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Finitism: 
An Essay on Hilbert's Progagamme 

David Watson Galloway 

Submitted to the Department of Linguistics and Philosophy on May Ist, 1991 in partial 
fulfillment of the requirements for the Degree of Doctor of Philosophy 

Abstract 

In this thesis, I discuss the philosophical foundations of Hilbert's Consistency Programme 
of the 1920's, in the light of the incompleteness theorems of Gijdel. 

I begin by locating the Consistency Programme within Hilbert's broader foundational 
project. I show that Hilbert's main aim was to establish that classical mathematics, and in 
particular classical analysis, is a conservative extension of finitary mathematics. Accepting 
the standard identification of finitary mathematics with priniitive recursive arithmetic, and 
classical analysis with second order arithmetic, I report up011 some recent work which 
shows that Hilbert's aim can almost be realized. 

I then discuss the philosophical significance of this startling fact. I describe Hi1ber.t as 
seeking a middle way between two mathematically revisionary positions in the philosophy 
of mathematics - a kind of proto-intuitionism, and aR extreme realism, associated with the 
views of Kronerker and Frege respectively. I outline a Hilbertian alternative to these 
positions. The result is a moderate realism that owes much to Quine. I defend it against 
certain objections, and display its virtues in a series of comparisons with alternatives 
currently influential in the l i teram. 

In Chapter Two, I discuss the special status the Hilbestian gives to finitary mathematics. 
I argue that two ways of justifying this special status - by claiming that finitary mathematics 
is onrological6y special, since i t  is committed only to expressions, and by claiming that 
finitary mathematics is episremologically special, since its results are especially evldent - 
are in fact hopeless. I then defend an alternative justification, drawing in part on Giidel's 
well known discussion of maihernatical intuition. 

In Chapter Three, 1 discuss the implications of incompleteness for the Hilbertian 
philosophy of mathema.tics. I argue, against some recent work by Michael Detlefsen, that 
the incompleteness theorems show definitively that Hilbert's Progran~me cannot be camed 
out in full generality. Drawing on recent work by Warren Goldfarb, I show that this 
conclusion follows from the First Incompleteness Theorem, and can be established without 
any controversial appeal to the semantic value of undecidable sentences. However, I argue 
that the fact of incompleteness adds to, rather than detracts from, the attractiveness of the 
basic Hilkrtian position on the nature of mathematics. 

Thesis Supervisor: Dr. George Boolos 

Title: Professor of Philosophy 



My interest in Hilbert was f~wakened by unpublished work by Michael H d e t ' ~ ,  from which 

I have learned a great ded. I have since learned more from him in conversation. Hall,ett 

apart, my understanding of Hilbert (qur philosopher) owes most to the writings of Howard 

Stein and W. W. Tait. 

In this thesis, I have sorne critical things to say about Michael Betlefsen's writings on 
filbert. That being so, let me emphasize here that I could not have written it wihour the 

stimulus provided by his valuable book on Hilbert's P r c g m e .  He alslo kindly :;bowed 

me unpublished work, on the implications of the First Incompleteness Theorem, that 

helped me enormously. 

Richard Cartwright, Joshua Cohen, and James Higginbotham all read and discussed parts 
of this manuscript with me, and provided detailed and helpful criticism. My supervisor, 

George Bmlos, in addihon to suggesting the project to me in the first place, was generous 

far beyond the call of duty with his time, Iris knowledge, his patience, and his fonts. I am 

grateful for all four, but I am especially grateful for the last two. Martin Davies has 

corrsistently been the most sympathetic, helpful, and stimulating interlocutor cne could 

hope for. He read the mmcscript, some parts of it many times, and provided copious and 

detailed criticism. He rarely tired sf listening to me, and always seemed to understand my 
half baked ideas much better than I did. And not only did he do all this: he actually seemed 

to enjoy it. 

I should mention a final debt, to an individual that is not a person. MlT provided me with 

the funds, and therefore with the opportunity to undertake a PhD in philosophy, at a time 

when the government of my own country, Great Britain, had decided that higher education 

in philosophy was a luxury we could no longer afford. 1 can only how that, once that 

shameful decision is reversed, British univeesities will also dispense their research funds 

without keeping one eye ever on the nationality of deserving candidates. 
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INTRODUCTION 

This essay expounds a philosophy of mat'lematics closely akin to that associated with 

Hilbert's consistency programme of the 1920's. I try to explain the position, display its 
attractions, and defend it against some criticisms. I shall be particularly concerned to 

understand thef'initary standpoint assmiated with Hilbert's Programme, in the light of 

what GMel's discoveries reveal about the pervasive incompleteness of mathematical 

theories. Chapter One gives a critical discussion of the Hilbertian philosophy of 
mathematics. In Chapter Two I discuss the finitary standpoint, and in Chapter Three 

the significance of incompleteness. 

Since the finirisrn I discuss in intended to be pretty much that advocated by Wlbert, I shall 

spend some time explaining and discussing Hilkrt's views. But my primary purposes are 

not exegetical, and whilst I hope not to misrepresent filbert, I am more concerned that the 
philosophical position I try to articulate should seem plausible and attractive in its own 

right. Hilben, it should be remembered, was not a philosopher, md although his prose 

w-r i~gs  are full of distinctively philosophical remarks, they contain only the barest outlines 

of a philosophy of mathematics. That outline can be fleshed out in many different ways, 

compatibly with all that filbert tactually says. I find that much of the existing philosophical 

literature fleshes out the outline in ways which make Hilkrt's position seem very weak. 

Since I don't find anything vexy weak in the outline itself, I thought it worthwhile to try to 

do better. For those interested in exegetical questions, Appendix One gives my views on 

the interpretation of Hilber ; in more detail. 

I have been asked more than once why I am so interested in a bankrupt programme. The 

answer, obviously, is that I do not think that the programme is bankrupt. To be sure, the 

incompleteness theorems show, definitively, that no interesting mthemtaticd theory can be 

proved to be consistent by the finitmy metarnathematical techniques pioneered by Milbert. 

In the sense that the specific g a l  of a finimy consistency p m f  for classical mathematics, 

and especially classical analysis, cannot be achieved, Hilben's Programme failed. But 

what this means is that ofie specific goal, albeit a central one, must be given up. Tlie 

consequences of this fact for the underlying view of mathematics are not at all clear cut, and 

this is one of the things I Rope to show. 



Furthermore, we now how that something very close to a finitary consistency proof can in 

fact be given for almost all of classical analysis. More precisely: recent work has 
demonstrated that almost all of classical analysis can be formalized in systems which are 
(finiWy) provably conservative over primitive recursive arithmetic. This constitutes a far 

reaching, if nevertheless partial, completion of Hilkrt's Programme. I explain these recent 

discoveries more fully, and discuss their philosophical interest, in Chapter One. 



CHAPTER ONE: 
Hilbert's Programme and the Philosophy of Mathematics 

Introduction: In this chapter, I discuss the philosophical foundations of Hilbert's 
P r o g r a m .  In Section One, I sketch the h g m n m e  itself, giving a provisional and 

superkid account of the philosophical issues hvolvd. Section Two then outlines some 

recent work in mathematical logic which shows that a significant pordal realization of 
Hilben's Progritme is possible. (Full realization, of come, is precluded by the, GMel 

incompleteness theorems). 

I then begin to examine the philosophical issues involved in more detail. In Section 
Three, which is partly historical in character, I describe the 'problematict of Hilbert's 

Frogranme, whilst Section Four discusses Hilkrt's own philosophical opinions. Then, 

in Section Five, I sketch a philosophical position which seems to me to cornpofi with 

Hilkn's expressed views in all essentials, which is sensitive to the underlying concerns 

discussed in Section Three, and which is also, I hope, reasonably plausible and 

attractive in its own right. Finally, in Section Six I contrast this philosophical position 

wih some currently influential alalternatives. 

Section One: Hilbert's Programme - A Preliminary Sketch. Standardly, 

Hilbert's Programme is described as a response to the crisis in the foundations of 

mathematics caused by the discovery of the paradoxes of naive set theory. Thus, even the 

most sympathetic of recent philosophical commentators on KIilbert's Pro~amrne, Michael 

Detlefsen, begins his book with the words: 'Hilbert's Program was founded on a concern 

for the phenomenon of paradox in maehemad~s'.~ On this standard view, the discovery of 

the paradoxes of naive set theory had engendered a widespread suspicion that classical 

mathematics, and in particular classical analysis, might itself harbor similar paradoxes. 

Hilbeds Progmmm is then seen as an attempt to d a y  ahis sceptical doubt, by proving that 

the standard mathematical systems are consistent. Presented in this way, the primary 

objective of Hilkrt's B r o v  is epistemological in character. 

See Wefsen, Michael [1986], pkx. 



If I understand Hilbert aright, however, this standard view is misleading, and obscures 

many of the philosophically most interesting aspects of Hilkrt's thought. Whilst the 

concern to combat doubts about the consistency of classical mathematics was there, I do 
not thirk that it was redly fundamental. For to begin with, neither Milkrt, nor any other 

mathematician known to me, has ewer given serious grounds for suspicion concerning the 

consistency of classical mathematics, although many mathematicians have found ciassical 
mathematics unsatisfactory in other ways.2 And in particular, the intuitionistic attack on 
classical mathematics - the major stimulus behind the mature version of Milben's 

Frogramme - was not based on any suspicion that classical mathematics might be 

inconsistent. Brouwer in priicdar does not make this claim, and repeatedly stressed that a 

proof of consistency, in what he called 'Hilbert's formalist sense', would leave his 

objections to classical mathematics unto~ched.~ 

Steven Simpson gets much closer to the real roots of Hilbert's concerns when he writes 

that the aim of Hilbert's Programme was 'above all . . . to clarify and justify the 
marhematician's use of the infiniee The 'infinite' here, of course, is the 'completed' 

infinite of Cantorian set theory, as opposed to the 'potential' infinite accepted by all 
mathematicians.5 Now, the 'phenomenon' of paradox in mathematics alluded to by 

Detlefsen is not unconnected to this Hilbertian project of clarifying and justifying the 

mathematician's use of the actual infinite. For the phenomenon in question is in fact the 

inconsistency of naive set theory, and set theory is the systematic study of the actual 

infinite. The discovery of the paradoxes of naive set theory, then, might well motivate a 

concern to clarify and justify the set theorists' use of the actual infinite. But Hilbert's 

desire to clarify and justify the mathematician's use of the actual infinite does not in fact 

originate in the set theoretic paradoxes. The fundamental concerns underlying the mature. 

consistency programme of the 1920's already donunate his work in the 1890s on the 

fouadatior~s of geometry, a decade before the paradoxes were discovered. 

I know of at last two places in the literature in which the consistency of classid analysis is said to be 
suspect - in Weyl's semi-popular book "Das Kontinuum', and in Genzen's essay The Present State of 
Research into the Foundations of Mathematics' (see Ganzen [1%9] p235). Neither aulhor slrggesLs tha~ 
there is anything like scientific evidence that analysis might be inconsistent. The sole ground offered for 
suspicion is apparently some vague and unspecified resemblance between arguments in analysis and in naive 
set theory. 

See e.g. Brouwer [I9231 p336. 
See Simpson, Steven [3988], p350. 
In Hilten [1925], even analysis is said to involve only the 'potentid' infinite. What Hilten means here, 

of course, is that real numbers may be thought of as 'potentially' infinite sets. This is a more complex 
notion of potenrial infinity than that implicated in the simply infinite sequence of natud numbers. 



Simpson's characterization of Hilkn's aims goes deeper than the common alternative; in 

that it suggests, quite rightly, that a reasonable assurance that some system of set theory is 

consistent - tRc kind of assurance we now have with respect to ZF, for example - would 
not suffice to allay Milbert's foundational  concern^.^ To see why, we shall have to 

examine those concerns in detail. In particular, we shall have to get clear about the use to 

which Hilkf i  hoped to put a consistency proof for classical mathematics. For it is vital to 

understand that, in filbert's Propmum, a consistency p m f  figures as a means to an end, 

rather than as an end in itself. 

Hilbert proposed a two step programme, by means of which he hoped to show that the 

whole of classical mathematics could be reconciled to a foundationalist psition - finitism - 
which nevertheless respected (what he believed to be) the Icgiaimate aspects of the 

intuitionistic critique. In bold outline, the two steps are the following: 

(Step One) Classical mathematics is to beformalized - set out as a deluctive system (or 

series of deductive systems), with a clearly demarcated background logic and an effectively 
specified syntax. 

(Step Two) The system or systems constructed in Step One are then to be provided 
with a syntactic consistency proof. 

What we need to understand is the way in which this two step programme addresses the 

problem of clarifying and justifying the mathematician's use of the infmite. 

The heart of the matter lies in Step Two, with its demand for a syntactic consistency 

proof.7 In the ordinary way, one shows the consistency of a theory T by exhibiting a 

model of the axioms of T - an interpfetation of the primitive vocabulary sf % on whish the 

- - - - - 

ZF is the seandard axiomahation of ZermeloPrankel set Wry, which includes the Axiom of Choice. 
The f i t  part of this programme is apt nowadays to shike one as unproblematic. But this perspective 

was not shared by Hilben's contempowries, for whom an attempt at the formalization of all of classical 
mathematics would have seemed a rash and doubcful enterprize. Uncertain as to whether formalization 
would be possible at all, the early axiornatizers were understandably inclined bo work in very powerful 
theories. ?he upshot of their efforts was the discovery LRat all of mathematics can be formalized in any of 
the standard set theories, ZF being the one most commonly used. Consequently, the first objective of 
Hilben's Programme has k ,n  achieved. But ZF is a very powerful theojl. Indeed, it has tan enormous 
excess of power over anything strictly required for the execution of Step One. One of the i~lterests of the 
research I shall describe in Section Two below, on partid realizations of Hilkrt's Programme, lies in 
showi~rg just how litile set theory is involved in much of standard mathematics. The philosophical 
importance of this will emerge in Seeaton Four nnd Section Five. 



axioms of T are all true. This procebm yields a semantic consistency proof. IHilbert was 

well aware of the possibility of giving semantic consistency prtxrfs for axiomatized 

theories. Indeed, he was one of the early pioneers of this technique, which features 
pronlinently in his early work on systems of arithmetic and geometry. Why, then, did 

filbert regard semantic consistency proofs inadequate for his foundational purposes? And 

are there any g d  reasons for refusing to rest content with semantic consistency prwfs in 

metamathematics? 

These are important queztions, and they raise a number of large philosophical issues, 
which will be discussed at some length in Section Three through Section Six below 

(as well as throughout ~ h a ~ t e r ~ w o ) .  For the moment, though, I will rest content with a 

partial answer, which has the merit of drawing our attention ro the actual use to which 

Kilbe-rt proposed to put a syntactic proof of consistency. 

A syntactic consistency proof takes the form of an inductive argument (typically on the 

length of proofs) demonstrafing that some chosen absurdity (e.g. '0=11) is not a theorem 
of the system. Since '0=l1 is derivable in any incomi.vtent system, such a demonswtion 

amounts to a proof of consistency. Now, Hilbert divided classical mathematics into t w ~  

parts, a real (orfinitary ) part, the consistency of which he regarded as unproblematic, and 

an ideal part (or pms) for which a consistency proof was required. Tentatively, let us 

i d e n w  the finitay part of mathematics with Primitive Recursive Arithmetic (PRA), and the 

ideal part with everything else. The interesting twist in the Consistency Programme: then 

lies in Hilbeft's demand that the consistency of the ideal part(s) be proved using the 
resources of PRA only. Notice that this is not, prima facie, an unreasonable demand. 

Proofs - finite, discrete, effectively constructed arrays of symbols - are themselves 
mathematical objects ~f exactly the kind dealt with in P M .  Thus whilst the content of 

some theory in the ideal pm of mathematics may very well transcend the bounds of finzit;uv 

mathematics, the proof structure of the tkeo~y will not. By studying the proof structure sf 

an ided theory directly, and independently of any model for the theory, Idilbert hoped to 

provide an assurance of consistency which did not involve any appeal to the theory3 
(infinitary) mathematical content. The focus on a syntactic consistency proof, then, was 

intended to dispense with any appeal to models in completed infinities. 

Assume, then, that we have partitioned classical mathematics into real and ided p m .  The 

technical result sought by filbert's Programme can now be described as a proof that the 
use of ideal mathematics does not enable us to prove any new real formulas - any  real 



formulas, that is, that do not have proofs which contain only red formulas. Obviously, 

there will also be proofs of theorems containing ideal elements, and it was no part of 
kiilbert's aim to show that the ideal elements cm~ld be eliminated from these proofs. 
Hilbert is not a rductionist in the naive sense. The justification for the use of ideal 

elements, though, was to be provided by a demonstration that they could not prove any real 

formulas that did not have alternative real proofs. This is Hilbert's Conservation 
Programme, st>-called since its goal is to prove that the hrll system of classical 

mathematics, real elements included, is a conservative extension of the finitary fragment. 

The twist, remelnkr, is that the conservation prope~%~ is to be pmvd for the whole system 
by a real proof: conservation rnuso Ire shown to befinitistic~lly provable. 

The link between the Conservation Programme and the two pan Consistency B h r s & r m e  is 

then forged by an argument I shall call the Master Argument. As we shall see, this 
argument purports to show h a $  if we have a f irh-y  consistency proof for m ideal system 

I, then for any finitary formula S provable in I, we can effectively ctansmct a purely 

finitaryproof of S. Think for a moment sf what this would mean, if it were me.  Much s f  

our deepest knowledge of the natural number series - for example, most of what we know 
about the distribution of prime numbers - comes fiom tile subject known as analytic 

number theory, in which the ideal methuds of real analysis are brought to bear on purely 

number-theoretic questions. Sometimes, but not often, these analytic methods can be 

shown to be eliminable.8 That is to say, it can sometimes be shown that the use of analytic 

('ideal') methods is not essential to establishing some elementary ('finitary') result. When 

this is so, the ideal elements used in the analytic proof may be thought of as mereiy 

simplificatory devices, abbreviating an enquiry that could, in principl~, be ccnducted in 

purely finitary terms. But this is not the typical case. Most often, the use of idea: 
elements, so far as we know, is ineliminable. A successful prosecution of the Master 

Argument would therefore be of very great mathematical significance, since it would not 

only show, withfull generality, that the use of ideal elements was purely sirnplificatory in 

character, it would also provide mathematicians with a powerful technique for obtaining 

new pmfs .  Since it is often (although by no means always) the case that finitary proofs 

pr~vide more information than ided ones, the Master Argument wears the appearance of 

being a research tcml rich in mathematical potential. Even a consmctivist mathematician - 
Brouwer, as it might be - could not object to research devoted to discovering the 

The pamdtgn here is Kronecker's finilary version of Dirichla's analytic proof that any arithmetic series 
containing two relatively prime terms contains infinitely many primes. I shall have more to say about this 
in Section Three below. 

- 1 1 -  



mail~ern~tical properties of infinitary, ideal elements, since such research would have been 

shown to have the potential of providing ~iothing but construc~vely hccegtakle results, if 

app1ic.d in the part of mathematics the constru,-tivists care about 

Fix now some ideal system I, and some finitaiy subtheory F of I. Assume that ttlz 

expressions of F imd I have k e n  c d e d  in some reasonable way. I use the expression 
,I- -I cp ' to denote tht: c d e  number assigned to the expression ' T ' . ~  

I am now in a position to state the master ar;,urnent. By the consmetioit of Goodstein's 
logic free' formalization of P M  cisscribed in Appendix Two, it is clear that PRA may 

be thought of as essentially a free variable calculus.10 (Closing a fornlula by prefixing 

universal quantifiers aeaves its quantificational complexity unchanged, and existentiel 

quantifiers may be thought of as having been replaced by primitive aecursi.ve functions in 
Skolem's way.) The finitary formulas, then, arc equations between primitive recursive 

terms. Let S be som finifary formula f(x -' ) = g(x ). and suppose 

Suppose now that we have a finitary ccnsistency proof for I. Then we will have 

for arbitrary x -$ , y + , where 'BewIt is a primitive recursive predicate which numeralwise 
r 1 expresses the provability relation of 1, and '2( z )' denotes the value of the arithmetical 
r 1 correlate of the negation operation for the value z . By the properties of enccding in F, 

we have 

for any G, so we identify the numerical value of performing the arithmetic operation 

corresponding to logical negation on the formula G with the code number of the negation of 

I discuss syntactic conventions at grater  length in Appenddx Two. 
lo PRA is the standard formalization of PRA, given in Robbin [1%7] e.g., and r e p d u d  in Appendh 
Two. In the same way, ZP is Lhe smdard formalization of ZF. PA, on the other hand, is the standard 
formalhation of arithrneeiic. 



G. In virtue of the properties of PRA, for any given terms f and g, we can effectively 

construct a term h such that 

Then by (1)- for some k, k is the code of a p m f  in I of S, whence 

But hen from the consistency assumption (2). 

whence from (6), 

Therefore, from (4) and (8) by modus tollens, 

r 1 i . .  S . 

As promised, a finitary consistency proof of I yields a finitary proof of any fmitary formula 

provable in I. Given the Master Argument, then, Milbert has a fully cogent response to 

Bmuwer's criticisms of the infinitary parts of classical mathematics. 

Section Two: Partial Realizations of Hilkrt's Programme: Even in this brief 

and approximate sketch, it is apparent that Hilbert's proposal for the clarification and 

justification of the use of the actual infinite is subtle, sophisticated and, initially at least, by 

no means implausible. Still, these attractions are likely to seem insignificant when set 

alongside one large and uncomfortable fact. The Master Argument requires finitary 



consistency proofs for ideal heories, and there are none. This raises the question which' is 

immediately asked whenever one makes claims about the philosophical importance of 

Hilbert's Programme - the question: What philosophical interest can this defunct 
programme possibly have? Given that GWel has shown that one cannot prove 

consistency finitistically for any interesting mathematical theory, surely Hilbert's 

Programme can be of historical interest at best? 

I do not think so. For it is now known that, despite incompleteness, the Conservation 

Programme loosely described above can in fact be carried out for almost all sf classical. 
l This is a very remarkable discovery in the foundations of mathematics, and I 

shall devote this section to explaining it in (slightly) greater detail. To do so, we shall have 

to describe the Hilbertian project into a more mathematically precise way. 

We shall continue to identify the finitary part of classical mathematics with PRA. Now, 

once real and ideal parts of mathematics Rave been distinguished in this fashion, it might 

seem that the ta.& that Hilbert faces is that of proving that d l  of contemporary mthematics 
is conservative over PRA. But I do not think that that is fair to Hilbert, since mathematics 

as we now have it differs v e 9  radically in extent, and indeed in character, from 

mathematics as Hilbert knew it. It seems to me much more reasonable to see Wlbert as 
attempting to clarify and justify the use of the actual infinite in what I shall call ordinary 

mathmutics - to a fmt  approximation, the mathematics done by mathematicians who are 

not set theorists.lZ More precisely, ordinary mathematics excludes those parts of 

mathematics that rely very heavily on the abstract theory of ordinal and cardinal number. In 

Simpson's classification, for example, ordinary mathematics includes geometry, number 
- theory, calculus, differential equations, real and complex analysis, countable 

combinatorics, and some pans of topo1~gy. l~ Ordinary mathematics does not include 
infinitary cornbinatorics, general topology, uncountable algebra. This distinction is, of 

l 1  Sieg, W. [I9881 gives a useful survey of the relevant work. 
l2 The idea that here are mathematicians who are r v ~ t  set theorists is likely to strike some philosophers as 
very odd, since philosophy has been much impressed by the fact that pretty much all of mathemtics can be 
modelled in set ~heory. This fact has encouraged the ~h~losophical conviction that mathematics just i s  set 
theory, albeit set theory in disguise. And if mathematics is set theory, what can it mean to say hat there 
are mathematicians who are not set theorists? But this is just a confusion. It is one thing to show that the 
rings, modules, ideals etc. discusd by algebraisB can be shown to be sets of a certain kind. It is quite 
another thing to show that h e  algebraic properties of those objecls are best'studial by the theory of' sets. 
The confusion here is analogous to that made in natural science by very swng forms of physicalism: the 
fact that the objects studied in biology are physical objects h no tendency to show hat the biological 
ropemes of those objects are best studied by physicists. 

P3 See Simpson [1988]. y(32. 



course, vague: descriptive set theory is an important border line case. But vague as the 

distinction is, mathematicians in practice appear to understand it reasonably well. What is 

mare, the distincticm permits the confident identification of a particular formal system as the 
ideal mathematics with respect to which Hilkrt aimed to justify and claify the use of the 

actual infinite. That system is 2 2 ,  the system sf second order arithmetic described in 

Appendix Two. 

We are now in a position to give a much more mathematically precise characterization of 

Hilbert's Programme. The P m g m  ha$ the following three: parts: 

(HB1) Fmalize f i i t a q  mathematics - i.e. formalize primitive recursive arithmetic. 

( H E )  Fomalize ideal mathematics - i.e. formalize second order arithmetic. 

mP3) Give a fiitarily correct consistency proof for second order arithmetic. 

With @PI)-(MP3) in hand, the Master Argument would then demonstrate the realizability 
of the Conservation Programme by proving (Conserv): 

(Conserv) Z2 is conservative over BRA with respect to nl formulae (i.e. w.r.t. f i n i t q  

formulae). 

A prmf of (Conserv) is the fundamental goal of Iiilbert's Programme. As I shall now 

show, something quite remarkably close to it has in fact been achieved. 

In the 1978 '~~  Harvey Friedman and his associates investigated a subsystem of Z2 known 
as WKLQ. WKLo is a theory in the language of &, but it draws upon only a very limited 

part of the logical resources of full second-order logic. In particular, abstraction and 

induction are allowed OR@ for El f o m Q a s  (with respect to which R, and hence BRA are 

coxnplete).l4 WMLo includes PRA, but alsci includes an infinitary axiom known as weak 

Konig's ~ernmn.' As a consequence, several important non-constructive theorems of 

classical mathematics are provable in W#Eo, including the theorems that establish the 

basic pr9phties of continuous functiorls of severd real variables, and the Local existence 

l 4  See Appendix Two for references. 
l5 Weak Ktlnig's Lemma asserls bat any infinite tree of finite sequences of zeros and ones has an infinite 
paih. 



theorem for solutions of systems of differential equations. In spite sf  this, WKLa is 

conservative over PRA with respect to HI1 fomulae, and this m n m a t i o n  property can be 

proved in P R A . ~ ~  (Indeed, W KLa is conservative over PRA with respect to n2 
formulae.) 

More recently, Simpson and his associates have investigated a system W&+ which adds 
to WKEo an additional, stronger infinitary axiom.17 It has k e n  shown that W#Lo+ is 

also consewative over BRA with respect to n2 formulae, and this conservation property is 

once more provable in PRA. The extra infinitmy resources of W=+ make it possible to 

prove several additional nmconstruceive tRm~ms of functional analysis which appear to be 

unprovable in WKLo. In his June 1988 report on this ongoing research, Simpssn 

suggests that it may be possible to define still smngtr subsystems of Z2 which will prove 
still funher theorems of infinitistic analysis, whilst remaining provably conservative with 

respect tal PRA. We have here, therefore, a far reaching and as yet incomplese partial 

realization af HIilbert's Br~gramrne.~ Whilst (Conserv) has not been, and cannot be, 

established in full generality (since that would imply the finitaily pmvable consistency of 

BRA, contra the Second Incompleteness Theorem), it can be, and has 'been, established for 

much of the mathematics that Hilbert most wanted to protect against the intuitionist 

challenge. 

In virtue of these results, notice, it appears likely that at least a very great part of the 

mat he ma tic:^ used in natural science can be formalized in conservative extensions of PRA. 
I do not know if all of the mathematics used in natural science can be formalized in this 

way, a d  I suspect that this question may not have a determinate answer. At the outer 

limits of theloretical physics, my grip on what counts as n a m l  science and what counts as 

mathematics goes hazy. Still, it is clear that the great bulk of applicable mathematics has 

the character Hilbert hoped to establish for a11 of ordinary mathematics. To my mind, this 

alone justifies the claim that Milkrt's Frograanm, is of more than historical interest. 

l6 See: Friedman [1976]. 
l7 Let 2~~ denote the set of all finite sequences of zeros and ones. Then Simpson's axiom says that, 
given any sequence of dense subsets of 2~~ which is arithmetically definable from some given set, the= 
exits an infinik sequence of zeros and ones which meets each of the given den% subsets. For more details 
on the k e m s  provable in h e  resulting system, see Simpson [1988]. IIe mathematical details have not 
yet appeared in pint, to Lhe best of my knowledge. They will be published in Simpson's 'Subsytems of 
second cdx mrithmeW (forthcoming). 
l 8  What is more, I hink it of consideaable philosophical interest to observe that much of the maahematics 
basic to physical science seems to te fonnalizal)le in lhese finitrvily conservative systems. I shall return to 
this point in Section Four and Section Five below. 



Section Three: The Context of Hilbert's Programme. k t  US recapitulate. We 

have chamckrized Hilbert's project as that of clarifying and justifying the mathematician's 
use of the actual infinite. We have seen that the clarification and justification was to take 

the form sf  a demonstration b a t  ideal mathematics was a conservative extension of a 

finitary mathematics in which the only infinity was the potential infinity of the natural 

number sequence. We have elaborated the quasi-technical argument that is the backbone sf 
Mbert's gmpsal as to how this job of cMication and justification is to be done. And we 

have seen that the use of the actual infinite in a surprisingly extensive part of ordinary 

mathematics can be showrl to satisfy Hilbert's conservation requirement over a part of 

mathematics that makes no use of completed infinities. 

What we do not yet have, however, is any real sense of what the philosophical intsrest of 

all this is supposed to be. What exactly is the problem with completed infinities to which 

Hilbert's ingenious proposal is supposed to be a solution? Why should philosophers of 

mathematics care which parts of mathematics are and are not conservative over PEA? 
Why, for that matter, should mathematicians? To which interesting questions in the 
philosophy of mathematics is all this algebra relevant, and why? This section begins to 

address these questions, by describing what Hilkrt tmk to be the philosophical problems 

to which his programme was intended as a response. What I hope to do now is uncover 

the (fragmentary, but highly suggestive) philosophy of mathematics that underlies Hilbert's 

Programme. I take as my point of departure the historical context of KEMs foundational 

work. 

At the time of his first engagement with foundational issues - the period from mound 1898 

to 1984 - we find ELilbert fighting in 3 battle on two fronts.'g On one front, he is engaged 

with the constructivist Kronecker, whilst on the other, the foe is the arch realist Frege. In 

both cases, Hilbert was faced with a revisionist philosophy of mathematics - one which 

implied (indeed, which explicitly argued) that much sf  the recent mathematical research 

most valued by filbert was to be rejected as without genuine scientific value. In bot.!e 

cases, the locus of the controversy was geometry. On t!e front attacked by Kronecker, all 

l9 1898, since in that year Hilbert gave his first public lectures on Euclidean geomeay - nhe lectures which 
formed the basis &Die Gnusdlagen &r Geomerrie, published two yeam Intier. A d g  to Reid, however, 
h e  foundational issues he engages in those lectures, togelher with the basic position he adopts towards 
thm, begui to mupy his mind several years earlier. I give 1903 as the terminus ~f this early engsgement 
with foundaions since that year marks the publication of the article 'Ubr die Grundllagen der Logic und dcr 
ArilkmeW, after which Hilkrt  published nothing explicilly on foundations mtil 1917. 



systems of geometry were under attack, for hneckea's foundational position implied that 

geometry as such was not pan of pure mathernati~s.~~ Frege was only slightly less 

radical, allowing Euclidean geomeiry, but only Euclidean geometry, as part of pure 
mathematics. If either view was accepted, all of non-Euclidean geometry, including the 

profound discoveries that had m s f m e d  !he entire mathematical landscape. of the later 

nineteenth century, would have to be given up. 

The initid impetus for the controversy was provided by the realization, widespread by the 

mid-nineteenth century, that there existed many consistent alternatives to Euclidean 

geometry. Coupled with the conviction that geometry was, by defiriition, thzt part of 
mathematics dealing with a particular kind of mathematical objects - objects such as points, 

lines, planes etc. - the existence of consistent alternatives to Euclid took on a puzzling 

Consider the famous puzzle associated with the Euclidean parallels postulate, for example. 
It is an axiom of Euclidean geometry that, given a line L and a point P not incident with k, 

there exists exacrJy one line L' incident with P eoplans?r with L. Since Euclid's own time at 

least, the status of this axiom had been controversial. It was widely held to lack the 

immediate obviousness of tile other Euclidean axioms, a d  this prompted many generations 
of mathematicians to attempt to demonsmte that it is in fact a consequence of the sther four 

Euclidean axioms (rather than an axiom in its own right). The mathematicians instincts 

here were quite conmt, notice - there is something less than obvious about the parallels 

axiom. Euclidean geometry, as we now know, leaves the crucial primitive notion af 
congruenct? insufficiently determinate. Consistent alternatives to Euclid can be generated 

by leaving the remaining Euclidean axioms unchanged, and introducing conditions which 

have the effect of rendering cong-mence a more determinate notion. But this idea of 

allowing alternative interpretations of the primitive expressions of a theory, n a t d  as it is 

to us now, was profoundly alien to the prevailing conception of mathematics in the early 
nineteenth century. FOP on h a t  prevailing conception, the primitives of Euclidean geometry 

had fixed senses, understandable independently of geometric theory, in virtue of which the 

Euclidean axioms were m e  - where this does not mean, true on the intended interpretation 

of Euclidean geometry, but just, TRUE. 

20 This is a liule too saong, since the finite geomelries with which we are now familiar would escape 
Kroneclrer's strictures. As we &all see in more derail bebw, Kronecker's position led to the mjection of 
gem* insofar as gaanehy depenM upon the Weierswss/Ded&nd nution of continuity. 



However, by the mid-nineteenth century, it was known that consistent alternatives to 
Euclid (systems, that is, that satisfy the Euclidean axioms without the parallels postulate) 

allow the existence of either no such line L', or many such lines: the parallels postulate is 

independent of the other axioms, and hence cannot be derived from them, Given the 
prevailing conception of geometry as that part of mathematics which cleals with fixed, 

univocal notions of point, line, plane, incidence etc., this situation seemed very puzzling. 

For on that conception, at most one system could be elling us the m t h  about parallel lines 
in the plane. But given the consistency of alternatives to Euclid, there appeared to be no 

genuinely mathematical way of telling which. 

One reaction to this multiplicity of consistent geometries implied the exclusion of geometry 

from pure mathematics. This was the position Hilbert associated with Kronecker, but it 

was d l  the more influential for having the authority of no less a figure than Gauss. III a 

well known letter written in 1830, Gauss states 

According lo my deepest conviction, the theory of space has a quite different 
position in our apriori science from chat of the pure theory of magnitudes. Our 
knowledge thoroughly lacks that complete conviction of its necessity (and rhus 
of its absolute truth) which is  the characteristic of the latter. We must in all 
humility a h i t  that if number is merely tk product of o w  intellect, space OR tk 
other hand har a reality outside of this, a reality to which we cannot completely 
prescribe laws in an apriori way. (Gauss to Bessel!, 30 April 8830, my 

This drastic resoluti~n of the difficu1;y posed by alternative geometries must not be 

confused with the more familiar alternative of counting all tRe consistent geometries as 

acceptable parts of pure mathematics, but involving shifting interpretations of the geometric 

primitives. The crucial difference, of course, is that the Gauss/Kronecker alternative clings 

to the traditional understanding of pure mathematical theories as theories with a fixed 

interpretation. Geometry has been relegated from this status in virtue of the fact that the 
unique correct interpretation of the primitives of geometry m ~ o t  be given by mathematical 

means. The Gaussian demotion of geometry is based upon the convictionl that only 

physical experimentation (or at any rate, some aposteriori element) can determine this 
correct interpretation of the geometric primitives. Correctness being beyond the reach of 
mathematics as such, geometry becomes relegated to the status sf rnecharlics - part of 

theoretical physics rather than pure mathematics. 

See Gauss [I8801 p497. 



The problem h a ,  evidently, stems from the acceptance of a c& foundational thesis that 

almost n w n e  now believes, viz. 

(MI) Mathematical Wr ie s  must always be hmries wish o fie$ inberpmtation. 

Indeed, one reason why almost na-one now believes (#I) is that we have almost all 

learned the lessons taught by the realization that there are consistent alternatives to 
~uc1id.Z But independently of how one feels abut  (#I), it will surely strike the reader 

that (KP) alone cannot suffice to drive ad sf  geometry from the realm of pure mthematics. 

FOP as every high schml student of analytic gmmerg, in effect knows, geometric systems 
such as Euclid's can be modelled in the theories of the real a d  complex numbers. So even 

if our geometric intuition has proved inadequate to the task of securing a purely 

mathematical content for geometric theories, we can save geomiry for pure mathematics by 

appealing to an Jyeic hteqnetations of gmnaemic systems. 

It is at this pint ,  though, that h n e c k e f s  position becomes both very interesting, and 

very important for the attempt to understand Hilbcrt. For Kronecker's position on 
geometxy was determined, not by (Kl )  alone, but by the following extension of (KP) 

(K2) Mathematical theories must always be theories with a f ixed  interpretation, and thus 

interpretahn must be given as a decidable consnucrisn from the ~ ~ a l  nmabers.23 

** I say almost all, since as r a n d y  as 1980 an arlicle appamd in the philosophicd litemure arguing hat 
the standard proofs of the independence of Ihe parallels postdate do not answer the traditional question 
which provoked the long history of attempts to derive the parallels postulate from the mtmining axioms of 
Euclidean geometry. Geoffrey Hunter [I9801 seems as hink that there really is a furher question to be 
answered, which (if I understand him careclly) is something like the question whehr the Fregean Thought 
expressed by the parallels postulate really is TRUE. 'Ik lesson taught by this episode in the history of 
mathematics, it seems to me, is that there is simply no answer to this question, since there is simply no 
such Thought 
23 (K2) brought Kronecker and the young Milben into direct conflict, since (as we shall see) (K2) 
prosaibes pure existence proofs, and H i l t d s  f - i  major res~l t ,  h e  p f  lhat a 'finite number in (mional) 
inkgem of iPLvuimts, by which dl the ast of such invariants can be integrally represented' [Hilberi 1917 
pl%] Jways exists, was a pure existence proof. Hilbert's proof astonished the iratePnaPional mathematical 
community with its (comparative!) simplicity and brevity. Earlier auscks on s u ~ s  of the general 
problem d M d  by Hilbert had pn>cebed by actually &dating the required &is, via algorithmic p d u r e s  
of enormous complexity. Hilben's p f ,  on the other hand, avoids such procedures entirely. m, exisLellce 
of a finite basis is p v e d  indirectly, by a demonstration that a contradiction results From b e  assumption 
that no fmile h i s  exisls. Consequentiy, the proof gives no infonr~don as to how a basis might actually 
be found - it is completely non-constructive. To many of the leading mathematicians in this field, 
including Kronecker, Hilben's p m f  was, in the mathematician Lindemmn's famous p h w .  'unheimlich' - 
uncanny, wierd - and thb in spite of the fect that, as we have h d y  seen, results of his kind hi been 
established fifty yeas earlier by Dirichlet. MOM mathemalicians quickly came to see the value of Wilbwt's 
work sn invariants, but Kroneckes, in virtue of his acceptance of (KZ), never did. For him, work of this 
kind was simply not mathematicu. 



It is important to notice that (K2) constrains the introduction of sbjectslconcepss in 

mathematics. Thus, if the concept of the limit of a convergent series is to be introduced, 
for example, (#2) makes any definition which does not enable one to determine whether or 

not a given number is the limit of a given convergent series illegitimate. (K2) also 

constrains attempts to prove that an object meeting a given specification exists, for 
according to (K2), my suck p m f  must give us m eflective procedure for finding an 

object meting the specification. 

Kronwker appears to have believed that a good eeal of mathematics as he h e w  it could be 

recast in accorda(~:e with (K2). In one of the few passages in his published work which is 

not purely mathematical in content, he writes 

. . . one day it will be possible to 'arithmetize' the whole content of all h e  
m ~ ~ c a l  disciplines, i.e. to found them on the n u m k  concept alone wilh 
this taken in the narrowest sense, thus to cast off again the modifications and 
extensions which this concept has undergm,* modi/iccuwnr Qnd cxre~lswns 

t b  -- . . 

I mean here namely the addition of irrational and continuous magr1imdes.24 

Indeed, Kronecker took himself to be engaged upon exactly this radical programme of 
reconstruction (what we might call Kronecker's Programme). However, he himself 

explicitly asserted that the concept of limit resists this kind of treatment - in his phrase, 

'remains alien to number theory'. What this in fact means, though, is that the limit is not 

reducible to thefinitary theory of the natural numbers. Given that h i s  is indeed so, the 

evident implication of adhekence to Kronecker's strictures, so far as the mathematical 

community as a whole was concerned, was the loss of vast areas of well established and 

valuable mathematics (along with all of Caniofs nascent set theory). This devastation was 

undoubtedly the consequence of Kronecker's position as Hilbert understood it, and the 

prime reason why he opposed it so strongly. 

'Decidable' and 'construction' now have precise technical senses, which were of c o w  unknown to 
Kronecker. Still, he seems to have had in mind preuy much what we would man  by decihbiliay and 
c o n s b u c t i v ~ .  FOP Kmneckep, if a definition is to be acceptable, it must be possible for us to determine 
in ai finite number of steps whether an arbitrary object (of the right kind. pertlaps) satisfies the definition. 
Thus, for example, he rejected Weierstrass's definition of 'irrational numbr' on the grounds that the 
definition did not in general enable one to &fennine whether an arbitrary sequence &fined an irrational 
number. 
24 Kronecker [I8871 p253, my emphasis. 



It is not difficult to see how adherence to (K2) compelled Kronecker to exclude geometry 
from pure mathematics. Kronecker knew of several well-established mathematical results 

which apparently violate (U), including, crucially, the central results of analytic number 
theory. This field had its inception in 1837, when Dirichlet (Kroneker's teacher, whom 
Kronecker revered) proved the theorem mentioned in Section Two above - that there are 

infinitely many pr im numbers in any arithmetic progression which contains two relatively 

prime terns. This argument, as Dirichlet presents it, makes free use of continuous 
variables and limits: consequently, it violates (K2). 

The impomce  of this theorem, and the field which it opened up, was noted by Dirichlet 
himself, when he wrote '[the] method I employ seems to me above all to merit attention by 

the connection it esogblisks between the irgfSnitesima1 Analysis and fhe higher Arithmetic ' 

(my emphasis). That there might be such a connection at all was in itself thought to be 

remarkable. Since antiquity, it had been believed that there were two quite different kinds 

of 'quantity' studied in mathematics - the continuous and the discrete. In analytic number 

theory, however, this distinction seemed to become b l - d .  

Dirichlet himself, though, did not think that his work had this effect. His own views on 

the connection are stated very clearly by another of his pupils, and hnecker ' s  arch rival, 

Richard Dedekind. Irt the Preface to the First Edition of his great essay Was sind und was 

sollen die Zuhlen? Dedeknd writes: 

From phis point of view [the point of view adumbrated in W m  s i ~ d  rond wm 
sollen die Zahlen, that is] it appears as something self-evident and not nGw Lhal 
every rkorem of algebra and higher analysis, no marler how remote, can be 
expressed as a rheorem ubour .wrwal numbers - a declaration I have heard 
repeatedly from the lips of ~ ir ichlet*~  

This might reasonably be taken to mean that those parts of analytic number theory that 

appeared to make use of the theory of continuity essentially do not in fact do so - that 

sttictly arithmetical proofs of all such theorems must exist.26 This was undoubtedly the 

position attributed to Dirichlet by h n e c k e r ,  who took particular pride in his recasting, in 
1885, of the proof of Dirichlet's theorem in confcrmity with (K2) - perhaps his major 

25 Dedekind [I8871 p25, my emphasis. 
26 Of course, we now know that what Dedekind had parlially discovered was not the reducibility of analysis 
to number theory, but the reducibility (in a diffe~ct sense) of both to set theory. In reading Dedekind, 
Kronecker and indeed the early Hi lkrt ,  it is itnprpant to remember that they were unaware of lhe 
fundamental difference berween reduction to a Lheory which permits quantification over numbers alone on 
one hand, and theories which pemit quantification over sets of numbers on h e  other. 



contribution to the project mentioned above as Kronecker's Programme. Nodce that this 
suggests that Kronecker's position on (K2) was in fact flexible. Me seems to have been 

prepared to allow that at least some non-constructive arguments, such as this one sf 
Dirichlet, might have mathematical value - as stop-gaps on the road to a constructive proof, 
if nothing else. He was unbending, though, on the use of non-constructive dej6nitbn.s. 

Why was it thought so impor!ant, though, that the use of limits, continuous functions etc. 
be shown to be elirninable from arguments in arithmetic? Once again, the answer that 

would have undoubtedly been given by Kronecker to this question in fact appem in print 

in the work of his arch rival, M e k i n d  At the beginning of his monograph Continuity and 
Irrational Numbers, Wekind  writes of his dissatisfaction as a teacher at the 'lack of a 

really scientific foundation for arithmetic'. He continues: 

In discussing the notion of the approach of a variable magnitude to a fixed 
limiting value, and especially in proving the theorem that every magnitude 
which grows continually, but not beyond all limits, must certainly approach a 
limiting value. I had recourse to geometric evidences. Even now such m r t  to 
geomeaic intuition in a f a t  presentation of the differential calcul~u, I regard as 
exceedingly useful, from the didaceic standpoint . . . But bat this form of 
introduction into the differential calculus can make no claim w being scientific, 
no one will deny.z7 

But what is so bad about the resort to the 'geometrically evident' in this context? 

Dedekind's answer to this is very revealing. In Sixtion Three, he gives what he calls the 

'essence of continuity' in the following 'axiom': 

If all points of the straight line fall into two classes such that every point of the 
first class lies to the left of every point of the second class, hen there exists one 
and only one point which produces this division of all points into two classes, 
this severing of the straight line into two portions.28 

And then there comes the crucial passage: 

. . . I think I shall not err in assuming that every one will at once grant h e  
truth of this statement; the majority of my readers will be very much 
disappointed in learning that by this commonplace remark the secret of 
continuity is to be revealed. To his I may say that I am g l d  if every one fin& 
h e  above principle so obvious and so in harmony with his own ideas of a line; 
for I am utterly unable to adduce any proof of its correctness, nor has anyone U\e 
power. The assumption of this property of the line is nothing else thm an 
h o r n  by which we attribute to the line its continuity, by which we find 

27 Dedekind [I8721 pl. 
28 Dedekind [op ci t] p 11. 



cmhuity ip the line. ?fspoce has a dl a red cisfence it is not necessary for it 
to be conrinrrous; many of its propeaties would remain the same even were it 
 discontinuous.*^ 

Eater, in Was sind und was sullen die Zehien?, Dedekind outlines a detailed mathematical 
defense of this last claim, by showing (as we would put it) the existence of a model of 

Euclid's axioms in which all ratios of lengths of line segments are algebraic numbers. 
Such a space is not, of course, continuous (the class of algebraic numbers is countable). 
Insafar as Euclid captures our 'geometric intuition', then, o w  geometric intuition is mt 

adequate to the task of capturing what is distinctive of contiruri~. Even allowing for the 

existence of something like geometric intuition as traditionally conceived, nothing in our 

geometric intuition can suffice to provide the grounds for a scientific notion of continuity, 

since we do not, and perhaps cannot, experience space directly as continuous. 

This does not mean that our conception of continuity, as Dedekind construes it, has no 

connection with what is geometPically evident, notice. What it means is that the 

introduction of the key concept in any developed mathematical theory of continrlity - the 
concept of limit - cannot be given solely in terms of geometric notions availabie 

independently of the developed theory of continuity itself. Once matured, the *eory has 

no point by point contact cvith the geometrical notions in which it originates. In Dedeki?df s 
words, we attribute continuity to the line by the imposition of this axiom. 

But whilst Kronecker was in agreement with Dedekind with respect to the inadequacy, 

from a mathematical point of view, of our geometric intuition, he could not accept the 

attempts to rescue geometry for mathematics via the kind of theory of continuity that 
- Dedekind outlined in this passage. For that theory, elaborated by Weierswass, Dedekind 

and Cantor in succession, provided for Kronecker the paradigm case of a completely 

unacceptable violation of (K2).30 

What we have now introduced are the horns of a t r i l e m  - a ailemma which bnecker ,  

unable to contemplate abandoning (m), took to force the exclusion of geometry from pure 

mathematics. Geometric theories, to count as mathematics at all, must have a fixed, stable 

29 Dedekind [op cit] ppl l-12, emphases mine. 
30 The violence of Kronecker's opposition u> Cantor's rnelhods in particulai is legendary - and it appears, 
unforpunately, that it must main so; for so far as I can discover, Kronecker nowhere denounces Cantor in 
print. Wiph Bdekind, however, the situation is different. In a paper of 1886, on Mekind's algebraic 
number theory, Kronecker is direct and uncompromising in his rejection, and it is quite explicit that he 
rejects Dedekids work on the grounds that it violates w2). 



content - a unique and specifiable subject matter. But what was this subject matter? We 
might, on the one hand, give 'line', 'point', 'plane', 'incidence' a physical interpretation; 

but then geometry is not pure mathematics, since the properties of the geometrical objects, 
thus interpreted, can only be empirically Beteimind - this is sufficiently demonstrated by 

the existence of consistent alternatives to Euclid. On the other hand, we might appeal to a 

priori geometric intuition. But intuition had proved to be inadequate to the task of fixing 
the sense of the geornehic primitives, and necessarily so, since M e k i n d  had shown that 
the crucial concept of continuity could mot be grounded in intuition done. Finally, we: 

might appeal to the Weierstras-d/Cantor theory, and thus recover for geometry the 

essential continuity concepts; but these theories are not acceptable as mathematics, in virtue 
of violations of (K2). These three possibilities seemed exhaustive, since Kronecker, for 

all his conviction that genuine analysis could always be 'arithmetised', had no suggestions 

to make with respect to an alternative account of limits in accordance with (K2). 
Consequently, there was no room for geometrgr in pure mathematics. 

This consequence, one might think, ought to give anyone grounds for abandoning 

adherence to (K2), rather than abandoning geometry. However, we should try to 
understand why Kronecker (and many other mathemzticians after him) took the other 
option, because in so doing, we stand to learn something very important about Hilbert's 

attitude to Kronecker's Programme, and thus about Hilbert's understanding of what he 
calls finitary mathematics. Unfortunately, Kronecker's motivations have to be gathered 

almost entircly at second and third hand, from reports of his views from friends and 

colleagues - it is from such reports that we have Kronecker's famous dictum: 'The g d  

Lord made the natural numbers; all the rest is the work of man'. But even if the attribution 

of this bon mot to Kronecker is comct, we must still be puzzled about what It means. 

Why should the divine origin of the natural numbers dictate acceptance of (W), at the cost 

of abandoning so much mathematics? 

In one place in his writings, however, Kronecker gives us something more solid to go on. 

In his essay Ober den Zohlbegriff , he makes the following very revealing remark on the 

epistemology of mathemtics, once more invoking the authority sf Gauss: 

The difference in principles between geornevy and mechanics on the one hand, 
and the remaining mathematical disciplines, here comprised under the designation 
'arithmetic', consists according to Gauss in this, hat the object of the latter, 
Number, is solely the product of our mind, whereas Space as well as Time have 



also a reality, outside OUT mind, whose laws we are unable ao prescribe 
completely a piai.31 

This is of c o m e  the very claim that inclined Gauss to banish geometry from pure 

mathematics: the real content of geometry (and mechanics) cannot be hown a priori, 

where we may take that to m, cannot lx d e m i e d  by mathematical investigation done. 

The multiplicity of consistent geometries is taken to provide evidence for this: if those 
geometries are admitted, then, holding to the standad view of mathematics as interpreted 

thcsrgr, mathematicians will be in the position of asserting manifestly incompatible theories, 

amongst which mathematics, as such, is powerless to distinguish. But if we accept the 
WeierstrassDdehrinUCantor theory of continuity, then we will Rave to accept this 
multiplicity of' gmegies ,  at the cost of abandoning the conviction that w h t  is provable in 
mthematics is TRUE. 

This situation, I surmise, must have seemed to Kronecker the inevitable cost of violations 
of (K2). If we admit the non-constructive theory of limits and continuity, he thought, then 

the link between mathematical demonstration and truth will be lost. Kronwker's dictum 
about the divine origin of the natural numbers, and the somewhat more rational remark 

quoted above about mind as the origin of number, then takes on the characteristics of a 

diagnosis of the unacceptability of this situation. The basic thought, I suggest, is the 
ancient conviction that the pruducts of the mind alone can be transparent to the mind. The 

fonn that this transparency takes in the case of mathematics, for Kronecker, is determined 

fundamentally by our notion of flective copnputubilicy, the notion that is the basis for our 

modern understanding of the mathematical import of (K2). Genuine mathematics - 
matllematics that can be determined a priori, without any input from the tainted source of 

geometrical intuition - must always deal with decidable constructions from the natural 

numbers, if the link between mathematical demonstration and mathematical n t h  is not to 

be broken. The exclusion of georneq, and mechanics, from pure mathematics can then be 

justidied by the observation that nature, which provides the subject matter of those sciences, 

is not the work of the mind. Csnsequenbly, there is no reason to suppose that the 

structures of the natural world, the structures dealt with in geornetrgr and mechanics, should 

all be of an effectively computable kind, for there is no reason to believe that we can come 
to know even the fundamental structure of the natural world a priori. And indeed, those 

fundamental structures are not knowable in this way: this, for a Kronecker, is precisely 

what is shown by the arithmetic intractability of the notion of limit 

31 See Kronecker [1887], p253. 



Now of m m ,  Hilbert denies (K2) - indeed, Hilben is generally associated with a verj 

radical kind of rejection of (K2) and (K1) as well, according to which mathematical 

theories as such are to be thought of as purely syntactic objects. This position is naive 
formalism, so often said to be the official position of the typical contemporary 

mathematician: mathematics is the theory of syntactic operations on purely formal objects, 
and therefore mthematical theories as such are neither true nor false. But as we shall soon 
see, this was not H i l W s  position. Hilbert was never a formalist in this sense, and his 

arguments against (K2) have a far subtler and more interesting character than those 

available to this naive kind of formalism. 

Before we turn to those arguments, though, we shall have to consider the second front 

H i l M  was defending, this time against the attacks of Frege. 

bnecker ,  like Hilbert himself, was a creative mathematician, and not a philosopher. 

Frege, on the other hand, whilst not a creative mathematician of my consequence outside 
the field he virtually created - mathematical logic - was a very great philosopher indeed. In 

the famous dispute with Hilkrt over the nature of geometry, Frege had Pitde difficulty in 
exposing the confusions and obscurities in his eminent rival's pcsition. Frege read 
H i l W s  Die Grundlagen &r Geometric on its original publication in 1899, and shortly 

afterwards studied the lecture notes on which the printed text was based. A brief 

correspondence with Hilbert ensued, to which Hilbert contributed little. Frege's 

contribution to the cGntPoversv continued for some time after Hilbert's withdrawal, 

culminating in the two long articles on the foundations of geometry that are amongst 

Frege's last published writings. 

The Frege-Kilkrt correspondence has k e n  much commented upon in the literature, and 

have little to add to the discussion. Mast commentators, however, have used the 

correspondence to shed light on Frege's philosophy of logic, many details of which are 
indeed trenchantly displayed in his lecturing of Hilbert. Frege's views on geometry, on the 

other hand, have generally been neglected. But this controversy is not about the 

philosophy of logic: it is abu t  the philosophy of mathematics, and of geometry in 

particular. And with respect to this aspect of the controversy, there are some things that 

need to Ix said. 



Frege's reaction to the multiplicity of masistent geometries was no less drastic ahan that of 

Gauss and Kronecker, since his adherence to (KP) was no less u~lqualified than that nf 

Kronecker. In his published writings on this topic, Frege is circumspect; but his 

unpublished writings leave no doubt about what his views were. For Frege, Euclidean 
geometry, and Euclidean geometry alone, is genuine science and indisputably part of pure 

mathematics. The alternatives to Euclid, for Frege, are quite simply tissues of falsehoods. 
Indeed, he went so far as to compare non-Euclidean geometries with alchemy and astrology 

- mere pseudssciences, with no genuine cognitive value whatmver. 

If Euclidean geometry is true. then non-Euclidean geometry is false, ani if nm- 
Euclidean geometry is tm, Euclidean geonmelry is false. 

If given a point rat lying on a line one and only one line can be Brawn 
through that point pardel to that line then, given my line I and point P not 
lying on 1, a line can be dram through P parallel to I and any line hat  passes 
LRrough P and is parallel to I will coincide with i t  

Whoever acknowledges Euclidean geomztry to be true must reject ilon- 
Euclidean geometry as false, and whoever acknowledges non-Euclidean geometry 
t3 be true must reject Euclidean geomeay. 

People at one time klieved hey practised a science, which went by the 
name of alchemy; but, when it was dixovered that this supposed science was 
riddled with mmr, it was banished hrrr among the sciences. . . . Tlse question at 
the present time is whether Euclidean or non-Euclidean geometry should be 
sauck off the role of h e  sciences and made to line up as a museum piece 
alongside alchemy and astrology. If one is content to have only phantoms 
hovering around one, there is no need to Iake the matter so seriously; but in 
science we are subject to LhC nece~sity of seeking after bnrth. There it is a case 
of in a o u ~  Well, is it Euclidesn or non-Euclidean geometry that should get the 
sack? That is the question. 32 

Characteristically, Frege is also completely explicit and forthright about what it is that 

determines the correct intapretation of the geomemc primitives. It is not physical space: 

the decision between Euclidean and non-Euclidean geometries is no! to be made by 

physics. h t h  here is determined by what he calls 'the geometrical source of knowledge'. 

'This is Frege's version of mathematical intuition. 

In virtue of his acceptance of (Kl),  the epistemological and cognitive status of h e  axioms 

of an axiomtized geometrical theory seemed problematic to Frege. On his view, axioms 
were Thoughts - not expressions of Thoughts, notice, but the very Thoughts them~lves. 

To distinguish Fregean axioms from axioms in the now familiar sense, let us call the 

-- - - - 

32 Frege, 'On Euclidean Gmmeuy', in Frege [I9791 p169 The editors of Frege's unpublished writings are 
unable to date this fragment more  accurate!^ than 1899-1906. Howevex, there seems ro be little doubt that 
Frege held to this view Lhroughout his life - see for example the extensive hagment Logic in Mathematics', 
dated as Spring 1914 in Fmge [op cit], especially pp247 ff; and the very late 'Sources of Knowledge in 
h4ahematics and Lhe Mathematical Natural Sciences' of 1924-25 ([op cit] pp 267-274). 



fomer 'Axiom' ( w k k  the dis!i.nction docs not matter, I use 'axioms'). Since Axioms are 

asserted directly in proofs, rather than on '.c basis of some inferential relation amongst 

previously asserted Thoughts, our p s p  of the truth of an Axi~rn must be ciirect, 
mrndiatd by inference. 0u.r acknowledgment of the 611th of an Axicrn is p a u n d d .  
directly in the content sf that particulw axiom, rather than via an ~ c k n o w l d p e n t  of an 

inferential relation amongst This mans that an Axiom, for Frege, must cnot 
only be m e ,  I: must dw have the pmprty of being, so to speak, transpmndy mc,  to 

myom who is capable of grasping it at dl. 

The qualification here is essential, however. Ht is not Frege's view that there will 

necessarily be unanimity on the truth of an Axiom. Piis view, rather, is that an absence of 
unanimity in such a case will always be ahbutable to 3mpTFmt understanding. This is 

particularly impmint with respect to the ptimitivt expressions of an axioxnaitized theory - 
the geometricid primitives, in the case of geometry. Just as there must be ahw~ems zsscrted 

directly on the basis of their evident mth - Axioms, that is - them must also be concepss 

which must be gnu@ prior to the deductive elaboration of the scientific thmry in which 

they are embedded. Fm the concepts associated with the primitives of the theory - the 

coneep! of line, of pint, of plane etc. - must all figure in the Axioms of the thmrp,, and if 

those axioms are to be grasped as immediate truths, those concepts must already be 
understu4.M There is then a potentially very difficult and elusive task, on Frege's view, 

of ensuring that these primitive concepts are made fully perspicuous. This task is 

accomplished by what Fregt: calls eluci&tion (erlhtemng). 

The only developed example of Fregw elucidation to be found in Frege's own writings is 

his brilliant analysis of the fundamental concepts of arithmetic, given in parts sf the 

33 Is this claim not incompatible with the Context Principle, bough? 1 do not lhink so. Frcgc can 
acknowledge a degree of holism in Ike grasp of the primitive concepts of a deductive theory - he can 
acknowlalge, for example, &at there is no grasping the concept of point i~dapndently of a grasp of h e  
concepts of line, p k ,  incidence, congruence etc. In this s e w ,  one cannot enquire into the sense of the 
concept p i n t  indegendently of its occurrence in sentences - in p t i c ~ ~ l a r ,  in the axioms of Euclidean 
geomelry. But whatever the Context Principle means to Frege - and this is a vexed question in Frege 
adys is  - it dses not have the consequence of enabling Rim to allow that there was some non-Euclidean 
notion of straight line. in virtue of which one could truly think the thought that 1 would express in English 
by saying that two straight lines may enclose a space. For Frege, at least me such line must bc, curved 
34 Notice thao all of this is compatible with bere king a lmt ive ,  equally satisfacto~ axiomatizations of 
a mahmatical theory, since there may be a set T of theorems possessing rhe cpisbernic and cognitive 
c ~ m i s t i c s  of axioms, all of which are 'trivially' derivable From each of several different choices of 
subsets of T. In ah6 m e  way, there may be several different, equally satisfatory chokes of primitive 
concepts P o t  an axiomatized theory, any of which will enable all LIE others to be formally defined in the 
theory. Whare this is so, there is a 'local holism', as It is metimes called, amongst, the primitive 
wrneeprs. 



Foundarions of ArithnteQic and subsequent wok .  Elucidation here appears in the guise of 

a reductive philosophical analysis, which aims to show that the g r i ~ t i v c s  of arithmetic, 

properly understood, arc in fact logical in nature (logical by Frcgt's lights, of course).35 
Elusidation n d  mod always take this very elaborate form, however - it does so in the case 

of arithmetic p i s e l y  b u s s  h g e  ahinks that the real n a m  of the primitive concepts of 

arithmetic is not at all ~bvious. E"mtge would have thought of Euclid's notoriosls 
'definitions' of 'point', 'line' etc. as elucidaoisns. Me would have taken Cantor's famous 

remark 'By a Menge, we are to understand any collection into a whole M sf definite md 

separate objects rn of our intuition or ow thought' as m elucidation of the concept of set, 
and he w~uld have Phsught of the more Pccent explanations of the concept of set via a 
description of the generation of sea by an iterative process in the same light? Evidently, 
this notion of elucidation is not a very precise one, since what will count as an elucidation 
will in general depend on a host of unpredictable and pragmatic considerations, such as the 

audience for whom the elucidation is being offered. Indeed, this imprecision is for Frege 

an essential characteristic of elucidation, and the primary reason why he insists time md 
again that elucidation must not be confused with definition. Definition is a scientifically 

precise actitity, which takes place within an slxiomsltized theory: elucidation is prc- 
scientific, and must never be thought of as providing genuinely sciend'c gmunds for the 

assertion c~f my Thought. 

With these qualifications duly noted, nowever, it remains Frege's view that any doubts 

about an Axiom - as opposed to doubts as to whether some 1-nought is in fact suited to the 

role of an Axiom in a deductive theory - are necessarily attributable to misunderstanding. 

With characteristic forthrightness and integhity, Frege directly acknowledges the 

implicsatians of this view for the problem for (KB) posed by multiplicity of geometries: 

Can we not put to omelves the question: How would it be if the axiom of 
parallels diB'nt MJ? Now here are two psibillties here: eilher no use at all is 
m& of the axiom of parallels, but we are simply asking haw far we can get 
with the ober axioms, sr we are straightfomardly supposing something which 
coneadicur the axiom of parallels. It can only be a question of the latter case 
he=. But is must constantly be borne in mind that what is false cannot be an 
axiom, at I w t  if the word 'axiom' is king used in the traditional sense. What 
are we ta say then? Can the axiom of parallels be acknowledged as an axiom in 
his sense? When a straight line intcrsecls one of two pa l le l  lines, does i t  

35 With respect to the primitives of geometry, we cb noP know in any &dl what a Fregem elucidation 
would have looked like. Perhaps he thought hat  the groundwork at Ia.6 of this mk had been 
zcwmplished by Kant, for he a d n l y  believed that Kant had been correct abwt the cognitive and episwnic 
status of geometry. Certainly, his account would not have been reductive. 
36 Canm [1955], p85. For the iterative conception, see e.g. B o o b  [P971], or Scott [1%7]. 



always intersect the other? This question, strictly speaking, is one has each 
person CM only answerfor hiwgC. I can ody s ~ y :  so long a I I r s r d  tire 
words 'straight line', 'parallel' and 'inrersecr' os I do, I camof but accepr the 
pardlels u'orn. i f fomone else does not accept it, I c m  only assume r h t  he 
wrdcrstamh these words d@erentiy. Their senst is iardissolub!y h n Q  up with 
the axiom of parallels.37 

Now sf  come,  on any view, if the fomal sentence that expresses the parallels axiom is 
evaluated as m e  in one rndcl, and false in another, then the constituent expressions of that 
formal sentence, i.e. the geometric primitives 'line', 'plane', 'parallel' etc., must be in 

some sense interpreted differently in the two models. This has nothing to do with what 

Frege is saying, however. Fatge is not interested in anything that follows from the 
possibilities of httrpmting fcPrmal thcoties (in ow sense) in a l m t e  ways. 

Now, there is a perfectly intelligible sense in which two disputants, one of whom thinks 

that a hyperbolic geometry correctly characterizes physical space, whilst the other thinks 

that Euclidean geometry c o m t l y  characterizes physical space, understand the geomemc 

primitives differently. Each of these disputants can characterize his understanding of the 

geometric primitives to their mutual satisfaction, and the dispute between them is a dispute 
over which of these mumally intelligible geometric systems applies in physical space. Even 

if we drop the reference to physical space, and adopt (say) a set-theoretic interpretation for 

geometric systems, there is still a perfectly intelligible sense in which the geometric 

primitives are 'understood' differently as they are interpreted over set theoretic models of 

the alternative consistent geometries. But Frege takes himself to be able to discriminate a 

meaning for the geometric primitives which guarantees, not the truth in a mo&l of the 

formalized parallels axiom, but the truth, simpliciter, of the Thought that is the parallels 

Axiom in his sense. 

But what can be said to those who doubt that this Thought is true? Well, what does it mean 

to doubt that this Thought is true? For example, ought o w  judgment here turn on whether 

physical space is Euclidean? Clearly not: Frege does not think that the truth of his parallels 

Axiom is an empirical matter. No: the claim is that there are senses, accessible 

independently of this or that scientific geornemc theory, and independently of how things 

actually are with space, which are such that, if one has grasped them correctly, one canrlot 

but grasp the parallels Axiom as a truth. This is the claim. 

37 Frege, logic in Mathematics', in Frege [I9991 p247, emphasis mine. 



Since the question of the truth of the parallels postulate, according to Frege, is something 
that one can only judge for oneself, the response to this has to be given in the first person. 

FOT my part, I have to say that these senses Rave eluded me. With hand on hem, I have to 

say that thc E u c f i h  parallels axim does not sailst me as obviously m e  - for reasons that 

were already nubling to ~oclus.* Perhaps some educational programme would help: 

further study of the Critique of Pure Reason, maybe, or Fmge's own never discharged 
obligation tct elucidate the sense of the geometric primitives. But I suspect that the 

educational project would fail, if only because so m y  men have undertaken just this 

project in the past, and filed. Faced with a genuine c~ of such a failure, Frege's 
philosophy of mathematics is dumb. ahere is simply nothing to be said, other than that I, 
or he, must have failed to understand. It seems ts em, ss it surely did to HilW that this 

is an intolerably solipsistic basis on which to place the foundations of the mathematical 

sciences. 

Of course, I can indeed associate meanings with the pfimitives of Euclidean gmmetry in 
such a way as to ensure the truth of the Thought that a lint which intersects one of two 
parallel lines must intersect tAe sther (say). 1 can do so precisely by allowing the Euclidean 

primitives to have whatever meanings are necessary to ensure ahe truth of the axioms of 
Euclidean geometry, from which this proposition is derivable. This psidon, though, is 
not available to Frege, for now tke sense of the geometaic primitives is given to me through 

en miomtized geometric theory, and not independently of it. In exactly the same way, I 

can attach m n i n g s  to the geometric primitives in such way as to ensure  he mth of the 

Thought that parallel lines i n t a c t  at infinity, now allowing the geometric primitives to 

have whatever meaning is necessary to ensure the truth of the axioms of projective 

geometry, say. In this way, I can come to understand perfectly well geometries in which 

the parallels axiom takes opposed mth values, and I am willing to say that the gmmetric 
primitives have different meanings in these alternative systems. But if someone then asks 

me, which of these interpreted geometries is TRUE, I have to ask for some further 

clarification before I can answer. If the question concerns physical space, then I will have 

to defer to a physicist for judgment. If the question turns upon the mathematical 

acceptability, in any sense I can understand, of the two systems, I shall have to reply that, 

so far as mathematics is concerned, there is no reason to deny that they are both true. If the 

question is intended to resolve Frege's question, though - the question about the TRUTH 
of the parallels Axiom - I have to reply that this question simply has no answer. 

- - 

38 See Gray [I9891 pp34-36. 



For consider the alternative, Fregean response, in the light of the actual history of the 

Euclidean parallels postulate. The single most striking fatwe of that two thousand year 
long dialectic, in which proof rafter proof of the parailels pstulate was entwined md 
rejected, is the complete inability of the mathemtical community to a p e  on what counts as 
a self-evident mth, clnd what counts as an assumption that qu i r e s  demonstration. (This 
has nothing to do with the famous 'hidden assumptions', incidentally. Most of them were 

not hidden: they were regarded as is obvious to merit explicit acknowledgement) Wallis's 
famous proof makes the (explicit) assumption that, for my given triangle, congruent 
triangles exist of every size. Is this self evident? It can in f a t  be shown to be deductively 

equivalent to ohe parallels postulate, which of course mbs Wallis's p m f  of my suasive 

power. But the p in t  here is hat this conpence 'Axiom' is something which smck 
Wallis, and many others, as obvious, whilst the Euclidean p d l e l s  Axiom struck them as 
requiring p~f; whilst for others, of course, the situation was exactly reversed. This 

deadlocked pattern of futile attempts at persuasion repeats itself over aud over again with an 
enormous number of 'Axioms' which turn out to k equivaient to the parallels postulate; 

and throughout it all there is a complete, settled inability of competent mathematicians to 
? 

come to any agreement on which, if any, of these 'Axioms' neither had, nor needed, proof. 

And on the other hand, the inquiries which in fact generated non-Euclidean geametries - 
that is to say, the attempts by Saccheri et a1 to prove the parallels postulate by a mductio 

argument from its negation - were similarly deadlocked by an inability to get any 

consensus on what constituted a genuine d u c d o  ad absurdam. One man's duct io,  after 
all, is apt to be mothds non-Euclidean geometry. It smtches credulity too far to think that 

there is s ~ m c  understanding of Euclidean geometry which Frege had, but which these great 
mathematicians lacked, which is such that it would have sufficed t~ set their enquiring 

minds tat rest. Nor need we turn to ancient history for examples of this kind of futility. 

Amongst the many known equivalents of the Axiom of Ooice, a mathematician chosen at 
random from the mathemtical community of the 1920 '~~  say, would be apt to find some 

obvious, some less obvious, and some hard to swallow. But which versions fell into 

which categories is something that might vary widely, depending upon your choice of 
mathernatidan. Amongst the many who inveighed most loudly against the axiom on its 

first introduction, there were very few who did not rely, constantly but unconsciously, 

upon some equivalent of the axiom of choice in their own work.39 

39 T7e pawdip case is Poincare - sce Moore [1982]. 



Of course, Frege was not unaware s f  the implications sf his position. On the contrary, he 

understood thtm very well. Sometlrrpes puzzlement is expressed as to how Frege could 

still believe these bhings when it was already widely held amongst physicists that physical 
space was non-Euclidean, and I have heard speculation to the effwa that Frege may not 

have kept sufficiently in touch with physics to be aware of this. That is smly false. Fregc 
was a student of physics as well as mathematics, and remained professionidly intesested in 
physical theory as a practising mathematician. F~ege's c o d m n t s  with respect to 
geometry are not the consequence of ignorance of physics, or of my lack of awmness of 

the history of geometric theorizing. They arc consequential upon hihi% undmmding of the 
nature of logic, sf inference, and especially upon the powerful, sophisticated and highly 
plausible semantic theory that he had created. It is this M y  of doctrine, in conjunction 

with his adherence: to (Kl) ,  that forces these unpalatable conclusions upon him. To give 
them up, he would have had to abandon some central tenets of his philosophy. 

Section Four: Hilbsrt and the Philosophy of Mathematics. I think that it  will 

help us to understand H i l W s  work on the foundations of mathemabcs if we see it as a 
self-conscious attempt to find a middle way between the revisionist extremes represented 

by Kronecker and Frege. For this perspective reveals the deep continuities underlying the 

early work in geometry and the later work on the consistency of classical mathematics, and 
a sensitivity to this underlying continuity is the key to a correct understanding of Kilbert's 

Programme. 

Consider, for example, the question of why Hilbert should ever have written Die 

Grundlagen &r Geometric at all. Occasionally, one hears that the cardinal virtue of 

Hilbebt's axiomatization is that it reveals the 'hidden assumptions' on which the validity of 
a p a t  many Euclidean proofs depends, and thus mates a system of Euclidean geometry 

which really does have the deductive rigor mistakenly attributed to Euclid's awn work. 

But why should Hilbat Rave wanted to do that? The 'hidden assumptions' were all known 

before Hilbert's axiomatization appeared, and Hilbert had no interest in rigor unless it 

served some clear mathematical purpose. Euclidean geometry was hardy a flourishing 

research programme in the late nineteenth century, and the primary intercst of Hilbert's 

axiomatization does not lie in any wealth of new and unexpected results. What, then, was 

the point? Why should this ambitious young research mathematician, with a brilliant 

reputation but an as yet unestablished career, devote so much time to working over m 

apparently exhausted vein? 



The answer is that Dk Grudhgen &r G e m &  is piinwily a work on the foundations of 

mathematics, not gtometry. Morc precisely, it is aimed at exemplif$ng, clarifying, and 

popularizing a certain foundational p r o w m e  - the embryonic form sf Hilbert's 
Programme. Now, this description is apt to seem surprising, since Hilten's bgramfne  is 

dominated by the search for finitary consistency proofs, whilst in the G d l a g e n ,  concern 

for the consistency of geomeoric system is not nearly so prominent, and is satisfied by a 
model-theoretic argument establishing the consistency of his axiomtiation of Euclid8s 
geometry relative to a theory of the real numbers. This seems very remote h m  Hilbert's 

Programme. If we look more closely, though, the underlying continuity of concerns 
becomes apparent, and with it the origins of Hilbert's later obsession with f i n i t q  

consistency proofs. 

Seen in the light of the difficulties in Frege's position, the aspect sf Hilbert's Grundlagen 

which will strike us most smngly is the determined attempt to shift the discussion of 

geometric systems away from extra-systemtic questions concerning the egistesnic and 

cognitive status of axioms and primitive concepts, towards 'internal', systematic questions 
concerning derivability, independence, completeness, and consistency. Yet Hilbert calls 

this a work on the foundations of geometry. Frege's work on the foundations of 

arithmetic, remember, took the form of a reductive elucidation sf the arithmetic primitives, 

and he expected to find H i l h  at least addressing ;imilar questions with respect to the 

geometric primitives. But PIilbert did no such thing. Instead, he stated a series of axioms, 

and then claimed that those axioms themselves constituted a definition of the geometric 

primitives they contained. Frege was incensed. He found himself faced with a wo~k on 

the foundations of geometry which, as he said, left him unable to determine whethe'r his 

pocket watch was a pint. Since he took it to be mortally certain that his p k e t  watch was 

not a point, this struck Frege as conclusive evidence that -3lbert's work was gravely 

defective. 

Yet ten years before writing the Foundations, Hilbert remarked in conversatisns on 

goomtiy: "One must be able to say at dl times - instead of pints, straight lines, and planes 

- tables, chairs, and beer mugs" - or indeed, pocket watches.40 As he put the point i n  his 

only substantial mntribu tion so the exchange of letters: 

. . . you say that my concepts, e.g., 'point', 'between', are not unequivcr,dly 
fixed. . . . But it i s  surely obviorrs rhar every theorj is only a sc&olding 

40 See Reid [1936], pp57-64. 



( s c k n w )  of concepts together with l k i r  R C C ~ S S W ~  comctions, and that the 
kuic elemcnrs can be 1lrougirJ of in my way one likrs. E.g., instead of points, 
LRinL of a s y m  of love, law, chimney-sweep . . . which satisfies dl axioms; 
!hen Py-hgcwas' themern also applies to rhese things. Any themy can always 
be applied to infinitely many systems of basic elcmnbs. For one umly needs to 
apply a reversible one-one transformation and &an lay it down Lhar the manlorns 
shall be cmmpmdhgly the same fu the ~~ things (as illubatd in the 
principle of duality and by my independence proofs). All statements of 
clwtroslatics hold of c o w  adso for my other syettrn sf things which is 
substituted f a  quantity of ekiricity . . ., provided ohe quisite axioms are 
saW~ed. Thus h e  cipcw,\sresrce I mentioned is never e defect (but rather a 
mendolrs advantage) d a thc~ry.~' 

The stage was not set for a meting of minds. 

And yet, in the end, there was indeed something not t m  far from a meting of rninds, 

although it remained unacknowldged by both Frege and Hil$e~t.~* Reading Fxge's 
contribution to the exchange nowadays, one feels a mixture of admiration and exaslpemtion 

as Frege painstakingly translates what he (quite rightly) saw as filbert's deeply confused 

presentation into his own terminology, evenfually to corn up with the conclusion that, if 

Hilkrt had succeeded in defining anything at all, then he had in fact defined (what we 
would now call) a Euclidean structure. And of course, behind d1 the confused talk of 

axioms as 'implicit definitions', that was exactly what Hilbert was trying to d0.~3 

But there are revealing differences between Frege's reconstruction of PIilWs geometry, 

and Hilbert's original. Frege noted that Hilbert's axioms contained, in addition to first 

order predicates such as 'x is a point', 'y is a line' etc., certain second order predicates - or, 

in Fregean terms, quantifiers. If we view the first order predicates as variables, we can 

then put them in the argument places of the second order predicates, and in this way 

construe the conjunction of Hilkrt's axioms as a single, second-order relational predicate - 
and this is at least &in to what we would now call a Euclidean structure.44 

But for Frege, of come, the second order predicates must themselves be Paken to be 
implicitly bound by third order universal quantifiers, whereas Hilbent would have wanted 

&ern to be thought of as schemata, in accordance with the approach sf modern model 

41 See Frege [1980], pp42-43 
42 So far as I know, HilbeR never comments on his exchange with Frege on the matter of axioms and 
definitions in his later writings. However, B e m y s  takes up the topic in his review of a published version 
of he comqmrknce, and acknowledges that Frege was in the right. See B a y s  [1!342]. 
43 Frege a l s ~  came t~ see Hilbert's motivations correctly - see the tzeginning of his m n d  letnea u> Hilben, 
where he notes Hilbeds attempts to he geometry from intuition (Frege 1,19801, p43) 
44 Cf. Reslik [1974]. 



theory.45 Nevertheless. Frege felt that he had uncovered what was really going on in 

Hilbat's amfused presentation, not least b u s e  the generality of application that f i lbert 

evidently wanted - not just pints, but pocket watches - was now accommo&td in terns 
Frege could understand. As h g e  has mns t ruc td  it, gendi ty  has been secured, not by 

varying inteaprecations of schemata constructed from constant expressions of indeterminate 

sense, but by instantiation of mivenally quantified variables over a fixed, perfectly 

determinate domain. There is no theory hm which can be hterprehed in alternate, equally 
acceptable ways - no notion of n t h  in a d l .  R&x, thm is a theory with a completely 

fixed interpretation at a Righer level, and its axiom ad theorem must bc TRIE. 

Hilberc has been rescued, then, at the pice ~f inflicting upon him the F r e m  mnception of 

generality, shown to be of doubtful coherence by the pmdox Russell discaverd in the 

system of the Gr~uufgesetzs. There is a double misrepresentntion of Hiltseat's intentions 
here, for Hilben has been burdened with a kind of generality he did not want, and 
simulm~musly denied the kind of generality he did want. Frege's logical t k q  is a theory 
of types, witR all of its variable expressions and quantifiers appropriately stratified. 

Hilbcrt's schemata, however, are not so stratified, and they are not intended to be 

interpretable by expressions of some independently determined, fixed type. Nothing 
expressible in Beg-riffschrift can have this kind of generality. Consequently, tale 

reconsmcted Hilbert is faced with the task of determining the fixed domain of 
interpetation for the various types of variables involved in Frege's formaiization sf his 
theory, which is exactly the kind of extra-mathematical task that H i l h  approach aimed to 

avoid. 

Consequently, even from the vantage point of hls charitable reconsmction of Hilbert's 

project, Frege can make very little sense of the kind of systematic questions to which 

Hilbert devotes such energy in the Grutodlagen. Paradigmatic here is Frege's perplexity 
over Hilbeftes interest in independence and consistency proofs. Frege could make some 

sense of the idea of an independence proof for an axiom, since in his recsnsmc~on, one 

gets such a proof by specifying a sequence of first-level concepts such that, with those 

cowepts instantiated at the argument places of the second order quantifiers, the 

distinguished axiom becomes Mse, and the remainder of the axioms true. And this, again 

45 This is potentially misl&ing, since Hilbert, at this time, w s  not aware of tllc need to distinguish the 
semantic notion of logical consequence from h e  notion of detivability in a torma! system. Thus, whilst he 
does indeed apply samething v q  like a conmporary model Lhearetic q p w c h  to qrations of cmeistency, 
independem etc. in the Gnmdlagen, it is also clear that he Lhinks of logical conseqwnce purely in terms of 
derivability from the axioms of geanetrj. 



in an unfamiliar terminology, resembles the g r d w  Hiibert actually used in prwfs of 
independence in the G d a g e n .  Of c o w ,  there is nothing hen that is incompatible with 
the evident n t h  s f  the Euclidean parallels Axiom, since nothing In this procedure, as Fregt: 
has reconstructed it, suggests fixing a sense for a hitherto senseless, or in some way 
s e m r i d y  indctcrminate expression. 

For this same reason, Frege is unable to nuke mything of h e  q u e s t  for a proof of 

consistency. To us, proofs of consistency md p m f s  of independence are intimately 

related, since a model theoretic consistency p f  in effect shows that some sentence - 
I- 0=1' say - is independent of the axioms. On Frege's reconstruction, though, this is 
always trivial. You just leave everytPung as it is - you apply the identity m s f o m t i o n  to 

the Axioms and to ' 0  = 1'. There simply are no Axioms which arc false, no absurdities 

which are me,  and this is m s p m n t  once the mslation of a Pheory into Begriiffschrift is 

completed. Wlkrt, of course, would not have been sanguine about the pmspects far a 
translation of Euclidean geomecy, or any other mathematical theory for that matter, into 

Begriffschrift. For that required the prior elucidatq task of iixing the senses of the 

geometric primitives, and the conclusion HiIbert drew from the history mentioned above 

was that any philosophy of mathematics that demanded successful completion sf e k t  task 

left mathematics completeiy at the mercy of what he called 'the inadequate means ~f 
metaphysical spulation'. 

For the Pesssn that Hilbert, along with the great majority of mathematicians, drew from the 

history culminating in the d.iscovery of a myriad of consistent alternatives to Euclid, wils 

precisely that Frege's prior task of determining the sense of the geometric primitives waLs 

impossible for mathematics to discharge. So far as filbert was concerned, all of the 

mathematically manageable meaning of the geometric primitives had been sh~own to be 

contained within what we would now call the logical structure of the theory, for i t  was 

only with r c s p t  to what was detenrined by the logical structure that the mathematical 

community had been able: to achieve any kind of consensus. 

Unfortunately, Hilbert initially resisted this h g e m  demand for some prior determination 

of the sense of the geometric primitives 'by advancing a very strong rejection of the 

principle (Kl),  implicit in the following extract from Iris one lengthy letter to Frcge: 

I was very much interested in your sentence: Vrom the mth of the axioms it 
fallows h t  they do not conmdicr. one anstkc,.', because for as long as I have 
been thinking, writing, lecturing shut these fhings, I have k e n  saying the 



exact revede: Kf the wbinrviiy given &nu do nor confradiss one m t k r ,  then 
they are m, cuul the tirings by rk Bdoms &st. This for me is the 
crimicm of truth 8nd exiww. . . . It is w i s e l y  the primdm of laying down 
an axiom, &ng to its trarth (this is ius intuitive truth, in the Fregm sense], 
and then inferring from ohis that it is compatible with the M i  cmcephs ha 
is the e t c d  source d e m  and misu&rsmding.a 

On the face of it, this is M extreme version of mbhematicd r e ~ l k m ,  a realism which is 

intended to be completely kee from reliance on mathematical intuition. We might 
encapsulate it in h e  following principle: 

(HI) If a set S of rrahematical sentences is consistent, then the objects mentioned in or 
q,mtified over in the sentences of S exist, a d  the sentences of S are me. 

Now, Frege's initial response to ( H I )  seems to me quite inept, for he asks if the 

consistency of the set of sentences S = {'A is an intelligent being', 'A is omnipresent', 'A 

is omniptent') licenses an inference to the existence of an intelligent, omnipresent, 

omnipotent being. But (441) does not W t e n  to license that inference, for S is not a set of 

mathematical  sentence^.^' And Hilbert is quite clear that (HI)  has no plausibility 
whatsoever outside of mathematics. In the case of physics (or natural science in general) 

where filbert was just as inclined to press the demand for axiomtiaatisn, he never makes 

the (ludicrous) suggestion that any consistent set of arbitrarily selected axioms has a model. 

Still, there is a better worry lurking behind this question, for it now appears that Hilbert at 

least owes us some independently drawn distinction between mathematical and non- 

mathematical sentences, if (HI) is to hold only for the former. Given the inability of 

Hilbert's 'implicit definitions' of the geometric primitives to settle the issue of whether 

Frege's pocket watch was a point, it might be thought that no such account could be 
forthcoming.m In effect, this is the second complaint Frege raises against (HZ), when he 

asks if there is any way of demonstrating inconsistency 'besides pointing out an object that 

has all the properties'.49 This cuts much deeper. For if the only way to establish the 

46 Frege [1980] p42, emphasis mino. 
47 Nor, fur that matter. is S obviously consistent. 
48 Not that Frege is in any beuer shape w~th respect to an answer to &is question. For the issue that has 
now been raised is the notorious Caesar problem of Die Grwrdlagen der Arifkmetik. And the reader will 
mall that i t  is in response to the Caesar problem that Frege makes his fakd appeal to extensions, thus 
inducing the inconsistency in his system discovered by Russell. Hilbert,.incidentally, thought that this 
kind sf failure was symptomatic of the futility of any auempt to discriminate the subjects matter of 
mathernah e x d l y  - by way of a metaphysical. rather than a matRemapical, argument. He thought it 
no coincidence that lkdekind's famous 'pmf' that a simply infinite system exists founden in a closely 
analogous way. 
49 See F r e e  [19s0], pp4748. 



consistency of a set of sentences is by 'pointing out' some objects satisfying the predicates 
s f  *ose sentences, the claim that consistency provides a 'criterion' sf nth $Pbd existence in 

rnahnwttics evidently gets things e d y  the m g  way mnd 

Hilben is now in considerable difficulties. His own consistency proofs, in the 

Gnuadlagen, have been modcl-theoretic in character. He has shown the consistency of his 
axioms for Euclidean Geometry precisely by 'pointing out' some objects satisfying the 
predicates of those axioms - by interpreting gcometq in the red n u r n n h .  But where is the 

'criterion of mth and existence' for the axioms 'defining' the real number system to come 
from? A &el in set themy? It is now very tempting to conclude that, sooner or later, s 
p m f  of consistency is going to have to be given directly, without m y  appeal to models, if 

Frege's regress is to be halted. H m  we have one principal impetus for Wlkrt's later 

search for purely syntactic pmfs  of consistency - and it is to be noticed that it originates in 

an attempt to provide an account s f  truth and existence in mathernati~s.~ 

Let us back away from the specific problems posed by (HI) for a moment, to get clearer 
about the pressures that are shaping Hilben's responses here. One of the principle 

convictions that is animating Hilbert is the belief that there are no mathematically 

manageable grounds for discriminating amongst the various consistent geornehc systems 

with respect to intelligibility, meaningfaalness, truthfulnc=ss, or whatever. Any attempt to 

fix the One True Gmmtry, aside from abandoning geometry to physics, must either take 

the form of introducing yet another axiom system, in which case the problem p s e d  by 

consistent alternatives remains untouched, or else take on the hopeless Fregean task of 

faing the sense of the geometric primitives independently of mathematical investigation. 

Now, Hilbert's real target here is any mathematically revisionary pusition - such as 
Frege's, or Kronecker's - which seeks to distinguish between various consistent 

mathematical theories, admitting some to the canon of pure mathematics and excluding 

50 This is why it is wonh pointing out that (HI) is not an expression of formalism: it is an expression of 
a s m g  form of realism. Penelope Maddy, in her a n t  book on realism in mathematics, descniks the 
early Hilben as a dductivist (what she calls an 'if-thenisi'). Now, deduc~vism is the view that 
matkmbciasrs $mply explm the deductive consequences of uninterpreted axioms - it is indeed a kin+ of 
formalism. I cannot frnd this view anywhere in Hilkrt, early or late. On the contrary, the Hilben of the 
Grundagen and h e  correspondence with Frege is p h l y  attempting ts find a way of defending the objective 
truth of classical mathemati~cs, including hyperbolic gsomhes. To be sure. he does so by way of a quite 
inept auempt to combat Frcge's highly sophisticated undersmdhg of the notions d truth and existence in 
mathematics; but nevertheless, his attempt does not We tke form of a denial that the concepts of truth and 
existence have any application in mathematics. (Itonically, Maddy's own version of m&matid redism 
comes perilously close to adopting (Wl) arr an axaunt of malhematid truth and existence - as we shall see 
in the following section.) 



others, on grounds which are themselves external to mathematical theory. But in arguing 
against revisionism of this kind, revisionism which is inspired by argumentation which is 

philosophical, or scmmtical, BP theological, rather than prqm1y mthcanaecd in character, 
Hilbert is always inclined to sound as if he is advancing a position according to which 
mathematical theories are meaolingles~.~~ This is why M l h  is so often thought of as a 

formalist. However, careful reding will suggest a m m  sympathetic interpretation, on 

which he is in effect arguing that no mathemtical theories are meaningful in the way r h t  

Frege (or Kronecker, or, later, Brouwer) thinks. His cldm against Frege is: plot w e n  

Eulidem geometry meets &gets saandauds for mathematical meaningfulness (witness the 

history of the parallels postdate). 

But this need not be, and should not be, seen as an attack on the maningfu1r:ss sf 

mathematics: it is an attack on a particular, phiJ~s~phically motO'va:fd and madPOematic~ljy 

revisionary conception of what is required for mathemtics to be meaningful. Hl!bera 
wants to resist any revisionary conception of what is required for the meaningfulness of 

mathematics which rests upon considerations which cannot themselves be determined 
rn~thematically, whish puts mathematical truth at the most fundamental level beyond h e  

reach of what is mathematically demonstrable. 

Now, the kind of mathematically revisionary philosophicd conception sf what is required 

for the meaningfulness of mathematics adopted by Frege and Brouwer is to k sharply 

contrasted in this respect with the position taken more recently by Hamy Field. A 

consequence of Field's philosophical position is that mathematical assertions are never 

(non-vacuously) true (or false): mathematics is semantically defective, but this defect is a 

feature of all of mathematics, and has no implications whatsoever for the professional 
practice of rnathernaticims. Field is not a revisionist about mathematics: he mounts no 

philosophical attack on any established mathematical theory, and he favours no 

mathematical theory over any other with ~spec t  to meaningfulness. 

This is a very different kind of philosophy of mathematics than anything Hilbert ever 

contended against. To take issue with Field, one really is required to contest several related 

51 The fact is, though, Lhat he typically speaks of his 'ideal elements', not as meanirrgless. but raher as 
having no meaning apart from their role in an axiomatized mathematical rheory. This provides some 
rextual justification for the attempt. which I rn now in effect making, to show a khd of us-based 
LReory of meaning comports rather Bewr with Hilben's o v d l  pmition that my kind of formalism does. 
Genzen, for example, interprets Hilberi in this way - see e.g. ~enzen [1938], English mslalion in Genzen 
[1%9], especially pp247-25 1. 



dwtrines in the metaphysics iad she philosophy of language - doctrines concerning the 

causal bheory of reference, the htelligibility of clismwe abut  a lesa t  objexts etc. ahis is 
a straightfmadiy and explicitly ghilomphicail controversy, slnd ss far as I am see, IQllkrt 
n& have m k g  to da with it. Given that nothing in mthematics is at stake, given thnt 

no part of mathematics is under attack, H i l W  it seem to me, can simply look the other 

way. 

However, Hilbat, in his dispute with Kranecker and Frege (and later with Brouwer), 

evidently felt it necessary to engage in just the kind of wider, fnore pper ly  philosophical 
dispute about mathematics that Field's hs~rumentalism Invites, but which greatly exceeds 
anyrhang strictly necessary for the task oi defeating Fregean or intuitionistic revisionism.52 

Rather than sticking to exposing the inadequacies of the revisionary positions he is 

resisting, l4ilbex-i felt obliged to off- some competing, positive philos~phical doctrine of 

his own - and thus we return to the principle (HI), t4;gether with a number of relatedl theses 

concelning the existence of the objects of mathematics, and what is required for their 
existence. These theses, in my view, do not show his thought at its smngest 

Indeed, I do not think that filbert has a plausible, detailed philosophical proposal 

concmicg the general issue sf the existence of mathematical objects.53 But that is not to 
say that all of H i l M s  claim about the philosophical importance of the axiomtic methud, 

and in particular about its implications for ontology, am unimportant. In fact, I think that 

much of what he says on these subjects is interesting and worth taking very seriously - and 

not just with a view to understanding filbert's foundational programme better. And in 

particular, I think that a sympathetic appraisal of what Xlbert actually says, together with 

attention to what he achually tries to do infiundaoioris of mtknsatics, will show that his 

instincts, if not his arguments, were very much on the mark. If we begin now to pay 

closer attention tu what Milbert actually does in his foundational work, we shall begin to get 

a clearer view of his attitude to h n e c k e  ., and with it the outlines of a more plausible 

alternative to (K1) than (HI). 

52 And h i s .  of c o w ,  is admirable. Would that it w m  always true hat the best scientists showed such 
interest in philosophid questions cuncerning their discipline. However, it seems no me worth pointing 
out Lhat the philosophical ambitiousness of some of Hilben's claims greatly exceeds his immediate needs. 
The point is that most of what is really important to him is available for a much more modest 
h i l W  invesanent. 

Wilbm and -ys diruss the uianatk oech3d in ihe late & ~ U K & X ~ ~ R  der Mufhrmik. their approach 
is p r e y  much the. appn>ach of modem postulation theory (see Church [I9561 pp317-332). The talk of 
axioms 'implicitly defining' heir domains has been dropped. In Bemys [1941], there is an explicit 
acknowledgment lhas Frege's criticisms of Hilbert's writings on this questiolr had been completely justified. 



Kronecke$s complaint against geometry, you will recall, turned upon his anixmdvenions 

agab~st the WeiersmsrDedckin@Cmmr theory of continuity, which violated the finitaxy 
strictures imposed by m). %iilMs response to this, in the GrLMdOagen, is to provide m 

axiornatization of basic Euclidean and grajtc!ive geomeq in which the continuity 

requirements are isolated and identified with phe mYe played in the ovdP theory by the two 
axioms of Group V (the kchimedean axiom, md the so-called Axiom of Lint 

Completeh~ess - the remaining HilMara axioms deal with essentially non-numerical 

o m ~ g  principles). At first glance, hest: continuity axiom seem tm weak m support the 
full theory of continuity attacked by Kronecker, but H i l h  goes orn to beruonsmte that a 
geomegy equivalent to 'ordinary analytic geometry' cm in fact be obtained h n  this basis: 

The completeness axiom h not a conl~equence of Archimedes' 
Axiom. In fact In order to show with the aid of Axioms I - IV that this 
geonnelry is &tical to che d n a r y  analytical ' C .  geopne$y Archimedes' 
Axim by i w l f  is insufficient . . .. However, by invoking the comple&rwss 
surlom, although it conu'ns tw &ect assertion h u l  the concept q f c o n w r g e ~ e ,  
it is possible to prove b e  exis8erxe of a limit that camsponds to a cut 
as well as Phe BobWeiersmss theorem f o ~  the existence of c o ' k d c p n  

points, whereby this geemetry appears to be identical to Cartesian gtmmry.54 

What Hlilbert has done, in effect, is to show rhat one can m e t  the continuity requirements 

of 'ordinary analytic geometry' without going through the full 

W e i e r s m k i n d / @ a n t o r  themy of continuity - i n d ~ ~ d ,  wifhut speaking directly of the 

notion of convergence at all. And in addition to this, Milkrt dso sllows that a luge part of 
oPduzary analytic $camtry is independent of the continuity axioms altogether. 

The point to emphasize here is that hnecker's complaint has k e n  addresd by giving a 
mathematical elaboration of the w&st notion of conrinraiv needed for ,. .adytic georneq, 
by way of an axiomapiatrtion that renders the exact continuity assumptims needed, and the 

Pnininral role they euc required to play, completely transparent. Now of course, the m u l t  is 
not a system of analytic geometry that meets Kroneekefs f i n i t q  casnstraints, the 

constraints imposed by (K2). Nevertheless, the fangs of (K2) Rave been drawn 

somewhat, by both (a) showing that the axiomatic elaboration of analytic geometry is 
consisknt, relative PO a theory of the real numbers, and (b) showing that the excess over 

finitmy mathematics involved in analytic geometry is less than one might have supposed. 
Whilst this will not csmpleteiy satisfy the determined finitist, filbert has nevertheless 



provided a valuable response m the legitimate w o q  that animates the finitary standpoint. 
For Kronecker, remember, the deep worry behind (#2) was a wony about the 

acceptability of concepPucrl i m v & ~  in mathematics. What comtmins the introduction of 
new apparatus in attempts to solve f d i a r  problem? According to (U), the constraint 
must be, finitary reducibility to the natural numbers. Unable to accept the drastic 

consequences of this, PHilbert's f is t  'philosophical' alternative to (K%) is (MI): 
consistency is the sole constraint. H~wever, Milbeht's w t w l  practice - early and Bate - 
suggests that he had something more interesting in mind: a dcmnsmbly consistent 

axiomatiwtion of the new apparatus, b u  also o car@ investiggn'on, using minimal mem, 

of the role tthoo it phys with respect to ttce m a . t a i c s  in which the problem originates. 

It is instructive to compare this with one striking feature of the mature Consistency 

Wpggamm of the 1928's. The mcial issue here concerns the way in which, according to 

E!'krt, existence heorems are to be proved in axiornarizd mathematical theories. Now, 

in the m a m  form of Hilbeft's logical, theory (korn about 1925 onwards), the quantifiers 
are not primitive symbols. Rather, they arc: introduced as defined symbols by the use of 
Hilkrt's 'logical E-axiom': 

The e-symbol use$ here is intqmted as a kind of choice function (syntactically, it is a t m  

forming operation on predicates). In Milbert's own revealing explanation, given any 

property F(x), this function picks a paradigm case of F if anything satisfies F(x), and 

otherwise chooses at random55 The quantifiers may then be defined as follows 

And just as Hihen's axiomatizcation of geometry sought to clarify the role played by 

continuity h geometry by isolating the deductive roles played by the two axioms of Group 

V, so too filbert's axiomadzation of logic attempts to clarify the role played by the infinite 
in mathematics in general by isolating the deductive role played by the principle (e) - 

- 
55 This is revealing, I think, because it suggests once again hat Hilben's conception of genmlity was 
naturally expressed in schemata, ratha than quantified variables. Thus in explaining how the universal 
quantiPer is to be defined from this choice function, H i l M  offers W lollowing analogy: if even AYistides, 
the padigmatic just man, is unjust, chen everyone is unjust. 



because, as Hilbert insists, it if v ia  qwJicut ion that the infinite enters m t k m t i c s .  By 
isolating the €-axiom md investigating the role that it has to play in an axiomatizd 

mathematical theory, When is trying to render transparent the weakest notion of infinity 
that number theory requires, for the e-terns are the, sole ideal elements in Wlbert's 

axiomatizations s f  n u m k  theory. PLilbert and his assistants then succedd in proving a 
theorem (the second e-:Reorem) which d>es indeed show the possibility of eliPPu'nating e- 
terms from proofs of formulae that do not themselves contain m m n c e s  of any &-terns. 

-This theorem is the para&gm of HLilkrtim elimination of idled ckrnents. With the second 

elimination themem in hand, PIilbert is able to show that, if the system proved something 
of the form (3x)F(x) with matrix containing no e-terns, then the system must d s s  prove 

F(a) for some term a recoverable (in principle) by the process which eliminates e-terms. (It 

m y  help to obsewe here that, in Hilkn's system Z, the e-operapnr is in fact analogous to 

the familiar least number operator of recursion theory.) This heorern therefore provides a 

perspicuous example of establishing the eliminabflity of i d 4  elements hxn p f s . 5 1  

Now, the process of eliminating &-terns in some f~nnula(s) (B from some p m f  P in this 

fashion induces, in effect, an interpretation ofthe e-terms occurring in P. But this 

'interpretation' need havc nothing of semantic significance in cor;lmon with the 

interpretations of Q induced by the elimination procedure as applied to my other proof in 

which cp occurs. Beyond the elhiriation algorithm itself, there is d l y  nothing mre to be 
said a b u t  the interpretation of &-terms - this is why Hilkrt shows no interest in the 

semantic properties of the E-symbol.57 Here, I think, one gets a clear sense of the deep 

grounds of filbert's opposition to b t h  Frege and Krunecker. Against the Fregean 
demand for a preliminary explication of the sense of the e-axiom, Hilbert's position is in 

effect that, beyond the elimination algorithm and the mtamathemtica1 demonstration that it 

works, there is nothing in general to be said that is of any real semantic significance. (If 

you like slogans, meaning here is just use.) And against the radical reductionism sf 

Kronecker's Rognun.nw, implicit in (K2), Hilbert has shown that ideal elements can be 

incorporated in afinitdly responsible way without m e p h g  general reducibility to pullely 
fmitary mthtmtics - since the algorithm only shows how to remove e-terns fasm proofs 

56 The fmt eelimination theorem establishes  he eliminability o f  the quantifiers in favour of Lhe e- 
symbol. As one would expect, the m p l i c a t i o n s  arising fm the need m exknsively relabel bound 
variables pe mkkrable, and perhaps partially account for the u n p o p h t y  of the €-symbol in the logical 
literature. Foa mon W s ,  see Leisawing I1%9]. 
57 I owe lhis otmmatim to W a r m  Goldarb. 



of fmitary thm~m, and in any case does not suggest that there is anything like an 
interesting, unitary finitmy meaning to be associated with the e-operation.Sa 5s 

What emerges h m  dl this, then, is the outline of a proposal for the clarification and 
justification of the mathematician's use of the ixtslal infinite which seems to me to be of 

great interest and subtlety. Against the Fregm d e m d  for a pac8iPninq, philosophical 
explication of the concepts involved in infinitistic mathematics, Wlkrt is proposing m 

internal mathematical investigation of the roles played by this, that or the other infinitistic 
notion in axiomoizx! mathematical theories - and in particular, in axiomatic analysis. 
Against the Fregean complaint that this approach is unprincipled - in response, that is, to 
the Eregw question, With whor right to you inmduce these infinitistic notions - Hilkrt is 
proposing that the only scientifically manageable way of justifying the use of a concept, of 
explaining its sense, is by giving a =ful amount of the role that the concept a d l y  plays 
within an axiomatizgd theory which meets o v d l  stadads of mathematical acceptability. 
A d  against the Kronccker complaint that this approach h a t e n s  to sivialize mathematics, 
by permitting arbitrary innovations without regard far the conceptual scheme witkin which 
the particular mathematical pmbltm requiring solution have arisen, Wkrt is proposing to 
constrain innovations by demanding a demonstration that systems expanded by the 

introduction of ideal, infinitary notions are conservative with respect to finitary 
mathematics. I think that this suggests an interesting, philowphicdly defensible psition, 
which I shall now try to explain. 

Section Five: Outline of a Hilbertian Philosophy o l  Ma8hemaCics. The 

position I am about to outline is hardy original. In particular, it bears a smng resemblance 

58 With some mpidation, let me offer the following (very partial) analogy. mink of h e c k e r  as a kind 
of radical physicalist, who interprets the unity of science as demanding full reducibility to elementary 
physics. Ym might them think of Hilbert as attempting to occupy a pi t ion like that Befended in Fdor's 
well Lnown micle 'Special Sciences' (Fador [1981]), in which token physicalism is combined with a denial 
that psychological laws can be d& (even 'in principle? to purely physical laws - bec6lw (roughly) thc 
law-like predicam of psychology do not s u h e  my physically unified c k s  of objects. The analogy, I 
stms, is very p&l, and i n m k d  to be no mstc than suggestive. If it does not help, then ignore i t  
s9 The natural semantics for lfre e-operator requires a h a i n  of objects from which the choice function 
makes i& selection. Since hat Qomajn might be, for example, the imdve h i m h y  of =, it is clear t h s ~  
this is can be a very powerful function - indeed, if ZP set hmy without the miom of choice is fomulated 
with the e-operator replacing ahe quanmers in the background Isgic, a s m g  form of the axiom of choice 
h o m e s  provable, provided h e  admissibility of €-terms in the comprehension =heme is allowed - a 
detailed munent of this fornulation of set hcoty is found in BourW. (Thc need to modify h a  
mprchension schema is very impmmt. What h e  eliminability of e-terns shows about the axiom of 
choice is thao the real pow0 of Lhe a h  tics MH so much in the pemission d acts d arbitrary choice. but 
rather in permitting he assertion h a t  h e  result of so choosing exists ar .a set - and fw this, the 
mocMcation of the comprehension xhcma is e m u . )  



to Quine's position in the phlosophy of mathemtics - unsurprisingly, since Quine and 

Hi.lbePe are (I think) lhkd by a shared desire to accamdm rnatkmafics within a broadly 
nratudistic philosophy, as well as by the s h d  influence of philosopher-scientists such as 
Mach and Hen,  and their philosophical successors s f  the Vienna Circle.60 Like Qmine, 

but not quite for Quine's reasons, I shall argue that part, but not all, sf mathematics ought 

to be understood literally. Here, however, we encounter one unpleasant obstacle in the 
path sf progress towards the substantid phi:osophical issues, for when H say hat p m  of 
rnatl~emtics should be u d s t d  literally, I m apt to be uPldersW as having ammi& 
myself to 'realism' with respect to that part of mathematics. And that brings us to the tern 

'realism'. 

Philosophical usage of this term is simply chaotic, and I do not propose to attempt to 

impose order on this chaos. Quine takes the acceptance of some parts of mathematics to 
entail commitment to mathematical objects, and thus he is a realist about those parts of 

mathematics in the sense of 'realist' (whatever it is) that appaus to be in cument use 

amongst philosophers of science. And he takes the acceptance of some other parts to bring 

with it no such commitments, and thus he is iin anti-realist (in fact, a formalist) about those 

parts of mathematics, once again in the sense of 'and-realist' that appears to Be in current 
use amongst philosophers of science.61 Now, if you think that Quint is a very queer kind 

of realist, rest assured that I agree with you. Quine thinks that the mth predicate is a 
device of disquotation, and that an explication of this fact constitutes an adequate 

philosophical account of truth.@ If you think, as I do, that any worthwhile realism must 

involve some kind of correspondence theory of truth, then you will think, as I do, that 

Quine is in fact the arch anti-realist. Nevertheless, Quine is going to count as a realist about 

some parts of mathematics, in the sense in which I propose to use the tern. W e n  you 

read Chapter Two, you will see that my own realism (about part of mthemtics) is more 
f u l l - b l d d  than that of wine, but for the moment let us ignore that. This is all that I 

propose to say about 'realism'. 

I understand PBA realistically, in this Quinean sense. My reasons for so doing will be 

given largely in Chapter Two. But I also want to understand redistically dl systems 

conservative over PWA, and this is the topic that concerns me at the moment. The 

60 I have neglected the important topic of the influence of Merz on Hilbert - fm more on his, see Malbtt 
[19901. 
IS1 See e.g. Q u h  [I9841 p788. 
IS2 Sae e.g. Quinc [I9701 c h q ~  3, and especially Q u h  IlWO]. 



questions that I shall now pursue, therefore, arc these. Given a realist consmd s f  P U ,  
what attitude shodd we take ts the rest of mathematics? How far do our onaologicaI 

commitments eo mathematical objects go? Is there a principled way of extending a realist 
construal of ~ P h e m t i c a l  systems beyond the finimy base gmvided by PRA, and if so, 

what is it'! I take it that the attirude represented by (MI) does not constitute a principled 

way, andl I shdl give some (more) arguments in support of this view in Section Six. For 
the moment, though, I s h d ' k  Imking for alternatives. 

I have two reasons for approaching the issue of the ontological commitrnel~ts of 

mathematics in this way, rather than by way sf a detailed investigation into the semantic 
properties of mathematical language (in the manner of Dumtnett). To begin with, taking 
this approach enables us to stay reasonably close to Wlbert's own concms and expressed 

philosophical opinions, whilst the alternative approach would force upon us very deep 

philosophical issues to which Miltten was simply blind. Additiomdly, though, the 

arguments in favor of extensive versions sf mathematical realism currently influential in the 

literature all stem from h e  Quinm 'inclispensability for natural science' argument, and a 
large p m  of my purpose will be to show that that argument requires extensive 

supplementation by controversial doctrines iv general mtaphysics if it is to get you beyond 

the extremely restricted realism I endorse in this thesis.* 

k t  US begin by observing thaa Quine's opinions on ontological commitment to 

mathematical objects are no more mtkematically revisionary than those of the out-and-out 

nominalist Field. What this fact immediately shows, I think, is that Wiikra's 'defence' of 
classical mathematics against intuitionistic a d  Fregean attacks persistently confuses two 

quite different kinds of issue. The first kind oh issue concerns the occcytabjliry sf 

particular arguments and theories in mathematics. The second kind of issue raises the 

ontological question, the question of what acceptance of mathematical thearics mmmits us 

to in the way of objects. The cokertnce of Quine's position shows that these two kinds of 

63 Of came, Quinees own vicws on the ontologid commimenb of mathematics t h m s e l v e ~  nest in past 
upon conmversid views in general metaphysics. In Wmg this approach, I am h f m  apa to be thought 
of as endorsing t h x  views, and that is something I do mw want to do. However, Quine's views on 
meaning, reference etc., although v a U y  more sophisticated than anything lo be found in Hilbert, are 
nevertheless congenial to the concerns that motivate H i l k h  finitism, ar~d therefm provide a relatively 
neutral basis for the present discussion. Furbermore - and this is the point to which I attach real 
irnpofiance - I think bat attempts to suetch h e  Quinean argument for d c t d  rcalian to cover all of 
mathematics as it is stslndlardly practised, in the m m r  of Penelope M d y  f" example, will have eo 
involve radical departures from Quine's basic maphysic. I hope UUU my discussion will help to bring Lhb 
out, and in thi3 way ahow that a Wy-style mathematical realist ought to be very interested in systems 
which nxpca the f~ tary  msavativms cmseaint basic to the Hilbtrtian appach. 



issue are in fact orthogonal. Quhe has (or need have) no complaints touching the 

mathembid uccqmbility of ?ransfmitt set theory, even at its oliter reaches. But since he 

thinks that 'm&miae mmificsrtions' an, ira g e n d ,  'on a par with u n i n t c r p ~ ~  systems', 
acceptance of msfinite set tneoxy does not c o d t  Rim to, say, hwr-inaccessible 
cardinals. Hilbero - unsurprisingly - shows no awareness that issues of acceptability and 
ontology rnight pull apart in this way. Concerned to defend mathemtics against an attack 

based upon an unwillingness to accept the apparent ontology of some classical 
mathemtical theories, the Hilbmim who advances (MI) has p r e s u d ,  wrongly, that the 

only, or at l as t  the best way, to ensure axptability is to defend the a p p n t  ontology. 

Once these t w ~  kin& of issue have k e n  distinguished, however, it Is possible to see (HI) 
in a somewhat better light. It is not altogether implausible, I think, to hold that a 

mathcrnadcal theory is acceptable if it meets the one structural constraint of consistency 

(perhaps relative to some theory we already have gcwd reason to believe consistent) 

together with some W y  pragmatic constraints concerning such features as integrability 

within accepted parts of mathematics, fruitfulness of consequences, unifying and 
simplifying power etc. The verifacation that a theory meets these standards, notice, is 

indeed a purely intmal flak, entirely governed by techniques proper to msntkemtics. It is 

quite mother matter, though, w hold that our acceptance commits us to the apparent 
ontology of any mahematical theory which aneets these constraints. llhe 'repugnance' that 

m y  philosophically inclined mathematicians fee1 towards (HI) (we e.g. fieisel [I9871 
p395) is surely justified when (HI) is seen as a contribution to the solution of the 

ontological question. 

What muddies the waters here, of course, is the issue of the appropriate semantics for 
mathematical theories. For as soon as we begin to press questions concerning, say. the 

relationship between acceptability and truth, or the appropriateness of Literal belitf in such 

and such a mtkematicd theory, the distinction between issues of acceptability and issues 

of ontological commitmefit is threatened with collapse. Suppose, for example, we establish 

the acceptability of some mathematical theory by formalizing it, showing that the 

formalization is consistent relative to set theory, and also has this, that and the other 

pragmatically desirable feature - by showing, in short, that ( H I )  is satisfied. Our 

acceptable theory with then prove theorems of the form 3xq. Have we now committed 

ourselves to objects (sets, as it might be) satisfying q? Have we decided the issue of 
whether or not there are q's? For my such theory, it will be possible to definc (in a 
suitable metalanguage) a Tarskian materially adequate and formally w m t  truth predicate 



for that theory. And if we accept (as we should) that a mtk theory of this general kind 

ought to be the e n d  mmporncnt in a semantic theory for the object b-guage rrmhemtical 

theory, then arc we not committed to the objects mentioned in the inductive clauses defining 
satisfaction by acceptance of the themy? If so, are we not obliged to say something about 
Row the correctness of those clauses could ever be verifid? If h c  answer to these 

questions is 'Yes', then the distinction between issues of  acceptability and issues of 
ontology will indeed collapse. 

This is a very fadliar dialectic, and I shall Rave more to say about it below. For the 

moment, though, I will have to content myself with issuing a wmilrg against a confusion 
induced by an ambiguity in the term 'interpretation' - a confusion which often induces a 

hasty positive answer to the above questions. In one sense, an interpretation of a language 

(or theory) is itself a mathematical object. It is a function, inductively defined on the 
primitive vocabulary of a given language E, taking values amongst the semantic values of 

the vocabulary of some language L' (which need not be distinct). Equally, the definition of 
a materially adequate and formally correct mth predicate is further piece of pure 

mathematics, this time resulting in h e  inductive definition of a predicate 'True (in L)' (in 

this case L and L' must be d i s t i n ~ t ) . ~  Such definitions are contributions to semantics in 

the sense of model theory, but they are not in themselves contributions to semantics in any 

sense in which semantics involves study of the import a language has for the users of the 

language. Leo us call this first kind of interpretation, interpretation in the thin sense. In a 
different sense of 'interpretation', however, an interpretation is a conmibution to semantics 

in the sense of an attempt ts state what knowledge of a language, and in paaticl~lar 

knowledge of meaning, conrkts in. Call this, interpramtion in the thick sense. 

Now, ambiguities are rarely fortuitous. Ht would be surprising if there were to be no 

relation between the thick and thin senses of 'interpretation', and there is in fact g o d  

reason t~ believe that they are rehted in a way which is philowphicdly deep and imgamt. 

Nevertheless, there is a dangerous and philosophically vicious confusion present in 
unguarded talk a b u t  'interpreting' mathematical theories. If one interprets {in the thin 

sense) a mathematical theory T in set theory (say), one need not thereby abandon 3 purely 

formalist attitude towards T. Quine need have no complaints or qualm about the intensive 

studies currently king undertaken on models of set theories, and in accepting h e  results of 

such studies as parts of established mathematics, he certainly has not thereby coryunittd 

True in the m&l M' is more commonly USXI ban True in L'. 
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himself ontslogicdly to the msfmite  paraphernalia appealed to in the inductive 

swcations sf the d e l s .  It is pcrfwdy consistent for a f d i s t  to be p e p a d  to haEBr 

of interpretations of sea theories in the thin sense, and it is perfectly possible for a strict 
formalist to think of this modelling activity as providing a notion of meaningfulness for 
mathematical theories. To think othenvise is simply to conflate the thin, purely 

mathemtical and the thick, properly =mantic senses of 'interpret'. F o d s m ,  both 2s a 
matter of historical fact and as a matter of doctrinal content, takes issue with the 

interpretability of maohmatics in thc thick sense only. 

However, Quine does not take a fully formalist attitude towards mthematics, and this is 

ccnsequential upon his belief that somc parts of mthematics do indeed have intapretations 

in the later, thick sense. But the reasons why Quine takes this position Rave nothing to do 

with mathematics in particular: they have to do with Quine's opinions on the subject of 

meaning. 

The immediate point is just this: In defending (HI )  as a pfinciplc governing the 

interpretation of mathematical theories, one n& to be very clear about what one means by 

'interpretation'. If ycu man interpretation in the thin, mathemtical sense, then something 

akin to (HI) might, in my view, be made plausible. But in defending (HI) in his sense, 

one will say nothing at all abu t  any genuine ontological disputes. If you mean t~ speak of 

interpretation in the thick sense, though, then (HI) is indeed a contribution to ontological 

disputes, but a highly implausible me. I think that this should reinforce the contention that 
Hilbert, in much of his foundational work, is attempting something much more 
philosophically ambitious that what is strictly required for his defence of mathematics 

against the philosopher-revisionists. But of course, that is not to say that his attempts on 

the more ambitious goal are without interest, or without motivation. The motivation and 

the interest will quickly kame apparent, I think, if we consider the reasons why Kilkra 

thought infinitistic mathematics required clarification and justification, for here we conc 

across aspects of H l W s  though to which philosophers have not always been sufficiently 

at9entive.a 

Hilbert [I9251 makes much of the fact bat progress in h e  natliral sciences has left less and 

less room in the theory of nature for infinitistic notions, whether of the infinite divisibility 

of physical quantities or of the infinite extent of space (and h e ,  although Mkrt does not 



mention this). Physical pmaw;s o m  thought to inv01ve continrei~j essentially have been 
shown not to involve continuity at dl, and us EL consequence of this., ancient worries about 
the htelligibility of infinitistic notions to finite minds have kern tlleviatd. And Hdkri 
thinks that a somewhat similar route has k e n  m v d  in mat.t;emtics itself - k%ilt.~rt 
[I9251 begins, after all, with n handsome and extensive tribute to the work of Weiarsnass, 
which he describes as establishing that the infinite as it appears in the notion of limit (a5 in 
the cdculus) m y  be regarded us the pountial Ninite of the I P O ~  numbers series. The 
point here, in our temainobgy, is ahat, under analysis, a sentencx such as ((a) 

(a) f(x) - - a s x  -, 0 

can be seen not to require a reference for !he apparent singular tern - . However, rZilk~ 
then points out that the price that has been paid for this achievement is the need fm a theory 
in which the properties of sets of real numbers are studied. Since these sets m y ,  and 
indeed typically do, involve infinitely many real numkn, such a therrry will have to be 

considered as studying the propefties of completed infinite totalities. And here, Hilberr; 

suggests, the ancient worries reassert themselves, encouraged by the p ~ o x e s  of naive set 

theory. 

But what ancient worries does Hilberi have in mind, exactly? The Gaussian claim that a 
paitxi cognition for finite m i d  must be limited to at most potentially infinite structures, 

perhaps - the claim that provides the grounding of (U)? In detail, we do not know the 
answer to this, for Hilkrt does not tell us in detail. However, there are a number of 

cryptic passages in his writings that give us something to go on. 

Interspersed with the opening historical narrative in Hilkrt [1925], there are hints of 

adherence to a Kantian thesis, according to which the antimonies of naive set theory, like 
those of naive dynamics or naive cosmology, arc to be attributed to the illegitimate 

deployment outside the bounds of possible experience of principles applicable only within 

those bounds.66 This can of course be seen as a concession to intuitionism: Nl$ert is 

accepting hat  here is at least a prima facie doubt abu t  h e  legitimacy of the law of 

excluded middle as applied to infinite totalities. Beyond this, though, it is very difficult to 

see what Wbert intends by the h t i a n  analogy, sirlce he never attempts ts explain it at any 

length, or to give any account of his understanding of the Kmtian pArrtiples upon which 

66 See H i l h  [la51 p376. 



this claim about the legitimate deployment of concepts rests. And since the required 

explanations axe hardly to be md off the agmd common consensus on the Inceqnmtion sf 
Kant, we arc stdl at a considerable Bidvanuge when it m m s  to trying to understand just 

what it was that M l b  thought to & suspect a b u t  inhitistic notions, md why.6r 

However, there are dm many passages in H i l M s  writings that make clear his desire for 
what we mi& t call an epistmlogicdty credible a c 0 w ~  of t k  mawe of o w  ~taemtar icd  

capacities. And as MllW [1917) in particular makes abundantly clew, he thought that the 

axiomatic method had a crucial role to play in providing just such an understanding. In the 
striking opening passages of that article, for example, Hilkrt emphasizes the importance, 
for the 'health' of any particular science, of pmewhg close integmion with related fields 

of scienhfic activity. It is all the more striking that he illustrates this point with a claim that 

research in mathemtics has been at its best when closely fosmssed upon problems and 

issues arising in the related fields of theoretical physics, and something he calls 

'epi~tcmology'.~ filbert then goes on to describe axiomatization as a process in which 
the basic concepts of a science are isolated, and heir mutual interconnections displayed. 
Relations between closely related fields then emerge as relations between the concepts 

isolated in their respective axiomatic serucms, oceasiondly revealing the possibility of a 

&per unification within a single axiomatic smr.r~c. 

Wbert therefon seems t~ have thought that the 'health' sf mathematics depended in pan 

upon its relationship with a science hc calls sonreaimcs epistemology, sometimes 

psychology, sometimes legic.69 And there seems to be little doubt as to his views a'oout 

the name of this relationship. Consider, for example, the following passnge from 

[ 19271 

67 kt me emphasize once @n that Hilbert really does have a concern wirh he underlying nature of 
paradox, with the uiology of paradox in Be philosopher's sense, and not just with W: problem of 
eradicating p a d o x  from m a t h e d c a l  tkcaics - see for example Hilbeat [19171, where his evident 
satisfaction with Zemelo's 1908 axiomatization is RCH o f f d  as M~cient  gmumds for Qkanlssing v~arrtes 
a h t  w theory. 
68 A central f e a m  of Hilben's scientific wtlak is his dcnial of any principled distinction BgPween pure, 
and applied rmahmri~. He was quite pssionady convinced Lhat the imposition of such a distinction 
could only have ruinous consequences for mnthernatical research, and in his efforts to reform the G m a n  
academic curriculum in accordance with his convich, he found himself involved in an acrimonious and 
highly publicized controversy with the applied mathematician van Mises (see Reid [I9881 pp342-343 e.g.). 
This in itself is enough to suggest  ha^ tkepc is mething vcry w m g  with the received view of Hlberi as 
Lhe arch f o m d k  
69 h addition to Hilbert [I9171 on his, see also e.g. HilberO [I8081 p3, Hilbert [I9041 pP31, Milkn 
[I9271 p475. Wleu (19901 gives some informdon on unpublished mmial from Hilhrt'o Icxm notes 
on physics ~ k v a n t  to his topic. 



Tk f m u h  game thaa B m w u  so dqmxaks b, beaides ils mahemratid 
dw, an i m m t  g c a d  p h i h q h c a l  significance. For this fmula  game 
is carried out according to cmah defrslite rules, in which the c e c h m p  of ow 
thinking is expmscd The* d m  fm a cbsed system that can be discovered 
anQ Mmilively U The hdmetptal idea of my proof lhcary is mmc other 
~ t o ~ b c t h e ~ v i t y o f ~ ~ ~ ~ , t o m a l r c a ~ o l ~ d e s  
d n g  to which om thinking actually pmeds. Thinking, it so happens, 
p d e l s  md writing: we fm slatemmu and place them me behind 
mother. If any Wity of observdrrms and phamm deserves to Be rn& the 
object of a scrim and thorough invesliption, it is this otle . . . . . 'PO 

Hilbtrt's claim is *at the link between mathematics and this neighbring field of 
'epistemology' occurs at the level offine'tury c o m b i ~ r i c s .  In the finitmy migulations 
of symbols according to a few simple, precisely stated rules, the fundamental operations of 

the mind arc expressed. Now, this is a very striking claim - bear in mind that Phis paper 

was written in 1927, twenty three years before Turing's paper 'Cbnqputing Machinery and 

Intelligence', long before von Neumann demonstrated the psssibi1it;y of the programmable 

digital computer, and some forty years before the o v e ~ w  of behaviorism by cognitive 

science. 

I suspect that this conviction concerning the 'technique of our thinking' m y  have prompted 

some such thought as the following. If the finitary manipulation of symbols is indeed the 
'technique of our thinking', the transfinite content of the systems of classical mathematics 

becomes puzzling. There is no problem with characterizing our grasp of the potential 

infinite of the natural number sequence, for here the infinite is governed by finitary rules. 

But there does appear to be a problem about the actual infinite of set theory, w h  finitary 

minds are x d t d  with the capacity to grasp flatly infinitistic pro@es of complex 

objtcts - facts which appear to be independent of the rules accofding to which those objects 

arc '~~nsmcted' .  

The appearance of a worry h m ,  though, is smly the result of confusing the two senses ~f 
'interpretation' mentioned above. We can do transfinite set theory, and nothing in these 

claims h u t  the finitary 'technique of our thinking' is in any way inconsistent with this 

fact. When we do transfinite set theory - when, for example, we intraduce an axiom 

postulating the existence of a cardinal numbs larger than any cardinal number msmctible 
in a given axiom system - what we do is attend to the deductive consequences of the 

70 H i R m  [I927 p475. This passage is the most striking expression of Hilkrtes opinions on h e  'general 
philosophical s i @ i '  of axiommum . . and the m ~ m a t i c s  study of axiom systen~s, but there 
tue strong suggestions of hese views in his writings ru h a  as early as H i h a  [1900]. 



axioms, as well as such matters as thek simplifying power, fruitfulness for matheramtical 

thcory in general etc. This, however, is all at the level of aceeptabil& d mathematical 

hemy. Nothing in our ability ro do transfinite set theory demands the introduction into ow 
ontology of large cardinals, and nothing in this ability suggests some kind of mysterious 

direct insight into the propaties of infinitely complex objects. Nuthing in the acceptability 

of set theories with or without very large cardinal axioms of itself demands my 
interpretation of the set-theoretic t om in the strong, properly semantic sense. If KIi1ba-t 

thought that we must either abandon set theory as we now have it, or accept (HI), then I 

think that Re was simply mistaken. If he thought hat acceptance of set theory brought with 
it puzzles abu t  the epistemic access of finite intelligences to infmitely m q l e x  objects, 

then I think that he was confused. 

However, whilst I do think that these mistakes and confusions are present in filbert's 
thought, I also think that his convictions about the 'technique of ow thinking' and its 

implications for our understanding of the nature of mathematics also prompted some 

*hportant insights. For there is still the Quinean argurslent in favour of genuine ontologicd 

commitment to at least some mathematical objects, and the problem of giving an 

epistemologically credible account of our epistemic access to those objects is, H think, a 
genuine one. For the fact sf the matter is that the ody remotely credible scientific theories 
of cognition we have are indeed of the kind Milbert foresaw. Insofar as the mind has 

proved amenable to empirical scientific study at all, it has proved to be an infomation- 

processing device, not essentially different in character b m  a digital computer. Now of 

come, it would be much too quick to conclude from this thiit there was is much as a prima 
facie case for a philosophical obligation to explicate our cognitive capacities entirely in 

infomtion-processing terms. For the information-processing accounts sf our cognitive 

capacities given to us by empirical science concern themselves with our empirical 

knowledge, and it is not unreasonable to think that our deductive capacities demand a 

somewhat different approach. But now the problem of ontological comimen t  to 
mathematical objects becomes serious, for (contra (HI)) our knowledge of mathematics 

cannot be assimilated within an account sf the workings of the deductive capacity in 

general. The problem, of course, is the proprietary ontology of those mathemtical theories 
to which the Quinean argument commits us: unlike logic, rn&emtics is not topic neutral. 

What is this Quinean argument? In essence, is is this. Ontology is subrdinak to empirical 

science, and not vice versa. Our best - indeed, our only - guide to what there is is what 

empirical science tells us there is. But empirical science commits us to at least some 



mathematical objects, since the literal n t h  ~f physics (for example) as we now have it 
requires mathesn&-al objects - d n m h ,  for example - in addition rn physied objects 

as the values of br.;s,rll vaiablcs. (In the h m a m  variant of the argument, it is p i n t 4  out 

that we cannot so w.:uch as sme the laws of physics without committing s m l ~ e s  to r e d  

numbers.71) 

But why should it be empirical science that enjoys this privileged position with respect to 

ontology? Why not science in generid - in which case cormwiment to all the objects 
quantified over in accepted cmhematics ibnm3fiatcly follows? A detailed answer to this 

question would takt us deep into Quhe's theory of &g, and I[ cannot attempt to give 

such an answer her&. But the mcial component of the Quiram m w e r  is the need for the 

scientific study of issues m & g  meaning and reference to Qe dequatety grounded in 
the intersubjectively wdlable evidence of the senses. 

In the famous Quinean image, the 'lore of our fathers' comes down to us in an articulated 

web of sentences, assent to those at the periphery king closely conditioned to occurrent 

shulations of the sensory receptors, whilst assent to those clom to the center becomes 
progressively more robust under perturbations of senwry input.72 Together with this 

image comes a just-so story of how languages might be leanad, in which words for 
ostensible objects and properties arc gradually suppltrraentd with ever more recherchk 
items of vocabulary in'a spontaneous, ever-revisable outburst of theory designed to render 
the ongoing flux of sensation cognitively ma11ageable.~3 This process of spontaneous 

theorizhg associated with what Quine calls the 'positing: of physicd objects over and 

above the 'phenomenal' objects immediately present in sensory stirnula~im 

Physical objects arc conceptually imported into h e  situation as convenient 
intermediaries - not by definilion in krms of experience, but simply as 
irreducible paits comparable. epistemologicdly, to the gods of PI-. hbt my 
part I &, qua lay physicist, believe in physical objects mi riot in H m f s  gods. 
. . But in pint of epistesnologid footing h e  physical &jects and the go& 
differ only in degree and not jn Kid.  . . . Positing Qots not stop with 
mamxqic physical objects. Objects at h e  aunnic level are posited to rnake 
Ibe hws of mimawq& objects. and ultimately the laws of experience, simpler 
and r m  managcable . . . . Physical objects, large and mall. an nut the only 
posits. forces are another emple; and indeed we arc told nowadays that the 



between rnw and mrgy is obsolete. Mmver ,  Lhe abstract entities 
which are the subamme of mrrlhunatica . . . are posies in the same spirit. 74 

Now this Quinm story becomes controversial at the level of detail, bu: 1 b i d  that the 

trod outlines are largely independent of' the doctrines associated with translation into 
canonical idiom. And at least at the level of Phis M outline, the Quinean story would 

surely be congenial to filbert. For the guiding intention to integrate an account of 
mathemtics md reference to mthcrnaticd objects within an o v e d  understanding of the 

place of our cognitive capadties within the natural scheme of things, and above all the 

desire for a close integration ~f the theoretical concepts of physics and mt.hemtics, are 

deeply IHLilbertim in spirit - as is the desire to fie& scientific theorizing h r n  deper~de~lce 
upon any kind of transcendental philosophicd support. 

mer& are, however, two respects in which the Quincan story seems ~o~n&rinhlieiv.hs. In 

the f i t  place, it appears to have the consequence that the existence or nonexistence of 

mathematical objects of such and such a kind becomes an empirical matter, to be 

detemined ultimately by the development of theoretical physics. But it seems strange that 

physics should scave as the guarantor of the existence of such objats, and yet be unable to 

tell us anything of their properties.75 And in the second place (as Charles Parsons has 

repeatedly pointed out.) the Qiiinean picture appears to locate all of mathemtics withh the 

most deeply theoretical parts of total science, alongside the extremely recondite mehs of 
fundiumntal physics. And that sezms to render mysterious the obviousness of at least the 

most elementary parts of mathematics.76 

74 Quine [1951], p44-45. A more careful telling of the Quinean story wwld remove any hints of 
h e n o m d m .  

45 Pewloge Maddy. in Maddy [1991], complains that Quine's mount laves the juslification of some 
mathernati~ tmths in the hands sf physicists (set p31). But it does n o t  Wddy has igmra-l Quinc's 
views about the csrrect philosophical ascount of truh, and phus falls into Lhc trap of mnhting issues of 
scientific acceptability and issues of ondogid commitment As we have seen. rhm are orthagod for 
Quine. This is not my canplaint. She also claims [IN cit] that Quine's position laves unapplied 
mathematics without jus6ifmticm: an8 this, of course, is a firsoRer consequence of the stme confldon. 
76 See Pawxu [I5831 e.g. I do not mean to imply that wine has no response to this cumplaine. The ~~ metric of e n w h e a t  is normally &ken to articulak he understanding of cm anlimy member of 
ehe speech community, and with respect to such a citizen, the obviohlsreess of the sentences txprcssing Llle 
truths of elmerstary mahemtics, like bht: obviousness L. all simple tautologies, is reflected in the fact thnl 
those sentences are highly robust under peturbations of sensory input. The sentences which express 
obsetvational facts are! not in this way robust, and of course such sentences are not in tR t  same sense 
obvious. Romping me right now with the sentence "Ihis apple is rad' will indeed produce ready asscnt, 
since it h indged obvious lo me h a t  this apple is d. But no stable overall pattern of msznt to thai sanle 
sentence (typc) can be gemwed, since (for c m p k )  it is by m means obvious to you, right now, that 141is 
same q l e  L red - atlea dl, you can't sec it. Lila Luce, in a recent srrticb devoted t this alleged problem of 
the obviwncss of elemenmy ma&emc;ics, seems to me to be confused on thew rnauers - see Luce 
ClMI. 



Now, the indispensability for science - or mrc exactly, for all 'scientific thought' - of 
f i n i m y  mathematics is h fact a Hilbertim them. In Chapbw Two, I shall try t~ explain 
what Hilbmt may have ktd in m i d  by this indispensability thesis, and argue that It is very 

plausible. The interest of the @incan view then lies in the suggestion it mntains as to sr 
principled, broadly nahmlistic way of extending a litcd wmmd of finiesgv mthemtics 
to a literal mstruarl of at least some parts of infinitmy mathemtics. The suggestion is that 
the sum kirad of process - roughly, g a d  scienmc rationality - that generates ever mne 
sophisticated physical theories from the evidence of the senses, and thus introduces into 
our ontology ever more recondite species of physical objects without violating the 
underlying constraints impose$ by a naturalistic c~nsorual of our cognitive capslcitie.~, will 
also permit the introduction into our ontology of more recondite sgecies of mathematical 
objects within those same naturalistic constraints. 

In the @inearn story, the intmducaion of objects is a theoreticid speculation, constmind by 

experimentation - the evidence of the senses. In mathematics, however, *here are no 
experiments. What, then, is the relevant constraint? One answer is given by (MI): the 
sole relevant consmint is consistency. But that is not naturalistically plausible, since it is 
not plausible at all. In H i l M s  later writings in particular, though, bere is the suggestion 
of a better answer. Consider this passage, in which he responds to the Brsuwerim 
complaint that mtas-naahematics is 'empty formalism': 

This formula game [i.c. &duction in a formalized l hmy]  enables us to express 
h e  en& Lhoplghtamrtnt of the science of mluhcmsuics in a uniform mamu 
and &ve@ it in such a way that, at the same time, the in~e-tims between 
the individual propsitior!:, and facts become clear. % m J e  it a universal 
requirement hat each individual fonnula then be interpretable by iwlf is by no 
means neasonabk; on the oontrery, a theory by its veq name is such that we on 
not wed oo fall back upom intuition ot meaning in the midst of son#: argument. 
What rk physicist demands precisely of a theory is that piuricrrku propositionr 
bc deriwdfrom laws of m u r e  or hypotkescs sole1y by iderences, hewe on the 
kais of Q pwe form& game, w i l W  exmmeous wmi&r(~lwm king diuced 
OM cettol, tonrbiwiolu a d  conseqve~ces qf t k  physical laws can be c k c k d  
by eqwrime~l - j u t  os in my proof ~ k o t y  only the red propsitiom are directly 
c q d e  ofve~oficorisn.77 
-- 

For the representative citizen, of course, the truths of theoretical physics are nut in this sew 
robust either, since a m p &  to elicil reqmse to s e n t e m  of Lheoretic.1 physics will result in b i m s s  
reactions. Tk reason tha I herodwe the obviousness complaint Quine is not thiu I thirk that his 
position is power;css to respond, but rather hat I lhink h a t  the response Quinc can make will end up 
drawing heavily upon rhe m o n  conmversial aspecbs of Quincan doctrine. Since the prwition h t  I am 
currently labowing IQ outline involves a tcjeclion of those mote csnmversial aspects, I think it wmhwhle 
to point wt this prima facic poblesnhc feure of Quine's views. 
77 Hilbert [la cit], my emphasis. 



The suggested analogue of cxperimcntd evidence, then, is computation. glte 'direct' 
verification of a mathematical praposition proceeds by computation. The 'red' 
propositions - thc propositions of finitary mathematics - are those which can, at least in 

principle, be v d d  by computation, in the samc way that the expaimcntal consequences 
of a physical law can be v d d  (in principle) by observation. The 'ideal' elements, in so 
far as they can be eliminated from proofs of Amitmy theorems, may be regarded as 
theoretical tern, in the sense that they function essentially as unifying and simplifying 
agents, without e x c ~ m g  the boundaries of the computable. Thus constrained, h e  

mathematical theory cannot take us beyond what we could in principle: do by non- 
thmntical means. 

Notice that the claim here is not that ideal elements may be regadd as ahmetical am in 

the sense that their meaning must be explained holistically in t m s  of tlhe role they play in 
an axiomatized system. Given Iiilbds views abut the axiomatic method, the esncegts of 
finitary mathematics are every bit as theoretical in that sense. Thm is no giving an account 
of the concept of nanvol number independently of notions such as successor which feature 
in the arithmetic axioms: arithmetic has no observational concepts. Rather, the suggestion 
here is that our ability to interpret mathematical theories in the thick sense is constrained, 
not only by the deductive consequences of arbitrarily postulated axiom in the manner 
suggested by (HI), but also by the bounds of what can in principle be done by finitmy 
resources. Within those bun&, we are h e  to investigate the ideal supmmcm with dl 

available mans. Beyond those limits, though, there is no reason to think of mathematical 
thenits as demanding interpretation in anything other than the !bin sense. 

Now in the Quinean picture, mathematics stakes its ontoIo~eal claims in the pmess of our 

attempts to explain and paedict the ongoing flux of experience, in the same process that 

produces the theoretical entities of physics. The parallel within mathematics of this process 

would t~ one on which the actual infinite stakes its ontological claims in the process of our 
attempts to explain the properties s f  finitary mathematics - to smooth out and simplify the 

theory of the 'observational' data available in principle by computation, The resultant 
picture of mathematics would be one on which we incur commitment to the objects of 
fmit.ary matllematics in some dkc t  way, and commitment to infinitany objects insofar as 
they may be regarded as simplifying devices. This is a restricted form of realism, as we 
have been using that term - one in which corrnmitment to the actual infinite is restricted to 
those infinitistic theories that are consewativt ova finitary mathematics. Tt i s  a realism that 



promises to emomprsss all the mthermtics that i s  required f a  our tRwq of the physical 
world., but it d t s  us to ideal mathematid objects in response to a -mthemticd need. 

There is no puzzle as to how physics am provide the mison d'em of these objects without 
king able to tell us myflung of their properties, for physics does not provide the mison 
&em of those objects. 

But why should we respect the restriction on our o r o t o l o ~  d t r n n ~  imposed by the 
consewation consmino? Why not accept c o n m i a n t  to d l  of ~ s f i n i t c  set h a y  in the 

sanme visit? After all, set themy m s e  precisely ~ u t  of an attempt to deepen and generalize 

our grasp of the properties of the red number system, at least some of' which we are 
already committ4d to on the approach that accepts the conservation constraint. Why does 

this mt provide sufficient mason for a full-blown set thmtic  W s m ?  

This question has a close analogue in the philosophy of the natural sciences. It has been a 

persistent criticism of the constructive realism advocated by Bas van Fmssen, for 

exmplc, that it allows the actual obmational powers ~f h u m  kings to play an inflated 

role with resgcct to our ontological commitments in narural. science.7B FOP van Fraassen, 

acceptance of a mature t h q  in the natural sciences commits us only to those guts of the 

prim facie ontology of the theory which are observable in principle. Beyond this, 

acceptance of the theory as empirically adequate ailows us to remain noncommittal with 

respect to the existence of uaobsewables. Acceptance of atomic theory as cmpiiically 

adequate commits us to molecules, perhaps; but not to photons. I shall have more to say 

on this point towards the end of the next section. 

Section Six: Clarification and Comprrrimns. This sketch of a position on the 

ontological mrPLmitrnents of mthemtics, and the notion of meaningfulness required far 

mathematical theories, catahly demands extensive clarification and defence. Some of that 

defence will have to be postponed for the final section of Chapter Two, for it involves 
mcidy the s p e d  status the Milemtian associates with finitary mathematics - the topic of 

Chapter Two. I wmt to finish this chapter, though, by offering some preliminary 

clarkfication and defence, mostly in the form sf a comparison with the views of other 

authors, both on Hi lbe~ and on mathematics in general. For the most part, I shall k 
arguing against apparently richer form of mathematical realism accepted by M d y ,  and the 

Van Fmasen's views are set out and defended in &tail in van Fmesn [1980]. For discussion of van 
Errrassen's views on umhemabka in particular, stc ahe cssays collected in Hooker and ChlecRM [1985]. 



f o d i s m  of Tate. But I shall dm have ssmethhg to say on h e  apparently thinner 
u n d e r s W g  of H i d t m h  phlosophy of mathemtics off& by kdcfsen in his b k  on 

Milbcrt's Rr>&-:. 

In Tait [1886], one finds a g d  contemprq stlatement of a philosophy of mathemtics 
which adheres to somahirag vefy like (HI) as a sufficient response to questions concerning 
the ontological commiemcsrts of mathematics. For Tait, the thin notion of interpretation 
provides a philosophieally adequate account sf m t h e d c a l  practice. He writes: 

. . . Platonism does not consist in an interpretation of m a t h a m i d  thenrim. 
We do indeed i n t e r n  sheaoies in maahemafics, as when we mmt inner 
models of g m  or set Umry or when we comm~t cmples  of p u p s  
ete., with cemh pqmies. But we do his in the language of mathematics, and 
our 'pup' of this consist% in our ability to u~t it . . .. Benacerrad and h m  
seem to me to be typical of tkose who wkqf a particular pic- of Plarlwpim. 
The picture seems to be hat mathematical practice takes glace in an object 
language. But this p r i c e  nee& to be explaid .  In other words, the object 
language needs to be interpreted The Platmist's way to i r s c c p t  it is by 
Tarski's n t h  Befinition which interpreas it I ~ P  being i h u t  a &I-  a IWdeJ-in- 
Ihe-Sky - which somehow existo independently ah ow r n a h m h l  mtice and 
serves to adjudicate its correcaness. !h here are two layers of mhemtics: i k  
layer of d h r y  e a t i c a l  practice in which we prove propositions such as 
['h is a real numbcr p t u  dm 10) snd he hycr of the Mdd at which 
['h h a aal number greaser than 101 asserts the 'real' exi-' of a n m k .  . 
. . [This is ncw the] version of Platonism that I am &fending or that I even 
understand. . . . Tarski's n t h  definition . . . is a piece of mathematics, 
cmcemhg ;he mathematical mion of a Pnodel of a formal langPrage.7Q 

As an account of the acceptance conditions for mathematical theories, I have great 
sympathy with Tit.  But I differ from him in that I do not believe that the thin notion of 
hteqmtadon invoked here provides a philosophically adequate account of the ontological 
codtments  of mathematics. I have two reasons for this. 

The fmt concerns the applicability of mathematics - the feature of mathematics that is 
central t~ the Quinean indispensability arguments. The basic point here is famibar, since it 
has bten the central complaint against formalism since Fnge. Tait, I maintain, can give no 
adequate account of the applicability of mathematics in natural science. Tait considers the 
issue of the applicability of mathematics, and offers the following account: 

Consider . . . a mathematical pedicdon of tile mollon of a physical object. 
First, we read the appropriate equations off LRt dam - i.e. we tho* h e  
appmpiatc idealization of b e  phenomenon. &and, we solve the equations. 



Thhd. we inrerprel rRc solutim cmpikaly . . .. [Matmematical knowled@ here] 
is knowledge that S. where S is a mahamid  proposition. But r h a  kind sf 
kmwled;e- la involved only at the second step, and it involves norhing 
mgirical. The fmt and third steps involve only b o w i n g  how u, apply 
ftuMhmics to tRt phmomeml.~~ 

The kind of use of ~1~them6loiss Tait speaks of here is typical of themreticill science, in 

which one constructs a rmhematical d l  of stme natural system, and derives predictions 

about f u m  sates of the system (fm example) by purely mathematical masoning En the 

model. H a t ,  it is possible to separate out the mathematical b r z n  the empirical components 

in the scientific theory. But that is nut the only way that mahemtics gets applied in 

science. At the very simplest level, any practical application of science will involve the 

measurement of some physical quantity. For example, the engineer's explanation of why 

the bridge collapsed under the strain of carrying fifty thucks will involve a number of claims 

which, if transcribed into canonical notation in Quine's fashion, will involve predicates, the 

satisfaction conditions of which require sequences composed out of a mixture of physical 

objects and mid numbers. Mere, the mathematical component of the exphation cannot be 

hived off from the physical component. They are inexmcably mixed in the engineer's 

reasoning. It seems to me that the correctness of the engineer's explanation requires an 

interpretation of his utterances in the thick sense, and that, in turn, induces genuine 

ontological mrmmitment to real numbers. 

My s a n d  complaint against the Tait account sf the n a m  of mathematics is that is seems 

to me to make the applicability of mathematics something rather surprising, something one 
would not be led to expect from any examination of the internal practice of mathematics. 

For we are given the impression that mathematics is an essentially selkontaind activity. 

Tait seems to Rave no mom to acknowledge that the great concentration of mathematical 
activity on systems which do have application in the physical world has anything other than 

a purely extrinsic explanation, perhaps in terms of quasi-institutional pressures, or 

psychological facts to do with the rnathelnatical imagination. And that in turn makes it a 
kind of fluke, a cosmic coincidence, that the universe obeys mathematical laws. Lucky old 

us. And that is surely wrong. I do not believe that a mathematically lawless universe, and 

a fortiori experience in a mathematicaliy lawless universe, is a genuinely intelligible 

possibility. 

Tait top cil] p351. 



Whatever its shompllings, the I-lilm view I have k e n  sketching dms not have these 

problems. Qrs the HilMara account, mathematics is i n h s i d l y  conmated to experience 

and to she physical world The applicability of mathematics is taken as a constitutive 
feature of mathematicd activity, and it is central to our account of the undmsmding of 

mathematical theories. Finally, providing all of applicable rnahcrnatics can indeed be 

fomalizcd in systems conservative over P R A ,  as has not k e n  established, the 
requirements for a thick interpretation of applicable mathemtics have been in some 
measure addfew, without the irnvocatim of a Model-in-thesky. 

Tait serves as an example of a philosopher who wishes to limit the demand for 

interpretation of mahematid theories to interpretations in the thin sense. Penelope 

Maddy, on the other hand, appears to demand a thicker notion of interpretation for almost 

all of mathematics as it is c m n d y  practised, including perhaps some very powerful 
extension of standard ZF. In Maddy [1990], she draws on some well-known suggesti~ns 
made by GWel to outline ways in which a mathematical d i s m  grounded in the Qulnem 

indispensability argument might Be extended  fa^ beyond the most generous boundaries 
countenanced by Quine, deep into the regions populared by c h d s  larger than my whose 

existence can be proved in ZF.81 

Maddy, however, seem to me to be sccupying a highly unstable position, for I think that 

she does not realize the extent of her departure from the theses that provide the fundamental 

underpinnings of the @hem indiqerasabiEity argument. Given that her b i e  argument for 
realism depends entirely on that argument, I think that she must either give up her d e m d  

for a more extensive redism an8 keep faith with the Quinean indispensability argumenh or 
break with Quine altogether, in which case her position seems to me likely to collapse into 

that of Tait. Let me explain. 

Middy insists that hm position is based upon a Quinean naturalized epistemology: we are to 

do philosophy standing 'within our own best theory of the world', and epistemology 

accordingly becomes a 'descriptive and explanatory' project.02 We have already seen how 

this perspective is associated with the Quintan indispensability argument - a mdicurn of 

mathematics is involved in our best natural scientific theory, and from the perspective of 

The GWel suggestions come by and large ;From G W l  [lW], and are conuhed in a passage whish I 
shall  discuss extensively in ahe third section of Chapter Two. Maddy's views on these matiers are 
explained at gream length in her two part paper Maddy [1988a] and [1988b]. 
82 haaddy [1890] g9. 



epistemology aPtunlizcQ h e  arguments that commit us to the physical objects 
ova in that dBaory also ammit us to ohe mathewatid &*. 

Given that this is the paspectivt, though, it is very curious to find Maddy complaining, 
against @he, that unapplid mathematics 'is completely without justification s n  the 

Quine/Putnm model; it plays no role in our best themy, so it need not be a ~ e p ~ . e ~  
Quint's indispensability argument is not intended to ju t i f i  any put of scientific theory. It 

is not intended as a rmasaart of the wceptQbility of my scientiri themy, whether natural or 

f o d .  How could it possibly be hat, compatibly with the perspective of epistemology 

naturalized? The justification of mathematical theories is for mthematicimls, not 
philosophers. The acceptability or otherwise of B m a t h e d d  theory is a matter to be 

determined by the internal practice sf mathematics. The Quinean question is this: Given the 

perspective of episaemlogy naturalized, what is the minimum ontological commitment 

demanded of us by natural science? And for Quint, that minimum cornrnitmena is 

measured by a p d m  that aimslates our 'theory of the world' - natural science - into 

canonical iclism, and then l ~ o h  at the domain of h e  quintifins. Canonical idiom here is 

fust order qub~l~cahion theoby with identity, with all quantifiers mdersmcd objectudly. 

For my theory not in canonical idiom, or Indeed for any theory which has no role to play in 

our best theory of the world, the ontological question, for Quine, has no deteminate 
answer.84 What is more, the translabion procedure into canonical idiom is subject to the 

indeterminacy of radical translation. At the level of basic physics, leave done h a t  of 

mbhcmaticd thtory, that incktermiw is extensive. 

The fact s f  the mam now is that very little mathemtics a m  as a canonical commitment 

of physics. Quine regards himself as committed to sets, since he regards J1 mathematical 

objects as sets (mall the indeterminacy of radical translation if you are inched to take an 
interest in whether red numbers are 'redly' sets). But the set theory one is cammitoed to 

by physics bn canonid idiom is minimal: the exact measure of that commitment I do not 

know, but it is cemhdy to a vanishingly s d l  fragment of ZF. Beyond this minimum, 

issues of the snmlogieal commitments of mathematics, as J understailad Quinc, really have 
no determinate answer. This does not mean that the parts of mathematics - including 

almost all transfinite set theory - that never appear in the translation of ow theory af the 

world into canonical idiom is in my way defective as mathematics, or in necd of some 



justification. It is just that, as Qrrine understands matters s f  ontology, in accepting those 

parts of mathematics, you incur no ontological commitments. Tmsfinie set theory, for 

the most part, k 'on a par with unhtespreted systems1.& 

The confusion we have k e n  unearthing here is the confusion we encountered above, 

between issues of jusfl~cation and issues of ontology. On the Quineim picture, these 
issues are athogormi, and his is implicit in the perspective of epistemlogy naturalized as 
wine presents it. Om ontological cormnitments are to be deeeranind from within our best 

theory of nature. But hen, how is Maddy m get genuine ontslsgical commitment in 

transfmitc set themy from the Quhm indiqxnsability argumnt? 

In her work on the status of the axioms of set theory, including axiom beyond those of 
s t m i d  ZF, W y  offers an extensive and fascinating discussion of a pmdure she calls 

'extrinsic' jusW~cation of axioms - justification in terms of their unifying power, their 

fruitfulness, there simplificatory potential within mathematical theory. She points to the 

undoubted distortions induced in standard analysis if use of the axioms sf dependent 

choices (at least) is abjured: 

In the case of he  axiom of choice, then, we have ow f i t  example of an 
extrinsic defence of a set themsic hypockis, beginning with a straightforward 
indispensability argument: our best theory of the world requires arithmetic and 
a d y s i s ,  and our h t  rheory of arithmetic and analysis requires set Lhewy with 
at least the axim of dependent choke.B6 

She describes this as 'pure Quine/Pumamisml, but it is nothing of the kind. There is no 

general argument in Quine (or the tim-shce of Pumm to which Maddy refers) that licenses 

an inference from best scientific theory to ontological commitment. There is an argument 

from best thd~ry of nature to ontological commitment, but that is a very different thing. 

There are three points to note here. In the f ' t  place, given a mathematically elegant and 

fhitful fcmdization of the mathematics needed in the theory of nature which is profligate 
with sets, and a mathematically clumsy and b m n  theo~y which is ezonomical with sets, 

there is nothing in Quine's position that need incline him to prefer the fomer. Secondly, 

though, and much more important, the indeterminacy of radical translation should, in these 

circumstances, incline the Quinean to view with great suspicion my claim that there is a 

genuine ontological issue to decide. After all, Quine thinks that we are mhtted to some 



set t h q  by the theory of name, but there is no fact of the maw as to which set theory 

we arc commitbed to. Your choice between ML, NF, ZF, NBC, Krigke-Blatek, Kelley- 
Morse or whatever may smly be made on grounds of mathematical convenience - or, if 
you will, hirfulness, simplicity etc. - but such grounds, for Quine, equally certainly 

cannot induce any idlation of ontology. And M y ,  it is a anistake to think b a t  Quine is 

prepared to countenance rn ~ ~ n c e  ffwra best scientific hemy to ontologid wmrnibment 

even in the case of mural science. F a  ontologid wrmtZiwnt, I v a t ,  is determinate 
only for theories h canonical idiom, and in rra Pma two very well known areas oaf natural 

science as we currcntly have it, wine w d d  repudiate any suggestions of sntological 
commitwent in virtue of the fact that ran acceptable translation into canonical idiom is 

impossible. I speak of cognitive psychology and linguistics. 

This last example is instructive, for it speaks to any attempt to broaden the Quinean 
indispensability argument to one on which we an ontologically c o d W  to the entities 

quantified over in currcntly accepted scientific thcories in general. It happens that I would 

be rather sympathetic to this view, but it faces at least two difficulties. The smaller 
concerns determining the appropriate notion of canonical idiom, for some such notion is 

needed if the proposal is to yield any determinate result. Much more impomt, though, it 

is very doubtfbl if h i s  can be to the perspective of epistemology namdized 
as Quine understands it. The s f  course, lies in the fact that this inflation of the 

hdis~nssab~ty ugument threatens the Quinean with a mumaion of the mal @c/s ynthedc 

distinction in some form. ?'his is in fact vivid in MMy's discussion of the axioms of set 

theory, for it is very hard to avoid the impression that she thinks c m i n  axioms can be 

justified by demonstrating that they keep faith with the rnath~~iatid concept of set. I am, I 
repeat, very sympathetic to this h e  of thought, but it does not seem to me to be compatible 
with naturalized epistemology as Quine understands it, sine it invokes a notion of analytic 

entailment which Quine would, I think, would regmi with suspicion. And if such a line of 

thought is used to invoke commitments to objects, then the break with the Quinean 

perspective is definitive. 

If Maddy is to maintain this line of thought on the axioms of set theory, then, she cannot 

rest her fundamental case for commitment to mathematical objects on the Quinean 

indispensability argument. Her account of the: ontological commitments of mad~ernadcs 

will then of come depend upon which alternative foundational argument she chos=s, but 

if the result is to Be the set thmt ic  realism she currently avows, then I think that she will 

face one s f  two dangers. The f ' t  is a Taia-like formalism. The second, though, which is 



strongly suggested in her discussion of the axioms of set theory, is h e  kind of Fregeiara 
dogmatism &at W k t  so strongly oppcrd .  

Consider, for example, GUdel's axiom of csnstrucbbility. This axiom restricts the iterative 
generation of sets at each stage to hose explicitly definable by pmdicative formulas. The 

result is a fragment of the full standard ZF w-iverse, in which the axiom of ZF without 

choice all hold, and choice is pvablc. The resulting hemy has very nice properties. As 

hladdy says, all the outstanding issues in analysis, md even such controversial mtten as 

the g e m r a h d  continuum hypthesis an pmvided with determinate answers. However, it 

also has some 'countmintu.itive' consequences, which incline many set theorists to work in 
a richer universe, in which the combinatorial generation of sets is not msnicted by 

predicative csnsihtio.lis. Is there an issue to be djudicated here? a h a  is, of come, an 
internal issue, concerning the relative fruitfulness, simplicity, etc. eec. of these two 

systems. But is there an issue which calls for adjudication in some different sense - a 

decision as to what the set-theoretic universe is 'really' like? W y  appears to believe that 

there may well be. Having described some other aditions to and departures from smdard 
ZF, she writes: 

I have described two theories, two extensions of ZFC, hat cannao both be me. 
Exti Lheory answers at 1- the open q& of lutin aad SarsEn, and me evem 
decides the size of h e  continuum. Each enjoys an m y  of extrinsic supputs . . 
.. The philosophical open qwaion is: on what reuional grounds can me choose 
mwm ahese two beaies.87 

That may be a philosophical open question, but it surely is not the philosophical open 

question. One thing one might also want to know is, why is a choice between these 

theories lzhought to be n m s w  at dl? Qf course, if you think that at most one of these 

theories can be me ,  then you do indeed have to face Marddy's question. But why should 

one think that? 9Ae echoes of h g c  on non-Euclidean geometries are very striking here. 

And the Wkrtian reply is the same in both cases. Given a notion of truth tailored to the 

thin notion of h~erpneation, there is no reason to believe that at msa one of these theories 

is true, since truth here is no CIM)PC: than n t h  in a given model, and there is no IlerPson why 

here should not be many d e l s .  And if you insist on the thicker notion of interpretation, 

then you will end up (with Frege) leaving mathematics incapable of deciding matters that 

clearly belong within its purtrue, facing perplexities that cannot be solved kcause they 



cannot bd stated in a vocabulary the correct intergmatiora of which can be s t a d  to the 

mueual widact in  of the m h d d  c<rmolunity.@ 

The MilMan position I have k e n  sketching docs not have any of these clifficulties. The 
fundamental argument for b e  existence of mathematid objects, for the Hdkrtian, is not 

the Quinean indispensability argument, and the underlying perspective is not that of 
epistemology n a t u d k d  as @he tmdersw it. And kgcean dogmatism is avoided by 

repudiating any suggestion that mtRemtics, beyond the buncis of the potentially 
calculable, has any need d irntcqmtation in tke thick sense. 

But here the advocate of a thicker d s m  m y  see a serious weakness in the MilkPtim 
gosition. After dl, set theory arose e l y  out of an attempt to &pen a d  generalize our 

grasp of the properties of the red number system, at least some of which we are already 
committed to on the approach that accepts the conmation constraint. Why does this not 
p&& sufficient reason for a full-blown set theoretic redism? Why concern o~selves 
with the b o d  of the alcdable in principle? 

This is the question r a i d  at the end of the last section, md as 1 o b s m d ,  it has an 
intasting analogue in the philosophy of natural science. It has k n  a @steat criticism 
of the constructive realism advocated by Bas van Fmssen, for exmple, hart it allows the 

actual observational powers of human beimgs to play arn inflated role with respect to 
measuring our ontological commitments in natural s c i e o ~ e . ~ ~  For van Fraassen, 
acceptance of a m a w  thtory in the natural sciences commits us only to those p m  of the 

p m m  facie ont~logy of the theory which are observable in prirnciple. Beyond this, 
acceptance of the theory as empisically adequate allows us to remain nsnconaanittal with 

respect to the existence of unobscrsrables. Acceptance of atomic thesry as empirically 
adequate commits us to malaules, perhaps; but not to photons. 

But why, van Freasscn's critics p i s t ,  should we allow the evidently lad and changing 

boundaries sf the perceptible-by-us bt allowed to play so important a role in determining 
what there is? Indeed, why s h ~ u l d  those boundaries be allowed to play any role at all? 

Now, whilst the analogy with the mathematical case, in which the calculable-in-principle 

88 I must cmfess that. I find it genuinely exuaordinary that W d y ,  in a book which &tau Q u i w n  
naavalism with such d c f e m ,  can so mwh as suggest thai 6here might b a awa  hue as eo which set 
Lheoryistrue. 
89 See e.g. Gutting, G. 'Scientific Resllism versus C o m t i v e  Empiricism: a Dialogue', in Hooker and 
CbuPchland (eds) 11981 ~118-131,  and van Fmmen's regOy ([op cit] pp252-258. 



takes the glace of the observable-in-princigl&, is less than p f e c t  (since the former has 
more of the a p p m c e  ~f an absolute distinction than the latter has) a k a  is neverrheless 

enough of an analogy, to a l l ~ w  us to gmfit from van Fraassen's response oo this complaint. 
He writes: 

If I believe [a scicntir~c theory] lo be true and noa just e m p i r i d y  akquate, my 
risk of  k i n g  shown wrong is exactly rhe risk that tk w&w, emailed b l i e f  
[i.e. Lhe belief that h e  W r y  is cmphkdly idequate] will d i e t  with actual 
experience. Meanwhile, by avowing the monger W e f ,  I p h  myself in the 
position of being able lo answer more qwrions, of having o richer, fuller 
picture of the w d d ,  a weallh of opinion so to say, hat I can dole wt to those 
whowmder. But,shccLheextracqinion isnor i a d d i h d y  vulnemblc, Ihe risk 
is - in human m s  - illuscuy, and therefore so is rk wealth. It is but m p t y  
sauuing and posturing, tRk display of courage raot under fire and avowal of 
additional resources thai cannor feel the pinc4 d m i d m  my earlier. 

Under the terms of our analogy, we may say the point king made here is bat, beyond a 
certain stage, claims about the availability of interpretations in the thick sense for 

mathematical theories become philosophically idle. Despite the realist's thumping on the 

table, no further theoretical commitments are in fact being made. This point is not a 
verificatiormist one, notice: the c b  is not that talk of thick interpretation beyond the critical 

stage beccsms meaningless. Axioms postulating the existence sf this, that, or the other 

kind of large cardinal need not be accounted maningless even by a Quinw, for the 
Quirrean can hold that interpretation in the thin sense piavides a p f e x d y  adequate notion of 

meaning for mathematical statements, and such axioms cm, in this sense, be provided with 

interpretatians.gl The point is that the appmnt extra risk of richer forms of realism, the air 
of firming a controversial philosophical psition by insisting on interpretation in the thick 

sense, is spurious. The only constraint that such talk is in risk of violating is h a t  imposed 

by (Wl),  and mathematical realism is normally thought to involve the satisfaction of some 

much smnger condition. 

Let me ay and clarify this a little.= Consider, for example, the claim hat there are planets 

outside the light cone of the human race, and let us suppose that this is an implication of 

cosmology. On a van Fmsen  type position, ips I understand it, your acceptance of that 

cosmlogical theory does not commit you to those planets - you should remain agn~sdc 
with respect to their existence. And his is because, in van Fraasen's terms, the apparent 

Van Frawen, in ChurcRLand and Hooker [I9851 8255. 
91 Of course, h i s  cannot bc empirical meaning, so it is powerless to have any effect on ontological 

ueslicsrs. 
82 I un indcblcd to M n  D a v k  here f a  helpful discussion. 



extra degree of risk iavolvcd in ontological commitment to hose planets is illusory. 
Appearances to the ooneclay notwithstanding, the P s s ' s  risk factor is ih fact just the s m c  

as the van Frasemite's. Now, this talk of risk factors undoubtedly suggests 
verificationism. However, think of the matter this way. The sentence expressing the 
realist commitment is perfectly meaningful, since it is cornpod out of meaningful 

components in a meaningful, way. In the language of risk factors, the component concepts 
of the claim are not themelves at a m  iisk zem risk is in this cast the joint @uct of the 

laws of physics and noa-zro risk conceptual components. Because of this, the realist air 

sf bold csmmibnent is merely apgarenb. 

In the same way, then, I say that the realist's air of bold cornmiant to thick interpretation 

of extensions of set theory dealing with, say, hyper-inacessable cardinals is rnzrely 
apparent. The extra commitment is associated with no grcater genuine mathematical 
wealth. The rnathematics involved is perfectly meaningful, and may be as rich and 

rewarding as you please. However rich and rewarding it is, though, it becomes no jot 

more rich and rewaarliag for the insistence on h e  availability of a hick interpretation. ?'he 
air of holding mathematics hostage to the satisfaction of some smnger eonstmint than the 

Hilbextian will p t  is bogus. 

Now, if something like this van Fsaassen-type position (which I take to be at Ileaso c l ~ s e  so 
Quine's own position) is plausible with respect to natural science, it must surely be the 

more plausible with aespect to mathematics. Observation, after dl ,  is a causal notion, and 
the limits of sbservmbility are therefore fixed by the same scientific laws hat predict the 

existence of matter outside the lightcone of the h u m  m e .  But such as it is, this source 

of hope for a richer form of scientific realism is swely closed off to mathemtical redism, 
since there arc no plausible suggestion as to what might count as an genuine analogue sf 
causation to provide some extra determinacy in the outer reaches of the set theoretic 

universe. Maddy, for example, thinks that we can causally interact with some very small 
sets, and perhaps l m  the basic principles'of set theory via this causal interaction. But 

even she allows that the exotica of transfinite set themy can in principle only be reached by 

deep mathematical theory. My contention is that she has provided no support for the 

contention that the crucial mathematical generalization into the transfinite, beyond the 

bounds of the calculable in principle, can commit us ontologically to the objects of 

transfinite set theory. 



I wish to conclude now with a few words on Betlefsen's a l legdy Mbertian philosophy of 
mathematics, and in particular on the subject of insuurmntdisrn. Detlefsen advocates 

instrumentalism, and thinks h a t  Milbat was himself an instrumntdist. I do not agree with 

the latter poinb, and I do not understmd the instrumentalism that Dealefsen advocates. 
Now, my main discussion of Dealefsen will be given in Chapter Three, because his 

attack on the accepted interpretation of the incompleteness thmm is mid to his defence 

of his position. Ln these closing paragraphs, then, 1 shall in part be setting the stage for 

later discussions. But here are also a few remarks I want to make on PIilbert's alleged 

instrumentalism. 

Part of the problem, undoubtedly, lies in this word 'insh-umentsllisrn'. According to 

Dedefsen: 

. . . insvumentalism with regard to a given body T of (apparent) theorems and 
proofs  consi is^] in he belief that the epistemic potency of T (i.e. the usefuhess 
of items of T as devices for obtaining valuable epiw-rnic attitudes toward 
genuine propsitions of some a r t )  can be accounted f a  wiohsblt treating the 
elements of T literally (i.e. as genuine propositions and pmofs), but rather as 
'inferme-tickets' of swne son* 

But what is it to treat the items of T 'literally'? If this means, treat them as meaningful, 

then we need to know what notion of meaning is involved. Detlefsen does not tell us. But 

now, suppose someone asks me if I believe - have a 'valuable episternic attitude to' - the 

proposition that, if k is a regular and uncountable cardinal, and if F is a nomial fdter over k 

that contains all final segments (a: < a < k), then F contains all c l o d  unbounded sets. 

If the question is asked in normal circumstances, I will say, Yes: this proposition is 

provable in ZF, and I can point to a proof.94 In a certain kind of philosophical context, 

though, I would feel obliged to give a more guarded answer, for on a certain 

(philosophically loaded) notion of belief, associated with a certain (philosophically loaded) 

notion of meaning, I would want to give the answer, No. For I do not think that transfinite 

set theory has, could have, or needs a thick interpretation. What this shows is that 

understanding talk of treating this or that literally, talk of 'epistemic attitudes' etc., awaits 

clarification of a great many philomphicdly controversial issues. 

Now, it is a definite mistake t~ interpret Hilbert as holding that any part of mathematical 

language is meaningless unless a particular (philosophically loaded) notion of meaning is 



a . y  in place. To Bc surc, Hilbcrt ta lks consmtly of his 'ided elements' having no 
meaning, but this taDk is also constantly qualified with such phrases as 'in hhem5elves'. 

Wge, remember, sometimes talks of singular ternas as 'meaning something only in the 

context of a Thought'. No-one reads Frege as claiming that singular terns are 
meaningless. It is quite true, of course, that Wlbert was deeply opposed to what he 

believed to be Frege's demand for w i n g  in mathematics, a d  he certainly denied that 
mathematical theories were meaningless in that sense. But that docs nat cummaht him to the 
view that any part of mathematics is tmanhgless, simpliciter. 

There is, of come, an important truth lurking behind the instrumentalist misinterpretation 
of PLilbert. In discussing the Master Argument, we saw that the procedure that eliminates 
&-terms from proofs induces an interpretation of the &-terms that occur in a given g m f ,  but 

does not have the consequence of associating with any formula involving E-terns a f i x e d  

interpretation. In general, the interpretation induced by the elimination m c W  will vary a$ 

the formula occurs in different proofs. Tt~is tells us quite! precisely h e  sense in which 

Hiibert thought his 'ided elemenas' were meaningless. In much tlae = way, one might 
misleadingly claim that token-reflexives, say, are meaningless, intending m l y  io convey 

that they differ from proper names in carrying no f i x 4  ad invariant refereme. 

Against this misleading impression, though, notice that Hilkro docs give at least an 
informal semantics for the e-operator. To be sure, he gives no more than ahat: Hilkn is 

redly only interested in exploring its syntactic properties. But still, he does give m 

informal semantic gloss, in which he explains it as a choice-function. In the context of 
arithmetic, the e-operator can be taken to denote a minimization operation - that is, an 

operator that forms a definite description from an open sentence. It is exmmely misleading 

to describe such an operator as meaningless - indeed, it is even a mistake to think that ir 

lacks a Fregcan sense. 

It is worth reiterating the point made above that some of Hilkn's followers, in p h c u l a r  
Genzen, understood him to be offering a kind of semantic account of infinitary 

mathematics, but one which avoided the invocation of objects as semantic values of 

infinitary mathematical notions.95 This is not quite the way one ought to put h e  pint ,  but 

it is nevertheless on the right tracks. Hilbert was trying to explain the rncaraingfulness of 

95 See Genzen [1938], English translation in Genzen [1%9], q x c i a l l y  ~247-251 .  Genzen's own account 
of Ihe meanings of the logical consaanbs is very much in lhis genuinely H i l M a n  tradition. 
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m n s f ~ t e  mahemties, but in an inkmalist kind of fashion, focussh~g on he way that 

particular operators - tmn-f&g sptm in pa r t i ch  - were actually u d .  There is in 

H i l h  the suggestion (the suggestion ) of a Pule-basedl approach to mathematical m i r a g .  

To be sure, any attempt to work. out the approach in even the most sketchy son of detail 

would have to press philosophical questions which Hilbert never answers, since they 

concern matters very remote from his professional concerns. Nevertheless, the 

sympathetic interp~coef ought to notice that Hilbcrt has copious mom for maneuver in ~ i i s  

area. 

There is no Peason to asscrt, therefore, and every mason to deny that H i l h  would have 
been ill-disposed to h e  interpretability of mthcmtical thcuries in the thin sense. Then i s  

no reason to foist instrumentalism on him, for there are many, many ways of 
understanding semantic notions as applied to mathematical language that lead neither to 
instrumenralism nor to h e  'Fregem' theory that lies at the other exaem. 

Let us set exegetical issues aside. Now, the most commonly identified weakness sf 
instrumentalism, whether in the philosophy of mathematics or the philosophy of science 

generally, is the apparent inability of the instrumentalist to account for the effectiveness of 
the i n s m n t .  Dag Rawitz puts the p i n t  as fo!lows: 

A reasonable foundation of mathematics cannot treat Ike transfinite part of 
mtuhemtics as an instnunat, a b k k  box, that happens up give correct results; 
the weakness of such an insmmendisiic position . . . is obvious since b e  
foundational mk must be to explain why the instrument works, i.c. to 
understand it . . . In short, to makc H i M s  program at all credible, one must 
quire tha it yields an interpelation of dia the ideal mtcnce~.~ 

Now of course, this is not at all plausible if 'interpretation' is taken in the thick sense. 

Whatever is meant by explaining how a mathematical theory 'works', you can ceaiinly do 

it without supplying that theory with an interpretation in the thick sense. There is such a 
subject as d c l  theory. So this objection does not arise for the Hilkrtian position 1 have 

been sketching. 

Detlefsen, however, seems to hold that all interpretation must be interpretation in the thick 

sense. In attempting to rebut the Quinean indispensability argument, for example, he 

complains that the argument. . . 



. . . $MUS t k ~  m a t h m i d  pian of science as being on m epistemic and 
s e n a e n W g s r w i w i t R ~ m - ~ p a f f  ~ ~ ~ s s u d  
physical h- me bt&d a~ ga~ujne pmposifbt~~ w b  qhmnic role is 
a n  ao be du#min& By their evidmtrtesa m truths. But foo whaa rtason? 
Sunly applied r m u k x m k s  wauld be just as &le e guik to empirid nth if 
it were merely m g i r i d y  d or c m p i k d y  t3msmaive as it wcdd be if it 
were I i W l y  true. So, in order to mount fw its ulSLity in constructing 
succ~s fu l  t h ~ ~ s ,  we IldCd not a s c r i b  n t h  but only truthfulness to 
m a k d c s .  M we can do this wihwt migning ta it any literal semmW 
9truus.Q~ 

As criticism of the Quhaacan i n d i p n d a t y  argument, this is wmhless, since it draws on a 
distinction between king 'merely empirically sound' and king krally m e  which is quite 

foreign to Quine. Much more importantly, though, the notion of ' l i t d  n t h '  king 

appealed rn hen is exactly what the instrumentalist n d s  to Be explaining, if his arguments 

are to be effective against anything other ohan a anan of straw. 

Nevertheless, tRe conviction that all interpretation sf mthematical theories must involve 

this pernicious 'literal' meaning induces kdefsen to attempt a reply to the Rawitz point 

from a genuinely instrumentalist perspective. As he understands it, the cenid challenge is 

to provide an account of the instrument's perspicacity (i.e. its success at delivering lots of 
truths about fmimy mathematics - classical anahernatics is the instrument, ~ m m b e r )  and 
its reliubility (i.e. its capacity to detivef onCy mths of finitary mthemaeics). Now, there is 
undoubtedly some point of contact with Hilbert's own thought here, since Detlefsen has 

just described, in his own terms, the problem to which the Conservation Program is 
intended to provide the solution. And this means that, for Detlefsen, the incompleteness 

theorems pose an t n o m u s  challenge, since they both purport oo provide finitary truths 

that cannot be fmitarily proven - that is, they purport to show that the ideal instrument must 

be either unreliable or defective In perspicacity. Having set things up in this way, then, 

Detlefsen must contest the common undefsmding of what GMel showed, And as we 

shall see in Chapter Three, he dses. 



CHAPTER TWO: 
Finitism, Mathematical Objects, and Intuition 

Introduction: In this chapter, I attempt to discharge a number of debts incurred in 

Chapter One. In pdcdar ,  I try to explain what ffitay nu&hennratics is, why one should 
take a realist attitude towards it, mQ why it is of particular philwphicd interest. The 
chapter falls into throe puts. In the f i t  two, I c h m a i z e ,  bus hen reject, two respats in 

which finituy mathematics might be thought (md has been thought) m have some 

particular philsmghical interest. In the third part, I introduce and defend my own 

alternative c h e o n  of the special status of finitary mathematics. 

One cannot overernphasiz, in my view, the importance of the fmimyfi&d distinction. It 
is the singb most striking feature of Hiltmt's Brognmme, a d  the philosophical gositisn 

associated with it. If we do not understand this distinction, we cannot undimoawd Hilbert's 
Programme. And if we cannot provide some convincing philosophical rationale for the 

partitioning of classical mathematics into finitary and ideal parts, the apparent philosophical 

interest of Hilbert's Programme will turn out to be illusory. In order to understand the 

diseinction, a rncre list or description of the f ini tq  part of classical mthcmtics cannot 

suffice. One cannot m l y  tci stipulare, for example, that PEL4 is finitmy, and leave it at 

that. For what we need to know is why P M  is finitary, md why Euclideam geometry 

(say) is not. One might say, finitary mathematics is that part of classical mahematics 
which does not 'involve' infinitary objects, or infinite quantities, or continuity. Bus this 

will hardly do as a characterization. FOP example, it is quite unclear what counts as 

'involving' infinitmy objects - indeed, it is quite unclear what 'infinitmy objects' are 
supposed to be. PA, if modelled in set theory in von Ntumann's way, 'involves' only 

hereditarily finite sets; yet the: axi~ms of PA arc satisfiable only in domains which are at 

least dtnummbly infinite. Does PA therefore 'involve' infiniaa~y objects'? Does PA 
belong to binitary, a i d 4  mathematics? So far, we have little to enable us to get a! grip on 
these questions. 

Nor will it dc, to say, simply, that all and only those parts of classical mathemtics that 

everyone accepts, including the intuitionists, should count as finitary. For Wilkrt's 
purposes, mttm cannot be left at that. To begin with, most constructivists, including all 

intuitionists, accepted p m  of classical mathematics that 1Hilkn certainly counted as ideal; 

so if our concern is with what Hilbert meant by 'finitary mcrthsmatics', this answer is 



extensionally incorrect. More importantly, though, mere de facto acceptance by all (late 

nineteenth century?) mathematicians seems to me too local, and too fragile, a criterion for 

Milkn's foundational purposes. It is t s o  local, in  that the parts of mathematics that enjoy 
de facto acceptance by all mathematicians have in fact varied widely, even in recent 

history. And i t  is too fragile in  that it  appears merely to await passively the next 

innovations in the more foundational parts of mathematics - the kind of innovation of which 

Cantorian set theory is the paradigm. The Hilbertian insistence on fomalization of a 

mature theory, followed by a proof of consistency, was intended to provide mathematics 

with a general means of assessing the acceptability of creative innovation of exactly this 
kind. Thefinalify to which Hilbert's Programme aspires, whatever that ccmes to exactly, 

requires that a finitary consistency proof have a normative force beyond that provided by 

the mere de facts acceptance of finitary reasoning. 

Momver, if no principled distinction between finitary and ideal mathematics cm be drawn, 

then Hilben's Programme, at least in the form found in Hilbert's own work, simply 

collapses - quite independently of any technical objections stemming from the 

incompleteness results. For the Programme is completely dependent upon an alleged 

asylpvnetry between ideal and finitary mathematics - an asyrnmeis-y in virtue of which the 

former may be taken to license the use of h e  latter, but not vice versa. 

However, it might be thought that the required asymmetry could be established without any 

entanglement in philosophical controversy. After all, i t  is a familiar psino that 

'consmctive' proofs often provide more informarion than non-constructive proofs. Since 

finitaq p m f s  are certainly constructive, i t  might be thought that a sufficient motivation for 

seeking a finimy proof of consistency is provided by the point that such a p m f  is likely to 
provide more information - about the complexity of proofs within the theory for which 

consistency is proved, for example - than an ideal proof of consistency can. 

There is no denying that this does indeed provide a motivation for seeking consmctive 

consistency proofs for mathematical theories, even when non-constructive proofs have 

been found. Indeed, some believe this to be the only genuinely compelling mstivatian a 
project such as Hilben's can have.98 And Hilbert certainly attacked very great importance 

98 In contemporary usage, prcmf theoretic research motivated solely by considemtioras of informativeness 
wilh respect to, say, length and complexity of proofs is known as non-reductive proof theory. Whal 
remains of Hilben's Programme is h e n  classified as reductive proof theory. See e.g. Prawilz [I9811 p235- 
236. 



to informativeness considerations in motivating the search for constructive proofs. But 

PLilkrt's project, as Wlkn himself u n d e r s t d  it, cannot be motivated in this way. For to 

begin with, constructive proof is a far more capacious notion than finitaq proaf: any 
textbook of classical analysis will contain many conseructive proofs which arc certainly not 

finitary in character. Funhermore, it is by no means the case thatfinilaq proofs typically 

yield more information than ideal proofs of the same results. One need look no further than 

the noaoPious computer-assisted proof of the Four Color Theorem for a pertinent illus!mtion 
of this point.w The lingering dissatisfaction with ahis proof felt within she mathematical 

community has little or  nothing to do with the issue of whether or  not the use of a 

computer to provide an unsurveyable proof makes the theorem empirical in character, much 

philosophicd agitation to the contrary. Rather, the dissatisfaction has its origins in the fact 

that the theorem, when established in this way, yields much less information than one 
would expect to be able to gather from an ideal, but humanly surveyable proof. Unable to 

follow the reasoning, we are unable to see clearly where, and how, the proof fits in with 

everything else that we know. And of course, this feature of (some) constructive prmfs 

pmvi&s part of the motivation for Hilbert's opposition to hnecke r ' s  insistence that only 

f i n i t q  (or constructive) proofs can be of mathematical value. Finally, it is clear that the 

k i d  of impoflance Hillwrt attached to finitary proofs of consistency requires an altogether 

stronger motivation than that provided by the desire for maximally informative proofs. 

Someone who is moved by the desire for informativeness need not think anything 

fundamentally amiss with a theory for which no finitary consistency proof can k, given. 

Wilben, on the other hand, thought that the absence of such a proof cast doubt on the 

mathematical starus of a theory. 

A final point touching the importance of Hilbert's justificatory remarks on finitary 

mathematics, the most important of all for our purposes, is this. Unless we are clear about 

what the special characteristics of finitary mathematics might reasonably be supposed to be, 
we cannot be clear about what would count as a successful completion sf Hilkrt 's 

Programme. Consider for example Genzen's proof of the consistency of aithmetic. There 

has been much debate over whether this should ccunt as a partial realization of Hilkrt's 
Programme. Qn one side, the 'vizualisable' character of induction up to is counted in 

favour of a positive answer.100 On the other side, the fact that this induction is in some 

(rather obscure) sense 'stronger' than the means of proof available in arithmetic itself is 

99 See Appel, K.I, and Haken, W. [1976]. For more dctails, and more discussion, see Saaty, T.L, and 
Kainen, P.C. [1977]. 

See, for example, Takeuti (19873 pp86- 101, and compare Pohlers [1990] gp75-76. 



thought to suggest a negative answer. How one reacts to this debate will plainly be 

determined by one's beliefs about what, if anything, is distinctive about firnitmy 

mathematics. 

What is needed here, then, is something distinctively philosophical in character. We need 

not only a criterion which will enable us to identify perhaps novel mathematicd arguments 

as finitarily acceptable or otherwise, but also a compelling defense sf the claim that h e  pan 
of mathematics isolated by the criterion ought to be acceptable to any mathematician, 

including the many possible varieties of constructivist. If, for example, the claim is that 

finitary mathematics is particularly obvious, particularly well-founded, or in some other 

way epistemologically special, then we shall need to be persuaded that finitary 

mathematics, and only finitary mathematics, really does have this status. As we shall see, 
it is very difficult to defend any such claim. 

Finally, let me emphasize that it is by no means obvious where the finitaryfideal boundary 

is to be drawn, at least if one wishes to keep faith with Hilbeft's own position. Hilkn 
never clarified the required distinctions to his own satisfaction (or anyone else's), and here 

is some evidence that the discovery of the incompleteness theorems tempted him, tow& 

the end of his life, to allow as finitary systems of mathematics much suonger than 

PRA.lO1 My own view is that taking this option destroys most of the philosophical 

interest of Hilbert's Programme, so it will be imponant for me rs give some justification for 

favoring more stringent standards. 

Section Qne: Three Alternative Accounts of the Special Status of Finitary 

Mathematics. In passages scattered throughout Hilbert's writings, we find remarks 

a b u t  the 'soncrete' and 'intuitive' character of finitary mathematics, about its 'reliability', 

'clarity', and - mast revealingly - its 'indispensability for all scientific thought'. These 

remarks, quite plainly, are intended as contributing towards the needed philosophical 

justification sf the special status accorded to finitary mathematics in Hilbert's h p m m e .  

lol According to Bernays, it was not until GWcl's 1933 modelling of classical arithmetic in intuitionistic 
arihme9ic Lhal h e  Hilben school realized there was a distinction to be drawn between inwitionistic methods 
and finim-y mehcids as h e y  had hitheno understood them (see Bernays [I9341 p271 e.g.). Since classical 
arithmetic cumor be modelled in PWA. i t  became evidcnt hat Hilbenian finiusm was more resviclive than 
intuitionism, and his provided some motivation for adopting a more relaxed understanding of fit-, 
finitaiyfinfinitary distinction. In Bernays' own development of the H i l k r t  Programme (continued in h e  
w o k  of Fefman e.g. - see Fefeman [1964]), free use is allowed of melhods which are, in my view, quite 
plainly not finiw in character. Cf. h e  remarks by Simpson in Simpson [1988], pp352-353. 



But these remarks are very vague. Under different possible interpretations, they suggest 

hat finimy mathematics has special status for the following three quite different nxmns. 

(A) The use of the word 'concrete', along with the insistence that f i n i m y  mathematics 

deals only with 'expressions', 'the concrete signs themselves', might seem t~ imply that 

finitary mathematics is supposed to be onrologically special. The suggestion then appears 
to be that the objects with whichfinitary marhe.i.ttarics deals are more readily accessible to 
us, perhaps more akin to the objects dealt with by the physical sciences, and less 'abstract' 

than the objects of the rest of classical 

(B) On the other hand, the remarks about the 'obvious' and 'intuitive' character offinitary 

mathematical rruths suggest that the special status of finitary mathematics is 
epistemological in character. Finitary mathematical truths would then count as more 

secure, more: certain, better grounded, or something of that kind, ahan truths involving the 

infinitary parts of mathematics. This interpretation has been very influential in 

philosophical discussions of Hilben and Hilben's Programme.lo3 

(C) Finally, there are many suggestions in Hilbert's writings of a vague, somewhat 
Fxgean-sounding doctrine according to which finitary mathematics subsumes that part of 

mathematics without which 'scientific' thought would be impossible. (Of course for 

Frege, almost all of classical mathematics has this character in virtue of the identity of 

'arithmetic' and logic.) This suggestion appears quite clearly, for instance, when Hilben 
writes 

. . . as a condition for the use of logical inferences and h e  perform~nce of 
logical operations, something must already be given to our faculty of 
representation. certain extralogical concrete objects that are intuitively present as 
immediate experience prior to all thought. If logical inference is to be reliable, 
it must be possible to survey these objecls completely in all their p m ,  and h e  
fact h a t  bey occur, that they differ from one anolher, and ba t  they follow each 
other, or are concatenated, is immediately given intuitively, togclher with h e  
objects. as something that neither can be reduced to anyhirig else nor requires 
reduction. This is Lhe basic philosophical position that I consider r e q u i s i ~  for 

lo2 It is notoriously difficult 10 give a satisfactory account of the abstrrrcUconcrete disuncrion. Indecd, il is 
difficult lo give a convincing argument for the existence of some such distinction: Hilbert, as sve have have 
in effect already seen. was sceptical about such argumenu. I shall lake it that the relevant feature of Lhe 
'abstract' objects of classical mathen~atics, pla~onistically understocd. is their exclusion from h e  causal 
nexus. The slandard epistemological puzzles surrounding platonism. after all, stem from the difficulty of 
understanding how objects which are not to be met wilh in space and time can neverlheless be cognized by 
crea tms  whose cognitive capacities, mathematical capacities excepted, appear to be best understood in 
information-processing tenns. 
lo3 For more on h i s  topic, see Appendix One. 



mathematics and, in general, for all scientific binking, undersmnding, and 
 communication.^ 04 

And again: 

The formula game h a t  Brouwer so deprecates has, besides its mathematical 
value, an important general philosophical significance. For this formula game 
is carried out according to certain definite rules, in which Ihe technique of ow 
th ink i~g  is expressed. These rules fm a c l o d  system that can be diwvered 
and definitively stated. The fundamental idea of my proof ~hwry is none other 
than to describe h e  activity of our understanding . . ..185 

Qfco~use, it is not being irnplied'that these three characterizations of fmitary mathematics 
are incompatible, or even in any way in  tension with each ottrer. They need not be. 

However, they appear to be independent of one another, in the sense that f i n i t q  

mathematics might very well satisfy any one of them without satisfying the oahers.106 

I shall consider these three possibilities in order, rejecting (A) and (B) (in Section Two 
and Sestion Three), and endorsing a version of (C) (in Section Four). I shall also 
argue that nothing Milbert actually says forces the ontological or cpistemalsgical 

interpretations on us. I think that there is reason to believe that (A) and (B) reflect aspects 

of his understanding of finitary mathematics that are at best peripheral. 

Section Two: Finitism and Mathematical Objects: Hilbert's explanations of the 

infinitary/finitary distinction contain opinions concerning the naiure of the: objects 

considered in finitary mathematics. To a very crude first approximation, the view Hilbeirt 

appears to be advancing is this 

(Qnt) Finitay mathematics is ontologically committed to expressiom only - what Hilbert 
calls 'the concrete signs themselves'.l07 

The intended contrast, of course, is with the 'infinitistic' objects associated with ideal, 

infinitary mathematics, or indeed with ordinary arithmetic, as Platonistically construd. In 

my view, however, finitary and ideal mathematics cannot be contrasted in this ontological 

-- - ~ - -  - ~~ - - -  

lo4 Milbert [I9251 p376. 
lo5 Hilben [I9271 p475 - emphasis in the original. 
lo6 I say 'appear IO be' simply because bey are, at they stand, tw vaguely expressed to permit a mom 
confident judgrnm~ 
lo7 See, for example, Hilben 119251 pp376-377, or Hilbcn [I9271 p465, p469-70. 



way: nor does Hilben realiy think that they can. To begin to see why, we must Jsok at 

(OnQ) more closely. 

(Qnt) claims that finitary mathematics does have distinctive ansological commitments - but 

only to expressions, the 'concrete signs themselves'. However, some further thought will 

show hat this is misleading. As Hilbert understands it, this commitment ro 'expressions' 

cannot be a case of commitment to any distinctive kind of entity at all. To see why, we 
must review some things Hilben says about the 'subject matter' of f ini taq mathematics. 

First, co~lsider the following passage from Hilben's most famous article: 

Kanl already taught - and indeed it is part and parcel of his docwine - that 
m&ernaucs has at iu disposal a content secured independently of all logic and 
hence can never lx provided with a fouadation by means of logic alone; ha is 
why Lhe effom of Frege and Dedckind wcre bound to fail. Rather. as a condidon 
for the use of logical inferences and h e  performance of logical operations. 
something must alreaey be given to our faculty of representadon [in der 
Vorstellung], certain extralogical concrete objects that are inu~itively 
[anschaulich] present as immediate experience prior to all ~hought I f  logical 
inference is to be reliable, it musr be possible ro slvvey these objects complerely 
in al l  their purrs, and the facl rhar they occur, [hat they dfferfiom o w  another, 
and rho1 they follow each orher, or are consorcnated, is imnudare/y given 
ituuitively, rogether wirh ihe objects, ar somethirtg that rreirher can be reduced oo 
anyrhing else nor requires reduction. This is the basic philosophical position 
that I consider requisik for mathematics and, in general, for all scientific 
Lhinking, undmmding, and communication. And in mahemaeics. in pmicutar, 
what we consider is rk concrete s i g ~ s  rhsrprselves, wtwse slulge, according ro rhc 
conception we have adopted, is immediofely clear and recognizable.108 

Although this appears to speak of all of mathematics, the context makes it clear that Hilkrt 
is in fact speaking of finitaxy mathematics - or, equivalently, of metamathematics. Here ape 
some of the theses he assens about this discipline: 

(1) 'contentual logical inference' Is guaranteed to be reliable in this domain, because 

(2) the objects with which we deal in finitary mathematics are (a) concrete, and (b) 
surveyable: moreover, 

(3) those objects are none other than the expressions in which mathematical theories are 

fonnulatd. 

1°8 Milben [I9251 p376, my emphasis. 



(1) is the most important claim here. The reason why Hilben asserts (13 is, however, 

rather more complicated than one might think. To see what it  is, we need to amplify (2) 
and (3) a little. 

Now, it is very natural to interpret these principles in the following way. Accsdng to (2) 
and (3), we can (in principle, as one says) actually write down an may of marks - physical 
objects - comsponding (in a sense which can be made precise) to any given atomic 

sentence of finitary mathematics. The array corresponding to the standard decimal 

representation of the number three, for example, might be 'I / r .  Now, this is essentially 

the claim finaily made precise, and vindicated, by GWel's arishmecization sf syntax, 

together with Quine's demonstration that arithmetic can be modelled in syntarr.18 Given 

this hteneducibility, the theory of syntax and elementq number theory an mashemartically 
equivalent. Thus, the theory of syntax may mat the expressions of any themy as nrunerals 
without my loss of generality. The may 'I /! is simply the numeral for the number three 

in a rk~ironadic notation. The result of writing down such an array will be a complex token 
inscription - in the case of an atomic sentences of number theory suck as '1<2', for 

example, the inscription might consist of the two mays of strokes 'f and '/ f ,  separated by 

a gap. Any such token inscription can be 'surveyed', again in a sense which can be made 

mathematically precise. The original atomic sentence of finitary mahematics will be m e  

just in case the ses~nd  array is 'longer than' the first, where, once mare, 'length' has a 
precisely specifiable mathematical sense. And as Quine shows, the entire content of 

finitary mathematics can be modelled in this way. The procedures for constructing these 

m&ls of finitary mathematical assertions are (as we would now say) effective: they CG? 

be fully specified, they require no exercise of 'intuition' of any kind, and they can be 

gmarand  to produce a result after only finitely many steps. 

Now, (1) turns out to be slightly misleading in one respect, which is this. Logical (and 

mathematical, of course) operations on these arrays must be guaranteed to produce only 

surveyable arrays from surveyable arrays. That is to say, the entire theory must be 

guaranteed to have an hereditarily finitary character. Some logical operations violate this 

constraint. Modulo this complication, though, the line of thought we are pursuing sees 

Nlbert as asserting (1) just because he thinks he can show, via (2) and (3), that here can 

I* aritlbrnetimion of sysrtax first appears irl GWel[1931]. For b e  modelling of aPithmdc in spm, 
see Quim [ 1!)4Q]. 



no more be contradictions in finitary mathematics than there can be contradicoians in 

physical reality. For the theorems of finitaiy mathematics can (in principle) be 
demonstrated in physical models - they can be modelled as m a y s  of 'expressisns'.l10 

This interpretation of Hilbert is not without some in~tial plausibility. To evaluate it, both as 

interpretation and as doctrine in its own right, we must now try to see, in more detail, just 
what these claims about physical models are supposed to mean. 

In one of the few passages i n  which Hilbert goes into more detail about the elements of 

finitary mathematics, he writes 

In number theory we have  he nunlerals 

each numeral being perceptually recognizable by the fact that in it 1 is always 
again followed by I (if i t  is followed by anykhing). These numerals, which are 
h e  o5ject of our consideration, have no meaning at all in themselves. In 
elementary number theory, however, we already require, besides these signs, 
others that mean something and serve to convey information, for example, the 
sign 2 as an abbreviation for h e  numeral I I ,  or the numeral 3 as an abbreviation 
for the numeral 11 1; funher we use the signs +, =, >, and others, which serve to 
corr~municate assenions. So 2 + 3 = 3 + 2 serves to communicate h e  fact that 
2 + 3 and 3 + 2. when the abbreviations used are laken into account, are b e  
same numeral, namely, the numeral 1 1  11 1. Likewise, then, 3 > 2 seives U, 
communicate the fact that the sian 3 (that is, I 1  I )  extends beyond the sign 2 
(that is, 1 I), or that the latler sign is a proper segment of the former.' l l 

Now, I think it is quite clear that the above passages, along with the similar passages that 

occur elsewhere In Hilbert's \vritings, do not force us to the view that we must understand 

these arrays of strokes as the references of the primitive terms of finitary mathematics. On 

the face of it, i t  is perfectly compatible with all that Hilbert says that the relationship 

between the arrays of strokes and the symbols of firiitary mathematics should be one of 

instantiation, rather than reference. It still might be m e ,  for example, that the 'objects of 

our consideration' in finitary mathematics are arrays of strokes, if the content of finitary 

mathematics is in some way instantiated in those arrays. 

Now, whilst I think I know what Hilbert is trying to get at in  this passage, I do not think 

that the passage makes much sense as it  stands. : do not understand, for example, what it 

Wilh some uepidation, I am inclined to sce Chrulcs Parsons as intcrpreting Hilbert in this way. Sw 
the references in footnotes 115 and 116 below. 

Hilben [I9251 p377. 



means to say that these numerals 'have no meaning at all in themselves'. Presumably, 

numerals are signs. What would it be for a sign to have meaning in itself? No-one could 

seriously suggest that numerals are natural signs for numbers, in the sense that, say, 

cenain cloud formations are natural signs of rain. Nor do I understand how a mere 
abbreviation for a sign that has no meaning in itself can have meaning. I am not sure what 

is k ing  used and what mentioned, nor am I sure whether types are king talked abu t ,  or 

tokens. 1 am puzzled as to why the ideogram '1' has been selected for this starring r ~ l e  in 

arithmetic, and I am all the more puzzled since relegating this ideogram to its proper place 

seems apt to refute much of what Hilben assens towards the end of the passage - for 
example, the Roman numeral for the number four does not 'extend beyond' the Romm 

numeral for the number three. 

For all the obscurity in this passage, though, I do think that I have a reasonable idea as to 

what Milkn means, and I think that what he means is interesting enough to warrant 

spending some time hying to get at it.  When we have done so, I think it will be apparent 

that the claim that finitary mathematics may be thoughc of as that pan of classical 

mathematics that has models in arrays of strokes has very little plausibility. The way to 

proceed, though, is to abandon Hilben exegesis for the moment, and review some very 

simple facts about counting. 

H i l k n  claims, then, that the 'objects of consideration' i n  finitary mathematics are 

expressions - the 'concrete signs themselves'. In number theory, for example, those 

expressions would be numerals (along with expressions denoting operations orr numerals 

etc.) What are numerals? This is a bad question, and we must see why. 

Consider the process of making and keeping a rally. For example, a shepherd might make 

a tally of her flock of sheep, by pairing off the sheep with some pebbles which are then 

kept safely stored in a bucket. The standard choice of verbs here is interesting. Tallies 

a.re kept - that is one reason why we say the shepherd is keeping a tally of'he sheep using 

the pebbles, not keeping a tally of the pebbles using the sheep. Tallies are made, or 
perhaps we should say, constructed. That is another reason. Sometimes 'constructed' has 

its literal sense, but even when nothing is actually moved around or physically manipulated 

in any way, tallies have to be 'built up' out of 'constituents' 1 constituents which aure 

themselves tallies, notice. The ability to keep, or make, a tally just is the ability to perform 

some such construction procedure. 



A tally, then, is an aggregate, an array of objects, standing - as we would put it  - in on(:- 
one comspondence with the aggregate of objects of which i t  is a tally. In any tallying 

procedure, what counts as a rally of what - the sheep of the pebbles, or the pebbles of the 

sheep - is determined by purely pragmatic criteria. A little more precisely, it is detemine~d 

by the point of keeping the tally: the tally will typically be more accessible, more stable:, 

more portable, more permanent, thas the aggregate of which it is a i d l y .  Given h e  way the 
world is, there is often something to be said for making your tallies out of physical objects. 

Two desinble propxties of tallies is that they be both porrable and surveyable. For a large 

flock sf sheep, a bucket of pebbles is not an ideal tally. It  might be easier to move h c  herd 

of sheep around than move :he tally arouna, and it  might be no more obvious, at a glance, 

how many pebbles are in  the bucket than how many sheep are in the herd. A better idea, 

and one which appears to be as ancient QS the idea of keeping a tally at all, would be to 
make use of two tallies, as follows. First, cut some notches on a conveniently shorr: stick. 

Then take up an uncut stick. As the sheep exit in the morning, run your finger over the cut 

stick from the leftmost notch towards the right, perhaps saying 'sheep and sheep and sheep 

. . ' as you correlate sheep with notches. As you reach the rightmost notch, cut a notch on 

the fresh stick, and then go back to the leftmost notch and repeat. In this way, twenty 

notches, for example, can be made to :enle as a tally for one hundred and nine sheep. I 

shall describe this kind of tally as an a b a c u  tally: think of an abacus tally as a tally kept 

(and consehucted) in a positional notation. A n y  'devicc' for constructing an abacus tally 

(which may be na more than a positional notation) will count as an abacus. 

Then are a number of very important paints to bc noted abo3t this pmedun. Notice, for 

example, thas it  appears to be describable without any use of number words, or any ~ t h e r  

kind sf obviously mathematical expression suck as 'first' or 'last'. All that seems to be 

involved in keeping a tally is she ability to employ concepts of identity and distincrness 

amongst particulars, and that seems set fair ro count as logical in nature. A second very 

important feature is that the abacus procedure appears to bc mathematically much richer 

andl more interesting than the simple tallying procedure. Ability to consmct an abacus tally 

undoubtably demands some increase in intellectual sophistication, for thcrc are now (at 

least) fwo iterative procedures involved, with different significances. For example, some 
experimentation with different sized tally-sticks, on which (as we would put it) different 

numbers of notches can be cut, can be useful in  providing an intuitive grdsp of sane non- 

mvial mathematics, including some understanding of important proper&ies of plynomids 



and congruences. And of course, an abacus tally is liable to be much more portable, and 
m m  readily surveyable, than any simple taily. 

But the most important fact about the simple abacus is that the appearance of greater 
mathematical sophistication masks a crucial fact. As we would now put it, my arithmetic 

that can be done in a positional notation can also be done in monadic notation - 'in 

principle', as one says.Ii2 A more precise version of this claim is this; anyfernciwn (from 

positive integers to positive integers) that is cornputuble at all is computable in m&ic  

notation, by a Turing machine that 'reads' (i.e. is sensitive to) only the blank and she 

symbol /. And it must be an appreciation of this fact, in some sense, that serves as the 
justification of using positional notation. From the shepherd's point of view, the 

assurance that the new, more complex procedure of measuring the size of the herd will not 

lead to any rnismeasurement is provided by the fact that there is an 'effective' procedure for 
movering a simple tally from any (depiction of an) abacus tally, provided the basis of the 

positional notation is kmowr.. In this sense, the shepherd can be assured that the abacus 

will not lead her astray, for she can reconstruct from it a simple tally by procedures m 

more omplex that those u e d  in consrrucrirlg a simple tally in the f i s t  place. 

It is perhaps wonh pausing to illustrate this point. Suppose, for familiarities sake, that we 

are dealing with a typical nursery-school abacus, with stings ordered from right to left (so 

that the unit measures go on the rightmost sming). To recover the appropriate simple tally 

from this abacus, proceed as follows. (1) Empty the beads on the rightmost string, if $here 

are any, into a bucket. (2) Find the rightmost non-empty smng. (3) Relll~ve a bead fmm 
that string, and put ir in the bucket. (4) Fill every string to the right of the string h m  which 

you last removed a bead with beads. Then (5) go back to (1)' and repeat the whole process 

until the abacus is empty. The contents of the bucket now constitute the simple tally 

corresponding to the tally on the original abacus. 

?'his procedure works, of course, because i t  simply reverses the prmedube on which the 

abacus was corrseructed.~l3 Notice the following two points. First, nothing essential to 

l2 For h is  seminology, and for more on this claim, see e.g. Bwlcc and Jeffrcy I19901 pp52 ff. 
l3 S q p s e  we come across a decimal abacus tha~ is so big hat, if we position omelves at the rightmost 

suing, h e  remaining strings vanish over the horizon. How are we to tell the difference ktween this 
P ~ L L S  encding the number zero, say, or some vast power of ten? How a e  we to be sure that a journey 
towards the horizon will never reveal a bead? The problem is no[ lo be solved simply by insisling on a 
finite numbr of strings for any abacus, notice. For aiy abacus with a finile number of strings, there i s  a 
finite h n d  to h e  tallies recordable by that abacus. Thus for any such abacus A. here will be numbmi n 
and m such lhal A. can record n and m, but not n+m. If you want lo r lode1 elementary arithmetic in rallies, 



the process requires the strings of !he abacus to be the same length. It does not matter 

whether an abacus has strings taking n beads each, or strings each taking a different 

number of beads, or some combination of the two. Providing the order in which rhe 

smngs were filled in the consmction of the abacus tally is known, the above procedure 
recovers a corresponding simple tally. There is therefore no need, in describing h e  above 

procedure, to say anything like 'add nine beads to the next smng': you only need to fill il. 

To  follow the procedure, you need to be able to identify a single bead as such, an empty 
string as such, to tell right from left, to find the nearest smng to the tight of a given suing 

etc. But none of these abilities are distinctively mathematical in character. They can be 

exercised piecemeal by creatures who, intuitively speaking, have no mathematical concepts 

at all. 

Secondly, the notation described here has, i n  effect, a zero - an empty string, perhaps 

surrounded by non-empty strings. But notice that nothing in particular needs to be said 

about the 'meaning' of an empty smng. The procedure tells you what to do with any string 

when you meet it - ignore it, empty ir, take a bead off it, put some beads on it, or whatever. 

The procedure is the same for decomposing an abacus with no empty smngs as it is f o r m  

abacus with empty strings, because (of course) the procedure for filling a.n abacus will, but 

only in some cases, naturally leave some strings empty. Indeed, the noration for an 
abacus need not have any element corresp~nding ro an empty suing. The idea is obvious: 

keep two, parallel abacuses, one recording the string on which the beads are placed, the 

other recording the beads on that smng, in the following fashion 

-- - - - - - - - - - - 

berefore. you need some assumption to h e  effect hat herc are abacuses of every finite size. In fact, 
Lhough, Ihe only assurance that we have ha1 an abacus can distinguish zero from large powas of Len (or 
whatever Ihe base of the abacus is) is provided by the fact that abacus configurations arc c o n s u u c ~  in a 
finite number of steps. Thus if there is a b a d  off 10 the left somewhcre, we will in fact find it a f ~ r  a finite 
number of steps. The fact remains, however, that wc cannot tell, until we actually find a bed, whether or 
not there is a bead to be found. This is why the Icat scarch, or minimizution opemtor is not in general 
finimy. 



HereB the lower series of counters identifies the smngs on which the counters immediately 
above are to be placed. Assuming a base-ten abacus, the number recorded above is 

therefore three million, one hundred and six. There is no need for an clement 

'comsponding to' an empty smng. An obvious procedure turns this complex abacus into 
a simple abacus, from which, via the above procedure, we can recover a simple tally. It is 
not to be denied that there were, as a matter of historical fact, grcae c~nceptual difficulties 
associated with the introduction of a zero into arithmetical calculations. But q u d l y ,  h e  
way to sugar thc pill is surely to explain the notation, rather than worry a b u t  the 
refe~nce.114 

An abacus gains over a simple tally in many practical respects, such as por~ability, and in 
particular surveyability. A small, manageable aggregate with a complex smcmre is made 
to encede as much information as a large, unmanageable aggregate with a simple stmature. 

This gain is reduced somewhat, though, if i t  is necessary to construct m whole new abasus 
every time you want to make a tally of a new aggregate of objects without losing the kept 
tally s f  some other aggregate. The natural wponse  to the difficulty is to use the abacus to 
make the: tally in the first place, then keep a record s f  the final abacus configumaisn, thus 
freeing up the abacus for the next tally-making. This can be done by some v u h t  of the 
notarion mentioned above - a symbolism recording the abacus strings in order, and the 
beads on each string in the final configuration. A drawing of the abacus will serve. Better 
still - because more flexible still - is the device we now use: a positional notation associated 

l4 The demonsuation that any numerical function that can be computed at all m be computed with k 
very Limited resources is in fact a little paradigm of Hilben's favourcd approach to the explanation of the 
significance of ideal mathematics. The uriliry of the abacus type of tally is obvious, for it makes readily 
accessible to us a range of malhrmatical data vastly bcyond anybing comprehensible in the 'idiom' of 
simple tallies. But the warrant for iu use is nevcrthclcss the fact [hat we can show, via a general argument 
concerning the workings of the abacus notation (equivalently, Ihe conslruction of abacuses), that nothing 
can be done by abacuses that cannot be donc 'in principle' by simplc Lallies. What is more, the sssurslnce 
that this is so is ilsclf something the grasping of which involves only the kinds of d i l i r y  used in 
conrrrucring a simple rally in rhcfirsr place. I t  is h e  concep~ual resources used in the construclion of 
simple dlies that are rcquired for decomposing tr given abacus tally illto be  corresponding simple tally.) 

Notice also lhat the enonnous advantages of abacus procedures in terms of computational 
flexibility are naturally accompanicd by 'philosophical' questions, for example, concerning h e  'ideal 
element' (if you will) which might be bought to 'correspond' to h e  empty string. At the Devel of [his kind 
of counting procedure at least, this is a problem which is to be addressed by a (mera)mathematicd 
demonstration that h e  presence of such an clcment in rhe norarion adds nothing essential to [he 
snahmaoical content of 'beories' using the notation. Thcrc is no zero elcmcnt in the 'nowion' of a simple 
d l y ,  whereas there often is in the nomiion for an abacus. Neverheless, nohing can be done wilh an 
abacus h t  cannot be done wilh a simple lally. 



with ipn alphabet of words. Equipped with this device, you can make, and keep, the tally 

'in your head' as well as 'on papet. Any polynomial 

(with a, n and x natural numbers) may be regarded as a record of an abacus configuration. 

(Remember that, as we noted above, it  is only a convenience that x, the base of the 
notation, tiike the same value throughout. This eases the memorability amd cursiveness of 

the natation, but that is all. Provided the notation records the 'length of wire', i.e. the 
number base, associated with each wire on the abacus, the simple tally can be movered 

automatically h m  the configuration recorded.) 

An abacus, then, is both a device for making a tally, and a device for keeping a tally. This 

dual aspect of abacuses infects our discussion of tallying procedures with grocess/prrrduct 

ambiguities, which we should now try to remove. Let us do so by resewing the word 

'abacus' for the instrument by means of which particular tallies may be consmcted, and 
speaking of particular tallies, made by an abacus, as 'abacus configurations'. Notice that 

the innumerable procedures for constructing simple rallies a:- themselves nothing other 

than the most elementary kinds of abacus, and simple tallies the most elementary abacus 

configurations. 

Now - to return to the point that sparked off this long excursus into tallying procedures - 
nurplerals are just abacus configurations. The faniliar base ten number system is an 

abacus, along with the base two, base four, eight, sixty etc. systems that have actually k e n  
used by humans for tallying, and marly possible variants that have not been so used. 
Simplest of all these abacuses is the monadic system, which is thc insmment by means of 

which we construct simple tallies. Thus the numerals '1990', '13010010' etc. m abacus 

configurations, and given the abacus by means of which they were constructed (in 

particular, given the 'length of smng' used, i.e. the number base) they can k effectively 

reduced to simple tallies. Abacuses of the kind used in the construction of numerals 

typically consist of a small initial sequence of words - usually n words for an n-base 

system - together with rules for generating the k+l'rh word in the sequence !Yam the k'th 
word (where km). Since the need may arise for arbitrarily long naiiies, there wiil have lo 

be some trade-OM between factors such as the memorability and cursiveness of $%IC 

notation, the simplicity and brevity of the rules generating the sequence, the srvrrteysbiliiy 

of the abacus configurations praduced, etc. (In everyday English, for example, the ?i~ies 



generating the sequence of number words mimic the base oen notation fairby accumtelcy, bus 
quickly become unmanageable once unusually long tallies are required (witness, for 

example, the confused usage surrounding words like 'billion', 'trillion' ttc.) For scientific 

purposes, a notation involving expnents is often preferped, but this notation Involvcs 

some sacrifice in surveyability.) 

In addition to prscesslproduct ambiguities, though, our discussion of abacuses and tallies 
has been shot through with type/token ambiguities, which must in turn be removed. It is 

surely natural to think that, if numerals aie abacus configurations, they must be types of 
abacus configurations, and not tokens. Token abacus configurations are a fancier way of 
classifying those arrays of objects we have been describing as simple dlies. NOW, these 

types of abacus configuration are of course abstract objects. So if finimy mathematics is 
committed to numerals (or, in general, to 'expressions') as types of abacus configurations, 

then the objects of finitary mathematics are not, on any natural understanding of those 

words, 'the concrete signs themselves'. Rather, they must be the iypes of which such 
conmte signs are tokens. 

But we should not be too hasty about this. The question we have to ask here is, When are 
two token abacus configurations said to be of the same numerical typ?  Charles Parsons 

has suggested that the relation 'x is of the same numerical type as y' might be regarded as a 
relation holding between physical objects - in this case, the token abacus conf ig~fa t ions .~~ 

If we can define this relation without quantifying over abstract types, as Parsons thinks we 

can, we might seem to have some prospects of vindicating a view according to which 'the 

concrete signs rhemselves' constitute the whole content of finitary mathernatics.116 

Initially, the prospects for such a definition seem promising. We described above a 

procedure for clearing an abacus - a procedure, apparently describable without the use of 

any spcifically mathematical vocabulary, the implementation of which yields a simple tally 

fmm a given abacus configuration. Evidently, two token abacus configurations are oflhe 

same numerical type just in case the result of implementing that procedure (or some 

equivalent of it) on both results in simple tallies of equal 'length', where the required notion 

of 'lengti~' will, of coursp,, have to be defined. We can evidently define a notion of 

Sce Parsons I19711, reprinted in Parsons I19831 p53. 
l h p e  are passages in Pmons' writings which suggcst ha1 he thinks of Hilbcn's finjury rna~eani\tics 

as Lharo part af number hwry which can k modelled in ~all ies,  and also h a t   his w a  Hilben's view - see 
e.g. P m n s  [1980]. pp153-154. But  he evidcncc is too meagre for me lo be confident in atuibuhg dlis 
view ~o him. 



addition for tallies - in terms of concatenation, after the manner of Quine [%846]; and wirh 
addtion in hand, all of h e  familiar arithmetical operations can be defined (an this basis, it 

certainly seems plausible to suggest that at least a goodly pan of the content sf elementary 
arithmetic can be captured within a theory that quantifies over token tallies done. 

But there might seem to be a fundamental problem about this. In order to say, with full 

generality, what i t  is for two tallies to be of the same length, we shall have to mention 
tallies. This prompts the question, 'What are tallies?' Well, as we have just seen at length, 

tallies are arrays, or agpgates, of objects. What arc objects? 

Thus baldly posed, this is a question which can only have silly answers. Evidently, we 

can't set about to look for a distinction between objects and other things. The point is, 

though, the question 'What are numerals' also seems sure to have only silly answers, and 

for the same reason. In our examples of tally-keeping, we have seen pebbles, marks on 

sticks, beads, token names, token inscriptions used for keeping a tally, and these are no 

doubt physical objects on any accounting. On the other hand, we have also seen, for 
instance, word-types used for keeping a tally; and these types are not physical objects. rile 

question, 'Are tallies physical objects?', betrays a confusion. The word 'tally' does not 

pick out a kind, either artificial or natural. It does not mark a distinction amongst the 

furniture of the universe, a condition that an 'object' or collection of objccts, whether 

abstract or concrete, might or might not satisfy. Rather, any (kind of) thing at all can serve 
as a tally (modulo some irrelevant practicalities). A11 this means is, anything at all can play 

a role in 'constructing' a tally, can play a role in  the procedure of making, and kceping, ac 

tally.' 17 

Tallies, then, are rather like chess pieces (to make what has become a very well-worn, but 

none the less useful, analogy). To be sure, some chess pieces are indeed physical objects - 
the Staunton-type chess pieces now standing on my chess board are surely physical 

objects. What of the Staunton-type chess pieces that appear on my computer screen when I 

call up Chessmaster 2100? Presumably, they are also physical objects. Do the same 

physical objects appear each time I call up Chessmaster 21001 To be sure, pieces of the 

l l7 The analogue for lallies (and thus for numerals) of ihe question concerning numbers hat so mubled 
Frege - is Julius Caesar a number? - will surely puzzle no-one. Can Julius Caesar serve as a ully? Sure. 
In h e  House of Commons, members vole by leaving the Chamber of b e  House and standing in one or 
other of ~ w o  corridors, one for the Yeas, one for the Nays. The clerks count Lhe votes by making a head 
count in the corridors. What the clerks are counting, notice, are votes, not members. But they count voles 
by counting heads - Lhe memben serve as a tally. Perhaps the Roman Senate voted in some suck way. 



same rype appear each time. Are chess pieces to be identified with these types? What of 

the types exemplified by chess pieces other than rhe familiar Staunton variety? 

Presumably, all rooks (say) should count as belonging to the same type.. But they m 
certainly not all of the same physical type. Given an arbitrary object, abstract or physical, 
no amount of examination of that object will determine whether or not it is m k .  Rather, 

the rook is a mle in the game of chess, and anything at alP can play that role. 

The needless puzzles lurking behind the question, Are chess pieces physical objects, dm 

lie behind the question, Are tallies physical objects? It  happens that many of our examples 
of keeping a tally inv~lve keeping, and constructing, something which is on any accounting 

a physical object. Given the way the world is, and given what tally-keeping is for, that is 

nos surprising. But nothing intrinsic to the practice of making, and keeping, a uily 

demands that the tally kept be a physical object or collecti~n of physical ~bjects. Suppose 
there are sets, in the sense in which the Platonist is said to think there arc sets - non-spatis 

temporal somethings that we perceive by the pure light of the intellwi. TAen, in principle, 

sets will serve as well as anything else for keeping a tally. So would individual 

substances, souls, entelechies, or whatever. 

Recall now that we entered into this line of thought by way of a claim that numerals, the 
'concrete signs themselves', are the content of finitary mathematics, that finitary 

mathematical claims involve reference to, quantification over, only numerals. We have 

seen that numerals may be regarded as tallies - as types of abacus configurations. But 

tallies, I have now argued, are not a kind of thing: tallies are any (kind of) thing at all, only 

used in a certain way. But then the consequence of this, notice, is that finitivy mathematics 

seems to have no distincrive ontological commitments. Finitary mathematics, on the line 

of thought we are developing, is committed only to tallies, and anything at all can be a tally. 

We might still allow, in a Hilbeman vein, that tallies can be usefully thought of as mays of 

strokes, such as / / 1. This can help make some finitary mathematical truths 'intuitive', in 

the sense in which Hilbert speaks of drawings of triangles etc. as making certain 

geometrical truths intuitive.l l 8  Indeed, if we think of tallies in this way, then finitary 

mathematics becomes a kind of geometry. But i t  is a confusion to think that these arrays 

are, distinctively, the conrenr of finitary mathematics, that finitary mathematical terms ever 

refer to stroke arrays. Stroke arrays are perhaps elements of acceptable models of finitmy 

mathematics, along with pretty much anything else: but finiury mathematics is committed 

6'. 

For my views on whal that scnsc is, see Appendix One. 



to none of these models in particular, any more than an ideal theory such as Euclidean 
geometry is committed to the breadthless lengths, dimensionless points eec. of its 'intuitive' 

model. You are free to think of tallies in any way you choose, within the buncis imposed 
by the relevant axioms. The commitment to 'expressions' mentioned in thesis (OnP) above 
therefore dissolves: for anything at all can count as an 'expression' in the relevant sense. 

To be an expression is to play a role in a certain kind of prmedmre, and anything at dl can 

play that role. Talk of ontological commitment to expressions is as empty as talk of 
sntological commitment to objects, and for the same reasons. 

This might seem to provide grounds for the assenion that Hilkrt's interest in what Re calls 

'expressions' as the 'objects of our consideration' in finitary mathematics is not, and 

cannot be, motivated by the thought that expressions are 'less abstract' than, say, sets.119 

For any such thesis must involve the confusion of thinking of expressions as a k i d .  

But this is still too quick. Too see why, we need to return to Parsons' claim, mentioned 

above, that the relation 'x is of the same numerical type as y' can be explicated as a relation 

amongst physical objects - numerals, in our reconstruction of the finitisa position. The 
crucial question here is this: May we assume that every tally in which finirary mathematics 

is interested is of the same length as some tally which is  an array of 7hysical objects? A 

positive answer to this question would at least enable the Hilbetian finitist to maintain that 

finitary mathematics has no need of abstract objects, even if i t  is in some ways helpful or 

natural to think of tallies as, say, numeral types (rather than tokens), orindeed as sees. On 

ahc ~ t h e r  hand, a negative answer may force a commitment to abstract objects. If we are 

able to regard tallies as physical objects without loss of generality, then we can comrnence 

our definition of the binary predicate 'x is of the same numerical type as y' confident that 

the variables can be understood to take as values physical objects (or arrays thereof), and 

that nothing mathematically imponant will be lost by this limitation. 

Now, some cafe needs to be taken throughout the discussion of this question if we are to 

avoid encumbering Hilben with onerous and unnecessary philosophicd obligations. In 

particular, I want to emphasize that nothing in Hilben's writings, so far as I can see, forces 

us to interpret him as a nominalist. To be sure, he makes remarks, such as those above, 

Here I differ from Linda Welzel, who in a recent piece (Welzel [19891) groups Hilben togelher with 
Field and Hodes as 'nominalisu', for whom expressions are preferable to, say, s e ~  on onu>!ogical grounds. 
Hilben does not belong in this company, and his position on h e  content of finilai-y rnalhematics is 
untouched by her argumenu. 



which suggest that computations, or proofs, are to be thought of as token mays  of 
expressions. However, he also makes remarks that suggest that he thought of such m a y s  

as abstract types, Nowhere does he commit himself unequivocally on the general issue of 
the existence of abstract objects, or even on the issue of the acceptability of abstract &jests 

in marhematics (or indeed elsewhere). We have to recognize once mom that, in seeking to 

determine the ontological commitments of finitary mathematics, we are pressing 
philosophical questions which Hilbert simply ignores. We a= free, therefore, m adopt on 

his behalf any plausible answers compatible with the rest of what Hilkra: believed. 

The important point is this. Milben's finitism is nof grounded on any general rejection of 

abstract objects. Hilbert's Programme is not an exercise in nominalist reduction: rather, it 

is an exercise in the clarificaeion and justification of the use of the actual infinite, the infinite 

of classical mathematics. This exercise is certainly constrained, in Hilkn's thinking, by 

some weak kind of scientific naturalism, but it  is not at all obvious that the kind of 
naturalism in question forces the rejection of abstract objecas.120 On the contrary, it 

seems perfectly compatible with everything that Hilbert believed that there should be, say, 

propenies , or relations . Properties, understood as 'abstract objects', would be acceptable 

enough to a naturalist of Hilbert's kind, providing an acceptable account could be giver1 of 

how we can detect those properties. If a property has ir~stances in the physical worltl, and 
perhaps even if a property could have instances in the physical world, then such an 

account might very well be forthcoming. Alternatively, if mathematical objects include 

certain strucrures , for example, and if those structures can have instances in the physical 

world, then it is open to Hilben to regard those structures as abstract mathematical objects, 

epistemic access to which goes in part (perhaps) via access to their instances. Of course, 

there are very large issues to be addressed before so much as the intelligibility of such 'urn 

account of mathematical knowledge is to be established. My point here is sirnply that, if 

such an account could be given, then Hilbert need have no objection to it on the gmunds 

that it countenances abstract objects. 

Let us now return to our question: May we assume that every tally in which finitary 

' mathematics is interested is of the same length as a tally which is an array of physical 

objects? A positive answer must cope with two large problems. 

120 Seee.g. Hilben [i925], and especially Hilben [1917]. 
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The fist problem is this. It  is clear that any argument to the effect h a t  we can assure 

ourselves of the consistency of finitary mathematics by showing that any theorem sf 

fini tay mathematics has a tally-type model involves some considerable idealization of our 
actual constfuctive powers. The canonical verification of even so simple a theorem as, say, 

220c2M - a verification that proceeds by reducing these numerals to simple tallies, that is - 
is already something for which there is not world enough and time. Really very simple 
computations can already be such that the fastest physically possible computer could not 
complete them in the period between the big bang and the heat-death of the universe. It is 
quite unclear whether a finitarily acceptable justification of the cognitive idealizations 

involved in these claims about our ability to construct physical models for finitary hcorems 

can be given. One might say, all that is required is that we accept that it  is in principle 

possible to construct tallies of any finite length, thus respecting at least the fundamental 

constraint that idealization stop short at accrediting us with the powers to complete infinite 

tasks. The problem is the nature of the modality in that claim, for it cannot be that of 

physical pssibility.121 But the appeal to some non-physical modality at this p i n t  seems 

intensely problematic, since it  seems cenain to bring with it  exactly the same demand for 

justification and clarification that Hiiben is attempting for the infinitistic parts of classical 

mathematics. A modalized finitism has abandoned the kind of clarity and simplicity of 

mathematicd content that Hilben's dialectical strategy requires. 

ahis difficulty reappears in  a still more intractable forn in the second of our two problems. 

As things actually are, there is no reason to believe that  finitary mathematics as Hi lkn  

understands it can be modelled in token arrays of expressions, because there is no reason 

to believe, and some reason to doubt, that there are enough token expressions to be had. 

Token expressions are physical objects or aggregates thereof - inscriptions, distwbances of 
the air, or whatever - and are therefore bounded by the resources of the physical world. 

There is some reason to believe that  those resources are finite. Indeed, there is some 

reason to believe that i t  is a matter of natural law that those resources be finite - the laws of 

physics themselves may dictate that the quantity of matter in the universe muse lie below a 

finite bound. If that is so, then only some version of strict finirist mathematics can be 

thought of as having physical models. A distinctive feature of strict finitist mathematics is 
that the natural numbers are not thought of as closed under the elementary arithmetical 

operations. Thus in a strict finitist arithmetic, the existence of natural numbers n and rn 

need not guarantee the existence of a natural number n+m. And of course, any insistence 

121 For a discussion of the difficulties of interpcering modal claims such as his, see Kessler. G..[1978]. 



on physical models of finitary mathematics forces this conclusion, if the universe is finite. 
The existence of resources sufficient for the construction of mays csmsponding to n and 

m individually does not guarantee the existence of resources sufficient for the csnstmction 
of their surn.122 

Hilbert was not a smct finitist, and there is reason to believe that ha would have regadd 
strict finitism with distaste. We cannot, therefore, limit finitary mathematics as Hilbers 
understands it to that part of mathematics that  can be provided with physical models. Is 

there any sense, therefore, in which we can still think of tallies as arrays of physical 

objects? 

A natural thought here, I th ink,  is the following. Even if i t  turns out that, for some token 

tally n, we lack the resources necessary to construct from n the token tally 'ntl (the 
successor of n) - indeed, even if i t  is a law of nature that this is so - here must be some 

sense in which it is possible to construct the successor of n for any given tally n. Natural 

as this thought is, though, we have already seen that the modality here cannot be that of 

physical possibility. It must therefore be that of what Plantinga calls 'broadly logical' 

p ~ s i b i 1 i t y . l ~ ~  The consequence of this proposal, then, would be that at ieast some tallies 

must be thought of as being of the same length as some possible, but non-actual, physical 

objects. There would be more tallies - i n  fact, denumerably many more - than there are 
actual physical objects. 

This does not immediately preclude all those non-actual tallies counting as physical objects, 

notice. On at least one prominent account of broadly logical possibility, that advocated by 

David Lewis, all the objects that there are are physical objects, although some of those 

physical objects are not actual physical objects - that is to say, there are physical objects 

that do not exist in this world. But once again, this way of ensuring material enough for 

the construction of all the tallies in which arithmetic is interested seems certain to be deeply 

unattractive to anyone who in  the least bit sympathetic to the outlook of Milkrt's finitism. 

No-one willing to swallow all those possible worlds will be likely to choke on real 

122 In facb not even slrict finitist mathematics can bc thought of as having physical models in this way. 
Although the strict finitist will hold hat thc natural numbcrs are not closed under the elementary 
arithmetical operations, he will also most likcly hold that we cnnnor. even in principle, know where those 
operations begin to fail. Thus althnugh thc suict finirist will bc committed to the exisrtnce of natural 
numbers n and m such Lhat no na~(tial number n+m exists. he will 3150 say Lhat we w n o t  prduce any 
examples of such numbcrs. This position is thcrcfore also incompatible with the exislencc of a bound 
im sed by limilations which pxsumably huvc a physical sptxificaaion. P" l2 See Plantinga, A., [1974], pp 1-2. 



numben. Beside the problem of accommodating Lewis's ontology within a mildly 

naturalistic theory of our epistemic capacities, the problem of so accornm~eing classical 

analysis seems minor indeed. 

An alternative - one which has also been canvassed in the literature in response to problems 

of this kind - would be to at!empt the construction of tallies out of, say, space-time 

p0ints.12~ For all that you can't bounce a baseball off them, space-time points count as 

physical objects at least in the sense that the existcnce of such things is q u i r e 8  by the truth 

of physics (as we now have it); and, given that space-time is said to be continuous, this 

certainly ensures an adequate supply of material. Once again, though, this is a mute which 
is closed once we accept the limitation to the finitistically acceptable, for it  simply assumes 

notions, such as the 'intuitive' continuity of space and time, which are on all fours with 

those for which Hilben is seeking to clarify and justify. As Hilben [I9251 makes 
abundantly clear, the continuum of space-time points is a paradigm of an ideal notion. 

Simple as they are, these objections seem to me to be decisive against the view that tallies 

can be taken to be arrays of physical objects, compatibly with the basic tenets ~f Hilbe~t's 
project. The second objection in particular compels us to acknowledge that there are tallies 

which are important to finitary mathematics (countably many of them, in fact) but which arr% 

longer than any tally that is an array of physical objects. There are, no doubt, ways abound 

this problem, but they are apparently closed to Hilben. He cannot think of finitary 

mathematics as that part of mathematics that has physical models, and the special status of 

finitary mathematics cannot be defended on the grounds that finitary mathematics can be 

modelled in m y s  of expressions. 

It seems to me necessary, therefore, to take the tallies with which finitary mathematics deals 

to be abstract objects, and be done with it .  This conclusion is forced, though, not by the 

nutwe of the objects of finitary mathematics, whatever that might mem, but rather by their 

n u d e r .  We will therefore abandon the attempt to construe the relation 'x is of the same 

numerical type as y' as a relation holding amongst physical objects. At best, it holds 

between abstract objects, tally-types. We now need to know more about these abstract 

objects. 

The locus classicus of h is  approach is Goodmar!, N, and Quine, W.V.O. [1947]. 



Initially, the retrezt from token arrays as tallies to type mays  as tallies might still seem to 

enable us to think of at least a great many rallies as opes of physical object. Indeed, this 

seems like mere common sense: if two shepherds make each make a tally of the herd, 
using abacuses of the same type, the result will be two abacus configurations which are of 

the same type, and it  is of course the t!lpe that we are interested in, not the tokens. IF 
numerals are types of abacus configuration, then they are of course: abstract ob.je-cts. 
Nevertheless, at least some of then1 will have (actual) physical tokens. A story will have m 
bc told a b u t  those that do not, and those that cannot have physical tokens - a story which 

will presumably appeal to the process under which abacus configurations are consmctd.  

That is to say, it  will be a story about abacuses, about abstract consauction routines. If the 

story turns out to be a story about possible constructions, a form of the first of tAt  

cbjections we have been discussing will arise all over again. 

But prior to that problem, there is a fundamental difficulty facing any attempt to consme 

the content of finicihy mathematics in  terms of types of tally. The token arrays 

(a) / / / I / / / /  (b) 0 0 0 0 0 0 0 0  (c) - 
are certainly of different physical types - they differ in their manifest physical properties. 

Int:uitively, though, they should count as tallies of the same numerical type - tallies of an 

a g p g a t e  of eight objects. However, the following question now arises: Shall we say that 

the arrays 

(d) / I /  (e) 0 0 0 0  (f) #+#### 

are of the same physical type as the arrays (a), (b) and (c) respectively? Presumably not. 

We want (d) and / / 1, say, to be of the same physical type, and (d) and (a) to be of 

different physical types - since we want (types of) expressions drawn from the, same 

vocabulary, but of diff,-rent length, to be of different physical type. The whole point, dter 
all, is to find physical analogues for mathematical relations amongst numerals. The fact 

that (a) and (d) are consmcted by the same procedure from the same vocabuliuy, then, 

does not suffice to ensure their being of the same physical type. 

The problem, though, is that the only apparent basis for the relevant physical difkrence 
between (a) and (d) is that rhe operurion of adding a stroke has been irerated more ofrcn in 



rhe construction of (a) than in the construcrion of (d). This, or something equivalent to it, 
is in fact what we mean when we say that (a) and (d) differ in  'length', for in the arrays 

we must count (g) as longer, in the only mathematically relevant sense, than (h). (Arad 
notice, incidentally, that you can see that (g) is in this sense the longer may.)  This 

rela,tion in 'lengths', however, cannot be associated with any process of physical 

measurement. 

It is perhaps not immediately clear what this argument shows, so let me try to explain a 

little further. The project, you will recall, was to identify the content of finitary 

mathematics with numerals, now considered as abstract types. The idea was that these 

abstract types can be used to model finitary mathematics. The argument above does not 

challenge this: rather, it shows that it is only trivially true. Numerals - expression-types of 
finitc: length, consrmcted from a finite alphabet - are enumerable, and, trivially, anything 
enumerable can be used to provide a model of finitary mathematics. More than this, 

though, the argument shows that the mzthematical properties of arrays of numerals cannot 

be reduced to or associated with their non-mathematical properties without presuming 

notiatns which are essentially mathematical in character. The project of defining equality 

amongst numerals whilst quantifying over o p e s  of physical objects is bound to end in 

circularity, for some analogue of the notion of iterating an operation a certain number sf 

times appears to be the sole adequate ground for the required notion ofphysical type. 

The point here, I should stress, is not a point about the possibilities of acquiring 

mathematical concepts by abstraction from experience. Nor it the claim that you could not 

tell whether or not two objects were of the same numerical type by bringing to bear only a 
mastery of physical concepts. ' hose  are separate issues. The point is that the attempt to 

introduce numerical concepts via quantification over physical types only, to capture the 

content of finitary mathematics wliilst appealing to constructions involving types of 

physical object only, is bound to be c i r c u l ~ ~ .  

This in tcrn shows, though, that the only apparent ways of showing .hat the objects of 
finivay mathematics are somehow more concrete, less abstract, more physiealisticully 

acceptable than those of ideal mathematics lead nowhere. And notice that this concl~sion is 

fully in accordance with Hilbert's conception of mathematics as we elaborated it in 



Chapter One. The project of finding physicalistically acceptable surrogates for 

mathematical objects as Platonistically conceived can only bc motivated by a conception of 

the nature of reference, of what is required for creatures like us t3 be able to refer to 
objects, that implies that reference to physical objects is somehow less problematic than 

reference to mathematical objects. But that is not a Hilbertian view. A s  we have seen, 

Hilkrt's view is that intbrsubjectively manageable criteria for the nti nal ~cptability of 
scientific theories must be internal to those theories. Once a theory has satisf;td those 

criteria, no further questions about the existence of the references of the t i  -ms of those 

theories can intelligibly be raised. There is no further perspective from which xferenc3 to 

mathematical objects car: be ,seen to th: more problematic than ref~rence to physical objects. 

Since he has so often been misunderstood In ihis respect, let me belabor the point. Hilbert's 

position is to be sharply contrasted with that of an instrumentalist such as Hartq Field. In 
i ean his 'Science Without Numbers', Field praises Hilbert's axiomatization of Eucl'd 

geometry as one on which 'the quantifiers range over regions of physical space, but do not 

range over numbers.' This, he thinks, illustrates a general strategy for getting rid sf 

apparent reference to abstract objects in mathematical theories, via a 'representation 

theorem' that enables one to 'find abstract counterparts of concrcte statements' 2nd vice 
versa. He writes 

Consequently, premises about thc concrete can be 'translated into' absmct 
countergam; then, by reasoning within [the abstract mathematical theory], we 
can prove abstract counterparts of further concrele staternenrs, and then use b e  
homomorphism to descend to the concrete stalcmenls of which they are abstract 
counterparts. The concrete conclusions so reached would always be obtainable 
without the ascent into the absuact . . . bur. [he ascent into the abstract is often a 
tremendous saving of lime and effort. 25 

But this completely misconstrues the point of Hilbert's project. Such a homomorphism 

does not function, for Hilbcrt, as a means of getting rid of reference to 'abstract objects'. It 

functions as a way of getting rid of any suggestion that there is a principled, sctentific;ally 

manageable distinction to be drawn between 'abstract' and 'concrete' objects in the first 

place. On a Hilbenian view, a mathematical theory provably conservative over PRA has 

already satisfied the only defensible criteria of rational acceptability there are for 

mathematical theories. Whether you can interpret the objects of the theory as 'abstract', or 

125 Field (19801, pp24-25. 



'concrete', or both, is simply irrelevant.126 For Hilbert, the semantic notions of 'truth', 
'reference' etc. are subordinate to this account of acceptability of a theory: thcy do not 
constrain it. As we shall see in more detail shortly, any systematic study of semantics, or 

anylhing else for that matter, must, according to Hilbert, presuppose finitary mathematics. 

The thought that such a study could then give grounds for some fictionaiist reconstma1 sf 

mathematics, in virtue of having reveaicd that theorems of mathematical theories are not 
really true in the sense explicated by an acceptable semantic theory, would strike Hilbert as 
putting the cart hefore the horse. And not unreasonably, in my view. 

I want now to move on to a discussior~ of thesis (B) on page 79 above - the claim, that is, 

that finitary mathematics has a special status in virtue of its epistemological properties. It 

will turn out that the argument given above, against the possibility of specifying the content 

of finitasry mathematics whilst quantifying over only types of physical object, is also 

relevant to certain attempts to defend the claim that at least some finitmy matRemaeical tnrths 

are especially eviaenr. 

Section Three: the Epistemology of Finitary Mathematics. From now until the 

end of this chapter, we shall be preoccupied with !he co~~troversial notion of marhcrnaeiccrl 

inruieion. In Section Four, I shall try to defend a certain conception of mathematical 

intuition, and explain the role that it plays in a Hilbertian philosophy of mathematics. FOP 

the present, however, my purposes are negative. I want t~ show that a di f fere~t  notion of 

mathematical intuition, one that has often been foisted upon Hilbert, in fact plays no 

significant role in Hilbert's Programme, and i n  particular has no special relevance to 

finitary mathematics. 

It cannot be denied that Hilbert's writings on foundations make considerable use of a 

notion of 'mathematical intuition'. We need to know if this notion is impomnt to Milbert's 

understanding sf his central distinction between ideal and finitary mathematics, and if so, 

we need so know what this notion is. 

The expression 'intuition' is used in a great many different ways, both in ordinary speech 

and in philosophical discussion. Much of this variety we may safely ignore. Sometimes, 

Field is prepared to allow hat here is no question whcther '2+2=4' is true ila arithmetic. Still, for 
Field, '2+2=4' is not m e .  This is because Lhere is some perspective we can occupy fydrir which mh in 
arithmetic can be seen as a . p i e s  of falsehood. Hilbert denies the intelligibili:~ of this duggestion. Some 
furlher discussi~n relevant to Lhis point is given in h e  later sections of this chapkx. 
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for example, an intuition is just a kind of hunch. A mathematician might, in this sernse, 
have an intuitive conviction that the continuum hypothesis, say, is false. This usage is 

pkilosophically uninte~sting and uncontroversial. The sane might be said for what is now 

the most common usage sf 'intuition' in philosophy, in which an intuitive belief is to be 

contrasted with a theory-guided belief. Here, intuition is something like pre-reflective 

thought on some subject matter, potentially revisable upon reflection. 

To make our discussion manageable at all, it will be necessary to restrict our attention to 

what I tzke to be the philosophically most controversial usage of 'intuition'. ?'here aE, I 
think, two primary marks of this usage. Firstly, intuition in this sense is a special faculty 

of the mind, purportedly closely analogous to a perceptual system, and in particular to the 

visual perceptual system. Secondly, a beliefs being intuitive, in  this sense, is taken to 
provide an episeemic warrant for that belief, no less authoritative than the warrant provided 

by (deductive or induche) argument. 

Thus, if challenged to justify my belief that there is a computer screen before me right now, 

I might say 'I can see if'. Modulo cenait~ complications which need not detain us, many 

epistemologies recognize claims such as this as providing a very strong warrant for the 

rational acceptance of the belief that there is indeed a computer screen before one. 'In what 

is supposed to be an analogous way, the philosophically most controversial usage of 

'intuition' allows that 'intuition' can provide this kind of strong warrant for rational belief. 

The following analogy may help to focus our attention on these two features of this usage 

of 'intuition'. A certain kind of traditional ethical intuitionist, if asked to defend certain 

very basic kinds of ethical assertion, such as (say) the assertion that torturing children is 

wrong, was apt to say something like, 'I curl just see that it is wrong'. Here, of course, 

'see' has some figurative sense, since our theorist would hold that this reply provided a 
warrant for the belief even if one had never actually seen children being tonured. Intuition 

is this figurative kind of 'sight' - a special menial faculty closely analogous to vision which 

provides an epistemic warrant for some very basic, 'underived' kinds of belief. 

A striking feature of this special mental faculty is that it is a faculty narrowly attuned to 

ethical truths. The need to postulate the existence of such a faculty was prompted by the 

conviction that ethical knowledge possessed two large and philosophically impressi\l,e 

features. First, it  was thought that ethical truths were not to be met with in the physical 

world. The perceptual capacities adequate for the explanation olour ability to p s p  the fact 



that Joriny was torturing the cat were thought inadequate for the explanation of our ability 
to grasp the fact that, in torturing the cat, Jonny was doing something wrong. The former 

fact was perceivable by the senses: not so the latter. But the immediacy of the ethical 
judgment, the alleged fact that it was not to be thought of as derived from anything ethically 
more basic (such as knowledge that torturing causes pain, or whatever), was thought 

sufficient to suggest a strong analogy with ordinary sensory perception. Just as you could 

literally see the torturing, you could figuratively 'see' - that is, intuit - the wrongness. 
Second, in addition to tne conviction that ethical facts were not to be met with in the world, 

the need for a special faculty of ethical intuition was thought to arise from the alleged 

special epistemological status of at least some ethical truths. These truths were thought to 
be certain, absolutely reliable, unrevisable in the colirse of experience. Nothing that we 

could meet with in the world, i t  was said, woilld suffice to show that the judgment that 

killing children is wrong was ill-founded. In addition to being especially attuned to ethical 

facts, then, at least some ethical intuitions were certain, in a way in which no empirical 

judgments could he cembn. 

Now, ethics and mathematics are the two great natural sources of modal claims. As with 

ethics, in mathematics - on a commonsense view at least - we have a tissue of propositions 

unrcvisable in the face of experience, and assertions which are true, but not in virtue of 

anything to be met with in the world. And in philosophical writing on mathematics as with 

philosophical writing on ethics, one sometimes meets with just this notion of mathematical 

intuition as a special faculty of the mind, attuned co non-natural mathematical facts and 

nothing else, the deliverances of which have all sons of exciting epistemological properties. 

The question we must ask, therefore, is this: Is Hilbert's Brograrnrne involved in 
advancing some doctfine of this general kind, with respect to finitary mathematics? 

No: i t  is nor. To begin with, as we have already seen in  our discussion of Hilbert's 

dispute with Frege in Chapter One, Hilbert was generally llostile to any ateempis to make 

mathematics dependent on intuition, in the sense of direct, extra-systematic perception of 

truth. The major advantage of the axiomatic method as Hilbert understood it was precisely 

that it shifted attention away from immediate apprehension towards considerations of the 

overall coherence and fruitfulness of mathematical theory. A consistent theory has 

theorems which are true, and rherefore has terms which refer: that this was ;he order in 

which the notions of truth, reference and consistency were to be explained was, for 

Hilbert, the fundamental feature of an acceptable epistemology for mathematics, precisely 

because it freed the mathematician from any reliance on this extra-systematic insight into 



mathematical truth. This is one reason why Hilben, in general, makes no attempt to select 

as axioms formulae which are 'obviously true' with respect to the intended interpretation 

when formalizing a mathematical theory. Rather, he selects as axioms formulae whish 
facilitate the metamathematical study of the system - which has as its principle goal a p m f  
of consistency. 

If there is to be an issue here at all, then, it can only arise over the question of whether, in 

the special case offinitory mathematics, where consistency is to be established in some 

moE direct way than via a specification of a model, Hilbert must rely on something like the 

controversial notion of mathematical intuition to establish consistency - whether, for 

example, he thinks it important that the axioms of finitary mathematics be intuitable in the 

controversial sense when modelled in numerals. 

Now, let us be clear about one thing at the outset. I t  is not true that Hilkrt speaks of 

finitmy mathematics alone as intuitive. Intuitability in some sense or other is nos, for 

Hilbert, the particular mark of the finitary. Any doubts about this should be dispelled by a 
glance at Stephan Cohn-Vossen's book 'Anschauliche Geometric', published in  joint 

authorship with Hilbert since i t  is in fact an expansion of Milben's 1921-22 Gbttingen 

lectures on geometry.127 A great many of the geometrical theorems and arguments there 

described as intuitive by Hilben undoubtedly belong to ideal mathematics.1~ The usage of 

the term 'intuition' in this book is in fact typical of Hilbert's usage throughout his career. 

Most often, he uses the expression 'intuitive' (anschauliche) in what should be a 

philosophically uncontroversial way - an intuitive theorem, in  this sense, is just one that is 

easy to accept on first acquaintance, perhaps with the use of visual aids such as diagrams, 

figures etc.129 

12' For some reason, the English language edition is entitled 'Geometry and the Imagination' (see Hilkrt 
and Cohn-Vossen [1952]). Be that as it  may, the English translation of the German title is 'Intuitive 
Geometry'. 
128 See for example h e  Preface to 'Geometry and the Irnaginalion' (Hilbert and Cohn-Vossen [I9521 piii). 
Here, Wilbert stresses the imporlance of what hc calls 'intuitive understanding' throughout all of geornewy, 
and freely uses the same language of 'concrete in~uition' he uses in his discussions of finimy mathematics. 
Wri6ing of 'he  proof of the fact that a sphere with a hole can always be bent - no mauer how small Lhc 
hole' [loc cit], lor example - surely an ideal slatcmcnt - he slates that Ihe relevant LReorem 'can be maled  in 
such a fashion that even one who does not wish to follow the details of the analytical wgumenls, may still 

ain an insight into how and why the proof works.' 
829 In h e  m e  passage ([op cit] pi") he describes his presentation of geometry as 'baud on the approach 
through visual intuition'. 'Vision' here, notice, is just ordinary vision. There is no suggestion, either here 
or in any other passage known to mc, of a special purpose 'vision' attuned to mathematical facts. 



Thus, if there is to be an issue to discuss at all, the question must be whether the ether, 
philosophically contentious usage of 'intuitive', also occurs in Hilbert; in connection with 

the truths of finitary mathematics. If then is a case to be made here, then the best evidence 
for it is undoubtedly a passage which we have already encountered. The crucial parts of 
that passage are those emphasized below: 

. . . as a condition for the use of logical inferences and the performance of 
logical operations, something must already be given to our faculty of 
represenlation, certain exualogical concrete objects that are intuitively preseni m 
immediate experience prior to all  thought. If logical inference is lo k reliable, 
it must be possible to survey Lhese objects completely in all heir parts, and rAe 

fact that they occur, that they differ from otie another, and that they follow each 
other, or  ore concatenated, is  immediate!^ given intuitively, together with tlre 
objecrs, as somethink that neither can be reduced to anyihing else nor requires 
reduction. This is the bssic philosophical position that I consider requisite for 
mathematics and, in general, for all scientific ~ h i n k i n ~ . ' ~ ~  

From this passage, this much at least is clear: what it is to have an intuitive grasp of a fact, 

in the sense of this passage, is to have a grasp of the fact 'prior to all thought'. An intuitive 

fact is therefore to be contrasted with a fact that is grasped (or perhaps graspable) only after 
scme process of reflection, or the implementation of some other sort of discursive 

procedure of inquiry. And this, of course, immediately opens up a morass of familiaa 

objections. Graspable by whom? By me; by Gauss; by the Martians? We all know that 

the things we are able to grasp 'prior to all thought' change as we get older and wiser - or 

slower, as the case might be. Presumably, a mathematical assertion graspable 'prior to all 

thought' must be one accepted by anyone capable of understanding the assertion at all. But 

what are the prospects of a principled account of the distinction between rejecting a 

mathematical assertion because one has not understood it, and rejecting it because one 

thinks it is false? 

But this reaction is unreasonably uncharitable to Hilbert. Whatever 'intuitive' means here, 

we know that, for example, the Euclidean parallels postulate does not count as intuitive for 

KIilbert, despite the fact that ever so many people have found, and indeed continue to find, 

it obvious. So it cannot be any part of Hilberi's intentions to suggest that a test for 

intuitiveness, in the sense explained in  this passage, is to be provided by some kind of 

survey of what mathematicians, or some other group, are prepared to say they find 

obvious. Rather, I think we might see hinl as suggesting that there is a level of cogrritive 

activity, perhaps discoverable only after long enquiry, which is the necessaiy substratum of 

130 Hilbert [1925] p376, my emphases. 



'scientific thought' - a d  that a certain minimum of mathematics is embedded in his level. 

By 'scientific thought', I think we may for the mornent understand Hilbert to mean 

something like, objecrive lhoi~ght - thought directed towards the representation of 
quantitative features of an objective, enduring, mind-independent reality. Of course, it will 

come as no surprise that a minimum of mathematics is to be found in thought sf this kind; 

but Hilbert is also suggesting somethigg about what that minimum might be, and why i t  

should count as basic. 

In describing this level of cognitive activity as a substratum of 'scientific thought', I mean 

to be suggesting only that ascription to an agent of the capacity for any 'scientific thought' 
whatsoever implies ascription of mastery of the conceptual repertoibe located at this level. 

That repertoire must include, Hilbert seems to suggest, at Ieast the ability to deploy, 

synchronically and tiiachronically, criteria of identity and distinctness amongst particulars - 
the ability that is basic to the constfuction of a simple tally, and therefore basic to anything 

we could make sense of as a practice of counting. Closely related to the ability to make 

such distinctions is the ability to deploy certain relational concepts, such as 'longer than', 
'farther from', 'the same size as', 'bigger than'. In short, the conceptual resources 

available at this minimal level will include something akin to the concept of a well-founded 

linear order. 

In addition to the second of the italicized passages above, the following passage provides 

some ariditional evidence that Hilbert's view is indeed that the primitive ability to employ 

criteria of identity and distinctness amongst enduring mind-independent g ~ c u l a r s  is both 

intrinsir:ally mathematical in character, and basic to any 'scientific' thought In the course 

of a dis~cussion setting out a 'simpler form' of a logical calculus than any thaa had yet been 

given, Hilbert gives some further suggestions along the same lines. He claims thaa we 

need to recognize 

. . . an Axiom of Thcught, or, as one knight say, an Axiom of the Eisrcnce of 
on Intelligence, which can be formul~tcd approximately as follows: I have the 
capability to think things and to dcnote them through simple signs (a, b, . . ., 
X, Y, . . .) in such a fully characteristic way that I can always unequivocally 
recognize them again. M y  thinking operates with these things in this 
designation in a cemin way according to delerminale laws, and 1 am capable of 
learning these laws through self-observation, and of describing them 
c0m~1ete1~.131 

l 3 I  Unpublished lecture noles dating from 1905 - I owe this refercnm to Michael Halleu. 
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(1 propose to &::w a veil over the suggesti~n that introspection is the apprnpridte 
f i ~ t h ~ d o l o g y  he:<.) The foundarior.al nature of this 'Iixiom of Thought' is revealed, 

xcoding to HiPbert, in the fact that the conczptual capacity it describes playz an ess~ntial 

fuie irr thc systematic develcprnent of the laws of logk itseif: 

,%riihrnetic is cften considcrcd to be a part cf logic, and Llie tsaditional 
1 u f n * r , >  li'..z.$,~,ntal lagical notions are usually presapposed wher! it is a quesdon of 
,ks?>6iishinfl a foundation far arilhmetic. If we observe attentively, however, we 
xslize that in the traditional exposition of the law.; of logic certain fundamental 
ilriehmetic notions are a!ready used. for exmple, the notion of set md, to some 
extent, also that of number. . . . . that ic why a partly simullaneaus 
development of Lhe laws of logic and of vithmetic is required if paradoxes are to 
be avoided.' 32 

The suggestion thai finitary mathematics - or perhaps more accurziely, the very basic 

computariond ability of which finitary mathe:natics is a mathematical theory - is no lzss 
than logic part of the necessa.ry basis of any 'scientific' thought recurs in many places 

throughout Hilben's writings. In Hilbert [1927], in  the midst of a defence of proof theory 

against Brouwer's charge of 'empty formalism', we find the following: 

The formula game Brouwer so deprecates has . . . an inlportant general 
philosophical significance. For this formula game is carried out according to 
c e h n  definite rules, in which the technique of our thinking is expressed. These 
rules I ~ r m  a closed system that can bC, discovered and definitively s W .  The 
fundamental idea of my proof theory is none other than to describe the acriviiry of 
our understanding, to make a proloco1 of the rules according to which o w  
thinking actuolly proceeds. 33 

This formula game, in which the technique of o w  thinking is expressed, is of course 

metamathematics - or equivalently, finitary mathematics. Finitary mathematics, then, either 

consists of, or perhaps is a mathematical model of this closed system of rilles in which 'the 
technique of our thinking' is expressed. 

In the following section, I shall take up the task of makirlg these gnomic suggeanions 

clearer and, hopefully, more plau~ible.13~ Our current topic, though, is whether finita.ry 

mathematics hss some special epistemological status, and if so, whether Hilkrt's notion of 

intuition is important in establi~hing that it does. 

132 Hilten [1904] p131. 
Hilbert [I9271 p27, last emphasis mine. 
I should say immediately, though, that I do not find Hilbert's suggeslirrn as i r  stands in the leas: 

absurd. As will soon become clear, I think that there is something in these claims of Hilber~s that is 
important, intuitive (no pun inknded), and very possibly m e .  



Now, it seems io me thbt h e  suggestion that emerges most naturally from these passagcs is 

roughly the following. When Milkrt says we m s t  accept that 

. . . . the fact that [thc objects of E::i--p illalhematics] occcr, Lhai bey di,ffer 
from one another and  hat [hey follow each other, or are concatena-8, is 
irnmedieaely given irrtuit;vely, logether wilh Lhe objecu. as sonrething b a t  
neither can be reduced to anything else nor requires 1cductioi3.~~~ 

what he means is just that the abilities that we deploy in ci~rlstructing a tally (matching 
pebbles with sheep, telling one sheep from another, and one pebble from aaiotlier, and SQ 
on) are part of a minimal conceptual repertoire presupposed by the possibility of ehoughr, 
about an objective wsrld. Surveyabiliry, in this sense, serves as a grrarartke that the 

relational properties of smngs and elements of smngs can be ascertained on the basis of at 

most finitely many pairwise comparisons of individuais. This is surely a sense of 

'intuitive' which is distinctively linked to finitary mathematics. No theorem involving 

continuity essentially, for example, can be said to be intuitive in this sense, dthough Inmy 
such theorems are intuitive in the more relaxed sense used in the title of 'Intuitive 
Geometry'. There is, therefore, some evidence for the existence qf a second, and more 
philosophically cona-oversial usage of 'intuitive' in Hilbert, related to properties peculiar t~ 

finitmy mathematics. 

If it could be shown that, in  principle, the consistency of all ideal theory of ~Passicd 

mathematics (analysis, say) could be established by the exercise of this minimal conceptual 

rcpertaire done - for example, by a demonsnation that no proof of the system terminated is 

an oc. ,once of the string '0=11 - thcn hat theory would have been shown to satisfy the 

v e q  strongest criteria of rational acceptability possible, since its acceptability would have 
'ken shown to be implicit in any conception sf an objective, mind-independent reality. In 
?articular, any doubts about the ontology of the theory - doubts nbout whether the 

'objects' of Ihe theory, according to its intended interpreratian, really existed - would be 

completely undexut, since the credentials of the theory had been established by nothing 

mote than the very conceptual resources upon which the general idea of existence in a mind 

independent reality rests. Of course, she envisaged proof of consistency would not 

establish the existence of what we might call the ideology of the theory - the ideal elements, 
I 

as i t  might be, appealed t~ in the standard interpretation, But this is now mathematically 



harmless. Since the chedentials of the theory have indeed been established, the puzzling 
intended interprejtation can be taken as an heuristic - just as the ideology of Euclidean 

gearnew is a usr:ful heuristic. This heuristic Hilbert might well be p ~ p d  to describe as 
'intuitive', but only in the fust, philosophically unconiroversial sense. 

Silt now, if something like this really is what Hilbert has in  mind - and I think that is is - 
then it seems to me thai we should greet with the greatest skepticism any claim that the 

particular proofs of finitary mathematics have any special degree of certainty, clarity or 

obviousness. This is just obviously wrong, in  virtue of such mundane facts as the length, 

repetitiveness etc. of finitasy proofs. And clearly, it is not an implication of Hilkfi's 

position. 

More importantly, though, it would also be at best extremely misleading to claim that the 

methods of proof used in finitary mathematics have any special degree of certainty, clarity 

s f  obviousness. It is one thing to know that, in deploying certain kinds of conceptual 

resource, you are deploying resources the reliability of which cannot intelligibly be 

questioned: it is quite another thing to know that you are doing so comctly. If the 

shepherd really has correctly constructed a tally of n pebbles, it makes no sense at all to 

wonder whether there really are n sheep. It is indeed an implication sf Hilbert's position 

that we can make no sense of there being an inconsistency in elementary arithmetic. But of 

course, the assurance that the tally has been correctly constructed is no better that the 

assurance that no sheep has been counted twice, or not at all; thht no sheep has 

disappeared, no 'sheep' is a disguised wolf, no pebble has duplicated itself, and so on ad 

infinitum - to conceive of the tallying procedure misfiring is to conceive of something of 

this kind having taken place. Nevertheless, i t  is the very obviousness, simplicity, and 

clarity of the particular, discrete steps in finitary reasoning which i-enders the consmction 

of an entire p m f  of any interesting theorem by finitary means so prone to exactly this kind 

of computational error. The correct use of finitary means is indeed a guarantee against 

emor of the smongest possible kind, and Hilbert's position implies that this is so. But it is 

quite another matter to claim that the limitation to finitary means ought to increase our 

confidence in any mathematical result. This seems to me clearly false, and it is not an 

implication of Hilbert's position. 

The trouble is, Hilbert's way of expressing himself on this matter of the clarity and 
definiteness of finitary mathematics, coupled with his mixed usage of terns such as 

'intuitive', is apt ta encourage an interpretation which gets his real position exactly the 



wrong way round. One root of the trouble lies, I think, in  the ternpta;ion to see filbert's 

numerals, the sequences of strokes discussed above, as models of finitiry mathematics - to 
see the relation between the singular tern 'three' (or "sssO") and the tally-type '/ / f  as one 
of reference. Since one can indeed percejve tokens of this type, in a perfectly ordinary 
sense, one can take 'reference' here to be the very same relation as that which obtains in a 
non-mathematical context between an ordinary proper name of a type, like 'Old Glory', and 
the physical objects to whish the name refers. A naturalistic account of this relation is 
bound to appeal to some causal concepts, to some kind of causal link between the name and 

the bearers of the name. It is then very hard to avoid the co~~clusion that Hilbert is 

attempting to fit our understanding of mathematics into a broa.dly naturalistic framework by 

finding naturalistically acceptable analogues of mathematical objects with which we can 

causally interact, to which we can 'refer' in  exactly this familiar sense. 

Talk about the 'intuitability' of finitary (or any other) mathematical truths then appears, 

fatdly, so involve some sort of wonderful capacity to read off the appropriate mathematical 

properties from arrays of physical objects. Kitcher interprets Hilbert in this way, and then 
has little trouble in making him seem ~0n fused . l~~  For if the token arrays 

are to count as arrays of the same numerical type, as they surely must, and if my 

mathematical intuition is to detect this, then my mathematical intuition is functioning in such 

a way as to distinguish the genuinely mathematical properties of the mays frorn srich 

properties as their volume, their shape, their location in space and time etc. But talk of 

mathematical intuition as detecting this distinction plainly assumes some independent 

account of what the distinction is,  and that account must give us arithmetic without any 

reliance on mathematical intuition. 

This closely resembles a very old and familiar criticism of abstraction as an ultimate source 

of knowledge. It is found in Berkeley's critique of Locke, but also, and more pertinently, 

in Frege's criticisms of Mill in 'The Foundations of Arithmetic'. But however things are 

with Locke and Mill, Hilbert is not vulnerable to this kind of criticism, for this 

136 See Kitcher [1976], esp. pp110-114. 



interpretation redly does get his position the wrong way round. Milkn is not claiming hat 
our 'intuitive' mathematical knowledge, in either or the two senses of 'intuitive' we have 

isolated, c7fi be abstracted from models of mathematical assertions: rather, our 'intlaitivt ' 
mathematical knowledge is what enables us to construct the models. 

Let me try to explain a little funher. It is an undeniable fact that the selection of an 

iconography for the presentation of a formal theory T can Rave the consequence that c e k n  
mathematical facts about 1' Become more readily accessible to us, via an inspection of some 

appropriate diagram. An elementary theorem of Fano's finite plane geometry sates that 

there exist as many 'points' as 'line~'.13~ This is not immediately obvious fronl the axioms 
of Fmo's geometry, but it just leaps out at you as soon as you attempt, in the most natural 

way, to produce a drawing satisfying those axioms - a drawing, that is, in which the 

'points' of the geometry are put into 1-1 correspondence with dois on a piece of paper, and 
the 'lines' are put into 1- 1 correspondence with lines joining these dots. If the axioms are 

respected, the result is a diagram which contains exactly seven dots and seven lines. Via 

the 1-1 conespondence we have established, the diagram can then be C O I I V ~  into a proof 

that Fans's geometry contains exactly as many 'point' as 'lines'. The theorem is intuitive, 

in the unconuoversial sense of Hilbert's 'intuitive' geometry. There is nothing especially 

mysterious about this - or at least, there is nothing suggesting a specid faculty of the mind 

trained in upon the detection of mathematical properties. The properties k ing detected are 
physical, not mathematical. The imposition of a cenain physical smchlre on the diagram is 

guided by our prior grasp of the mathematical content of the Fano axioms. Given that we 

have imposed that physical structure, in a way that is natural to us, on the physical object ' 

we pl-oduce, it is unremarkable that we are then able, by perusing the diagram, to uncover 

f h e r  mathematical propenies of the analogous mathematical structure described in Fmds 

axioms. The diagram enables to see all at once, so to speak, physicai analogues of the 

mathematical objects and properties presented piecemeal in the axioms. 

The same point holds in even in the simplest case. The reason that the array 

13' For a brief and elementary presenlalion of Fano's geomelry, see e.g. Smart, J.R. [1973) pg14 ff. 



is a natural candidate tg model the mathematical fact that three is p a t e 6  than two is that we 

natumlly see the upper array as the result of iterating the operation of writing down a smlce 

three times, whilst we see, the lower may as the result of iterating the same operation twice. 

There are all sorts of other ways to see this may, although perhaps none of them are so 

natural to us. None of this does anything to explain the grasp of the mathematical fact 

represented, the ability to bring mathematical concepts to bear on items encountered in 

experience. On the contrary, it presupposes this very ability. And nothing in either sf 
Hilkrt's usages of 'intuition' denies this. 

What may incline one to suspect otherwise is a peculiar feature of finitluy theories, such as 

Fano's geometry, which is lost in ideal theories. You can, for example, diagram any 

identity amongst natural numbers using Hilbert's stroke-numerals, or any other tallying 

device for that matter, and then verify the identity by visually inspecting the diagram. The 
process of verification is intuitive in the !~ncontroversia.B sense - in the small at least, it will 

be immediately obvious on inspecting the diagram that this stroke corresponds to that 
stmke, that this strake has no analogue in that series of strokes, etc, You ca-mot verify the 

'ideal' identity (J2)2=2 in any analogous way. Atomic sentences of fmitary theories have 

diagrams ir! which physical and mathematical objects are put into 1-1 comspondence. 

With ideal theories, this feature is lost. 

It is then very natural to think that Milbert's remarks on finitary mathematics quoted above - 
in particular, the remark that 'the fact that [objects of finitary mathematics] occur, that they 

differ from one another, and that they follow each other, or are concatenzted, is 

immediately given intuitively, together with the objects, as something that neither can be 

reduced to anything else nor requires reduction' - commit him to the view that some special 

certainty attaches to finitary mathematics i n  virtue of the verifiability uffinitary theorems in 

this 'intuitive' way. 

Tnis claim is just wrong, for the rewsons merltioned above. Indeed, it is so obviausly 
wrong that it cannot, I think, be what Hilbert intends. The deeper sources of the confusion, 

in my view, lie in the ambiguities induced throughout the theory of syntax by this fact that 

elementary truths of syntax - finitary mathematics - can be given physical models. 

'Symbol' then becomes ambiguous as between an abstract role in arithmetic, a role 
modelled by a numeral, and a (type or token) physical object: 'surveyable' becomes 

ambiguous as between a mathemat ic~f  property, mathematically defined over finite 

sequences, and a physical property of arrays of (types or tokens of) physical objects: and 



'syntactic property' becomes ambiguous as between, roughly, combinatorid properties of 
fmitary mathematical objects, and physical properties of arrays of physical objects. These 
ambiguities in turn induce a conflation of the two senses of 'intuitive' we have 

distinguished With the mathematical understanding of the concepts of syntax in mind, we 

can say that the theory of syntax is 'intuitive', in  the sense that it deals exclusiv~ly with 

tho= mathematical concepts presup?osed by any scientific thought whatsoever. With the 

physical understanding of the theory of syntax i n  mind, we can say that the eiemr:ntary 
truths of the theory of syntax are 'intuitive', i~ the sense that they can be made immediately 

obvious on inspection of diagrams, graphs, physical models of some kind. Hilberl's view, 

and in my opinion the only plausible view, is that a special status is bestowed on finitwj 

mathematics in virtue of itc intuitive chmcter in thefirst, but not the second scnse. 

Consequently, finitary and ideal mathematics do not contrast in any consistent or interesting 

way with respect to the certainty we can have in any particdm result, For does anything in 

IIilkn's talk of intuition suggest otherwise. The application of finitary mearls dces not 

contrast in any consist3nt or interesting way with the application of ideal means with 

respect to the certainty that attaches to any result of the application of those means; and 

Hilben's position does not imply that i t  does. This is not to say that there is no 

epistemological gain to be anticipated from a finitary proof ;f consister~cy, however. Tne 

gain comes in  protecting the ideal theory against what has, historically, been the most 

prominent objection within the mathematical community to the use of unfamiliar ideal 

methods - the complaint that nothing in the mathematical world corresponds to ttaese 

unfamiliar objects. On the picture that is now emerging (I hope), i t  wiil be apparent ellat 

Hilkrt's argument against this kind of objection has two stages. First, the special stahrr; of 
finitary mathematics shows that ontological doubts about the objects of f i n i ' q  mathematics 

are groundless, in virtue uf the special status of finitary mathematics with resrect to any 

thought whatsoever about a mind independent reality. Secondly, a finitary proof of 
consistency shows that the apparent ontological excess associated with the ideal elements 

really is only appmnt.138 

Before going on ro discuss the better grounds for attributing a special status to finitary 

mathematics, I want to pause in order to use the discussion of this section to show that one 

very influential criticism of Hilben's Programme, originally offered by PoincasC and more 

138 Notice that this reinforces the point lhat the most fundamend aspect of Hilben's Pmpiimrne is the 
a m p !  to s h w  lhat ideal elements' are eliminablo from proofs of real theorems in ideal hmries. 



recently revived, in slightly altered form, by Philip Kitcher, is in fact n~isguided. This is 
really by way of an aside, but it may do a little more to clarify the nature of the special 

status of finitary mathematics. 

The criticism csncerns Milbert's use of induction in metamathematics, and it is best 

introduced in Klrcher's version, since it  is possible to respond to Kitcher, I klisvc, 
without any detailed discussion of certain technical issues which must be adhssed in an 
adequate response to ~ o i n c a r 6 . ~ ~ ~  Kitcher is perceptive in noticing one striking difference 

between Hilkn's notion of intuition and Kant's. For Kant, Kitcher tells us, intuition can 

only yield particular arithmetical truths, whereas Hilbert clearly thinks that certain general 

firaitary mths are intuitive. Kitcher continues: 

Hilbert's emphasis that 'I+a=a+ll expresses a finitary proposition can be 
supported along with his khesis ha t  we know finitary propositions by intuitive 
means if we claim that i t  is possible to intuit a general slroke-symbol. The idea 
would be that we represent to ourselves sign-designs of the form '1 . . . 1' where 
we take the dots xi stand for an indctenninate number of strokes. By sweying 
these designs we are able to know for certain basic finitary prupsitions , . . . 
For example, we can learn that I +a=a+ 1 by first exhibiting h e  design 

and then transforming it into Ihe design 

From primitive general propositions of this kind we may proceed to more 
complex resulu.l40 

The position being attributed to Hilbert, then, is one on which we can come to b.ow certain 

general finitary facts by visually inspecting 'arbitrary', schematic models cf those facts. 

Now, the fundamental facts of finitary mathematics can be regarded as those expressible by 

numerical equations, and one verifies such equations by way of a painvise c o m p ~ s o n  of 

the constituents of the terms of the equations. And of course, if suck a comparison is to be 

possible, the process of pairwise comparison must terminate after a finite ntarnkr of steps. 

As Kitcher observes, there appears to be a dilemma here for Hilbert, the horns of which are 
formed by the two possible ways of construing these schematic numerals. if we rake the 

139 I tetum to h i n W s  criticism at greater lenglh below. 
140 Kitcher [I9761 p110. 
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schematic numeral intuited to have a definite number of strokes, then we get termination dl 

right, but we get a particular rather than a general fact - the fact that decomposition of an n- 

element stroke symbol teminates for some particular value of n. On the other hand, if we 
take the arbitrary stroke symbol to have an indeterminate number of strokes, then we have 

some prospect of getting generality, but no assurance that the decomposition procedure will 

terminate. That assumce requires either a unique element, or no element at all, to the right 

(say) of any given element of the may, and this is not guaranteed by an intuition in which 
the intuited smke symbol has an indeterminate number of strokes. In short: Hilbert seems 

to be sadd!ed with all the unattractive aspects of Lockets notorious 'arbitrq mangle'. 

This is, I think, a very serious objection to one way in which the idea of intuition might be 

used in a philosophy of mathematics. But it  is not an objection to Hilbert's usage, for at 

bottom it rests upon just those ambiguities between physicalist and mathe~natical readings 

of the key syntactic notions, and the resultant confusion of two senses of 'intuition', that 

we have been discussing. In 'surveying' a particular diagram, or proof, the 'syntactic' 

properties I am attending to are physical properties of a particular physical object. Since 
this object has been constructed out of its constituents with an eye to producing clearly 

detect2)rle physical analogues of the notions of syntax, in its mathematical sense, I will be 

often able to recover a good many syntactic properties of the mathematical structure being 
modelled by visual inspection of the physical model. 

More than this, though, I will be able to bring to bear my knowledge of the procedure 

according to which the physical model has been consuucted - the knowledge whish enables 

me to produce physical models of a great many different particular mathematical structures. 

If I know how to model the finitary identity '2+2=4', 1 will also know how t~ model the 

identity 'a+b=n8 for at least a great many particular values of a, b, and n - one constructs a 

tally sf a, a tally of b, a tally of a+b, a taily of n, and then proceeds to a pairwise 

comparison with respect to 'length' of the  last two tallies constructed. The assurance 1 
have that this last operation will terminate is provided, not by any amount of physical 

inspection of pareicular tallies, but rather by my grasp of the cunsh-uction routine for t:illies: 

a tally is the result of finitely many applications of the basic procedure of adding a unit to a 
tally, And this assurance is 'intuitive', not in the sense in which it can be verified by the 

inspection , ~ f  models, for i t  cannot, but in the sense that assurance is provided by the 

resources of this minimal mathematics - finitary mathematics - alone. 



The likely response to all this, once more familiar fiom the debate over Lscke's arbitrary 

triangle, is this. If what is known intuitively is a rule for constructing integers, there is 

simply no need for t,he further intuition of particular integers. In general, if one has 

grasped a rule for applying a concept, one has no further need i ~ r  a paradigm'case ~f the 

application of the concept, which is presumably what an intuition of an object satisfying the 

concept is supposed to be. Indeed, it is precisely the ability to apply the rule governing the 
concept that enables one to identify a paradigm case as a paradigm case of the application of 
that concept. Given the intuitive grasp of the rule, then, intuition of objects is not n e w .  

But this is not an objection to Hilbert: i t  is pretty much HiPbert's own view. Consider h e  

following passage, in which Hilbert is responding to Poincare's criticism of Hilbert ['1904): 

. . . he IPoincare] denied from be outscl the possibility of a consistency proof 
for the arithmetic axioms, maintaining that the consistency of the method ~f 
mathematical induction could nevcr be proved except through the inductive 
method itself. But, as my theory shows, two distinct methods that prxeed 
recursively come into play when the foundations of arithmetic are established, 
namely, on the one hand, rhe inruirive consrrucrwn of the integer as numeral (ro 
which there also corresponds, in reverse, rhe decomposirion of any given 
numeral, OF rhe decomposirion of any concrerely given array comrructed jut  ar a 
numeral is), that is, conrenruel inducrion, and, on rhe orher hand, formal 
iducdon proper, which is based on rhe induction axiom ~ n d  thPougR which 
alone the marhemrical variable can begin lo play irs role in the forrnd system. 
141 

'The intuitive construction of the integer as numeral ' - that is, the recursive procedure for 

generating numerals, or, as I have been using these notions, the abacus construction of 

abacus configurations. Exactly what this distinction between kinds of induction comes to 
will require much further discussion: the point here, though, is that it is this 'intuitive 

construction of the integer as numeral', and not any 'intuitive' apprehension of arbitraxy 

stroke-symbols, that is central to Hilbert's account of our knowledge of general facts in 

hitary mathematics. 

But it is a mistake to conclude from this that the 'intuitive' inspection of figures (in the 

alternative, physical sense) is redundant. Consider the task of programming a computer to 

discover theorems in a simple finite geometry, for example. One might try a brute search 

algorithm: just set the machine up to churn its way through an enumeration of the 

deductive consequences of the axioms of the geometry, time without end. This gives lots 
of theorems, but on the other hand, we may have to wait a long time for the theorems 

141 H i l h  [I9271 pp472-473, my emphasis. 



which we would be interested in - the ones which give us some insight into the system we 
are exploring, for exmple. On the other hand, one might program the machine to construct 

diagrams of the axioms i b r  very much the same way we do, with dots and lines, say, and 
then provide an algorithm that recovered dleorems from a 'survey' of those diagrams. This 

might involve sacrificing the assurance that all the theorems we are interested in will, 

sooner or later, k discovered by the machine, but on the other hand, it may also lead to the 
consistent generation of theorems that smke us as interesting. In doing mathematics, we 

do not just flounder around in theorems: we select, we look for interesting patterns - 
interesting, that is, according to our lights, according to the mathematics that we already 

understand. This is where intuition, in its other sense, plays its part - not as a wamnt for 

truth, but rather as a guide to significance. The paradigm, the particular object csnsmcted 

according to the rules of the system, guides our application of the rules, not in the sense of 

showing us how to apply the rules - if we did not already know that, we would not know 

that it was a paradigm - but rather in the sense of showing us where to apply them. 'The 

paradigm makes our anention to the deductive consequences of an axiom set selective. 

What now have to hand, then, art a good many reasons to reject options (A) and (B) - 
good reasons, that is, to view any claims about the special ontological status, or tlme special 

epistemological status of f in i tq  mathematics with skepticism. Finitary mathematics is not 

'about' expressions, and its truths are not, i n  general, particularly obvious. It  remains to 

consider option (C). 

Section Four: Finitary Mathematics and Mathematical Intuition. Option (C), 
you will recall, was suggested by the following passage from Hilbert [I9251 

Kant already laugh1 - and indecd i t  is part and parcel of his doctfine - that 
mathematics has at its disposal a content secured independently of alt logic and 
hence can never be provided with a foundation by means of logic alone; that is 
why h e  efforts of Frege and Mekind were bound to fail. Rathcr, as a condidon 
for the use ~f logical inferences and the pcrforrnance of logical operations, 
something must already be given to our faculty of representation [in der 
Vorstellung], certain extralogical concrete objects that are intuitively 
[anschaulich] present as imrncdiate experience prior to all thought. If logical 
inference is to be. reliable, it must be possible to survey thcse objects completely 
in all their p m ,  and the fact that hey occur, that they differ from one another, 
and that Lhey follow each othcr, or are concatenated, is immediately given 
intuitively, together with the objects, as something that neither can be reduced to 
anything else nor requires reduction. 71is is the basic philosophical position 
b a t  I consider requisite for mathematics find, in general, for all scientific 
thinking, undersunding, and communication. And in mathernarics, in pasticular, 



what we consider is h e  concrete signs themselves, vihose shape, according to b e  
conception we have adopled, is immediately cleu and recognizable.142 

Having devoted some energy to debunking notions of mathematical intuition, I now intend 
to introduce and explain a different notion of matliematical intuition, suggested by this 

passage, and relate it to the discussion of mathematical objects of the last two sections of 
Chapter One. The notion in question is also present, in my opinion, in GMtl's 
philosophical writings - unsufprisingly, since both Hilbert and GMtl me drawing upon rp 

common understanding of the teachings of Kant. I do not intend to take up the topic of 
Kant's conception of mathematical intuition, and I make no claims as to the Kantiim 

credentials of the Hilbert/G&ieI notion. But II do think that it  will be helpful to spend some 

time discussing Giidel's views. 

GUdels' main discussion of mathematical intuition is to be found in a philosophical article 
he devoted to Cantor's continuum problem, which exists in two versions. The earlier dates 

from 1947, before it was known that the continuum hypothesis (CM) was independent of 
set theory. The article was then revised and reprinted in 1964 for the BenacemafPutnarn 

anthology on the philosophy of mathematics, together with a remarkable four-page 

supplement. By this time, Gijdel knew that (CH) was independent of set theory. The 
following passage occurs in the 1964 supplement. Gijdel has been expressing his 

conviction that, despite its independence of the axioms of ZF, (CH) must have a definite 

truth value, and this has led him into a discussion of the grounding of the concept of set. 
He writes: 

. . . despite their remoteness from sense experience, wz do have something like 
a perception also of the objects of set theory, as is seen from the fact that h e  
axioms force themselves upon us as being true. I don't see any reason why we 
should have less confidence in this kind of prception, i.e.. in mathematical 
intuition, than in sense perception, which induces us to build up physicel 
theories and to expect  hat future sense perceptions will agree with them, and, 
moreover, to believe that a question not decidable now has meaning and may be 
decided in the future. . . . 

I i  should be noted that mathematical intuition need not be conceived of as a 
faculty giving an immediate knowledge of the objects concerned. h b e r  it 
m s  ha& as in Ihe case of physical expcricnce, we form our ideas d w  of those 
objects on the basis of something elsc which is immediately given. Only this 
something else here is not, or not primarily, the sensations. That something 
besides the sensations actually is immediately given follows (independenuy of 
mathematics) from the fact that even our ideas referring to physical objects 
contain constituents qualitatively different from sensations or mere combinadms 
of sensations, e.g., Lhe idea of object itself, whereas, on the other hand, by our 
thinking we cannot create any qualiubivcly new elcmcnu, but only reproduce and 

142 Hilben [op cit] p376. 



combine those that are given. Evidently the 'given' underlying mathematics is 
closely related m the abstract elemenrs conlained in our empirical ideas.* 11. by 
no means follows, however. that the data of this second kind, because they 
cannot be sswiaied wilh actions of certain things upon our sensc organs, are 
something purely subjective, as Kant asscrtcd. Rather they, loo, may represent 
an aspect of objective reality, but, ~ls opposcd Lo the sensations, their presence in 
us may be due t another kind of relationship between ourselves and reality. 

However, the question of the objective existence of [he objects of 
mathematical intuition (which, incidenkzly, is an exact replica of the question of 
 he objective existence of the outer world) is not decisive for the problem under 
discussion here [ h e  problem of (CH), that Is]. The mere psychological fact of 
the existence of an intuition which is sufficiently clear to produce the axioms of 
set ~heory and an open series of extcnsions of them suffices to give meaning to 
h e  question of the truth or falsity of propositions like Cantos's continuum 
hypothesis. What, however, perhaps more than anything else, justifies the 
acceptance of this criterion of uuth in sea theory is the fact that continued 
appeals to mathematical intuition are necessary not only for obtaining 
unambiguous answers to  he questions of Lransfinite set theory, but also for b e  
solut!on of the problems of finimy number theory (of the type of Goldbach's 
conjecture), where h e  meaningfulness and unambiguity of Lhe concepts entering 
into them can hardly be doubted. This follows from the fact that for every 

irions of this tm ~ r o m ~ v s t e m  there are infinitelv manv und&&&le nraQos 
(+ Note that here is a close relationship between [he concept of set explained in 
faxnote 14 [ihis is a version of the 'iterative' concept of set] and h e  categories 
of pure understanding in Kaot's sense. Namely, the function of bob is 
'synthesis', i.e. the generating of unities out of manifolds (e.g.. in b n t ,  of Lhe 
idea of one object out of its various aspccls.) 43 

Now as I understand it,  there are rwo notions of intuition under discussion in this passage. 

In the last paragraph, GWei claims that the 'mere psychological fact of an intuition which is 

sufficiently clear to produce the axioms of set theory and an open series sf extensions of 

them suffices to give meaning to the question of the truth or falsity of propositions like 

Cantor's continuum hypothesis.' I take i t  that the claim here is simply that there is, as a 

matter of psychological fact, sufficient consensus amongst the mathematical community as 

to what is and what is not immediately apparent in set theory to permit eventual agreement 

on (CH). What is intuitive, in this sense, is just what is found obvious. Gdciel's clainr is 

that our intuitions in this psychological sense, perhaps guided by informally presented 

'genetic' concept of set outlined by Zermelo, are sufficiently strong and clear to permit 

agreement on axioms beyond those of standard ZF which will suffice to settle the (CM) t 
our mutual satisfaction. Now, staving at the level of empirical psychological fact, I think 

that this is actually false. From what I L J n  tell of the mathematical community, and 

especially the set theorists, from the outside, i t  appears to me that no such consensus 

exists. But this, I think, is philosophically unproblematic and without implications for the 

ontology of mathematics. For the activity that G a e l  is appealing to here - in effect, the 



investigation of models of set theory - is an exercise in interpretation only in the first of dle 
two senses distinguished in Chapter One. It is perfectly possible to join in the &scussion 

of whether or not tkis or that model of set theory, in which (CH) holds or fads as the case 

might be, keeps faith with our intuitive understanding of the concept of set in the 
psychological sense, whilst remaining a s&ct formalist at the level of ontology. 

But the earlier parts of this quotation seem to me to feature a conception of mathematical 
intuition which is neither psychological in character nor ontologically innocent. It is this 

notion that figures in GMel's claims about the 'given' underlying mathematics, and it is 

tkis notion that is said to bear a close relationship to the Kantian categories of pure 
understanding. This is the notion that we need to understand. 

Let us begin by setting aside some misguided criticisms that have appeared in the literature 

on this passage in GMel. Crispin Wright complains that Gijdel . . . 

. . . postulated a special intuitive facuity, akin to a kind o f  perception o f  
mathematical objects, to explain our capacity to know mathematical n t h § .  
Such a postulation, of  course, explains nothing of the sort. The picture, indeed, 
threatens to push our recognition o f  the mlR of a mathematical statement 
beyond philosophical account. 44 

And to be sure, we have just seen that Godel does indeed speak sf his faculty of intuition 

as 'something like' a perceptual capacity. But alike in what respect? 

Now, in the ordinary way, we talk of perception of objects, and perception of truths - of 

perception de re, and perception de dicto, one might say. Is the claim that mathematical 

intuition yields perception de re of sets? That is certainly a very suspicious notion. But 
then, at the beginning of the second paragraph, Godel explicitly denies that his 

mathematical intuition gives immediate - i.e. dc re - knowledge of mathematical objects. So 

the analogy with perception is more likely to be with perception de dicto, or perception of 

truths. 

Now, why exactly is t.he postulation of a special qudsi-gerc~ptual capacity in this de dicto 

sense said to be unexplanatory? Well, we can certainly agree that an explanation baa rests 

upon this kind of postulation is worthless if nothing whatsoever is known or knowable of 

the alleged special faculty other than its manifest effects. This is the defect famously 

144 Wright [I9801 p3. 



satirized in Moliere's 'explanation' of the soporific powers oi opium in terms s f  the 
possession of a 'virtus dormativa' - as we might put it, a sleep-inducing disposition. 

Wright's complaint, then, may be that Godel's postulation of a faculty of mathematical 

intuition is at bottom no better than the postulation of a basic disposition to know some 
mathematical truths. 

But this kind of defect is alleviated if some characterization of the special faculty can be 
given in terms relatively independent of the data for which an explanation is sought. In the 

case of the sleep-inducing properties of opium, tor example, postulation sf a virtus 

dormativa rnay become genuinely explanatory if  some characterization of the virtus 
dormativa (and of the subject upon which the virrus dormativa works) can be given in 

chemical terms. The result might be an explanation of the sleep-inducing disposition of 

opium at the level of basic chemistry. Drowsiness could perhaps be shown to be 
associated with such and such chemical changes in the brain, and opium could be shown to 
have a chemical constitution apt to cause those chemical changes. The question we must 

now ask is, Why exactly does this kind of move help? 

To begin with, notice that it  would not be plausible to claim that the postulation of a special 

mental faculty is legitimate only if the alleged faculty can be finally characterized in nsn- 

dispositional terms. For, to stick with our opium example, the characterization of the 

sleep-inducing disposihon of opium in chemical terms rnay very well itself be dispsitional: 

after all, the primitive expressions of chemistry, and indeed of basic physics, appear to be 

prime candidates for dispositional characterization. Taking science as one finds it, it is 

simply untrue that scientific explanations couched in dispositional terms may always be 

regarded as placeholders for explanations couched in nsn-dispositional terms. 

Nor would it be plausible, in my view, to press any general demand that explanations at 

whatever level must shown to be reducible, even in principle, to explanations couched in 

the vocabulary of a non-mentalistic science, leave alone to explanation in the vocabulary of 

basic physics. Any such demand, if taken ful ly seriously, would deny almost all of 

cognitive science as it is currently practised any  genuine explanatory value. Perhaps that 

conclusion would not deter some, but i t  seems to me that, if the best that can be done 

against G&lsl postulation sf a special faculty of mathematical intuition is an argument that 

would close down the psychology departments, then GUdel is home free. So the point had 

better not be that GUdel's talk of mathematical intuition is hopelessly unexplanatory because 



it is either imducibly dispositional, or cannot be cashed out in terms of some more basic, 
non-mentalistic science. 

But surely, you will say, there is no mystery about why the attribution of a virtu§ 
dormativa to opium cannot explain why opium causes drowsiness. FOP such an 

'explanation' is no different from the bald assertion that opium just does cause drowsiness 

- we are given no information whatsoever about why opium causes drowsiness. And of 

course that is right. What we need to guard against, though, is an unduly restrictive 

conception of whai it takes for talk of the sleep-inducing properties of opium to become 

genuinely explanatory. The temptation, of course, is to think that what is invariably 

required for a genuine explanation is an account of a causal mechanism, such as that linking 

ingestion of opium and drowsiness, with this talk sf causal mechanisms then cashed out in 

turn in terms of causal links between types of states individuated in the vocabulary of 
physics. This conception really is far too resmctive, for the reasons I have just mentioned. 

A better lint of thought, I think, begins with the observation that an account sf the vhus 

dormativa of opium in chemical terms enables us to subsume the: explanation of the sleep- 

inducing propemes of opium within a body sf explanatory theory sf much broader scope - 
a comprehensive theory which explains, say, the sleep-inducing propesties of other kinds 

of substance, along with a wide variety of related psychological and somatic effects of a 
wide variety sf narcotics. To see the most important point here, suppose that we know 

olnly that opium has a sleep-inducing disposition, and that coffee, say, has a bowel-moving 

disposition. What happens if we put some opium in our coffee? Does the resultant 

substance have both dispositions, does one prevail over the other, do they cancel each other 

out? No answer is possible within the confines of a theory which provides only a 
piecemeal attribution of dispositions. However, we would expect an adequate theory, 

pitched at the right explanatory level, to provide a prediction covering exactly this kind of 

combination of dispositionally characterized properties. Now of course, unpacking this 

talk of the 'right' explanatory level is itself a complicated business, but we surely do have 

some Intuitive grasp, prior to the elaboration of any scientific theory, of some range of 

related phenomena of which the sought for theory ought to provide! unified explanations. 

In the case of GUdel's talk of mathematical intuiti~n, the relevant theory must be an overall 

theory of our cognitive capacities, both empirical and non-empirical. But Is it then 

obvious, from what we see of Gtidel's talk of a faculty of mathematical intuition in the 

passage above, that no integrative account of the functioning of nmathematical intuition 



within such an overall tReory of our cognitive capacities is possible? It does not seem at dl 
obvious t~ me. To be sure, we will want to know much more about the workings of this 

mathematical intuition, but I see no reason to believe that nothi~~g more can be possibly k 
said on that topic. One might indeed conclude otherwise ifG6del was postulating the 
existence of a faculty that gave us some kind of direct, unmediated access to Cantor's 
paradise - perception de te of sets. But that is not in fact Giidel's position, as he clearly 

states. 

Beyond these relatively specific ways in which Wright gets Gadel's position wrong, 

though, Wright's complaint seems to me to betray a more general misunderstanding of 

what 6i)del is trying to do. Wright hears Godel's notion of mathematical intuition as 
intended primarily to address worries about the special conditions required for mathematical 

knowledge - in effect, to supply us with an analogue of causation, of a reliable, 

knowledge-yielding mechanism to relate us to mathematical truth. But I think that it is at 

least equally reasonable to ?,ear G(ldells notion as i n  fact responding to a second kind of 
difficulty, concerning she conditions under which beliefs about the characteristic objects of 

transfinite set theory can be ascribed to finite cognitive systems - a problem which is 

fundamental to Hilbert's Programme, as I have described it. And if we do hear him in this 

way, then the talk about the given' underlying mathematics, about the 'abstract elements' 

in our thought about the empirical world, will appear i r ~  a somewhat different light. But I 
think it best to approach this interpretiitisn slowly, by way of some further miticisms of 
GtSdel offered by Charles Chihm. 

Recall that G a e l  claims that mathema~ical intuition shows itself in the phenomenon he 

describes as the axioms of se; theory 'forcing themselves upon us as true'. Chihara, in his 
criticisms of Gadel, finds this a thoroughly occult notion.' 45 He invites us to consider the 

following case. A student takes up Sc"nnfieldls text on set themy and reads the following 

passage, in which Schmnfield explains the 'iterative' concept of set mentioned by GMel in 

our last quoted passage: 

We start with cemin objects which are not sets and do not involve sets in their 
construclion. We call these objects urelements. We Lhen form sets in 
successive stages. At each stage we have available the urlcmenls and the ~ c &  
formed at earlier stages; and we form into scts all collections of these objects. A 
collection is to be a set only if i t  is formed at some stage i t 1  this 
construction.146 

145 See Chihara (19821, and Chihara [1990] pp15-20. 
146 Schoenfield [I9671 p238. 
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A little later, our student comes across the regularity axiom of set theory, which tells us 

that, if a set S has an element at all, then it has a minimal element - an element y, that is, 
such that S and y are disjoint. Reflecting on what she was told above about what wts are, 
our studene might reason as follows. Suppose S has members. Let y be a member of S 
formed at as early a stage as possible in the construction procedure desclitd above. Now, 
if y in turn has any members, they must have been fbrmed at an earlier stage than y, so they 

cannot be members of S. So S and y must be disjoint, and the regularity axiom must be 

me. 

Now. I agree with Chihafa that, if this is all that is meant by szying that the axioms of set 

theory force themselves on us as being true, then there is absolutely no reason to think that 
this experience provides evidence for the objective truth of the regularity axiom, or any 
other part of set theory, for two reasons. Firstly, nothing even remotely analogous to a 
special kind of perception is involved here - simply the ability to reason deductively. And 
secondly, the kind of interpretation of the axioms of set theory that is involved here is the 
first, thin sense distinguished in Chapter One. Nothing in the interpretation of set theory 
in this sense can induce an ontological comrnirment to sets. But the earlier parts of the 
passage quoted above makes it clear that t'his is not the only kind of experience G W l  has 
in mind when he speaks of the axioms of set theory as forcing themselves upon us as true. 

However, Chihara raises a much more serious worry. On one possible reading, Giidel is 
claiming that this phenomenon of convergence in mathematical enquiries is to be explained 

- via the postulation of a shared mathematical intuition. And this can seem a suspicious idea, 
for the following reason. In the natural sciences, the phenomenon of convergence on the 
truth is stanhdly explained in causal terms. The scientist forms hypotheses, and tests 
them by experiment. Mother Nature either shows the hypothesis to be false, or allows it to 
stand as partially confirmed. In this way, with much skill and ingenuity, the range of 
initially plausible competing explanations can be narrowed, and the nmowing process - 
convergence - is governed ultimately by the intersubjectively available evidence of the 

senses. Plainly, this story is causal in nature. And equally plainly, convergence in 

mathematics carmot be explained in terns of set-rheoretic reality impressing itself upon us 
in this sense. If mathematical intuition is intended to supply us with w surrogate for 
causation in order to enable us to import this kind of naturalistic explanation of convergence 
over to the mathematical case - and this, I think, is what motivates Chiharats csmplaints - 
then GMel is indeed intruding upon the proper explanatory domain of natural science in a 



way we ought to be reluctant to accept. As Chihara points out, not only is this story of - 
dubious intelligibility, but there is also the possibility of a far more plausible naturalistic 

alternative. For there seems to be some hope that cognitive psychology might explain this 

phenomenon of csnvergcnce by uncovering some shared cognitive apparatus that mediates 

our ability to reason mathematically. 

Now Chihara's suggestion is not, of course, that mathematical mth might itsey have an 
explanation in terns of psychological facts about mathematicians. An empirical explanation 

is envisaged here for convergence on mathematical truth, not for the mathematical truth 

converged upon. Still, even this does not appear to be quite right, since convergence on at 

least basic mathematical truths is surely a constitutive feature of rationality, md thus 

something that must characterize rational agents, rather than something we might discover 

about rational agents. 

But this suggests that there are in fact two questions here, which need to be distinguished 

carefully. Chihara's interest is in the question of how the natural world can come to 
contain such things as mathematicians, and he thinks, as I do, that this is something that 
might have a naturalistic explanation of i! familiar empirical kind. I see no reason to think 

that GMel need deny this. The other question, though, concerns rather the issue of what 

the cognitive capacities of rational agents must be like, given the constitutive truth that they 

must be capable of reaching convergence upon at least the most fundamental mathematical 

truths, as well as the simplest truths about their shared environment. This is not an 
empirical question (although an answer to it will incur empirical liabilities), an8 an arternpi 

at explanation here need not be in competition with any explanatory task proper to natural 

science. And it seems to plausible to read GMel as claiming that mathematical intuition, as 

he understands it, must have a role to play in such an account. 

What is in question, on this reading of Giidei, is not an empirical enquiry into the grounds 

of convergence as Chihara understands it, but rather an a priori investigation of what 

cognitive capacities we must have, given that our basic mathematical and non-madiemarlral 

knowledge is roughly as we take i t  to be. There is nothing exotic or occult about this kind 

of suggestion, in my view. And it  points us in  the right direction, if we want to undeismd 

Gael ,  and Hilbert, for it leads towards issues concerning the ascription CT mathcrnatical 

concepts. 



By now, two things will have occurred to you. Firstly, we have been hearing a lot about 
what GMel's conception is not, but very little about what it is. Secondly, GMel appears to 
have been saved from his critics by chaining his doctrine of all interest, and in phcular,  by 
ignoring this problematic analogy of mathematical intuition with perception. It is &me to try 

t~ remedy these defects. 

A sympathetic attempt to understand GMel must begin, I think, with the parallel he 
suggests between sets and objects, or rather, between the ability to think of sets, and the 

ability to think of objects. Giidel's claim is that we form our ideas of physical objects, or - 
better - the idea of a physical object in general, on the basis of sensations, which done rn 
'immediately given'; although the idea of a physical object contains eiernents 'qualitatively 

different' from sensation or collections of sensations. And in some analogous way, G W l  

suggests, we fom our idea of set in general out of something else which is immediately 
given - although not, in this case, something immediately given in sensation. In the 

impoftant footnote to this passage, the suggestion is made that formation sf the set concept 

from something immediately given is a special case of the general Kantian notion of 
synthesis, the activity of the mind which unifies the chaos of sensory impressionsprior to, 

and as a precondition for, the conceptualizing activity of the understanding. 

What is meant by 'object' here? There is a very thin notion of object, which I can best 

explaiLa by reminding you of one aspect of Russell's philosophy in his logical atomist 

rid. You will recall that, in the logically perfect language Russell was then seeking, 

zhere was to be a class of expressions Russell calls genuine singular terms. Etch genuine 

singular term had as its reference a sense datum - a little patch of color, a momentary whiff 

of scent, ?he psinsilliste bric a brac of a Buddhist metaphysic. ' h e  quzstion of unperceived 

existence cannot even be raised for objects in this thin  sense. To rlmdersimd GWel. you 

must not think of objects in this way. Rather, you will have to think of objects - or 
physical objects, as 1 shall sometimes say - as neither bundles of sense data, nor pemment 

possibilities of sensation, but as the thick, full-blooded, mind- and experitnce-independent 

particulars of common sense and physical theory as realistically construed. 

%r is an ancient commonplace of philosophy in the empiricism tradition, apparently ech~ed 

in GMel's remarks and in the Quinean doctrines that dominated the closing sections of 
Chapter One, that the notion of a physical object in this thick sense is underdetermined 

by what is 'immediately given' to us in experience, i.e. by experience of objects in the thin 

sense. As we saw, in the Quinean response to this gap we arc said to 'posit' physical 



objects, along witR mathematical objects and such things as the gods of Homer, In a 
spontaneous 0lrtpOuring of theory designed to render uognitively tractable the flux s f  
experience. In the gmgress of scienc , and st the continued promptings of exptitnce, 
themy k e m e s  somewhat less spontaneous, and the Homeric gods pass away in favor of 

simpler, more compfehensive, more testeble hypotheses. To date, however, physical 
objects and the objects of mathematics remain, as commitmenrs of physics - xhe best theory 
of the world we have. 

It seems to me that GMtl can accept all this. This can be part sf his story about why we 
should believe there are mathematical objects. It is a story in which mathemaeical intuition 
appears to play no pan. But we should then ask: What is meemt $9 'positing' objects? 

Why dms the torrent of experience prompt in us the spontaneous theories it does, rather 
barr my of the myriad alternatives? As I read hila, GMel and Hilkrt aiikc are offering R 

Kandan kind of answer to questions of this son. Let rr,c now pan company with G W l  
and Hilkrt, and tell you how I tYnk this story must go. 

E;ot Kant, on my best understanding of him, objects in the thick sense me a precondition or" 
experience. I would expand this thought somewhat as follows (and I m aware that II 
depart here from Kant). If a creature has a behavioral rcpertoie complex enough to resist 
characterization simply in terms of stimulus and response - that is to say, a repertoire that 
cannot be characterized adequately without appeal to some notion of mental representation - 
then my theory attempting to ex.plain the cognitive capacities of the creature will have to 
draw upon the notion of a physical object. Roughly, the theory will have to loc~te the 
mature in an envisonmti~t of physical objects. Notice that vlhat is in question here is not 

the concepts that we must attribute to a creature capable of representing its environment: 
what: is in question is the weakest set of assumptions one can make about the envimnmcnt 
sf a creature in order for the idea of concept-deployment to get a &p. 

Indeed, I would want to go a little further than this, and claim that i t  i: a funher 
presupposition of npresentati~nal theories that concept-deploying crentms rnust be located 
in environments of discrete, distinguishable objects standing in relations, to each other arl-3 

to the creature, of the type describable by phrases such as 'to the left of. 'behind', 
'above', 'further from', and so on. Objects standing in mays gcverned by such relations, 
P believe, instantiate initial segments sf the simplest mathematical structure, that QF a well- 
founded Iincnr order - the order instantiated in the natural number sequence. In m y  

opinion, arrays of objects ordered in this way are the best candidate for what GMcl calls 



the 'given' underlying mathematics. On this view, then, what is given to us in 
mathematical intuition is immediate experience of finite segments of the well-founded linear 
&r type. The claim is that i t  is a non-empirical presupposition of concept deployment 
that experience be experience of objects standing in these structural relations. Any theory 
of representation must presuppose ~bjects instantiating this smsture. 

It may be helpful heft to think for a moment of how you werc first introduced ts Turing 

machines and the kinds of problem they ape capable of solving. The details of the 
exposition vary h r n  text to text, but you were certainly introduced to some 'conventions' 
governing the structure - the physical envrronnlent - cognized by the tli~achine. In one 
standard variant, the trvironment consists of a tape, divided into squares, conteining 
certain symbol tokens. The machine then operates by moving to the le/s or right, one 
square at a h e ,  in a series of discrete jumps. Some configuration will be &sipat& as the 

halting coPrfigurasion, leaving the value of the function computed in a fixed position on thc 
t a p  determined by the input and the machine's instructions. A11 of this is designed to 
ensure that a certain structure - that of a well founded linear order - is instantiated in the 

physical environment of the machine, in a form that the machine can 'recognize'. There are 
various ways to achieve this, and in this sense the particular ways selected arc in&& 
conventional. What is not a matter of convention, though, is the necessity to ensure that 
these structural conditions on the environment of the machine are satisfied. Of course, all 
of this explanatory activity is by way of making vivid a series of conditions that can be 
given a purely mathematical interpretation. Turing machines, after all, arefincriom. The 
theory of computability can be interpreted in the weak sense - modelled in a weak set 
theory, for example - and when interpreted in this way, i t  is a part of pure mathematics, 
innocent sf ontological commitment. 

This mention of Turing machines obliges me to break off from the main line of discussion, 
in order to say few words on the identification of f in i aaq  mathematics with PRA. In Tait 
[1981] this identification is defended in detail, and I have nothing of substance to add to his 
arguments.147 Notice, though, that the Turing machine has capacities that considerably 

In particular, I take the same view as Tail on thc well known passage in Hilbert, [I9251 which hsrs bwn 
taken by some (see Kreisel [1970], for example) to license a far more liberal identification of f i n i m q  
mathematics - see Tait [I9811 pp544-545 and refs. therein. The succinct discussion of this p i n t  in 
Simpsan [I9881 is also wonh consulting. 

The kind of liberal identificillion of finiwy malhcmatics advocated by Kreial, however, dm have 
some echoes in Hilbert's ~hought, especially towards the very end uf his active life, when he learned of die 
inoompleleness theorems. Hilbcn was convinced that lhose Lheorerns did not preclude the possibility of a 
finitary consistency p m f  for arithmetic, and there is perhaps some grounds for suspicion that he wes 



exceed the bounds of the primitive recursive. In particular, functions defined by the 

minimization (or least search) operator are Turing computable, but do not belarig to PRA. 

Them are several points to be noticed about this. 

Firstly, the lease search opcrator is closely akin to the Hilbert E-symbol discussed in 
Chapter One - the exemplix chosen by the &-symbol can always be taken to be the Beast 
such. As we saw, Milbefo ascounted the e-symbol the sole ideal element in his g r e f e d  

fornulation of arithmetic, and this supports the contention that it ought slot to count as 
finitary. Secondly, it is well known that the least search operator i nduces  hito !he tkeQHY 
of computability operations which are not guaranteed to halt (if no least 9 exists), and this 
destroy8 the effwtiveness that is an essential featuee of the finitary. Thidly, the least 
search operator facilitates the computation of functions that Milben certainly did not count 
as h i m y .  The standard example is the Ackerrnann function &fined by 

Ack(0, n) = n c I 
Aek(m+l, 0) = Ack(m, 1) 
Ack(m + 1, n + 1) = Ack(m, Ack(m + 1, n)) 

This function is computable, but not primitive In particular, it grows faster 
than my primitive recursive function. Indeed, it  is a useful exercise to calculate a few 
values of this function - up to Ack (5.5). say - since doing so is guaranteed to make: you 
love the method of ideal elements.149 

Thus, whilst it is easily seen that Ack(m, n) is defined for all values of m, n, the pr~of 
essentially involves a double induction which is not plausibly regarded as finitary, and 
which was not so regarded by Hilben. 

mptesl here towards allowing some forms of uansfini~e induction to count ars finiw - enough, perhaps, to 
enable him to accept Genzen's 1936 consistency proof. But his is spcula~ion. Bemays, of course, went 
on to pursue a liberalized Hilbert's Programme, wilh an exucmcly generous notion of the finitary. This 
tradition continues in the work of Kreisel and Feferman on predicative systems of analysis (see e.g. 
Feferman [1964]). For Lhe relation of this work to Lhe original Hilbert hogramme, I take the view 01 
Simpson [1988]. In general, I Lhink hat philosophical (as opposed to analhematical) interest declines very 

idly as h e  hunds of h e  finihry are Cwsened. 
See Hilben [1925], pp388-389. For a "cry deuilcd discussion of i c  Ackcrmarin function, oec 

Yasuhara [I971 1, and for a concise and readily accessible account, see Epstein and Camielli [ 1 M ]  ppP 10- 
115. 
149 For a suggestive and stimulating philosophical discussion of the Ackermmn function, see Boo103 
119871. 



This is perhaps the best place to mention Hilben's final point in his defence sf his work 
against the criticism d ~ o i n c a r ~ . ~ ~ *  In response to Wilben [1904j, PoincarC pointed out 
that classical mathematics makes very extensive use of the principle of induction. But the 
only possible way of giving a syntactic p m f  of consistency for a fonnalizd mathmatical 
theory wm by inchaction. Milikn was therefore trapped in the circle of using induction to 
justify the use of induction. The response to this is obvious ffsm the discolssisrn of h e  
Ackemann fuarction: there is induction and induction. And in particular, there is no 
circularity in using induction nsaicted to formulas defined by primitive ~ c m i ~ n ,  say, in 
metamaahematical reasoning abu t  PA (for example), in which induction is available for a 
m m  extensive class of Cormulas. This is the kind of distinction that Hilberi has in mind in 
Hillbcrt [I9271 gp472-3, wheee he speaks of induction 'based om the intuitive csnsmction 

of the integer as numeral' as opposed to induction which makes unrestricted use af the 
induction axiom. 

Lei us return now to the main line of argument. If the fundanentd thesis of cognitive 
psychology is cornst - the thesis, that is, that the mind is essentially a kind sf compllex 
digital computer (or complex of digital computers), that cognitive pmesscs are esscntidly 
computational - then the presence of this struct~;e in the physical environment sf any 
system the behavior of which demands explanation in cognitive terns becomes a 

c o m i m e n r  of natural science. The natural number sequence, thought of as potentially 
infinite in the manner of the Turing machine's rage, is a presuppositioia of the 
representational theory of the mind. 

Recd now the crucial analogy between mathematical intuition and perception. If anything 
has become common ground amongst theorists of perception, whether scientific or 
philosophical, it  is the view that any theory of perception must assume a relatively rich 

'innate' cognitive endowment which is brought to bear immediately, without explicit 
learning or inference, on the items encountered in perceptual experience. To oversimplify, 
we might say that it must count as a basic, not a derived fact of our perceptual experience, 
that oranges are seen as subjectively more similar to apples than to bananas in shape (or 

whatever) - that we associate oranges and apples, bur not oranges and bananas, under the 

sond concept 'round'. In fact, though, talk of innateness is misleading here, for no 

empiricist need deny that some such basic similarity space has to be assumed if perception 

150 See Poinca-6 [1908], ~ 1 6 9 -  171. The same complaint is found later in Brouwer [I9121 p71. 



is to be p s i b b .  The pint is redly a point about the weakest assumptions that must be 

made, if perception of an objective world is to be theoretically intelligible at all. 

The basic contours of any similarity space, it seems tc me, can reasonably be dekribed as 
intuitive. That concept deploying creatures must have some kind sf perceptual intuition, 
must immediately deploy similuity judgments, is not a claim that belongs to empirical 
psychology, however. Equally, the claim that conceptdeployment presupposes some bcistd 
of environment of objects instantiating initial algments of a well-founded linear& does 

not belong to empirical psychology. 

BUS what does this have to do with sets? The G6delian claim, remember, is that the 
concept of set plays the same role with respect to the given underlying mathematics - which 
I have now assmiated with initial fpagrnents of a well-founded linear order - as the concept 
of physical object plays with respect to what is given in sansation.151 T'he GWlcm 
thought seems to be thls: just as we consauct ever more sophisticated physicd theories 
fmm the extremely primitive, fragmentary physics that is given together with the concept of 
object, the better to manage the ongoing flux of experience, so too we consguco eves more 
complex set theories (perhaps not under that descr;;ption - here we think of the theories sf 
the integers, the reals, the complex numbers, as fragments of set theory) from the 
extremely primitive set theory that is given together with the well-founded Unem order type, 

the better to understand the mathematical properties of the potentially infinite natural 
number sequence. The picture, then, is somewhat as follows: 

151 It is worth reflecting on what this shows about GMel's intentions with respect to mathematical 
intuition. For ir seems clear to me that the doctrine he advances answers in the first instance up a worry 
ebow what is required for the basic masrery of rlie concepr of sel. Appeals to intuition have always seemed 
suspicious on the grounds of dogmatism and arbitrariness, for what is to prevent anyone from mki~rg  to 
gmmt his favorite convictions from rational scrutiny by appeals to intution? What is to prevent someans 
from simply asserting the con~inuum hypothesis as an axiom of set theory, on the grounds that she and 
Cantor at least find it perfectly 'intuitive', and those who do not simply don't undersmd the concept of set? 
Is there any principled way of settling what can, and what cannot be said to be 'intuitive', in his non- 
psychologisd sense? The threat of scierltifically obstructive dogmatism is of course the feature of Frege's 
position on geometry that so disturbed Hilkn. Now as I understand him, Gae l  is arguing tkt heat is a 
principled way of drawing his distinction. The concept of sat is grounded in our intuirive grasp of the 
basic mathematical structure, thsr of a well-founded linear order. Extensions ~f the set concept at the outer 
limits of sct ~hcory are to be assessed with respect to their consequences for our understanding of !his basic 
slmture, and GWel thinks that this provides constraint enough to ensure thnt the concept of set is 
scientifdly manageable. 
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The idea is this. One ascends in parallel on each sick of the diagram, with the demands sf 
physicd ohtory drawing one through naive physics, then a more develop8 physics 
including the first hints of elementary dynamics, then naive dynamics, hen Newosnisun 
physics ets.. This progression induces on the mathematical side the demands mat by 
elemanmy arithmetic, then by full arithmetic (including the properties of the mdoraals), hen 
elemenmy analysis and calculus, etc. etc. At each stage, the explmatery demands on 
theory are met in put by the invocation of exm objccts, both as the mathematical and ah 
physical level. Ultimately, one will be drawn into the transfinite by the successive wries sf 
demands imposed on mathematical theory. 

It seems to me, though, hat the discussion in Chapter One shows that there is a quite 
fundamental problem with this GMclian picture. On the scientific side, one might well 
wmo to agree that one is drawn deeper and deeper into an ontology of unobservables 

simply in order to get a cognitively manageable grasp of the observable in all its detailed 
and evolving complexity. At each stage, the answer to the question, But why should H 
believe that there are cp's? is provided wi th .  the response, Because there, am these 
observational facts (look) that are best explained by this theory which quantifies over qp's. 

Let us agree that this is a good answer - that, on the physical side, theory redly does suck 
us into the extra ontology in this way. But it is apparent that the parallel question on the 

otRer side must, at some stage, get a very different answer. Once the bounds of the 

calculable in principle are reached, there is no longer, even in principle, the possibility sf 
responding to the ontological question by pointing out the independently available 
comguntional data requiring explanation, for there are no such independently available 
computational data. At this boundary point, then, some additional argument is needed 



I cannot see that GWel gives any hint of a plausible additional argument. The only 
suggcsdons I can find sue tho% implicit in what he says concerning the memingfuk9s of 
questions in transfinite set theory, the possibilities of new axioms rich in mathematical 
consequences ctc. However, I cannot agree that the only way to account for the 

meaningfulness of those questions, or the implications of such axioms, demands the 

cxocnsion sf a realist ontology Beyond the Hilbenisln bound, for it s ~ m s  to me thole the 
intebpretability of transfinite set theories in the weak sense introduced in Chapter One is 
ptafestly sufficient to provide what is needed - or at least, it seems to me h~t, if this is past 
so, then we are in need of 8 philosophical argument that neither GlfBel, nor such nm- 
@Melearns as hladdy, have provided, in ~ r d e r  to explain to us why i t  is not m. The 
@hean argument for scientific Ftalism does not appear to me to offer mything apt to plug 
this gap, and the more obvious ways in which one might hope to plug it - for example, by 
appealing to richer doctrines in semantic theory - seem unlikely to he compatible with the 
metaphysical underpinnings of the Quinean argument for moderate mathematical realism. 

Them is, however, one part of the long passage from @Me1 quoted above that suggests, if 
not an argument to plug this gap, then at least some suggestions as to the availability s f  
mathematical data apt to motivate such an argurnent. For towards the end of that quotation, 
GWl mentions his famous incompleteness results as providing gorinds for the belief that 
the minimal demands of mathematical theory, even with respect t~ the most elementary 
parts of mathematics, will require ever more far reaching excursions into the Cantorim 
transfinite. This is an intriguing suggestion. It  is high time that the Hilkrtian psition I 
have been outlining.was confronted with the fact of incompleteness. That is the topic of 
Chapter Three. 

Summary. Before proceeding to discuss the incompleteness phenomena, lea me close this 
part of my thesis with a summary of the discussion so far. 

I described the Hilbertian project as the clarificatiqn and justification of the mafhernaticim's 
use of the actual infinite. I showed that this project was to be accarnplished by a 
demonstration, at the center of which lies the Master Argument, that the actual infinite of 
classical mathematics, and in particular classical analysis, was never needed to prove 
fi~ritary results. I showed that there is good reason to believe that this project can k carried 

out with respext to classical analysis, although it  cannot Be camed out for those parts of 
mathematics that depnd  upon the full transfinite theory of the cardinal and ordinal 
numbers. 



P then mrnpted to pnovide some motivation for Hiltsera's concern t~ clarify and justify b 
uw sf the actual infinite by giving some historical background to Hi%krs's ma. Isl 
so doing, I soressad the continuity of his concerns from the early work in geometry though 
the lam consistency programme. I argued ahat his h n h e n t a l  motivation was p i M  
by a &ire to pwt the ampmi practice of classical mathematics h i m  the kid sf prim- 
intuitionist attacb of Kmnecker (and later Brouwer), a~ well as the r%$icd ndlsm of 
Fmge. I ahowed that chis led him to attempt to h w  phi~osophicd di~ussiori of 
mathematics away h m  considemtions ,grounded in gt~eral metaphysical these8 developed 
idepndent9y of the actual practice of mathematics, towards canaidemdons ~ u c h  aa 
consistency, in&pdence etc. which could be addressed by propedy nrathemrstisd means. 
In so doing, I gied to reinforce the point that a p m f  of consistency, for Milberg served not 

so much to deflect some genuine wony that classical mathematics might be iriconsiskns, 
but rather to show ohat worries about our inability to deal with infinitistic rrodons ware 

ungrounded. 

However, I then argued that there is much confusion in Hilbert'~ amrngts as accomplish 
these mk~. I mid that the philosophical obligations he attempts to discme greatly e d  
anything strictly required fca his purposes. I distinguished two notions of inteqmution for 
rnathemaoicd theories, am8 mgued that Hilbert's central purposes in the philosophy of 
mathematics can be accomplislwi by maintaining that the meaningfulness s f  mathematical 
theories is sufficiently grounded in interpretation in what I called the shirn , purely internal 
sense. I said that the principle (HI) can be made to seem quite plausible if the acceptability 
of mathmatical theories is ngrarded as answerable to interpretation in the thin sense. 

But I also said that Hilkn's attempts to ensure the interpretability of mathcrnadcal Wr ie s  
in the thick sense have interesting features, and that a plausible philosophy of mathematics 
can incorporate those attempts. Deferring to the Quinean indispensability arguments, H 
claimed that some pan of classical mathematics has a hick interpretation. &pmhg h m  

Quine, B identified that pan with the mathematics that is fomalizable in conservative 
extensions of PRA. I attempted to do some justice to Hilbert's claims about a part of 
mathematics necessary for all 'scientific' thought, by arguing that PRA is a presupposition 
of representational theories of cognition, and thus basic to any atkmpt to t h h r c  the notion 
of a mind independent reality. I then suggested that an analogue of the Quinem argument 
can be used to extend this moderate realism over all of that part af mathematics conservative 
over PRA, where the infinite may indeed be regarded as simply a unifying, simplifying 



device, just as Hilben claimed. I concluded Chapter One by attempting to mgue against 
m s  richer notions of mathematical realism, as well as the insmmerstaliss construal of 
HiPBert's h o p m e .  

In Chapter Two, f devoted some energy to arguing against the claims that finitmy 
mathematics is in some way ontologically special - c~mmioted only to expressions, for 
e m p l e  - or e@s#rnolo@cally specid. I then attempted to explain furher the s p a i d  smom 
dl~sated to finiaary mathematics in Chapter Owe, by a more detailed account of the 
centrality of computation to any theory of cognition which drew upon Gtkkll's wel l -hwm 
discussion of mathematical intuition. But I denied that this discussion has any power m 
introduce entities intct our ont~lsgy beyond those countenanced by the moderate realism 
accepted in Chapter Oms. 



CHAPTER THREE: 
The Incomp!etencss Theorems and Hilbert's Prt\~,gl,rsrrnme 

h9nrdudlsn: In this chapter, I discuss the implication fm filbert's P~ulghaahsnmc: of the 
twQ ~ p l m s l e s s  hu '&ms  Qf Owl. 

'Fhe principal implicatiss, of course, is this: Hlkht's h p m m e  cmnoa be c d e d  out 

with full g e d i y .  This is the conventional wisdom, md it wema to me to be CQWILXB. 

However, them has baen surprisingly little consensus over just b w  the inccmpleaness 
tlreurerns show that Hilben's h p m r r s e  cannot Be eaaPied out. Most sften, it is the 
SGcond Incompleteness 4[P1t01am that is said to have struck the hilling blow. But as we 

shall see, the Second Ircompleteness Themrn is a very curious result, and its inqgast on 
thc Wtm R o p m m e  is less clew cut than one might ahink. Mdhl of this, ssmc sf the 

rnoE insightful of Fecent commentators have taken the view that it is in f'tpr=s the First 
Jnccnnpleteness Shermm that poses the &pest problem for Mlbcrt. 

This is my own view, and I shall give reawns in support of it in Section Four below. 
However, Michael Detlefscn, in his book on Hilkn's h g m n m e  md in subsequent 
work, has denied hat either of the incompleteness thmrems have any terl&ncy to show 
that Hd befigs hgramme cannot be carried out. Detaefscn's arguments will Ibe disc~~sse-d at 

some length. 

Whilst I agree that the incompleteness theorems shsu that Hi1kr-i'~ Programme cannot be 
carried out with full generality, however, I do nor accept the view that his shows that the 

underlying Hilbcman philosophy of mathematics is in any way defective. Indeed, it smms 

to me that that underlying philosophy, properly understood, is greatly strengthened, by the 
incompleteness phenomena. This, of course, was not GWl's own view, for he took his 
discoveries to provide support for some stronger form of mathematical realism. I shall 
explain blow just how implausible that Gdcklian contention is. 

Section One: The Diagonal Lemma and the First Incornplletea~ess Theorem. 
It is not my intention to reproduce any of the standard proofs of incomple&nesu. Many 
dttailcd pmfs  reasonably accessible to mon-mathematicians are readily available in the 



litmum.'* Moawever, i t  will be necessary to haw mention to m e  particask features of 
the smm p f s .  

TAe hem of the logical facts uncovered by any pmof of aka Fit hcsnmplewmsi~ Tlwmrn 
is the d @ o d  lemma. Mdfl it is, stated with fi.3 gertewaity: 

(DhkC] kt T be my extension ~f Q. Then for my bmula  q(x, vn, . . ., vd 
of UT), there exists a famula y(vl, . . ., Q) Of kfl) such that 

This t h m m  is  not proved in G&l [1931]. Rather, GWll (in effect) groves a specid 
case of it, constructed with respect to a Mncipia Mathematiea-type fomalism. En h e  
above genetalked form, the diagonal lemma wm fmt gmvd by Montslp.1s There is sa 
detailled proof of a slightly less general form sf the lemma in Bmlw md Jeffrey [PWO], 
and a succinct proof of the lemma as stattd above in M d h  [1991].1g 

As a specid ease of (BIAC), we have 

(DIAGQ) With T as above, for any formula FCx) of EP) with x done k, 
there is a sentence O of L(T) such that 

As a brief indication of the import of (DIAC*), suppose we introduce a pmlieate T(x) into 
r 7  the language of some consistent extension of Q* of Q, satisfying T( S ) S for every 

sentence S (a truth predicate for Q +). Using (DIAC*), we can find a sentence @ such 
r i  r i  r i  that Q+kG -T( 6 ), whence we will have Q+k-T( G ) -T( G ), i.e. Q+ is 

inconsistent. This is a f o r m ~ i ~  version of the Liar P d o x .  

lS2 GClde1 [I9311 is.perRaps the clearest account of the specific result proved in that paper. For the 
ge!ndimd venion of the F i s t  Immpleleness TRec#em k d  here, however, Boobs a d  Jeffrey [I9891 
chapters 14,15, and 28 is the best treatment known to me. Monk 119761 provides a vary comprehensive 
discussion, but me intended for mathematicians. For the Second Incompleteness Theorem, Monk is 
excellent, as is bolos [1979]. 
Is3 See Monugue [1%2]. Few textbooks prove the Diagonal Lemma with full generality, and m e  
~~ mamcnts d the i n c o m p l ~ s s  L h m s  (for example, KIM [I9521 and Schoeafield [1%7) do 
not mention it ai all. Boolos [I9791 gives a comprehensive treatment. For some &tails sf the curiw 
histary of the Diagonal Lemma, sec Smcnynski [1981]. 

See b o b s  and Jeffrey [I9901 ppla0-180, a d  McGee [1991] 24-25. 



S u p  now thrab T is m e  consisttrmt, axiomatidle cxsensisn sf  Q. Then the reladons 
m y  %ud XNy Befined by 

(a) xMy iff x is the code number of a prod  im T sf the f m u l a  with the 
number y 

(b) f l y  iff x is the code number of a p f  in % of the negation of the famda 
with the eQde n u m k  y 

are recursive. Since these relations ape recursive, there exist pdicarres p md v sf L(I') 
which define M and N nqcctively in T. 

We now k t  F(x) IE the f m u l a  

By (DUG), there exists a f m u l a  G such that 

It can then be shown that 

(ROSS) Neither T t- G nor T k -6. 

The sentence G constructed in this way is.undecidable in % - for the proof, which is 

straightforward, see Boolos and Jeffity [I9911 gp285-287. This is a version of the First 
Incompleteness Theorem, due to Rosser.155 

A thr~ry T is said to be o-inconsistent if, for some fornula F(x), Tk -F(k) for every 
n a t d  number k, and Tk (3x)F(x). T is o-consistent if T is not o-inconsistent. On  he 

assumption that T is an o-consistent extension of Q, a simpler csnstrucdon will msu1~ in 
m undecidable sentence of w). This time, we let F(x) be the formula 

Then by (DIAG) there exists a sentence G of Em) with 



h again, the sentence produced in this way is unhidable in %' - for &ab, see B d m  
an$ Jemy [I9901 pp283-288. This foam of the E h t  1~1~mpJekmss T'h-m i s  due ici 

0&1.15~ 

Neither (ROSS) nor (600) is the First Ilawmpletctness T h m m  as I skdl mdcfsmd in 
in t i i s  eseay, however. Fm our polpses, ihe First hcmpleterzss T h m m  ia what is 
u u b W  by (ROSS), (GOD) md the detailed worL on the asithmehdoea of syntax that 
makes ('MAG) ~ a b l c ;  viz: 

The argument is simple. If T is any x~iornaeizabEe extension of Q, d m  'F!' ir capable of 
representing h e  recursive functions, ~ca tnce  (DUG) is provable in T. U X is cansistent, 
hen we can effectively find a fomuls Cj as 111 (Ross) a b v e  (fcr exmplt) far which 
neither TkG nor 'Pk -G, whence T is incomplete. me i a r w n t  p i h t  to vsr~gice here, 
though, is that the conditions mentioned in the forrt~i~lation sf (DIAG) md (G6Q41 1) - 
that T bd a consistent extension of Q, that F(x) be a fornagh with x done fnx ctc. - ape al l  

Ptactily and naturally  ans slat able into mathematical idiom, LI a way which pernits the d y  

generalization of the particular result proved in GWel [I9311 to a widc range of 
mathematical theories. It is therefore reasonably obvious that there is a genuinely 
mathematical fact, of which (GMel1) is a natural transcription into ordinary English. We 
shall see that the situation with respect to the Second Incomp~ekncss Theorem is rather 
tiiffant. 

ORe final point. All the results mentioned in this section eue purely syntactic in character. 
No claim is made here about the content of the unbkivable sentences constructed via 

(DPAG), and no such claim is made by G(ide1 abut  the sentence '19 Gcn a' which he 
shows ts be urnderivable in a Principia-style fannal system in G(idel [1931]. H do not say 
that such sentences have no content: I am simply observing ahat the logical facts 
surrounding the First Incompleteness The, .a can be stated without appeal to their 

content. 



Section Two: Provabllity Predicates and the ~erond- Ineompletoneeo 
Theorem. With T still my consistent endensioff of Q, the reader will recall that the 
rclation wx, y) that holds of numben n, m just in case n is the code of a p f  in T of th 
f m d a  with code number m is computable, therefore recursive, t k m f m  mp~searmblc h 
Q. We shall now netd to be a little more precise a b u t  the notion of (fmd) p f .  A 
greof in T, we shall say, is a finite sequence of €mullas of L(T), separated by csmmebs (in 
the encoding of syntactic objects, the comma wiU have k n  assigned a c& number), each 
one of which Is either an axiom ~f T or some formula B wkre  A and A + B an earlier 
f m u l m  in the q m e n a .  T& Ls the stmhrd notion of prmA and one of the objectives of 
aridrsnethim, indeed of proof theory as a wwho, is to investigate its properties. 

Under my reasonable eracadirrg of the syntax of T, each p m f  of T d l  therefor& have a 
unique a&. By formalizing the definition just given in the natural way, md by spaking 
of c&s rather than expressions, and using any standard device for encoding finite 
sequences, we can define a particular formula Wx, y) (henceforth suppressing the 
relativization to T) which represents, or, as we shall now say, numeralwise mpresses the 

relatican 'x is the cock of a p m f  in T of the fomula with the cock y'. 

With Pr(x, y) as just defined, we now define Bew(y) to be the foxmula (3x)Pr(x, y). 

Suppose now that we have Tk A for some formula A. Then there is a g m f  in T of A, 
r 7 r  1 to which is assigned some code n. Then Tk Pr(n, A ), so ~k (3x)Pr(x, A ), i.e. 

I- 1 Tk Bew( A ). Summarizing: 

r -I (BER 1) If TI- A, then T k  Bew( A ). 

Suppose now that we have TI- A and T k (A 4 B). Then by writing down the pmof of 
(A + Bj, followed by a comma, followed by a p m f  of A,  followed by a comma, 
followed by B, we obtain a sequence that is a proof of B. This reasoning can be 

fmalized in any appropriate T, and it then yields 

r i  r 7 (DER 2) Tk B~W('A -t B') + (Bew( A ) + Bew( B )). 

r q  A third feature of Bew( x ), which plays a very important role in the p m f  of the Second 
Incompkteness Theorem, is this: 



(Notice the resernblmce between (PER 3) and the chmcteiistic axiom of oh% modal 
system K4, and also between (DBR 3) and the controversial K-K principle in 

r l  epistemol~gy.1~~ ) This time the verification that Bewl x ) satisfies this condition is 
lengthy. 

(DER 1) - (DFR 3) together make up the US6 Dcrirrabiliry Conditions. Tiley are 
simplifications of the Hilbert-Bernays derivability conditions first established for 
extensions of Q in Hi lkn  and Bernays [1939], and they play the central role in my 

generalized version of the Second Incompleteness Thtmem.'4SB The proof that the 

particular predicate which mumemlwise expresses Bepivability vvhose construction was 

sketched above satisfies (DER 1) - (DER 3) is complex, md several versians are 
availab!~ in the Iitemtwe.159 I Bs not intend to ~ p d u c e  the &tails. 

However, I do wish to comment on one matter which an examination sf the &tails makes 
clear. It is highly misleading to speak of the Derivability Conditions - as krlefsen does, 
for example - as constraints that a formula that represents the derivabilfty relatican must 
meet, if a generalized version of the Second Incompleteness Theorem is to be obtained. 
Far this suggests that (DER 1) - (DEW 3) are king imposed upon the notion sf formal 

Ccrivatrility in the interests of getting a generalized Second Incompleteness Theorem, and 
that gets matters the wrong way round. The point is that (DEB 1) - (DEW 3)  are in fact 
satisfied by the formula which represents derivability in my appropriate syrtkrn, md 

- which is consoruted in the way which mimics out rxatwo1 umkrstadbng ofderivabidity. 
Thus, a derivation is afinite sequence of formlac, each of which is either m miom or is 
B where A a d  A -) B are anrecedent formuias, or . . . ctc. T ~ P -  , is, for each sf these 

italicized expressions, a natural fmtaliasltion, and a g o d  khrnetization of these natural 
fanndizations will mimic the resulting theorems of syntm as theorema 0% aritllmetic. The 

lss Thc K-K phciple says ha t ,  if S knows drat P, hen S knows that S knows that P. 
'58 Stricrdy and literally, this i s  false. In Jeroslow [I9731 it is dcmonsmsed that a general version of the 
&cad Inamplemess Theorem can be proved without reliance on (DER 2). Howevar, since h e  mnh 
conmveney over Lhe Derivabilily Conditions concerns (DER 1) and, m ~ ~ l y ,  (DER 3). I neglect this 
~mrpkation. 

The a i g h l  proof is in filbert and Bunays [1939]. mere arre &dl&, up t daze frmncnts in Idla& 
[I9761 Cbptu 17, and Bo~los [I9791 Chapta 2. Mimy mom details are giwn in the f o r h m i n g :  seamd 
&m of Boolsg [1979]. Finally, &en is a vivid, if impressiorkxtitic discusPcwi in Chap@% 8 of Sm-i 
[l5'8s]. 



result of all this is an expression which represents derivabitiity, and which can then be 

skoun to satisfy (DEW 1) - (DEW 3). No 'constraints' have to be 'imposed': rather, 
those condidsns q u i d  for a generalized p m f  of the Second Incompleteness ~ ~ r n  

are in face satisfied by the natural representation of the metarnathematid notions involved. 

The h p m  of this will, I hope, become a little clearer s h d y .  

A f m u l a  F(x) (with x alone h) which numeralwise expresses provability, and which 

satisfies (DEB 1) - (DER 3) for any sentences A, B of the language sf T is called a 
provabiiity predicate of T .  

We can now state the eenrral theorem of this section: 

(Ub) If F(x) is a provability predicate for T, then for any sentence 
r 1 A,ifTk- F( A ) -+ A, thenTk A. 

For the proof of (E6b), see U h  [1955], or Bmlos and Je fhy  [I9891 pp187-188. It is 
instructive: to c~nsider the formula thao stands to (Lab) in the same relation as (DER 3) 
smds  to (DER 11, viz. 

In the modal system @ whish has the modal analogues of (DER 2) and (FL6b) along 
with all tautologies as axioms, and has mdus  ponens and necessitation as rules sf 
inference, the modal analogue of (DEk 3) is derivable. G is the system of provabibiry 
logic, and is of particular interest, as modal systems go, in virtue of the following fact. Let 
q~ be any function assigning sentences of PA to sentc:nce letters of G. FOP each sentence F 
of G, &fine Fq as follows: 

go = rp@) for p a sentence letter. 
I'P=O=l 

(A -, By+' = (A'p -, Bcp) 
r 1 (OA)q = Bew( A ) 

Then the following can be shown 



(Arithmetical Soundness of G): 
if G k  A, then for all (4, PA!- AQ. 160 

With (Llib) in hand, the p m f  of the Second Incompileteness TPaeorem is a p a b h y  simple: 

(G&deB 2) If F(x) is a pmvslbility predicate for T, and if T is 
consistent, then not: Tk -~('0=1'). 

ProoC Suppose F(x) is a provability predicate for T, and suppose Tk -F('o=~'). 
Then by the sentential calculus, T k F('o=~' ) -p 0 = I ,  whence hy (Llb) TC O = 1. 

and T is inconsistent. 

Let us now. Iwk more carefully at relations k ( x ,  y) that raurneralwise express the 

provability relation of a theory. Recall that an n-place relation R(xl, . . . , x,) amongst 
natural numben is said to be ruuneradwise expressible in the: system T iff there is a wf'f 

E(xn,. . . , x 3  of m) (with n h e  variables) such that, for any natural numbers kl, . . . , 
kn* 

(a) if R(ki, . . . , k,) holds, then T k ~ ( k ~ ,  . . . , k,) 
(b) if R(kl, . . . , k,) does not hold, then T k -F(kl, . . . , k,). 

For example, the number thearetie relation 'less than' is numeralwise expressible in PA by 
the formula x < y. For, if kl < k2, the2 kz = k1 + k3, whem ka # 0. It is easy to see &art 

we have PA b k* = kr + k3 and  PA^ k3 z 0, whence PAI- (3x)(x $ o A x + kl  =. 

kz) - i.e. we have  PA^ k l  < kz. On the other hand, if lq 5 kl, it is easy to see that we 

have  PA^ kz S k19 i.t.  PA^ yka < kz. 

This example will make it clear that ihe demand that a formula numeralwise express s m e  

number t k m t i c  relation imposes only a very weak constmint on formulas. Ua nlation is 
numdwise expressible in a theory T at dl, it is numerdwise expressible in that theory by 

infinitely many different but co-extensive formulas. There ue therefore infinitely many 
formulas of Q that numeralwise expms the relation P(x, y) that holds of numbers x, y just 

in case x is the code of a proof in Q of the formula with code number y. 

See Wcw and Jeffrey [I9891 Chapter 27 for the p m f .  I%r more details, see Bgolos [1979]. 
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This is important for the following reason. The particular formula R(x, y) whose 
c~nstruction was sketched above yields a fa-mula Bew(y) which in fact satisfies the 

ckrivability conditions, and is therefore a provabiliry p d c a t e .  But here are et great many 
alternative formulas W(X, y) which also numeralwise represent the pmvsabiliog, relation yes 
for which Bew*(y) = (3x)Pr*(x, y) is not a grovability predicate. Here is an example. 

1 t G l  With Pr(x, y) as above, define Dr(x, y) to be the formula (Wx, y) A y $ '0 = 1 ). 

Br(x, y) numeralwise expresses provability, since P)P and I% are coextensive. But k w ( y ) i  

= (3x)Dr(x, y) is not a provability predicate, since it violates (DER 2). . 

Interestingly, the formula (c) above that features in Rosser's version sf the First 
Incompleteness Theorem yields another example of his same phenomenon. With p(x, y) a 

formula hat nmeaalwise expresses the provability relation, the f m u l a  

says something like 'x is a proof of y, and there is no shorter proof of the negation sf  y'. 

In a consistent theory, (c*) must numeralwise express what p(x, y) dms. However, the 

predicate Bew*(y) constructed from (s*) as Bew(y) was consmeted from R(x, y) 3s also 
not a pmvability predicate. Not only that, however, the sentence -B~w*('o = 1'1, with 

BewS(y) constructed from (cS), is in fact derivable in any consistent extension of Q. 

This is rather a curious situation, then. We have sentences S and S*, similarly consmctd 

from co-extensive predicates, each with at least some son ~f a claim to express 
consistency, such that Tk S* but not Tk S. Auerbach [1985] provides an even simpler, 
and illuminating example of the sane Define p*(x, y) BE pix. 

I- 
y) A -p(x, 0 = 1'). l o  s consistent system, p and p* numcralwisc express the same 

~ l a i s n .  But whereas the instance of the consistency schema 

construct4 with p, viz. 

W abbreviates 'drwf which abbreviates 'Dreben proof. 
'62 !k A u e f k h  [1985] p343. 



i s  not ddvabb, the hstsmce constructed with p*, vh. 

-(3x)[p(x, ' 0 =  11) A -p(x, I ? )  

2s derivable, since it is a theorem of logic. 

Still more peculiar phenomena can bt wrung out of (GMd 2) by exploiting the properties 
of wxternsive formulas which numeralwise repsent the same relation. Hal !he passage in 
which prwrability pfeQactltes were induced above, for example, we spoke of transcribing 
in Lfl) the definition of ' p m f  'in the natural way'. In a subject noted for rigor and 

rsbustncss of argumentration, it  may seem odd to have to to stipuhtions as to what is 
and what is not 'natural' in the fmaliurti~n of some notion; but in this case the oddity is 
essential. Fm with a little ingenuity, it is possible to define a fomula cp(x) which 
numeralwise expresses the property of being an axiom sf T, md therefore tlae~z a~e  
infinitely many co-extensive formulas which have this same capacity. Now. our pndicatc 
R(x, y) h r n  which we constructed a provability predicate sew@) was the result, as we 

have said, sf transcribing the notion of gmf .  and therefom the notion of miom 'in the 
natural way'. However, we have jest seen that there ~ u r e  infinitely many ways of foanrinMy 
expressing the notion ' p f  of T', and therefore inAniteEy many W ( x ,  y) which &flea 
only with respect to the formula chsscr, to n u m d w i =  repnsent the p r o m  ~f being m 
axiom of T. All these different wayo sf numeralwise representing the axioms of 7' are ~f 
s o w  ways of presenting exactiy the same f m a l  system T, in the ordinary sense in 
which % is i&ntifid with its theorem set But now we cm define infinitely mmy diffe~nt 
predicates which numeralwise express the relation P(x, y), varying only with R s P t  
how the axioms of T are presented by the fomula which numeralwise expresses the 
p p a t y  of king an axiom sf T. 

Fcfeman, in his impomnt study of the Second Incompleteness Theorem, shows bow to 

csrrsb~~ct deviant 'consistency' sentences in a unifonn way for a large clrrsu of systems 
with nsgect to which a version of (Cijdel 2) is provab1e.l Fefeman'a deviant p m f  
predicates arc formalized as the transcriptions of a amfu l ly  chosen, mi somewhat peculiar 
presentation of the axioms of the system in question, and his consistency sentences lafe 

163 See P&Pe.mm [l!JO]. This seems rrs g a l  a pleoe as any to mention that he work of F d m  md 
Jawlow (menlbnecf below) owes mwh to IJE soimralation of mma& found thmghwt lhe wlOek 
d KBeiret - sse e.g. the in flwW BBLjCk #tCiscl[l%!5]. 



then natural transcriptions of the standard notion of ~rlsistency as - ~ ( 3 x ) ~ r . ( x , ' ~ = l ' ) .  
But, as one might e x p t  from the discussion above, some of these ways of 'presenting' 
the axioms of T are peculiar enough to ensure the proarability of a 'consistency' sentence 
for T. By this I mean that then are formulas W.*(x, y) which can be used to construct a 
'consistccoy' sentense -(3x)~*(x. '6 1 ) which is provable in consistent extensions of 
Q. The consequence is once again that, for a given ~0nsiskI'it extension T of Q, b e r e  will 
Be fmulas  S and S*, constructed in the same way from c~xtensive pdcates,  each of 
which having some claim to express the consistency of T, differing sdy with resgeeo to 
how the axioms of T have been 'presented' in their construction, such h a t  TI- S* but not 
TkS. One moral of this, then, is that some of the metamathematid results provable a b u t  

a given system T will depend upon the precise conditions satisfied by the choice of a 

particular predicate P(x,y) to numeralwise express the g m f  relation. 

It will be instructive to 2xamine this work of Fefeman in greater detail, for two reasons 
(not counting its intrinsic interest). Firstly, it  is ~f some importance to the philosophical 

issues that will occupy us in the following section. Secondly, i d  more important, it will 
allow me to give a sligh~iy more concrete account of what I speak of above as the natural 
way of formalizing and arithmetizing metamathcmatical notions. 

The syntax of the systems Feferman deals with in Fefermm [1960] is arithmetid in very 
much the normal way, with syntactic primitives e&d by numerals, and syntactic 
operations (such as substitution for free variables) characterized by recursive number 
themtic functions. Relative to a given non-logical vocabulary K, we have e.g. 'Const' 
us& to denote the (recursive) set of nsn-logical constants of K, 'FXTIK' to denotc the 

formulas of K, 'Trn~' the terms of K, 'S~K' the sentences sf K, 'Sq' an arbitmy sequence 
of formulas of K, etc. A formal system becomes a pair T = <A, Ib where A G  St#. md 

Kc ans t .  The system LT = 4, K> is then the pure logic of T. FOP each n, A/n is the set 
of all qe A with gSn. Tin = W n ,  K, is then afinite subsystem of T = 4, K> . 

The idea is then to uithrnetize the relation of logical derivability by simply copying 
(directly, 'in the natural way') its ordinary definition in thic dthmetizd syntax. The result 
is this: 



BrfA if3 the binary relation such that: for any rp, ye(, PrfA[v, v]  iff 
E Sq and cp = (yr)~(y and for each i < E(y). ( v ) ~  E FmK and 

either (a) (v)i€ Am#, or (b)  ( ~ ) i €  A, or (c) for some: j, k < i, ( Y ) ~  

= <VIj + (VIi- 

This says: for any formulas q, W; y is a (representation of a ) proof of 4p from the 
sentences A iff yc is a (representation of a - I shall henceforth elide this) sequence of 
formulas, rp is the end formula of the sequence, and each formula in the .sequence is either 
an axiom, an element of A, or is C where B and B -+ C are qtecedent formulas in yr. It 
is the natural transcription of the notion of derivation into fomalese. 

So far, this is just as one would expect. Feferman is then able to develap familiar results 
about derivability, including the deduction themm (Feferman's 2.2) and a (trivial) kind of 
'compactness' theorem (2.3) asserting that anything provable from the axioms in A is 
provable From a finite subset of A. 

The systems Q and PA are then introduced. Feferman also considers systems hat ~IE PR- 
extensions of PA, where a PR-extension of a theory T is the result af adding finitely many 

new function symbols t~ Lfl), together with primitive recursive equations defining those 

symbols as new axioms. A predicate of T wRich is constructed without any use of 
unbounded quantifiers is then called a PR-predicate of T. 

The necessary resuits on numeralwise expressibility are then dernonsimted as theorems 
(3.4 (i)) and (3.4 (ii) j. Feferrnan's acrrn for 'numeralwise express' is 'binumerate', and he 

dso uses 'numerate' to express what is otherwise expressed by 'weakly express' or 
'weakly define'. Theorem (3.4) then tells us that, (i) for each n c 1-ary p.r. function cp 
there exists a PR-extension PA' of PA with a term t (in n free variables) such that the 

formula t(vl,. . . , v,) = vn+l numerates (8 in PA1, and every such formula numerates a 
pa.  function; and (ii) similarly for each n+l-place relation, with 'bi-numerates' for 
'numerates'. The elimination techniques used in GUdel [I9311 are then used to show hat 
(bi)-numeration in PA' can always be replaced by (bi)-numeration in PA. 

The motion of a PEP-formula is then introduced, as a formula f(x) = 0 in same PR-extenoioaf 
of PA. Given a PR-predicate F of T, the result (3x1) . . . (3xn)F of prefixing F with a 

string of existential quantifiers is called an RE-fornula ~f T. (Given the s t a r a m  primitive 
recursive pairing function, such initial strings of existential quantifiees me reducible m a 



single existential qumtifier without loss of generality.) The classes of BR-formu1as and 
RE-fmulas arc primitive recursive, and closed under conjunction, disjunction, b o u a ~  
quantification, and (in the case of the PR-formulas) negation. These constructions, which 
are still pretty much as one would expect, culminate in Theorems 3.1 1 and 3.12, which 

establish in Fefeman's terms the familiar fact that the p.r. functions are represenable in Q, 

and bus in dl consistent extensions sf Q. 

We have arrived at Section Four of Feferman's paper, which is the hem of the matter from 
our pint of view. Fefcman now introduces a particular p.r. extension M of PA, together 
with a new piece of notation. M is best understood by considering an example of the 
notation. Lct Exp be the p.r. exponentiation function Exp(n, rn) = nm. Comsponding to 
this function in M is a two-place function symbol e(x, y), and m axiom 

Then Fcfsnnan wries 

nm for e(n, m). 

(In fact, Feferman uses a dot where I hicve used underlining. This is attributiible to the 

local limitations of word processors, and I hope that it will cause no confusion.) 
Therefore, 'nm ' denotes a tern of M that represents exponentiation in M. With this 
notation, then, one can indicate ruithmetizatisns sf metatheorems by writing down the 
metathearems in ordinary mathematical notation, prefixing ' ~ k ' ,  and underlining the 
mathtmaticai/logical operators and pnxh cates involved. 

Mme precisely, for each n-place p.r. function is associated an n-place function s p b l  f of 
M. Let 'F be the ordinary mathematical notation for this function. Then 'r is the 
memathemabicd notation for the term f(xl, . . . , x 3  of M, and 

We can extend this device to predicates via their characteristic functions in the usual way. 

Thus, ' m ( y ) '  &notes a predicate of M satisred by primes only, whilst 'Bmdt])' e.g. 
&notes a term of M for the result of subbing t for a in F, and '&' &notes a term of M 
fsr the set of axioms of K. 



What is not yet clear, however, is Row to express in M the idea of provabilibgr from on 

arbitrary set A of miom, for it is not clear how in general we are to express the idlea sf 
membc~ship in A in M. Fefemm M i t e s :  

. . . if we lmk back at the definition of R ~ A ,  we see that the only c~ncegt 
which enters in i t  which we may not be able to enpss  in M i s  t b t  of 
m m k r s h i p  in A. Even if we h o w  that A is recursive. or primitive recursive, 
we are stiiljkced with the further problem of choosi~lg one from m n g  the 

m n y  ~umeraoionr of A in L. 64 

Fefennan's way of getting around this difficulty is the essence of his approach to the 
problem of getting a generalid version of the Second Inssnplet&ness %'hemme a d  it is 
also what enables him to &fine a 'deviant' notion of consistency w c d n g  to which PA 
(for example) can 'prove' its own (Fefennan)-consistency. He ccatinsrts: 

In order not to prejudice the investigations, we therefore take the following 
initially non-cmrnitlal a p p m h .  Lei q be a formula with m free variable x. 
We shall define a formula Prfq w i b  two fm variables x. y which will eqmss, 
when g(x) is read as expressing tRar x belongs to A, hat  y is a proof h n  A = 
<A, I b  of x.l65 

This is the definition: 

(Fef 4.1) k t  cp be a formula of M, and let u, v, w be the first three variables 

not free in Q and distinct from x, y, z. We take 

to be the following f m u l a  of & 



'Phis is not easy to read, but i t  is in fact an aritkmetid version of the original definition s f  

MA, with Q for A. It is the natural arithmetized formalization of the notion of pmvability. 

Thus defined, &f9 numeralwise expresses RfA, but it also has two other features worth 

remarking upon. In the first place, Fefeman's dot notation is effectively defined. More 
importantly though, & depends upon q ,  and Q is of course a formula in om frce 
variatsle. This enables Fefermm to p~pm the: way for the intmduction of a deviant no?iw. 
of consistency, via a deviant way of 'presenting' the arithmetic axioms. The crucial 

consnuctions pace& as f d o w s :  

(Feb 4.2) Let q be a f~mulia of M, with Fv(rp) = ( x ) ,  and q' the formula 

q(x) A x 5; 2. We put 

to be the formula 

-1 is therefore a kind of restriction on - in effect, a restriction to the axioms 
preceding Q in some o-ordcring of axioms. The Fefeman p m f  predicate is then 

introduced in the following two definitions: 

(Fef 4.2) Let A be a finite set, A = (ko, . . . , kn.] ). Suppose that !q < . . . < 
k,.l. By [A] we mean the formula x z x, in case n = 0, and the formula 

(Thus Erf[~](x, y) expresses the proof relation relativized to the finite set A, and 

M[o](x, y) expresses logical provability.) 



(Fef 4.3) For any formula cp of ha, & and b i z  arc the formulas of & 
& ~ &  = - I  ru,lows: 

The extensional c m t n e s s  of these definieions is readily proved (see T h m m  $4 arrd 
some elementary facts about pmvability can be established with cp occurring schematicdIy, 
including 

(Fef 4.6) Let cp be formula of ha, Fv(rp)~ {x, 2). 

( 0  MI- + E m ( x ) .  
(ii) Mk &(x) + a(%). 
(iii) Mk q(x) A &(x) &(x). 
(iv) MI- [kq(x)  E t r c x a v ) l  + Err(y). 
(v) If y is any formula of M, y E Fv(y), then 

MI- (vx) [&~(x)  * Y(x)) A (Q(x) A &(x) + ~ ( x ) ) ]  A 

( ~ ~ ) ( V Y ) [ ~ K ( X )  A ]EII~K(Y) A ~ ( x )  A V(x.2) 4 ~ ( y ) ]  
(Vy)(Et9(x) + lf(x1). 

Fefennan then shows that the first wo of the Hilkn-Bernays dcaivability conditions 
follow f b m  (Fef 4.6) and the extensional comctness of the &finition of &, with q~ 
sccufling schematically. (?'he first of the Hilbeht-Bemays derivability conQirioas is our 
(DEW I), essentially, whilst the second says that, if -y(v)  is derivable with v free, then 
-ly(n) is derivable for each n.) The pmfs  of these facts dcpt~d essentially only upon 

the ability of M to follow an inductive definition, for the metaheoems am proved by 

mimicking in M, with h e  dot nwtisn,  constructive prssfs of the original h m m s .  

Two 0th facts about kp, important in the proof of the Second hcornpletencts~, Theorem. 
as established as parts of 

(F'ef 4.7) Let a, P be formulas of M, Fv(a) U Fv(P)c (x, 2). Then 



A notion of c~nsisbcncy is defined, once mere in the natural way: 

(Fef 4.9 (ii)) Let Q be a formula of MI, Fv(rp) G (x, 2). Then 

Up oo ahe definition of &, everything here has been as one would expect. But exactly 

which notion of proof it is that is picked out by the definition of & depends upon the 
interpretation sf the parameter cp. Consequently, exactly which notion of consistency i t  is 
that is being defined in (Fef 4.9 (ii)) - although surely o notion of consistency is king 
defined - is not yet clear, as we shall soon see. 

(Fef 4.18) Suppse that cp, are formulas of M, Fv(9) = F Y ( ~ )  = (XI. 

(i) F 0  my particular PE Frn~,  

MI- Qn, '+ -.ErTcPA2P) 
(ii) M l- - - lVzmd,z  

Mk (vx)(P(x) A h ~ ( x )  j q(x)) * ( h q  hl@) 

Generalized versions of the incomplcttness theorems now follow (in Fefemm's section 
5). First, we have a version of the ~lestricted Diagonal Lemma (MAGQ) above: 

(Fef 5.1) Lemma: let y E h ~ o ,  I;v(y) s;; (x). Then we am effectively find 
tpE F ~ K O  such that 

The prosf is essentially that given in Boolos and Jeffrey [I8891 pl73, trmhM into the 
underlining notation of M. With the aid of a definition 



(Fef 5.3) For each cp E F ~ K Q ,  with Fv(Q) ss ( x ), we take pqp to be 
the sentence associated with yr = -&, in (Fef 5.1), such that 

this yields a version of (Godel 11, with 

not TI- pqp 

for any q numerating any consistent extension of Q, and 

not TI- -pq 

for any cp numerating any a-consistent extensions of Q as well (by Rosser's construction). 

Notice that this can be sated without resaictions on Q. 

For the Second Incompleteness Theorem, though, reziricoions are required upon the 

f m u l a  q, enumerating the axioms of the system, and these restrictions in effat play a role 

akin to that of the crucial third derivability condition (BER 3) in Fefermm's approach. To 

state the r q u i d  ~scpictions, Feferman first proves as (Themern 5.4) a metamsnthematizcd 
version of this theorem: 

If is any bounded yrenex formula (BPF), and Fv(yc) (vl, . . . , vn) then 
for any kl, . . . , k, 

if v(kl, . . . , k,), then Q 1- ~ ( k l ,  . . . , k,) 

(pmved earlier as theorem 3.10), which assures us that any me BPF theorem is provable 

in Q. Theorem (FeB 5.4) therefore tells us that this fact about Q is itse~provable in M. 

As a corollary of this, 



(Fef 3.5) Suppose that rp E S ~ K ~  is such that for some y E BPF 

Then 

(because we have Mk h q ( g o y )  by earlier results, which together with the formalized 
version of the above fact about Q yicrdv PA !- &(q)  &,(I) , whence PA k 

+ &(q)  if Q k- Q t, y.) This yields a version of fie Second Incompleteness 
Theorem, in the form 

(Fef 5.6) Suppose that A = <A, K> is a consisteno axiom system with 

PAS A. Suppose that cp is an RE-formula which numerates A in S, where 

QsScA. Then 

and hence 

- The proof is worth pausing over, for it makes clear that it is the asmiction on q, together 
with theorems (FeP 5.4) and (Fef S.S), which here play the role played by the crucial 
third derivability condition (DER 3) in the standard generalized p m f  of the Second 

Incompletencss Theorem. Fist, we have 

by the corrsmction sf kq. Since every E-formula is equivalent to some BP-fornula, we 

can appeal to (Fef 5.5) and &rive 

Q is finite, and each p E Q is provable in A by hypothesis, so 



Then from (Fet 4.7) (i) and (ii)) abbve. we derive 

(5) AI- QUq A 'PI -' &(')L9) 

s'r 

which is 

by construction, and therefore 

Conversely, since 

we have 

Suppose now 

( r i )  AF *. 

Then by (BO), 



contra the First Incompleteness meorem (FeP 93). Thcxforrc, 

~ f m m  then wriw: 

'Ihe main fc6lar~e sf [(Fef S.6)] which we wish to $ring attcnaissl t~ Is W h 
mmt to [Wef 53)] it L nor slaredfor tvbir~ory nwrQdons  g, @ A   it^ 8, !el 
dm of A is any subsystem of A. I M  rwsr next main step will b8 ta h w  . 
that under certain circumsurnces. i t  is not possible to obtain such 
impmvemenis.l~Q 

The 'next main step' begins with the important notion of a reflexive ohwry. 

(FeP 5.7) Leo A = 4, K>, Koc K. A is said to $6 reflexive if for tach 
finite FE, A, 

Consequently, A is reflexive just in case 

for each n, At- 

g h l a  definition is not empty, since Mostowski showed that 

(Fek 5.8) 
(i) PA is reflexive 
(ii) Every consistent extension A of PA, with the same constants as 

PA, is peflexivt.l@7 



(The generalized vcnisn  of she First Incompleteness Theorem given above as (@Me! 8 )  is 
a consequence of his result of M ~ s ~ o w s k i ' s ,  and (Fe4 S.B).) Reflexive aheseies have the 

following pmpeq 

(FeP 5.9) Suppose that A = <A, K> is a sonsistent, reflexive axiom system 

with PAC A. Suppose further that A is recursive. Then there is an q* which 

bi-numerates A in A for which 

Since A is recursive, there is some ~p which binumerates A in PA. Define a 

fomuh cp* in one fke variable as follows: 

if cp binurncrates x, then clearly cp* binumerates x also. But the second conjunct of  the 

definition encures that r)* has additional properties. In particular, it ensures that the (sets 
of) axioms preceding x in some o-ordering of axioms are consistent. Then, if n E  A, we 

have 

whence by the hypothesis of the theorem 

And since A is reflexive. 

whence 

(4) At- q*(n) .  

And if n g A, then 



(5) Ak -cp(n) 

whence by ahe constnrctisn of Q*, 

(6) AI- -Q*(n) 

and oherefsle cp* also bbumerates A in A. 

The thecntrn is now obtained as follows. By earlier n=sul&, 

(7) hdt- call@ - (WQmp/Z 

whence 

(8) MI- + (~Z)(~!&ILJ/= A (Vy)(y 5 z ct -1). 

But then by cmsoructiom 

(9) MI- y b q  -' (3~)-  A (Vx)(gr*(x) * g(x) A x 2)) 

SO 

(10) MI- -cQ& 4 (3z)(cQ@,h A ( V X ~ @ * ( X ~  - &$/Z(X)) 

h which it follows that 

(11) Mt- -- 4 Qmq.. 

On tk other had, by the construction of cp*, 

(12) mi- (vx)(c*(x) c-, E ~ K ( X )  -+ q(x)) 

surd thus by (Fsf 4.10) above, 

(13) M t- Q&, -+ w e  



Then dtQm (11) and (IS), 

As a m l h y  of this, we have 

(Fef 5.10) There is a q* which binumtrates the axiom ~f PA in PA for 
which 

The Fefmm-consistent y of PA can be proved in PA. 

What ha3 bebeen shown here? Well, luoking at the crucial dcfinicndm of cp* in the p m f  of 
(FeQ 5.9), we have seen that it says something like: 'x is an axism of A, and each finitely 
axiomatized subsystem of A generated by axioms 'shorter' thm x is consistent'. Qnc 
(perhaps unfair) way of reading the consistency sentence formulated using q* is therefore 
this: the largest consistent subsystem of A is consistent. Since A (PA, as it might be) is 
consisacns, the largest consistent subsystem of A is A, and this is therefme a consistency 
p f  for A. What prevents the demonstration of the comistency of PA in PA is the fact 
hat not: PA k H w e ,  for otherwise (by 14) PA k w, and PA would thcn 

be inconsistent. 

. The situation, then, is rather pretty. Given the consistency of PA, md w* are 
i n b d  equivalent - consistency and Fefemm-consistency come to the s m e  thing. But 
given the consistency of PA, that equivalence cannot be &monstated in PA. 

Although it is, I think, fundamcntally fair, this somewhat facetious account ~f what 
Eefman has shown must not be allowed to obscu~ h e  philmophicd inexnest of ihc above 
argument. POT, in the ordinary way, one would think hat an axiom schema is something 
Pike an expression type that provides one with a way of recognizing instances sf that type 
as axioms. But how do we recognize an instance as an instance of bat  type? Fefemm has 
shown that there is a way of 'recognizing' instances of the'axiom schemata used in 
formalizations sf arithmetic on which the consistency of arithmetic can be proved in 
atithmetic. To be sure, this is nut the ordinary way. What i$ more, the reguio &pen& 
upon thrt consistency sf arithmetic, since in the mcial definition of 9' abve,  the 



consistency of a set of arithmetic axioms A is assumed. This might make Fefemm's 
argument of nu use in a dispute with a skeptic about the oonsisccncjof arithmetic. But 
then! m reasons for k ing  interested in syntactic pmfs of consistency other PtAm the desire 

m combst skepticism. 

H~wcver, it sh~uld not be thought that a proof of Feferman-consistency is of much help 
from the point of view of Milben's Programme. For as we have just seen, in o&r for 
some formula A of some Fefmnan-system of arithmetic T to count as an axism of T, A 

must not only be an axiom in the ordinary sense - that is to say, it must not only pas  the 
consmint on axiomhood (whatever it is) imposed by the predicate Q from which the 
deviant predicate cp* is defined - it must also be consisient with the axioms prior to A in 
some o-srdcring of axioms of 7". And since, by Church's Theorem, there is no effective 

paxdufc for determining the consistency of sets sf quantificational formulas, T cmnst be 
a formal system in the Piilkrtian sense. Then is no effective test for T-arcimW 

However, further discussion of Feferman- and other deviant systems will take us away 
&cw the curious logical facts surrounding the Second 1r.completeness Theorem towards the 
philosophical issues to which those facts give rise. It will be best now to tackle those 
issues directly. 

Section Three: The Second lneompletensss Theorem and Hilbert's Program. 
What impact does the Second Incompleteness Theorem have on Hilkrr's Programme? 
T~wafds the end of G W l  [I93 11, GtMel writes: 

The results of Section 2 [he proof of the First Incsmpl~ness Theorem, lhar is] 
have a surprising consequence concerning a consistency p f  for be  system P 
(and its extensions), which can be stilrecl as follows: 

Theorem XI. La k be any recursive consistent cease of FBRhQenK3; lhsn b e  
SENTENTIAb, FORMULA stetinn hat k is consisrent h nor k-PROVABLE in 
particular, h e  consistency of P isnot provable in P, provided P is corrsimt . . 
. . 188 

This is the first starement of the Second Incompleteness Theorem. 

GMel (1931) contains no proof of this theorem, although it does contain a proof sketch. 
Having given his sketch, Gael  continues: 



I wish to note expressly that Theorem XI . . . [does] not contradict Hilkn's 
fomidistic viewpoint. For this viewpoint presupposes only the existence of a 
consistency proof in which nothing but finitary means of p m b  is use8, an8 it is 
conceivable that Lherc exist finilary proofs Lliaa cannot lx expressed in Lhe 
formalism of P . . ..I69 

Much later, however, Gijdel's views on the implications of  Theorem XI for Hilbefo's 

Programme changed. In a note appended to the above passage in 1963, lie writes: 

In consequence of later advances, in particular of the fact that due to A.M. 
Turing's work a precise and unqueslionably adequate definition of b e  general 
notion of formal system can now be given, a completely general version of 
Theorems VI [the First Incompleleness Theorem] and XI is now possible. That 
is. it can be proved rigorously that in every consistent formal system that 
contains a certain amount of finilary n u m k r  theory, here exist undecidable 
arilhmetic propositions and [ha4 moreover, h e  consistency of any such system 
cannot be proved in the sys~rn. l  70 

Although he does not explicitly say so, it seems clear enough that this footnote withdraws 

the reservations expressed in the original text. Ry 1963, then, Gadel was of the opinion 

that the 'completely general' versions of theorems VI and XI do indeed 'contradict 

Hilbert's formalistic viewpoint'. 

It is important, though, that GMel's reservations were withdrawn only after he became 

convinced of the possibility of suitable 'completely general' versions of the incompleteness 
theorems. In GMel's view, then, the difficulty for Hilbert's Programme comes, not fmm 
the specific results proved in G M e l  (1931) themselves, but rather h r n  the 'completely 

general' versions of them. 

And that is obviously right. The= is no difficulty for Hilben's Programme attendant upon 

the fact that some particular formal system - GMel's system P, as  it might be - cannot 

grove its own consistency. If there is to be so  muck as the appearance of a difficulty here, 
it must lie in the possibility of generalizing GMel's results over a large class of systems, 

including in particular the systems, mentioned in Chapter One, irlvolved in carrying out 

the Conservation Programme for analysis. 

However, we  Rave just seen at some considerable length that the two incompleteness 

theorems differ v e r j  markedly with respect to the possibility of straightforward, natural 

generalizations to  arbitrary formal systems. The transition from the specific theorem 

-- -- ~ 

GCldel [op cit], p195. 
1'0 G e l  [lac cit]. 



proved in G W l  119311 as Theorem VI to (GMeP 1) is relatively sghsligktfowd a d  
philosophically unconmversial: but not so with generalizations of 'Ihmm XI. 

To see the wsny to which this gives rise, consider the following lime of thought. The 
formulation of the First Incompleteness Theorern given above in ordinary English as 
( M e 1  1) readily suggests a cornspornding formalized and sleady mathematid sentence. 
By this, I mean that myone minimally experienced in these ma- will fix1 confident that 

then is a formal sentence sf the kind mica1 of fomalized mathematical M e s  which is 
naturally translated into English as (Cddsl 1). It is easy to feel convinced, hen, that 
(CMel 1) is associated witOa a genuinely mathematical claim in this sense. 

Things am orhewise with the Second Incompleten&ss T h m m .  A typical hfmal venim 
of this might be 

(@2*) No complete, consistent, axiomatizable extension of Q can prove its 
own consistency. 

(Ct*) does nos so readily suggest a corresponding, genuinely mathematical sentence. To 
begin with, (C2') is modal: it speaks of what cannot be done, not of what does not exist. 
This defect is remediable, and a first attempt at removing it is apt to result in something 
more nearly equivalent to GWel's own Ifonnulation, such as 

( C P * )  If T is any complete, consistent, axiamatizable extension sf Q, hen  
the sentence -F3ew('0=l1) is not provable in T. 

But  the^ are two problems about this, Ln the first place, the ghost of rmodidity lingers on in 
the phrase 'not provable'. Once again, a remedy comes easily to hand, and the result of 
applyihg it will be 

(C2) If T is any complete, consistent, axiomadzable extension of Q, hen hen 
exists no p m f  in T of the sentence -EJew('0=l1). 

And this is now close to (Gddel 2). Secondly, though, there is the problem of the 
predicate denoted in (G2j by the expression '~ew('0 = 1')'. This of murse is to be a 

prsvabiliry predicate for T - a predicate that is not only defined as Bew(y) = (3x)Pr(x, y) 

for some predicate W. which numeralwise expresses the provability relation of %, but is 
also so defined with respect to a predicate Pr which also satisfis the derivability csnditims 



(DEW 1) - (DER 3). If (GI) is to have the import that h e  non-mathematical looking but 
philosophically interesting (6') has - if, that is, the mathematical result 4432) is to be given 
as evidence for the philss~phical claim (G*) - then something will have ts be said abut  the 

restriction of our attention to predicates which not only give numerically correct 
trtpaesenmtions of the p m f  relation of a theory, but also satisfy the &rivability conditions. 

And the task is ohc more urgent, ~f course, since a liberalization of this policy will allow for 

the cansideration of Feferman-sty le numerically correct representations of the p m f   lati ti on 

of a theory with respect to which (G*) fails. 

Dctlefscn argues that no justification of the Derivability Conditions can be given.171 

Specifically, he rejects two particular justifications of the hrivability conditions defended 

in the literature by Mostowski, and by Kreisel and Takeud Let us look an 
these arguments. 

Mosmwski considers the question, What are the demands that ought to be satisfied by a 
satisfactory arithmetization of the syntax of some system T? He writes: 

. . . given, on the one hand, a set X of integers (or pain, oriph a&.) and, on 
the other bnd, a formal language. We are looking for ~ h c  best possible 
defmiuon of X in T, i.e., for a definition which makes, of dl Ihe intuitively anre 
formulae involving X, as many as possible provable In T . ~  73 

In the proof of the First Incompleteness Theorem, for example, we have a set X = (a, 
m>: n is the code of a proof in T of the formula with code m), and we =quire that the 

representing formula of X numeralwise express P(x, y). This makes all instances of 'F is a 
proof in T sf G' and 'F is not a proof in  T of H' theorems of the arithmetized 

metamathematics of T. But then, Mostowski notes, not all truths concerning the 

pvability dation have k n  captured by the arithmetized metamathematics, for in addtion 

to all these particular truths concerning provability, there are also the general tmhs 

concerning provability. And we have just seen at length that not all formulas that 

numeralwise express the provability relation do an equally good job sf captarring what we 

'intuitively' regard as general truths concerning provability. 

I7l See Derlcfsen [198Q], esp. chaplets Three and Four. 
172 See Mostowski [I%], esp. pp25 if, and Kreisel and Takeuti [19741. 
173 Mostowski [op cit] p25. 
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Ib*. of come, is w&n: the Rrivability Conditions come into considmtiw. Mostowski 
masons, not implausibly given the facts discussed above, ha t  the w ~ r k  of Bemays and 
Fefermm shows that certain metamathematical tasks - such as those that feature 
prominently in Hilbtn's k o p m m c  - call for a closeness of fit between an arithmetical 
representation of a metamathernaticd concept and she metamathematical concept nqmsenae8 
that g a s  beyond mere extensional correctness. And his suggestion is, hear, that adequate 
closeness of fit is to be determined by the number sf intuitive mtho regarding the 
metamath~tical concept yielded by the arithmetization. The suggestion is, then, that the 

conditions (DER 1) - (DEW 3) will capture a greater number of intuitive mths concerning 
the provability relation than any alternative. 

The problem here, according to Qetlefsen, is that that no arithmetization can c~~ dl the 

intuitive mths concerning this notion. The undecidable formula '17 Gen r', and the 
consistency sentence eonsaucted from it, provide the obvious examples. But if we canma 

c a p m  all of the intuitive truths we might be interested in, why should we Ibe so interested 
in capturing most of them? Betlefsen writes: 

Evidently, if rew-smation of this 11orion can occur wiahout capturhg all such 
truths, then only c 4 n  tr i i t !~ sre crucial to the ability of a formula to exgns% 
it And if that is h e  case, then IRe iri;pmmt thing is to captuoe rkoe t tBIh,  

and not to capture as many vuhs as is psib1e.l  74 

The question is, though, which truths should we be interested in? k t k f s e n  p i n t s  out that 

a H i lMan  will be particularly interested in capturing truths abut mprovubiliry in T md 
the closely related notion of consistency. But here the Derivability Conditions f a  very 

badly, for they make it impossible to represent any truths regarding unprovability in T as 
theorems of the arithmetized metamathematics of T, on pain sf showing T inconsistent 
(since any statement of underivabiiity is tantamount to a statement of consistemcy). 
Mostowski's proposal, Detlefsen therefore contends, does not offer a very convincing 
&fcnx of the Derivability Conditions as devices for excluding kfemm-styk 'pvabiahy' 
p d k a k s  with n s p t  to which arithmetical consistency is provable. 

However, effective as Detlefsen's argument is against the letter sf the Mostowski proposal, 
it dots not seem to me so effective against the spirit. TO see why, we must reflect m a  

gentrally rn the n a m  of arithmetizatim, and indeed on formalization as a whole. 



- 
We s u m  out with standard English, or a mildly mathematical extension themof. Smdlard 
English pv idcs  us with expressions &noting such things vui&les, of the left b m k t ~  
of the comma. 1 have just used them. H take ir that it i s  not required sf me t~ say what 

Standafd English having this capacity amounts to. That is a fascinating question, but it is 

not a question the philosophy of mathematics ought to be expected to answer. Standard 
English also has predicates satisfied by fonulos of specified language, such as 'x is a 
f m u l a  s f  the languagc QC, or by pmh in a specified formal syswm, such as 'y is a 
p m f  in QC. Standard English allows us to discuss the spbolls of PRA surd their 
permissible combinations. 

George Boolos cdls the part of Standard English in which we discuss such things, the 
lmguuge of Syntax, and the informal theories we construct in ohat language, Syntax. Let 
us adopt Boolos's usage. And for the sake of simplicity, let us xeshkt Syntax to the study 
of the language of PRA. 

Syntax is, ther., the general theory of well-fomedness of c e m h  (types of') strings of 
symbols of PRA. As a special case of well-fomehess of strings of sgrmbls, Syntax 
studies d e r i ~ ~ o n s .  M m  p~cisely, Syntax tells us under what conditions a string ~f well- 
formed formulas - this can be taken to be a certain kind of sequence - constitutes a 
derivation - when each element of the sequence is a which is tither an &orn, OK the 

result of performing certain syntactic operations on antecedent M s .  In each cae ,  the 
italicized expressions are defmed in Syntax. 

hthmretization is simply a tool to facilitate the study of Syntax. In 1931, when GtideP first 
dcmsnsmted the powers of this tml, very little was known about Syntax, but a great &d 

was known about the elementary theory of numbers. Arithmedzasion enabled the study of 
Syntax to draw upon this rich fund of resources. For example, little was then h s w n  a b u t  

concatenation in general, and in  particular a b u t  concatenation under the restrictions 
imposed by ahitmy transformation rules. Under arithmetization, it can be seen that facts 
a b u t  concatenation, both in general and under restrictions, can Ix formally expressed as 
facts about factorization of natural numbers, by regarding strings as n~mersrls, and 
syntactic operations as arithmetic operations. Since we then h e w  a great deal abut  

congruences, f lc t~rs ,  remainders etc., this systematic correspondence enabled us to 

udmtmd S y n u  much bcner. 



But them is no mason other than convenience for Syntax to draw upon the resources s f  
arithmetic via arithmetization. For GMel and Quiare haweem them have shown hat  

elementary n u m k  theory and Syntax are maehematically equivalent. Exactly the sme 
f m a l  system can be indifferently interpreted as Syntax, or as number t R q .  

In rhis sense, then, there is rather less to arithmetization than meets the eye. The 
imompleteness theonms, for example, are standardly proved via auibkrmchtion. But they 
naxl not be. If we use 'Syntax' for the formal system that stands in oht m e  reladon m 
Syntax a% PRA stands to PRA, them the incompleteness of Syntax cur be &msnsmwd 
by Syntax. in Synt.~.~~"e detour through arithmetization makes things much nicer, 
much h e r  to follow, much more elegant; but it is not strictly necessary. 

Mostowski, thmfbre, should not be making a point about arithmethtion: his pint should 
te a point about formalization in general. For there is nothing specid abut aithrnetization 
as a means of bringing some naively given theory under proper scientific control. 
Arithmetization is a tool, no more mysterious in its formalizing eficacy, no more 
controversial in applications than the familiar firstarha predicate calculus. And we to not 
resort to the tool of formalization in order t~ capture some, or most, of the 'intuitive' truths 
given in the unformdized theory. We expect a fomaiization to c a p m  dl of hem, and if a 
fomalization does not do so, then we regard that either as evidence that the fmalizadon is 
inadequate, or that our intuitions need careful scrutiny. In the case of naive semantics, 
formalization quickly reveals that our intuitions need careful scrutiny, whe~as  the case sf 

first ordtr formalizations of PA might be thought to support the alternative reaction. 
Typically, the= will be a consensus as to which of these alternative to adopt, m.d there will 
dsa bc a consensus as to which intuitions in particular need more careful scm~ny. If this 

were not so, the naive theory would have to be junked - as astrology was junked - as 
sientifically unworkable. 

h any formalization of a naive theory, there will be considerable leeway at the outset of the 
enterprise. Syntax, for example, can treat wffs as strings, or as trees. Strings and trees 
are different kinds of mathematical structure, and so far as I can see, there is ms reason to 
believe that Syntax formalized as a theory of stings need be mathematically equivalent to 
Syntax formalized as a theory of trees. If that is right, perhaps we shall have to decide 

175 I b w  of no derailed example of such a dernonsvruion in the litesawre, but Srnullyan [1%1] gives an 
outline of how his could ke done. 



between Syntaxstdng, and Syntaxt,,, as optimal fomalizations of Syntax. But notice 
that the reason that we might be able to make sense of then king a rdtiond decision he= 
suggests strongly that, after the initial parameters of the formalization have k e n  fixed, h e  

enterprise proceeds under pretty smngent constraints. Flexibility is strictly limited. Once 
you have committed yourself to formalization of Syntax in the fashion of S y n & a ~ , ~ ~ ~ ~ ~ ~ ,  

the properties of strings and the content of Syntax combine to greatly d u c e  your  om 
~f choice as to how the formalization should proceed. Once you have chided how to mat 

the primitive nations of Syntax - the: primitive expressions, and the primitive operation of 

concatenation - then there really is an obvious natural formalization of the comgwunds of 

those primitives, up to and including derivations. For a derivation in Syntax is sequence 

(or perhaps a as) meeting such and such conditions, themselves fomalizablc in a tightly 

constrained way. Given those conditions, the natural formalization in Syntax of the 

notion of a derivation just drops out, as we saw above in the discussion of Fefeman. 

And (to =peat the point I made above), if you do this in the natural way for Syntax, then 

the predicate you introduce to play the role of Bew(y) in proving the Incompleteness 

theorems will infact sarisfi the derivability conditions. They do not Rave to be 'imposed, 
and they are not 'constraints'. They simply characterize the standard notion of derivation, 

and this can be mathematically demonstrated once that notion is fomalkd  in the obvious 

way. Mostowski, then, is not making a controversial point abu t  the conditions that 

should be met by an adequate arithmetization. He is making - well, mis-stating would be 

strictly more accurate - a perfectly mundane and unconmversial claim abut  fmalization. 

Neone should dispute this claim, least of all a Hilkrtian. 

What this suggests to me, therefore, is that what Detlefsen is really concerned abu t  is raot 

the adequacy of theformalization of the standard notion of pmf ,  but rather the adequacy 

of the standard notion of proof itself. Rather than denying that the standard notion of p m f  
complies with the Derivability Conditicns, Detlefen's real target is the standard notion of 

p m f .  consideration of his response to the Kreisel-Takeuti proposal seems to me to 

c o d h  that this is what is really animating his discussion. 

Kreisel and Takeuti write 

. . . the usual conditions on systems [hey  in fact k v e  in mind Lhe original 
krnays derivability conditions, but we may take these t be @ER 1) - (DER 
3)] . . . are necessary if a formalization of mathematical reasoning is to Ix 



*ate for Hiibert's programme . . . &i us spell out two a k q w y  wndibons 
on a system F: 

(a) Demonstrable comglcten~ss w.r.1. Z formulae is nedd to assure rw 
thrnt ekmentary mahematics (with a consuucdve existential quantifier) a n  be 
reproduccdinFatal1.. . 

(b) Dcmtrable  clamre under cut (and in 8he qmeifier free cass mder 
substiturion) is also needed becaurk cut is constanlly used in mathematics. 
Rtaliskidly speaking, n (mera)mathemarical proof of such closure is wded and 
not a case study of mathematical texts because cut - like most lqgieal h f ~ ~  - is oftm used without being mentioned; in contrast, for exasnple, to the w of 
marhematical axioms.' 76 

Bernansaablc completeness w.r.t. X: 1 -formulae g u m  tees (DER 1) and its fsmdization 

(DER d), whilst &rnonstrablt closure under cut gumntees (DER 2). The b i s c l -  
T&uti proposal, then, is that the krivability Conditions must apply to any provability 
predicate Bew(y) which is adequate to capture ordinary, informal mathematical masoning. 

Whrst is more, a metamathematical demonstration of this is the only 'realistic' a s s m ~ ' x  h a t  

we have drat the adequacy conditions are in fact met. Detlefsen summasizes this position 
thus: 

. . . h e  Kreisel-Takeuti position consists of both a substantive and a procedural 
claim. The substantive claim is lhat if T is to be an adequate formal m i i f i d o n  
of infomal mathematical practice, then i t  must be both Z 1 complete (so (Pntll it 
captures elementary mathematics) and closed under modus pnens (so ahat it is 
sure to capture Lhe logical technique of informal classical mathematics). And lhe 
procedural claim is Ihat h e  only practical, or at least the cphtemologicsltly 
optimal. way of coming lo know Lhat the above S J ~ S L ~ ~ I L ~ V ~  conditions are met 
is via a Tcodifiable metamathematical p m f  of them.' 77 

In his response to the Kreisel-Takeuti proposal, Detlefsen then argues that it appeals to an 

unreasonalble idealizarion of infomal mathernatical practice. He writes: 

. . . if what Kreisel and Takeuli mean by mathematical practice is h e  romdi~,g 
out of actual historical practice lo conditions of perfect rationality and 
informdon, then perhaps Lhey are right lo say that T cannot hope to codify 
mathemtical practice udes it is closed under cut and arithmetically m p l t k .  . 
. . But h u l d  Lhe appropriateness of the Derivability Conditions be judged f m  
such a s~a~ndpoint? More specifically, should the appropriateness of the 
Derivability 'Conditions. as consmints governing the Hilbertian's choice of 
formalizations of ided seasoning, be judged from such a standpoint? We think 
not, since though the ability of his formalisms to capture infonnal mahrnalic811 
practice is certainly a concern of the Hilbdan's it is by no means his only, or 
even his dominant, concern. . . . . Chief among the faclon which Braw the 
Hilbertian away from excessive idealization are his need to obtada a LWWJWLS 
pmof f a  his fmnalizations of ideal reasoning, and his natural k k  ~ f a m c m  for 

KYeisel and TPLeuti [I9741 gpW-35. 
In htlcfm [I9861 p115-116. 



ideal reasdning which is too Long or complex t be of my likely benefit . . 
. . 1 7 8  

But what can this mean? Clearly, the belief-ser of the everage (or in&& the exmodhay)  
rnathtmatician is not closed under cut, and is not Z1 complete. Lndwd, even if we p l  own- 
collective mathennatical widom across the ages, it is neither closed under cut, and is not CA 

complete. But so what? 

Clearly, the major problem we face in discussing this dispute lies in getting some sort of rh 

grip on this notion of 'informal mathematical practice'. Detlcfsen suggests understanding 
this as 'the totality of assertions md justifications that have gained the popular aceepoanc.B 
of the historically given community of matl~err.aticians'.~~~ But hat  d a s  not %Ern to me 
to k the natural, or the best, proposal, The natural p r z ~ ~ p s a l ~  % think. i s  to look for the 
norm that governs that 'popular acceptance' of assertions and justifications. 

But it seems to me that there is no mystePy about what that norm is, at kist in bold outline. 
Justification in mathematics consists of proof, authority in mathematics is authority witla 
respec* w the existence of proofs, and assertion is assenio~r that some p m f  exists. What 
is a g.mfP So far as the ordinary practice of mathematicians is concerned, I know of no 
reason to doub: that it is just wha! the formal logicians tell us it is - a finite m a y  of 
fomulas, each of which is either an axiom, or follows from previous fmmuias . . . etc. 

But, it will be objected, if this is what proofs are, then mathematics as it is actually 
pmcdsed contains no proors. Quite right. No-one ever displays derivations from axiom 
systems in doing real mathematics: one can get through a pduate education in mathematics 

without ever seeing a prmf.leO Rather, real mathematics consists of arguments, more or 
less informal, one primary purpose of which is to make it suflcientiy &ear rhlar a proof 

mists. One can, in this sense, 'give' a proof without writing it  down. 

What it takes to fulfil  this purpose, of course, varies according to such factors as the 

intended audience, and also the familiarity of the branch of mathematics in which onc is 

IDekfsen [op cit] pg116- 1 17. 
179 Dcalefsen [op cia] p116. 
laO From Lhc ordinary mathmalics lexss on my bookshelves, I pick (prcUy much at random) Apostnl's 
two  itme me C ~ ~ C U I I L S  - 8111 unusually ~ h e o ~ l i c a l  undcrgraduale iexs - and a quick scan reveals not a single 
inmm of o pmf .  Selecting now from [he logic texts on my bookshelves, a qJ& WUI of Monk (19761 
reveals me proof - on page 1 18. Perhaps there are a couple more. 



working. In so central a branch of mathematics as number theory, for example, h a  &p 
of informality is normally very high. In m a s  in which the subject matter is Pas familiar, 
md in particular in mas in which is or recently has been controversy, the s ~ n ~  of 
informality will normally be much lower. But so far as I can judge from the outside, at 
least, if there is ever real doubt that a genuine proof of some assedon can be cansmctd 
from an informal argument justifying that assertion, the standard practice of mathematicim 
is to improve, and if necesriary complicate the argument until the existence or nonexistence 
of a genuine proof becosnes obvious to all competent judges. It is in this sense that the 

n m  of formal p m f  governs the ordinary practice of mathematics. 

The idealization that is implicit in the hisel-Takeuti proposal, then, is not m i&alizaaicm 
oforchary mathematical practice. Rather, it is the idealization that is csmmcmly accepttxl 

in ordinary msatherruatics as providing the norm governing ordinary mathematical pmdcc. 
Krciscl and Talkeuti are not 'rounding out . . actual historical practice to conditions of 
perfar rationality and infsrma;ion', for they are not making claims about the: belief-set of 
some idealized mathematician. But then, one might of course takc issue with the 

appropriateness of this norm. One might think that the Rosser p m f  predicate, say, 
provided a more appropriate norm for mathematical practice. Disputes of this general kind 
Rave been very common in the history sf mathematics - BrouwePs intuitionist alternative to 
classical mathematics, for example, is grounded in an attack on the appropriateness of 
classical logic as the basis for mathematical practice. Detltf'kn, in his advt>ca~y of some 

alternative notion of proof (Rosser proof, as i t  might be) according to which the 

copsistency . . of arithmetic is finitistically provable, has no nexd to dispute that closure under 
cut ad demonstrable 2,  completeness characterize the standardly accepted notion of 

provability. He needs to dispute the appropriateness of that notion. 

Both in his response to Mostowski, and to Kreisel and Takeuti, therefore, I think that 
Hkolefsen csniuses two quite different issues. The first issue concerns the cors&tions that 
thc s m d d l y  accepted notion of mathematical proof in fact satisfies. That notion of p h o ~ f  

satisfies the Btrivability Conditions, and so far as I cdn see, nothing ktlefsen has to say 
ought to incline anyone to doubt that the consistency of PRA cannot be proved in PRA, in 

that sense of 'proved'. The other issue, though, concerns the notion of proof that 
Detlefxn's 'Hilknian' instrumentalist ought to accept. Perhaps the appropriate notion is 

that of Roo: (for Rosser-proof), rather than pmf .  Detlefsen then has a perfectly sensible, 
interesting project to recommend to us - the project of discovering the properties of 

Roovability, and in particular, the project of discovering finitasy Roofs of consistency. Of 



cowse, we shall as Hllbenians require that the notion of Woof is axismaeizedl, for wo h e  

moment its characterization is entirely parasitic upon the well-understow! notion of p m f .  
Once we have a Roof-predicate axiomatid ir,dcpn&ntly of the standard p f  predicate, 

we shall be able to encode it and investigate its metamathematicid p p e m e s .  

Bur wc must then wonder what ktlefsew will have to say about those hesnms of s m d x d  

mathematics that cannot be Rosved, although they can be proved, and those theorems that 
can k proved, but not Rooved. For clearly, the two notions cmnor be ceex~rasive. If 

Detlefscn's instrumentalism has the consequence that the unRoovable fragment of classical 

mathematics is to be abandoned, or in any way downgmkd in the interests of ahc Woovnblt 

fragment, then he is engaged in  exactly the kind of mathematicaily revisionary 

philosophical assault on ordinary mathematics that Hilbert's Programme was intended to 

forestall. 

And there is mush in his book that suggests that this is whar: he has in mind. In particular, 
the kind sf instrumentalism he advocates appears to be animated by the all-oscp-familiar k i d  
of epistemology-based womes about Platonism, for he makes much of the need for a 
'justification' of infinitistic mathematics that does no; require literal belief in its 

&liverances. The justification he tries to give, as we saw at the close of Chapter One, 
has as its central theses that infinitistic mathematics is a 'reliable' md 'perspicacious' 

extension of finitary mathematics. These are technical !ems in Lktlefsen: an extension sf 

finitary mathematics is 'reliable' o ~ l y  if i t  proves 'finitarlly true' finitapy theorems only, and 

' ~ i c a c i o u s '  only if it proves all (or at least lots) of the finitary truths we are interested in 

more readily that finitary mathematics does. And as I said above, there is real p i n t  of 

contact with Hilben here, since this is the Conservation Programme in other words. 

Dedefsen's instrumentalism, then, really is seriously challenged by the Incompleteness 

Theorems, which show that ordinary, infinitistic mathematics is either unreliable, or non- 

perspicacious. But if Detlefsen proposes to redraw the mag of ordinary rnathernatiks in 
order to get =liability and perspicacity within the confines of the noti~n of Woovabilily, he 

has clearly abandoned the Hilbert's project of defending the ordinary practice of 

mathematics. For Detlefsen has nothing to say about the justification of the parts oh 

ordinary mathematics which cannot be accommodated within the confines of this 

instrumentalism. 

The Wlkrtian philosophy of mathematics I sketched in Chapter One and Chapter Two 
does not have this deficiency, siilce it  separates issues concemirlg ontology and issues 



c~ncerning justifiability. The justification of mathematics is in general a matter for h e  
internal practice of mathematics, not for the philosophy of mathematics. In the special ease 
of finitmy mathematics, of course, a different and more philosophical find of 'justificrsdsm' 
can Be given, which rests upon a claim about the special status of mathematics in any 
theory of representational thought. In part as a consequence of this. my version of 
Hilbertim philmghy of mathematics Is committed t~ mathematical &@as, in thmies chat 
are finitslrily provably csnsesvative over finitary mathematics. But it is not compelled m 
a h d m  literal belief in the infinitistic parts of mathematics beyond conmntive extensions 
of the finitary, nor to deny that the well-attested theorems of ~ansfmiee set theory are me. 
For my Hilbenian is no instrumentalist: she treats the truth predicate disquomtionally, and 
regards the internal practice of mathematics as in general perfectly adequate to confer 
meaning upon mathematical statements, and thus legitimate l i k d  belief in what they say. 

My Hilkrtiain, then, can abandon the Conservation Program with comparative equmimity, 
and rest content with the standard understanding of the import of the incompleteness 
theorems. 

Detlefsen's insmmentalist, then, does not seem to me to provide a plausible philosophicd 
basis for anything like Hilbert's Programme. Hiltbert was no revisionist, and them irs no 

reason to think that he would have abandoned classical mathematics in the interests of a 
viable version of the consistency programme. Nor can I see any reason why MiAbert: 
should be interested in anything other that a proof of consistency. For Hilkn's interest in 
consistency was above all focussed upon the problem of the elimination of ' i h d  elements' 
fFom proofs of theorems of finita~y character. That project accepts classical rnaokmatics m 
it is, and seeks to show that the classical quantifier can always be, eliminated f r ~ m  
formalized proofs of finitary theorems. 

But it cannot be, and that is why Hilben's Programme, in its original, fully general form, 
fails. What is mare, we can see that it fails without becoming embroiled in the o~r~prising 
pmpemes sf the notion of provability in a formal system, or indeed with my conmversiih% 
issues in the interpretation of formal theories. For the fuily 'extensional' First 
Incompleteness Theorem will suffice to force this conclusion upon us, as I shall now 
show. 

Section Four: The First Incompleteness Theorem and the Master Argument. 

Recall that the Master Argument aimed to demonstrate the eliminability of ideal elements 



from proofs of finiaary In this section, 1 shall give an account of some work 

by KPipkc and Goldfarb that shows the existence of a version of the First %ncsrnple~entss 

Themeno whieh provides a direct demonstration that the Master Argument cannot be wried 
out within the constraints of finitary rnaehematics. ?'he qualification is important: he 
Master Argument can be carried out, but the weakest po~sible resources required for its 

successful execution go just beyond the bounds sf the finimy, This has of c o m e  k e n  
known since the original Genzen proof sf  the consistency of arithmetic of 11936 (see 
Genan [1936]). What is perhaps less widely known is the connection between Ge~zzen's 
discoveries and the incompleteness theorems. 

You will also m a l l  from Chapter One Hilben's insight h a t  it is 'through the quantifier' 

that the infinite enters mathematics. The basic strategy foe proving consistency pursued by 

)Hilbcn and his coilaborators was therefolle to seek out an algorithm for the elimination of 

occmnccs  of quantifisrs from proofs. Like Skolem, but independently of him, Kilkrt 
took the view that an existentially quantified variable may be thought of as a choice 

function. In a formula (Vx)(3y)F(x, y), e.g., the valuc(s) of the dependent variable y 
required for the n t h  of the formula may be thought of as the value(s) of a function which, 

given an arbitrary x, chooses a y such that F(x, y). The sense of (Vx)(3y)F(x, y), then, is 

roughly that of (Vx)F(x, f(x)), where f(x) is the appropriate choice function.lm 

The demands upon such a choice function are apparently very strong, since it muse not only 

provide values for all the (possibly infinitely many) values of the universally quantified 
variable (or variables) upon whieh it depends, but also choose values in such a way as to 

guarantee truth, if that is possible. Given the possibility of extensive nesting of quantifiers, 

it will not in general be possible to constructively verify the truth sf the outcome of the 
operation sf the choice function. This is of course why the quantifier counts as an ideal 

elemcnt, in Hilbenian terms. 

We saw in Chapter One the basic source of Hilbert's hopes for a way around this 
difficulty. With arithmetic formalized in the E-calculus, it will be possible to convert my 

formula, and thus any proof, into an equivalent formula or proaf in which all quantifiers 
have been replaced by E-tcms. Since any particular proof can only invoke finitely many 

lei This section b very heavily indebted lo Ihc work of Warren Goldfarb - see especially Goldfah [lM]. 
la* Ibis rough claim can be made precise. The Skolemized jorm of a formula of h e  prdicale calculus is 
he result of replacing dl occurrences of existentially quantified variables in h e  m e a  sug~~esrtd by the 
example. It can then be shown  hat a formula is conu;ldiclcry iff its Skolemized form is mVadicaop)r. 
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axioms, and can apply inference rules only finjtely often, Hlkpa thought ?h my parkdm 
proof reced only draw upon a finitistic fraction of the full infinitq power of the choice 
function(s) associated with the E-terns. Oversimplifying hsdcslly, if a proof contains 
only n occurrences of e-terns, one may think of the algorithm for eliminating e-terns a a 
systematic search through n-tuples s f  natural numbers. If there is im assignment of values 

to variables that validates the pmf ,  Hilkn thought, it must be located within the bunch 

of a finite search. Gsldfarb describes this procedure as a search fmfiraimq orgprmimabm 
to h e  genuine, infinitary choice functions required. One can stiir~ with the agpximaeions 
to he real choice functions that are zero everywhere, then check if any of the constraints 
imp& by the formulas in the derivation are violated and halt if they am not; otherwise, 
begin some systematic process of vaqing the previous assignments and 

This is the strategy pursued by Ackermann in his proof of iha consistency of fmt o&a 
arithmetic.lm The difficulty it faces is rather obvious to us now, but Hilkrl md ,his 
school wen apparently oblivious to it until the discovery of the First Incompleteness 
T R m m  in 1931. h order to cany out the Master Argument by the substitution m e t h a  is 
will have to be shown that the process of assigning values to e-terns olsldll a validating 

assignment is produced always terminates after a finite search. This is going to have to k 
argued by induction (in fact, a double induction, on the complexity of formulas and h e  
length of pmfs), and that in turn demands some notion of norm& fom fos formulas andl 
pmfs. Satisfactory notions are not hard to find. One possibility for the n m d  form of 
formulas is prcnex normal form, and this makes vivid h e  problem that will eventually drive 

us beyond the bounds of the finitary. For we will have to be able to deal with 
quantificational prefixes of arbitmy complexity. 

Now, as we saw in  ohe simple example of the Skolemization of ('dx)(3y)F(x, y) no 
(Vx)F(x, f(x)), the function that replaces the dependent existentially quantified variable: 
must be k e y 4  to the values of the variable upon which the existentidly quantified variable 

&pen&. Given a more complex matrix, this induces complex relations of funsaiiond 
dcpcndencc, since the constraints imposed upon the approximation to the choice function 
replacing one existential quantifier will depend upon the consmints imposed upon other 
approximations to choice functions in whose scopes the original lies. Chnquently, in he 
induction argument to the conclusion that the substitution p m d u n  always terminates, che 

lU3 This paocdlurc is known acs he suM!ulion method. Ttre sundud study is Tair [IW]. 
184 Achmam [19401. l b c  is a readable version of Ackermann's proof in Wang [1963]. 

- 1 7 4 -  



induction has to cope with structures of greater ordinal complexity than the natural 
numbers. In Genzsn [1936], and in somewhat greater detail in ~cinlon [I9733 (which 
draws upon the wok by Herbrand discussed below), it is shown hat the argument in fan 
requires induction up to ordinal €0 - the least ordinal with respect to which transfinite 
inhcoion cannot be reduced to ordinary iriduction in a finitary way, and in this sense is has 

k e n  shown that the minimal resources required for the proof that the substitution meshod 

cenninaks jut  m e e d  the bounds of the finitary. 

This much is widely known. What is less widely known, perhaps, is the intimate relation 
between these facts and the incompleteness theseem. Goldfarb, following unpublished 
work by Kripke, has established this connection as a consequence of the profound 
investigations in proof theory undertaken by Herbrand in his doctoral thesis.185 I shall 
now give an account ~f Goldfarb's argument. 

In his PhD thesis, Herbrand applies Hilben's ideas for finding finitary approximations to 
tiit quantifiers to the first order predicate calculus. Rather than speaking, as H have, of 
choice functions (and thus of a domain of objects in some intended model), Herbrand 
speaks of choices of new firaction signs to replace the quantifiers. The basic idea is to 
show that any quantificational formula can be effectively reduced to a countable set of 
formulas k e  of quantifiers and variables, I.e. to what is essentially a set of formulas ofshe 
propositiaml calculus. The collection of quantifier-free formulas comspnding to;) some 

fomula (Qxi)F is called the Herbrand expansion of F (denoted by E(F)). In ahis way, 

apparently quantificational facts about domains of objecis are analy sed as trufhjhcsional 

facts about their expansions. 

Assume now we we working in a formulation QC of the first order predicate calculus wizk 
3, -, V , and A primitive, and V, , and + introduced as informal abbreviations in 

the usual way. A rectified formula of QC is a formula of QC in which (i) no variable 
occurs both bound and fee,  and (ii) there is at most one occurrence of n quantifier with any 
given variable. (Every formula of QC has a rectified equivalent fomula in QC.) 

Let F be a rectified sentence of Q C .  An occurrence of V is positive (in F) if h a t  

occurrence of V lies in the scope of an even number of sccumnces of in F, and negative 

According to Qoldfasb (19901, Kripke's proof dales from 1978. There is a sketch of it in pa l  7 of 
Kachem and Kripke [I1981]. Herbrand's doctoral Lhesis is Herbrand (19301. The crucial fifh chapter is 
aegrinltd in an Englisii mslation In van Hcijenoorl(l9671 pp524-581. 



otherwis&. An occurrence of 3 (in F) is called positive (in F) if that m m n c e  of 3 lies ilra 
the mgc of an odd number of occurrences of - in F, and negative ohwise. 

then x and z arc bound by positive wcumnces of quantifiers, and y and w are bound by 

negative occupnnces of quantifiers.] 

We now need to define thefhctiom9form of a rectified formula F. For each negative 

occumnce of a quantifier Q in F, let x be the variable bound by that ocsmrrem of Q, let G 
be the scope sf h a t  occurrence of Q, and let yl, . . . , yn be in order the variables bound by 

positive occurrences of quantifiers in whose scopes QxG occurs. Chsosc a new function 
sign fx not used elsewhm in F, and substitute G[>dfX(yl, . . . , y,,)] for QxG. Repeat this 
procedure until no negative occurrences of quantifiers remain. The result is t h e h s i o m l  

form of F (it is unique up to the choice of function signs). The new function signs ape the 

indicia1 fiutction signr. 

the functional f o n  of F above is 

and the indicial function signs are f,(x) and f,(x, z)).] 

What wc have done is simply extend the notion of Sk~lemization to cover non-grcncx 
fmdas. Now, let F- be the mtrir of the functional form of F. 

with F iis before, F- is 

We define the heigh of a closed term inductively: constants ase of height 8, and the height 
of f(xl, . . . , x,) (n > 0) is one greater than the maximum of the heights of XI, . . . , x,. 
We can now define inductively the Herbrand universe of height p associated with F, 
denoted by D(F, p). We include in D(F, p) an initial constant c (zero-glace function), 



which is not called a indicia1 function but which is inclladcd in D(F, p) for each F, p (this is 
just to allow the consauction of D(F, p) to Begin in case F- contains no consme). Then, if 

tl, . . . , tnE D(F, p) (for n S p) and f is my n-place function sign (not necessarily indieial) 
occurring in F-, then f(tl, . . . , t , ) ~  D(F, p). B(F, p) is then the finite set of terns of 
height 5 p constructed from the function signs of L(QC) and the indicid functions that 

appear in F-, together with the initial constant c. 

with F- as above, D(F, 9) would begin thus 

and would halt at the bound on the height of terms imposed by p.] 

Finally, we can define the Herbrand expansion of F of height p , E(F, p) as the conjunction 
of all instances sf F- over D(F, g) - the conjunction of all senznces obtained from F- by 
substituting terns from D(F, p) for its free variables (that is, the variables that were bound 
by positively occurring quantifiers in the functional form of F). 

the Herbrand expansion of height p of the formula F above miglnt 

begin 

We can now state Herbrand's Theorem : 

(Herb) A sentence F is derivable in any standard axiomatic system 
for QC iff E(-F, p) is n t h  functionally unsatisfiable for some p. 

For the proof, which is reasonably straightforward, see Herbrand [ I  97 11, or e.g. Andrews 
[I9861 section 35. It is perhaps plausible from the above description, but in any case can 
be proved, that one great merit of (Herb) from the point of view of Hilben's Programme is 
its effectiveness. Given a derivation of F, we can compute a bound on the search for an 



unsatisfmble expansion of - F . ~ B ~  This makes (Herb) a remarkable, confirnation s f  
filbert's insight that my given derivation will only draw upon a finite portion of the full 
infinitistic power of the quantifier - so far as QC is concerned. 

But (Herb) has other v h e s  for the Hilkrtian, since it speaks dimdy to the question sf 
consistency. A first &r system T is consistent iff tach conjunction sf the axioms of T is 
quantificsltiodly hfutable,  iff (by (Herb)) E( A (AxT), p) is truth functionally satisfile 
for evcry A (AxT) and every p. The gain ~ Q P  Hilkn, now, is that only qcsanoifier~ 
occurring in the axiom wed to be conridered in proving ctmristemy. As Goldfarb says: 

Evqlhing becoma a matter of he  axioms: it is mly to Lhc H c r b c d  fwrctian 
signs arising fm h m  lhat a Hilben-slyb evaluation procedu~c nacd be applied 
This mkcs the project resemble more closely the inuitive (ncwmmtmeive) one 
of devising a model f c ~  h e  axioms. But whereas b e  l a w  la!& quires reall 
choice functions, functions LRa: render every expansion E(F, p) We 
simultaneously, [he pmf-beoretic task is rather to find for each F and each p 
functions thai work for E(F, p). The values chosen in connection with one 
expansion need have no relation to hose chosen in connection with anohm. 
?bus one deals wifi the constrain~s imposed by each expansion scparaa~~.~~~ 

So far, we have considered only QC, but of course we are really inberesled in the 

consistency of arithmetical theories. What does (Herb) have to tell us abwt  skis? 

k t  U A )  Be the language of a first order arithmetical theory, and let N be h e  s m W  
model of arithmetic. With F now some sentence of L(A), and F;- as defined above, a 
Herbrand evaluation for F in L(A) is any structure S obtained from N by adding 
interpntations for the indicia1 functions of P and for the initial constant 6. If $b E(F, p) 
for some p, then S is a g-approximation for F. The p-range sf S is the set of numerical 
vduts assigned by S to terms t in D(F, p). So: S is a p-approximation for F iff 6k F- 
whenever the variables in F- are given values in the p-range of S. 

We arc now apparently speaking of interprewtisns and of the standard model of arithmetic, 
but (as Goldfarb points out) we have not invoked the full model-heontic notion of truth in 
a structure. For a Herbrand evaluation involves no variables. Rather, we aube invoking a 

finitary approximation for the notion of trulh in a snucture, which appeals to teuah only 
with respect to the quantifier-free part of E(A). As a consequence of this, and of the way 

Plausible as it might be. h e  proof of his is not routine, and Herbrand's own treatment is Qeticient. 
See DRben, AnQcws and AslQeraa 619631. 
'8' Gowarb [I9901 p53. 



pappmximadons a& chosen, Herbrand evaluations always a p  with standard evduatims 

in N of quantifier fret formulas of L(A). Therefore. SF G(tl, . . . , t,J iff Nk (G(tsn. . 
. . , Q,) for all quantifier-free formulas G(xl, . . . , x,), all terns t l ,  . . , , p, in an 
Herbrand domain D(F, p), and all Herbrand evaluations for F. The famimy approximation 
to the full model theopetic notion of truth in a structure r%dnlly is a finitmy appmximation to 
hut n h n ,  since it is g u m &  to agree with it for quaqtifier-he fommhs. 

(Merib) now tells us that, in a given derivation f r ~ m  F, some gappmxi~naoion can sirnuhot 
the use of quantifiers in that derivation, in a way which preserves n th  of al l  quanMir-fnx 

formulas. Such a p-approximation assures us that it is possible to provide a finitary 
account of the workings of the quantifiers in that particular derivation, which involves no 
appeal to the full power of classical quantification. Herbrand's line sf argument, then, 
keeps faith very closely with the central Milbenian intuition that conceritration on the 
smctuae of particular p m f s  can be made to yield a guarantee that any finilargr fornula 
proved with the use of 'ideal elements' - y lrantifiers - is 'finitarily true', or rather (and Ieos 
misleadingly) recognizable as m e  by finitary means alont: (in principle). 

Unfortunately, this central Hilbertian insight can now be shown to be unconfimable by 

finitary means, precisely because it is true. The demonstration that this is so will reveal an 
incompleteness in any theory T that is 11-sound. To show this, Goldfarb seates, and 
sketches the proofs of, the following series of results. 

XI-Lemma: if (3x1) . . . (3xn)G(x) is any XI-sentence derivable from F, then here 

exists p (computable from the derivation) such that any p-approximation for F contains in 

its p-range a numerical value for x that makes G(x) true. 

Roof ((eolclfarb): since the theories we are interested in will contain a function 
symbl for khe p.r. pairing function, we may restrict our attention to sentences (3x)G(x) 
with a single quantifier without loss of generality. Assume then that QC U ( F )  k 
(3x)G(x). Then by (Herb), E(F /\ 7(3x)G(x), p) is truth functionally unsatisfiable for 
same value of p. The functional form of -(3x)G(x) is -G(x). -G(x) contains no function 
signs other than those wcumng in the Herbrand domains of F, whence D(F, p) = D(F A 

-(3x)G(x), p). 

But then the Hcrbrand expansion E(F A -(3x)G(x), p) is n t h  functionally equivalent to 
E(F, p) A A-GO), where the conjunciion A - ~ ( t )  is -G(tl) A . . . A -G(r.) for all ti 



in D(F. p). By (Herb). then. E(F, p) A A - G ( ~ )  is m t h  functiondly unsatisfiutbls. 
Then, if S i s  a papproximation for F, we have S E(F, p), and so& k G(t) for some 

wm in BP, p). Therefore W k G(ts). 0 

As a consequence of the Z1-Lemma, if there exist p-tpproximations for F for all p, then 
every Z1 sentence derivable from F is m e  in the s t a n M  m&l of arithmetic. The mason 
extends immediately to n2 sentences - sentences (Vx)(3y)G(x, y) with G(x, y) quantifier 
h e .  For if QC U (F)  k (Vx)(3y)G(x, y) with G(x, y) quantifier free, then QC bl 
(F) t- (3y)G(c, y) where c is the initial constant included in D(F, p) for ench p. Bur hen 
(3y)G(c, y) is a El-sentence in which no functian constants occur which do not occur in 
the Herbrand domains of F. Then by the Z1-Lemma, there exists some p for which my p- 
approximation for F has in its p-range an integer n such that Nk G(cs, n). This proves 

the 

ni-Lemma: if QC U (F) t- (Vx)(3y)G(x, y), then there exists a p, computable from 
the derivation, such that, for any q, each papproximation for F with initial vdue q emtains 
in its prange an integer n with Nk G(c, n). 0 

Consequently, a procedure which effectively generated a p-approximation far given 
axiom@) F with initial value q, for any p and any given q, would give an effective 
procedure for computing a choice function for any n2-sentence derivable h r n  IF. What 
Goldfarrb (following Kripke) then shows is that the natural formalization of he  sentence: 
'for any p, q, there exists a p-approximation for F with initial vdue q' cannot itself be 

derivable from a consistent set of axioms F. For the relation (<p, q>: there exists a p- 
approximation for F with initial value q )  is computable, therefore recursive by Chmh's  
Thesis. Then there is a formula G(p, q, n) of L(A) such that there is a p-approximation for 
F with initial value q iff Nk (3x)G(p, q, x), where the correct value of x encodes the 
required g-approximation for F with initial value q, whose p-. dnges contain only integers 
lass r h n  x. The sentence (b'p)(Vq)(3x)6(pq q, x) then says: for every value sf p, q, there 
exists an x such that x c&s a papproximation for F with initial value q. 

The diagonul sentence (Vp)(3x)G(p, p, x) then says: for each p, ahere exists aio x such 

that x codes a papproximation for F with initial value p. Then 

(Gold 1) if for every p there is a p-approximation for F with initial 
value p, then (Vg)(3x)G(p, p, x) is not derivable from F. 



Suppose it is derivable. Then by the HB2-Lemma here exists a p such 
that every p-approximation for F with initial value p will have in its p-range im integer n 
such that Nb (3x)G(p, q, n). Pick for S a p-approximation for F with initial vdue p such 
that the largest integer in the p-range of S is as small as possible. Then there is an i in h e  

p m g e  of S such that Nk (3x)G(p, q, i). But by the choice of G(p, p, x) described 
above, there is a p-approximation for F with initial value p whose p rage contains only 
integers less than i. Contradiction. B 

The extension to infinite axiom systems procecds as one would c x p t  kt T be an infinite 
axiom system, and for each n, let Tn the conjunction s f  the first n axioms. Then, given a 

p.r. listing of the axioms, the relation [an, p, q>: there exists a p-approximation for Tn 
with initial value q )  is computable, therefore recursive. Now argue as before, with 

(Vx)(Vp)(3z)G(x, p, p, z) for the underivable sentence. The result confirms 

. (Cold 2): ii, for every p, n, then exists a p-approximation for Tn 
with initial value p, then (Vx)(Vp)(3z)G(x, p, p, z) is not hrivable 
in T. 

Goldfarb then goes on to ~;se these facts to prove two more theorerns which bear a mope 
obvi~us resemblance to the familiar First Incompleteness Theorem of GMel, bus % think 
that the point has been sufficiently made. Commenting on (Cold 1) and (Gold 2)- 

Goldfarb writes 

The n2-sentences we have consvucted are underivable because their choice 
functions ouutrip, for each p, L ~ I C  power of g-approximdons. The measure of 
this outstripping is an obvious one: the maximum of h e  integers in the grange 
of the approximations. A choice function for a derivable Dl-senience cnan be 
oblained from gapproximations for fixed p and varying initial values. However, 
since our sentences asen the existence of p-approximations for each p. heir  
choice functions simply p w  too fast.lB8 

There is, then, a measure of irony in the situation. HilBen's central insight, that any 

derivation can only draw upon a finitistic amount of the ful l  infinitistic power of the 

quantifiers occurring in that derivation, has been vindicated, but the vindication 
demonstrates that ha t  very insight cannot itself be finitistically verified. At each stage, we 



can state with great precision what is required for verificstism, bul what is q u i d  for 
vcxi , fh im always just outsmips the reach of fi~tary approximations. 

This way of arguing that the First Incompleteness Theorem shows that HilBert1s 
Programme cannot be carried out seems to me far preferable to some alternative 
suggestions that hare k e n  prominent in the literature, in that it makes no appeal to the 

content of the undecidable sentences. We may usefully rake m e  time to consick a couple 
of these alternative suggestions. 

In his indispensable survey of the incompleteness theorems Smorynski [1977], Smsrqrnstrl 
claims (cmctly) that (CMeO 1) shows that Hilkrt's Conservation P r o g r m e  must 
fail. He writes as follows: 

Hilbert's Programme can be described thus: There an two system . . . F and I 
of mabsmatics. F consists of *!ie finite, meaningful statements and methods of 
p m f  and I h mufinite. idealized such slarements and me.hds. ?he god is to 
show thak for any meaningful assertions P, i f  P is provable in I, ahen P is 
provable in F. . . . G a e l  destroyed Hilben's Programme with his First 
Incompleteness Theorem by which he produced a sentence G satisfying a 
suffilenrly narrow criterion of meaningfulness and which, thou@ W i l y  
recognize4 as true - hence a Wtwn of the transfinite system T, was wgrovab%e 
in S. In  short, he produced a direct counlerexample so Hilbept's c W r d  
consemdon result. 189s 1 90 

A striking feature of this criticism, though, is the claim that the sentences shown to be 
undecidable in extensions of R by GiSde!'s (or Roswfs) methads are said to be true. That 
claim was not made in our repon of the logical facts surroondng (CsMei 1). Gtidcl 
himself makes no such claim (in GWl[1931), at any rate). And no appeal n e d  be rn& 
to the content of the underivable sentences constructed in Goldfarb's argument. In ii 

lug S n m p h  (19851, pp3-4. 
16 ic to b underslood here that Smorynski is  giving an informal, intuitive gloss on an a~gwncnt for 

which he Lhen goes on to provide in much greater delail. I therefore Lkink i t  a little wgcnerous of 
Dtalcfscn, in his iniiial response lo this passage, LO make much of Iht fact Dhaa the claim ma86 in this 
passage is not suicllp and literally uue (see the Appendix lo holefsen (19861). TO pdwe a direct 
counterexample to h e  Conservation Programme, one must indeed display a finimy system P, an ideal 
cxknsion 1 of P which we have good reason LO believe to be consisrent. and a 'red' senmcc C in h e  
cmmoa language of P and I which i s  unprovable in F. and provable in I; and il i s  ptsrecdy me hat oRc 
prkulPt  result proved in G W l  [I9311 does not do this, since, in Lhru paper, G W l  groduce% m u l e  d 
a sesrtGncc decidable h what Hilben would have classif& as an h-kd system - in effecl, the k i d  s y m  
(PA). But rbe phrase 'Lhe k m  incomgleleriess theorem' does not now smdardy refer m tlw @cdar 
result. hhcr, it refas aur (GWd 1). And a smc&ud prwf  of (G&l l), using OIAG), can h k d  by 
gwm&d oo p v i d e  a formula which 'sarisfes a suff~iendy m w  criterion of mcanin@uM, which is 
not povabk in PRA, and which is provable in consistent 'ideal' exmuion$ d (IPWA). 



Bi.ffcnnt placc, Smorynski gives his reasons for claiming that 'I7 @era d and its comhees 
an: indeed true as follows: 

I. . . the rmi incompleteness lheorcm destroys the Consistency Pro$rmmc] 
since (1) the s~aErncnl q [i.e. '17 Gen r', or some o~htr undecidable fornub] is 
red; and (2) is easily seen to be me. ((1) qu i res  looking at oh.e coslstnrctioar 
of q;  (2) is seen by observing that q asserts iur ungmvability and is  indleers 
unprovable.) Thus, the First Thcorern shows that Lhc Consavaticm Program 
cannot bc c&ed out. .  ..IQ1 

This way of arguing from the Firs! Incompleteness Theorern to the failure of Wilbera's 
Pmgmmmt has sparked a rather bemusing series of &bates. 

Resnick, for example, denies that the problematic undecidable sentences m 'red', i.e. m 
of finitmy cku1icter.lg2 Ilf we take the sentence used in (COD) as our specimen 
undtefdable sentence. i.e. 

then, acco,dng to Resnick, this sentence is not real. Rather, the sckm 

(with n a schematic numeral) is red, and is regarded by the finitist as a 'rnctdinguistic 
device for communicating indefinitely many real sentences in one breatht.1W Now, far 
each number n, we do in fact have 

In vim of the  incompleteness of PR 4, though, we do not have 
'I ' 4  

unless PRA is inconsistent. 



But the same point k perhaps more revealingly put as follows. Wiist we can &rive every 
~ r j c d  inrrance of (a), we cannot have 

withfree variable y, unless PRA is inconsistent. As you might say, one can prove evrry 
instance of tke schema, but not the schema itself. R e  quantifier, in this mettilinguistic bay 

sf putting h e  point, cannot pass through the turnsbile into the u n i v e d  quantifier of PWA. 

The problem is, though, that this way of conducting the discussion is now apt to bog down 
in some nice distinctions between fne variables a& schematic letters, and his secrns to me 
quite unratisf'ctoxy. The important point, surely, is that the wn&eivability of the last 
formula displayed . . above shows that there is something amiss with Hilbert's nation of 
generality. The classical quantifier docs not in fact have the cliamcia Hilkn hoped. 
Classical mathenratics, with the classical quantifier, is not cclengmadve over BRA, and this 

r 7 is clearly shown in the independence of (b'y)-(p(y, G )) in PRA. It mmnr to me that 

GoldfaPb's argument makes this point clearly, without this &tow through disputes abut  
free varIiables, schematic letters, and hcd formulas. 

In an equally unsatisfgcoory fashion, QctPefsen has engaged Sm~rynski in a dispute over 
whether the notion of truth involved in Smorynski's claim that '17 Gen < and its c o m l a ~ s  
is the 'classical' notion of truth, or some (unsptxifid and unexplained) ' f m i q '  notion of 
truth. Now, I should have thought that there is no need to i n d u c e  a notion of f in i saq  
n t h  - or a special notion of chssicd nth, for that rnaner - in adcr t assess the feasibility 
of' what Hilkrt w s  trying to do (no such notion is to be found in Milbert, for one thiiig). 

In my flatfooted way, I sh~uld have thought that a finitary truth is joso a mah - an ~dkrq 

truth - of finitary mathematicp. There is no need for more than one notion of truth in the 

discussion: we arc sirnr9j required to respecs c distinction between truths which can and 
which can mt k lwognized with the very restricted resources of finitary maPlhtmatics. But 
however one fcel~ abut this notion of finjury truth, is is not needled in o&r to show that 

Hilkn's hogramme cannot ue carried out with full  generality. For the Kripke-Goldfa% 
argument, sketched above, establishes that, without any appeal to the content of the 

undc@i&blc sentences. 

And this is as it should be. The First Incompleteness Theorem is a purely ayrrtacric result, 

and the syntactic facts done suffice to show that the Maskr Argument cmna be clwid out 



with full generality. No finitarily verifiable procedure can be given for the elimination of 
ideal elements - classical quantifiers - from proofs of finitary fomblas. This is not to 

deny, notice, that this part of Hilbert's Programme can in fact be carried out to a surprising 

degree - recall the brief discussion of Friedman and Simpson's work in Chapter One. 
But the full generality to which Hilbert aspired is not to be had 

We might put the fundmental point like this. There are in fact two aspects of the p m f  of 
the incompleteness of elementary arithmetic. First, there is the definarbility of GMel's 
recursive substitution function (Subst), satisfying 

(i.e. (subst) gives us as value the code number of the resuit of substituting n for x in F(x)). 
With (Subst) in hand, we prove the Diagonal Lemma as follows.1w Lea F(x) be any 

formula with x alone free. Let B(y) be F(A(y, y)), with the code number rn. Finally, let G 
be B(m). Then with T as above, 

T t- G o F(A(m, m)) (since G is F(A(m, m))) - F(A('B(~)', m)) (since m is the code number of B(y)) 
@ ~ ( ' ~ ( r n ) ' )  (since A('B(~)', m) is '~ (m) '  by 

(subst)) 
r 7  

t,F( (3 1 (since G is B(m)) 

This aspect of GMel's procedure in GiWel[ 193 1 j makes the argument sf that paper appear 
to be very close to the semantic paradoxes, for the use of (Subst) to produce an 

underivable formuls that 'says of itself thdt i t  is not provable' is made to appar crucial to 

the pmf.195 Actually, Rosser's refinement of GMel's result is already enough to makt 
one wonder about ohis, since the underivable sentence (ROSS) certainly docs ust 'say of 
itsetf anything at all. But the Kripke-Goldfarb argument sketched above sha~pcns this 

doubt. 

198 TRe following skekh of an argument is laken from Smorynski [i98S], pS. " 
195 The highly misleading impression that [he centml argument of GWel [I9311 is closely related to the 
LiaP p a d o x  is of course reinforced by GMel's informal inucxlucmry discussion - a discussion which, 1 
suspcc4 G a l  lalay have come to regreL One sometimes gels the impression, in philos~phicai disc~ssions 
of GCldcl's work, Lhat this is the only part of the paper thal has been read. 



For that argument concentrates entirely on the other, genuinely profound a s p a  sf QMel's 
p m f  - the process of GUdelization, of assigning cosies to syntactic expressions, which 
enables us IQ pull the syntax of a given mathematical theory down into the Phtsry itsellf in 
such a way as to associate derivable formulas with syntactic facts. The Kpipke-Goldfh 
argument shows that this arpect of Gddel's work is sulyicienofor incorplglesenass, and in 
particular sufficient to show that the finitary elimination procedures Hilkrt Roped for BJE 
not to Be had. In Kripkc-Goldfarb, there is no use of a substitunion function to 

manufacture ar 'self-referential' sentence. mere  is indeed a mcia l  use sf  diagondizapim - 
of the i&ntification of two arguments of a relation - bsrt not of self r e f c ~ w e .  And this has 

the addtd atbraction of setting aside the misleading suggestion of a close resemblance 
between incompleteness and the semantic paradoxes suggested by Smaqnski's anti-Hlilkrt 
argument. 

In stressing the purely syntastic nature of the difficulties for Milkn's Programme revealed 
by the First Irxompleteness Theorem, let me emphasize that nothing E have mid is i n t c w  
t~ dispute the existence of true, 'real' senterlces that are not provable in BRA. The above 
rcrnadts arc not intended to imply that I have any serious reservations about the familiar 
claim that the sentence '17 Gen r' of GMel's original prwf is true 'because it says that it is 

unpmvablc, ar~d so it is'. (It happens that that claim is suictly and literally false, but ohat is 
a quibble.) I am simply trying to emphasize that the impossibility sf fully attsining 
Hilbert's goals can be shown without engaging in these kinds of semantic issue. 

On the kind of Hilkrtian position I outlined in Chapter One and Chapter Two, the 
n t h  predicate is to be mated disquotationally. Now, I think that PRA is consistent, so I 
think that it is me that PRA is consistent (or, better, I think ohat 'PRA is consistent' is a 
me sentence af English). I also think - as did Hilben - that the question of the consistency 
of PRA is finitkly meaningful. I therefore think that ' C o n p ~ ~ ' ,  where that sentence is 

consmctcd hrn a provability predicate for PRA in the standard way, is true, and is noe 

provable in PRA. I therefore think that there are true sentences of finitmy character which 
are provable in infinitary extensions of PRA,  yet not provable in PRA itself. 1 hold, 
therefore, that the Conservation Programme fails, definitively. I also think that the 
impossibility of finitarily establishing the existence of finitary surrogates for the classical 
quandfiers in proofs of finitary sentences, as demonstrated in the KPipkc-Goldfahb 
argument, gives the fundamental reason why Hilkn's Programme canslot be carried out in 
full generality. 



But nothing that I have c~nce&d here gives grounds for any revision s f  h e  Mlbenim 
position on ow ontological commitments in mathematics outlined In the earlier puts of this 

essay. If a Hilbertian thinks that conceding the truth of, say, 'ConpnA' will force upon her 
ontological doctrines of a kind uncongenial to Hilben, then I think that she must k 
enmeshed in the conflation of issues concerning the acceptability of scientific theories and 

issues concerning ontological commitments we discussed in Chapter One. 'ConppaAS is 
provable in a mathematical system we have very g o d  reason to accept, as well as king 
intuitively obvious. Coupled with a good philosophical account of the gnrh predicate, and 

8 g d  the09 of belief, this will enable anyone to assen with a clear conscience: 'CanpaA' 

is me, putting her mind where her mouth is. The thought that such an admission will sf 
itself force us into 'ontological commitment' to, say, the itemrive Ptiemhy of xu seems 

to me to k plainly misguided. What is r equ i~d  in order to force such rn adzriission is a 
heavy investment in controversial positions in the philosophy of Bangwage and the 
philoso~hy sf mind. And hen, I think, the Hilbeniar! can view her pmspats of defending 
her comer with some optimism. 

Sestion Five: Hilbertian Philosophy of Mathematics and Iu~comp!eteness. I 
have now accepted that the incompleteness theorems show that Hilten's h o p a n m e  
cannot be carried out with full generality, and given my ->,asons for believing this. In 
somewhat misleading brevity, the reason is that Hilben was deeply wrong abu t  the na tw  
of the (classical) quantifier, and as a consequence of this, we should conclude that the 

infinite sf classical mathematics d m  not have the character hat  Milbe~n thought it had. 
This suggests to me that, in some sense, Hilkn's Programme founders on the nature of 
classical logic, rather than classical mathematics. Be that as it may, fourr&a it does, md we 

should now consider further the implications this  has for the rncxiiified Hilbenian 

philosophy of mathematics I sketched in chapters One and Two. 

&casianally, one sees suggestions that (Godel 1) undermines Hilbtn's gfcugmmrne by 
revealing a fundamental shortcoming of the axiomatic method. This is explicitly argued in 

a recent kbr by A.W. Moore. He writes: 

Why is [ h e  project to axiomatize mathcmaucal theories] threatened b y  (CdWcD 
I)]? Because what H i l k n  b d  envisiged - at leas! as a pmdigm - was a single, 
~OiTIplek ax iomahl ion .  And Glklel's heorern shows Lhar nothing matches ~ba 
paradigm. Any axiomatic base for uansfini~e mnthernnlics m u t  nceds bc 
supplemented. Not only thai, b u ~  there will be one particular way of 
supplementing it bat seems forced upon us; and lhis cuu doubt on lfte idea h r  
only finitaiy pmysi!ions genuinely describe rnalhenaaLica6 reality. Whaa will 
seem to force u4 to ~uppIcrnent thc base in one way ralher Ihm mohr will bc 



non-finiury ~ k t i m  on h e  consislency of  h e  hax - reflection on the fact b, 
in the infinite landscape with in which Lhe base is Iocaled, !here are rm paths 
leading from it lo each of  rwo conua~ctary  ~ l a t e r n m t s . ~ ~ ~  

Now, I know of no evidence for the assertion that Hilben envisaged (as a p d i g m )  a 
single, complete axiomatiaation. I suspect that this is a confused echo of a claim filbert 
really did make, that all of classical analysis can be formalized in Z2. A d  o h r  claim is 
true. But we shall let exegetical matters pass, along with Moore's tendentious talk of 
reflecting on infinite landscapes. For there surely is a genuine worry larrlrisvg behind this 

passage. After all, one of the things that we know as a consequence of (GMeB 1) is that 

arithmetic is not axiomatizable. Does that not suggest a fundamenod limitation of the 

axiomatic method? 

On reflection, I think one ought to answer, No, it dws not. For although the import of the 

first incompletsness theorem is indeed that the notions of truth in the s a s h r d  m&l of 
aritheric and derivcrbiliry in PA are not co-extensive, our understanding of what that in 
fact means, and our grounds for believing it, are given to us very largely by our 
understanding of a funher mathematical theory with respect to which, more than any other, 
the merits of the axiomatic method have been forcibly dtmonsoated 1: mean, ~f mw, set 

theory, and in particular ZF. But perhaps we should go over this p u n d  a lin%c more 
slowly. 

To begin with, let us observe that, as a description of mathematics as it is actually 
practised, the central claim being made by Moore in the a h v c  passage is simply false. 
Almost all of contemporary mathematics - almost every area within the sixty or so major 
divisions and thirty four thousand subdivisions of contemporary mathematical enquiry - 
can be and standardly is fomalized i n  ordinary ~ ~ . 1 9 7  What is more, we have already 
seen that the ordinary mathematics that Hilbert most cared a b u t  can be formalized in 

systems that are far, far weaker than ful l  ZF. So far fiom feeling the need to 'supplement' 
the axiomatic base provided by ZF, in order to get an adequate scientific grasp of ordinmy 
mathematics, a great deal of mathematical research is aimed at finding weaker systems 
adequate for standard mathematical practice. Wc saw in Chapter One that resemh of his  
kind has met with some spectacular successes. 

Moore, A.W. [1998] p178. 
lY7 The statistics are h d  on thc 1979 classification of  mathematics o f  the Mathemarical Reviews - see 
Davis, PJ, and Hash, R. [I9801 pp29-30. The subject h a ,  of course, grown in !he Last ninemm years, 
without falsifying the claim that almost all of mathematics can be f ~ m a l i z e d  in ZP. 



But what of the claim that we are forced to 'supplement' any given axiomatic basis for 
mathematics by the demands of reflection on the consistency of that basis? Ag&, over the 

vast buk of mathematics as it is actually practised, this claim is once again simply fdg. 
Issues of consistency within mathematics are standadly regarded as msslvd  an= it has 

been showrr that the axiom system in question has a model - where oRis smdady mans, 
has a model in set theory. The psocedu~.cs employed here are refinements of those 
p i d  by Hilkn in his early studies of georneay and analysis. I h o w  of no evidence 

that hey are regarded by mathematicians as in some way intrinsically limited by the 

incompleteness theorems, nor can I see anything in the incompleteness tkuxcrn~ hat ought 
m make one so regad them. Consistency, together with such closely related issues such as 
indcpcn&nce, sornpleteness, categoricity etc., fall within the province of m&l theory. 

And model theory is an axiomatic discipline - indeed, it is an axiomatic discipline naa 
c M y  to be distinguished from set theory. 

But what abu t  'r&flection' on the consistency of set theory itself? M m  writes: 

It is dl very well bawing 'V-shaped diagrams intended rr, capam our i n t n i h  
abut w h  Sels arc like. But our most basic intuitions in this area have abzsly 
proved unreliable. . . . Is there any way of gumming ZF's consistency 
without relying on our intuitions about what Sets arc like? It =ma not, g i w  
GCldcl's Lheonm. The lesson here is of a piece with the Oem Lhat f d  die 
fin it is^ If we are going to talk about the infinite in a matRcmaticdly peclse 
way, rhcrl we redly must sce ourselves as ia!king Bbow rhc in/inde. And if we 
are going to ratify what we say, Lhen we can make do wish noshing les ban 
insilht into whu he infinite is actually like.148 

But once again, most of what is claimed here is simply false. 'Ow' most basic inmidons 
about sets have not been proved to be un~liable. The so-cal9e.d 'logical' conception of set 
implicated in the paradoxes was i n d u c e d  into fouradational studies by a philosopher, 

engaged upon a philosophical project, and was in fact regarded with suspicion by 

mathematicians almost from the inception of naive set theory. Frege himself was uneasy 

a b u t  the fatal Axiom V of the Crundgeserze, and we saw in Chapter One that the 

GCttingen rnatherna~icims were already well a w m  that thsn was something badly wrong 
with the naive abstraction principle by the later nineteen nincti.es.1~ So far from casting 
doubts upon the 'intuitions' of mathematicians, the early histon of set theory provides a 

198 M o m  Lop cit] p179. 
For Frege's 'intuitions' about Axiom V, see Grundgesetze vol 11, Appendix, p2!53 in the G m m  

c d i h  (Ewlish translation in P. Geach and M. B l s k  (eds) p214). 
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majar vindication of them. Despite the suspicions surrounding absmtionr, dmoso dl b e  
mathematical work done in naive set theory before Zemelds axiomadmdom remains 
acceptable today with minimal modifications. Haudorff's 1914 text is still in print rand still 
regularly consulted by mathematicians, despite the fact that it is witten in the naive, 

'intuitive' tradition of set theory purportedly shown to be 'unreliable' by the paradoxes. 
V h d l y  nothing of consequence in Cantor's own work has had to lx abandoned - for ahc 
simple reason that the 'intuitive' understanding of set theory that redly had k e n  guiding 
h e  practice of the great majority of mathematicians (including Cantor) dronn h e  beginning - 
the mmptian of sets as the product of an iterative process of generation - has slaver given 

rise ts grounded suspicions of inconsistency. 

What is more, mathematical reflection on the consistency of set theory has not had the 

chmctcr that Moore suggests in these passages. 'Intuition' a b u t  what the infinite i s  
'redly like', whatever that might mean, has had little or no hole t~ play. Our present high 

degree of confidence that ZF is consistent is in fact due to a series of studies that show the 
consistency of set theories which include those set-theoretic axioms about which we flee1 
some &gee of intuitive uncertainty - most notably, the axiom of choice - relative 80 

fragments of set theory that do not include those axioms. The paradigm here is h e  grssf 
that the axiom sf choice is independent of the rest of ZF: if ZF minus choice is consistent, 
then ZF is consistent. The model theoretis investigations that have established Phis result 
have not procteded by supplementing ZF on the basis of some alleged 'insight' into the 
transfinite. Rather the opposite: they have typically proceeded by constructing so-called 
'inner models' of the ZF axioms, mdets in structures simpler (and 'smal%crl) ban the 
structure of ZF itself. 

There is also something very peculiar about the implied dichoiomy bstwen reliance on 
'intuition' and reliance on axiomatization. To begin with, nothing in the axiomatic method, 
as Hilben understood it, is incompatible with the evident need for some intuitive grasp (in a 
philosophically unconmversial sense) of the consent of a mathematical shemy, red OH idtd. 

We do indeed have some intuitive grasp of set theory, and this intuitive grasp is expressed 
in the axioms sf ZF. We may well Rave, or we may well develop some intuitive gasp of 
the mathematical import of extensions of ZF, and we express the inpori of that intuitive 
grup by the addition of large cardinal axioms or whatever. Hilbert's advocacy of the 
axismatic method was nos intended to establish that mathematics had n~ need of a notion sf 
'insight'. Hilben simply believed that the progress of science - of science ar a whole, not 

just mathematics - would be impeded unless it was guaranteed that ad1 the 'insight' Phao the 



practice of science r e q u i d  could be regarded as internal to scientific practice, mhcr him 
king im@ upon science f h m  without on the basis of some philosophical &mine - 
in Frege, say, or Kmnexker. Axiomatization is intended only to ensure that appeals to 
'intuition' art bepa within intenubjcctively manageable bounds - so as to avoid the impasse 
that had so long impeded the study of geometry. It is for this reason that aht Hilkraianr 
insists that any intuitive understanding of a mathematical notion is to be cxpmssd in 

axiomatic fom, and ratified by memat  hematical a d  other m h m t i c e l  smdies of h e  

mathematical properties of the resulting axiomatic system. 

Now, since any theory in natural science will surely have to include enough arithmetic to 
make the representation of the primitive recursive functions possibllt, we may assume that 
(DIAG) can be proved with respect to any natural scientific theory. Could anyone 
seriously suggest that the inadequacy of the axiomatic method in physics had becn shown 
by G6deI's proof that any axiornatized physical theory must be incomplete? Are we ever 
treated to disquisitions on the mysteriousness of our grasp of physical reality on the 
grounds that we can 'intuitively' see that some physical sentences arc me even though they 
an not derivable in physical theory? These suggestions an frivolous. The adequacy of a 
physical theory is to be judged by the physicists on the basis of the smW - ofcmpiaid 
adequacy, simplicity, fruitfulness etc. - commonly employed for that purpose, and those 

standards simply cannot be brought to bear unless we can see how to formalize the themy 
in question axiomatically. TRe fact that an entirely general mathematical argument can k 
then bc deployed to pduce  sentences uue in the intended physical model of the tlximatic 
physical theory but underivable from the axioms would not be reg& as indicating a 
seri~us shortcoming in the axiomatic rnethai in physics, and I can see no reason to think 

that the practice of the physicists is in any way misguided in this respect. I am equally 
unable to see that the fact that we have a mathemtical guaransee that any inknesting 
mathematical theory is incomplete poses any problem whatsoever for the accepted practice 
of mathematicians, which is equally depen&nt upon axiomatization be fox^ the stamlards of 
acce~tability of mathematical theories can be deployed. 

However, it might seem that this response fails to get at the amas of Moore's worry. For 

dQes not (GWd 1) appear to establish the existence of an unbridgeable gap between the 
notions of truth and &rivQbiliry in mathematics? Have we not been shown that my attempt 

to display the truths of mathematics in an axiomatic system or series sf axismatic systems 
must necessarily fail? 



Now, I think that there is indeed a genuine worry in this are% but it is not well expressed 
as a warry abu t  the axiomatic method. For in general, the assignation sf a semantic vdue 

to sentences p d u c c 8  by (DIAG) is via a model-theoretic argument, and mode8 theory, 1 
say again, is no less of an axiomatic discipline than the rest of mathematics. I n & a  the 
i m p t  of (DIAG), not only for model theory but for semantic theory in general, is s w l y  
that semantic theory must proceed axiomatically, since the principle csnclusisn to which 
one is forced by (DIAG) is precisely that our naive semantic intuitions are not to be 

trusted (DIAC) can be deployed in such a way as to derive contradictions from the 
natural principles governing each of the central semantic notions - tnrth, saoisfaaictisn, md 
r e f e r e n ~ c . 2 ~  Given that this is so, it  is really a very b d  idta to use some 'intuitive' 
notion of the c o m e  semantic evaluation of sentences produced by diagondtlization as 6; 

stick with which to beat the axiomatic method. It is a still wone idta to leave the 
acceptability sf any mathematical results hostage to some kind of 'insight' inkpendent sf 
the practice of marhemaoics, in the manner that Moore suggests. The evident consequence 
sf adopting such a position will be the return to the kind of futile, scientifically stcrilt 
dcadlock one finds in Frcge's rejection of non-Euclidean geometeies, or indeed in the pm- 
war perplexities over the 'interpretation' of quantum mechanics. 

Nevertheless, the incompletentss phenomena do show rhat them is some!hing deeply 
wrong with the conception upon which the sole ground for assertibility in mathcn.e?ries is 
that provided by derivability from 'arbitrarily postulated' axioms. But that we$ srevta 
Piilben's view, nor is it the view of the Hilbertian philosophy of mathematics sketched in 
the earlier pms of this essay. For my Hilbertian, our understanding of finitmy miathemaScs 
is not simply a matter of our grasp of the deductive consequences of arbitrarily postulated 
axioms. Rather, mathematical concepts at this level are integral to a kind of h p e r a m y  
and naively given physical theory which is a presupposition s f  any theory sf 
representational thought. Acceptability at this level is no1 simply internal to the practice of 
mathematics, since mathematics at this level - as Hilben himself insisted - is not clearly to 

be distinguished from the neighboring disciplines of physics and what Hilhrt called 
'epistemology'. The grounding for our understanding of mathematical concepts provided 
by this basic level weakens as the seas of mathematical complexity mount, and it is a 
feature of my Hilbertian's position that, at the higher levels sf complexity, the 
meaningfulness of mathematical notions becomes d m ~ s t  entirely internal to the paactice of 

mathematics. Mere, the picture of mathematical meaning as grounded solely in the 

Sae McGee [I9911 Chapter 1 for details. 

- 1  92-  



dductive consequences of 'arbitrarily postulated axioms' is much mon plausible, nor is it 
under my threat from the incompleteness theorems. For there are Pleasans in&pn&no of 
the incompleteness rheorcms for rejecting the idea that ~tscafck at the outer boundaries of 
set theory is best thought of as the search for truths potentially independent sf our 
mathematical capacities. We mentioned some of those reasons in the discussion sf 
Maddy's views. 

Of come, there remains the point that, contrary to Hilkn's hopes, the consistency sf 

almost all interesting mathematical theories cannot be finitistically verified. I have 

downplayed Milben's intenst in consistency for its own sake in ohis essay, for I think h a t  
the Conservation Programme is both the most imporpant and interesting aspect sf the 

historical HiIben's faundatisnal thought, and the heart of Hilbca's Programme as I 
understand it. Nevertheless, Hilkn did hope for a finitary proof sf consistency, and I 
have accepted the common view according to which Gtldel has left us with no such hope. 
PRA is consistent, and i t  seems to me that its consistency is transparent in, say, 

Goodsttin's formalization of PRA as a 'logic free' equation calculus. Still, the proof 
theoretic verification of the consistency of PRA, thus formalized, is not firsituy in 
character. This is, I think, an astonishing fact, a19 the more so if one has kern attracted by 

the H i l M a n  intuition that inspired the substitution method. Denied a fmiw consistency 
p m f  for finimy mathematics, my Milkstian at least has the consolation &at a great &d of 
mathematics, including a great deal of infinitary mathematics, can be got within the 
confines of systems that are conserviitive over PRA. Given that at least part of Milkrt's 
desire for a purely finitary consistency proof had its origins in some rather muddled views 
on the ~ntological commitments of mathematics, that consolation is, I think, far h m  

negligible. 



APPENDIX ONE: 
Hilbrb and the Philosophy of Mathematies 

HlBert wag a mathematician, not a philosopher. In his, he conmts sharply with Fmge 
a d  Russell, his great mntcmpmits in mathematical logic. Outside sf paan mahem~se,  
his main professional interest was in theoretical physics, a field to which he & w a d  much 
energy. To be sure, he also had an interest in philosophy, and he appears to Rave bad 
mething more than a casual acquaintance with the work of h t .  This much is perhaps 
to be expected of a Geman scholar of eneyclopisedic scientific curiosity and me%mdczg 
intslkct, in an age in which the fragmentation of the academy was not yet p m n w d  But 
he had no mining in philosophy, he had little contact with h e  philesogbm amongst Rig 
contemparies, and I know of no evidence that he ever made a systematic study of my 
philosopher or philosophical issue other than those foaced upon Rim by his work in ha 
foundations of rnathem~ics.2~~ And even there, Hilkrt's anendon was held only by 
problems he felt he could tackle by mathemrntical techniques. This is tk first thhg hx h a  
EO be b m  in mind when reading Milben's more prosy writings. 

However, those writings an often both indisputably philosophicai in character and inoent, 
and extraordinarily suggestive. In pmicular, it is clear that Hilbert's conception of fmitapy 
mahemtics ~ s t s  upon striking insights into the importance, not only for the foundations 
of mathematics but for our most general theory of cognition, of the recwsive functions. In 
the central puts of this essay, I have attempted to describe e position in which those 
insights arc accommodated, which is both reasonably clear and mughly in accord with 
Hilkn's intentions. 

In any such attempt, there is surely a danger that Hilkn's writings become a inere vehicle 
for views which would be more appropriately presented as the autl~on' own. This danger 
is always present when the philosophers' eye is caught by the philssophicdly suggestive 
work of a scientist, and I have not even tried to avoid it. However, I have ma& cffo~ts nsa 
to disguise, but rather to signal, those many places where filben's own words; arc left far 
behind. Let it be clear, though, that I have made no attempt systematically to explore the 

2or The l r n  vnvcc of biograi .iical information on Hilben is Reid (19&], but Blumenrlul I19351 and 
Bemays 119671 are also valuable. 



many ways here are of developing Hilben's compressed and hapentmy philosspkicd 
ideas. This essay contains just one way - an interesting and plausible way, in my view - 0% 

doing his. 

Hilben's philosophical writings are the consequence of his rnathernadcd interests having 

h u m  him towards a branch of mathematics - mathematical logic, then in its infancy - 
which was at that time not cltb~Iy to be distinguished from the best extant philssophicd 
reflection on the nature of mathematics. This is no longer me.  Mahemagical logic is now 
a flourishing bmnch of mathematics, with problems fomulable in a purely mathematical 
vocslbulargr and resolvable by purely mathematical techniques. That this is SQ is due, in no 
small measure, to the achievements of Hilben and his assistants. Roof thecay in prticula;f 
has many thriving research programs, most if not all of them at ta csnsi&mble distance 
from Hilbtn's own foundational concerns. 

For Hilben himself, though, mathematical logic had a quite different aspect. The 

vocabulary and techniques with which we are now familiar had in large g a t  still to be 
developed. What is more, the pressure to develop those techniques was provided by 
problems, such as those posed by the paradoxes of naive set theory, which were not yet 
perceived as purely mathematical problems, and which offered no very obvious purchase 
for the mathematicians' professional skills. A further thing to be bri; in mind by the 
philosophical r&&r of Hilben's prose writings, thcn, is the fact that they form gzart of an 
attempt to advance foundational studies to a stage at which the properly mathematical 
content of foundational problems would be clearly visible, and the mathematical techniques 
required for their resolution commonly accepted and understood. It is very important to 

bear in mind that Hilben's aim was to minimize the role of philosophy in foundational 
studies.Z02 

A find exegetical point that demands more detailed attention concerns Mlbest's relationship 
to ICant. Elben often mentions Kant with approval, and in his writings on foundations - 
especially in those places in which the notion of intuition plays a prominent mle - he often 
lapses into the technical jxgsn of the Critique ojPure Reason. In part, of course, that is 
attributable to h e  cuprency of that jargon i n  the kifids of philosophical writing on 
mathematics, and especia!ly geometry, with which Hilben would have been familiar. But 

202 In briel: the philosophical reader of Hilben must always bear in mind his admonition la his fellow 
workas in rnahmtlcal logic: Wir sind Marhemariker! 



in addition to this, it is clear that Hilben really does take himself to be affiming a Kantian 
position un the na tm of mathematics. Consider for exampie the passage that plays such a 

large role in Chapter Two above: 

Kmt already taught - and indeed it  is part and parcel of his doctrine - ahat 
m&emucs has at iu disposal a content secured independently of d l  logic md 
h e m  can neva be provided with a foundation by means of logic a l m ;  hat is 
why the effons of Frege and Dedeltind were h n d  to fail. W, as a condition 
for the use of logical inferences and the performance of logical s p m i o m ,  
somelhing must already be given lo our faculty of representation [in der 
Vorsaellung], certrain extralogical concrete objects that arc intuitively 
[ansclraulich] present as immediate experience prior sa all hughi .  If logical 
inference is m be reliable, it must be possible u, survey these objects completely 
in all their pm, and e%lc fact that they occur, that hey differ from one a n o h ,  
and that they follow each other, or are concatenated, is immediately given 
intuitively, together wih the objecu, ;is something that neither can be reduced to 
anything else nor requires reduction. This is the basic philosophid position 
that I consider requisite for mathematics and, in general, for d l  scientific 
thinking, underslimding, and communiation.2* 

The resonances of the critical philosophy here are brazen. If we are to intepret HilP~drt 
aright, we need to know what to make of these resonances. 

Now, there are ceminly two very broadly Kantian themes being sounded hem. The  firs^ is 
the claim that mathematics has a content which cannot be 'secured' by logic alone. This is 
c%early directed against the logicism of Dedekind and Frege: as we have seen, Hilben 
thought it no coincidense that the systems of those two writers become inconsistent at 
exactly the poiat at which an attempt is made to derive the content of mathematics kom 

purely logical principles. Apparently, Hilbert took this failure to speak for a 'Kantian' 
view of mathematics, but so far as this point is concerned. we can take that to be quite 
simply a view on which mathematics has a distinctive content, as logic does mot. That is 
undoubtedly a Kantian view, in the sense that i t  is a view that Kant held. But it is by no 
means distinctively Kantian. 

The second Kantian theme is considerably more murky. It concerns the reliability of what 
Wlbert calls 'contentual logical Inference'. The claim Hilben makes a b u t  this is that the 
validity of 'contentual logical inference' depends upon the surveyubiltp of the objects with 
respect to which the inference is being made, where surveyability, we may take it, is a 
property of finite (and perhaps denumerable) collections, but not of (non-denumerably) 
infinite ones. Now, at some risk of travesty, we can perhaps describe a cenud ~spect  of 



the critical philosophy to be a defence of the claim that the antinomies of traditior~al 
metaphysics u e  ic be attributed to the employment of concepts outside their domain of 

legitimate employment. For Kant, that domain (so far as finite minds are concerned) is 
given by the limits of possible experience: any attempt to puf to cognitive use concepts 
which can have no application within the limits of p~ssible experience for slrch minds (such 

as the concept of God, or of the immortal soul). according to Kmi, is bound to lead tc 

inconsistency. It is clear that Hilbert thinks that some analogy holds between the paradoxes 

of naive set theory and the Kantian antinomies of pure reason - both are supposed to be 

attributable to the use of concepts outside the limits of their legitimate applicalion; but what 

the ~malsgy is supposed to be, and how the Kantian defence of that claim carries over to the 

sct theoretic c z c ,  are matters about which Hilbert says nothing. 

?'hmkfully, I do not think that we shall need to make g o d  this deficit on his behalf, for at 

anything beyond the level of this kind of extremely vagu.: and general ,Qfinity, the Kantian 

resonances in H i l b e ~ ,  I find, give out rathzr quickly. 

Let us focus for a moment on thc notion of intuition, for I think it  illustrates rather well the 

general point that needs to be made here. 'Intuition' ('anschauung') is certainly a key term 

in #ant. Kafit does speak of objects being 'given i n  intuition', and he does think that 

mathematical objects in parti~ular have deep connections with intuition. Neve~theless, it 

seems to me evident that Hilbert's notion of mathematical inhlition, such as it is, differs in 

several a c i d  respects from that of Kant. 

In the first place, rnathematical intuition as I-Iilbert understands it is very much more 

restricted in scope than its Kantian counterpart. Even if we confine our attention to the 

mathemntics known to Kant, only a small fraction of i t  counts as intuitable in Hilbert's 

sense. For Kant, on the other hand, intuition is implicated in all (non-trivial) mathematical 

knowledge. Kant holds, quite generdly, that mathematical objects are 'constructed' in pure 
intuition, and that intuition plays an indispensable role in all mathematical cognition. Thus 

the real line, for example (along wirh the objects of Euclidean mathematics) counts as 

intuitable by h t i a n  standards. Thi~s intuition, in  Kant, is indispensable to our knowledge 

of the topological properties of the re21 line. For Hilben, on the other hand, the red line 

belongs to ideal mathematics, and L( scientific understanding of its topology proceeds via *m 
axiomatization the primay purpose of wnich is w render appeals to intuition redundant. 



So far, this might seem to be no more that a disagreement over the range of in:witive 

mathematics, And there are indeed passages which suggest that Hilben thought he was in 

agnxment with Kant over the nature of mathematical intuition, diflering only over its 
extent. (In the case of geometry, as we shall see, Hilbert sornetinles seems to sa. ;A: 

projective geometry has the kind of status Kant wrongly attributed to Euclidean geometry.) 

But even if Mlben did think this, it seems clear to me that he was quite wrong. 

To begin with, Hihen  never speaks of mathematical objects as being 'constructed' in pure 

intuition. Indeed, he makes no use at all of the (crucial) Kantian distinction between pure 

and empirical (or scrrsory) intuition. When Hilbert speaks of mathematical objects being 
'given' to us 'prior to all thought', he apparently has i n  mind the 'numerals' we discuss in 

Chapter Two - arrays of strokes, for example, such as 1 / / / (the Hilben numeral for the 

number four). But these count as intuitable for Hilbert in the sense that you can write 
down or otherwise reproduce physical exemplars of them which are literally, not 

figuratively, perceptible - perceptible by ouler, not inner sense. In Kmeian terms, these 

numerals are objects given in empirical, not pure intuition. This is very reliJore from 

anything Kant has in mind when he spoke of intuition with respect to mathematics. Even if 

it is permissible to think of Kantian construction in pure intuition in terns of the production 

of some kind sf mental image, the image constructed cannot be regarded as an image of any 

kind of physical object. What you corlstruct in  pure intuition, on Kant's view, redly is a 

genuine Euclidean mangle (as i t  might be), and you construct it out of genuine line 

segments. These cannot, be thought of as copies, or images, of anything physical. 

Again, there is no trace in Hilbefl's writings of the Kantiar~ thesis that space and time are 

formal features of human sensibility. This thesis provides the grounding for the specid 

status Kant assigns to inathematical knowledge, for, as is wzll kllown, Kant thinks that 

(Euclidean) geometry is a kind of systemat;zation of the content of the pure intuition of 

space, and arithmetic a systematization of the content of the pure intuition of time. The 

allegedly special status of Kant's favorite mathematical theories, then, is accommQdated by 

turning those theories into 'structural' features of cognition, features necessarily present in 

any experience of an objective world. These doctrines are not to be thought of as 

inessential components of Kant's views of mathematics: on the contrary, they are the very 

essence of those views, and no account of mathematical intuition that fails to accommodate 

them has any claims on the authority of #ant. 



But there is linle trace of rhis in Hilbert. In particular, nothing in Ifilbert's copious writings 

on arithmetic scggests that  arithmetic is to be thought of as having some special 

relationship, or indeed any relationship at all, to the 'intuition' of time. One finds 
something like this in Brouwer, but this is an aspect of Brouwer's thought that Hilbtn 
detested. In our discussion of the Hi!bert/Frege correspondence in Chapter One we saw 

that Hilbert was very hostile to attempts to found mathematics on metaphysical doctrines of 
this kind. 

As a consequence of all this, nothing in Hilbert commits him to some position on the 
synthetic apriori character ofmrhemaricul judgrnenrs. Yet the cldm that mathematical 

judgments are typical'ly synthetic apriori is absolutely central to Kant's views on 

mathematics, and Kant's clairn that the objects of mathematics are constructed in pure 
intuition is above all else a defence of the synthetic a piiori character of mathematical 

judgment. No such demand is to be made of Hilbert's notion of mathematical intuition. 

Whatever Hilbert means ~y 'intuition', then, it is not the 'pure intuition' of the First 

Critique. 

The point made at length here with respect to the notion of intuition is in fact quite general. 

Although some kzy words from the critical philosophy crop up in PIilbertls writings, and 

although there is indeed some very vague and general affinity with Kmtian thought to be 

found in Hilbert, the surrounding Kantian structure which gives the jargon of the critical 

philosophy its distinctive philosophical content is alri~ost entirely absent. What is more, 

nothing that Hilbert actually says depends upon any part of the critical philosophy. 

Importing that surrounding structure, in my view, docs little or nothing to illuminate or 

support any characteristically Hilbertian thesis, and some important Hilbertian theses, such 

as those concerning the nanare and intuitability of finitary mathematical objects, seen1 to me 

flatly incompatible with Kmt. 

It is therefore a mistake, in my opinion, to treat Hilben as in any serious sense a follower 

of Kai;;. To do so is to visit upon his writings a kind of general philosophical 

sophistication they simply do not have, and a host of philosophical liabilities they need not 

incur. 

Getting a correct perspectivs on the relationship between Hilbert and Mant is an important 

step towards getting clear on the most fundamental, and the most complex questions 

concerning the motivations behind Hilbert's Programme. All too often Hilbert's 



Programme has been thought to be simply an attempt to provide mathematics with an 

unshakeable foundation, proof even against the tremors emanating from the discovery of 

the paradoxes of naive set theory. When seen in this light, the importance of a proof of 
c~nsis tency for a mathematical theory seerns to lie in its effectiveness zgainst skepticism, 

and the importance of a finitary proof of consistency is thought to derive from the peculiar 

indubitability of finitary mathematics. Willingness to see Milbert as a disciple of Kans fits 
this perspective nicely, for is not Kant the great champion of the indubitability of 

mathematics? 

A recent paper by Philip Kitcher plnovides a paradigm of this approach, m d  it  is not a 

coincidence that Kitcher attacks Hilbert's Programme with ahgumcnts very similar to those 

he uses in a companion paper on Kant's philosophy of mathematics.*w According to 

Kitcher, Hilbert is best thought of as making a botched attempt at expounding the critical 

philosophy of mathematics. After announcing that the aim of Milbest's foundational 

programme was to 'defend the thesis that we can have certain mathematical knowledge', 

Kitcher goes on  to attribute Hilbert's alleged conviction that certainty was possible in 

mathematics to his acceptance of the following claim: 

We can obtain [the right to feel convinced about some mathematical s~atement] 
because we are able to give a special lype of jus~ification for mathematical 
claims. The hallmark of   his type of justii'ication is ils absolute reliability. 
Once a mathematical claim has been justified in [he special way, nothing can 
count as evidence against i t  . . ..*05 

Later, Kitcher makes clear his view that this 'special way' is in fact by intuition. He writes: 

According to Hilben, intuition and intuition alone can yield the basis for certain 
mathematical knowledge.206 

T h e n  are, however, many objections to this interpretation. 

The  least of them is simply this: Hilbert never claims that we can have 'certain' 

mathematical knowledge. Nowhere does he say that the aim of his foundational 

programme is to restore lost certainty to mathematics. T o  be sure, he claims, repeatedly, 

that mathematics has always been the paradigm of 'reliability and truth', and talks as if this 

2W See Kitcher [I9751 and [1976]. 
205 Kitcher [ 19761 p99. 
206 Kitcher iop cit] plM, my emphasis. 



status was under threat from the paradoxes.207 He writes, 'where else would reliability 
and truth be found if even mathematical thinking fails' (Hilbert [I9251 p375). Me is fond 

of talking of the 'security' of inferences in  elementary number theory, and this 'security' is 
undoubtably to be attributed, in  Hilbert's view, to the 'intuitive' character of that subject. 

But (as I shall argue in more detail below) 'intuitive' here gust means, obvious. When Re 
talks of the deliverances of mathematical intuition, he will indeed speak of 'immediate 

clarity', of 'reliability': but he does not speak of certainty. Me does not speak of immunity 
to doubt in any philosophically committed sense. Nor does he ever suggest that there is 

any deep difference in the epistemological status of mathematical and physical hlowledge 

in this respect, 

Now, this might seem to be the merest quibble. Even if the word 'certainty' is not actually 

used, one might reasonably th ink  it clear from the overall tenor of Hilbert's work that 

certainty was what he was in  fact after. However - and this is the more important point - I 

think it is possible to show quite decisively that this is not so. This insistence om) seeing 

Hilbert as in search of certainty, i n  my opinion, causes serious distortions In an account of 
Hilbert's thought. In particular, i t  is the root of much misunderstanding of the nature and 

importance of Hilbert's foundational programme. 

A very striking example of such a misunderstanding occurs late in Kitcher's paper, when 

he considers a response Hilbert might make to an objection he has raised to Hilbert's 

account of our knowledge of certain general mathematical facts. (Briefly, the objection 

concerns the point that intuition, qua form of perception, seems suited only to popition of 

particular facts - I say a little more ;bout this ir, Chapter Two.) The proffered response 

would fend off Kitcher's objection by integrating mathematics closely into a successful 

physical theory. Kitcher thinks any such option is closed to Hilbert because 

. . . i t  would concede to skepticism the cr~lcial point that here  is  no sharp 
difference between olir knowledge of mathematics and our knowledge of physical 
reality.*08 

The suggestion, then, is that this would be anathema to Hilberr. 

*07 He also speaks about sceptical atmcks on classicill mathematics. But of  course, the skeptjcism he has 
in mind is in fact the very specific and mashematicdly motivated objection to classical analysis (and see 
Wry) associaled wilh Brouwer. Hilben did indeed think Brouwer a skaplic, and Re did indeed think of his 
foundational programme as a defense: against Brouwerian skepticism. But it is just a mistake to infer from 
ohis any interest in much of  what a philosopher might think of as skepticism a b u t  classical mahcmatics. 
208 Kitcher [op cit] p113. 



I find this really very surprising. One of the single most striking featuks of Hilbert's cast 

of mind, evidenced throughout his writings and indeed throughout his career as a 
professional mathematician and administrator of a major research center in mathematical 

physics, was his lifelong insistence on the importance, for both disciplines, of the very 

closest integration of pure mathematics and theoretical physics.2* It is well known that 

Hilbert, throughout his whole life, insisted repeatedly that geometry was at once pm of 

pure mathematics and the 'most perfect' part of theoretical physics. Me frequently insists 

that there is no clear distinction to be drawn between pure and applied mathematics, a 
perspective that came to be very closely associated with GOttingen rrrathematies. Indeed, 

Hilben's efforts to reform the German mathematics c u ~ c u l u r n  in  such a way as to 

undermine any suggestion of a principled distinction between pure and applied mathematics 

brought him into an acrimonious and much publicized dispute with the applied 

mathematician von Mises. If it is skepticism to see no s h q  distinction between 

mathematics and physical science, then there is no doubt whatsoever that Hilbert was a 

sceptic. So far from combatting this kind of 'skepticism', Hilbert's Programme is in pan a 
defense of it. 

It seems to me, then, that it really is an implausibly heavy-handed interpretation which 
inflates a mathematician's philosophically innocent talk of the clarity and reliability of his 

disc~pline into an endorsement of some kind of controversial mathematical epistemology. 

Even a professional epistemologist might very well accord mathematics this status and 

more, and still shrug her shoulders at the question, asked in that familiar and ponderously 

philosophical tone, whether any mathematical truths really are cermin. 

A further consequence of this Kantian, certainty-seeking interpretation of HiIkrt is to make 

the incompleteness results seem particularly damning. Ever so often, the import sf the 

Second Incompleteness Theorem is said to be that a consistency proof for any mathematical 

theory must make use of techniques which are 'more dubitable' than those to be found 

within the theory with respect to which consistency is proved, and this, it is suggested, is a 

victory for the sceptic Hilben was attempting to 0vercome.21~ Hilkst, it is said, cannot 

defeat the sceptic, since Ciiidel has shown that the success of his programme requires the 

*09 See  he last two sections of Chapter One. At a more anecdotal level, witness for example his 
delight at ~ h c  literal integration of !he physics and mathematics departments around what is now known ;~s 

he Hilhert Space in the research buildings designed 1.0 his specifications at G6Uingen. 
210 This is a familiar heme in ppular writing on the incompleteness Iheorems, of course, but it shere arc 
a1 least echoes of it  to be heard in serious philosophical discussions of mathemadcs as well. 



acceptance of principles stronger, more dubitable, than those the sceptic has called into 

question. 

But this perspective simply will not lie down with what Hilbert actually says. At best, it is 

a one-sided and incomplete account of what Hilbert's hogramme was intended to achieve, 

and what it leaves out is precisely the aspect of Hilbert's thought which is of the greatest 
philosophical interest. Correcting this false perspective is one of the principal tasks 1 have 

undertaken in this essay. 



APPENDIX TWO: 
Notation, Systems of Arithmetic, and some Standard Pacts 

In this Appendix, I explain the notational conventions and document the standard facts - 
largely facts about formal theories of arithmetic and recursive functions - which I have: 

taken for granted in the rest of this essay. My usage is entirely conventional, and the 

standard facts are reswicted to those proved in every text that deals with these matters. 
Readers who are familiar with the relevant literature will find my usage unidicssyncratic. 

(A) Notation and Syntax. For the most pare, the logical and mathematical symbols 

employed are those of Schoenfield [1967], used in the manner explained therein. 
Sometimes I use 'x ' ' as an abbreviation for 'xl, . . . , x,'. 

Apart from this appendix, the logical symbols that appear in this text ape used, not 

mentioned. In discussing the language of some formulation of the first order predicate 
cdculus with identity, for example, I use the symbol 'V' to denote the universal quantifier 

of that language, whatever it might be. In discussing the language of arithmetic, I use the 

symbol I+' to denote the addition function symbol of that language, whatever it might be. 

Similarly, I use the expression '(3x)(cp + yr)' (for instance) to refer to the object imguage 

formula that begins with the left bracket, followed by the existential quantifier, followed by 

. . . , followed by the right bracket. Since 1 shall have no occasion to cfiscuss the visual 

properties the symbols in the object language, I rarely need to mention them. 

My usage of raised corners is a (standard) extension of the usage explained in Quine 

[1951a]. According to Quine, the expression " q  = y " abbreviates 'the result of putting 

cp and y respectively in the blanks of I... = ...I. Equivalently, the same expmssion 

abbreviates 'the result of writing cp followed by '=I followed by y19 where the Greek 

letters are syntactic variables. My exlension of this usage is motivated by my extensive use 
,I- 1 of code numbering. I use cp ' to refer to the code number of the expression cp. 'Illat 

this is indeed an extension of the Quinean usage follows from two facts, established in 

GMel [I9311 and Quine [I9461 respectively. Firstly (GMel), the theory of syntax cm be 

reduced to elementary number theory: secondly (Quine) elementary numkr thmy can be 
d u c e d  to the theory of syntax. Elementary numkr theory and the the~fy ~f syntax are 
therefore h t d u c i b l e .  They me mathematically equivalent. 



A further piece of notation (this time attributable to Feferman - see Feferman [1968]) will 

help to make this clearer. I shall underline the, symbol for a logical operation (on formulas) 
in order to denote the corresponding arithmetical operation (on code numbers): then '2' 

denotes the arithmetical operation that corresponds to the logical operation of (material) 
I- 1 r 1, implication. Thus ' cp y denates the number that is the value sf the arithmetical 

r -1 r 1 operation 2 for the arguments rp and . Amongst many other things, Gadel 
[I9311 proves that, in any theory in  .which the recursive fmctions are representable (see 

below), the encoding of syntax cam be carried out in  such a way as to ensure that the 

i&n ti ties 

along with such operations as concatenation, and 

r 1 
cp [v/t] = the result of substituting the term t for Free occurrences of the variable v in q~ 

<or example, are provable in PRA. 

Thus, given a reasonable coding, the expression I display as 

asserts truly: It is provable in PRA that the number that is the value of the function _11 for 
r 7 r -I the arguments cp and yr is the same as the number ( q  A yr)'. 

Given these properties of a suitable encoding, there is nothing that needs to be silid about 

the expressions of the various languages we shall be discussing that cannot be sdd just as 
well in terms sf their codes. We can, in a sense, 'identify' expressions with their code 

numbers. Then "(vx)(F(x) + ~ ( x ) ) '  I ,  for example, is a singular term denoting a 
number, but we may equally well take i t  - the expression displayed between the single 



quotation marks, that is - to denote the expression that is coded by that number. 

Sometimes 1 shall say things like 

(b) ' ( ~ x ) ( x  + 0 = x)' is derivable in PA 

and this can seem swnge, since '(vx)(x + 0 = x)' is a number, rather than a fomula. 
But the impression of strangeness will pass if we remember that fomulas are being 
'identified' with their code numbers. If it helps, one may think of (b) a akin ao (e) 

(c) Harry is derivable in PA 

where 'Harry' is a name that has been allocated to a fomula In the language of PA - the 

formula that begins with the left bracket, follou~ed by the universal quantifier. . . etc. 

This talk of 'identifying' formulas with their code numbers should not be taken too 

seriously, however. In  particular, the suggestion that code numbers me being used as 
names of f m u l a s  should be mated with caution. VJe arithmetize syntax in order to bring 

to bear upon the study of syntax a rich body of results fram elementary number theory, 

When this was first done, in Giidel [1931], little was known about syntax, but a great deal 
was known about elementary number theory. By defining a purely syntactic operation on 

expressions, canying expressions from the language of arithmetic to expressions in a 
syntax language, Ciadel was able io bring this rich body sf Bcnowltilge to bear upon the 

study of syntax. Syntactic operations, such as that of substituting a constant for free 

occurrences s f  a variable, arr: made to csrrespond to arithmetical operations on their codes. 

One can, if one wishes, put this in a semantic mode, by saying (for example) that truths of 

elementary number theory are turned into truths of formal syntax. But this should not be 

taken to betoken a richer semantic relation that this: !he theory of syntax and elementary 

number Pheary are interreducible. 

I use boldface type in the text in three ways. Fintly, I use 'PRA' (for example) to denote 

some standard formalization of primitive recursive arithmetic, and 'ZF' to denote some 
standard formalization of Zemelo-Frankel set theory. 'PRA', then, refers to some axiom 
system and its associated language. 'PRA', on the other hand, refers to primitive recursive 

ari thmc tic. 



Secondly, I use boldface type to indicate the numeral for some particular number, or in 

general, the syntactic object corresponding to some mathematical constant, predicate, 

operation, or whatever. Thus '0' denotes the standard nr~rneral for zero. Similarly, I i~se  " 
" to denote the synlbol for the successor function, and ' -+- ' to denote the sjlmb01 for the 

addition function. Boldfacing therefore distinguishes 0 from 0 (for example). 

Notice that ' 'nl', therefore, denotes the code number of the numeral for the number n. 

Thirdly, I use '1' as an abbreviation of " 0' ", which is the standard numeral for the 
number one. Similarly, I use '2' as an abbreviation of " 0" ", ,. . . , 'aa' as an 
abbreviation of " O' . . . '  ", with n iterations of " ' ". 

( 5 )  Languages. A language i n  this essay is a set of constants. The language of set 

theory, for example, is ( E ). Particularly important for our purposes is the language L(A) 
= {0, ', +, X I ,  the language of arithmetic. Under the intended interpretation of E(A), 
these constants are interpreted by the natural number zero, the successor fumetion, the 

addition function, and the multiplication function respectively. 

Languages are interpreted by specifying an interpretation function. In the case of a 
mathematical language, therefore, the interpretation of a language is itself a mathematical 

object, which we may take to be a function from natural numbers (identifying expressions 

with their codes) to, say, sets. Typically, there will be an inrended interpretation s f  a 

mathematical language. In the case of L(A), the intended interpretation is the one described 

above. In the case sf ( E ), the intended interpretation assigns to E the relation of set- 

membership. The intended interpretation is given in English, or a mathematical-looking 

extension thereof, with all the attendant foibles of communication in natural languages. For 

al l  that, It is still a mathematical object that is being given. 

(C) Systems of Arithmetic and Some Standa,*d Facts. I use the words 'system' 

and 'theory' interchangeably. Normally, a theory is a set of sentences closed under logical 

consequence. Sometimes, however, the logical facts demand a more fine-grained notion of 

theory, on which different theories pick out the same set of sentences - the facts assuciated 

with the Second Incompleteness Theorem in particular make this demand. I discuss this 

further in Chapter Three. 

A sentence S of L(A) is true if i t  is true in  the intended model of L(A), as described above. 



A (number-theoretic) function is a recursivefuncrion if i t  is included in the smallest class 

containing the initial functions (the zero function, the projection fumctions, and the 

successor function) and closed under the operations of composition, primitive recursion, 
and minimization of regular functions. A (number theoretic) function is called primitive 
recursive if it is included in the smailest class containing the initial functions, and closed 

under the operations of composition and primitive recursion. A relation is recursive if it 

has a characteristic function which is recursive, and a set of numbers is recursively 
enumerable if it is either empty or the range of some (total) recursive function of one 

variable (roughly, if it is the output of some computing machine). 

It will be useful to have a measure of the quanrificational complexity of formulas. An 

atomic formula (of L(A)) is an equation t = t', where t, r' are terms which need not be 

closed. A fomula (of L(A)) is called a bounded formula if I t  belongs to the smallest class 

containing all equations of E(A), and containing -F, (F A G ) ,  (F V G), (Vxcy F), and 

( 3 x 9  F) whenever i t  contains F and G. The bounded formulas are also known as Co 
formulas or lKoftrmuf~s indifferently. From an 2, formula , one obtains a l7,+~fomu~u 
by prefixing 0 or more universal quantifiers. From a II, formula, one obtains a 
formula by prefixing 0 or more existential quantifiers. A relation (on o) is called a i;l 
relation (n, relation) if it is the extension of a En formula (n, fomula). A relation (OPI W) 

is called a A,,  elation if it is both L, and ll,. 

The En relations are closed under unions, finite intersections, bounded quantifications, and 

unbounded existential quantifications. The TI, relations are closed under unions, finite 

intersections, bounded quantifications, and unbounded universal quantifications. The 11, 

relations are the complements of the X,, relations. It can be shown that the Z,, selariom are 

the recrcrsivety eruuneruble relations, whilst the An relations are the recursive ~ l a t i o n s . 2 ~ ~  

211 S% Tarski, Mostowski, and Robinson [I9531 p56 ff. 
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An n-place function f(xl, . . . , x,) is representable in a theory T if there is a formula F(xl, 
. . . , x,, x,+l) of L(T) such that for any n+ l  natural numbers nl, . . . , n,, k: if f (x l , .  . . 
, x,) - k, then Tk ( V X , + ~ ) ( F ( ~ ~ ,  . . . , n,, x , + ~ )  t-b X n + l  = k). An n-place relation S is 

weak/y representable in T by the formula cp if, for any n natural numbers kI, . . . , knl 
<kl,. . . , k , > ~  S iff Tk cp(k1, . . . , k,). An n-place relation S is strongly representable 

in T (or numeralwise expressible in T) by the formula cp if S is weakly representable by q 
in T and, for any n natural numbers k l ,  . . . , k,, <kl ,  . . . , k,>E S iff Tk -cp(kl, . . . , 
kn). 

Except for the system 22, all of the following systems presented as  theories with starndard 
formalization (in the sense of Tarski, Mostowski and ~ o b i n s o n ) . * ~ *  The fibst two, Q and 
R, along with PA itself, are theories in the language of arithmetic L(A). 

Our first theory, the system R of Robinson's Arithmetic, has the following seven proper 

axioms: 

( R l )  n & p  = n  + p. 

(R2) n X p = n X p  

(RS) n + p i f n # p  

(R4) (Vx)(x .c n v x = n v n < x) 

(R5) (Vx)(vy)(x C y t+ (x # y f\ (3z)(z + x = y))) 

(W6) (Vx)  - x c 0. 
(R7) (Vx)(x c n + 1 -+ (x = 8 v x = 1 v . . . v x = n)) 

Tne system Q - which is often referred to as Robinson's arithmetic also - has the following 

seven proper axioms: 

*I2 See Tarski, Mos~owski, and Robinson [I9531 pp52-53. In Schoenfield [1967], 22 is presented in 
standard fomdization. 



R is importarnt because of the following facts: 

If S is a true Z 1 sentence, then S is provable in R.  If F is a 
recursively enumerable relation, then F is weakly representable in 
R. If F is a recursive relation, then F is strongly representable (or 
numeralwise expressible) in  R. Iff is a recursive function, then f is 
representdie i n  R .213 

These facts hold in extensions of R,  such as Q.214 

The system PRA can be obtained from Q by deleting axioms (64) - (Q7), and substituting 

axioms corresponding to the definitions of all the primitive recursive functions. 

Equivalently, we can follow Robbins [I9693 and substitute for (Q4) - (07) the following 
axiom schemas: 

(where g, h are already given (and therefore primitive recursive ) functions, Ii" is the n 
place projection function, and R and C are the primitive recursion and composition 

operations respectively), along with the induction schema 

Alternatively, we can give up standard formalization, and follow Goodstein [1971] by 

setting out PRA in the form of a 'logic free' equation calculus. Here, we let A, El tS: .I .y 

recursive terms (recursive functions or numerals), and take as axioms all p~irni,.ve 
recursive definitions. With F, G any recursive functions, ' the successor funcrion, + the 
addition function, P the predecessor function, - the monus (cut-off subtraction) function, 

and x any variable, the inference rules are the following: 

213 See Tarslri, Mostowski, and Robinson [ 19531 pp56 ff .  
214 See Tarski, Mostowski, and Robinson [loc cit]. 
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(Equality) A = B 

AEC: 
B = C  

(Uniqueness 1) F(x) - - F(x') (Uniqueness 2) Fix) - - F ( a  

F(x) = F(0) F(x) = F(0) + x 

(Uniqueness 3) F(x) - - PF(xl (Uniqueness 4) F(0) = G(0) 
F(x) = F(0) - x 

F(x) @(XI 

Gosdstein then shows how to define the sentential operators from these equations.2~5 He 

also shows that anything derivable in the standard formalization of PRA given above by 

use of the induction schema can be derived in this equation calculus, by associating with 

the premises P(0) and P(x) -+ P(x') the equations p(0) = 0 and (1 - p[x))p(xf) = 0 

respctively (where p is the equation associated with h e  predicate P), md shawing that h e  

equation p(x) = 0 associated with the conclusion P(x) is then derivable.216 

Godstein's 'logic free' formalization helps make it clear that PRA permits induction onljt 

with respect to predicates definable by composition and primitive recursion. We owe to 

Tait [1981] sa compelling defense of the view that PRA is the mast plausible cacdidate 

interpretation of Hilkrt's finitary mathematics. By finitany arguments, then, I shall mean 
arguments fomalizable in PRA. By finitary proofs, 1 shall mean proofs in PRA. If we 

then add to (Ql) - (07') plus (JND) an axiom schema corresponding to the minimization 

operation, the result is be a system equivalent to ful l  Pemo Arithmetic. H~wever,  dlr: 

stanBard fomalization PA of Peanu Arithmetic is obtained by adding to (QB) - (Q7) all 
instances of tht schema (Ind), without restriction on ~ ( x ) . ~ ~ ~  PA is not plausibly 

215 Goodstein [I9711 pp120- 121. 
216 Q m k e i n  [op cit] pp121-122. 
217 You will notice bat  the system Q adds to Lhree axioms giving the uniqueness of zero, md the 
existaxe end uniqueness of successors, LRe recursion equntions for plus and times. PWA, in effect, exmds 
this p~oceas by adding equations defining all the primilive recursive equations. However, ie is possible su 
regard these equations as fixing interpetalions for dcnurnembiy many of h e  function s i p  avaitabk in the 



regarded as a finitary system in  Hilbert's sense, primarily in virlsle of the availability sf 

induction for non-primitive recursive pndicates. 

The Fmal system we shall need to mention .is the system & of second-order arithmetic. As 

formalized in stcond-onkr logic, the backgeound logic makes available all instances of the 

comprehension schema 

(where Xn is an n-place relatiou.symbo1, x l ,  . . . , x, are individual variables, and XR(xl, . 
. . , x,) does not occur free in cp ) .  The proper axioms of Zz are those of PA, except that 

the axiom schema of induction (AS) is replaced by the second order sentence 

As is pointed out in Hilben and Bemays [1939], Supplement Four, Z2 is a system in 

which dl of classical analysis (and much more) can be adequately fmalized?ls 

In the sequence of theories R, Q, PRA, PA, and Z2, each theory is a subtheory of the 

following theory. Since the recursive functions are all representable in R, they are dl 

=presentable in the theories of which R is a subtheory. 

kkground logic, and therefore as belonging in the background Iwguage, rather Lhan part ~f the axiomatic 
content of PRA. I choose this description of PRA primarily to facilitate comparisons between PR.4, Q ,  
and PA. 
218 See also Simpson [I9881 pp350-35 1. In Simpson's specification cjf the Conservation Programme, i& 
objective becomes a proof in PRA that 22 is conservative over PRA with respect to fll  sentences. 
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