated with every concept there must be 

an "intuition" (or an instance), and, according to Kant, 

we must be able to associate an intuition or instance 

with a concept if we can claim to understand the content 

or sense of the concept. 

Without sensibility no object would be given 
to us, without understanding no object would 
be thought. Thoughts without content are 
empty, intuitions without concepts are blind. 
It is, therefore, just as necessary to make 
our concepts sensible, that is, to add the 
object to them in intuition, as to make our 
intuitions intelligible, that is, to bring 
them under concepts. (B p.75) 9 

Knowledge, then, requires both concept and intuition, or 

concept and "individual representation" 10 of an instance of 

the concept. Both aspects are necessary; and each has 

an apriori fOTm which can be described of them. We ha ve 

already mentioned Kant's description of the apriori form 

of intuition, i.e., space and time. The apriori form of 

understanding is complex in its divisions. ll The important 

9 See also B p.298. 

10 See Hintikka, (1973), e.g., p.44, and pp.207-210. 

11 See B p.76 passim. 
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point is that there is more than one type of rule of 

thought. Kant, here, diverges from the ordinary modern 

view that the way in which we think is constrained only 

by the "empty" rules of logic. In contrast, certain of 

Kant's rules of thought are not "empty" in the same way, 

but rather, participate in the content of our concepts. 

First there is "pure general logic" which is completely 

divorced from anything empirical, and is purely formal, 

and which mayor may not correspond to our notion of formal 

1 0 d 1 0 1 °bolOt 12 OglC an oglca POSSl l l y. Second, there is "applied 

general logic", which concerns the 

rules of the employment of understanding 
under the subjective empirical conditions 

Applied logic has therefore empirical 
principles, although it .•. refers to the 
employment of the understanding without 
regard to difference in the objects. (8 p.77) 

Insofar as pure general logic is pure, it concerns nothing 

empirical; insofar as it is general, it is only the mere 

"form of thought". Insofar as applied general logic is 

applied, it is empirical because it concerns the way in 

which we - in fact - think about empirical objects. However, 

insofar as it, too, is general, it concerns only the way 

we (in fact) think about empirical objects in general. 

That is, it tooo concerns the mere form of thought in that 

it has nothing to do with any particular differences of 

12 See 8 p.77 for description. 
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actual objects. General applied logic, then, is the study 

of the application of restrictions on our understanding of 

empirical objects in general. 

Kant sees three "stages" to knowledge, each of which is 

divided up into various sections, depending,- among other 

things, on whether the object or intuition concerned is 

pure or empirical (apriori or aposteriori). The first stage 

is perception, which is conditioned by the forms of space 

and time. The second stage is synthesis, where our per-

ceptions are gathered together in a certain way so as to 

produce clumps or sets of sense data, each of which is 

unified into an image. This synthesis is performed by what 

Kant calls the imagination. The third stage takes place 

in the understanding; and it is here where we judge (for 

the understanding is a "faculty of judgement" (8 p.94)) 

which concept corresponds to the clump of sense data 

(formed by the imagination). We also judge here whether 

different clumps are instances of the same concept (8 p.104). 

In addition to the unifying power of the imagination then, 

which both synthesizes (different perceptions of a thing 

over time) and unifies (perception into one image (A p.120)), 

the understanding also has a unifying power in that it can 

unify or judge different images as instances of a single 

concept. The rules of understanding are necessary in my 

judgement that, for example, a Granny Smith, a Golden 

Delicious, a McIntosh, a baked apple, are all instances of 

the con c e p t "a p pIe 'I. It is v i a the i mag ina t ion t hat I 

perceive each as one image, one object or unit. And it is via 
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the understanding that I can unify the images under one 

concept- i.e., that I can know that they are all apples. 

These three stages are necessary for all knowledge, 

whether the content concerned is pure or empirical. Hence, 

there are both apriori and aposteriori intuitions which 

correspond to different concepts, and there is both an 

apriori and an aposteriori synthesis (which depends on the 

type of intuition concerned). 

Kant's verificationist theory of meaning is at the root 

of his development of the synthetic apriori. "All concepts 

•.. , even such as are possible apriori, relate to empirical 

intuitions, that is, to the data for a possible experience." 

(8 p.298). Otherwise, the concept is empty, and has no 

meaning for us. Since knowledge is thought ~ intuition 

(8 p.lS7), knowing something requires that we pass beyond 

mere concepts. We can pass beyond mere concepts, or acquire 

evidence for a synthetic judgement, in two ways. In 

ordinary (aposteriori) synthetic jUdgements we refer to 

sense experience for our evidence. For example, appropriate 

evidence for "The cat is purring" would include my hearing 

the cat purr. However, with regard to apriori synthetic 

judgements we must "pass beyond the mere concepts" in an 

apriori way, that is, independently of sense experience. 

We can do this by referring to the apriori conditions, dis-

cussed above, for ~ possible experience; we can inform our 

concepts by inspecting how they are affected by the 

conditions for experience (of perception, synthesis and 
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judgement), and this is knowable apriori. 

Synthetic apriori judgements are thus 
possible when we relate the formal conditions 
of apriori intuition, the synthesis of 
imagination, and the necessary unity of this 
synthesis, in a transcendental apperception 
[in a unified consciousness (A p.lOJ), i.e., 
in a single conceptl to a possible empirical 
knowledge in general. We then assert that 
the conditions of the possibility of exper­
ience in general are likewise conditions of 
the possibility of the objects of experience, 
and that for this reason they have objective 
validity in a synthetic apriori judgement. 
(B p.197) 

Or, put more starkly: "Time and space, taken together, 

are the pure forms of all sensible intuition, and so are 

what make apriori synthetic propositions possible" (B p.56). 

(6) How the Theory Works: Geometry Revisited 

For example, geometry is synthetic apriori because 

space and time are involved in the construction of figures 

by guaranteeing the existence and performability of certain 

constructions. Although we do not draw conclusions about 

particular figures (hence, our actual sense experience 

does not inform our proofs, and this is why they are apriori), 

our employment of figures in proofs does cause us to go 

"beyond" the mere concepts. There is no relation of 

containment between the concepts of the figures and the 

inferences we make via our constructions. The figures or 

images we employ are arbitrary instances of concepts, like 

"triangle". Because we can consider an arbitrary instance 

of the concept, by -"drawing it in thought", we satisfy 

the first condition of knowledge: "that the representation 

through which the object is thought relates to actual or 
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possible experience" (B p.195). My mental image of a 

triangle is sufficient to guarantee the meaningfulness 

of the concept, for any possible experience of an actual 

triangle will conform to what is given in my mental image. 

This is because the latter draws only from the conditions 

for all experience, including experiences of triangles. 

Spatial and temporal intuition are employed in my 

mental image. Space, 01' "outer sense" guarantees the 

existence of, or the possibility of constructing, triangles; 

and time - "inner sense" - is the form of all possible 

experiences: images and events. The synthesis of the 

imagination is employed in my mental image in the act of 

drawing it in thought. And the rules of the understanding 

are employed when I judge that the mental image is an 

instance of the concept "triangle". 

Hence, via the form of experience, 01' experience in 

principle, geometry advances using pure intuitions. 

(7) A Precarious Analogy 

By "construction" in mathematics Kant intends a non-

empirical representation of a concept. Regarding numerical 

formulas involving small numbers, we construct 01' synthesize 

units to determine their truth 01' falsity. I construct 

in my mind three units, ~nd then successively add two more 

units to it, in verifying that "3+2=5 11 is true. However, 

construction of abstract units only suffices for a very 

small part of mathematics. We must also solve equations 
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involving large numbers, for which it is no longer 

practically possible via Itsuccessive synthesis" of units 

alone. And we must prove general results. Hence, we 

have more general procedures, the understanding and im-

plementation of which requires construction of concepts 

rather than units. 

To construct a concept means to exhibit 
apriori the intuition which corresponds to 
the concept .•. we therefore need a non­
empirical intuition. The latter mus~s 
intuition, be a single object, and yet none 
the less, as the construction of a concept (a 
universal representation), it must in its 
representation express universal validity 
for all possible intuitions which fall under 
the same concept. Thus I construct a triangle 
by representing the object which corresponds 
to this concept either by imagination alone 
in pure intuition, or in accordance therewith 
also on paper, in empirical intuition - in 
both cases comple~ely apriori, without having 
borrowed the pattern from any experience. 
The single figure which we draw is empirical, 
and yet it serves to express the concept, 
without impairing its universality. For in 
this empirical intuition we consider only the 
act whereby we construct the concept, and 
abstract from the many determinations [for 
instance the magnitude of the sides and of 
the angles], which are quite indifferent, as 
not altering the concept "triangle". (B pp.i-,-\\-i-<-I2) 

Because we consider an intuition (construction) and not 

only the concept, we combine the properties which are 

given by the concept of the object with the properties 

which it has ~ object. And because the intuition is of 

an arbitrary object, we combine the properties given in 

the concept with the properties which it has qua arbitrary 

object. The properties which a construction has ~ 

arbitrary object are those which are present in every con-

struction of the type of object. For example, every 
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construction of a triangle gives us angles which add up 

to 180 0
, as can be proved through considering an arbitrary 

(Euclidean) triangle. Because the point of the represent-

ation is to exhibit ~ the properties which are provided 

by every construction of the type of object, the intuition 

of the representation is an intuition which is general, 

not particular or actual; and hence pure, or apriori, and 

not empirical. We do not, for instance, measure the angles 

of the triangle we have constructed for the proof mentioned 

above. So the proof does not depend on any of the particular, 

"accidental" properties of the actual figure drawn on 

paper. If it did, it would not be a proof. Hence, the 

construction, as we employ it in a proof, is not empirical; 

and the figure actually drawn is merely a heuristic aid. 

Philosophy confines itself to universal 
concepts; mathematics can achieve nothing 
by concepts alone but hastens at once to 
intuition, in which it considers the concept 
in concreto, though not empirically, but only 
in an intuition which it presents apriori, 
that is, which it has constructed, and in 
which whatever follows from the universal 
conditions of the construction must be 
universally valid of the object of the con­
cept thus constructed. (B pp.743-744) 

In mathematics we infer things both from what is given in 

the concept and from what is given in the "construction" 

of the concept. Because we are constructing (lines, points, 

triangles), we are "guided throughout [our proofs] by 

intuition II (B p.745) and by the synthesis of the imagination, 

so our inferences are synthetic. But since the intuition 

which guides us is not empirical, the synthesis concerns 

an apriori image, and our inferences are synthetic apriori. 
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Conceptual analysis alone is inadequate for mathematics. 

We must refer to our intuitive understanding of an object 

or unit in our geometrical proofs. But since we refer 

only to ~ intuition, or perception of an arbitrary 

(ideal, apriori) object, this reference does not impugn 

the apriority of our inferences. We have seen, in section 

6, how the theory of construction of concepts applies to 

geometry. Space and time contribute to the conclusions 

we draw even though we only consider apriori, i.e. arbitrary, 

constructions. The transition from geometry to arithmetic 

and algebra is important, and requires careful analysis. 

To this end I will indulge in an extensive quote from Kant. 

But mathematics does not only construct 
magnitudes (guanta) as in geometry; it 
also constructs magnitude as such (guantitas), 
as in algebra. In this it abstracts com­
pletely from the properties of the object 
that is to be thought in terms of such a 
concept of magnitude. It then chooses a 
certain notation for all constructions of 
magnitude as such (numbers), that is, for 
addition, subtraction, extraction of roots, 
etc. Once it has adopted a notation for 
the general concept of magnitudes so far as 
their different relations are concerned, it 
exhibits in intuition, in accordance with 
certain universal rules, all the various 
operations through which the magnitudes are 
produced and modified. When, for instance, 
one magnitude is to be divided by another, 
their symbols are placed together, in accord­
ance with the sign for division, and similarly 
in the other processes; and thus in algebra 
by means of a symbolic construction, just 
as in geometry by means of an ostensive 
construction (the geometrical construction 
of the objects themselves), we succeed in 
arriving at results which discursive knowledge 
could never have reached by means of mere 
concepts. (B,p.745) 

However, the analogy is contrived. It seems that Kant is 
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trying too hard to draw a tight analogy, where it is not 

available. The conventions governing the choice of symbols 

via which we represent the numerals have nothing in any 

interesting way to do with the synthetic aspect of math~ 

ematics. Symbolic conventions are empty conventions. The 

subject matter of geometry is grounded in the apriori 

intuition of space (as well as of time). Hence, in 

representing its concepts we quite naturally employ space: 

we construct images on paper. However, the subject matter 

of arithmetic comes only from the apriori intuition of 

time. So there is no relation between arithmetic con-

struction and space. There is no link between any number 

concept and the symbolic notation by which we represent 

it. 

Kant locates the parallel in the wrong place. There 

is a parallel between geometry and the rest of pure math-

ematicsj it just does not lie in the way we represent 

either our arithmetic or our geometric concepts. Rather, 

the appropriate parallel lies in our ability in both 

domains to inform our concepts - of triangle, of number -

in an apriori way, via apriori intuition. Mathematical 

knowledge is only possible because of the existence of our 

apriori intuitions of space and of time, for without these 

our exact concepts would not be meaningful. 

All our knowledge relates, finally, to 
possible intuitions, for it is thrpugh them 
alone that a~ object is given ... LAnd] the 
only intuition that is given apriori is that 
of the mere form of appearances, space and 
time. (8 pp.747-748) 



34 

Both geometrical and number-theoretic statements have 

a content which is given by the "mere form of appearances". 

The disanalogy lies in the fact that while geometrical 

concepts are informed by our apriori intuition of both 

space and time, our arithmetic and algebraic concepts are 

informed only by our apriori intuition of time. The 

content of our number-theoretic statements is independent 

of spatial intuition. In this way, since the parallel seems 

12 to focus on the supposed "construction", it is not apt. 

(8) The Key to the Synthetic Aspect of the Science of 

Number: Induction 

The important aspect of construction in mathematics is 

the way the concepts can be informed, or "added to", by 

intuition in an apriori way. The performability of 

geometrical constructions is guaranteed by space and time; 

the performability of arithm~tic constructions is guaranteed 

only by time. However, mathematical definitions are exact: 

the commerce of mathematics is exact concepts and ideal 

objects. We cannot draw ideal objects anyway, so the 

spatial representation of even geometric concepts - drawings 

of triangle, lines, etc. - is not related in any important 

way to the "constructive" aspect of the proofs. (As axio-

matic geometry shows, the pictures are dispensable, since 

12 As perhaps, Kant himself realised. See B pp.762-763, where he 
emphasises the importance of the concepts attached· to the symbols; 
the symbols having a heuristic role. 
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they are merely heuristic aids to the proofs.) Hence, 

"construction" of mathematical concepts is a metaphor. The 

intention of this metaphor is to capture our ability to 

consider an arbitrary instance - unit, object - of a 

concept. And, since the concepts involved are (or ought to 

be) exact, this consideration of an arbitrary instance is 

mathematically informative, for through it we have access 

to the "ideal objects" of mathematics. 

Considering an arbitrary instance of a concept results 

in a "construction" which is ideal, because what we are 

thinking about, or quasi-perceiving "in the mind's eye", 

is an object which represents all and only the properties 

of all the elements in a domain. Consideration of an arbitr-

ary element of a domain is an essential part of any general 

proof (proof of a general result). In geometry, it is 

essential that our constructions be of arbitrary figures 

in order to be justified in drawing conclusions about all 

triangles, or all isosceles triangles. In arithmetic it 

is an essential part of proof by induction, where we 

consider an arbitrary element and its successor (or in 

multiple and transfinite inductions, stages of this pattern). 

Moreover, induction is necessary for any general proof 

concerning numbers. Hence, consideration of an arbitrary 

element of a given domain is a necessary part of any 

general mathematical proof. 

Constructing concepts in mathematics is considering 

arbitrary instances of concepts. In considering an 
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arbitrary triangle, we employ the apriori intuition of 

space. Because the "intuition" is non-empirical, the 

construction is apriori, and the object is arbitrary. For 

instance, by means of the apriori spatial intuition we 

know that we can draw a line from one angle to the opposite 

side of a triangle, which exactly bisects that angle - not 

approximately, but exactly. "We can draw" only means 

"there exists" in geometry (we cannot actually bisect an 

angle); so our apriori spatial intuition vindicates our 

making certain existential claims about space within a 

13 proof. 

Likewise, in arithmetic and algebra, considering an 

arbitrary object of a domain is the key to discovering 

or understanding general results. For instance, in ~n-

duction we must consider an arbitrary natural number, n. 

13 This coincides with Hintikka's view of the development of the 
analytic/synthetic distinction (see Hintikka, (1965b), "Are Logical 
Truths Analytic?"). He claims that prior to Kant, the analytic/ 
synthetic distinction was mainly directed towards geometrical proofs. 
An analytical "argument" was one in which no constructions were 
carried out; i.e., "no new lines, points, circles and the like 
were introduced during the argument" (ibid., p.153). If any such 
new entities were essentially employed-rn-arriving at the con­
clusion, the argument was considered to be synthetic. There seems 
to be a direct relation between this view of the distinction and 
Kant's arguments concerning why mathematical proofs, in contrast 
with philosophical arguments, are synthetic. Philosophical reason­
ing is analytic because it depends only on the concepts plus formal 
logic or the containment relation. Mathematical reasoning is 
synthetic because it relies upon how the concepts are informed by 
the rules governing the three stages of knowledge (discussed in 
section 5): it relies upon construction of concepts. 
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And this is informative in a way which "goes beyond" the 

mere concepts, because we employ the apriori intuition of 

time, since we must consider the relation between n and its 

successor, n+l. The inference 

from P(o) & Pen) ~ P(n+l) 

to \in pen) 

is synthetic, because we must employ our intuition regarding 

"succession" for the proof of Pen) -1 P(n+l). Since 

succession is a ltmode" of time (8 p .219), induction requires 

the intuition of time. Pace Frege, our concepts of P, of 

number, etc., are inadequate to result in the conclusion 

\/n(Pn) via the containment relation alone. Hence, every 

general (quantified) result, like \dx Vy (x+y:::y+x), is 

synthetic; for its proof requires induction, i.e., con-

sideration of an arbitrary numberical object together with 

the temporal properties which it has ~ representational 

unit. Induction is thus mathematical reasoning "~ 

excellence", for it is via induction that we obtain all 

general, all significant, mathematical results. 

POincar§'s explanation of the synthetic apriori character 

of mathematics relies heavily on his view that induction is 

synthetic apriori. After a brief introduction to his version 

of the theory of the synthetic apriori in general, we will 

begin our explication of Poincar~'s philosophy of mathematics, 

in Chapter 3, with an analysis of his conception that 

"arithmetic" or "iterative" intuition is the epistemological 

source of the principle of induction. 



CHAPTER TWO 

, 
INTRODUCTION TO POINCARE'S THEORY 

OF THE SYNTHETIC APRIORI 

(1) The Synthetic Apriori and Time 

(2) The Synthetic Apriori and Space 



/ 
When Poincare asserts that mathematics is so/nthetic 

apriori, he agrees with Kant that true mathematical 

propositions are not obtainable as theorems of logic 

alone even when supplemented by appropriate definitions 

of the non-logical vocabulary involved. 
/ 

Indeed, Poincare's 

sense of a synthetic proposition is essentially that of 

Frege. Whereas Frege might have held that the entire 

corpus of mathematics (with the possible exception of 

geometry) is " analytic, Poincare held that it is synthetic 

in precisely Frege's sense; for it is not possible to 

provide a proof of certain key mathematical claims 

(even number theoretic ones) without "making use of truths 

which are not of a general logical nature, but belong to 

the sphere of some special sCience"l. (This is precisely 

how Frege characterises a synthetic proposition.) Like 

Kant, Poincar~maintained that mathematical knowledge 

is knowledge apriori. Where he differs from Kant is 

in exactly what he takes as synthetic apriori. For 

Kant the forms of perception of (Euclidean) space and 

time provide the content of geometrical and number 

theoretic truths (as well as grounding certain 

I Frege, (1884), p.4. 
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general statements concerning substance, cause and effect). 

In contrast, Poincar8"s notion of "synthetic apriori" is 

that which is 

imposed upon us with such a force that we 
could not conceive of the contrary proposition, 
nor could we build upon it a theoretical 
edifice. 2 

The key notion here is "build upon it a theoretical edifice". 

This is why, contra-Kant, geometrical truths are conventional. 

It is possible to erect alternative systems of the world 

(i.e. geometry plus physics), the purely geometric component 

of which is non-Euclidean. It is this fact, the inter-

pretability of experience on the basis of non-Euclidean 

geometry, which refutes the Kantian explicit claim concerning 

Euclidean geometry; but it is certainly not the mere existence 

of consistent non-Euclidean geometries which does so. If 

Kant had been right, the former fact could not obtain, 

whereas the latter, the existence of consistent non-Euclidean 

geometries would still have been possible. We can build 

alternate theoretical edifices incorporating rival geometric-

al systems, so no one particular pure geometry has synthetic 

apriori status. 

In contrast Poincar~ claims, the principle of mathematical 

induction is "a true synthetic apriori intuition" because 

we are unable to imagine a coherent non-standard arithmetic 

based on the negation of induction, in the same way that 

we construct a non-Euclidean geometry based on the negation 

of the parallel postulate. 

2 Poincar~ (1891), p.48. 
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Let us next try to get rid of this (the 
principle of induction], and while rejecting 
this proposition let us construct a false 
arithmetic analogous to non-Euclidean geometry. 
We shall not be able to do it. 3 

Why "we shall not be able to do it" is the subject of the 

next chapter. Essentially, Poincart is claiming that 

arithmetic is so foundational in our conceptual structure 

that it is a form of understanding. Unlike the geometric 

case, we can form no concept of an experience which would 

violate Peano arithmetic. Consequently, if the world does 

not "measure up" to one of our calculations, we say something 

went amiss in the observation, or that we did not perform 

the calculation correctly. We do not call the form or the 

algorithm of the calculation into question. We correct 

ourselves or our particular use of an arithmetic identity 

rather than the identity itself. All this means is that, 

first, mathematics is not empirical: the world does not 

determine truth in mathematics, since, for Poincar~, no 

matter how different a world we imagine, we cannot imagine 

arithmetic as being any different. And second, mathematics 

is not conventional, because our actual system is not the 

simplest (most convenient) out of a selection of possible 

systems; rather it is the only possible system we can en-

vision. This is because it is grounded in synthetic apriori 

knowledge. 

Whereas Kant saw the synthetic apriori in the metric 

3 POincare", (1891), p.49. 
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properties of space and time, Poincar~ locates the synthetic 

apriori in the weaker structural (or "topological") concepts 

of "order", continuity and indefinite iterability. I will 

now discuss the apriori temporal form of experience, or 

"arithmetic intuition", before turning to the apriori 

spatial form of experience, or "geometric intuition". 

(1) The Synthetic Apriori and Time 

One apriori form of intuition which contributes synthetic 

content to part of mathematics is instantiated in the 

apriori notion of time. Time is not something external 

and existing independently of us. Thus our understanding 

of time is not an empirically acquired concept. Rather, 

it is an apriori matter. Time is not in the world; we 

impose time ~ the world - on our classification and 

organisation of memory and knowledge. 

In addition, what we impose is not chosen, i.e., is 

not conventional. 

The order in which we arrange conscious 
phenomena does not admit of any arbitrariness. 
It is imposed on us and of it we can change 
nothing. 4 

Ordering our memories and classifying our perceptions is 

something which we must do in the way in which we do it, 

because it is something which is imposed by the nature 

of our minds. The conception of the passage of time is 

4 Poincar6, (1898), p.26 
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necessary for ordering and classifying our experience, so 

that we can communicate, understand and remember. Time 

is manifested as a certain set of relations between memories 

of events or sensations. But time does not consist in the 

relations between memories. Rather, the relations between 

memories, or order, would not exist without the imposition 

of the form of time upon them. 

Poincar~ argues that our awareness of time is an apriori 

form of intuition. If the notion of time was obtained by 

inductive generalisation from perception of actual events, 

it could at most consist in an understanding of the order 

of, and perbaps, the relative "distance" between actual 

memories, or "filled compartments", of time. However, there 

is more than this to our conception of time, e.g., the 

knowledge that our memories could be organised differently -

the awareness of the existence of "empty compartments", 

or possible-but-not-actual memories. Hence, the acquisition 

of our actual concept of time could not occur by aposteriori 

means alone. Memories ... 

... can only be finite in number. On that 
score, psychologic time should be discontinuous. 
Whence comes the feeling that between any two 
instants there are others? We arrange our 
recollections in time, but we know that there 
remain empty compartments. How could that 
be, if time were not a form pre-existent in 
our mind? How could we know there were empty 
compartments, if these compartments were re­
vealed to us only by their content? 5 

5 Poincarl, (1898), p~26. 
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There are many more possible memories than actual memories. 

Indeed, for Poincar{, our understanding of time is an 

understanding of an unbounded, dense (total) order; and 

knowledge of these properties of time could not be empirically 

acquired. 

Before we discuss the structural properties of time, we 

must first distinguish between time (or our notion or under­

standing of time) and the temporal form. Time is a construct, 

an intuitive structure, which satisfies the properties 

provided as the temporal form. The temporal form is a 

synthetic apriori intuition, or form of experience, which 

imposes a notion of linear order (the order type of the 

rationals, as it turns out) and an understanding of "indefinite 

i te rabili ty". Time, on the other hand is a convenient device 

for interpreting experience: a construction which satisfies 

~ the impositions of the temporal form. Because the 

temporal form supplies us with the notion of indefinite 

iterability, the intuitive structure of time consists in a 

model for a potentially infinite set. However, in addition 

to indefinite iterability in the sense in which it produces 

a potentially infinite set like the natural numbers - i.e., 

an unbounded domain - there is an indefinite iterability in 

between the possible compartments, or instants, of time. 

That is, the temporal form imposes an understanding of in­

definite iterability in a dense sense, in the sense in which 

it produces a domain like the rational numbers. Moreover, 

time is a structure via which we preserve the order of our 

memories once they occur; hence it provides a model for a 
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domain in which th~ order of the elements is fixed. There-

fore, time provides a model for an unbounded, dense (total) 

order. 

First, time is a totally ordered domain: "before" and 

"after" correspond to "less than" and "greater than"; and 

"simultaneous" corresponds to "equals". Second, time is 

unbounded. There is no last memory which is fixed in advance; 

and "indefinite" corresponds to "potentially infinite". 

Third, time is dense. The infinity of time does not only 

consist in the fact that there is no last possible compartment 

of time 1 no last memory fixed in advanc~ in addition, the 

infinity exists between the memories, in virtue of our 

understanding that between any two instants there is a third. 

Any procedure describing this understanding or "feeling" 

must be indefinitely iterable in a way which produces a dense 

structure. 

(2) The Synthetic Apriori and Space 

In parallel with the synthetic apriori of time, there is 

a synthetic apriori element in our notion of space. Time 

and space are "the frames in which nature seems enclosed"6 

which we impose upon nature. Much of the apriori element of 

the "frame" of space is not synthetic according to Poincar~. 

For example, the choice of a geometry is conventional; and 

6 Poincare, (190~, p.13. 
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in additional contrast with Kant, the number of dimensions 

we attribute to space is not even synthetic apriori for 

P · / 
o~ncare. Rather, it is partly a physiological, partly 

an empirical matter. It is partly determined by the way 

our sense of muscular movement corresponds with our vision, 

and obtaining, of objects; and it is partly determined by 

the way the world is: the nature of physical objects and 

light, etc. That the three-dimensionality of space is not 

an apriori condition imposed by the mind is indicated not 

only by the fact that we can reason on spaces of any given 

number of dimensions - i.e., that any dimensionality of 

space is consistent. (Alternative arithmetics are consistent; 

yet, for Poincar~, standard Peano arithmetic is synthetic 

apriori.) Rather, the dimensionality of space is not a 

synthetic apriori matter because we can construct viable 

empirical theories upon the hypothesis that space is, 

for instance, four-dimensional. Poincar~ admits that spaces 

of greater than three dimensions are very much harder to 

work with than three-dimensional spaces. But he maintains 

that this does not indicate the apriori status of the 

knowledge of the three-dimensionality of space. If it did, 

then the same argument could be used to urge the two-

dimensionality of space, as an apriori principle, since 

plane geometry is much easier than the geometry of three 

dimensions. Although three-dimensional space is most 

natural for us to imagine living in, a non-three-dimensional 

space is a viable ~andidate for an interpretation of our 

experience. Our visual analogies are merely less direct 
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with four or more coordinates. Hence, according to 

Poincare-'s definition of "synthetic apriori" - as something 

which forces itself upon us and constrains our thinking, 

and even our theoretical edifices - the three-dimensionality 

of space does not qualify. The degree of difficulty of 

imagining something like four-dimensional space, does not 

necessarily indicate a mental impossibility. 

We attribute three dimensions to perceptual space 

because it is the description which makes our everyday 

g e n era 1 i sat ion $ (th 0 ugh per hap s not a 11 0 f 0 u r sci en t i f i c 

laws or theories) the simplest. Hence, it is a certain set 

of facts about the exterior world (aposteriori facts) which 

i nd uces us tot h ink 0 f spa c e in t his way, and not apr i 0 r i 

conditions imposed by the mind. The reason three-dimension-

ality may have seemed apriori to Kant is because increasing 

the number of dimensions beyond three seems unnatural and 

counterintuitive - it is hard or impossible to "picture". 

But, the very fact that we ~, despite the increase in 

difficulty, have physical theories concerning spaces of 

differing dimensions, shows that the three-dimensionality 

of space is not something which constrains our thinking. 

Here we see a consequence of the essential difference 

between the Poincar~an and the Kantian theory of the 

synthetic apriori. For Kant, the synthetic apriori is the 

form of perception, and it is that to which our perceptual 

pictures must confQrm. Space is then three-dimensional 

because he could not picture how living in four-dimensional 

space would be different perceptually. 
/ 

Whereas for Poincare, 
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the very fact that we can conceive of some creature 

(perhaps with a different type of eyes or different muscular 

sensations, or perhaps with ~ differences) and some world 

for w hi c h spa c e w 0 u 1 d be con sid ere d to h",,,e. a d iff ere n t 

number of dimensions - two, four, fi ve, etc. - reveals 

the fact that three-dimensionality is not an apriori 

characteristic of space. This is because Poincar~'s 

requirement is stronger: the significance of the synthetic 

apriori is something which constrains our ability to think 

(~ to perceive), and not merely our ability to perceive. 

There is, however, an aspect of perceptual space which 

Poincar~ considers to be synthetic a~riori. This is the 

continuity of space - the intuition which grounds geometric 

reasoning on spaces of ~ number of dimensions. For 

P · / olncare, this is the essence, the sine qua non - of what 

he calls "spatial intuition". This is Poincare-,s "form 

of spatial perception"; very much reduced from Kant's 

original position. 

To sum up Poincar~'s theory of the synthetic apriori, 

there are two types of apriori intuition, via which we 

instantiate our concepts in an apriori way. One I shall 

call Poincare's "arithmetic" intuition. This is given in 

the concept of indefinite iterability, and in the order 

types which are produced by various procedures which are 

indefinitely iterable. Arithmetic intuition plays an 

essential part in pur conception and characterisation of 

sets of numbers, e.g., the natural numbers, the rationals, 

and in induction. The other apriori intuition which plays 
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a major role in the foundations of our mathematical know-

ledge I shall call POincart's "geometric" intuition. This 

is encapsulated in the concept of continuity or continuous 

variability. Geometric intuition allows us to understand 

by the real numbers a (classically) continuous domain; in 

addition, it is indispensable in disciplines like "analysis 

situs", or topology, where proofs can require a consideration 

of parameters which are allowed to vary continuously. Arith-

metic intuition, and in particular the synthetic apriori 

status of the principle of induction, is the subject of 

Chapter 3, the next chapter. Geometric intuition will be 

addressed in Chapter 5, the subject of which is POincart,s 

theory of the continuum. 



CHAPTER THREE 

THE ATTACK ON LOGICISM: ARITHMETIC INTUITION 

AND THE PRINCIPLE OF INDUCTION 

(1) Analysis of the Principle of Induction 

(2) The Problem of Induction for the Logicists 

(3) Some Attempts to Avoid the Circle 

(4) The Second Order Principle 

(5) Non-Inductive Arithmetic 

(6) The Synthetic Apriori Nature of Arithmetic Intuition 



According to Poincar{, the concept of indefinite 

i t era b iIi t Y is g i ve n by a s y nth e tic apr i 0 r i ,. a r i t h met i c" 

intuition which underlies all mathematical activity. On 

this view, the principle of induction is not an analytic 

consequence of the number-concepts, for the definitions 

of number require induction. Induction is a synthetic 

apriori principle because it is true of any domain which 

is a pure instantiation of the synth~tic apriori iterative 

concept. It is important to note that Poincar~ seems to 

equate the natural numbers, the principle of induction, 

and the concept of indefinite iterability. Though he 

does not regard them as equivalent, he asserts that they 

are of equal logical status - no one is logically prior, 

or more basic, than any other. They are each an apriori 

manifestation of arithmetic intuition. The concept of 

indefinite iterability is an apriori form of understanding 

which expresses arithmetic intuition; the natural numbers 

are an apriori pure instantiation of the apriori iterative 

concept; and the principle of induction is known to be 

true of the natural numbers directly, via arithmetic 

intuition. The subject of this chapter will be to examine 

and assess Poincar~'s theory of apriori arithmetic 

intuition. 
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(1) Analysis of the Principle of Induction 

Before Poincar~'s time, induction was not a logical 

tool; although it has been employed by logicians since 

the development of modern logic after Aristotle. Rather, 

induction was essentially "mathematical". And though 

it is now shared with the logicians, it is still a numerical 

principle, for it hinges on the special successive, or 

ordered, character of numbers. The principle of mathe­

matical induction can be taken as a second order axiom 

with the form, 

For Kant this principle would be synthetic because in con­

sidering an element together with its successor, we must 

employ our intuitions concerning succession. And these 

intuitions are not "analytic" because our intuitions 

concerning succession are not present in the concepts of 

number, of P, but are only present in virtue of the apriori 

temporal form via which we understand the concepts. It 

is our apriori intuition of time which allows us to do a 

proof by induction, because in considering an arbitrary 

element, n, as a single object or unit within an indefinite 

collection of successive units, we are considering the 

temporal attributes of objects. Because we are considering 

an instantiation of the nu~ber concept - albeit an 

arbitrary instantiation - we must consider n as an object, 

and hence, as an object in time. And thus we are employing 



51 

the apriori rules of synthesis of perception, of the 

imagination, and of understanding. 

Just as for Kant, for Poincare, too, induction is syn-

thetic. However, it is not in virtue of temporal intuition 

that induction is synthetic. Rather, the principle of 

induction is a synthetic apriori principle because it is 

knowable only by virtue of our apriori arithmetic intuition. 

The principle is a direct consequence of our iterative 

concept. The important point is not that we must consider 

the arbitrary n as an object in time. Rather, Poincar{ 

replaces the continuity of time or the temporal intuition 

with the more minimal concept of iteration. Thus, induction 

is synthetic because we must consider the arbitrary n as 

an iterative object, in an indefinite series of objects, 

the series being defined by an iterative rule of construc-

tion. Hence, the significance of induction lies in our 

special ability to consider nand n+l (or nand Sen)) as 

pure instantiations of the iterative concept. 

The conditional in the premise of induction,.V'n (P(n)"-7P(n+l)), 

is a condition by which we are assured that 

the property, P, is instantiated in an iterative model. 

If R is an iterative generating rule, then it defines 

one element in terms of its predecessor. So that if on 

the assumption of P (0{ ) - where of is the result of applying 

R an arbitrary number of times - we can show P ( R (c() ) , 

or P(o(') , then we {(now P is true of all the elements 
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generated by R. We know this because 0( was only an 

arbitrary instance in the iteration of R. Thus, if P is 

true of any element generated by R; and if we can show 

the conditional pea() 4 P(R(o(» to be true; then we 

know P to be true of all iterations of R. 

Essential to the proof of the conditional \:in (P(n)";P(n+l», 

is the arbitrariness of the n. If the proof of Pen) -t P(n+l) 

relied upon a particular property of n, then the inference 

via universal generalisation to '-<In (P (n) ~ P(n+l» would 

fail. It is via our arithmetic intuition that we are 

able to consider an arbitrary instance of an iteration, 

and thus that we know the principle of induction to be true. 

Via the principle of induction we make the leap from 

P(O), P(S(O», P(S(S(O»), ... , p(Sn(O», 

to 

"r:} nP(n) 

(where n, or Sn(o), is the result 'of applying therula SJstart­

ing with 0) n times), and we can see that these two 

expressions are equivalent. We can see this, argues Poincare', 

because induction, or pure arithmetic intuition, enables us 

to take the dots in the first expression seriously - in a 

non-metaphorical way - when the rule, 5, is iterative. 
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(2) The Problem of Induction for the Logicists 

The aim of logicism was to disprove Kant's thesis 

that mathematics has a content which is determined by 

our apriori intuitions of space and time. The method of 

showing this was to argue that all true mathematical 

statements could be proved via logic alone, without de-

pending on any "extra logical" intuitions. At the time 

of the birth of the modern logicist programmes, i.e., for 

Frege, Russell, Whitehead, the principle of induction 

was not regarded as a logical principle. Thus in order 

to prove any significant mathematical results it was 

necessary first to prove that induction is true. The 

logicists needed to show that the principle of induction 

can be derived as a theorem of a suitably extended logic 

once the primitives zero, natural number, and immediate 

predecessor have been defined, together with an equivalent 

of Frege's axiom 5, the axiom of comprehension. Induction 

would then be a logical consequence of the logistic 

definition of number; i.e., that numbers are inductive, 

would be (for most logicists, though not for Russell, 

since he considered even logic to be a synthetic matter*) 

an analytic truth. And if all true mathematical statements 

could be shown, in a similar way, to be analytic too, 

then Kant's thesis that the content of mathematical 

statements concerns space and time would be disproven. 

Their content would not be space and time, because, since 

they are analytic truths, they have no (non-logical) 

content at all. Indeed, it was the stunning achievement 

* Russell, (1903), p.434. 
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of Frege to conceive of such a suitably augmented system, 

and to show how it could be employed to derive induction 

as a theorem of logic. 

The problem with the augmented system, however (in 

addition to the unfortunately too strong, and contradictory, 

nature of Frege's axiom 5), is that in order to even set 

up a system which is powerful enough for arithmetic, arith-

metic principles must be invoked. Poincart objects, for 

instance, to considering a typical formulation of the 

Peano Axioms as defining the concept of number by postu-

lates. The logicist must be able to set up some system 

which is roughly equivalent to the Peano axioms. 
. ,/ 

POlncare 

gives the following formulation of the Peano axioms, 

and considers their efficacy in defining the concept of 

natural number. 

1. Zero is a whole number. 

2. Zero is not the successor of any whole number. 

3. The successor of a whole number is another whole number; 
to which it would be convenient to add: each whole 
number has a successor. 

4. Two whole numbers are equal if their successors are 
equal. 

5. If s is a class which contains 0, and which, if it 
contains the whole number x, then it contains the 
successor of ~, then it contains all the whole numbers. 

1 
This fifth axiom is the principle of complete induction. 

1 Poincare: (1905b), p. 833. 
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However, because of the iterative nature of the axioms, 

they cannot be proved consistent without induction. But 

since induction is one of the axioms, any consistency 

proof would be circular. Iterative or recursive defin-

itions specify one entity in terms of the previous 

construction (or iteration). In addition, there is usually 

no reason to stop the constructing process. The domain 

thus generated by an iterative rule is, in general, 

indefinite or potentially infinite. So we cannot directly 

verify that the axioms are consistent, i.e., provide a 

finite model of the axioms, for they imply an infinite 

number of arithmetical propositions. 

Showing a definition or domain is consistent involves 

one of two approaches. Either we show it has a model 

in the system - an instance in which it is true; or, 

we prove that no contradiction follows from any propositions 

implied by the definition together with the totality of 

propositions of the system to which the definition is 

being added. When a structure is finite one can always 

(at least in principle) check or verify that each case 

of a definition is consistent with the previous structure. 

However, this is trivial and is not the situation here. 

In particular, one cannot verify (by checking instances) 

that an inductive domain is consistent, for the axiom 

of induction (5)" concerns any class of natural numbers, 

an d the _ colI e c't ion 0 fall s u c h cIa sse sis in fin i t e . 
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Hence, the difficulty with arithmetical induction is 

that it is, in a sense, "doubly" infinite. First, the range 

of the implicit class quantifier in 5 is infinite. Indeed, 

from a purely Platonistic, or extensional set-theoretic, 

point of view it is uncountably infinite, for its range is: 

all the subsets of the natural numbers, i.e., the Power set 

of IN. Because the possible instantiations of induction are 

not finite, we cannot verify by checking each possible case 

of induction (each possible property of natural numbers) 

to ensure its consistency. However, the other method of 

proving the consistency of a set of postulates - exhibiting 

a model - is also not available to us. For second, in 

addition to the infinity of the class-variable, the ~-variable, 

too, has an infinite range of possible arguments. Given 

a specific class, ~, the range of ~ is infinite. Hence, 

no model of the axioms is finite. 

The demonstration cannot be made by example. 
We cannot select a portion of the whole numbers 
- for instance, the three first - and demonstrate 
that they satisfy the definition. 

If I take the series 0, 1, 2, I can readily see 
that it satisfies axioms I, II, IV and V; but 
in order that it should satisfy axiom III, it 
is further necessary that 3 should be a whole 
number, and consequently that the series 0, 1, 
2, 3 should satisfy the axioms. We could 
verify that it satisfies axioms I, II, IV and V, 
but axiom III requires besides that 4 should 
be a whole number, and that the series 0, 1, 
2, 3, 4 should satisfy the axioms, and so on 
indefini tely. 

It is therefore, impossible to demonstrate the 
axioms for some whole numbers without demonstrat­
ing them for all.... 2 

2 Poincar~, (1905b), p.833; 
/ 

quoted from Poincare (1908), pp.165-166. 
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We cannot show the consistency of a definition of which 

an induction axiom, or an iterative constructing rule, 

is a part, when the domain concerned is infinite, without 

presupposing the truth of some principle equivalent to 

the principle of induction. We cannot show directly, in 

a finite model, that an instance of the Peano axioms is 

consistent; for with each finite sample, (0,1, 2), we 

are "bundled along" by the recursive character of axiom 

III to a larger sample, (0, 1, 2, 3). Hence, the recursive 

character of the axioms, coupled with the fact that there 

is no reason to ~ the iteration at a particular, finite 

n, produces a domain which is inaccessible to a formal 

consistency proof which excludes an inductive principle. 

Poincar~'s argument is not merely to object to the 

lack of a non-circular consistency proof for the logistic 

structure; nor is it trivialised by GBdel's incomplete­

ness results (which came after Poincar~'s death). He 

has a deeper point to offer, concerning the procedure, 

in general, of setting up any formal system. First, the 

logicists wanted to set up a system adequate for arithmetic; 

so the system had to have the capacity for expressing and 

implying an infinite number of arithmetical statements. 

Thus the characterisation, of what an arithmetic formula 

is, 0 f w hat a n LJ ,n b e r is, etc., had to b ere cur s i v e . But 

then a prior understanding of the principle of induction 

is required, not merely in setting up the formal system, 

but in understanding why, for instance, Frege's derivation 
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constitutes a proof of the fifth Peano axiom. 

is thus caught in a circle. 

The circle is even more serious, however. 

The logicist 

It is not 

merely that in order to set up a system adequate for 

arithmetic - for statements about an infinite domain of 

objects, the numbers - one requires a prior understanding 

of induction. In addition, any non-trivial formal system 

at all requires an inductive intuition for its character-

isation. In order to be able to understand the recursive 

definition of a well-formed formula, of something as 

simple and basic as this, an inductive or arithmetic 

intuition must be presupposed. Thus, Poincar~'s point is 

not a mere technical one, but a very bold philosophical 

claim: induction is epistemologically prior even to logic. 

Induction is necessary, not only for understanding formal 

systems, but also for understanding logical structure in 

general. The logistic arithmetic formal system - astonish­

ing achievement that it is - cannot be regarded as 

exhibiting the analytic or logical character of our 

knowledge of induction; because understanding logic 

itself - understanding the logical methods used to derive 

the system - presupposes a prior understanding of the 

principle of induction. 

(3) Some Attempts to Avoid the Circle 

One may indeed q~estion the importance of epistemological 

~riority, or the necessity of consistency proofs. The 
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logicist, however, has no choice, since his project is 

to preserve the degree of certainty found in logic. All 

definitions must then be formal, and may presuppose the 

existence of no extra-logical intuitions or knowledge. 

And these definitions require a consistency proof, this 

being no trivial requirement. Definitions and postulates 

are not free. There is no way to ensure the acceptability 

of a definition other than by proving that it is a conserva-

tive extension of the system, i.e., is consistent. The 

problem with a definition which involves (or is strong 

enough to imply) induction, is that we cannot justify it 

(show we understand it) without using inductive means. 

So unless we have a prior grasp of the principle of 

induction and its consistency, such a proof establishes 

nothing. 

Poincar~ attacks logicism by exploiting this fact. 

Although his real quarrel is epistemological in nature, 

he argues for his position via a formal point concerning 

consistency proofs, or logical priority. (He had to do 

it this way because, whereas for him logic and epistemology 

are inseparable, for the logicist the true logical nature 

of grounding relations in a theory are independent of the 

epistemological question of the order in which we come 

to know aspects of a theory. Epistemological points would 

have been glossed over by the logicist; 
/ 

Poincare saw that 

the only access for making his point, then, was in terms 

of a formal point, on the logicist's own ground.) The 
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logicist project was not to assume the existence of any 

facts outside of logic: to define all arithmetic concepts 

and relations in terms of logical concepts and relations 

alone; and, in addition, to prove all the postulates of 

arithmetic as theorems of the augmented logic. Thus, when 

proving things about the new system - that its definitions 

are acceptable, consistent - the logicist can use only 

previously accepted logical principles and rules. 

If showing the consistency of a new definition involves 

a non-logical principle, then it seems very dubious to 

consider such a new definition as presupposing only logical 

concepts. So that, in particular, if the intent of the logicist 

is to define the arithmetic concepts, metatheoretic proofs 

about the definitions can only be relative to a system 

which does not presuppose the arithmetic principles and 

concepts. One cannot employ, in the justification of a 

structure in question, one of the principles newly defined 

in the structure. Otherwise, the justification is circular 

and no fact has logical priority. The logicist's circle 

lies in the fact that he cannot use induction until the 

property of being a natural number is justified; but he 

cannot justify this property without using induction. 

The logicist may here attempt to avoid the circle in 

another way. He may concede that any consistency proof 

for the arithmetic concepts requires the principle of 

induction; but he ~ight claim that the metatheoretic 

principle is not the same as the object-theory principle; 
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and hence that the circularity is only apparent. No 

doubt the structure of the two principles is similar, but 

the subject matter in each is distinct. 

Neither Poincar6 nor Russell made a consistent employment 

of the use/mention distinction, which could perhaps be 

cited to argue that there are two different principles at 

work here: one (mathematical induction) concerns objects, 

and the other (metatheoretic induction) concerns propositions 

about the objects. However, this would only be fruitful 

for the logicist if he maintained that the second employment 

of induction, in the metatheory, is a logical principle. 

To use a metatheoretic version of a principle implies that 

the principle is acceptable on independent grounds - grounds 

which are independent of the particular project for which 

it is being invoked. So, for instance, the use of a 

metatheoretic Modus Ponendo Ponens (MPP) type of rule in 

the proof of the soundness of a logic which includes MPP 

as a rule in the object language, is circular, but accept­

able. For the soundness proof is not intended to be a 

suasive argument for accepting the MPP rule. So long as 

we are not calling the validity of MPP reasoning into 

question, the circularity is thought to be acceptable (and 

exists in all Tarski-type semantics); for the justification 

is directed not towards a single use of MPP, which we 

have accepted on independent linguistic grounds, but 

more towards investigating the soundness of indefinite 

iterations, or the arbitrary use, of MPP. 
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The contrast with MPP is that the subject of the 

principle of induction is indefinite iterations and 

arbitrary instances. This is why Poincart obj~cts that 

using induction in a meta theoretic proof of a formal 

system in which arithmetic induction is proved is non-

acceptably circular: because he feels the principles are 

really the same. No doubt there is a difference in the 

overt subject matter of the two uses; but, for POincare', 

they are merely two different applications of the same 

principle. 

The possible applications of the principle 
of induction are innumerable. Take, for 
instance, one ... in which it is sought to 
establish that a collection of axioms cannot 
lead to a contradiction ... 

When we have completed the nth syllogism, we 
see that we can form still another, which will 
be the (n+l)th: thus the number n serves for 
counting-a series of successive operations; 
it is a number that can be obtained by 
successi ve addi tions ... Thus, then, the 
way we have been brought to consider this 
number n involves a definition of the finite 
whole number. . . . 3 

Induction is a numerical principle, and any application 

of it involves reference to counting, or to the successive 

ordering of objects so that they can be, in effect, counted. 

No matter what the subject matter - whether we count 

numbers or propositions - the domain must be iterative, 

orderable, so that it possesses numerical properties. 

3 Poincar~, (1906a), pp.172-173. 
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And induction always refers to the numerical properties 

of the subject matter - in metatheoretic proofs, for example, 

to the number of steps in an arbitrary proof; or to the 

degree of complexity of an arbitrary wff and its successor 

(the next most complex iteration of a formation rule) - in 

conjunction with the properties which the objects have in 

virtue of their overt subject matter (in virtue of properties 

which the objects have ~ steps in a proof, or ~ well-

form ed - form u 1 a e) . Induction on the number of steps in a 

proof depends upon our being able to consider an arbitrary 

step of a proof - and thus u.pOf\our being able to consider 

the steps of a proof in an ordered, successive way. And 

induction on the degree of complexity of a wff depends upon 

our being able to define "degree" in a successive numerical 

way. The principles are epistemologically equivalent. 

So, for instance, when we do an induction on the com­

plexity of a wff, we can assert no more than that we have 

good arithmetical reasons for supposing that: if after n 

steps no contradiction has occurred; and if, by following 

the procedures as specified, we can prove that after n+l 

steps no contradiction will ensue; then, by induction on 

the complexity, or number of logical constants in the wffs, 

we can infer that the collection of all wffs which are 

constructed in accordance with the procedures specified, 

will be consistent. 

An understanding gf recursion schemas is necessary for 

the building of any infinite formal system. Thus, an 
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understanding of some form of the principle of induction 

is likewise necessary, if we are to understand ~ the 

definition schemas that they determine an infinite domain. 

It is in this sense that the circle is unavoidable for the 

logicist: an arithmetic principle, the principle of in­

duction, is prior even to logic, for it is necessary for 

understanding the logical methods employed in setting up 

and deriving truths about an infinite structure. 

(4) The Second Order Principle 

Let us consider the thesis of the circularity inherent 

in any definition of the numbers from another standpoint. 

Presumably what the logicist really needs is the second 

order principle of induction, 

'\J pl.P(o) & \ix(P(x) -7 P(x+l)) ~ Vx P(x)], 

as a theorem of logic. The reason he needs this is that 

his thesis is that arithmetic truth as we know it is really 

logical truth. And thus, he will want his system to denote 

the standard interpretation of arithmetic. That is, his 

system ought to exclude the non-standard, i.e., the non-

arithmetic, interpretations. Since the first order principle 

seems to admit too many interpretations, the logicist re­

quires the second order principle in order to capture all 

and ~ arithmetic truths. 

However, asserting the second order principle means, 

for the logicist, that some conception of an arbitrary 
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property of the natural numbers must be obtainable from 

logic alone. 
\'\~1 /I 

In other words, because the vP ranges over 

all possible properties of the natural numbers, the 

logicist must find, on purely logical grounds, a character-

isation of an arbitrary subset of an infinite set. Perhaps 

it is possible to extend the notion of logic so as to 

include quantification over properties as well as objects. 4 

However, such an extension is generally taken to imply an 

extension of the notion of logic into the transfinite: 

into the theory of types and order, or set theory. And 

while this may be possible, and even reasonable on certain 

grounds, there is an unavoidable circularity in so doing. 

We will have used logic to fix the concept of an arbitrary 

subset, but we will have, in essence, used set theory to 

"correct" or extend 10gic. 5 The comprehension principle 

might, as Frege thought, be a logical principle, but alas 

it is a logical falsehood. 

4 See Wright, (1983), especially Section xvii (Chapter 4), for 
arguments in favour of such an extension. 

5 Scott, (1985), pp.vii-viii, makes a parallel point in the 
following quote, where he is discussing the intuitive arguments 
for the set theoretic axioms: 

When we come to the Axiom of Choice, we begin to waver: 
it might be argued that it is implicit in the concept 
of the totally arbitrary set. On the other hand, there 
could be other notions of what it means to determine 
a set for which it would fail; thus, the act of 
assuming it is indeed axiomatic: it is 'self-evident' 
but not just a matter of logic. But then, perhaps it 
is a matter of logic after all, because the finite 
version is provable. In other words, first order logic 
is strong enough for some conclusions, but it is in 
general too weak: we ought perhaps to allow 'infinitary' 
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As Poincar~ well knew, the problem is one of the 

characterisation of the class of well-founded properties 

(or extensions). But such a characterisation must be 

drawn from elsewhere (other than "logiC"), if the circul-

arity is to be avoided. For Poincar~, the source is the 

form of intuition - well-founded, set-theoretic properties 

must have a content which is instantiable in arithmetic 

intuition - and the status of our knowledge is synthetic 

apriori. 

(5) Non-Inductive Arithmetic 

Poincar~ wishes to do more than point out the circle 

in the various forms of logicism. He has a positive 

thesis as well. For him, induction is true of the world 

because the principle of induction is true, and not just 

true in a model. We have no choice but to consider the 

numbers as inductive, because the principle of induction 

cannot coherently be rejected. 

6 

Let us next try to get rid of this (the 
principle of induction], and while rejecting 
this proposition let us construct a false 
arithmetic analogous to non-Euclidean geometry. 
We shall not be able to do it. 6 

inferences also. And at this point we begin to 
wonder what is meant by logic. It would seem rather 
circular if in making set theory preCise, we had to 
use set theory in orrler to make logic precise. 

" -Poincare, (1891), p.49. 
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However, this is simply false. We can do it. Peano 

Axioms (PA) 1 through 4 do not entail 5, the principle of 

induction; so by the completeness theorem there exist 

models of formal systems which satisfy PA 1 through 4 plus 

some form of the negation of axiom 5. So Poincar~ was 

wrong: there is a parallel between axiomatic (Euclidean) 

geometry and Peano arithmetic. The parallel postulate being 

independent of Euclid's other axioms, we can construct 

non-Euclidean geometries; and the induction postulate 

being independent of Peano's other axioms for arithmetic, 

we can construct a consistent non-Peanian (or non-inductive, 

or "false") arithmetic based on some form of the negation 

of induction. 

Geoffrey Hunter 7 points out this formal parallel in an 

argument to vindicate Kant's view of the synthetic apriori 

character of Euclidean geometry. Since, he argues, altern-

ative arithmetics are conceptually absurd, it is coherent 

for Kant to have maintained that non-Euclidean geometrics 

are, likewise, conceptually absurd or impossible, because 

mere consistency obviously does not prove "real possibility". 

However, the parallel Hunter points out may be employed 

to argue the opposite thesis. That is, since alternative 

geometrics are a real possibility, the formal parallel 

between Peano arithmetic and Euclidean geometry is evidence 

7 Hunter, (1980). 



68 

for the real possibility of alternative (non-Peanian, 

non-inductive) arithmetics. The question turns on just 

what is meant by "real possibili ty". For both Kant and 

Poincar~, mere consistency is not equivalent to real 

possibility, as Hunter emphasises. For Poincar:, however, 

the analogy between arithmetic and geometry breaks down 

at precisely this point. 

The breakdown in the analogy between arithmetic and 

geometry can even be shown formally. Whereas the con-

sistency proofs for non-Euclidean geometries occur in 

arithmetic strictly independent of anyone particular 

geometry, we must use arithmetic in the consistency proof 

for arithmetic, standard or non-standard. That is, in-

duction must be assumed elsewhere in our formal theories, 

in order to show that the negation of induction produces 

a consistent formal structure. Whereas, in contrast, we 

do not employ the parallel postulate in proving that a 

non-Euclidean geometry is consistent. Induction cannot 

be given up in the same way as the parallel postulate 

can be given up; 

formal thinking. 

it is part of the scaffolding of our 

Thus, the analogy between non-inductive 

arithmetics and non-Euclidean geometries is superficial. 

The analogy breaks down informally too. "Real possibil-

ity" means, for Poincar~, that a coherent account of 

experience is possible. Non-Euclidean geometry is really 

possible because a different metric geometry, Riemannian 

say, is a real candidate for the interpretation of our 
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experience. A non-Euclidean world might be different 

from our world, but there is nothing in the nature of 

coherent experience which rules out the possibility of ex­

perience of a non-Euclidean metric character. 8 The reason 

this is so, for Poincar~, is that non-Euclidean geometries -

the different, really possible, metric geometries - are, 

still, continuous: they still accord with apriori geometric 

intuition. And this is why there is nothing in the 

nature of coherent experience which rules them out: 

because they still have a content which is instantiable 

in our apriori form of understanding. 

The contrast with non-standard arithmetics then, lies, 

for Poincar~, in the fact that they are transgressed by 

apriori arithmetic intuition; they do not accord with 

our apriori form of experience. We cannot provide an 

account of experience of a non-inductive arithmetic world, 

because non-inductive arithmetic is ruled out by the nature 

of coherent experience. A non-inductive world is ruled 

out, because it transgresses apriori arithmetic intuition, 

which is one of the (apriori) factors which determine the 

nature of coherent experience. To be sure, non-standard 

arithmetic is consistent; and we can easily construct a 

model which shows this: simply by adding a non-inductive 

8 Helmholtz originally,argues this point. See, especially, "On the 
Origin and Significance of the Axioms of Geometry", (1870), and 
"On the Facts Underlying Geometry", (1868). 
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(non-successive) number to the set ~ , of natural numbers. 

However, since mere consistency does not prove "real 

possibility", Poincare' can maintain that while arithmetic 

and geometry are parallel with respect to the formal 

consistency of their non-standard theories, the parallel 

does not extend to the real possibility of their non-

standard theories. And the reason this lS so is also the 

reason why, for him, metric geometry is not a synthetic 

apriori matter: because no one, particular metric geometry 

is fixed by our apriori geometric intuition (of continuity). 

Whereas, in contrast, apriori arithmetic intuition forces 

or imposes the standard (inductive) interpretation of 

arithmetic, thereby ruling out the possibility of a 

coherent "non-inductive" (mathematical) experience. 

(6) The Synthetic Apriori Nature of Arithmetic Intuition 

F P · ~ or olncare, a synthetic apriori arithmetic intuition 

must exist; otherwise, we have no access to the cluster 

of concepts: indefinite iteration, (potential) infinity, 

"and so on", "etc.", the principle of induction. The 

world does not provide us with an indefinite iteration; 

indeed the world falsifies the actual (aposteriori) in-

stantiation of the concept: . d' 9 l.e., we leo So we do not 

9 See POincare', (1893)., p .22; see also the discussion on the 
apriori nature of the concept of continuity in Chapter 5. 
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acquire the concept of indefinite iteration by ostension, 

for, being finite, we cannot perceive an indefinite 

iteration. 

Further, we cannot formally exhibit the concept, either. 

Any formal explication of a concept which denotes an 

iterative process, will necessarily involve a procedure 

which is itself iterative. That is, in order to understand 

the explication in the appropriate, "intended" way, we 

must already possess the concept which is being explicated. 

The idea of infinite divisibility or dense­
ness is not capturable by a formula or 
sentence, but only by an intuitive procedure 
that is itself dense in the appropriate 
respect. 10 

An intuitive understanding of indefinite iteration is 

necessary for the intended interpretation of quantified 

formulae, such as """;x:3 y ... ". That is, a prior intuitive 

understanding of the numbers is necessary for the proper 

interpretation of the logical formulae, in quantified logic, 

and by which the logicist defines the numbers. It is in 

this sense that our arithmetical understanding is prior 

to, and indeed, foundational for, our understanding of 

quantified logic - and hence for any definitions which 

involve such quantifiers, as well as for metatheoretical 

proofs. We cannot acquire the relevant concepts (indefinite 

10 Friedman, (1985), p.469. 
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iteration, succession, etc.); 

for experience as we know it. 

and yet they are necessary 

Hence, the very possibility of the natural numbers -

the very existence of the concept of Ifindefinitely" which 

is inherent in the notions of "+1", of "and so on", of 

" ••• " - shows that such an understanding must be apriori. 

This understanding is not what is extracted from our concepts 

(of "+1" etc.). That "there is no reason for stopping" 

is not part of the concept of the successor function. 

Rather, understanding by certain collecting rules that 

they determine infinite sets is something we put into our 

concepts. It is a fact about us, and hence, it is a fact 

which conditions what we count as understanding certain 

rules. The "true" understanding comes from the form of 

our "pictures" - that which shapes our concepts, and to 

which our concepts necessarily conform by an "active 

synthesis" (in Kantian language) of the mind. That is, 

that such an understanding of certain rules is the true 

or proper one, is a fact about our interpretation of 

concepts, and not about the content of the concepts them­

selves. 

And it is in this way, moreover, that induction -

though true of the numbers - is not part of the number-

concept; and thus, is not analytic. Rather, that numbers 

are inductive is our most natural interpretation - indeed, 

the ~ "true" in,terpretation - of the concept of number, 

because the numbers and the principle of induction are 
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both a pure manifestation of apriori arithmetic intuition. 

Knowledge of induction is apriori, because it 

is only the affirmation of the power 
of the mind which knows it can conceive of 
the indefinite repetition of the same act 
when the act is once possible. The mind 
has a direct intuition of this power, and 
experiment can only be for it an opportunity 
of using it, and thereby becoming conscious 
of it. 11 

And i tis be c a use 0 u r ( ., m 0 s t nat u r a 1") in t e r pre tat ion 0 f 

many other concepts and theories is a consequence of the 

same form of experience as that which imposes induction, 

that rejecting arithmetic induction is not a coherent 

possibility, with respect to an indefinite portion of our 

scientific and linguistic (or logical) practice. Because 

arithmetic intuition is a form of experience, it has 

consequences in domains which are not strictly mathematical. 

The principle of induction is thus a necessary aspect of 

the numbers, for induction expresses the apriori form of 

experience in general, via which we determine what is to 

count as a coherent experience, of which the standard 

arithmetic numbers are a pure model. 

11 Poincare', (1894.a), p-.13. 
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Poincare is often called a "pre-intuitionist" or 

a "semi-intuitionist" in virtue of the fact that he con-

tributed to the foundations of the school of thought 

called "Intuitionism". He certainly wielded a very strong 

theory of intuitions in his arguments against both the 

logicist and the Platonistic aspects of set theory. And 

yet, at times, he advocated non-constructive methods, even 

on undecidable domains, a practice which the intuitionist 

would, in general, reject: hence he is only "semi"-

intuitionistic. My aim in this chapter is to show, via 

an exploration of his use of the term "intuition", how 

. ;' 
POlncare's theory of intuitions is a very strong expression 

of the extent to which he was influenced by Kant, and the 

extent to which his philosophical writings were largely 

devoted to defending Kant's thesis of the synthetic apriori 

character of mathematics against the new challenges of 

logicism and set theory. I begin with an examination of 

Poincar~'s conception of logic. 

(1) Poincart's Conception of Logic: is it a Mere Mis-

conception? 

One could use v~rious remarks Poincar{ made about the 

nature of logic to argue that his conception of logic is 
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a misconception, and thus that his arguments against 

logicism ought to be dismissed. For the same reason that 

Russell dismisses Kant's theory concerning the spatio-

temporal foundation of mathematical knowledge - i.e., due 

to his ignorance of modern logic l - POincar€'s theory can 

likewise be dismissed. The four following remarks are 

arguably simply four mistakes. First, Poincar{ claims 

that the success of logicism would entail the emptiness of 

mathematics. 

The very possibility of mathematical science 
seems an insoluble contradiction... If ... 
all the propositions which it enunciates may 
be derived in order by the rules of formal 
logic, how is it that mathematics is not 
reduced to a giant tautology? 2 

Second, even if the logicist admitted that he needed 

some axioms or first principles, this still trivialises 

mathematics; for given the axioms, 

it seems that a sufficiently powerful mind 
could with a single glance perceive all 
its truths. 3 

Third, his idea of what logic is, would exclude from logic 

a certain type of definition which is a necessary part of 

mathematics. For Poi n car t, de fin i n g If b Y r e c ur r e n c e If is 

peculiarly non-logical in character. 

1 Russell, (1903), p.4. 

2 

3 

P
· , Olncare, 

P · / olncare, 

(1894), p.l. 

(1894), p.3. 
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It is of a particular nature which dis­
tinguishes it even at this stage from 
the purely logical definition; the equality 
LX + a = (x + (a - 1) + 1) J, in fa c t, 
contains an infinite number of definitions, 
each having only one meaning when we know 
the meaning of its predecessor. 4 

/ 
Fourth, and last, Poincare seems to think that since the 

theorems of a formal mathematical theory form a recursively 

enumerable set, mathematics would thereby be trivialised 

by a strict formalisation in the logiCist spirit. 

What strikes us first of all in the new 
mathematics is its purely formal character 
... in order to demonstrate a theorem, it 
is not necessary or even useful to know 
what it means ... we might imagine a 
machine where we should put in axioms at 
one end and take out theorems at the 
other ... It is no more necessary for 
the mathematician than it is for these 
machines to know what he is doing. 5 

Let us consider the third point, about the "recursive" 

character of mathematical definitions, first. The logicist 

may object to Poincar~'s remarks, that disallowing recursive 

definitions from logic would be to beg the guestion against 

logicism. There is nothing contrary to "logic" in such 

definitions; and the fact that Poincar~ assumed that these 

specifications "transgress" the boundaries of "logic 

proper",just reveals how limited his account of logic was. 

The second and the fourth remarks go together. They each 

seem to involve the mistaken view that logic is trivial. 

/ 
4 Poincare, (1894), p.7. 

/ 
5 Poincare, (1905b), p.147. 
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P · / . olncare lS often saddled with the following argument: 

logic is decidable; if mathematics is reducible to logic, 

then mathematics would be decidable; but mathematics is 

not decidable; hence, mathematics is not reducible to 

logic. This is a correct form of argument, but the first 

premise is false, for as is well known, even first-order 

logic is not decidable. However, this is certainly not 
/ 

Poincare's argument. He never mentions "decidability" -

his comments concern the mechanical nature of deduction. 

What he is really objecting to is much deeper and more 

global than a mere objection to logicism, that the essence 

of mathematics is the systematic deduction of consequences 

of postulates. It is essentially a matter of emphasis. 

Poincar~ is interested in ~ some postulates are accepted 

and not others. What concerns him again and again is 

mathematical insight, creative mathematics, and not 

simply the generation of results on the basis of postulates. 

/ 
This is central to Poincare's thought and should not be 

lost sight of. 

Finally, regarding the first point, if logicism (i.e., 

Frege's logicism) had been successful, then mathematics 

would, in a sense, be empty, for there would be no synthetic, 

no "extralogical", content in our mathematical statements. 

Theorems would be analytic truths because they would be 

provable via logic plus stipulated conventions alone. 6 

6 This is the classic form of logicism, so pellucidly presented by 
C.G. Hempel in his famous paper, "On the Nature of Mathematical 
Truth"; Hempel, (1945). 
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However, it is extremely important to note that the 

"emptiness" of the logicist reconstruction of mathematics 

of course depends upon one's theory of the relation between 

logic and the analytic/synthetic distinction. Now, the 

Russellian thesis of logicism began with a theory of the 

syntheticity of symbolic logic - so the success of his 

programme would not have indicated the analytic character 

of mathematical truth. Rather, surprisingly, it would have 

indicated its synthetic apriori character. 7 

Regardless of such labels, however, Russell believed 

he had refuted Kant's thesis concerning the spatio-temporal 

character of the foundation of mathematical knowledge. 

The proof that all pure mathematics, 
including geometry, is nothing but 
formal logic, is a fatal blow to the 
Kantian philosophy ... The whole 
doctrine of apriori intuitions, by 
which Kant explained the possibility of 
pure mathematics, is wholly inapplicable 
to mathematics in its present form. 8 

And in Chapter 1 of The Principles of Mathematics, Russell 

makes clear that one of the aims of his book is a refut-

ation of Kant. 

There was, until very lately, a special 
difficulty in the principles of mathematics. 
It seemed plain that mathematics consisted 

7 "Kant. .. rightly perceived tha t [the propositions] of rna thematics 
are synthetic. It has since appeared that logic is just as synthetic 
as all other kinds of truth; but this is a purely philosophical 
question, which I shall here pass by." (Russell, (1903), see p.434 ). 

8 Russell, (1901), p.96. 
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of deductions, and yet the orthodox 
accounts of deduction were largely or 
wholly inapplicable to (insufficient for] 
existing mathematics ... In this fact 
lay the strength of the Kantian view, 
which asserted that mathematical reasoning 
is not strictly formal, but always uses 
int~itions, i.e., the apriori knowledge of 
space and ti~ Thanks to the progress of 
Symbolic Logic, especially as treated by 
Professor Peano, this part of the Kantian 
philosophy is now capable of a final and 
irrevocable refutation ... The fact that 
all Mathematics is Symbolic Logic is one 
of the greatest discoveries of our age .•. 9 

Now we may pose the following question: is it right to 

dismiss Poincar~'s arguments against logicism for the 

same reason that Russell dismisses Kant's arguments against 

Leibniz r i.e., on the basis of his (Kant's) ignorance of 

modern logic? 

(2) Russell's Logicism Does Not Refute Kant 

Actually, Russell never refuted Kant. It was his view 

that the truths of mathematics are nothing over and above 

the truths of symbolic logic. Mathematical truth - just 

like logical truth - is not mind-dependent; it does not 

concern our knowledge of space and time; 

10 true. 

it is simply 

Throughout logic and mathematics, the 
existence of the human or any other mind 
is totally irrelevant; ... the subject 

9 Russell, (1903), Section 4. 

10 Hylton, (1986), p.9. 



80 

matter of logic .•. would be equally 
true if there were no mental processes. 
It is true that, in that case, we should 
not know logic; but our knowledge must 
not be confounded with the truth we know 
... a truth and the knowledge of it are 
as distinct as an apple and the eating 
of it. 11 

Russell rejects epistemological issues as irrelevant. 

He takes the truths of logic - though perhaps "synthetic" -

as independent of space and time. Thus, showing mathem-

atics to be reducible to logic would be to show that 

mathematics, too, is independent of space and time, thus 

refuting Kant. 

The enrichment of logic which is necessary in order 

to obtain mathematics is a logic which is as powerful 

as set theory. For Russell this is the system of Principia 

Mathematica (PM). This augmented system, however, re-

quires an axiom of infinity and principles which are at 

least as powerful as the set-theoretic power set axiom 

and the axiom of choice. Thus, Russell's argument must 

be that these axioms are truths which are independent of 

our knowledge of space and time in order to be justified 

in considering them as part of logic. So the issue now 

hinges on how far these additional postulates can be 

regarded as independent of space and time. 

11 Russell, (1904),' p .259. 
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Let us take, for example, the axiom of infinity. 

Kant argues in the antinomies that certain concepts lead 

to contradictions, and one of these is the concept of a 

completed infinity (the famous first antinomy). Russell's 

argument against Kant's first antinomy consists in noting 

that (though) an 

enumeration of an infinite series is 
practically impossible. But the series 
may be none the less perfectly definable, 
as the class of terms having a specified 
relation to a specified term. It then 
remains a question, as with all classes, 
whether the class is finite or infinite; 
and in the latter alternative, as we saw 
in Part V, that there is nothing self­
contradictory. 12 

Russell construes Kant as asserting the self-contradictory 

nature of the concept of a completed infinity. This is, 

however, a misconstrual. Kant explicitly admits that the 

concept of a completed or actual infinity is consistent 

(is possible in the intellect). What he denies is that 

the completability of the infinite is anything like a 

logical principle. For it to be a logical principle, it 

would at least have to be true of our world that it 

contained a completed infinity. But for Kant this is 

precisely what is untrue; for the notion of a completed 

infinity results in a contradiction when it is applied 

to the totality of our experience. 

12 Russell, (1903), p.435. 
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Since unrepresentable and impossible are 
commonly treated as having the same 
meaning, the concepts both of the continuous 
and of the infinite come to be rejected 
by large numbers of people. For indeed, 
according to the laws of intuitive cognition, 
any representation of these concepts is 
absolutely impossible. 13 

However, this is just to say that there is a 

lack of accord between the sensitive faculty 
and the intellectual faculty ... the abstract 
ideas which the mind entertains when they 
have been received from the intellect very 
often cannot be followed up in the concrete 
and converted into intuitions .•. And this 
subjective resistance is, as frequently, no 
true indication of any objective inconsist­
ency ... 14 

The objection to notions like "actual in fini ty" is not 

that they are logically impossible, since there is no 

internal inconsistency in the concept of the actually in-

finite. Rather, Kant's argument is that certain concepts 

cannot hold without contradiction when applied to the 

totality of experience. 

Now, Russell's concern is with logical truth; but 

for Russell, logical truth did not have its modern inter-

pretation of "true in all possible worlds". It carried, 

rather, the sense of simply true. 

13 Kant, (1770), p .48. 

14 Kant, (1770), p.49. 

In particular, then, 
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the axiom of infinity must be a truth about our world, 

i.e., it must be true. So before Russell can claim to 

have "refuted" Kant he must argue that the .axioms of the 

augmented system PM are true. Thus, for example, he 

owes Kant an argument that the notion of a completed 

infinity is satisfiable in our world. But he does not 

supply us with such an argument. His remark concerning 

the "mere medical impossibility" of our completing the 

infinite 15 simply begs the question against Kant. 16 

Now, there do exist arguments concerning the status 

of our knowledge of the infinite which might be employed 

to support Russell. For example, Harold Hodes (1984) 

argues that the concept of infinity is available in logic, 

in modal logic. So that even if our actual world is 

finite, mathematical statements may still be true in some 

richer or bigger world which is accessible to our world. 

There is always a world with more objects in it than 

our world. The truths of statBments about infinite 

domains are, thus, truths of a suitable modal logic; 

and our understanding of such truths is to be explained in 

terms of possible world semantics. And Nicolas Goodman 

15 See Dummett, (1977), pp.59-60. 

16 "It is a most certain empirical fact that the mind is not 
capable of endlessly repeating the same act. Even apart from 
the fact that man is mortal, he is doomed to intervals of 
sleep ... " (Russell, (1904), p.259.) 
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(1984) also argues that truths about infinity are 

available in modal logic, where on his account, the 

accessibility relation is one of "knowability in principle" 

- the totality of true mathematical statements being those 

which are knowable (or provable) by an "ideal mathemat-

ician". Like the extendability in the heuristic of 

richer worlds, the capacities of the ideal mathematician 

are always extendable: he can always perform more acts, 

compute faster, he never sleeps, etc. 

Both of these accounts supply a notion of potential 

infinity. But this is insufficient for Russell's purposes, 

for his theory requires a notion of actual infinity. 

Moreover, while Poincar~ and Kant argue against a belief 

in actual infinity, neither objects to a notion of 

potential infinity as satisfiable in the totality of our 

experience. What they would object to, on the other 

hand, is the assumption that the semantic notions in the 

above, modern accounts - the notions of increasingly 

richer worlds and knowable in principle - are self-

explanatory. It would be their view that in order to 

understand these semantical notions we need to already 

possess a notion of potential infinity. That is, the 

notion of increasingly richer worlds only supplies a 

model for the mathematical concept of potential infinity, 

in virtue of the apriori iterative intuition. For, in 

Poincar6's view, it is only in virtue of this intuition 

that we interpret such iterative concepts in the standard 
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way. But the iterative intuition directly supplies us 

with an unaerstanding of potential infinity. So any 

explication of infinity via modal logic does not provide 

an epistemological source of even potential infinity, 

which can be seen as purely logical in nature, for an 

understanding ~ the required logical conception (the 

box,. "0", plus the heuristics designed to explain this 

s y m b 0 1 ), r e qui res ,~ ext r a log i cal" i n t u i t ion s . 

(3) Intuitions and Poincart,s Theory of "Glossing Over" 

Poincare argues not only against the logical status 

of the existential axioms which are necessary to obtain 

mathematics from logic. He also objects to the status 

of the machinery of the augmented system. That is, he 

agrees to the "arithmetisation" of mathematics insofar 

as this is possible (see Chapter 5, below); but he does 

not agree to the reducibility of arithmetic concepts to logic. 

We must not imagine that merely by revealing that certain 

concepts and methods are reducible to logic, we have 

thereby shown that they are essentially, arid were all 

along, purely logical concepts and purely logical methods. 

Poincar~ points out that mere reducibility to logic 

would not - even if it were successful - reveal the 

epistemological character and epistemological source of 

the so-reduced concepts. 

Even if they Lthe logicists] had been 
entirely successful, would the Kantians 
be finally condemned to silence? ..• 
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Even admitting that it has been 
established ... the philosopher would 
still retain the right to seek the origin 
of these conventions (or postulatesj, 
and to ask why they were judged preferable 
to the contrary conventions. 17 

The source of our understanding of both the concepts, 

reduced and unreduced, and of the methods employed in 

the augmented logicist system lies, according to this 

argument, in the form of intuition. In this section we 

shall explore why Poincar{ holds the view that the epist-

emological source of both logical and mathematical know~ 

ledge is (apriori) spatio-temporal intuition. 

Poincare's theory is a version of Kant's thesis that 

it is a consequence of the kind of qeings that we are -

i.e., finite - that without an active faculty which lays 

down the form of experience, we could not think (in the 

way that we do) or communicate (to the extent that we 

can) . This is the epistemological root of our mathemat-

ical abilities. 

Does the harmony the human intelligence 
thinks it discovers in nature exist out­
side of this intelligence? No, beyond 
doubt a reality completely independent of 
the mind which conceives it, sees or feels 
it, is an impossibility. A world as 
exterior as that, even if it existed, 
would for us be forever inaccessible. 
But what we call objective reality is, 
in the last analysis, what is common to 
many thinking beings, and could be common 

17 Poincare, (1905b), p.148. 
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to all; this common part, we shall see, 
can only be the harmony expressed by 
mathematical laws ... 18 

What is "common to many thinking beings, and could be 

common to all", what is objective, is the harmony establish-

ed by mathematical laws and relations, because these stem 

only from our apriori form of perception. Mathematical 

knowledge is "common to many thinking beings", but not 

to all, because only some thinking beings employ the apriori 

form of perception to this extent. And mathematical know-

ledge "could be common to all" thinking beings, because 

all thinking beings have the potential to do mathematics. 

Hence, it seems that Poincar6 must say that the apriori 

form of perception which enables us to do mathematics is 

a necessary aspect - a defining condition - of any finite 

thinking being. (I insert "finite" here to distinguish 

"thinking being" from a god-like being with infinite 

powers of surveillance, concentration, etc., which is 

obviously not Poincar~'s interest.) 

Let us explore this notion further. 

is a consequence of the fact that we require an apriori 

synthesising faculty to make sense of perceptual experience, 

that we can do mathematics. And thus "our need of thinking 

in images,,19 is common to both our thinking about empirical 

objects and our thinking about mathematical objects. In 

18 

19 

Poincare", 

P · .,; o1.ncare, 

(1905a/1946), p.209. 

(1889/1908), p.131. 
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both domains our actual data can never be "complete", can 

never exhaust all the possible data. A finite being 

cannot perceive all possible aspects of an empirical object; 

and thus, he can never obtain the (extensional) "thing-in-

itself", the "noumenon". Analogously, a finite being 

cannot construct an (extensional) infinite domain of math em-

atical objects, whereas there is no end to the number of 

possible iterations of certain rules. And yet we group 

together our perceptions, and we understand by this group 

a unified whole, an object. Moreover, we all do this in 

roughly the same way, so that experience is ordered and 

common. Analogously, we are able to "C.on:Sfl'l,("c.t" poten+io. l1 1 

infinite mathematical sets and perceive them as determinate 

objects. And we see them as determinate potential infinities 

because we understand by the rule of construction that 

there is no end to the number of possible iterations of 

the rule. 

Apriori intuition - the form of experience - is that 

via which, despite the inevitable incomplete character of 

experience, we understand by our experience an experience 

of a completed object, we understand by a rule that it 

characterises an infinite, yet determinate~ collection, 

Apriori intuition can thus be regarded as a "glossing over" 

faculty, whereby we "gloss over" the incomplete character 

of both empirical and non-empirical (mathematical and 

linguistic) experience. It is a procedure whereby we 

ignore all the elements which could be generated by a rule, 
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and we disregard or "smooth out" the disparate character 

of perception: 

it is therefore necessary that by an 
active operation of the mind we agree 
to consider two states of consciousness 
as identical by disregarding their 
differences. 20 

And we all do this in (roughly) the same way. It is in 

virtue of the fact that we "complete our pictures" and 

satisfy "our need of thinking in images" in a ~ystematic, 

uniform way that we are able to communicate and that we 

possess a mathematical concept of set. 2l For both Poincar~ 

and Kant the glossing over faculty, or the apriori form 

of experience, is what is common to all finite thinking 

beings. It thus potentially provides an explanation of why we can 

communicate, why our concepts "overlap" and meaning can 

b e de t e I' mi nat e , eve nth 0 ugh 0 u I' act u alp e l' c e p t u aId a t a i s 

always incomplete in different ways: because ~ finite 

thinking beings we all gloss over the data and complete 

our "pictures", or attribute determinacy to our concepts, 

in roughly the same way. 

Even something as straightforward as the understanding 

which is acquired in learning to apply the rules of 

20 POincart, (19l2b), p.31 (his emphasis). 

21 Hallett, (1983) uses the notion of "smoothing out" instead of 
"glossing over" to explain the same aspect of Kant I s theory, and 
to apply it to GBdel's understanding of the set concept. The 
concept of unity and that "of enduring object is used to smooth 
out an otherwise diverse and complicated manifold of represent­
ations", (p.19) and it is that which supplies our mathematical 
concept of set. (p.24) 
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elementary formal logic requires intuition, on Poincar~'s 

account. In order to understand the abstract characteris-

at ion of a rule we must understand an arbitrary instance 

of it. And this is an intui"tive, structural ("pictorial") 

understanding. Applying a rule requir~s that we see that 

the application possesses the same essential "structural" 

properties ("shape") as the arbitrary instance given in 

the schematic characterisation of the rule. The aspects 

which are structural are those properties which an arbitrary 

instance possesses. Apriori intuition supplies a uniform 

way to understand what these are. 

For example, to see that 

( P v Q) & (( R & 5 ) v T) l- C( P v g) & ( R & S) v (( P v Q) & 1.) 

is true, it is sufficient to see that it is an instance of 

the ICl.w of Distr·lblA+iv,+~~2L.. 

A & (BvC) ~~ (A&B) v (A&C). 

And to see that the first is an instance of the second, we 

must be able to "gloss over" the inessential differences, 

and see that the two formulae have the same overall struc-

ture: that "PvQ" can be taken as the "A"; tha t !l R&S" 

can be taken as the "B"; and that "T" can be taken as the 

HC" • Understanding the rules of formal logic is a pictorial 

22 Lemmon, (1971), pp .62-63. 
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understanding, insofar as doing a proof is picturing and 

assimilating various instances of a class of structures. 

We make certain strings of symbols "look" the same by 

disregarding or glossing over the actual symbols used, 

which are iQessential to its being an instantiation of an 

arbitrary instance. 

For Poincar{, "glossing over" or "smoothing out", which 

is imposed apriori by our forms of experience and under­

standing of an object, supplies organisation (via a concept 

of enduring object and unified whole) to our experience of 

the world. In addition, it supplies both an understanding 

of the mathematical concept of set, and an understanding 

of the notion of an arbitrary object. This results in two 

mathematical theses. One is that only potential infinities 

can be "constructed" sets (the one exception being the 

"set" of real numbers which is a primitive and immediate 

object of intuition, supplied by our apriori "geometric" 

understanding of continuity). Collections must be finite 

or rule-generated; otherwise, without a rule, there is 

nothing for apriori intuition to gloss over. (This is 

where Poincar~'s notion of glossing over is different from 

Hallett's account (1983) of GBdel, who, he claims, has 

access to the full, classical, set-theoretic universe in 

virtue of some such smoothing out faculty.) The incomplet-

~bility of the infinite is thus a direct result of the in 

principle incompletability of any experience of an object. 

For Poi n car tan d Ka nt, the pot e n t i a 11 yin fin i t e t h us de -

scribes the limits of our understanding, for it is a 
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consequence of the theory of the synthetic apriori applied 

to understanding. 

The other thesis which is a consequence of Poincar~'s 

theory of the synthetic apriori is that whenever a notion 

of arbitrary object intrudes, or is necessitated, so does 

apriori intuition. A "glossing over" is necessary in 

order to employ our notion of arbitrary instantiation; and 

this glossing over faculty is not part of logic. It is 

not characterisable by logic, and, indeed, it is presupposed 

~ logic. Thus, in a deep sense, an understanding of 

logic presupposes an understanding of arithmetic (as was 

s how n inC hap t e r 3, a bo ve ) . But also, in a more explicit 

sense, quantificatioIT theory - since it directly and ex-

plicitly employs a notion of arbitrary instance (in the 

rule of universal generalisation) - requires apriori intuition 

in its glossing over capacity. Therefore, even if Russell's 

logic is accepted as logic proper, employing this machinery 

or method requires apriori intuition, according to Poincar{. 

Thus any "reduction" of mathematics to such a logic does 

not show that Kant was wrong - that mathematics is independ-

ent of spatio-temporal intuition - for this machinery is 

founded on apriori spatio-temporal intuition. 

(4 ) '" Intuitions and Poincare's Theory of Definitions 

Poincar~ was in favour of the formalisation of mathematics; 23 

23 "Intuition cannot give us exactness, nor even certainty, and this 
has been recognised more and more." (Poincar~, (1889/1908), p .123 J 
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yet he felt that intuition ought not to be entirely 

banished from mathematics; since, on his account, intuitions 

are the epistemological source of even the formal, 

precise concepts and methods. In addition, it was his 

view that in order to apply mathematical results we require 

rough, intuitive "pictures", in order to be able to compare 

the mathematical objects in our theorems and definitions 

with the empirical objects of our scientific problems. 

Being an applied (as well as a "pure") mathematician 

himself, Poincare felt strongly about the necessary useful-

ness of mathematics: 

The eternal contemplation of its own 
navel is not the sole object of the 
science. It touches nature, and one 
day or other it will come into contact 
with it. Then it will be necessary to 
shake off purely verbal definitions and 
no longer to content ourselves with words. 24 

The logicist divorces the truth of mathematics from the 

forms of experience; but in so doing, he also divorces 

the content of mathematics from our experience of the world. 

The formal objects of logicist mathematics are unable to 

bridge the gap between symbol and reality; thus the in-

tuitive, pictorial notions which are epistemologically at 

the foundation of the formal concepts and methods are also 

pragmatically indispensable for the employment of mathematics. 

24 Poincare', (l906b): p .183. 
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It is through (intuition] that the mathem­
atical world remains in touch with the real 
world, and even if pure mathematics could do 
without it, we should still have to have 
recourse to it to fill up the gulf that 
separates the symbol from reality. 25 

/ 
Poincare's theory of mathematical definitions is the 

result of a compromise between his desire for certainty, and 

his theory of both the practical and the theoretical need 

"of thinking in images", for intuitions. Thus, for example, 

on his account there must be two parts to any definition of 

a set. The first part is that via which we distinguish all 

the objects which have a certain property; this is what 

is ordinarily thought of as the "defining condition" of 

the sets. In addition, there must be a second part to any 

well-founded mathematical definition, where an account of 

the nature of (and relations between) the particular members 

of the set is provided. In order to be said to understand 

a definition, in addition to the formal set-membership 

condition, <:p, "it is necessary to understand the set of 

particular objects which satisfy the [first part of the] 

definition".26 We must have an idea of the sorts of objects 

for which 1> is true. 

The first part of the definition, common to 
all the elements of the set, will teach us 
to distinguish them from the elements which 
are alien to this set; this will be the 
definition of the set; the second part will 
teach us to distinguish the different elements 

25 Poincar~, (1889/1908), pp.128-129. (My emphasis.) 

26 P · .", olncare, (1912a), p.69. 
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of the set from one another •.. [The 
second part is necessary;] otherwise 
the object would be inconceivable and 
the proposition [about an arbitrary 
object of the set] would have no meaning. 27 

The reason the second part of a definition is essential 

P · / for Olncare, has to do with his "constructivism" or non-

Platonism. There is no universe of sets given prior to 

our mathematical specifications; so the nature of the 

objects which satisfy any defining condition ¢, must be 

explicitly given by us. In the empirical case, the second 

part of a definition is, in general, not necessary. Facts 

about the particular objects which are called "birds" -

such as similarities and differences between different 

species, i.e., the relations between the elements - can be 

revealed gradually. The definition of "bird" carves out a 

piece of the independently given aposteriori world, and 

investigation into the world discloses certain contingent 

facts about the objects which we have picked out by the 

definition. However, in mathematics the situation is 

d i H e.re.n"t. There is no world independent of our postulates 

and domains which we can investigate by other (i.e., causal) 

means. So our mathematical definitions must either carve 

out a piece of a previously given mathematical domain (in 

a way which parallels definitions of things in the world), 

or we must invent a new domain. But if we are doing the 

latter, we must explicitly state the nature of the particular 

/ 
27 Poincare, (1909b), p.61. 
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elements in the domain. otherwise, our understanding of 

such abstract "objects" will not sustain an intuitive 

comparison with the perceptual objects of experience. For 

POincart, the requirement of this second part of the defin-

ition precludes the acceptability both of arbitrary infinite 

sets Rnd of ineliminably impredicative specifications. 

Arbitrary infinite collections have no particular character-

istics as'objects; and we cannot understand the particular 

nature and relations between all the objects of an in-

eliminably impredicatively specified collection, because 

the structure of such a set is not fixed - the order of 

its elements is always disruptible. 28 . / 
Thus, POlncare's 

theory of definitiors prohibits ineliminably impredicative 

specifications and arbitrary infinite collections from 

determining bona fide mathematical objects. Both of these 

notions feature in the classical set theoretic interpret-

ation of the continuum (e.g., in the power set operation 

applied to an infinite set). 

I will now (in the next section of this chapter) examine 

one very general argument against axiomatic set theory in 

the light of Poincar~'s theory of intuitions. In Chapters 

5 and 6, speci fic complaints regarding the set-theoretic 

construction (or non-construction) of the continuum will 

28 See, for example, Poincar~, (1909b), pp.46-48. 
of impredicativity is the subject of Chapter 6. 

. / POlncare's theory 
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be dealt with in more detail. 

(5) Set Theory and Intuitions 

Set theory developed as an extension 0+ the logicist 

programme; and Poincar~'s general arguments against set 

theory are an extension to his general arguments against 

logicism. The logicist wishes to bypass intuition in an 

effort to provide a sceptic-proof foundation for mathematics. 

His aim is to exhibit a purely logical basis for mathematics, 

which, with appropriate definitions, could produce all 

known and all knowable mathematical results. When this 

proved to be impossible without the aid of some non-logical 

axioms (e.g., Infinity, Reducibility, Choice), the pro-

gramme changed to "set theory". And the new aim was to 

provide a set-theoretic foundation for all mathematics 

which employed as few non-logical axioms as possible. 

. " POlncare's objection to this programme is that it is 

impossible to capture our mathematical intuitions by 

writing down axioms; what we can construct via apriori 

intuition, e.g., a line with no gaps, cannot be constructed 

via set theory, via logic and axioms alone. For when we 

try to write down axioms which produce sets via which 

we can mirror all results that our mathematical intuition 

formerly produced, axioms necessitating the acceptance 

of impredicatively defined sets are employed. And this 

violates what it means to "construct". Either the axioms 

aTe false in intuition, since they validate impredicative 

specifications; or, by limiting our domains and proofs 
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to those which are "constructive" (e.g., provable in 

Intuitionist analysis), the result is a gap between what 

we could formerly do - i.e., classical analysis - and 

what we can do via construction of sets alone. Hence, 

neither classical set theory nor Intuitionistic set theory 

is a faithful characterisation of pre-formalised mathematics. 

Both violate our mathematical intuition, according to 
;' 

Poincare. 

Now Russell considered this to be a stilted ViLW of 

the formalisation of mathematics. 

The object is not to banish "intuition", 
but to test and systematise its employment, 
to eliminate the errors to which its un­
governed use gives rise, and to discover 
general laws from which, by deduction, we 
can obtain true results never contradicted, 
and in crucial cases confirmed, by intuition. 29 

;' 

However, on Poincare's view, set theory does "banish" 

intuition, for it contradicts it. The axiom of infinity 

plus the power set axiom entails the acceptance of sets 

which cannot be specified in a predicative way, or, indeed, 

at all: e.g., in the classical acceptance of both 

arbitrary and uncountable infinities. In POincare-,s view, 

such "sets" directly violate our intuitive conception of 

"the set of " operation. 

The formalisation of mathematics found in modern set 

29 Russell, (1906b), p.194. 



99 

theories, rather than providing a foundation for the 

existing mathematical intuition, had to revise what was 

considered to be a mathematical intuition, a well-founded 

property, in order to recapture that which was formerly 

provided (albeit imprecisely) by intuitive mathematics, 

while at the same time avoiding contradictions. However, 

the new objects of mathematical intuition - i.e., arbitrary 

infinite collections and ineliminably impredicatively spec-

ified sets - rather than merely extending our notion of 

mathematical object, constituted (in Poincar~ls view) a 

violation of our prior concept of mathematical object. 

The new objects gave rise to formally undecidable state-

ments, or postulates which are independent of the theory 

itself, e.g., the Continuum Hypothesis; and they are only 

modelled in formal structures which presuppose their 

acceptability. 

Now, what can never be verified,30 and hence what is 

. ,-
meaningless for Po~ncare, is any statement concerning all 

the elements of an arbitrary infinite collection, or any 

statement which refers to an ineliminably impredicative 

specification. We can never, even in principle, construct 

either object in intuition - our glossing over faculty does 

not addre£s such "objects". There is no extension to our 

capacities via which we can imagine a determinate verification 

30 See Chapter 7. 
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of a statement about such an entity. 

allowed from "meaningful" mathematics. 

So they are dis-

. " POlncare often 

simultaneously criticises the global acceptance of impredic­

ativity and the belief in actual infinity31 because they 

both violate his theory of meaning (i.e., his theory of the 

synthetic apriori) for the same reason. They both purport 

to specify objects (sets) which are inconceivable to us as 

determinate objects. 

The problem is not merely that of the counterintuitive 

objects of the classical set-theoretic universe. In addition, 

by rejecting intuitive constraints on the notion of possible 

mathematical object, the set-theoretic characterisation of 

the mathematical universe leaves itself without a foundation. 

Axiomatic set theory, on Poincar:'s view, makes our intuitions 

secondary to the formal rules concerning the employment of 

the axioms. This results in two general objections, both 

of which stem from epistemological or foundational concerns. 

One is that certain intuitions cannot be formalised - they 

"can be felt but not expressed,,32 - so no formal expression 

will be "reducible" in the intended way.33 The second 

general objection is that if our intuitions are secondary 

to the formal postulates, then what constrains the acceptance 

31 Leading to unfortunate misinterpretations of his actual views when 
why he does so is disregarded, e.g., in Chihara, (1973), p.140, 
and in Kneale and KReale, (1962), pp.672-673. 

32 Poincar~, (1905b), p.149. 

33 This is discussed in detail in Chapters 3 and 5. 
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of formal postulates? The choice and interpretation of 

axioms, in the absence of intuitive considerations, seems 

arbitrary, this view being confirmed by the discovery 

of the set-theoretic paradoxes. Consistency is necessary, 

so a change in the axioms was essential; but how do we 

change them without the alteration being merely ad hoc? 

/ 
Goodman, echoing Poincare's objection that modern axiomatic 

set theory is independent of our intuitions concerning 

the concepts of set and mathematical object, complains: 

"If mathematics is set theory, which set theory is it?,,34 

In Poincar~'s view, the only choice between triviality 

(of a strict constructivism) and contradiction (of set 

theory) was one which relied upon the theory of synthetic 

apriori intuitions. I now turn, in Chapter 5, to a dis-

cuss ion of how he implements this view in his arguments 

against the set theoretic "construction" of the classical 

continuum. 

34 Goodman, (1984), p.22. 
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POINCARE'S THEORY OF THE CONTINUUM 

(1) Epistemology and the Characterisation Problem 

(2) Sets as Contained Collections 

(3) The Limits of the Arithmetisation of the Continuum 

(4) The Crucial Importance of Cantor's Result for 

Poincar~'s Theory of the Continuum 



/ 
Poincare's theory of the continuum is that it is a 

domain of continuous variation, the understanding of which 

is provided by geometric intuition. The continuum must be 

an intuitive geometric structure, because, while we possess 

an understanding of the concept of mathematical continuity, 

the continuum cannot be regarded as a set. The set-

theoretic characterisation of the classical continuum is 

precluded by Poincar~'s theory of meaning, and consequently 

by his theory of infinity, whereby only potentially infinite 

(or countable) sets are coherent. Yet his conception of 

the continuum is not that of the intuitionis~ nor does 

his theory involve any of the specific Brouwerian methods l 

for generating the intuitionist, i.e., iA countable, 

continuum. Rather, Poincar~'s theory of the continuum 

lies much closer to the classical Cantorian conception, for 

he regards the continuum as a structure which cannot be 

exhausted by any countable sequence - a structure which 

is, nevertheless, determinate. 

(1) Epistemology and the Characterisation Problem 

Poincar~'s objections to the set theoretic characteris-

ation of the continuum stem from epistemological concerns. 

1 See Brouwer, (1913). 
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His arguments concerning the continuum and geometric 

intuition are in this way parallel to his arguments con-

cerning induction and arithmetic intuition. He wishes to 

establish their synthetic apriori nature, thus defending 

Kant's thesis. 

Just as the arithmetic intuition of "indefinite 

iterability" cannot be a feature of the aposteriori world 

(the argument for the apriority of arithmetic intuition), 

neither can the geometric intuition of continuity be a 

feature we directly experience. Rather, in each case, 

apriori intuition must be imposed upon experience - must 

be a feature of our interpretation of experience - in 

order to maintain the coherency of experience. Thus, 

Poincar~ claims, even our experience of the physical 

continuum requires geometric intuition in order to "gloss 

over" the incoherent - indeed, contradictory2- situation 

provided by direct experience alone, which is a consequence 

~ 

2 What Poincare actually says is the following: 

The continua which we have just considered are mathematical 
continua; each of their points is an individual thing 
absolutely distinct from the others and, moreover, absolutely 
indivisible. The continua directly revealed by our senses 
and which I have called physical continua are altogether 
different •.. It is possible to tell the difference between 
a la-gram weight and a 12-gram weight at a guess; it would 
not be possible to tell an II-gram weight from either a 
lO-gram or a 12-gram weight .•. in order to construct a 
physical continuum, it is essential from what has been said 
before that two of their elements can, in certain cases, be 
considered as indistinguishable ... It is therefore necessary 
that by an active operation of the mind we agree to consider 
two states of consciousness as identical by disregarding 
their differences. (1912\;1) ,pp. 30-31. (My under lining of 
"active operation of the mind".) 
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of the inevitably limited or incomplete nature of our 

sense data. And since even our conception of the physical 

continuum requires apriori intuition to maintain the 

coherency of experience, we could not have arrived at the 

notion of mathematical continuity from our experience of 

physical continuity, independent of apriori intuition. 

The objection to the standard account of the continuum 

obtained, say, as the set of all subsets of the natural 

numbers! is epistemological. For Poincar~, interestingly, 

we can characterise the continuum. He appreciates the 

mathematical achievement represented by the "arithmetisation" 

of analysis. What he is denying is that this achievement 

of the rigorisation of analysis has the significance that 

the logicist claims it has: that it shows that mathematics 

is independent of extralogical intuitions. That is, 

Poincar~'s claim is that if we did not already possess an 

apriori understanding of continuity, the set-theoretic 

characterisation could not produce such a concept in our 

minds. 

3 

A continuum of n dimensions is a set of n 
coordinates, that is, a set of n quantities 
capable of varying independently one from the 
other and of assuming all real values which 
satisfy certain inequalities. This definition, 
flawless from the point of view of mathematics*, 
nevertheless could not be entirely satisfactory 
to us ... What it does not reveal is the 
profound reason for which these materials have 
been assembled in this fashion rather than in 
another. I do not mean that this 'arithmetiz­
ation' of mathematics is undesirable; I say 
that it is ~ot everything. 3 

/ 
Poincare, (l912b), pp.28-29. 
* This account of the n-dimensional continuum is not adequate, 



105 

The definition of an n-dimensional continuum is in-

adequate as an epistemological source for the concept 

of continuity. This characterisation presupposes an 

understanding of "all the real values of an interval"; 

but this presupposes an understanding of a continuous 

domain. Though, perhaps, mathematically acceptable, Poin-

car~'s point is that the characterisation is not 

epistemologically satisfying or revealing. 

Poincar~'s argument, however, is general. It is not 

merely that this characterisation is unacceptable, but 

that no characterisation could, in principle, succeed 

in capturing, in an exhaustive way, the notion of a 

continuous set of real numbers. Given Poincar~'s theory 

of meaning, a continuum could be a set-theoretic object 

only if we could characterise it (say, like the natural 

number sequence) by an algorithm for generating its 

members. Every infinite collection requires a rule for 

generating its members. There is the rule "+1" for gener:-

ating sequentially the natural numbers; and there is a 

method for generating sequentially the rationals. These 

are both countable sets, the members of which are generated 

sequentially by a finitely specifiable procedure; so 

they are acceptable, well-founded collections according 

/ 

to Poincare. 

as indeed Poincar~'s own foundational work on topological 
invariance shows. Poincare (l912b) cOnstitutes ~n expository 
article on the concept of dimension; see Brouwer, (1913), 
for a fundamental extension of Poincare's idea. 
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However, it is not possible for a rule or algorithm 

to generate (sequentially) an uncountable domain. And 

since the domain of real numbers cannot be generated by 

/ 
a rule (this is Poincare's interpretation of Cantor's 

/ 
result, discussed below), Poincare concludes that the 

domain of real numbers cannot be regarded as a set. It 

is impossible to characterise as a set the classical domain 

of real numbers, in a way which meets the requirements of 

his theory of meaning. 

The set-theoretician may now wonder whether this 

requirement does not merely beg the question against the 

classical set-theoretic characterisation of the continuum. 

Are there any independent arguments for accepting Poincar~'s 

requirements? We will now take a small detour into his 

theory of definitions of sets, in order to expand on 

the underlying reasons for rejecting the well-foundedness 

of uncountable collections. 

(2) Sets as Contained Collections 

For 
. / POlncare, a set is like a container which has 

just enough places for the objects which occupy it. In 

everyday life these containers are finite: the logic of 

sets is the logic of definite, contained collections. 

For example, "There were less than 100 students at the 

lecture" can be analysed as: "Of the finite and determinate 

set 'all the students at the lecture', its cardinal number 

i s 1 e sst han 1 0 0 ." Wet a 1 k 0 f set s 0 r colI ec t ion saIl 
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the time, but these are usually finite and determinate 

sets. Now, when the containers are not finite, in order 

to reason coherently about the elements which are inside, 

we must have an exact understanding of how the "container" 

expands, or how the elements take up their places inside 

it. Since Poincar~ claims that "infinite" only means 

"unending", or "a collection which never stops growing", 

in order to understand an infinite set, we must have an 

exact understanding of how it grows. If a set is not 

"contained" in a strict, finitistic, sense, it must at 

least be restricted and deterministic in its growth. This 

is what we understand when we understand an infinite set 

via its generating rule: the way in which its growth 

is restricted or defined. 

Poincar~'s objection, then, to considering the continuum 

as a well-defined collection, as a set, is that because 

we have no exact understanding of a generating rule for 

an arbitrary irrational number, we have no exact under-

standing of the container which houses them. We do not 

have a constructively acceptable procedure for determining 

how this container would have to grow, or expand, in 

order to capture all the real numbers, say, between 0 and 

1. Hence, such a container is not determinate; hence, 

such a container is not a set. 

The reason we have no exact understanding of how the 

container which h~lds, say, the open interval (0,1) 

grows, is because in order to obtain each of the elements 
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included in this classical real interval, we need to 

accept the existence of impredicatively characterised 

reals or arbitrary infinite sets. Impredicative defin-

itions are sentences which pick out an entity by referring 

to a collection of which it is a member: e.g., "tallest 

man in the room", "least upper bound", etc. The problem 

with impredicative definitions occurs when 1) the entity 

being defined is necessary for the completion, or for 

the complete characterisation, of a collection; and 2) 

the entity cannot be defined in any way - is not accessible 

via any route - other than via this very same completed 

collection, of which it is supposedly an element. In 

this way, so-called "vicious circles" are generated. We 

do not have the object (we cannot pick it out) until the 

collection is completed (since it cannot be characterised 

other than via the completed collection); and yet we 

cannot complete the collection without the object. (Note 

that vicious circles are not produced when an element can 

be defined by reference to the partially completed set 

of which it is a member, e.g., any natural number. It 

is only when the collection must be completed before one 

defines the entity (as in "class of all classes"), that 

vicious circles can be produced, for instance, by the 

question of whether or not the "completed" collection 

belongs ~ the collection, to itself.) Now, according to 

P · ,-olncare, vicious circles are to be excluded from math-

ematics. So the maxim is there is no legitimate mathe-

matical object whose characterisation is ineliminably 
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impredicative. (Poincar~'s theory of impredicativity is 

the subject of Chapter 6, below.) Let us suppose this 

is correct; impredicative definitions do not characterise 

mathematical objects. Where does this leave us with 

regard to the continuum? Is it true that in order to 

accept the classical account of the real numbers, we must 

accept that impredicative specifications do characterise 

legitimate mathematical objects? 

The matter is not absolutely clear. It would seem 

that in order to prove the absolute indenumerability of 

a domain, the impredicativity is ineliminable. As Wang 

says, 

It is no accident that all proofs of 
absolute indenumerability use impredicative 
sets. Indeed, it is certainly intuitively 
plausible that all predicative sets are 
denumerable. 4 

In order to avoid the problem of impredicativity, we must 

avoid the question of proving absolute indenumerability. 

However, Poincare' would object even to the "intuitive" 

characterisation of an uncountable set, as the power set 

of a countable set. The classical set of real numbers is 

often characterised by the power set axiom applied to the 

countable and determinate set N, of natural numbers. 

4 Wang, (1954), p.246'. 
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The outcome is the set of all subsets of IN , the under-

standing of which presupposes the notion of an arbitrary 

subset of N. \N, however, being infinite, the set of 

all subsets of ~ includes all the infinite subsets of 

N, th \..\.5 presupposing the notion of an arbitrary infinite 

subset of \N. However, for POincart, there is no such 

thing as an arbitrary infinite set. Infinite collections 

which are not rule-generated are incoherent; the ~ 

notion of an arbitrary infinite set is contradictory, for 

it is unfaithful both to the notion of the infinite and 

to the notion of a set or collection. 

Sets are objects which are formed by collecting the 

members together, and putting them into one "container". 

Finite sets are objects which are actually formable: we 

can list their elements between two brackets: ta,b,c, ... n}. 

Infinite sets are objects for which we have a rule. The 

rule governs the generation of elements, and thus the 

forming of the set. 

A collection is formed by the successive 
addition of new members; we can construct 
new objects [e.g., n+lJ by combining- DId] 
objects (n and 1, using the combiner," +" , 
then with these new objects construct newel' 
ones, and if the collection is infinite, it 
is because there is no reason for stopping. 5 

Finite collections are formed when the successive addition 

of new members terminates. Infinite collections are those 

5 P · / o.lncare, (1912a), p.67. 
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for which the successive addition of new members proceeds 

according to some rule of construction, such that we can 

see in the rule that there is no end to the number of 

possible constructions. That is, such that we can see 

in the rule that it is indefinitely iterable. If we cannot 

see the infinity of a set in the indefinite interability 

of a rule which generates it, we can have no sense of the 

individuating properties of its elements, of the relations 

which hold between them. Thus, for Poincar~, we cannot 

understand the object as 6 a set. In this way, collections 

must either be finite or specifiable by an iterative rule, 

in order for the particular elements to be capable of 

possessing a sense (in intuition). 

Sets must be collectQble or constructible in intuition. 

So coherent infinite sets must be rule-governed, so that 

they can be modelled in arithmetic intuition - the iter-

ative or collecting intuition. 
/ 

For Poincare, potential, 

or rule-governed, infinity describes the limits of our 

arithmetic intuition which alone can provide an access 

to a sense of the particular elements of an infinite set. 

The characterisation of the set of reals, via the notion 

of arbitrary subset of ~, is, therefore, irredeemably 

illicit since it necessitates the notion of an arbitrary 

infinite subset of ~. 

6 See Chapter 4, section 4, above! for discussion on the necessity 
of understanding two parts of a definition of a set. 
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(3) The Limits of the Arithmetisation of the Continuum 

The arithmetisation of the continuum attributes a 

concrete existence to all the points of the real line. 

1Tis not an empty formal symbol. And yet the set-theoretic 

characterisation of the continuum involves accepting the 

propriety of impredicative specifications, or the existence 

of arbitrary infinite subsets of ~. How do we come to 

consider each point, each real number, as an object the 

ontological status of which is equal to all the others? 

How do we come to understand particular irrationals, like 

\I, iT , e? 

These particular elements have determinate content 

which is p~ovided by their use in mathematical practice, 

and insofar as we can construct them geometrically. They 

playa role in the arithmetisation of geometry, and so 

we understand them via the operations which produce them. 

We understand VT as the length of the hypotenuse of a right 

angle triangle whose other sides are length 1 unit. We under­

stand 11 as the circumference 0 f a circle whose radius is 

~. There is a theoretical need for these numbers 

stemming from geometrical argument, so they are intrinsic 

to any account of the continuum. 

However, since we understand particular irrationals 

via geometrical operations which produce them, it is 

Poincar"s view that our understanding of geometry, our 



113 

geometric intuition of continuity, must be epistemologic-

ally prior to the arithmetic construction of irrationals. 

Otherwise, his claim is, we could not explain why it is 

that we attribute the same "concrete" and ontological 

status to the constructions (irrationals) as to the materials 

employed in the constructions (the natural numbers), which 

form the basis of our operations. 

Should we have a notion of these numbers 
if we did not previously know a matter 
which we conceive ... as a continuum? 7 

Without apriori geometric intuition we should have 

had no reason for transcending the rationals. This set 

represents the limits of arithmetic intuition, of indefinite 

iteration, since it is everywhere dense. It is geometric 

intuition which suggests that there are numbers 

which are not members of the dense set~. It suggests 

the notion that there are numbers corresponding to 

every ppint on the line; that there are magnitudes 

corresponding exactlt to every length. 

The Poincar~ thesis is that history and epistemology 

here coincide. The geometric continuum is a line with no 

gaps; not a domain which has no gaps which we can see, 

but a domain with no gaps in principle. Hence, when a 

gap in the rationals is discovered, it is the apriori 

/ 
7 Poincare, (1893), p.21. 



114 

geometric intuition which warrants us in filling it, 

by inventing a new number, and considering this as an 

entity with the same ontological status as a natural or 

rational number. If our intuition of continuity were 

not more primitive than operations on rationals, we would 

have no more reason for admitting irrationals to the set 

of real numbers - i.e., defining this new set - than for 

concluding that we have "discovered" that the arithmetic 

numbers do not correspond to the points on the geometric 

line. Instead, in the domain of real analysis, we treat 

limits and Dedekind cuts - no matter what operations, and 

infinite sets these cuts involve - as units, just like 

257. And we gloss over all the points for which we have 

no characterisation, and - unlike the integers and 

rationals - for which we have no finite specification. 

This "glossing over" enables us to conceptualise and prove 

theorems about "any real number". For example, for any 

real number, it is either greater than, less than, or 

equal to any other real number; i.e., real numbers satisfy 

the axiom of total order; i.e.: 

(\I x) (Vy) (x , y t: IR.: x L y V x = y V x > y). 

It is our apriori intuition of continuity which grounds 

this axiom, and which grounds this practice of "glossing 

over". 

Via geometric intuition we "gloss over" the ineliminable 

impredicativity in any characterisation of a continuous 
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domain, thus preventing such a specification from being 

hopelessly vague or viciously circular. For instance, if 

real numbers are defined as the set of all possible 

Dedekind cuts, then some real numbers will be impredicative; 

for all Dedekind cuts will include ~ impredicatively 

specified cuts. Now, Poincar: has no objection to the 

way we characterise particular irrationals. For example, 

algebraic irrationals, like~, are straightforwardly 

expressed as: the positive root x, which satisfies the 

equation, 2 x -3=0. (The other x, of course is -i3.) 
But the algebraic numbers form only a countable subset 

of Cantor's uncountable set of reals. There can only be 

a denumerable number of such algebraically characterised 

numbers. Hence, in order to obtain the full classical 

set of real numbers, we must postulate the existence of 

an uncountable number of transcendental - i.e., non-

algebraic numbers. 

An algebraic number is one which 

satisfies some algebraic equation of the form 

( ) n n-I 
1 a x + a x + .•• + ax + a = 0 (n ~ 1, a j 0) 

n n-l n 
where the a k are integers. 8 

A transcendental number is one which cannot be so ex-

pressed: it transcends the powers of algebraic methods. 

8 Courant and Robbins, (1941), p.103. 
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Transcendental numbers are the problematic, i.e., the 

interesting, objects. For, since there are only a 

countable number of algebraic numbers, if the set of real 

numbers is uncountable, there must be an uncountable number 

of Dedekind cuts which necessarily refer to limits of 

infinite series, some of which will be impredicatively 

specified, or which will not be specifiable at all. Can 

we really understand such a collection; can such a vague, 

indeterminate collection form a set? 

P · / Olncare's answer is, of course: no. Specific trans-

cendental numbers are acceptable because we can comprehend 

them as the limit of an ordered series. For instance, 

'Lf1'" and "e" are 0 b t a ina b 1 e, ina sen s e ; for though they 

are not constructible (algebraically)9 we can approach 

or approximate their construction. Since, via our 

geometric intuition, we know that, for instance, 1fexists -

provided we assume that there are arithmetic numbers 

corresponding to all geometric lengths or quantities, i.e., 

that geometry has a model lO - we can look for an arithmetic 

specification of 11, in terms of operations on rational 

9 Proof for transcendence of e to be found in Courant and Robbins, 
(1941), pp.297-299. 

;' 

10 Interestingly, for Poincare, this assumption leads to a circle 
(in the absence of the theory of geometric intuition), for in 
order to model geometry we must presuppose the real number system. 
Whereas here, we ar.e supposedly "constructing" a real number. 
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numbers. For example, the following are all character-

isations of T\as the limit of some infinite ordered 

sequence: 

(1) 11 1 1 1 1 (-1 )",+(_1_) 
4- = "3 + 5" "'7 + ••• + + ... 

2n-l 

(2) 
-rr2 1 -- I 1 1 = r+ 21. + 31. + ... + -+ 6 nz-

(3) 11' 2. 2 . 4. 4. 6 . 6 . 2n 2n 11 
"2 = T "3 3" "5 "5 "'7 ... 2n-l . .. 2n+l 

" But, Poincare would wonder, how do we know that these 

speci fications taken to the limi t (n ---?(/:)) capture the 

o b j e c t iT? I tis 0 n 1 y b Y reI yin g up 0 nap rio r g eo met ric 

understanding of the continuum, and hence of 1f - its 

place in geometry - that" is a determinate object; 

that our specifications have something to which they 

must conform, to which they must be faithful. Hence, 

our geometric intuition is primary, and conditions our 

construction of arithmetic numbers. 

One sees what a role geometric images play 
in all this; and this role is justified 
by the philosophy and history of the science. 
If arithmetic had remained free from all 
admixture of geometry, it would have known 
only the whole number; it is to adapt it­
self to the needs of geometry that it 
invented anything else. 12 

It is only via geometric intuition - the intuition of 

continuity - that our arithmetic constructions, especially 

11 Courant and Robbins, (1941), p.300. 

12 Poincar~, (1889/1908), quote taken from (1946) volume, p.442. 
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constructions of transcendental numbers, have a determin­

ate content over and above purely formal manipulations. 

Without this apriori intuition, providing a model, the 

constructions would be correct, and pure; but they would 

be devoid of any non-formal content, for they would not 

be part of mathematics. In order to be vindicated in 

believing that our constructions are not arbitrary, we 

rely upon geometric intuition to provide content and 

determinacy to our constructions. 

However, in addition, there is a vast domain of 

transcendental numbers for which we have no specification, 

and hence, no definite understanding. "All the Dedekind 

cuts" includes all arbitrary infinite sets of numbers. 

But this notion is not well-founded. "All the Dedekind 

cuts" is hopelessly vague and indefinite as the character­

isation of the construction of a set, for we have no 

general understanding of the particular elements which 

it includes. The only reason this characterisation of 

the reals - in terms of Dedekind cuts - makes sense at 

all, is because it accords with our apriori intuition 

of continuity. Our concept of continuity can thus be 

refined or explicated, but not brought about via the 

construction of a set, for this concept is required in 

order to gloss over the vagueness and impredicativity in 

any characterisation of an absolutely indenumerable domain, 

so that we can understand by the explication the determinate 

mathematical continuum. 
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The determinacy of elements of the set-theoretic 

construction of the continuum does not extend beyond 

particular transcendental numbers for which we have 

specifications (as limits). Our understanding of the 

nature of the classical continuum cannot, therefore, 

depend upon the construction of the elements within it. 

It is not an uncountable domain, a line with no gaps, 

because we can specify an uncountable number of elements. 

Rather, we see that it is uncountable precisely because 

we cannot completely specify or capture it by constructing 

all its elements, or "all Dedekind cuts". Insofar as we 

have a notion of the continuum as an uncountable domain, 

with no gaps in principle, it is a domain which transcends 

both constructibility and specifiability. Thus, insofar as 

we can strictly construct certain elements of the continuum, 

this "set" is countable; and conversely, insofar as we know 

the continuum is uncountable, we do not know it as a set. 

(4) The Crucial Importance of Cantor's Result for 

Poincart's Theory of the Continuum 

One might expect, given Poincar~ls thesis of the in­

coherence of the notion of "arbitrary subset", that Cantor's 

foundational theorem in set theory, to the effect that 

for any set x, card (P(x)))card (x), would have no 

significant content. This expectation might well be re-

inforced by noting that the proof that there is no map 

from a set x onto its power set, involves an impredicative 
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specification. Suppose f:x-tf(x); then the set z, 

characterised by 

z = fu f:x: jyE-lP(x) & y = feu) & ufy, 

is ineliminably impredicatively defined, since the set z 

is defined by reference to a totality (rCx» of which it 

itself is a member. Indeed, Poincar~ did object to the 

standard interpretation of the theorem, and in particular 

to its important instance, 

However, in the case of the instance PCN) > ~, he 

reinterpreted the proof of the specific claim, and took 

the result so interpreted as showing something fundamental 

about the nature of the continuum, and consequently, 

something fundamental about the epistemology of the con-

tinuum. He says of his account of Cantor's result, 

According to this reckoning, there would be 
only a single infinite cardinal number possible, 
the number Aleph-zero. Why, then, do we say 
the power of the continuum is not the power 
of the integers? 13 

The point is that he takes the theorem in the form that 

the power of the continuum is not the power of the integers. 

It is in his account of the proof of Cantor's theorem 

of the uncountability of the continuum,14 that he makes 

13 

14 

P · , olncare, 

Cantor, 

(1912a) , p.68. 

(1874 ).. 
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the most telling point. To see what it is, first consider 

the set of rational points. This collection has the 

property that it is dense, so any "natural" conception 

of the next rational, after a given one, seems to lose 

all significance. Consequently it might be thought that 

the collection of rationals, having such radically differ­

ent properties from the collection of integers, it would 

be required that the former collection would have to have 

a distinct treatment from that afforded by the collection 

of natural numbers. That is, it might be thought that 

they could not be seen as a countable, ordered sequence 

generated by the successive systematic application of 

an iterative rule. 

But that this is not so is indeed shown by Cantor's 

proof of the countability of the collection of rationals. 

That is, although the rationals have a different structure 

from the naturals and a quite distinct order type, this 

fact induces no special epistemological problems concerning 

our knowledge of the set of rational numbers. Therefore, 

it might be thought possible to treat the collection of 

all real numbers in the same way. It might be thought 

that the operation of "filling in" the gaps in the 

rationals, though inducing new structural properties, and 

yet again a distinct order type, nevertheless would still 

induce from the epistemological viewpoint no especially 

new difficulties. If every such "filling in" of the 

rationals could be effected by employing infinite sets 
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of natural numbers (say in the manner of Dedekind or 

Russell), each of which was a countable collection 

specified by a general rule for generating the members 

of the collection (e.g., without appeal to the notion of 

an arbitrarily specified subset), then nothing especially 

significant concerning the epistemology of analysis would 

follow. Poincar~ points out, however, that this is quite 

impossible given Cantor's result. No matter how we 

attempt to "order" or list the collection of all real 

numbers, that list cannot exhaust the continuum; the 

list is always "disruptable", as he says. 

And this is what we mean, according to the 
pragmatists [i.e., according to his own View], 
when we say that the power of the continuum 
is not the power of the integers. We mean 
that it is impossible to establish between 
these two sets a law of correspondence which 
will be free from this sort of disruption; 
whereas it is possible to do it, for example, 
when a straight line and a plane are involved. 15 

The point Poincar{ makes is entirely well taken for it 

shows that we cannot hope to approach the continuum from 

"below", so to speak, without allowing impredicative specif-

16 
ications but this effectively rules out any (even 

15 

16 

~ 
Poincare, (1912a), p.68 

Poincar~ could not accept the Cantorian result in the form which 
asserts the absolute indenumerability of the continuum, for 
such a proof is bound to employ impredicative characterisations, 
e.g., in specifying the set z (P.119, above) (Cf. Wang, (1954)~ 
pp.244-245). But this of course does not detract from Poincare's 
reinterpretation of the proof, in essence, to the effect that 
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minimally) constructive theory of the (classical) continuum 

frolTl !'b.elow". 

If we want to effect the "construction" of the continuum 

from below, say by employing the full power set axiom, we 

will be involved in the epistemologically hopeless notion 

of "arbitrary subset". Thus Cantor's result (so inter-

preted), effectively rules out a constructive theory of 

the continuum, while if we use the full set-theoretic (or 

logistic) method, we will be involved in an epistemolog-

ical absurdity. So there is only one avenue left open. 

The existence of the continuum is guaranteed by nothing 

less than geometric intuition, and our knowledge of it 

is just as Kant claimed; knowledge synthetic apriori. 

Russell's "irrevocable refutation" of Kant is, after all, 

no refutation at all. If Kant's theory of the synthetic 

apriori is epistemologically problematic, it is no more 

so than the inevitable logistic reliance on the collection 

of all subsets of a given countable set. 

given any law which enume:cates sets of positive integers, we 
can find a set which differs from everyone in the enumeration, 
and so on indefinitely. Thus Cantor's theorem takes on the 
form of the "disruptabili ty" of all enumerations of -fl..€:- f"lni s 
Of"\. -tl-.e. CC9 .... +;n\.A~WJ. 
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Understanding Poincar~'s theory of impredicativity is 

essential to a proper understanding of his philosophy in 

general. Not only are his views considered to be found-

ational for intuitionism, he is also rightly considered to 

be a precursor to modern programmes in predicative analysis 

and predicative set theory. However, just as it is wrong 

to consider modern intuitionism as a natural extension of 

the whole of his philosophy, so is it a mistake to consider 

a predicative set theory as merely a more precise (yet 

faithful) encapsulation of his general position. Indeed, 

in view of the formality of these programmes, he would 

probably have opposed them. 
/ 

Poincare did not have a theory 

of predicativity per se; rather the concept of impredicat-

ivity developed as part of his more general negative theses, 

of anti-logicism, anti-formalism, and above all, of anti-

Platonism. For example, it was convenient for him to argue 

against "Cantorism", or axiomatic set theory, by exploiting 

the problem of the set-theoretic paradoxes, a problem which 

is (for Poincar~) most naturally expressed via the notion 

of impredicativity. In this way, the issue of predicativity 

vs. impredicativity became part of a more general debate 

between Poincar~ on the one hand, and Russell, Zermelo, 

Peano, etc., on the other. It is the purpose of this 

chapter to analyse the concept of predicativity in terms 

of the history of its upbringing, and to explain Poincar~'s 
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theory of impredicativity and the paradoxes as a feature 

of his arguments on more foundational issues concerning 

the meaningfulness of mathematical statements, and concerning 

the joint issue of the ontology of the mathematical universe. 

There are two senses of Platonism, corresponding to the 

two foundational issues with which we are concerned - meaning 

. / 
and ontology - and we must first note that POlncare opposes 

both of them. The better known and less plausible explic-

ation is "ontological Platonism", which is a doctrine about 

a realm of mathematical objects the existence of which is 

somehow independent of our mathematical activity - of our 

awareness and access to them. Poincart opposes this in 

virtue of his constructivism: mathematical objects do not 

exist except insofar as we construct or define them - insofar 

as they are "conceived by the mind". The second explication 

of Platonism - which is at least prima facie distinct from 

the first (although it might entail the first, as Poincar~ 

seemed to believe l ) -is one whereby the question is shifted 

from the ontological issue of the existence of mathematical 

objects to the issue (in the theory of meaning) of the 

objectivity of mathematical truth. 

Now, Poincart certainly does not deny that mathematical 

1 For example, he regarded the acceptance of actual in finites as a 
necessary aspect of c,lassical set-theoretic "reductionism" (l906b), 
p.195. 
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truth is objective truth. He does not dispute the intell-

igibility of a distinction between meeting our most refined 

criteria and actually being mathematically true. 2 (Indeed, 

the intelligibility of such a distinction is arguably a 

necessary feature of any "knowledge-domain".) Our criteria 

and concepts are refinab1e, so those which we possess at 

any particular time need not capture or exhaust mathematical 

truth (as is argued in the Appendix). However, what Poincare' 

denies, and what the Platonist ~ Platonist asserts, is 

that this objectivity or determinacy of truth extends to 

statements which are in principle unverifiable. The 

distinction between Poincare' and the Platonist lies in 

Poincar{'s theory of meaning, which requires that all 

statements be in principle verifiable. (The content of 

this notion is the subject of Chapter 7, below.) When 

properly interpreted (in the light of his theory of the 

synthetic apriori), Poincar{'s criterion of in principle 

verifiability produces a neo-Kantian constructivist account 

of mathematics. And it is in virtue of this account that 

impredicative specifications are objectionable. 

(1) Analysis of the Concept of Impredicativity 

"Impredicative" is an adjective which describes a class 

of definitions. In particular, it is used in mathematical 

2 Wright, (1980), Chapter 1. 
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logic to describe a way of specifying sets or mathematical 

objects. (It is also sometimes misused to describe a 

class of sets or objects. 3 ) Impredicative definitions are 

(roughly) those which characterise an object (or concept, 

or property) (i) by referring to a totality of which the 

object is a member; or (ii) by employing a concept of 

which the object (concept, property) is an instantiation. 

For example, the specification, "red is that colour which, 

of all the colours in the visible spectrum, is at the 

long-wavelength end", is impredicative, for it defines "red" 

via a totality (all the colours), or via a concept (colour), 

of which red is an instantiation. 

Impredicative definitions are objectionable to Poincar~ 

only if they are viciously circular; and they are vicious-

ly circular only when they provide the sale access we can 

have to a mathematical (concept, property, or) object. 

I shall call impredicative characterisations "irreducible" 

or "ineliminable" when there is no corresponding predic­

ative equivalent available (e.g., by virtue of a prior 

theory). Ineliminable impredicative specifications must 

be excluded by the constructivist, for one certainly 

cannot construct an object via a circular procedure. If 

in order to construct an object we must first construct a 

a collection of which the object is a member, then such a 

construction (i.e., both constructions) is impossible. 

3 For example, Wang, (1954). 
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The ineliminable impredicativity of the characterisation 

of certain constructed objects, like "the set of all sets", 

is taken by the constructivist to be "viciously circular", 

and thus not a bona fide part of meaningful mathematics. 

For Poincart and Russell it is the absence of any ex-

plicit constraints on "the set of ... " operation which, 

in the context of a realist interpretation of the quantifiers, 

is to blame for the paradoxes. Such a lack of constraint 

allows ineliminable impredicative characterisations to be 

one of "the set of .•. " operations. "Naive realism" is 

generally characterised by the following (Russell's) axiom 

schema of set existence: 

3 y \:Jx (XE Y ~ cP ( x) ) • 

It is "naive", presumably, because we translate this as, 

Ii terally, "every property determines a set". And it is 

"realist" because of the way the quantifiers are interpret-

ed: the range of the "'<1" being the whole of the universe. 

Naive realism is contradictory, then, because the axiom 

schema, above, is contradictory under the ordinary (logical, 

logicist, or realist) interpretation of the quantifiers, 

If every property determines a set, then so does the 

property (Russell's) of being "non-self-membered"; 

may instantiate the axiom as follows: 

::1 y Yx (XEy H -(xEx». 

Let us call the set we are forming "y ": 
e 

so we 



128 

Vx (x6y f--) -(xE:x)). 
o 

But because the property ¢ is impredicative - it character-

ises a set in terms of a property of sets - and because 

oft he un res t ric ted "V" qua n t i fie r, y 0 i sit s elf a can did ate 

for ¢-ness: 

Y oE: Y 0 ~ - ( y l Yo) . 

Poincar: and Russell both felt that it is the impredicativity 

of considering a set for membership of itself which leads 

to the contradiction above. The attempt is to collect 

together and put into a set all the sets which are not 

members of themselves. But if we must really collect all 

the sets which are not members of themselves, we must also 

consider Yo' the set of all such sets, it being by defin-

ition (in virtue of the axiom) a set. We must decide 

whether <p (Yo) in order to obtain all the sets which 

possess ¢. But then the contradiction, y 6 Y H -(ycy ), 
o 0 0 0 

immediately follows. 

Poincart and Russell saw the same vicious circularity 

which is a feature of this paradox in many other paradoxes 

(e.g., Richard's paradox, and the Burali-Forti paradox). 

They thus formed the opinion that there is a class of such 

paradoxes, each of which is a consequence of the same 

viciously circular, or ineliminably impredicative element 

in the specification of the object concerned. A general 

characterisation qf the guilty class was needed. We will 

now turn to an examination of how this general character-
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isation, the concept of impredioativity, emerged in 

. I POlncare and in Russell. 

(2) The Emergence of the Concept 

The concept of predicativity evolved gradually by way 

of discussions between Poincare', Russell, Zermel0, and 

Peano in the period 1905-1912, the main venue being the 

Revue de Metaphysigue et de Morale. Part of the obscurity 

which may be associated with this concept and with the 

"Vicious Circle Principle" (VCP) which concerns it, lies 

in the fact that the "discussions" out of which the notion 

arises, were anything but friendly. Thus, the meaning of 

predicative/impredicative is influenced by its role in 

the general dispute between the logicists, formalists or 

"Cantorians", and the anti-logicists, anti-formalists, or 

"pragmatists" . Poincar~ lies in the latter camp; while 

R us sell, Z e r me 10, P e an 0, and 0 n e mig h tad d, C 0 ut u rat, a 11 

lie somewhere in the former camp. 

2 .. 1 
/ 

Poincare's account 

Poincart blames the paradoxes on a Cantorian point of 

view, and a logicist method, in general. He thus claims 

in 1905 4 that it is the belief in the actual infinite, 

or defining the finite in terms of the infinite, which 

makes the set-theoretical paradoxes arise. That is, the 

4 (1905b), pp.143-145. 
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purely formal treatment of sets, in conjunction with 

realism about the existence of sets, is the source of the 

problem. Thus, the existence of the paradoxes indicates 

the misguided nature of logicism and formal set-theory -

that it is based, as Poincar~ claimed all along, on mis-

taken presuppositions concerning the possibility of refuting 

Kant. It is for this reason that he also claims, in the 

t
. 5 same sec lon , that it is not to formalism or Cantorism 

that we can turn to seek a solution. For instance, the 

Burali-Forti paradox arises because the logical apparatus 

cannot prevent one from considering "the collection of 

all the ordinal numbers"; whereas on the basis of intuitive 

considerations, on Poincart's view, we have no right to 

so abuse Cantor's notion of set formation 6 , and consider 

such a collection as even possibly well-founded. 7 That is, 

in the context of a set theory whereby every collection 

can be well-ordered or associated with an ordinal number -

\Ix 3 0( (x "",0() , x be i n gas eta n d 0/ be in g an 0 r din a 1 numb e r , 

such a result being necessary to generate the Burali-Forti 

paradox - the guilty classification is parallel to something 

as obviously problematic as "the set of all sets". The 

point Poincart is making, is that the problem lies at the 

very heart of these programmes, in their formalism; so 

5 

6 

7 

And later, in a continuation of the same article (1906b), p.180. 

Which is not that of Russell's naive axiom. See Hallett, (1984), 
pp.16-17, 33 for Cantor's requirement that our set-determining 
concepts be "fixed", "order ly 11 and "defini te" . 

. / 
POlncare, (1905b), p.lS9 and (l906b), p.l8S. 
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any revision in the formal rules will not guarantee the 

exclusion of any new paradoxes. 

Poincar~ was led to readdress the issue of the solution 

of the paradoxes, in the third (and final) of his series 

of articles entitled "les Math8'matiques et la logique,,8, 

in response to a paper by Russell ("On Some Difficulties 

in the Theory of Transfinite Numbers and Order Types"), 

published in the meantime (March 7, 1906~ which centred 

on this very question. 9 This time Poincar~ was somewhat 

more positive and clear on his views, and did not merely 

dismiss the problem as being that of the "other camp". 

He discusses Russell's various proposals - the zig-zag 

theory, the theory of the limitation of size, and the no-

class theory - makes different objections to each, then 

provides the first direct statement of his positive thesis 

in a section entitled "The True Solution". (I will con-
,-

tinue to trace the fundamentals of Poincare's notion; 

then, in sections 2.2 and 3 below I will turn to the 

" solutions of Russell and Zermelo, and explain Poincare's 

objections to them.) In brief, Poincart considered the 

main heuristic of the zig-zag theory (that of sufficient 

simplicity af definitions) to be obscure; the limitation 

of size theory to be ridiculous: a class may "be infinite, 

but it must not be too infinite"lO; and the no-class 

8 
. ,-

POlncare, (1905-1906) . 

9 Russell, (1906a). 

10 POincar§, (1906b), p.188. 
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theory to be so drastic as to constitute an open defeat 

of logicism. 

Russell's first characterisation of the predicative/non-

predicative notion shows how it essentially arises out of 

the problem of set-theoretic paradoxes: 

Nor m s Cpr 0 per tie s, pro p 0 sit ion a 1 fun c t ion sJ 
which do not define classes I propose to 
call non-predicative; those which do define 
classes I shall call predicative. 11 

Compare with Poincar~'s statement whieh comes just a bit 

later that year: 

The definitions that must be regarded as 
non-predicative are those which contain a 
vicious circle. 12 

At this point, however, Poincar~was not attempting to 

de fin e " imp red i cat i vi t y" (0 r "n 0 n - pre d i cat i ve " ) . I twas 

his view that the examples show exactly what is meant. 

Thus he intended the example of Richard's antinomy, and 

Richard's diagnosis, to be clearly generalisable to the 

other similar antinomies. Richard's antinomy concerns the 

collection, E, of all the decimal numbers expressible in 

a finite number of words. Since the collection is denumer-

able (because each specification is finite), its elements 

can be ordered one-one and onto with the natural numbers, 

each element of E being assigned an n t: N. 

11 Russell, (1906a), p .14l. 

12 Poincar~, (1906b), p.190. 

However, upon 
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supposing that the order has been established we can 

define a new number, e*, which differs from each e in E 

th in its n place (by +1). Yet e* is defined, here, in a 

fini te number of words, so it is by hypothesis one 0 f the 

members of E. Thus, the contradiction: 

e* t E, and e* differs from every element 
in E, or -(e*'E). 

According to Poincare, Richard correctly analyses the 

problem, as he states below: 

E is the aggregate of all the numbers that 
can be defined by a finite number of words, 
without introducing the notion of the aggre­
gate E itself, otherwise the definition of 
E would contain a vicious circle, for we 
cannot define E by the aggregate E itself . 

... the same explanation serves for the 
other antinomies, as may be easily verified. 
Thus the definitions that must be regarded 
as non-predicative are those which contain a 
vicious circle. The above examples show 
sufficiently clearly what I mean by this. 13 

Poincar: begins in the next section of the paper to 

explicate his views on what is wrong with viciously cir-

cular or non-predicative definitions. Not all properties 

determine a class, because some properties are incapable 

of determining the precise boundaries of any class which 

we might suppose satisfies the properties. But since 

mathematical classes must have precise "boundaries" -

i.e., we must be able to form a determinate conception 

13 Poincare, (1906b), pp .189-190. 
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of "the set of ... Il entities in a way which parallels 

(the determinacy of) collections of empirical objects -

definitions must not make essential use of inexact concepts. 

A definition which contains a vicious circle 
defines nothing. It is of no use to say we 
are sure, whatever be the meaning given to 
our definition, that there is at least zero 
which belongs to the class of inductive 
numbers. It is not a question of knowing 
whether this class is empty, but whether it 
can be rigidly delimited. A "non-predicative 
class" is not an empty class, but a class with 
uncertain boundaries. 14 

A class must be rigid, or "immutable"; and the properties 

which define a class must fix the class so that it is not 

"disruptable" or "uncertain". That is, the problem of 

paradoxical collections is the problem of the well-founded­

ness or exactness of mathematical properties. 15 

"A definition which contains a vicious circle", however, 

is not very precise, nor even intuitively clear. In 1909 

Poincar{ shifts the problem to clarifying the nature of 

the "classes" which are taken to be denoted by the non-

predicative specifications. Here he tries to explain what 

he means by the "rigidityll, or lIimmutability" of a class, 

and, of great importance, to relate this effect with the 

non-predicative nature of the definition. 

14 Poincare, (1906b), p.191. 

15 I will return to the "geographical" metaphors - "boundary", 
"frontier", !'rigidity" - in Section 4, below. 



135 

From this we draw a distinction between 
two types of classifications applicable 
to the elements of infinite collections: 
the predicative classifications, which 
cannot be disordered by the introduction 
of new elements; the non-predicative 
classifications in which the introduction 
of new elements necessitates constant 
modification. 16 

In both 1906 and 1909 Poincar~ claims that there is a 

relation between the belief in actually infinite collections, 

e.g., in the Cantorian method of placing "the infinite 

before the finite ll17 , which is "contrary to all healthy 

18 psychologyll and the viciously circular definitions. 

This relation is often misconstrued (e.g., by Russell in 

his (1906b) and Chihara in his (1973), p.140) as a direct 

causal connection from a belief in actual infinity to 

the ensuing of paradoxes. However, this is not what 

Poincar~ intends, even in the earliest (1905) paper. What 

he asserts is that Cantorism, or the acceptance of actual 

infinities, leads one to employ impredicative specifications 

where they cannot (according to Poincar{'s account) 

meaningfully be employed, to denote a determinate mathemat-

ical object. In particular, 
. / 

POlncare objects to the 

unrestricted extensional account of quantification which 

is validated by the realist (or Cantorian) belief in actual 

infinity. That is, for Poincar~, it is the mistake of 

/ 

16 Poincare, (l909b),. p.47. 

;-
17 Poincare, (1906b), p.195. 

18 P · / olncare, (1905b), pp.144-145. 
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the realist to assume that the correct account of the 11-;" 

quantifier, applied to infinite sets, is that of an infinite 

conjunction. It is the combination of realism about a 

totality - considering it as there before we generate its 

elements - plus unrestrictedqu.a.r\tification on the totality, 

which allows the range of a quantifier in the specification 

of a totality to include the totality itself. 

By 1912 Poincart offers a more precise, more general 

analysis of the concept of impredicativity. Impredicative 

definitions are those which use: 

raJ a relation between the object to be 
defined and all the individual objects of 
a genus of which the object to be defined 
is itself supposed to be a member (or [b] 
of which one supposes to be members objects 
which themselves can be defined only by the 
object to be defined). This is what happens 
if we posit the two following postulates: 

~aJ X (object to be defined) is related 
in such and such a way to all members 
of the genus G. 

X is a member of G. 

Or else the following three postulates: 

lb] X is related in such and such a way 
to all the members of the genus G. 

Y is related in such and such a way 
to X. 

Y is a member of G. 19 

Chihara provides a more modern, more precise characteris-

ation of the logical notion of impredicativity, in terms 

of quantification: 

19 POincart, (1912a), p.70. 
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A specification of a set A by means of the 
schema 

(x) (x 6 A H rPx) 

is impredicative if the set A, were it to 
exist, or any set presupposing the existence 
of A, falls within the range of a bound vari­
able in the specification. 20 

If the range of any bound variable in ¢ has A as a member, 

then the specification via ~ of A is impredicative. 

Finally, Poincar{ relates the impredicativity of a specif-

ication to the presence of a vicious circle, thus 

distinguishing the two notions: 

To the pragmatists such a definition implies 
a vicious circle. It is not possible to 
define X without knowing all the members of 
the genus G, and consequently without knowing 
X which is one of them. 21 

2.2 Russell's account 

Russell's concept of impredicativity is eventually 

expressed in his Ramified Theory of Types (RT). Like 

. '" POlncare's concept, Russell's too evolved gradually out 

of a desire to isolate and exclude the mistake involved 

in producing the paradoxes. The Simple Theory of Types, 

outlined in Appendix B of Russell's volume, The Principle 

of Mathematics 22 , is later rejected by Russell, and the 

more complicated Ramified Theory put forward, for yarious 

20 Chihara, (1973), p.5. 

21 
. /' 

POlncare, (1912a), p.70. 

22 Russell, (1903). 
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reasons (which, I feel are interrelated; and so I will 

not attempt to say exactly which doctrines are a consequence 

of which others, if, indeed, this can be done at all). To 

be sure, a major reason Russell was not satisfied with the 

Simple Theory was that it is not global: it only solves 

the synt?ctic paradoxes, i.e. those which can be construed 

in terms of classes. Whereas, with POincart, Russell saw 

the same mistake at the foundation of all the paradoxes. 

Russell also felt it was necessary for the solution of 

the paradoxes to be a consequence of a more general theory 

(of what it makes sense to say), so that the theory could 

be seen as a logical result, and less arbitrary or ad hoc: 

It is important to observe that the vicious­
circle principle is not itself the solution 
of vicious-circle paradoxes, but merely the 
result which a theory must yield if it is to 
afford a solution of them. It is necessary, 
that is to say, to construct a theory of 
expressions containing apparent variables 
which will yield the vicious circle principle 
as an outcome. It is for this reason that 
we need a reconstruction of logical first 
principles, and cannot rest content with the 
mere fact that the paradoxes are due to 
vicious circles. 23 

And, regarding Poincar~ls "intuitive", anti-logicist solu-

tion", Russell "quips": 

We may concede. that positive errors are less 
likely to emerge, if we only apply our rules 
where "intuition" (i.e. common sense) suggests 
that we may safely do so. But there are some 
people who would prefer true rules of reasoning 
... So long as we only know that a rule holds 

23 Russell, (1906b), p.205. 
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in ordinary cases, without knowing what 
cases are ordinary, our mathematics is in 
a precarious condition. 24 

The theory which excludes the paradoxes must be a result 

of the principles of logicism, for Russell. 

The theory, thus takes the form of a IIno-classes" 

theory, so that it may be construed as a set of logical 

principles. The thought that classes are fictions is re-

inforced by two other problems: (i) because the empty 

set, ¢' is not a collection; and (ii) because singleton 

sets, fa~, are not equivalent to the single elements which 

are their members (la~ ~ a). In addition, Russell was 

perhaps uneasy about the notion of a stratification or 

layering of objects via logic, which is necessary (in the 

Simple Theory) if classes are considered as Frege considered 

them, as objects. There were also problems outside of 

set theory, Russell's solutions of which were related to 

his work on solving the paradoxes. For example, the 

problem of how we can understand sentences which do not 

successfully refer, and what their precise meanings are, 

is a problem which Russell solved by turning from an ex-

tensional to an intensional point of view. That is, "The 

KiDg of France is bald"-problem, which led to the theory 

of definite descriptions, and (then) to the theory of 

substitutions: the two joint precursors to RT. 25 

24 Russell, (1906b), p.l96. 

25 See Russell (1905) and (1906c). 
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Russell wished to eliminate any assumptions in logic 

(and in mathematics), and in the linguistic analysis of 

the meanings of our assertions, about the ontology of 

the universe. He thus needed to analyse all expressions 

in terms of propositional functions, and to restrict the 

ranges of the quantifiers in the expressions of all pro-

positional functions, to those which are meaningful or 

significant for the concepts employed. (So, in effect, 

he agrees with Poincare that at least part of the problem 

of the paradoxes lies in the unrestricted quantification 

employed. Whereas, however, Poincar~ sees this as the 

result of a misplaced realism about (certain) totalities, 

Russell attributes this to logic: to a more general 

mistake to be found in an imprecise analysis of the workings 

of our language.) Due to the theory of definite descrip-

tions classes are analysed as propositional functions, 

and like most nouns (except for "this" and "that") are a 

mere facon de parler. Impredicativity is to be character-

ised in terms of propositions and propositional functions; 

and the VCP is the statement (roughly) that: 

a function is not well-defined unless all 
its [possible] values are already well­
defined. 26 

the values of a function cannot contain terms 
only definable in terms of that function ... 
(llitherwise] the values of the function would 
not be determinate until the function was 
determinate, whereas we found that the 

26 Russell, (1910), p.39. 
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function is not determinate unless its 
values are previously determinate.) 
Hence, there must be no such thing as 
the value for r:p x wi th the argument 
r{Jx, or with any argument which involves 
rj) ~ ••• In fact II q, ( rf:>~) II must be a symbol 

which does not express anything 27 

IIArgumentsl1 for a propositional function are those ex-

pressions which can be substituted for the x in the ¢~, 

or are those which fall in the range of any bound variables 

in ¢ . Thus, for Russell, a predicative definition is a 

propositional function (or proposition) which accords with 

RT. 

A predicative function of a variable argument 
is any function which can be specified without 
introducing new kinds of variables not 
necessarily presupposed by the variable which 
is the argument. 28 

In other words, for Russell, the statement of some univers-

ally quantified expression for example, presupposes the 

prior existence of a domain of objects (or expressions) 

which mayor may not be instances of the expression in 

question (which are possible arguments for the function). 

And no quantified expression can include itself in its 

range of possible arguments, or instantiations, because a 

quantified expression cannot meaningfully presuppose the 

prior determinacy or existence of itself. The instances 

which would in general make a specification impredicative 

27 Russell, (1910), p.40. 

28 Russell, (1910), p.54. 
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are thus not possible arguments for the propositiunal 

function. They are "values of x with which' cPx' is 

meaningless".29 

Whatever the merits of Russell's expression of the 

concept of impredicativity, the full programme CRT) - of 

which the VCP is a consequence - cannot be accepted. It 

does not accord with his logicism, for it is not logic, on 

any augmented account. His rejection of all existential 

assumptions about the ontology of the universe is bought 

at the cost of parallel assumptions about the nature of 

our concepts. These are embodied in the necessary axioms 

of Infinity - whereby it is possible to have infinitely 

many arguments in a truth-function - and Reducibility -

the assumption that there is always a primitive predicate 

corresponding to each defined symbol in the hierarchy; an 

assumption which is, in effect, equivalent to the ontological 

assumption of the existence of a set of real objects as 

arguments for every symbol. In addition to the "non-logical" 

nature of these axioms Poincart objects that a logicism 

embodied by a theory like RT is circular. For RT pre-

supposes the theory of ordinals already to be established: 

it requires functions the specifications of which can refer 

to all finite orders. And thus, RT is giving up and not 

expressing logicism, as Russell had intended it to, for 

29 Russell, (1910), p.41. 
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it shows that a theory of arithmetic is prior to the 

formalisation of language proposed. 

(3) The Objection to Zermelo's Solution 

On Zermelo's view, the paradoxes result from allowing 

the consideration of sets which are simply too "big", i.e., 

the size of the universe. The totalities which are referred 

to in the contradictory specifications can be thought of 

as the size of the universe because they are unextendable 

(Fraenkel's metaphor). They are closed under diagonalis-

ation; so we do not "get out" of them via certain 

diagonalising operations, as in the characterisation of 

e* in Richard's antinomy. Zermelo's solution is to lay 

down explicit axioms whereby a universe of sets isomorphic 

to Cantor's transfinite hierarchy can be produced; but 

where none of the problematic "too big", absolutely in-

finite sets can be produced. 

Poincar~ objects, however, that Zermelo's diagnosis 

of the paradoxes - that it is a matter of the size of the 

totalities referred to - is simply wrong. On his view -

on his interpretation of Zermelo's argument - the argument 

for a "limitation of size" principle, turns on a mis­

assimilation of the two distinct classes of impredicativity.30 

30 "La raison invoquee par M. Zermelo ne saurait donc suffire pour 
.justi fier l' emploi des definitions 'non predicatives' car 
l' assimilation qu' il fait est inexacte." (Poincare", (1909a), p .119. ) 
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/ 

Poincare admits that there are harmless impredicative 

specifications; so he agrees that there is no justification 

for excluding all impredicative characterisations. But 

the distinction between the harmless and the harmful im-

predicative specifications, does not lie in the size of 

any totality which is presupposed (referred to) in the 

specification; but rather in the issue of whether or not 

the totality referred to has been previously defined. That 

is, if our definition (of an object in terms of a collection 

to which it belongs) is not a construction, is not creative, 

then the impredicativity is harmless: not viciously circular, 

and not paradoxical. It is only when both the object to 

be defined and the totality to which it belongs are being 

defined (generated, constructed) for the first time, that 

impredicative specifications must be disallowed. 31 

However, Poincart's distinction between harmless and 

harmful impredicative specifications depends on his possess-

ing a sharp distinction between creative and non-creative 

specifications. And Zermelo, not being (any sort of) a 

constructivist, does not share such a distinction. On his 

view, there is no profound difference between creative and 

non-creative definitions. And thus, the distinction 

between the two classes of impredicative specifications 

must lie elsewhere: for him, in the extensional matter 

of the size of the collections to which the specifications 

31 This - Poincarl's diagnosis and solution - will be discussed at 
length in Section 4, below. 
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refer. Cantor's idea that every well-founded property 

determines a set is not really captured by Russell's compre-

hension principle, 

nor by Frege's class existence principle, 

r x : f ( x ) ~ = [x: g ( x ) ~ ~ \/x (f ( x) ~ g ( x ) ) . 

" Whereas Poincare accepted Cantor's intuitive comprehension 

principle - where the well-foundedness of the q; (i.e., 4 must 

be predicative when the specification is creative) is what 

obviates the contradictions - Zermelo focuses not on the 

nature of the ~, but on the nature of the range of cp. 
His solution is simple: let us merely stipulate that the 

range of + is not "too big", by requiring that q; determine 

a subset of some independent set z: 

'..J z 3 y Vx (x E. y H (x e z & ¢ ( x) ) • 32 

Thus, we ensure that the set y is small with respect to 

the set-theoretic universe, for it is always a subset of 

(and so either the same size or smaller than) some other 

accepted set z. This, in effect, stipulates that no specif-

ications are "creative" in Poincar~'s sense, for we (suppose 

we) always already have all the objects which might have 

the property ~ . 

32 Kunen, (1980), pp .10-11. 
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Although Zermelo's system - in particular his revised 

comprehension schema (RCS) - does succeed in blocking the 

derivation of a contradiction from the impredicative 

/ 

properties of the syntactic paradoxes, Poincare could not 

accept it as really solving the paradoxes. The problem 

with the paradoxical totalities may be that they are too 

big, and so contradictory; but this "diagnosis" does not 

address the question of the true origin of the problem. 

What makes them too big in the first place is the question 

to which Poincare demands an answer. For him, the answer 

is the ineliminable impredicativity, or vicious circularity, 

of their specifications. 

. / POlncare sees something common in all the paradoxes -

finite/infinite, syntactic/semantic - and he was the first 

to globalise Richard's diagnosis (of his own paradox).33 

The mere size of a collection cannot be the whole problem, 

for, as Russell pointed out 34 , there are paradoxes which 

do not even concern a collection (e.g., the liar). Con-

cerning those paradoxes which do involve a reference to a 

collection, Poincare. correctly sees the problem as one of the acceptance 

33 See Section 2.1, above. 

34 Russell, (1906b), p.197. 
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of totalities with imprecise, unfixed, indeterminate 

boundaries, frontiers or walls. 35 

A "non-predicative class" is not an empty 
class, but a class with uncertain boundaries. 36 

To be sure, sets which are "too big" according to Zermelo's 

account, will have uncertain boundaries - because, in 

effect, they have no boundaries at all (being the size of 

the universe). However, the sets which are too big in an 

intuitive sense do not seem to exhaust all those with 

uncertain boundaries. So, Zermelo's solution is not in-

tuitively satisfying, for he merely blocks the paradoxes 

by blocking one symptom of the problem (sets which are too 

big), rather than solving the paradoxes by looking for 

their true origin. 

In addition, Poincar~ objects that the axioms themselves 

are not "intuitive" - i.e., they do not demand immediate 

assent in virtue of our concept of set alone. Thus, an 

argument to the effect that the axioms are true, are faithful 

to our pre-formal concepts of set and of object, is required. 

But on Poincar~'s view the arguments Zermelo provides 

(concerning the source of the paradoxes, concerning Russell's 

comprehension schema) are misleading. 

Mr. Zermelo does not allow himself to 
consider the set of all the objects which 

35 The nature of such "geographical" metaphors is discussed in 
Section 4, below. 

36 Poincare", (l906b), p.191. (My emphasis.) (Quoted more fully 
below, pp.158-159.) 
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satisfy a certain condition because it 
seems to him that this set is never 
closed; that it will always be possible 
to introduce new objects (to the range of 
¢]. 37 

Poincar{ interprets Zermelo's argument for his ReS as 

pointing out the need for determinate boundaries on the 

range of p in any set specification. However, the mere 

stipulBtion of the existence of the set z on which ~ is 

defined does not show that the set y, which the schema 

asserts exists, is small, or closed in our intuitive sense, 

because the set z might already be too big. 

There are two points here. First, there is no way to 

tell what the nature of z is. It might very well be the 

case, given the aXloms of infinity and power set, that z 

/ 
is already too big on Poincare's conception of set (as 

constrained by our iterative intuition). Thus the fact 

that the set y is a subset of z does not reassure us that 

Y is "small", does not "contain" y, for y could be the 

same size as z - i.e., too big. 

Mr. Zermelo has no scruple in speaking 
of the set of objects which are a part of 
a certain Menge M and which also satisfy a 
certain condition. It seems to him one 
cannot possess a Men~e without possessing 
at the same time all its elements. Among 
these elements he will choose those which 
satisfy a certain condition ... without 
fear of being disturbed by unforeseen 
elements, since he already has all these 
elements in his hands. By positing before­
hand this Menge M, he has erected an 

37 Poincare', (1909b), p.59. 
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enclosing wall which keeps out intruders 
who could come from without. But he does 
not query whether there could be intruders 
from within whom he enclosed inside his 
walls. If the Menge M possesses an in­
finite number of elements, this means not 
that these elements can be conceived of 
as existing beforehand all at once, but 
that it is possible for new ones to arise 
constantly; they will arise inside the 
wall instead of outside, that is all. 38 

That is, for Poincar:, postulating the pre-existence of 

the set z does not ensure that the specification of y is 

not in some sense creative, especially if z is infinite 

if all the elements of z may not be considered as pre-

existing. Furthermore (second), given the independence 

of the (general) Continuum Hypothesis from ZFC 39 , z (or 

'"X. 
2 I b) can b e as big as 0 n eli k e s . But t his now vi 0 I ate s 

all our intuitiqns concerning what is closed or determinate. 

For Poincar{, what is closed or determinate, or an 

acceptable set, is not what is merely extendable according 

to the axioms of ZFC. The mere availability of iterations 

of the axioms to produce bigger, more extensive sets than 

in the previous stage of iterations of tithe set of ... tI, 

is not sufficient to show that +0(,", eC\.Gh se.+ -th;....s o\Ota...iV\.ed-

at every stage - we only have determinate, acceptable, 

"small" sets. To show that an arbitrary Zermelo set is 

extendable, one must indeed presuppose that the axioms 

38 P · / olncare, (1909b), pp.59-60. 

39 Cohen, (1963),highlights the drama of this situation with his 
"forcing" technique. 
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(e.g., of separation) are applicable. (For example, in 

s how i n g t hat a set, x, is ext e n da b 1 e by 11 d i ago n ali sin g 0 u t " 

of it, one requires the axiom of separation to form a subset 

of X.40) However, this is not to show, but to presuppose, 

to proclaim that the Zermelo sets are determinate. That is, 

crudely, showing that a set is extendable depends on Zermelo's 

own characterisation of extendability as embodied in his 

axioms. But establishing the acceptability of (the sets 

which are produced by) his axioms was the whole point of 

the argument concerning extendability. The base case of 

the collection of Zermelo sets would be the first application 

of his axioms, i.e.,:p(IN). But the acceptability of this 

set is precisely what is in need of justification. For 

Poincar~ the base case is too big; so that showing that 

iterations of the axioms does not take us out of the domain 

of such acceptable sets is to show nothing. And even re-

gardless of Poincar:'s views on the constraints imposed by 

our iterative intuition, there seems to be no non-arbitrary 

way to evaluate the (cardinal) size of this set (the base case); 

so calling it small is to presume and not to show that Zermelo 

sets are all small. 
/ 

Thus, Poincare says: 

A classification was relied upon which was 
not immutable and which could not be so; 
the precaution was taken to proclaim it 
immutable; but this precaution was in­
sufficient. 41 

40 See Hallett, (1984), Chapter 5, especially p.204, for a more 
detailed argument. 

/ 
41 Poincare, (1909b), p.45. 
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Therefore, not only do Zermelo's axioms violate our pre-

formal concept of set; his arguments for his axioms are 

circular. For there is no way to argue, as Fraenkel attempted 

(as shown by Hallett), for the thesis that mere extendability 

captures our intuitions concerning the determinacy of a set, 

without presupposing that the ability to diagonalise out 

shows a set to be determinate, i.e. not too big already. 

. / 
For POlncare, therefore, the Zermelo axioms are insufficient 

both formally and intuitively. 

This is why Mr. Zermelo's axioms could not 
be satisfactory to me. Not only do they 
not seem evident to me, but when I am asked 
whether they are free from contradictions, 
I shall not know what to answer ... even 
though he has closed his sheepfold carefully, 
I am not sure that he has not set the wolf 
to mind the sheep. 42 

(4) POincart's Diagnosis and Solution of the Paradoxes 

Poincar~ rejected Zermelo's solution of the paradoxes; 

yet there is something right in Zermelo's diagnosis that 

Poincare accepts, and that is the recognition that the mere 

presence of impredicativity is not sufficient to explain 

the paradoxes. 

4.1 Circles, vicious Circles, and two types of definitions 

All impredicative definitions are circular, for they 

define an object in a way which is "self-referential": the 

/ 
42 Poincare, (1909b), p. 60. 
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definition of the object X either refers directly to 

X, or it refers to a different mathematical object Y, 

the existence of Y presupposing the existence of X. 

However, not all circles are vicious, and not all impred-

icative definitions are viciously circular or paradoxical. 

For example, "tallest man in the room" is impredicative, 

for it picks out a man, the tallest one, via a relation 

(the relation being "taller than") between the man and 

all the members of the totality, men in the room. But 

the object of our definition is a man in the room, so he 

is a member of the totality via which he is defined. So 

this definition is impredicative. However, it is by no 

means viciously circular. It is meaningf~l for via it 

we can pick out, deterministically, the object (the man) 

which satisfies the specification. Impredicative specif-

ications are common in everyday speech: "Out of all 

the horses I prefer the bay with the white socks"; " 

the chair (out of all the chairs in the room) with the 

high back"; "the chapter in this thesis which concentrates 

most on impredicativity". It is because the objects in 

the totalities of the "everyday" specifications are 

empirical, because the collections are finite and survey-

able, their existence independent of the specifications, 

that the circularity presents no epistemological problem 

whatever. Now, the distinction between objects which we 

need to create or construct, and objects which exist 

independent of u~, or which have already been constructed, 

/ 
is central to Poincare's philosophy; and it plays a 
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crucial role in his solution of the paradoxes. 

Poincar~ is some sort of a constructivist (a neo-Kantian 

sort), and thus he claims that a mathematical "object 

exists only when it is conceived by the mind".43 So 

the specification which makes the object exist (in the 

mind) must accord with the apriori conditions of the mind 

(i.e., logic plus the apriori forms of intuition) in order 

for the specification to be meaningful and succeed in 

denoting a determinate object. 

X exists only by virtue of its definition~ 
which has meaning only if all the members 
of G are known beforehand, and X in particular. 
It would be useless to say ..• that it is not 
a vicious circle to define X by its relation 
to X ••• 44 

Imp red i c a ti ve s p e c i f i cat ion s fa i 1 t 0 fi x a d e t e r min ate 

mathematical object because, in the absence of any prior 

such fixing, it is impossible to construct a (new) math-

ematical object by virtue of an impredicative definition. 

GBdel makes the following famous remarks on definitions 

which are constructive or creative, i.e., definitions 

which specify objects which are constructed by ourselves: 

43 

44 

In this case there must clearly exist a 
definition (namely the description of 
the construction) which does not refer 
to a totality to which the object defined 
belongs, because the construction of a 

/ 
Poincare, (1912a), p.72. 

'" Poincare, (1912a) , p.7l. 
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thing can certainly not be based on a 
totality of things to which the thing 
constructed itself belongs. If, however, 
it is a question of objects that exist 
independently of our constructions, there 
is nothing in the least absurd in the 
existence of totalities containing members, 
which can be described (i.e. uniquely 
characterised) only by reference to this 
totality. 45 

It is only when the totalities need to be constructed, 

when the definitions are creating the objects, that impred-

icative specifications are an issue. It is thus that 

Russell's famous informal statement of the VCP, which is 

really two, non-equivalent statements, depends upon a 

constructive point of view. Russell states that certain 

sorts of objects, e.g., "propositions, classes, cardinal 

and ordinal numbers, etc. represent illegitimate totalities, 

and are therefore capable of giving rise to vicious circle 

fallacies".46 On his view the paradoxes, 01' vicious 

circles, arise as a result of assuming the existence of 

such illegitimate totalities, an assumption which is realist, 

in essence. And the acceptability of Russell's solution 

requires a non-realist point of view (in keeping with his 

no-class theory whereby classes are mere fictions). 

The principle which enables us to avoid 
illegitimate totalities may be stated as 
follows: "Whatever involves all of a 
collection must not be one of"the collection"; 
or, conversely: "If, provided a certain 

45 GCldel, (1944), p.456. 

46 Russell (1910), p.38. 
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collection had a total, it would have 
members only definable in terms of that 
total, then the said collection has no 
total. 47 

The "involvement" relation in the first statement is im-

precise; and in the absence of constructivist constraints, 

it is unclear why there is anything wrong with one of a 

collection involving all of the collection. The second 

statement is better in its emphasis on "~ definable", 

but there is still no argument here for accepting it in 

the absence of anti-realist presuppositions, i.e., in the 

absence of Russell's whole theory. We must be constructing 

the collection which has members only definable (i.e., 

only constructible) in terms of the collection, in order 

to explain our rejection of the existence of the totality. 

The contrast with realism is the following. I four 

conception is non-constructive, and sets - like men -

exist independent of our specifications, then how we define 

the sets is independent of the matter of their existence. 

ao, on the face of it at least, impredicativity does not 

need to be a concern for the Platonist. However, if our 

conception is constructivist, or non-realist, and sets, 

unlike empirical objects, exist only insofar as we define 

or can define them; then, no matter how far we extend 

the strength of "can" here (thereby strengthening the 

notion of constructibility), we can never accept the 

47 Russell, (1910), p.37. 
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existence of a set the construction of which is only 

characterisable by an impredicative specification. Thus, 

"all of a collection must not be one of the collection" 

only when both the element and the collection to which it 

belongs require each other for constructibility. For then 

neither will be constructible due to this "vicious circle". 

Commenting on the paradox of "the smallest integer which 

cannot be defined by a sentence with fewer than one hundred 

/ 
French words", Poincare provides an insightful analysis 

of ~ the impredicativity here leads to a vicious circle: 

This reasoning rests on a classification 
of integers into two categories: those 
which can be defined by a sentence with 
~ewer than one hundred French words and 
those which cannot be. In asking the 
question, we proclaim implicitly that this 
classification is immutable and that we 
begin our reasoning only after having 
established it definitively. But that is 
not possible ... the classification of 
numbers can be fixed only after the 
selection of the sentences is completed, 
and this selection can be completed only 
after the classification is determined, 
so that neither the classification nor 
the selection can ever be terminated. 48 

It is the old "chicken and the egg" question, which has 

no answer, since each object seems to require the other for 

its existence. This is what the "only definable" in 

Russell's statement is meant to capture: that the said 

48 Poincar~, (1909b)" p.46. 
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collection of elements does not exist relative to some 

other definition in a prior theory. And it is because it 

does not exist in virtue of some other fact - e.g., those 

embraced by Platonistic assumptions - that the postulate 

is "creative fl or constructive, and thus that it must be 

predicative. (Thus, one of GtJdel's criticisms of Russell's 

RT 49 is that the strongly non-constructive axioms of in-

finity and reducibility violate the constructive presuppos-

itions necessary for accepting his version of the VCP.) 

4.2 Poincare's conception of set as constructed entity, 

and his "True Solution,,50 

Poincar~'s solution of the paradoxes relies explicitly 

on his constructivism, to which he remained faithful. 

Interestingly, he accepted Cantor's "intuitive axioms",51 

and he was in general in favour of increasing precision in 

mathematics. But the formal definitions cannot replace 

the intuitive notions; and the axioms are only true in 

intuitive domains: i.e., domains which are constrained by 

(his neo-Kantian) constructivist principles. 52 It is thus 

49 

50 

51 

52 

Gtldel, (1944). 

The title of a section in his (l906b), p.189, is "The True Solution". 

. "" POJ.ncare, (1905b), P .159. 

"It is true that Cantorism has been useful, but that was when 
it was applied to a real problem, whose terms were clearly defined, 
and then it was possible to advance without danger." (Poincare, 
(1906b), p.195.) 
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that his solution of the paradoxes did not require him 

to alter or add to his principles, for some theory of 

predicativism is already entailed by his theory of meaning 

(whereby we must "verify" or prove that any definition of 

a new entity is consistent), and by, in general, his 

constructivism. Sets are constructed objects, formed by 

"the set of .. , ". oper~tion, with respect to some property 

or properties of previous well-defined, determinate 

objects. The existence of a set requires that ~ construct 

it by virtue of a definition which collects together its 

elements, or (when the number of elements is infinite) 

by virtue of an iterative generating rule. In order for 

the set to be determinate, the rule must be determinate, 

the definition must "collect together" the elements in a 

determinate way. Thus, the nature of the characterisation 

of an object is relevant to the question of the existence 

of the object. If the characterisation is viciously 

circular (if it is impredicative and the totality to which 

it refers does not exist independently of the specification), 

then whether or not we know that certain objects Qre 

members - e.g., it is determinate that 1, 2 and 3 will 

be members of the totality E in Richard's paradox - it is 

impossible to possess a determinate conception of all 

the members of the totality; for its boundaries are in-

determinate. 

A definition which contains a vicious 
circle defines nothing '" It is not 
a question of knowing whether this class 
is empty, but whether it can be rigidly 
delimited. A "non-predicative class" 
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is not an empty class, but a class 
with uncertain boundaries. 53 

Impredicative definitions are unfaithful to our under-

standing of an object, not because they fail to pick out 

any members, but because they fail to fix the boundaries 

of the set of members they purport to pick out. 

Objects ~ objects have determinate, definite 

"boundaries". This is just what we mean by an object. 

the determinacy is not provided by the empirical world, 

If 

then in order to consider a concept as determining a well-

defined, bona fide object, we must contribute the determinacy 

ourselves. Since, for Poincare, mathematical sets are 

constructed objects, we must ensure that our specifications 

denote only determinate sets, with precise definite 

boundaries. According to Poincare this means we can only 

consider sets which are predicatively specifiable in a 

finite number of words. A set will be determinately 

specified if the oature of all its objects, if the structure 

of the "container", can be determinately specified. Let 

us return to the container metaphor of Chapter 5 to ex-

" plain Poincare's conception of a closed, determinate set. 

A set is like a container or box with just enough room 

or places to hold all and only the objects which are its 

members. A set is determinate when all of its spaces have 

53 Poincar{, (1906b), p.191. (My underlining.) 
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been filled, or when there is a general rule governing 

the way in which we put or generate the objects in the box. 

In virtue of arithmetic intuition we can treat potential 

infinities as completed - as if the container was filled. 

That is, via our understanding of an iterative rule we 

can "gloss over" all the elements which have not been 

generated, or put into the box, "pretend" that they are 

there, and close the box: put its lid on. Thus, for 

/ 

Poincare, the determinacy criterion for the acceptability 

of a set specification means that the set can be completed, 

either actually or via apriori intuition, and then con-

sidered closed because all of the members have been, in 

general, determined. "The set of ... " operation is in 

general limited to those rules which can be closed via 

apriori arithmetic intuition, or enclosed between two 

brackets: [0, 1, 2 ... n, ... j. In addition, he permits 

a special "set": the set of points on the geometric 

continuum, the set of real numbers, as a primitive object 

of intuition - not characterisable by a rule - as an object 

of apriori geometric intuition. (The finite numbers are 

primitive and immediate objects of intuition.) 

This conception of sets, however, automatically excludes 

the harmful impredicative specifications from being meaning-

ful. In order to define a new entity by referring to a 

set, the set must be a determinate object; we must be able 

to think of it as closed or completely filled "with its 

lid on", either because it is finite or in virtue of apriori 

intuition. This is an anti-Platonist or anti-Cantorian 
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(constructive) view, for according to Poincar~, a totality 

cannot be considered as given independently of its members. 54 

So in order to have a totality (in terms of which to specify 

an object) we must have all its members, and this must be 

minimally guaranteed in the intuitive, neo-Kantian sense. 

Thus, if a characterisation, of~, is creative, and if it 

refers to a totality, X, what ~ cannot be is one of the 

elements of X. For, by hypothesis, X is already completely 

filled, with its lid on, i.e., closed. 

This reasoning rests on a classification 
In asking the question, we proclaim 

implicitly that this classification is 
immutable and that we begin our reasoning 
only after having established it definitively 

55 

Thus any specification which is creative, and which is in 

terms of the whole of a totality, must be one whereby we 

"diagonalise out" of the totality. The only condition 

under which a specification can be acceptably impredicative 

is when it is not creating a new member (of the totality), 

but merely picking out one of the members already (created) 

in X. In this way, it already being in the box, we do not 

have to disrupt any elements to put it in. Moreover, on 

this conception, what can never be acceptable is a set 

belonging to itself, as in the set of all sets, or the 

54 Heinzmann, (1985), p.60. 

55 Poincare', (1909b), p.46. Quoted more fully above, p.156. 
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application of "the set of ... " applied to the collection 

of all ordinals. These impredicative specifications do 

not arise because one cannot put a box into itself. Im­

predicative specifications are thus allowed only when 

they are of the harmless variety, i.e., when they are 

non-creative. For then the totality can be thought of 

as completed, the box closed, and the specification in 

terms of all the members of the totality can only pick out 

an existing member, and never add a new member to the box. 

Therefore, the contrast between creative and non­

creative specifications was central for Poincar{, and it 

is not a distinction merely between empirical and non­

empirical domains. Even within constructive (i.e., non­

Platonist) mathematics a distinction between creative 

and non-creative definitions can be sustained. Creative 

definitions are postulates which introduce a new domain: 

e.g., the use of the addition of the root of a natural 

number which has no rational square root (like 'f2, V) 

to generate the surd field: a+bU for a, b E (Q; and 

the addition of ~ to form the field of complex numbers: 

a+bi for a, b ~ ~. Non-creative definitions do not 

introduce or form a new object or domain, so that impred­

icativity can be tolerated, as in the following examples: 

the impredicative least upper bound theorem; and the 

impredioative specification of the neutral element of a 

group.56 

56 Heinzmann, (1985), pp.42-43. 
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The non-creative specifications will sustain impredic-

ativity without paradoxical consequences because the 

specification of an element e in terms of all the elements 

in a collection E (one of which is e) comes after the 

specification of E (which must be determinate). Thus, 

we would have independent access to all the members of E, 

including e, by virtue of the specification of E; so we 

may pick e out via reference to all the elements of E. 

It must here be noted that "independent access", for 

Poincar{, includes not only explicit, prior constructions, 

but domains which are given primitively, in apriori in-

tui tion as well - like N and ~. And it is in virtue of 

his theory of the synthetic apriori, i.e., arithmetic plus 

geometric intuition, that Poincar{ can accept the least 

upper bound theorem in the same way that he can accept a 

specification like fx: Neither presents 

any epistemological problems, because the totalities 

referred to - If-? and \N - "exist" (in intuition) before 

the impredicative specification. 

, , . 
Plus generalement, Sl nous envisageons un 
ensemble E de nombres reels positifs, par 
exem~le, on peut demontrer que cet ensemble 
posse de une limite inferieure e; cette 
limite inferieure est definie apr~s l'ensemble 
E; et il n'y a pas de petition de principe 
puisque e ne fait pas en general partie de E. 
Dans certains cas particuliers, il peut 
arriver que e fasse partie de E. Dans ces 
cas particuliers, il n'y a pas non plus de 
petition de principe puisque e ne fait pas 
partie de E.en vertu de sa definition,mais 
par sui te d I une demons t ra ti on pos;!. er i eure 
a la fois a-la definition de E et a celIe 
de e. 57 

57 Poincar{, (1909a), p.119. 
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Impredicative specifications are paradoxical when they 

refer to totalities which do not (yet) exist as closed, 

determinate sets. Thus the paradoxical cases arise as a 

result of a misplaced realism about the existence of such 

totalities, or about the objectivity of truth of any 

statements concerning all of the members of such a totality. 

For example, neither the totality of sets, nor the totality 

o f sub set s 0 f tN ( for a 11 the sub set s w 0 u 1 din c 1 u d e all 

the arbitrary infinite subsets), are intuitive mathematical 

objects for Poincar~. So any "semi-realism" (or realism) 

about these collections is illicit, and any impredicative 

specification which presupposes the determinacy of such a 

collection is unjustifiable. " This is Poincare's objection 

to the set-theorists: when the totality of real numbers 

is construed as a totality of arbitrary sets (of natural 

numbers, or arbitrary Dedekind cuts, for example) the im-

predicativity in the specification of the least upper bound 

is no longer acceptable. This is because in the absence 

of apriori geometric intuition, we no longer have a determin-

ate totality of real numbers which can be thought of as 

"closed", because every formal characterisation of the 

classical totality will require the acceptance of inelimin-

ably impredicative specifications. So to attempt to replace 

geometric intuition with a formal notion like least upper 

bound (which guarantees the nature of the classical 

continuum - i.e., that there are no gaps in principle) is 

illicit, for it is ,to remove the totality which forms the 

only foundation we can have for the impredicative specification 



165 

of least upper bound. 

Furthermore, PoincareS"s "solution" can be understood 

as global if one interprets the semantic paradoxes (as he 

see me d to, e. g., in his (19 09 b ) as in vol vi n 9 the (m is p 1 ace d ) 

assumption of a totality of semantic objects. For example, 

the Grelling paradox of heterologicality can be taken as 

a paradox in second order logic: 

(\}oI.) (Het (O{)H -O«o{»). 

An adjective, 0(, is heterological if and only if it does 

not apply to itself. For example, "big" is heterological 

because "big" is not a big word; but "small" is not hetero­

logical (it is autological) because "small" is a small word. 

The paradox arises under the Platonist assumption that it 

is a determinate matter in every possible case whether or 

not an adjective is heterological; that is, under the 

Platonist assumption of the existence of a determinate 

totality of adjectives in terms of which we can define 

"heterological" . But "heterological" is an adjective, so 

it must already be in the "container" of all adjectives 

so the paradox arises thus: 

Het (Het) H - Het (Het). 

And the impredicativity of the specification of "heterological" 

is ineliminable, for "heterological" can only be defined in 

terms of such a totality, it being a property of adjectives. 

Now, Poincar{ would object that the (second order) 
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assumption of a container of all adjectives is illicit. 

No such determinate collection exists. And since it is not 

a primitive object of apriori intuition, any specification 

which presupposes the determinacy of such a collection is 

not meaningful. 

Whereas we have a clear grasp of certain (infinite) 

totalities of finite numbers, as a consequence of our 

general intuitive grasp of "finite numbers", we have no 

intuitive grasp of the set-theoretic notion of arbitrary 

set or collection (nor of the semantic notion of, e~g., 

arbitrary adjective). The totality of all sets does not 

exist previously or primitively in intuition - nor can we 

construct it, or characterise it l'from below" via accept-

able (exhaustive) operations. Thus, from a neo-Kantian 

constructivist p~int of view, any specification, any bound 

variable in a defining condition, ¢, which ranges over 

sets, must range over totalities of sets which are previously 

defined in an explicit way. This makes available a general 

notion of the set, and so, an understanding of an arbitrary 

member, thus enabling the set to be an object of intuition. 

The set must be an object of intuition in order for state-

ments about the set to be verifiable, P · / as Olncare's theory 

of meaning requires. Poincar~'s constructivism, therefore, 

which he explicates in terms of a theory of verifiability 

in principle, automatically excludes the problematic im-

predicative characterisations: they are not meaningful. 

An object defined by a specification, ¢, cannot be in the 
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range of any quantifier of its defining condition, nor 

can it be a member of a totality which is in the range of 

a quantifier in p, unless it is a member of a totality to 

which we have independent and prior access - either relative 

to a prior postulate or theory, or when the totality is a 

primitive object of apriori intuition. The specification 

is simply not meaningful otherwise. For Poincar~, the 

nature of our minds, i.e., the synthetic apriori form of 

experience, determines "the true solution" of the paradoxes; 

for it determines what is to count as a meaningful mathemat­

ical specification. His theory of meaning is one arena in 

which he grounds the rejection of the unacceptable cases 

of impredicativity. Both his theory of meaning and his 

theory of impredicativity, however, are to be found in the 

conclusions of a very general constructivism, interpreted -

as it must be for Poincar~ - in the light of what is 

guaranteed by apriori intuition. 

ation of the central notion in 

I now turn to an examin­

POincart,s theory of meaning: 

the notion of verifiability in principle. 
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In Chapters 4 and 6 I showed how Poincare's predicativist 

account of mathematics was a consequence of his particular 

theory of meaning. The central component of his theory 

of meaning is the notion of verifiability in principle. 

This notion is, however, far from unproblematic; and we 

must now enquire as to whether it is coherent. If verifi-

ability in principle - also constructible in principle, 

provable in principle, decidable in principle - cannot 

be given a clear sense, then that which is the very corner­

stone of Poincart's philosophy of mathematics is possibly 

empty, and the whole edifice crumbles. Hence, we must 

argue that his verificationist theory of meaning, interpreted 

in the light of his background claims concerning the 

synthetic apriori, provides a workable account of the 

foundations of analysis. 

/ 
As discussed in Chapter 4, Poincare's notion of 

understanding - that we must understand in terms of 

"pictures" - is not verificationist in the classic logical 

positivist sense. Our concepts do not have to be reducible 

to ostensive definitions, or to terms which have only 

empirical content. Our concepts can also irreducibly refer 

to apriori, non-empirical "pictures": that which we can 

"represent to ourselves". This aspect of his theory of 

meaning is directly culled from Kant, and it informs, in 
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particular, the central component of veri fiabili ty in principle. I 

will now take it that the existence of such apriori 

"pictures" is accepted, so that we can proceed with the 

present aim: to investigate the notion of verifiability 

in principle (in the light of the theory of the synthetic 

apriori), as it functions in Poincar~'s theory of meaning. 

(1) 
/ 

Poincare's Criterion of Meaning 

/ 
There are two distinct thoughts in Poincare's account 

of the meaningfulness of mathematical statements. These 

are related, but they need to be distinguished. First, 

claimants to mathematical truth must be in principle 

provable. If a statement is mathematically meaningful, 

there must be nothing which in principle bars the possib-

ility of proof. This is because Poincare rejects verification 

transcendent truth in mathematics. There is no coherent 

notion of mathematical truth which transcends all (however 

"informal") methods of proof. 

Second, mathematical statements must be "verifiable". 

By this Poincar~ means that a proposed theorem must have 

an instantiable content. There must either exist a 

procedure, or computation, which shows that at least one 

instance of a general claim is true (or which refutes it); 

or, we must have some conception of what would constitute 

either a verification of an instance of the claim, or a 

refutation of it. ' This second idea is the more philosoph-

ically important one, and will playa crucial role in 
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securing both Poincart's acceptance of potential infinities, 

and his attack on the existence of uncountable collections. 

Hence, the important notion in his theory of meaning is 

verifiability in principle. It is the claim of this 

chapter that such a conception can arise and withstand 

criticism only on the basis of the apriori forms of in-

tuition. It is to an examination of this criterion to 

which I now turn. 

(2) How Poincar{ Employs the Notion 

Poincar~ requires of mathematical statements that 

they be verifiable; otherwise, they are meaningless. 

When a theorem is brought to (my] attention 
without giving [me] a means of verifying it, 
[I) see in it only unintelligible verbiage. 1 

Every mathematical theorem must be capable 
of verification. When I state this theorem, 
I assert that all the verifications of it 
which I shall attempt will succeed; and 
even if one of these proofs requires efforts 
which exceed the capability of a man, I 
assert that, if many generations, one 
hundred if need be, deem it appropriate to 
undertake the verification, it will still succeed. 
The theorem has no other meaning and this 
is still true if we mention infinite numbers 
in its statement. 2 

The statement of a theorem just is the statement that 

1 
, 

Poincare, (1912a), p. bb. 

2 
- / POlncare, (1909b), p. 62. 
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every instance is verifiably true. By verification of 

a theorem Poincar~ means a proof that the mathematical 

statement is true for at least one instance of the domain 

to which it refers. Lack of a general proof does not imply 

that a statement is meaningless; this would be far too 

strong. Rather, lack of a means of showing a statement 

is true or false for one instance, implies that it is 

meaningless. Fermat's last theorem is not yet proved, 

but it is unquestionably meaningful. And the reason this 

is so, is that we show by a finite decidable procedure 

an arithmetic computation - that an instance verifies the 

general statement. Though we have no formal proof that 

there are no n's greater than 2, such that 

xn + yn = zn, for x, y, z, n integers; 

we can show within Peano arithmetic that it is true for 

an instance. Thus, 

and this confirms or verifies the theorem, because it 

instantiates the general claim. For POincart, the fact 

that we can consider an instantiation of the general claim 

guarantees that the claim has determinate content. That 

is, the verifiability of a claim shows that it is in 

principle provable (or refutable in general)~ 
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(3) A Precise Statement of the General Requirement of 

Verifiability in Principle 

Let us attempt to generalise Poincar~'s notion of 

"verifiable" in a way which would apply to any sort of 

statement. We will contrast "verifiability in principle" 

with "verifiability in practice". 

(i) To say that a statement, S, is decidable or 

verifiable in practice is to say that we can actually 

position ourselves so as to be in a state of information 

which enables us to decide (or provide evidence for) the 

truth-value of S. 

(ii) To say that S is decidable or verifiable in 

principle is to say that it is not impossible to be in 

a state of information in which we can decide the truth 

value of S. That is, we can envision indefinite, but 

finite, extensions of our actual state of affairs or 

circumstances - such as time available, or powers of 

memory - such that if these were to obtain then we would 

be ~n a state of information which would enable us to 

decide upon the truth value of S. There must be nothing 

which in principle bars a decision; only our own actual 

limitations can be seen as preventing the decision. 

The reason verifiability and provability is so important 

I 
to Poincare is because there is no such thing as a math-

ematical fact which is completely independent of actual, 

or in principle, possible mathematical activity. Meaning 

must be linked with practice. So - contra classical 
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realism - statements, which are in principle beyond the 

verification capacities of ~ finite being, are meaningless 

because they are in principle undecidable. If a ~t8tement 

cannot be decided or modelled by a finite being no matter 

how much we extend his or her powers via finite additions, 

then it has no determinate content. 

In order to consider a mathematical claim to be mean­

ingful, we must be able to show, or we must be able to 

envision showing, that an instance of it is either true 

or false. But what is it "to be able to show", or "to 

be able to envision showing"? We must now enquire into 

the methods allowed for showing that an instance of a statement 

is true or false, for verifying it. In addition, we 

require an account of the constraints put on our powers 

of envisioning: we ~equire an account of the constraints 

on the in principle aspect of verifiability in principle. 

fA description of the acceptable procedures will clarify the 

content of the notion of verification, and of verifiable 

in principle. 

(4) Three Aspects of "Verifiability" 

What is verifiable in Poincar~'s sense is directly 

determined by three things: (i) the finitude of our 

human capacities; (ii) our apriori arithmetical intuition; 

and (iii) our apriori geometrical intuition. These corre­

spond to the ways in which we understand (mentioned above 

and discussed in Chapter 4): either in terms of a 
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reduction to concepts which we know by acquaintance 

(parallel to (i) - alone); or in terms of a reduction 

to concepts which are instantiated in apriori intuition 

((i) plus (ii) plus (iii). The methods allowed, then, 

for verifying an instance of a general mathematical claim, 

will be informed by the ways in which we can "picture", 

or understand. It is not only actual, finitely decidable 

operations which determine meaningful mathematical struc-

tures - which determine our pictures. Our apriori 

intuitions also provide apriori "pictures"; these extend-

ing what is mathematically acceptable, or verifiable, by 

supplementing the class of permissible operations. Our 

concepts can be instantiated via constructions, actually 

carrying out the operation, or via apriori intuition. 

Part of the class of what is mathematically meaningful 

for Poincar~ - that which is determined by (i) plus (ii) 

alone - corresponds to what is intuitionistically 

acceptable. Namely, those statements which are finitely 

refutable, or for which we have a constructively acceptable 

proof, are meaningful for both Poincar~ and the intuitionist. 

The intuitionist accepts the same domains as those which 

are sanctioned by Poincar~'s arithmetic intuition; for 

he accepts potentially infinite domains, or domains which 

are "constructibte" according to an effective rule. This 

is the special intuitionistic sense of "constructible". 

Although there may be no reason for stopping the iteration 

of a rule - so that we never actually complete the 
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construction - we can treat certain rules as defining 

determinate sets which are potentially infinite (certain 

potentially infinite sets are "constructible"), if the 

rules are sufficiently clear. The rules will, for the 

intuitionist, be sufficiently clear, if the outcome at 

every stage of construction of the set is determinate or 

effective, given the value of the prior stage. 3 The 

difference between Poincart and the intuitionist - at 

this point - is that POincart, and not the latter, roots 

our understanding of the indefinite iterability of a rule, 

and hence, the potentially infinite nature of certain sets, 

in our apriori arithmetic intuition (as was discussed in 

Chapter 2).4 

However, in addition to (i) and (ii) - in addition to 

constructive or intuitionistically acceptable proofs or 
, 

refutations - what is meaningful for Poincare is determined 

also by that which the intuitionist would reject: namely, 

non - con s t r u c t i v e pro c e d u res, pro vi d edt he pro per tie s 0 f the 

domains in question are guaranteed by (iii) apriorl 

3 See Heyting, (1971), pp.32-34 for the notion of an effective rule, 
and pp.13-15 concerning the infinity of the natural numbers. See 
also, Dummett, (1977), e.g., pp.55-65. 

4 POincart,s neo-Kantianism thus provides a foundation for explaining 
- as against the Wittgensteinian strict finitist - how it is we 
can have the certainty about a rule that at any stage we will be 
able to generate the next element, and that this is ~ determinate 
matter. See Wittgenstein, (1956); and see below, Sections 6-8, 
for more detailed discussion on this matter. 
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(geometric) intuition. This is precisely where POincarean 

mathematics differs in content from intuitionistic math-

ematics; and why, for example, Poincar8"s continuum has 

such a different character from the intuitionistic one. 

It is because not only our constructive procedures - sanc-

tioned, for Poincar~, by arithmetic intuition - but also 

our apriori geometric intuition will determine which 

domains will be mathematically acceptable, or which domains 

will be in principle verifiable or "picturable". And the 

methods which are acceptable for verifying statements will 

depend upon whether the domain concerned is purportedly 

arithmetical, or whether it exists only in virtue of our 

geometric intuition. Now Poi n car { i ShOT CI.. rev i s ion i st. 

With regard to effective domains - those which are gener-

ated by an effective rule - the intuitionist can agree 

with POincar8'. However, their theories diverge in that 

" Poincare accepts the applicability of classical logic to 

domains which are not generated by an effective rule, 

i.e., to the mathematical continuum, since our knowledge 

of this domain is generated by apriori geometric intuition; 

whereas in the absence of the theory of the synthetic 

apriori, the intuitionist cannot - according to his own 

principles - stretch his account of bona fide mathematical 

domains past the denumerable. This is why Poincar~'s 

theory of the continuum is not intuitionistic. 

(5) Potential Infinity and the Domain Argument Blocked 

Poincar€'s theory of the continuum is not, however, 
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classical either, as was shown in Chapter 5. A statement 

about an arbitrary real number, or an arbitrary point on 

the continuum, has content; but its content is not to be 

explained by reference to the classical, set-theoretic 

characterisation of the set of all possible subsets of 

the natural numbers (each subset corresponding to a unique 

real number). Arbitrary infinite collections are not 

meaningful domains, so POincar§'s theory of meaning directly 

prohibits the set-theoretic characterisation of the real 

line. Thus, statements about the continuum, about continu-

ous variation, are not grounded in the existence of some 

actual infinity - as Cantor argued - but in virtue of 

geometric intuition. This is the foundation of Poincar6's 

rejection of Cantor's domain argument. He (Poincar6) 

asserts that 

Every mathematical theorem must be capable of 
verification .... and this is still true if 
we mention infinite numbers in its statement. 
But since the verifications can apply only to 
finite numbers, it follows that every theorem 
concerning infinite numbers or particularly 
what are called infinite sets, or transfinite 
cardinals, or transfinite ordinals, etc., etc., 
can only be a concise manner of stating pro­
positions about finite numbers. If it is 
otherwise, this theorem will not be verifiable, 
and if it is not verifiable, it will be meaning­
less. 

And it follows that there could not be any 
evident axiom concerning infinite numbers; 
every property of infinite numbers is nothing 
more than a translation of a property of finite 
numbers. It is the latter which could be evident, 
while it would be necessary to prove the first 
by comparing it with the latter and by showing 
that the translation is exact. 5 

5 Poincare, (1909b), pp.62-63. 
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The point being made by Poincart is thus that since we 

are finite, every verification must either be composed of 

a finite number of discrete steps, or it must be grounded 

in apriori intuition (either arithmetic or geometric). Not 

even one instance of a theorem can refer ineliminably to 

an actually infinite set or to an infinite number, for +hO~\--. OlAr 

theorems cannot fail to refer, the only objects to which 

they can refer are finite. 

Thus, for example, any theorem concerning all real numbers, 

or even all natural numbers, refers to an infinite domain, 

as in the commutativity of addition: 

However~ the infinity exists in the number of possible in-

stantiations of the theorem, and not in the objects referred 

to in a single instantiation. Every instance of this 

theorem refers only to finite numbers; ana so every instance 

is verifiable (in principle) via a finite deterministic 

computation. Whereas, the contrast with, e.g., the classical 

theorem in its full generality - that for any set x, P(x) ii 

2x _ is that there are instances of this theorem which refer 

ineliminably to infinite numbers; e. g • , as in "P(N) = 2(N. 

These instances are not even in principle verifiable, for 

we have no apriori intuitions concerning the unlimited 

universe of infinite numbers which is sanctioned by classical 

set theory. For Poincar6, we only have intuitions about 

the finite numbers, as provided apriori in arithmetic and 

geometric intuition. 
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So for Poincare, our understanding of "limit" was 

confused and unclear until the notions of "variable" and 

"going to infinity" were translated into explications in 

which there was no irreducible reference to infinity or to 

infinite procedures. 

I shall cite the following theorems as 
examples: the set of prime numbers is 
without bound; the series £l/nL is con­
vergent, etc. Each one of these can be 
translated into equalities or inequalities 
in which only finite numbers are involved. 
These theorems partake of infinity not 
because one of the possible [verifications] 
itself partakes of infinity but because the 
p 0 s sib 1 e Lv e r i f i Cel t ion s Jar e i n fin i t e i n 
number. 6 

Weierstrass formulated "limit of a sequence, [o..n"\ = y 

as n tends to infinity", as: 

lim 
n-4 CC 

In English: no matter how small f is, you can always 

get closer to y by taking n large enough. Statements 

about limits are meaningful insofar as "tending to infinity" 

can be "translated" into a precise statement which refers 

only to finite numbers. That is, their meaningfulness 

depends upon the precise formulation not requiring the 

existence of actual infinities. So POincart,s theory is 

7 in direct opposition to Cantor's famous domain argument. 

6 Poincar~, (1912a), p .66. (I substitute "verification" for "proof" 
as it occurs in the 1963 edition; for given the context, "proof" is 
a misleading translation. ) 

7 See Hallett, (1984), pp.1-32. 
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Here we see the clash of the two giants in a dispute 

which is, at base, realism versus anti-realism. Cantor is 

unashamedly realist in his conception of "free mathematics", 

where coherence and the Divine intellect are the only con-

straints - this leading to the view that there is an actual 

infinity which corresponds to every potential infinity.8 

And Poincar§ is fervently anti-realist in his view that 

mathematics is not free; the existence of a mathematical 

object depends on its being conceived by a finite mind; and 

thus there are no actual infinities. 

And why do the pragmatists refuse to permit 
objects which could not be defined in a finite 
number of words? It is because they believe 
that an object exists only when it is conceived 
by the mind and that an object could not be 
conceived by the mind independently of a being 
capable of thinking. There is indeed idealism 
in that. And since a rational subject is a 
man, or something which resembles a man, and 
consequently is a finite being, infinity can 
have no other meaning than the possibility of 
creating as many finite objects as we wish. 9 

Such a dispute, however, can be decided only -if at all -

in the context of a detailed investigation into more general 

foundational issues in the philosophy of language and in 

epistemology.lO Poincar~ recognises the depth of the issue, 

8 Hallett, (1984), pp.14-25. 

9 Poincare', (1912a), p. 72. 

10 Such as are founded, for example, in Dummett's arguments concerning 
the acquisition and manifestation of our concepts in general (See 
Dummett, (19731), and crystallised by Wright in, e.g., his (1986), 
especially section II, pp.18-32) 
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and in a very poignant passage opines that such a recon-

ciliation is unlikely: 

At all times there have been opposite 
tendencies in philosophy and it does not 
seem that these tendencies are on the verge 
of being reconciled. • .. There is therefore 
no hope of seeing harmony established between 
the pragmatists and the Cantorians. Men do 
not agree because they do not speak the same 
language, and there are languages which cannot 
be learned. 11 

(6) Strict Finitism and the Objection to Poincart's 

Theory of Verifiability 

/ 
Poincare's theory of meaning, especially as it is 

wielded in arguments against Platonism, expresses the view 

that the conferral of truth or falsity, i.e., the meaning 

of a statement, must be fundamentally related to the way 

in which we investigate whether or not it is true. This 

is why when there is in principle ~ way to determine 

whether a statement is true or false (and when there is 

no apriori intuition corresponding to the domain in question), 

it has no meaning. Thus, the argument against Platonism 

is that it accepts the existence of domains which are 

meaningless, domains which ( for P 0 iq car e) can not, be 

ineliminably involved in meaningful statements. Th us, 

there is a gap between the meaning or content of a Platon-

istically acceptable mathematical statement and our 

11 P · ,-. Olncare, (1912a), p.74. 
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mathematical practice. 

Poincar~, however, accepts the existence of potentially 

infinite collections, and indeed, the set of all real 

numbers. Are these really meaningful domains? Are the 

meanings of statements about the domains accessible to us 

in the appropriate way: by reference to our capacities 

for verification? The strict finitist employs POincart,s 

argument against the Platonist (in the theory of meaning) 

to argue against Poincar~'s own theory. Just as actual 

infinity transcends all our powers of construction and 

verifiability, so does potential infinity, for we can never 

verify a statement about all of (even) a potentially in-

finite collection. The concepts of both actual and 

potential infinity are illicit, for acceptance of even 

potential infinities severs the purported link between 

practice (i.e., verification) and meaning. 12 

Now, we cannot expect Poincar~ to refute the sophisti-

cated strict finitist, for he was not acquainted with any 

such arguments. Moreover, the latter's position is 

probably irrefutable, because insular. However, on the 

basis of Poincar~'s ~ principles, strict finitism is 

12 See, for example, Wittgenstein's remarks (1956), and Wright's 
systematic treatment of these in his (1980); in addition, see 
the more localised (to mathematiCS) strict finitist arguments in 
Wright, (1982). 
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simply dismissable, for it is unfaithful to intuitions 

we, as a matter of fact, have. 

A man, however talkative he may be, will 
never in his lifetime utter more than a 
billion words. Consequently, shall we ex­
clude from science the objects whose 
definition contains one billion and one 
words? ... 

However talkative a man may be, mankind will 
be still more talkative and, since we do not 
know how long mankind will last, we cannot 
limit beforehand the field of its investigations. 
We merely know that this field will always 
remain limited; and even though we might be 
able to determine the date of its disappearance, 
there are other celestial bodies which could 
take up the work left unfinished on Earth. 
The pragmatists, moreover, would have no 
qualms in imagining a mankind much more 
talkative than ours, but still retaining 
something human; they refuse to argue on 
the hypothesis of some infinitely talkative 
divinity... 13 

Potential infinity is meaningful according to Poincar~'s 

notion of verifiability, because of the coherence of the 

idea of indefinite but finite extensions, to our speed 

of thought or speech, to the existence of mankind. The 

understanding of indefinite extendability, then, is what 

defines the distinction between finite sets and potential 

infinity, as well as the distinction between potential and 

actual infinity. For it is through the understanding of 

this heuristic that we qua finite beings can "construct" 

potential infinities. The understanding of indefinite 

13 P · / olncare, (1912a), pp.66-67. 
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iterability extends and informs Poincar~'s criterion 

of verifiability in principle, which, in the end, is 

grounded in the epistemological theory of the synthetic 

apriori. 

(7) A Misguided Argument ~gainst the Strict Finitist 

One might attempt to argue that the theory of the 

synthetic apriori is not necessary to establish a stable 

position in opposition to both the strict finitist and 

the Platonist by citing the deep distinction between rule-

governed and non-rule-governed infinities. 

/ 
For Poincare, there are two types of construction (which 

correspond to the two parts of a definition, discussed above 

(p.92 passim)): (i) the creative construction, where we define 

a new object or domain, and (ii) the generative construction, 

where we generate elements via ~ given rule which defines 

the relation between the elements of a domain, e.g., "+1".' There 

is a deep difference between these two types of definition. 

Each creative definition requires a new act of intuition; 

hence, there are only ever a finite number of these possible, 

and no more than a potential infinity of these is coherent. 

This is because each must be fully defined in a finite 

number of words. One cannot define a sequence of creative 

I . constructions, the successor n ln terms of the prior con-

struct n, for such 'a definition is not creative in the 

sense intended. Fo~ this reason, there is here no sense 

of the potentially infinite, for the infinity in potential 
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infinity lies in its characterisability by a rule. 

When we are constructing elements according to an 

accepted generating rule or recursive procedure, each 

element does not require a separate act of intuition. 

Because the defining condition allows one element to be 

defined in terms of another, each element is related to 

all the others. Thus we can have a general intuitive idea 

of the domain as a whole - via our intuitive understanding 

of an arbitrary element of the domain. In this way we 

can "see at a glance" the whole of the structure of a 

potentially infinite set. And thus, we can treat certain 

potentially infinite sets, where an understanding of this 

sort is possible - i.e., where we can satisfy an inductive 

axiom - as unified wholes. 

This argument falters, however; for the existence of 

the distinction described above, between types of con­

struction, does not establish the well-foundedness of 

the classical concept of indefinite iterability. For 

the strict finitist may allow that the distinction be­

tween creative and generative constructions is clear. 

It is just that he simultaneously denies that the distinc-

tion defines two different types of objects. These two 

different ways of defining do not lead to two essentially 

different classes of entities. His point is that we are 

actually limited even in generating elements according 

t 0 a sin 9 1 e a c c e p t.e d pro c e d u r e, 1 ike " + 1 " . Hence our 
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concept of the set produced in this procedure is not a 

concept of a potentially infinite set. We are mistaken 

if we think it is so, for the very same reasons as were 

used in arguing against the Platonist: the meaning of our 

mathematical notions cannot coherently extend beyond math-

ematical practice. The meaning of our mathematical concepts 

is provided by actual mathematical activity; hence, any 

meaning or content which in principle outruns mathematical 

act i vi t Y is inc 0 her e nt, an d th e de t e r min a c yin con ten tis 

merely an illusion. 

(8) Poincar" s Defence of the Notion of Indefinite 

Iterability 

For Poincar~, we can see in certain generating rules 

that they determine a potentially infinite collection; and 

this is no illusion only because of the existence of apriori 

intuition. This is the whole point of his argument against 

logicism: that the "and so on", as in "l, 3, 5, 7, and so 

on", or the dots, as in t 1, 3, 5, 7, ... 1, can indicate 

a potential infinity is a fact about the nature of our 

minds. The infinity is not an illusion because it is uni­

versally imposed by the synthetic apriori forms of perception 

and understanding. 

It may at first have seemed paradoxical that Poincar{ 

agrees with the strict finitist that we cannot arrive at 

the concepts of indefinite iterability or continuity via 
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experience alone; for the procedures we employ to explain 

or to characterise these concepts are themselves instances 

of these concepts. That is, the only way to represent 

these concepts is to provide an interpretation which makes 

them true. For example, 

The idea of infinite divisibility or denseness 
is not capturable by a formula or sentence, 
but only by an intuitive procedure that is it­
self dense in the appropriate respect One 
simply cannot separate ):;,e idea or represent­
ation of infinite divisibility from what we 
would now call a model or realisation of that 
idea •.. 14 

However, whereas the strict finitist might for this reason 

deny that these concepts (or for example, that of the 

actually infinite) can have the content normally ascribed 

to them, Poincar§ never doubts that the content of these 

concepts is determinate and standard. He never doubts that 

we possess certain concepts, their existence to be ex-

plained, if at all, via the theory of the synthetic apriori. 

Therefore, there is a profound difference between the 

foundations of the two theories. The difference is mani-

fested in what counts as verifiable, or possible. For 

Poincar~, apriori intuitions exist; hence they supplement 

the methods and operations used to delimit the class of 

acceptable mathematical objects or what is verifiable, by 

14 Friedman, (1985), P .469. QMy emphasis.) This conception was 
discussed at length in Chapter 2. 
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imposing a certain interpretation on our understanding of 

our concepts and rules. 

Since the strict finitist does not accept the theory of 

the synthetic apriori, his interpretation of certain con-

cepts will be different. Poincar~'s view of what we are 

able to understand by our concepts is enriched by his 

theory of the synthetic apriori. Hence his account of 

legitimate mathematical domains is richer. For Poincare', 

then, the strict finitist shuns our true intuitions, and 

takes the metaphor of "construction" far too literally. 

(9) POincar6,s Theory of Verifiabilit» and a Middle 

Position Between Intuitionism and Platonism 

The usual Platonist argument against the intuitionistic 

and for the classical iterative conception of the set­

theoretic universe,lS is that just as with potential infinity, 

which the intuitionist accepts, we can stretch our concept 

of possibility so that the power set operation - the "con­

struction" of all the subsets of a set - is well-founded 

at any stage in the hierarchy. That is, our concept of 

construction can be extended, so that we can understand; 

say, applying the power set axiom to an infinite set, by 

analogy with the same axiom applied to finite sets. Our 

15 See Hallett, (1984),. pp.214-223. 
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understanding of the actual, or of the uncountably, 

infinite, or of arbitrary infinite sets is via' analogy 

with the finite. 

. /' 
However, for POlncare, no amount of stretching of our 

concepts, by analogy or otherwise, can succeed. Such 

"analogies" are lost on finite beings, for the analogy 

can only be perceived as such, or "grasped", provided we 

already have a concept of "arbitrary infinite". But this 

is what the analogy was designed to explain. On the other 

hand, Poincar~ was not an intuitionist, nor even a "pre-

i n t u i t ion i s t ", ash e iss 0 met i me s call e d (e. g., b Y B l' 0 uw e l' ) • 

For he regarded the classical continuum of real numbers 

as a bona fide mathematical object: it is an object of 

immediate awareness, a primitive domain given in apriori 

(geometric) intuition. The distinctive character of the 

two sorts of apriori intuition (arithmetic and geometric), 

which supplement Poincar~'s criterion of verifiability in 

principle, necessitates an intermediate position between 

the intuitionist and the Platonist, i.e., a neo-Kantian 

position. 

The continuum, though it exists, is not an object as 

the Platonist conceives it. It is an intuitive form or 

primitive structure, and not a set. The fundamental 

intuition of continuity will simply not bear further 

epistemological analysis (at least along logicist or con-

struc ti vist 1 ines )'. It thus cannot be treated as a 

completed collection, or as an object, upon which further 
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operations can be performed. So, for example, on th is 

(Kantian) account, there is simply ~ sense in the notion 

of the collection of all subsets of \R" or the set of 

all functions from 1R into R . If the essence of the 

mathematical significance of the notion of set is the 

idea that, in general, the operation of forming a IIset 

of ... 11 then creates a new object which can automatically 

be added to the domain of application of permissible 

operations (e.g., which is capable of being the argument 

of a function); then Poincar~ is claiming that this con-

ception of set is illusory. For it cannot in general apply 

to infinite sets. Geometric intuition guarantees the 

existence of the continuum, but it does not guarantee it 

as a completed determinate domain, as falling under the 

above description of set. 

/ 
To sum up Poincare's position: though he emphasises 

the criterion of verifiability of mathematical statements, 

what is verifiable for him must be informed by his 

epistemological theory of the synthetic apriori. He is 

no strict finitist, for what is verifiable is not limited 

to our finite abilities to perform operations. It also 

depends upon what we can verify apriori, in arithmetic 

and geometric intuition. In this way, he is also not an 

intuitionist, for his notion of in principle verifiable 

includes non-constructive operations on domains where the 

operations are guaranteed by apriori intuition. 16 And 

16 To take a very simple example, there are domains where Poincar{ 
would accept the assertion of flp V - plI where an intuitionist 
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thus, the nature of his continuum, since it is guaranteed 

by geometric intuition, is more "classical" than "in-

tuitionistic". Yet he is not Platonist - even though he 

employs classical logic in all acceptable domains - for 

his view of what is acceptable is more limited than that 

of the Platonist. The constraints provided by the theory 

of the synthetic apriori disallow, for example, impredicat-

ive specifications. Hence, although with the Platonist he 

accepts the existence of the classical continuum - the 

determinate domain of all real numbers - in opposition to 

the Platonist, the continuum cannot be "arithmetised", i.e., 

it cannot be treated as a collection of set-theoretic 

entities (infinite sets of natural numbers); so it is not 

a set. And thus, of particular importance, the continuum 

is not a set-theoretic object upon which further operations 

can automatically be performed. The existence of the 

synthetic apriori, and the sharp distinction between 

arithmetic and geometric intuition, allows the enrichment 

of the notion of in principle verifiability to stop at 

just this point: to determine a position in between the 

Platonist and the intuitionst. 

would demur. Thus in the decimal expansion of 11 either a sequence 
of seven sevens occurs or it does not; this.follows from the 
determinacy of the numberlT which is a consequence of geometric 
intuition. More significantly, Poincartwould accept in general, 
the theorem of the linear order of the reals; for again, on the 
basis of geometric intuition, it would be assertable - contra­
Bro\.Awer - that Vd~r (J ~ r V ~= r V d) r), for arbitrary 
"points", ~ and r. 
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MATHEMATICS AND THE APRIORI 

(1) The Basic Structure of Kitcher's Argument: A Tenuous 

Relation Between Certainty and the Apriori 

(2) Kitcber's Definition of "Apriori Warrant", and Some 

Counterexamples 

(3) The Problem with Kitcher's Definition 

(4) Revising Kitcher's Definition: Two Types of Uncertainty 

(5) Further Explication of the Distinction 

(6) In Defence of Our New Explication 



The claim that mathematics is synthetic apriori is 

most commonly and most famously attacked by focusing on 

the synthetic aspect; i.e., by arguing against Kant's thesis 

that mathematics has a subject matter. For example, the 

logicists (Frege, Russell, etc.) endeavoured to show that 

Kant was wrong about the content of mathematics by showing 

that mathematical truths are really analytic truths. Their 

object was thus to show how any true mathematical statement 

could be proved using logic plus Kant's containment 

relation among concepts alone. They would then have 

succeeded in showing mathematics to be as sceptic-proof as 

logic, because its foundation would be essentially that of 

logic. P · " olncare's arguments against the coherence and 

success of both logicism and set theory are discussed 

throughout this work. l 

However, of equal importance to the synthetic apriori 

is a defence of the epistemological claim that mathematical 

knowledge is knowledge apriori. Modern "empiricists" 

sometimes extend their empiricism to mathematics by arguing 

that even our mathematical knowledge is not apriori because 

I See Chapters 3 and 4 for arguments against logicism; see 
Chapters 4, 5, 6 for arguments against set theory. 
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it is not truly independent of experience. On the contrary, 

coming to know a mathematical statement depends in an 

important and essential way on the presence of certain ex-

periential factors, such that if they (aposteriori facts) 

are not present, mathematical knowledge could not be obtained. 

One such argument, expressed in a sophisticated manner, is 

found in Philip Kitcher's recent work, The Nature of Mathemat­

ical Knowledge. 2 In this chapter I will concentrate on 

defending mathematical apriorism, . P' /, l.e., Olncare s thesis, 

from Kitcher's very general empiricist attack. 

(1) The Basic Structure of Kitcher's Argument: A Tenuous 

Relation Between Certainty and the Apriori 

Kitcher argues against mathematical apriorism by pointing 

out the existence of empirical or experiential factors in 

mathematical knowledge. Whether or not mathematics seems 

apriori, underneath it all it is really aposteriori. The 

structure of mathematical progress and revolutions mirrors 

that of the physical sciences. 3 And since the nature of 

knowledge in the physical sciences is the paradigm of 

aposteriori knowledge, the existence of this parallel is 

evidence that the two areas of discourse do not involve two 

essentially different types of knowledge. This claim, though 

very plausibly argued, does not seem to me correct. 

2 Kitcher, (1983). 

3 For a precise development of this view, see Michael Hallett, "Towards 
a Theory of Mathematical Research Programmes" (I) and (II), British 
Journal for the Philosophy of Science, (1979). 
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The reason mathematical knowledge is, for Kitcher, more 

like scientific knowledge than like some other kind of 

knowledge, is due to the ever-present possibility in both 

domains that we might be mistaken. No matter how certain 

we are about a belief at one time, t, it is always imaginable 

that we find out at a later time, t + k, that we were wrong 

at t. Even for the simplest of proofs, or for the solutions 

of the simplest 801ynomial ~quations, it is always 

possible for the reasoning in the proof or the computation 

to be wrong. This argument cannot simply be dismissed as 

a globalised version of Cartesian scepticism and nothing 

more. The argument is that just like in everyday assertions 

about the world, the possibility that something might 

happen to alter our belief about the status of our state 

of information at time t, is always a coherent possibility. 

I can always imagine learning something new about the 

situation at time t - e.g., that I was actually drunk or 

drugged at the time of computation - so that I come to 

doubt whether or not any bona fide knowledge was acquired. 

Both science and mathematics are uncertain disciplines, 

for what seems to be a similar sort of reason: that we 

can learn something new or more about the state of affairs 

at time t which induces doubt about the conclusion then 

obtained. To summarise, then, Kitcher imagines that 

mathematical uncertainty arises in exactly the same way 

as scientific uncertainty: by learning something new 

about our backgrou,nd experience. Hence, his conclusion 

is that mathematics could not be apriori. 

However, the uncertainty of mathematics indicates to 
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Kitcher that it is aposteriori, only because he fails to 

properly distinguish between types of uncertainty. This 

failing, as we shall see, is rooted in the particular way 

in which he defines apriori knowledge. Why should certainty 

be linked in the first place with the apriori? Kitcher, 

here, plays on the vagueness of our intuitions concerning 

certainty. He raises the important question: if some-

thing is really known apriori how can it not be true? How 

can we come to doubt whether or not a belief is really 

knowledge Cis really true), if the belief was acquired 

via apriori means? How can we not be certain about the 

apriori? The question must be answered by the mathematical 

apriorist, for Kitcher's point about the lingering coherency 

of the possibility of doubt is unassailable. And it is 

not immediately clear what the relation between certainty 

and the apriori is. What is clear, however, is that it 

is unreasonable to demand that in order for an item of 

knowledge to be a candidate for the apriori, it must not 

be doubtable in any way. For this would be to demand 

Cartesian certainty of the apriori; i.e., a refutation 

of Cartesian scepticism would be a prerequisite to mathemat-

ical apriorism. And this, it seems, is impossible. 

In essence, Kitcher demands too much of mathematical 

knowledge. His conditions, which an item of knowledge 

must meet in order to be considered apriori, are much too 

strong. His arguments against the apriority of mathematical 

knowledge rely upon his drawing a distinction in a 

particular way. And the way in which he draws it effect­

ively defines apriori knowledge out of existence. 
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Mathematical knowledge is thus not apriori because no 

knowledge is. This is because Kitcher does not take into 

account the different ways in which uncertainty can be 

raised. He concedes that some form of experience may be 

necessary for ~ sort of knowledge - so that the apriorist 

is not committed to the thesis that we have innate knowledge. 

Hence, he intends not to stack the deck against the 

apriorist, but to allow the minimal experience which may be 

nec.essary in order to acquire any concept. So that, though it 

is usually via experience that we acquire our concepts, 

our reasoning via these concepts may still be apriori. For 

instance, though we may come to know what "triangle" 

means by os tension - by being presented with certain 

pictures of figures with slightly different shapes and 

varying in size, but yet with something in common - we 

can still reason in an apriori way with the concept of 

"triangle". So that, "The triangle has three sides", 

may be regarded as apriori. This is an instance of an 

analytic apriori truth: it is necessarily true given the 

meanings of the terms. In addition, even if a statement 

represents a contingent fact about the world, Kitcher 

wishes not to automatically exclude this class from 

candidacy for apriori knowledge. 

Our goal is to construe apriori knowledge 
as knowledge which is independent of 
experience, and this can be achieved without 
closing the case against the contingent 
apriori. 4 

4 Kitcher, (1983), p.24. 
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Thus, for example, one might consider the statement, 

"There is something that is conscious" to be an instance 

of a contingent truth - for it could have been the case 

that no conscious beings existed - which is knowable 

apriori - for in merely considering it, one realises it is 

true; and hence, we do not need to investigate the world 

to see if it is true. Therefore, on the face of it, 

Kitcher intends to be very generous and broad-minded in his 

view of what mayor may not count as apriori knowledge. 

(2) Kitcher's Definition of "Apriori Warrant", and Some 

Counterexamples 

However, once he starts to pin down his idea of what 

constitutes the apriori we see that his views are anything 

but generous to the apriorist. It turns out that, for 

Kitcher, in order for an item of knowledge to count as 

apriori it must be indefeasibly certain. 

To generate knowledge independently of 
experience, apriori warrants must produce 
warranted true belief in counter factual 
situations where experiences are different 
... On this account apriori warrants are 
ultra-reliable; they never lead us astray. 5 

"In counter factual situations, where experiences are 

different ..• " we must still hold the same (true) belief 

in order for it to have been produced by an apriori warrant. 

"Apriori" and "certainty" - absolute certainty - are 

5 Kitcher, (1983), p.24. 
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necessarily linked, according to Kitcher; where, for him, 

the possibility of uncertainty implies that the belief 

could not have been acquired by bona fide apriori means. 

Rather than generous, this is very strong indeed. 

Let us examine his explicit set of conditions. 

(2) X knows apriori that £ if and only if 
X knows that £ and XIS belief that £ 
was produced by a process which is an 
apriori warrant for it. 

(3) ~ is an apriori warrant for XIS belief 
that £ if ~ is a process such that, 
given any life £, sufficient for X for 
£, 

a) some process of the same type could 
produce in X a belief that £, 

b) if a process of the same type were 
to produce in X a belief that £, then 
it would warrant X in believing that 
£, 

c) if a process of the same type were to 
produce in X a belief that £, then £. 6 

These are not only strong. As it turns out, these conditions 

actually beg the case against the possibility of any non-

trivial apriori knowledge. 

Why should uncertainty be incompatible with apriority? 

For Kitcher it is due to condition (3) b), above. 

If a process of the same type were to pro­
duce in X a belief that £, then it would 
warrant X in believing that £; 

and it would do this whatever the background experience. So, 

for instance, in the case of long formal proofs which replace 

6 Kitcher, (1983), p.24. 



199 

complex informal proofs, it is reasonable to be uncertain 

about whether or not there is a mistake in the long formal 

proof. Indeed, the person who dismisses the possibility 

of a mistake is unreasonable. 7 If uncertainty is reasonable, 

then this process - of the same ~ as the informal proof, 

but longer and with no steps glossed over - does not 

warrant belief that £ (that the theorem is proved, or true). 

Hence, the original warrant - the informal proof - is not 

apriori. This is because (3) b) has been violated: since 

a process of the same type (i.e., proof) leads to an un-

certainty in its warrant for £, due to the background 

condition of it being longer, the apriority of the original 

warrant is impugned. 

That is damaging enough, but Kitchel' does not contest 

only the apriority of long, complex reasoning as Descartes 

did. For mathematical proof to count as bestowing apriori 

knowledge, not only must it be certain, but so must the 

principles and axioms from which it stems. That is, they 

must be apriori. And the rules of inference must preserve 

this status. So, according to him, a mathematical apriorist 

is committed to something like the following: 

(4) There is a class of statements A and 
a class of rules of inference R such 
that 

a) each member of A is a basic apriori 

b) 
statement, 

R is apriority-each member of an 
preserving rule, 

7 Kitchel', (1983), p.42. 
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c) each statement of standard math­
ematics occurs as the last member 
of a sequence, all of whose members 
either belong to A or come from 
previous members in accordance with 
some rule in R. 8 

However, more "counterexamples": 

communitY",9 then, 

since "knowers form a 

at best correct or reasonable social 
practice can determine which sequences 
are proofs. Yet now we must ask what 
makes the adoption of a theory or system 
correct or reasonable. 10 

Hence, his "social challenge" in a simpli fied form: if 

everyone doubts my proof, I will too. Again condition (3) b) 

is violated. I can envision background circumstances which 

would cause me to doubt a warrant which is of the same 

type as the present one; hence the present warrant is not 

apriori. In addition, 

it is conceivable that we could become 
reasonably convinced by our own experience 
that the ingestion of certain substances 
had enabled us to solve baffling theoretical 
puzzles and that, during one of these episodes, 
we had discovered a counterexample to a math­
ematical axiom... 11 

Even our axioms or principles are in danger of being doubt-

able, and thus, they are not apriori. 

8 Kitcher, (1983), p.39. 

9 Kitcher, (1983), p.14. 

10 Kitcher, (1983), p.39. 

11 Kitcher, (1983), p.90. 
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(3) The Problem with Kitcher's Definition 

The problem with Kitcher's account of apriori knowledge 

is that he thinks there is an if-then relation between 

apriority and certainty. That is, any belief which is 

produced by an apriori warrant must be certain. I f a 

warrant is apriori, it must be "able to discharge its 

warranting function, no matter what background of disruptive 

experience we may have" 12 Kitcher captures this idea 

primarily with (3) b). It is my opinion that there is a 

problem with Kitcher's definition and that is, primarily, 

t hat his con d i t ion (3) b) is too s t ron g . 

If the possibility of any mistake must be disallowed 

in order for knowledge to be apriori, then how can such 

an item be knowledge at all? If there is no possibility 

of any sort of mistake whatever, then it seems what is in 

question is not objective knowledge, but mere subjective 

awareness. Certain statements, like "I am in pain", "I 

see red", may come out apriori on Kitcher's account; and 

these are the avowals: if true, incorrigibly so. More-

over, nothing other than incorrigible truths will be allowed 

if (3) b) obtains. Yet, according to most apriorists, these 

will not count as apriori knowledge, because avowals are 

not items of knowledge which are accessible to everyone, 

but only to the experiencing subject. Clearly, where and 

how Kitcher draws the distinction between apriori and 

12 Kitcher, (1983), p.35. 
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aposteriori knowledge is contentious. And since his 

arguments against the apriority of mathematical knowledge 

depend on his particular characterisation of apriori 

warrant, his argument is invalid. Since the way he makes 

out the apriori/aposteriori distinction debars ~ (signific­

ant - i.e., not incorrigible) knowledge from being apriori, 

he begs the question against mathematical knowledge being 

apriori. 

(4) Revising Kitcher's Definition: Two Types of Uncertainty 

Kitcher is not entirely wrong in his intuition that 

there is a relation between apriori knowledge and certainty. 

Knowledge produced by an apriori warrant is indefeasible, 

providing the warrant is successful - providing we carry out 

the operations correctly. In this way, the counterfactual 

experiences employed, in making out the distinction between 

apriori and aposteriori warrants, cannot be ones in which 

we come to doubt whether or not we have proceeded correctly. 

How accurately we in fact follow a rule should have no 

bearing on what kind of rule it is. This is essentially 

where Kitcher's mistake lies: his explication of what 

kind of procedure an apriori warrant is, implicitly dis­

allows the undeniable fact that we can always misperform 

an operation. Hence, nothing turns out to be apriori for 

Kitcher, because he conflates what kind of procedure 

something is with the question of the correctness of our 

particular use of a procedure. This is because in the 

class of possible counter factual experiences, which must 

be looked at in order to determine whether or not a 
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particular experience is necessary in producing a 

belief - and hence, in determining whether or not a 

belief is produced via an apriori warrant - he allows into 

this class counterfactual experiences in which we have 

applied a rule incorre~. Cleariy the apriority of a 

warrant cannot be decided by holding it accountable for 

our possible misapplication of such a warrant. 

The nature of the set of counterfactual, doubt-inducing 

experiences, which can count against the possibility of 

apriori knowledge, should be examined more closely. 

Kitcher clearly allows anything into this set. Any sort 

of experience we can imagine which would, if true, cause 

uncertainty, counts against the apriority of a warrant, 

according to (3) b). But we will be more discriminating. 

We will distinguish between two sorts of uncertainty, or 

two sorts of potential error. (1) The first sort indicates 

that the warrant for the belief under scrutiny did not 

fix or force the conclusion: though the evidence-statements 

which constitute the warrant may still hold, further 

evidence may lead us to abandon the claim, while simultane­

ously granting that the warrant we did have for the claim 

was a good one, indeed the best there could be. If this 

sort of uncertainty is possible, then the belief is 

aposteriori. (2) The other type of potential uncertainty 

is present in both apriori and aposteriori beliefs. This 

is where the potential error lies not in the world, but 

somewhere in the w~rranting processes themselves, for 

instance, in the way in which the warrant was applied. In 

this case, when doubting the original claim we are doubting 
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the original warrant: either that it was appropriate to 

the situation; or that though the ~ of warrant was 

appropriate, we doubt our particular application (instanti­

ation) of it. My proposal is that a distinguishing 

feature of apriori warrants is that only uncertainty of 

this type (type 2) is possible. 

For instance, by making a computation error we are 

misapplying a rule; and thus we are not successful in 

obtaining apriori knowledge, not because the warrant was 

not of a bona fide apriori type, but because we have not 

obtained any knowledge at all. It is still correct to 

call the type of warranting procedure computation - apriori. 

The point is, just because a warrant is apriori does not 

mean there is no scope for human error. Yet this is what 

Kitcher seems to require of apriori warrants, and so this 

is where his account goes wrong. 

If apriori knowledge is to have a chance at being a 

clear and yet useful distinction - useful in describing 

some non-empty class - we must be cautious enough to 

provide an account of apriori warrants which both contrasts 

with aposteriori warrants, but which has in common with the 

aposteriori the ability to produce (corrigible) knowledge. 

The paradigm aposteriori case is perceptual: we draw a 

conclusion about the world on the basis of perceptual 

experience - our experience of the world. For example, we 

see a person in ov~ralls carrying a painting out of a museum 

room, and we infer on the basis of past experiences of 

workers in broad daylight, that he is on official relocating 
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business. However, there are two ways in which our 

inference could be wrong. (1) The man might be a thief. 

That is, our perceptual faculties may be working properly -

the man we seem to see is real, etc. - it is just that the 

world does not measure up to our hypothesis about his 

occupation. Or (2) our perceptual faculties may be mal-

functioning: 

in a museum. 

there is no man, and perhaps we are not even 

Case 1 is a situation where we may doubt 

the conclusion or inference without doubting any of the 

premises or warrants. Our perceptual statements still 

hold; there really is a man in overalls, etc. And our 

general rules are still true: it is still true that 

usually, or in general, men who transport paintings in 

broad daylight in museums are on official orders. In 

contrast, case 2 depicts an instance of the type of 

situation where doubt about the conclusion occurs via 

doubt about at least one of the warranting premises. I 

repeat my proposal: what distinguishes aposteriori beliefs 

or knowledge is that error of type I is always possible. 

Or, to state it conversely, the distinguishing feature of 

apriori warrants is the impossibility of type 1 doubt 

or error. Hence, rather than allowing ~ doubt-inducing 

counterfactual experiences to count against the apriority 

of a belief, we ought to restrict the type of counterfactual 

experience which indicates a belief was produced by an 

aposteriori warrant to that of type 1# Aposteriori 

warrants can lead ~s astray either due to faulty mechanisms, 

so that what seems to be the case is not really the case 

(i.e., our perceptions do not mirror the world); or due 



206 

to the world simply not measuring up to our hypotheses. 

This second way is where our perceptual evidence is not at 

fault: there really is a man in overalls ... It is, rather, 

the judgement made on the basis of that evidence which is 

at fault. 

The inductive character of aposteriori warrants forces 

the situation where it is always possible to have type 1 

error. Why should this be the mark of the aposteriori, 

rather than a mere distinction between induction and de­

duction? A distinction between induction and deduction is 

employed. But this distinction is related to the apriori/ 

aposteriori distinction, for aposteriori knowledge is 

generally translated as "knowledge in the light of sense 

experience" 13 The presence of experience of a certain 

sort - a sensory sort - is necessary for a warrant to be 

aposteriori. The relationship between our sense experience 

and our (aposteriori) hypotheses is evidential or inductive, 

for the subject of hypotheses which rest on sense experience 

is the world: that which causes our sense experiences, and 

which is (for most people, in some sense) independent of 

our awareness of it. Since our aposteriori hypotheses 

concern facts the status of which are (on the most ordinary 

interpretation) independent of our manner of investigating 

them, there is always a gap between the process of investig-

ation and the discovery of the truth. Hence, it is clear 

13 Peter A. Angeles, (1981). (My emphasis.) 
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that there are two ways of getting aposteriori knowledge 

wrong, illustrated by the two cases. So that even if one 

contests dividing up the counter factual experiences to co­

incide with the apriori/aposteriori distinction in the way 

we have urged, he or she can still admit such a distinction 

exists. 

Furthermore, it is plausible to distinguish between apriori 

and aposteriori by looking at the ~ in which uncertainty 

arises. For it bears out our intuitions concerning the 

inductive character of aposteriori knowledge - i.e., the 

presence of type 1 possible error as the mark of aposteriori. 

And, in addition, it bears out our intuitions concerning 

the apriori: that mathematics and logic are apriori, and 

that the root of any mistake here has nothing to do with 

sense experience, but involves only the warranting processes 

themselves. To summarise, any warrant can be rejected. 

Hence, case 2 where the warranting process itself is 

impugned or doubtable, is no way to distinguish between 

types of warrant. For this happens with both apriori and 

aposteriori warrants. Thus, type 1 recalcitrant experience 

is a plausible candidate for a distinguishing factor. 

(5) Further Explication of the Distinction 

Let us examine the two sets of cases more closely. If 

an item of knowledge is apriori, then the belief that it 

is true must be produced via an apriori warrant. An apriori 

warrant is one which satisfies Kitcher's conditions, with 

the added clause "provided we perform the necessary operations 
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in the warrant correctly". Thus, for example (3) b) would 

be revised to: 

(3) ~) if a process of the same type were 
to produce in X a belief that £, then 
it would warrant X in believing that 
£, provided X carries out all its 
operations correctly. 

Adding this clause excludes all counter factual experiences 

which induce doubt about the belief that £ by inducing doubt 

about the warrant for £. We can thus retain a useful 

notion of apriori which, yet, contrasts with our notion of 

the aposteriori. 

There is no gap between best possible evidence and 

apriori truth. Having the best possible evidence for believing 

that £ guarantees the truth of £, if £ is an apriori belief. 

For if we really have the best possible evidence, or warrant, 

then this means that the warrant was carried out properly; 

and if the warrant was carried out properly, then there is 

no other place for doubt to arise. 14 The only way we can 

be mistaken about a possible item of apriori knowledge is 

via the warrant. Uncertainty here stems only from doubt 

about the pedigree of the warranting process; e.g., worry 

14 Hence we see questions about the objectivity of apriori truths 
arise in conjunction with an account of that in which the apriori 
consists. For if there is no gap between best possible warrant and 
truth when an item of knowledge is apriori, then it seems such 
items cannot be regarded as objective in the same sort of way as 
statements about the-empirical world are regarded as objective. 
This is especially acute for the non-Platonist, for whom following 
the procedure correctly is what constitutes truth in, for example, 
mathematics and logic. 



209 

about an addition mistake in a long computation; or 

worry about the clarity of our concepts. If a belief is 

apriori, the only way we can fail to obtain "knowledge" 

is by failing to have secured a proper warrant. 

In contrast, there is always a gap between best possible 

evidence and aposteriori truth. Our warrant for an item 

of aposteriori knowledge may be unassailable, and we can 

still be mistaken about our belief. That is, doubt about 

the belief can occur other than via a doubt about our 

warranting experience. We can have the best possible evidence 

for believing that £, and yet £ may not be true. For 

instance, the best possible evidence that you are in pain 

is for me to see you writhing about on the floor. And yet 

I can still be wrong. You may not be in pain; you may 

be playing a trick on me. I can have the best possible 

evidence and still be wrong in my inference, because 

aposteriori hypotheses require cooperation from the ex­

terior world in order for me to be right. Another example: 

I can have the best possible evidence for believing that 

there is a cat on the mat next door: e 1 - there is 

something that looks like a cat; 

cat; e 3 it is purring; e 4 

e 2 - it smells like a 

it is not the first 

time I have seen it there; e 5 - there is communal agreement 

that my neighbour owns a cat (i.e., we have spoken about 

"his catll); etc. However, it is possible that what looks, 

smells, sounds, etc. like a cat is really some sort of 

sophisticated, smelly automaton. The point is, the 

conclusion, "There is a cat ... ", is doubtable without 
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necessarily doubting any of the items of evidence, any 

of the e ll.'s, for it. This is because we can add inform-

ation which is inconsistent with our former conclusion 

about the existence of the cat, but which is consistent 

with all the evidence we employed in arriving at the belief. 

Hence, an aposteriori warrant (a set of aposteriori 

evidential statements) can never fix a particular conclusion. 

There will always be indefinitely many possible conclusions 

which - though incompatible with one another - will all be 

compatible with the warrant. This is why it is not 

necessary in the case of an aposteriori belief to doubt the 

warrant when we doubt the conclusion (though, of course, 

this too is always possible; e.g., an hallucination). 

Whereas with apriori beliefs, the only avenue to doubt 

about the conclusion is one which necessitates doubt about 

(at least part of) the warrant along the way. 

Therefore, the proposal is to meet Kitcher's challenge 

to find a weaker view of apriori warrant which does not 

"trivialise" the notion. It is possible, because refining 

his conditions (3) a)-c) turns out to make a big difference 

in what comes out as apriori. That is, by refining his 

conditions, apriori knowledge becomes possible. 

The charge that my argument against apriorism 
presupposes too strong a notion of apriority 
is relatively easy to rebut ... To abandon 
it is to abandon the fundamental idea that 
apriori knowledge is knowledge which is in­
dependent of experience. The apriorist would 
be saying that one can know apriori that £ in 
a particular' way, even though, given appropriate 
experiences, one would not be able to know that 
£ in the same way. But if alternative ex­
periences co~ld undermine one's knowledge then 
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there are features of one's current 
experience which are relevant to the 
knowledge, namely those features whose 
absence would change the current experience 
into the subversive experience ... To 
reject condition (3b), the condition of 
my analysis on which the central arguments 
have turned, would be to strip apriorism 
of its distinctive claim. 

And footnote 1: 

I would contend that the analysis of apriori 
knowledge given in Chapter 1 provides the 
only clear account of the epistemological 
notion of apriority which is currently avail­
able. Hence if someone wants to protest that 
my analysis stacks the deck against the 
apriorist, it is incumbent upon him to provide 
an alternative. Given the arguments ... 
rehearsed in Chapter 1 .•. [either] the 
distinctive idea of epistemological apriority 
will have been abandoned, [or] ..• apriorism 
will be vulnerable in just the way I have 
taken it to be. 15 

However, it is here contended that it is unreasonable, and 

indeed unfaithful to the prior meaning of the term, to 

analyse apriori knowledge as knowledge which holds despite 

~ counterfactual experience whatever. In particular, 

it seems acceptable to say that "there ~ features of 

one's current experience which are relevant to" apriori 

knowledge, so long as these features have to do with our 

warranting procedures. That is, provided the experiences 

are only necessary in order to support the claim that, 

for instance, we had carried out certain apriori operations 

correctly, these features are not of a sensory type, and 

15 Kitcher, (1983), pp.88-89. 
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hence do not impugn the apriority of the warrant. 

knowledge is 

knowledge derived from the function of 
reason without reference to sense experience. 
Non-empirical knowledge. To know something 
apriori is to know it prior to experiencing 
anything like it in the external world. The 
truth of apriori knowledge (a) is not derived 
from sense experience, (b) cannot be checked 
against sense experience, (c) cannot be re­
futed by any sense experience. 16 

Apriori 

Sense experience cannot refute apriori knowledge - the 

world cannot "step in" to provide doubt-inducing experience 

in an additive way, as is possible with aposteriori 

knowledge. However, this is not to say it cannot be 

refuted at all. My proposal is to distinguish between 

apriori and aposteriori knowledge by focusing on the 

non-empirical nature of apriori warrants. 

What is distinctive about aposteriori knowledge is that 

we can be wrong about our conclusion despite the fact that 

our warrant - even the best possible warrant - still holds. 

This contrasts with apriori knowledge. The ~ of 

counterfactual experience which indicates a warrant is not 

apriori, is one in which the warrant still holds, and yet 

we have independent reason to revise the conclusion. On 

the other hand, if, in order to doubt the conclusion, we 

must doubt or impugn the warranting process, then such a 

conclusion is known on apriori grounds. Mathematics turns 

16 Angeles, (1981). 
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out to be apriori, since it is usually thought that 

having a proper warrant is what determines truth (or at 

least is co-extensional with a certain range of what is 

true) in mathematics. There is no gap here between the 

pro p r i e t y or cor r e c t n e s s 0 f a war ran tan d w hat is, in fa c t , 

true. 

(6) In Defence of Our New Explication 

I will defend the new proposal by testing it against 

Kitcher's counterexamples, cited above. 

1) The example of complex long proofs is 
straightforward. The uncertainty here 
stems from an uncertainty about whether 
or not one has followed the procedures ~ 
specified. So doubt is doubt about the 
warranting process - the actual proving 
activity. So this example of recalcitrant 
experience does not fall into the "distinct­
ively aposteriori" category. Hence it 
does not bear against the apriority of the 
warranting procedure of mathematical or 
logical proofs. 

2) The example of revolutions in mathematical 
standards is somewhat more difficult, for 
it raises a question about the correctness 
of an apriori warrant itself. Uncertainty 
about a theorem caused by an imagined change 
in the standards of correctness makes 
proofs - a class of purported apriori 
warrants - seem correct only relative to 
a community. Whereas, on the ordinary view, 
if a rule, axiom, or principle is knowable 
apriori, then it should be knowable in any 
community in which it is possible to obtain 
the relevant concepts. 

3) The case of the possibility of ingesting 
magical substances which enable us to see 
counterexamples to an axiom is equally 
difficult - albeit a bit more strange -
for the same sort of reason. If an axiom 
is knowable apriori, then it must be true; 
but if so, how can it be that we can en­
vision even the bare abstract possibility 
of a counterexample? 
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One could merely dismiss the objections posed by the 

latter two examples by saying that in both cases what is 

occurring is a doubt about a warrant. 

ness and axioms are warranting tools; 

Standards of correct­

hence, neither case 

threatens the apriority of such processes, according to 

our revised view of the apriori. However, this would be to 

dodge, rather than to meet, the problem. Case 1 has to do 

with doubt about the application of a purported apriori 

warrant; and is answered by referring to our refined 

condi tions (3) a) -c'). Cases 2 and 3 , on the other hand, 

illustrate a doubt which centres on the warranting process 

itself, rather than merely on its application. So it is a 

different kind of case. It will require us to examine part 

(2) of Kitcher's definition, for it raises questions concerning 

what it means for a process to be an apriori warrant for a 

belief. 

The objections go: how can a warrant, like an axiom or 

principle, be apriori if it is ever susceptible to doubt in 

the way imagined above (either via a possible revolution 

in rigour (case 2), or via the possible awareness of a 

counterexample to an axiom, during a drug-induced state 

(case 3)? The warrants in cases 2 and 3 depend on the 

concepts involved: on our interpretation and refinement 

of those concepts. Thus, for example, the revolution in 

rigour which accompanied the development of the E.-J limit 

concept occurred partly because it was discovered that our 

concepts of continuity and limit lead to contradictions. 

Kitcher's description of the revolution in rigour is 
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misleading. It is not merely that standards change; and 

so certain warrants which were formerly acceptable are no 

longer acceptable. This is an incorrect picture, making 

the warranting process itself seem a matter of mere convention. 

Rather, given a certain concept of continuity, I (i.e., 

smoothness); plus certain apriori warranting operations, 

~,' .•. ,~~; and the situation where both are embedded in 

some more general theory, I; we were able to arrive at a 

belief P: for example, that a continuous function is every­

where differentiable. Later we came to believe not P: that 

we were mistaken in the view that every continuous function 

has a tangent at every point. The new [- & definition of 

continuity, for example, allowed for the existence of 

continuous curves with no unique tangents at some, or 

indeed all, points. However, this does not mean that we 

have discovered that our warrant was wrong all along - and 

hence, that it could not have been apriori, because false. 

Nor does this indicate a mere change in the standards 

demanded of one warranting procedure. Rather, the refinement 

in the concept of continuity (~,smoothness, being replaced 

by ~*, the (. - J account of the continuity of a real-valued 

function) entailed that the procedures, c{" ••• ,0("" which 

formerly warranted claims employing the concept ~, were 

now abandoned, not because they were discovered to be 

incorrect after all, but because they were no longer 

appropriate - they are inappropriate to the new concept C*. 

Warranting procedures, as envisaged by Kitcher and discussed 

here, are appropriate only relative to the concepts on which 

they are based. Our concept of continuity was refined, and 
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the new concept brought with it new warranting procedures 

appropriate to it. But this in no way impugns the apriority 

of the warranting procedures appropriate to the earlier 

concept C. Since progress in mathematics must involve 

solving new problems, and solving old ones better, it 

involves either creating new domains, or refining existing 

concepts. As Poincar{ put it, 

it was not long before it was recognized 
that exactness cannot be established in 
arguments unless it is first introduced 
into the definitions. 17 

The fact that concepts are refined and revised does not 

show that the warranting procedures appropriate to those 

concepts are not apriori. 

Case 3 above - where Kitcher attempts again to argue 

against the apriority of a part of mathematics by referring 

to a certain way in which a counterexample to an axiom 

might arise - is another instance where the description of 

the example is contentious. Kitcher cites the possibility 

that we can imagine ourselves to be able, only when in a 

drug-induced state, to see counterexamples to a previously 

accepted axiom. And he takes this as a sign that axioms 

could not then be apriori, because we can always imagine 

17 Poincar6, (1889/1908), pp.123-124. 
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giving them up. So, for instance, let us imagine that 

drinking a cup of coffee allows me to think just that 

little bit faster or more clearly so that I can see a 

counterexample to some axiom which I was thinking of 

adopting (like the Axiom of Choice). Further, it is only 

in this drug-induced state - i.e. my caffeine. "high" - that 

I can see and understand this counterexample; although 

I can remember that it is a coherent counterexample when 

I am in a caffeine "low" state, it is not clear ~ until 

I down at least two cups. Kitcher's point is not merely 

that axioms are not certain; although this is part of 

his complaint, since he does link apriority with certainty. 

Rather, the deeper point is that the uncertainty here is 

caused by an aposteriori or empirical fact: my drinking 

a cup of coffee. Hence, he wishes to complain, since 

the imagination of a certain additional aposteriori fact 

can induce doubt about an axiom, an axiom is not knowable 

apriori. 

However, Kitcher is glossing over an important distinction 

here. He is treating the cause of my belief that -~, i.e., 

coffee drinking, as if it is the cause of -Po Coffee 

drinking does not cause or instantiate a possible counter­

example to an axiom. Rather, in the example, coffee 

drinking allows the instantiation, or the "seeing", of the 

counterexample to occur. Kitcher's description of the 

example is prejudiced, for he makes it appear that drinking 

cups of coffee is the warrant for my belief that -Po 

Whereas - it is obvious now - that cannot be the warrant, 
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for it is no warrant at all for -Po If I am asked why 

I reject the axiom P, the answer could not be merely, 

"Because I drank a cup of coffee". Hence, it is not an 

aposteriori fact which impinges on my belief that~; aRd 

so this example does not bear against the apriority of our 

knowledge of mathematical axioms. Although coffee drinking 

may be episodically related to my rejection of an axiom, 

it cannot be an explanation of my rejection, but a mere 

explanation of why, all of a sudden, I can see counter­

examples now, where I could not before. That is, the 

example should be described as another case of further 

analysing certain concepts employed. The ingestion of 

chemicals does not cause mathematical facts; the ingestion 

of chemicals can, however, cause me to ~ certain mathemat­

ical facts. Perhaps drinking coffee enables me to think 

about a concept in a new, more refined, more fruitful way; 

or perhaps I can concentrate better, or think of more 

logical consequences faster, when I am under "the influence". 

But this is only to say that our ability to perform certain 

apriori operations (concentrating, deducing) is enhanced 

(indeed, they can also be tinged, e. g., by alcohol) by 

certain physical, and hence, aposteriori factors. However, 

the ability of aposteriori factors to influence our 

performance of certain warranting processes in no way 

impugns the apriority of those processes. The ability to 

be influenced by aposteriori factors does not indicate 

that the operation~ we are performing are thereby aposteriori. 

It does not inform us at all about the epistemological 

nature of the operations. 
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Our application of apriori warrants does not need to 

be indefeasibly certain in order to be able to capture 

a faithful notion of apriori. Furthermore, our knowledge 

or acceptance of apriori warrants need not be indefeasible 

according to the revised account of apriori warrant. 

There is no direct link between certainty and apriority. 

Wrong results cause us to reject a use of a rule, and not 

its apriority. And seeing a counterexample may lead us 

to reject an axiom not because it is not apriori - that 

which first induced us to accept the axiom was not an 

aposteriori warranting procedure - but because it is not 

true or faithful to our concepts. Neither the possibility 

of misuse of a warrant, nor the possibility of rejecting 

a warrant, necessarily informs us that the warrant could 

not be apriori. Thus it seems to me that none of Kitcher's 

counterexamples succeed in establishing that pure mathem­

atical knowledge is not knowledge apriori. I shall 

therefore conclude that Poincare's thesis of the synthetic 

apriori character of mathematical truth remains intact 

with respect to a certain challenge from the modern 

empiricist. 
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