
SEMANTICS IN A FREGE STRUCTURE

FAIROUZ DIB KAMAREDDINE

Ph.D.

UNIVERSITY OF EDINBURGH

1988

r A,U;
. •

- 2 -

IN MEMORY OF MY MOTHER JULIETTE ELAYASS

- 3 -

ABSTRACT

This thesis is concerned with the foundations of natural language semantics. Two

issues of central importance in semantic theory, namely intensionality and

nominalisation, form its central themes. We offer a perspective in which the

semantics of natural language constructs are unpacked in terms of Peter Aczel's Frege

structures. Along the way we investigate other issues in natural language semantics

such as generalised quantifiers, truth, the question of types and the

intensional/extensional distinction. This work starts by assessing the foundational

problems of the semantics of nominalisation which are classified as mathematical and

logical. A new solution to these problems based on Frege structures is offered and is

shown to provide promising results for both nominalisation and intensionality. We

illustrate how this general framework (using Frege structures) throws light on many

puzzling semantic issues.

DECLARATION

I declare that this thesis has been composed by myself and that the work

reported in it is my own.

F.D.KAMAREDDINE

- 4-

ACKNOWLEDGEMENTS

I would like to express my warmest thanks to my supervisor Ewan Klein. He

has been throughout my thesis most encouraging, patient and supportive.

Many thanks also go to Patrick Blackburn who did a most efficient job reading

and commenting on my thesis. His work on that was very selfless and unforgettable.

I would like also to thank Peter Aczel, Inge Bethke, George Dunbar, Kit Fine,

Furio Honsell, Marcus Kracht, David McCarty, Irene Orr, Henry Thompson and Ray

Turner for either their helpful comments or having read parts of my thesis.

I cannot find words to say how much I needed Lesley Parker throughout my last

two years at Edinburgh. Without her, I would not have been able to survive the

toughness of life at times. A special thanks too to Peggy Coonagh who always listened

very warmly, to Erica Traill and Elaine Morais for their support and to Peter and

Moyra Higgins who will always be very special to me.

Many thanks also to Terry Myers who tried to find every solution to enable me

to overcome the problems. Also thanks to the members of the Cowan House

Committee at Pollock Halls for their understanding and valuable support.

Finally, my thanks to the following bodies who provided me with finance:

The Lebanese University,

The Arabic-British Chamber Foundation,

The Edinburgh University Women Group,

The Cowan House Committee,

The Overseas Research Scheme,

The University of Edinburgh.

NOTATIONS

I use the following notations:

==> stands for meta-implication.

a=b >d,e stands for If b is true then a=d else a=e.

Bold face words are used to denote objects inside the model rather than inside the

formal theory; for example the term John of the formal theory has a denotation John

in the model.

- 6 -

SUMMARY OF THEWORK

This work is divided into seven chapters and an appendix as follows:

Chapter 1. This chapter consists of two parts:

Part A: Two problems of the semantics of nominalisation are considered. The semantic

interpretation of nominalisation requires both a theory and a model: from the

theoretical point of view, we are challenged by Russell's paradox, whereas from the

other (model existence), we are threatened by Cantor's diagonal argument. (I am not

claiming here that they are two separate problems; indeed our syntax and semantics

should be tightly related. No inconsistent theory can have a model and sometimes,

although a theory is consistent, we cannot readily see what the models look like.)

Part B: The two problems explained in part A are problems of theories of predication

(set theories) and of models of the lambda calculus respectively. We survey some of

the solutions offered so far to overcome these problems in the general sense (i.e. as set

theories and models of the lambda-calculus), and then discuss briefly their

applications to nominalisation. The solutions to the theoretical problem are to restrict

one of the following: the logic, the language or the axioms. Frege structures restrict

the logic and thereby solve the theoretical problem, but they have not been applied to

nominalisation before. For the problem of model existence, the solutions discussed are

Scott domains and Aczel's Frege structures; only Scott domains have previously been

applied to nominalisation.

This chapter finds Frege structures to be suitable candidates for solving both

problems. One of their advantages, as we shall see in Chapter 2, is their full

comprehension principle, which allows us to avoid restricting our nominalised

formulae while still evading Russell's paradox. Another advantage (in addition to

their being a solution to Cantor's argument) is that they are easy to work with

because we can visualize them; they are elegant and simple.

- 7 -

Chapter 2. This chapter consists of two parts, as follows:

Part A: We start with an informal introduction to Frege structures concentrating on

mathematical and philosophical motivations. A more formal account of the structures

and of how they can be built is then given; finally, a comparison with Scott domains

is made.

Part B: A new theory, which has in it a predicate for propositionhood is

introduced. The semantics and the proof theory are discussed in detail and it is shown

that this theory is sound and complete.

Chapter 3. In this chapter we discuss the property theory obtained in this thesis and

study the domain of decidable properties. We also introduce a concept of predication

which is distinctive from functional application. The concept of truth is dealt with

and various familiar theories of truths are accommodated within the framework.

Chapter 4. In this chapter we discuss determiners and quantifiers concentrating on the

internal definability of determiners and showing that the lack of second order

quantification is harmless.

Chapter 5. In this chapter we consider the problems of intensionality; Montague's

incomplete success in dealing with prepositional attitudes was due to his use of a

weakly intensional approach based on possible world semantics. Our approach is

highly intensional and this allows many problems of belief sentences to be solved.

We discuss the problem of trying to construct extensionality out of intensionality,

and whether there is a congruence relation which defines extensionality while enabling

us to remain consistent. Possible worlds and modalities are also discussed within this

highly intensional framework.

Chapter 6. This chapter deals with type theory inside our type free framework. We

build domains inductively inside a Frege structure and build a typed theory T ^

- 8 -

where the various types take denotations in the constructed domains. We also present

a small Montague fragment of English which deals with nominalisation and

intensionality.

Chapter 7. In this chapter we summarise the work and compare the concept of

quantification in both Frege structures and Scott domains.

Appendix I: This appendix is a self-contained introduction to Dana Scott's domain

showing it can be built with the property that E^— [E --

ABSTRACT 3
TABLEOF CONTENTS

DECLARATION 3

ACKNOWLEDGEMENTS 4

NOTATIONS 5

SUMMARY OF THE WORK 6

TABLE OF CONTENTS 9

CHAPTER 1. SET THEORY AND NOMINALISATION 14
PART A- THE PROBLEMS 14
A.1 The problem of the formal theory 14

A. 1.1 Ontology, Concepts, Predicates, Properties, Sets 14
A.1.2 A language of nominalisation and the problem 20
A.1.3 The ontological status of sets 24

A.2 The problem of the existence of the models 27
A.2.1 What a model should look like 27
A.2.2 Difficulties with such models 31
A.2.3 Existence of models 31

PART B. THE DIFFERENT ATTEMPTS AT A SOLUTION 33
B.1 Solution to the theoretical problem 33

B.1.1 Notes on set theory 33
B. 1.1.1 Altering the language 33
B.l.1.2 Altering the axioms 35
B.1.1.3 Altering the logic 39
B.l.1.4 Feferman and the foundational issues 43

B.1.2 Effects of set theory on nominalisation 44
B.l.2.1 Language and nominalisation 44
B.l.2.2 Axioms and nominalisation 45
B.l.2.3 Logic and nominalisation 47
B.l.2.4 The place of logic in the above applications 48

B.2 Solution to model existence 50
B.2.1 Lambda calculus and its models 50
B.2.1.1 Frege structures 52

B.2.2 Using those models for nominalisation 53
B.2.2.1 Scott domains and nominalisation 53

Conclusion and Comparison with Cocchiarella 54

CHAPTER 2. FREGE STRUCTURES AND NOMINALISATION 57
PART A. SUMMARY OF FREGE STRUCTURES 57
A.1 Informal introduction 58
A.2 The models 62
A.3 Frege structures as models and comparison with Scott domains

PART B. A THEORY OF PROPERTIES, ITS SEMANTICS
AND PROOF THEORY 79

B.1 The theory T^ 80
B.2 The metatheory of T^ 86
B.3 The semantics of T^ 92
B.4 Soundness and completeness 94

- 10 -

CHAPTER 3. A THEORY OF PROPERTIES AND THEORIES OF TRUTH 102
PART A. A THEORY OF PROPERTIES 102
A.1 Closure conditions on properties 102
A.2 Decidable properties 111

PART B. THEORIES OF TRUTH 117
B.1 Various truth theories 120

CHAPTER 4. DETERMINERS AND QUANTIFIERS
IN A FREGE STRUCTURE 126

PART A. TWO EXAMPLES OF DETERMINERS 127
PART B. NON INTERNAL DEFINABILITY 129
PART C. THE DETERMINER "the" 132
PART D. HOW TO SHOW SOMETHING IS A DETERMINER 133
PART E. CHARACTERISTICS OF DETERMINERS AND QUANTIFIERS 135
PART F. NO LOSS OF QUANTIFICATION WITH FIRST ORDER THEORIES 138

CHAPTER 5. INTENSIONALITY AND EXTENSIONALITY
USING A FREGE STRUCTURE 141

PART A. AN INTENSIONAL SOLUTION TO PROPOSITIONAL ATTITUDES 141
PART B. AN EXTENSIONAL STRUCTURE 148
PART C. THOMASON'S APPROACH 158
PART D. POSSIBLE WORLDS 160

CHAPTER 6. TYPE THEORY AND THE MONTAGUE FRAGMENT
IN A FREGE STRUCTURE 162

PART A. MONTAGUE'S IL 162
PART B. A TYPE THEORY T , 165
PART C. INTERPRETING PT§ in Tpol 172

CHAPTER 7. SUMMARY AND COMPARISON 185
PART A. QUANTIFICATION 186
PART B. FURTHER ADVANTAGES 190

APPENDIX I. FOUNDATIONS OF DOMAIN THEORY 194

BIBLIOGRAPHY 228

-11 -

INTRODUCTION

Nominalisation: Semanticists tend to define nominalisation as being the process which

transforms what acts semantically as a predicate into something which acts

semantically as an object and is subject to predication. The following pairs of

sentences illustrate the phenomenon of nominalisation:

(la). The dress is red.

(lb). Red is a colour.

(2a). The necklace is diamond.

(2b). Diamond is a stone.

(3a). John went home.

(3b). I love going home.

(4a). Mary swims regularly.

(4b). Swimming in the warm Mediterranean is something I miss.

(5a). John runs regularly

(5b). To run is fun.

(6a). I always disliked John.

(6b). That I always disliked John used to upset my mother.

(7a). Bill is honest.

(7b). Honesty is a virtue.

There are many other criteria that should be taken into account by a theory of

nominalisation. For example, linguists have drawn attention to a semantical

distinction between infinitives as in (5b) and gerunds as in (3b) and (4b).1 It has also

been argued that bare plurals and mass nouns are cases of nominalisation, but it is not

clear whether they act in such a way that a single theory could fit both. However,

these distinctions are not going to be taken into account in this thesis. I intend instead

1 Cf [CH3].

- 12 -

to assume the above definition of nominalisation and work out some applications of

my proposal to its semantics.

Intensionality: Both extensional and weakly intensional theories (e.g. Montague's

PTQ) face a problem concerned with propositional attitudes. The problem can be

illustrated as follows:

Consider the two concepts groundhog and woodchuck.

According to extensional interpretations, we have:

for any x, groundhog(x) is true iff" woodchuck(x) is true.

Also, according to possible worlds semantics, we have in any possible world:

for any x, groundhog(x) is true iff woodchuck(x) is true.

Hence, according to extensional theories, the two concepts groundhog and woodchuck

are the same and therefore:

(1) John believes that groundhog(a) -* John believes that woodchuck(a).

Also, according to possible world semantics, two concepts are the same if they hold of

the same objects in the same possible worlds. Therefore according to possible world

semantics (l) above is true.

From a certain perspective on the nature of belief statements, namely one which

insists that John might believe that something is a groundhog without believing it to

be a woodchuck, this state of affairs is unacceptable.

The approach that I put forward in this thesis is highly intensional, and hence throws

some light on the above problem. The solution can be summarised as follows:

groundhog and woodchuck are two propositional functions which give equivalent

values for all objects, but this equivalence does not entail equality. According to our

approach, two objects cannot be equal unless they are the same object. They can both

have the same truth value but this will not make them equal as objects.2 Working
2 Note that our approach is not committed to non-extensionality of functions and we assume our con¬

struction of a Frege structure to be based on extensional domains such as E .° OO

- 13 -

with intensional problems creates a host of interesting puzzles, and I try to

accommodate solutions to many of these in the thesis. For instance, the concept of

truth is given a lot of attention, as is the definition of extensionality in terms of

intensionality and the relationship between Montague's intensional semantics and the

one proposed here.

- 14-

CHAFTER 1. SET THEORY AND NOMINALISATION

The main, thesis of this chapter is that the basic problems of nominalisation are

those of set theory. We shall therefore explain the problems of set theory and their

various solutions; we shall then assess the influence of these matters on

nominalisation.

PART A. THE PROBLEMS

Let us start by examining the problem of the semantics of nominalisation. I shall

look at it from two angles, the first related to the formal theory, the second

concerned with the existence of models.

A. 1. The problem ofthe formal theory

Any theory of nominalisation3 which is to be interpreted should be accompanied

by some ontological views on concepts - for predicates and open well-formed

formulae act semantically as concepts. This is vague, however, if only because where

I use the word concept, someone else might use class, predicate, set, property or even

system (Dedekind). This terminological profusion is hardly surprising, for we are

touching on the problem of universals. a problem philosophers have been debating for

hundreds of years. (This new term - universal - may be more confusing than any of

the others, but we may use Aristotle as a preliminary guide and define a universal to

be that which can be predicated of things.) The aim of this section is not to take a

standpoint on any of the philosophical theories of universals; rather it is to show

that, no matter what approach we adopt, nominalisation is going to generate a

problem.

A.1.1 Ontology, concepts, predicates, properties and sets: It does seem that the main
3 I consider nominalisation here to be defined as in the introduction to this thesis.

- 15 -

problem of nominalisation is an old problem of set theory. If one takes an open

sentence, according to Quine in [QU3], page 1,

"the notion of a class is such that there is supposed to be, to the various things

of which that sentence is true, a further thing which is the class having each

of those things and no others as member."

As an example we take the sentence being an x_ such that the colour of x_ is red. We

have in our universe various things of which this sentence is true; but perhaps we can

also say that the class of all those things which are red also exists in our universe. I

say perhaps because it will be shown shortly that if we let any open sentence

determine an object which is the class of all those things of which the sentence is true,

we run into difficulties.

To see this clearly it is important that the reader bear in mind the following four

notions: the Comprehension Principle, Quantification, Interpretation and Russell's

Paradox. I shall comment here on how each such notion is to be understood in the

present context.

The Comprehension Principle: This is the principle which decides which open sentence

in our theory determines a class (or set) of precisely those entities that satisfy it.

Quantification: Take a class which stands for an open sentence (i.e. the class of all

those objects which when substituted for the free variables in the open sentence

returns true). Does this class act exactly like any other object in our universe? If so,

should we be able to quantify over it?

Interpretation: Should we keep to a full classical interpretation or use a non-classical

one? If we keep to a full classical interpretation, and assume that the comprehension

principle applies to each open sentence and that we have full quantification, we will

fall foul of Russell's paradox. (It is worth mentioning, however, that the paradox

does not occur only under the classical interpretation but under many other

interpretations, as we shall see later.)

- 16 -

Russell's paradox: The paradox derives from assumptions similar to the following: Let

S_ be the set of all sets that do not contain themselves. Such an assumption is

contradictory for we can deduce from it that S_ is in S_ iff S_is not in SL

The important point to concentrate on is how these four notions interact, and in

particular to note that an assumption of full comprehension (i.e. every open sentence

determines a class) and of full quantification (i.e every class acts exactly like any

object and can be quantified over) will, under some interpretations, lead to Russell's

paradox. This point will be presented in more detail in the following section.

We will now describe the four main conceptions of universals, all of which will have

to face up to this sort of problem.

1. Realistic conception (Platonism): Platonists take concepts to be real properties. That

is, concepts are language/observer independent entities. Platonists also subscribe to

an unrestricted (or full) comprehension principle, i.e. to each well defined condition,

there exists a set (or class) of all entities satisfying the condition. Moreover, this set is

an entity in its own right and can be quantified over. According to this conception,

interpretation is much more important than language and therefore it seems

obligatory to use the referential interpretation.

2. Formalist conception (Nominalism): Formalists, of whom Hilbert was the father,

insist on the paramount importance of language.4 According to the formalists,

concepts are predicate expressions which do not exist beyond our linguistic

expressions. Open sentences are excluded from standing for concepts, and

furthermore the comprehension principle is restricted. As language is the most

important thing for them, interpretation is secondary. Thus it seems that the
4 Hilbert's program, as it is well known, consisted of separating signs and meaning and only allowing

Unitary arguments in the proof theory. Had the program worked, it would have made it easy to prove
things about the theory inside the theory itself. Godel's result made apparent the impossibility of carry¬
ing out this aim - and as has been said by Quine:

"Godel's proof is beyond doubt, we can philosophise about it but we can not philosophise it
away."

- 17 -

obvious semantics should be based on a substitutional interpretation. (A

substitutional interpretation of the quantifiers involves truth clauses of the following

kind:

[[3 x<£>]]q _ is true <->for some name a,in the language, [[<l[a/x]]]~ is true.

[[Vx<I>]]Q is true <->for every name a,,in the language, [[<l(a/x]]L is true.

By contrast, Referential interpretation treats quantifiers as follows:

[[] X<I>]]R ct is true <->for some object a.in the model, [[<l(a/x]]]R is true.

[[V x<l>]]R is true <->for every object a.in the model, [[${a/x]]]R is true.)
3. Conceptualism: Borrowing a sentence from Fraenkel (at the end of [FR2], page 336):

Conceptualists are

"attracted neither by the luscious jungle flora of platonism nor by the ascetic

desert landscape of neo-nominalism."

Concepts here are neither predicate expressions nor real properties. They are not

objects but unsaturated entities, the saturation of which results in a mental act and

not necessarily a truth value. Some conceptualists are constructive and construct only

those sets that correspond to predicative conditions; some others accept an

unrestricted comprehension principle. However all of them care for interpretation,

and in a semantics for a conceptualistic theory one should consider a referential

interpretation where the meaning of a concept applied to an object does not necessarily

have to be a truth value.

4. Fregean conception: It might be said that Frege is both a realist and a conceptualist

but; he is anti-formalist and tends to lean towards conceptualism. The ontology

assumed by Frege of concepts was that they are functions of one argument whose

values are always truth-values. Concepts, according to him, are unsaturated, and the

behaviour of a concept is predicative even if something is being asserted about it. The

unsaturation of a concept comes from the fact that concepts can never themselves be

objects and only by applying the concept to an object can we obtain a saturated

- 18 -

element (an object which is a truth-value). Assertions that are made about concepts

do not apply to objects: for example, existence is a property of concepts and not of

objects. However, the way we attach properties to concepts consists in predicating the

property not of the concept but of the concept-correlate. This concept-correlate is the

extension of the concept, according to Frege, and is an object. We said that concepts

here are functions: thus the graphs of functions are objects even though functions

themselves are not. This is exactly the case with concepts and their extensions. The

extensions are objects but the concepts themselves are not. The extension of a concept

does not fully determine the concept, for we can have two extensions which are the

same while the concepts themselves are not. Frege always warned against confusing a

concept with its extension and defined sets and classes to be the extensions of the

concepts, not the concepts themselves:

"sets and classes are objects whereas concepts are anything but objects."

Something falls under a concept and the grammatical predicate stands for this

concept. A name of an object is incapable of being used as a grammatical predicate. For

Frege, the saturation of a concept results in a truth-value and according to him each

open sentence denotes a class. Those classes are objects and can be quantified over.

Being an anti-formalist he insisted on interpretation, but as is well known he paid a

high price for these relaxed conditions: his theory, known as the naive theory, was

found to be subject to Russell's paradox, since the concept set of all those things that

do not belong to themselves has an extension K which is a proper object. Thus his

theory is contradictory.

These then are the four main conceptions of universals. In constructing a theory

of nominalisation corresponding to any of those conceptions, we have to embody its

distinctive features either in the language or in the interpretation or both. However

problems can occur in any of these theories if we are not careful about the way we

bind together the comprehension principle, the quantification techniques and the

- 19-

interpretation (no matter what philosophical background we assume). To avoid

inconsistency, some people restricted their comprehension principle but still allowed

unlimited quantification; others restricted both quantification and comprehension. Yet

if one is not careful in setting out the theory, a paradox can still be derivable.

I shall in most of this thesis use Frege's views on concepts and objects, with a

relaxation of both comprehension and quantification, without falling into Russell's

paradox: Aczel's Frege structures enable us to maintain this stance while staying

paradox free. I adopt Frege's conception for three reasons. The first is that all the

scholars whose results I intend to compare with my own seem to have used it. The

second is that formalism has lost its attraction after Godel's famous results. The third

reason is that the Fregean conception seems to be a solution between conceptualism

and realism, and I do not have anything against either of the two latter conceptions.

Adopting the Fregean stance means that I am committed to defining nominalisation as

the phenomenon of turning what was at one stage a predicate into something which

will act as an object - something to which properties can be attributed. This new

object is different from our initial objects and will act as a concept-correlate in our

semantics. What in the language acts as a name should be mapped in the semantics as

an object. What in the language acts as a predicate should be mapped as a concept.

And what in the language acts as a nominalised predicate should be mapped as a

concept-correlate.

Once again, it is vital to keep in mind that a concept-correlate is an object and not a

concept. As an example, consider the syntactic discourse which has the following: tall

(a predicate), being tall (the nominal of tall), John (a name). The semantic universe

has: a property tall which holds of all the tall things in the universe, a set A of all

tall things and a man John called John. Then we have the following semantic

interpretation: tall is mapped into tall, being tall is mapped into A and John is

mapped into John.

- 20 -

We shall now examine in detail how the Russell paradox can threaten theories of

nominalisation; and in section B we shall meet the solutions to the problem.

A.1.2. A language ofnominalisation: If we are going to assume a first order language of

nominalisation and we are going to let any open well-formed formula stand for a

concept, then we might fall into the paradox. This is shown as follows: take a first

order calculus and add to it a new primitive relation € and the two axioms:

Comprehension: For each open well-formed formula <!>,

3 y Vx [(x€y) <- > $(x)] where y is not free in <£(x).

Extensionality: Vx Vy [Vz [(z€x) <->(z€y)] —► x = y].

This theory is obviously inconsistent, for take <f(x) to be (x 6x). Then we get:

3 y Vx [(x€y) <->->(x£x)]

==>

Vx[(x6y) <->-i(x€x)]

==>

[(y€y) <->->(y€y)]

Is5 it the assumption that the class x exists? In this theory of nominalisation, we

assume that each open well-formed expression determines a concept whose extension

exists and is the set of all those elements which satisfy the concept. We could restrict

our comprehension principle so that <$(x) stands for everything except ->(x€x); but

this will not save us from paradox. To see this let <E(x) stand for -> (x^x) where
(x^y) abbreviates (3 z) ((x6z) & (z€y)).

Again, ruling out this instance is not enough for we will still get the paradox if we

take <$(x) to be ->(x€,jx). This process continues ad infinitum. We could rule out all
such instances - but the problem will persist, for take a sentence <$(x) like:

->(3 ZJ.ZJ,—) [...(zg€z2) & ^Sz^) & (z^ex)}
and let y be the class obtained from the comprehension axiom for <$(x).

5 Note here that the axiom of extensionality did not have any role in the proof of the inconsistency.

- 21 -

If Cy6y) then ->G Zj^,..) [...Gzj) &■ (z2^zi^ &(zj£y)].
But we can take z^ = Z2 = ... = y, and get a contradiction.
If -i(y6y) then G Z-^Zj,..) [...^2) & ^Gz^) &(z^€y)].
But as (zj €y) then <f(y); but we have that -> <J(y). Contradiction. □

We have assumed above a first order language of nominalisation. Although I shall

leave the discussion of whether we need higher order languages for later chapters,

allow me to remark en passant that it seems we do not need to go higher than second

order languages for the semantics of nominalisation - for according to Frege's

conception, we stop at second level concepts, but these can be mapped into first order

concepts which in turn can be mapped into objects. So when we come to quantify over

properties, we really quantify over their extensions which are objects. We shall

discuss quantification in Frege structures in more detail in Chapter 4, but we shall

here try to answer the question of whether we still face the problem with higher

order languages. I cannot find a better way to show that we do than by looking at a

second order theory due to Cocchiarella. This language essentially embodies Frege's

conceptions of concepts and objects summarised above, according to which we need to

quantify over our predicates, and predicate quantifiers have a referential significance,

even though predicates themselves are not singular terms. I shall start by writing

down the axioms and rules of a second order language which will accommodate

nominalised predicates. If this language is to allow us to talk about nominalisation, it

should have a device which can turn any sentence, open wff (well formed formula) or

predicate into a singular term. For example, we should turn run into to run, the sun is.

grey into that the sun is grey and so on. I shall add such a device to the language and

refer to it by As I said earlier the language used here is based on Cocchiarella's

formulation of second order logic with nominalised predicates and will be used to

illustrate the problem.

The typing ofthe language is as follows:

- 22-

0 represents the type of all singular terms,

1 represents the type of propositions,

n+1 represents the type of n-place predicates.

For each n> 0 assume the existence of denumerably many variables. I shall use the

following metavariables:

M, N, ... refer to both individual and predicate variables

F ,G ,H ,... refer to n-place predicate variables, We can get rid of the

subscript when no confusion occurs,

x, y, z, w,... refer to individual variables,

a, b,.. refer to singular terms.

The primitive symbols ofthe language are: V, X. The others are defined in the

metalanguage.

The meaningful expressions of any type n, MEn are defined recursively as:

(1) Every individual variable is in MEq.
Every n-place predicate is in both MEq and MEn+j.

(2) For a, b in MEq, (a = b) is in MEj.
(3) F in MEn+p aj,..,an in MEq ==>F(a^,..,an) in MEj.
(4) 4>in MEj and x^,..,xn are pairwise distinct variables, where n^l,

==>[Xx1..xn<I>] is in MEn+1.
(5) <£> in MEj == > -> <F in ME^.
(6) in MEj ==>(<!>-> 'T) is in ME^.
(7) $ in ME^ and a is an individual or predicate variable

==>Va<J>is in ME^.
(8) <Fin MEj ==>[X<F] in MEQ.
(9) For all n>l, MEn is included in MEq.6

6 Note that 9 does not follow from 1

- 23 -

AXIOMS:

(AO*) All tautologous well formed formulae.7

(Al*) Vu(4> -»¥)-♦ (Vu<3> -»Vu^)

where u is an individual or a

predicate variable.

(A2*) <1> -» Vu<F where u is an individual or a

predicate variable not free in <F.

(A3*) 3 x (a = x) where a is singular term in which

x is not free.

(XL*) (a = b) -» (<1> <- > "$) where a, b are singular terms and

Uf comes from <I> by replacing one or

more free occurrences of b by free

occurrences of a.

(CP*)] Fn Vx1..xn[Fn(x1,..,xn) <-><b]
where F does not occur free in <F

n

and x.,..,x are distinct vars.1 n

(X-CONV*) [\x^,..,xn<I>] (a^,..,an) <- > $(aj/xj,..,an/x11)
where a^,..,an are singular terms
and each a. is free for x- in <E>.

(IDX*) [Xx1>..>xnR(x1,..,xn)] = R
where R is an n-place predicate

variable or constant.

Inference Rules: The two inference rules are MP and UG.8

Note that (CP*) is an instance of (CPX*) where :

(CPX*)] Fn ([Xxj,...xn<E>] = F) where F^ is not free in <1>.
7 Classical tautologies.
8 Modus Ponens and Universal Generalisation, where MP is: infer from $ —► and <t> that UG is

infer from <E> that Vx<E>.

- 24 -

The system (just described) is subject to Russell's paradox, for take the special

instance of:

(CP*): j F Vx [F(x) <- > -i x(x)],

one can then derive: F(F) <- > -• F(F).

So the system is inconsistent and we need ways of making it consistent. In part B, we

shall come to solutions for such a problem. For the moment, note that the presence of

(CP*) is necessary for second-order logics with nominalised predicates and that the

problem comes from (CP*) together with (A3*) under various logical laws. We shall

see in part B the dilferent solutions that have been offered and the effects on

nominalisation. However, before closing this section, I would like to comment on the

ontological status of sets and on the nature of Russell's paradox, as the solutions

depend on both issues.

A. 1.3. The ontological status of sets: There are two main views of sets: the

mathematical conception of set and the logical conception. According to the

mathematical conception, a set is determined by the elements that belong to it. E.g.

{1,2,3} is the set of the numbers 1 2 and T. The logical conception, on the other hand,

regards sets as existing according to their defining concepts, and not their constituent

objects; so here {1,2,3} might be the set of positive integers less than 4. Frege's

conception of set was a logical one, and is known in the literature as the naive

conception of set. According to this view, any predicate has an extension and sets are

extensions of predicates. However, under the classical laws of logic and especially the

law of excluded middle (LEM) and non-free logic (where not necessarily each element

denote), this notion of set is subject to Russell's paradox.9 I shall illustrate the

occurrence of the paradox by assuming both LEM and that every predicate has an

extension. Now, if one chooses P(x) to be ->(x€x), then {x: ->(x6x)} is an r to which

LEM applies. So we have either (r€r) or ->(r€r). In both cases we get a contradiction.
9 However, the paradox holds even in minimal logic and other non-classical logics, e.g. we can derive

the paradox without the use of LEM which means that the paradox is intuitionistically derivable.

- 25 -

So the theory contains a paradox (a contradictory statement is provable in it) even

though the axioms seem true and the rules of inference valid. We get a theory that is

inconsistent even though we were very careful in building it.

After Frege's naive set theory was shown to be inconsistent, set theorists were

anxious to solve the problem, and many directions were followed to overcome the

paradox. Frege himself had something to say about the paradox. He stated that if one

abandoned the naive conception and the use of full comprehension, it would not be

obvious how to define numbers (see [FR3], Frege on Russell's paradox). This follows

because the essential definition of numbers in Frege's theory was based on the

existence of extensions of concepts - thus the paradox shook Frege's whole theory.

Frege suggested that the solution lay in either banishing LEM for classes, or forbiding

some concepts from having extensions. He was not satisfied with the first solution

because he wanted classes to be full objects - and full objects obey LEM. If classes are

to be considered as improper objects then this will create an infinite number of types

in the theory, for we are going to have functions that apply to proper, improper or

mixed arguments. Frege was not in favour of that solution, and preferred to

acknowledge the existence of concepts that have no extensions. This would affect

axiom (V)10 (in [FR3], which Frege was not satisfied with from the beginning) and in

particular (Vb) which is:11

(Vb) z'f(z) = z'g(z) ==> Vx (x falls under f <->x falls under g)

This axiom states that if two concepts are equal in extension then whatever falls

under one falls under the other. Frege made only general remarks about the

inconsistency and did not pin down what caused the problem. He sometimes felt the

problem lay in (Vb) and at other times thought that the assumption of the existence

of an extension to each concept was to blame. (Va)12 is acceptable as it takes us from
10 (V) z'f(z) = z'g(z) <==> Vx (x falls under f <->x falls under g), where z'f(z) stands for the ex¬

tension of f.
11 See [FR3], pages 214-224 for a good account of the following discussion
12 I.e. the opposite direction of (Vb): Vx (x falls under f <->x falls under g) == > z'f(z) = z'g(z).

- 26-

equality that holds in general to an equality that holds of graphs (or extensions). But

according to Frege (in [FR3] page 219),

"We cannot in general take the words

the function <£(£) has the same graph as the function MK£)

to mean the same thing as the words

the functions <£(|) and M>(£) always have the same value for the same

argument;

and we must take into account the possibility that there are concepts with no

extension (...)."

However, Frege did not realise that his domain of concepts was far too big. Concepts

are propositional functions but according to Frege's conception, there are far more

propositions than there should be. For each object a, —a (the content of a) is a

proposition even though a was not. Thus Frege has far too many concepts and some

paradoxical sentences stand for concepts when they should not do. Accordingly, a

way of ruling out the paradox might be to restrict the number of concepts. Let us

look again at the paradoxical sentence: the set of all things that do not belong to

themselves. Under the restriction strategy, we cannot tell whether this sentence

stands for a concept or not, as we do not know if this is a propositional function or

not so we cannot think of its extension.

We could say that there were two ways of reformulating set theory. One is to

abandon Frege's definition of set and use the mathematical notion of set. The second is

to keep to the logical definition of set and try to make it consistent. We shall, in part

B, see reformulations of set theory in both directions.

To conclude this section, it is worth drawing attention to the role self reference plays

in these set theoretic paradoxes. Paradoxes involving self reference are well known in

the literature, and are of two kinds: logical and semantical paradoxes. Russell's

paradox has been classified under the logical category, as have the barber's paradox

- 27 -

and Cantor's paradox. So far we have not said anything about the semantical

paradoxes. As they are important to intensionality I shall illustrate them with

some examples:

Grelling's paradox: Some adjectives possess the property that they denote (e.g.

English. Polysyllabic) and some do not (eg French). Call the second type heterological;

then

heterological is heterological iff heterological is not heterological.

Another example of this paradox is: A concept is predicable if it can be predicated of

itself, otherwise it is impredicable. Hence,

impredicable is impredicable iff impredicable is not impredicable.

Another very important semantical paradox is

The liar's paradox: Assume that John Doe utters on December 1st, 1970 the following

English sentence and nothing else all day:

"The only sentence uttered by John Doe on December 1st, 1970 is false."

This sentence is true iff it is false.

Paradoxes of this sort should not lead us to reject self-reference, which is needed for

many disciplines. We have to find a solution which will allow self-reference without

any contradiction.

A. 2. The problem ofthe existence ofmodels

The theory discussed in A.l. is inconsistent, so it does not have models. But even

in the case of a theory whose consistency we are sure of, we still sometimes cannot

imagine what the models look like. This section describes what a model of

nominalisation should be, and what the difficulties of constructing such models are.

A.2.1. What a model should look like: A model of nominalisation will be roughly as

follows: M = <U, P, f> where U is the domain of objects, P is the domain of functions

from U into {0,1} and f is the nominalisation function, f is a function from P into U

- 28 -

which should be injective. This implies that P is a subset of U up to an isomorphism.

Let me describe in more detail what this means. In trying to build our semantic

function which maps each syntactic entity into a semantic one, we should do the

following;

(1) Map individual variables and singular terms into objects in U.

(2) Map the predicates into P, the domain of the first order properties. The

nominalised items are singular terms and they are mapped into U. The

function f acts as a nominalisation function, assigning to each element p of P,

an element in U called the correlate of p. This correlate is the denotation of

the nominalised item that corresponds to the predicate.

f.P—>j(P) is an isomorphism because:

(i) f is a well defined function: We assume that each property has a single

correlate.

Cii) f is injective: We assume that each two distinct properties in P have

distinct correlates in f(P).

(iii) f is surjective: Because every element in f(P) corresponds to an element in

P.

So in constructing a model of nominalisation, we should construct three domains

such as U, P and f(P) satisfying the condition that P (or f(P)) is a subset of U.

According to Cantor's diagonal theorem, we cannot take P to be the set of all

functions from U to {0,1}. We have to restrict P, but we should not restrict it too

much, for we would like to obtain the nominalisation of all the desired items.

In the above construction of f, I assumed that two distinct predicates have

distinct nominals. It should not be assumed that this requires the principle of

extensionality to hold in the domain P. If we have two predicates which are both true

of the same objects but are distinct then their extensions, and hence nominalisations,

must also be distinct. In fact one of the main issues in a Frege structure is, as Aczel

- 29 -

puts it in [AC3]:

"The point is that extensional equality between sets must not be confused

with the equality relation between sets as objects."

The above construction of f in no way assumes extensionality. To see this consider

the following example: take the two concepts positive integer less than or equal to 2_

and positive integer which divides 2. We know that the extension of the first concept

contains 1, 2 and only those numbers. The extension of the second concept contains

also 1, 2 and only those. However, this in no way implies that the two extensions as

objects are the same. So, although the theory of properties itself is intensional, the

principle of extensionality still holds of predicates. In [AC6] for example, this line is

assumed. There, properties are propositional functions, yet the predication of a

property to an individual is not necessarily function application except in the case

where the property P is itself basic. In this theory, although properties should be

treated intensionally, we can still assume extensionality on predicates. This is because

the predication of a property P to an object a is not always the application of the

propositional function P. It is only application when P is basic, which is fine because

we obviously know everything about basic properties. (Basic properties are things like

red, tall, etc whereas non-basic properties are those obtained from open formulas.)13 I

hope by now it is obvious that assuming that the function f above is injective does

not entail assuming extensionality of properties: our example [AC6] demonstrates this;

if this is still not clear, the reader can refer to part C of Chapter 2.

I am trying to say here that two distinct predicates have two distinct nominals,

yet we can assume that two sets have the same elements without being equal as

objects (i.e. the principle of extensionality does not hold for sets). I am also

interested in having extensionality between functions and the reasons for that are

two:

13 Clearly models of the above sort exist if one does not require that there should be denotations for
all open wffs.

- 30-

(1) Things get quite complicated if we did not have extensionality on

functions, see for instance [SCl].

(2) Extensionality on functions facilitates the identification of properties with

classes.

[BE6] has many examples of theories where the principle of extensionality is assumed

on functions yet the theory of properties is intensional. Also Aczel's work in [AC6]

concludes that properties are propositional functions yet predication is functional

application only when the property is basic. The main reason that Aczel gave to

defend his thesis was to do with intensionality. Take

S-PFT: Vx(pred(P,x) = <D) <==>(P = xO>).

This principle which is rejected for reasons of intensionality, asserts that predication

and property abstraction are inverses of each other. Aczel also presents an alternative

operator pred', where

Vx(pred'(P,x) = <I>) <==> (P = x$).

And this pred' is really functional application.

Some might argue here that there is no relation between intensionality and the

distinction between predication and functional application. For instance, in [SC2],

Scott only wanted the three axioms:

(a) Xx.t = Xy.t[y/x]

(|8) (Xx.t)(y) = t[y/x]

(y) Xx.t - Xx.t' <== > Vx.(t=t')

and did not insist on (e) : t(x) = t'(x) -»t = t'. But in there, even though he did not

study intensionality, he made a distinction between predication and application.

Also14 one can build a fine grained meaning algebra of the Carnap-Lewis type starting

from extensional primitive entities. This is no reason however to deny that in [AC6],

the distinction between predication and functional application was due to

14 This was drawn to my attention by Uwe Monnich.

- 31 -

intensionality matters.

A.2.2 Difficulties with such models: Cantor's Theorem will pose a difficulty to any

theory which aims to make functions play the role of objects. According to Cantor's

theorem, the cardinality of a function space is bigger than the cardinality of the

domain itself. Cantor's argument goes as follows:

Cantor's theorem: Given any finite or infinite transfinite cardinal, there exists a greater

one. More precisely, if S is any set, then the set PS whose elements are all the subsets

of S has a greater cardinality than S. (PS is the power set of S and we know that the

power set of any set is isomorphic to the set of all the functions from S into {0,1}).

Proof:

If S— >PS is bijective then the elements are classified in two categories: The

first is when s belongs to $(s) and the second is when s does not belong to

<Ks). Let A = (s: -• s €<K{s)}. We have that ASPS therefore A = <Ka) for some a.

Hence a€A iff -> a6A. Contradiction. □

The above argument does not only apply to the characteristic functions of S. We can

also prove that for any V with at least two distinct elements, the set of functions

from V to V has greater cardinality than V. The proof is as follows:15

Assume that V is isomorphic to [V— >V], he. there exists an F from V to

[V— >V] which is bijective. Let us define G: V— >V such that:

G(x) = 1 if F(x)(x) = 0

= 0 if F(x)(x) - 1.

We have assumed that V contains {0,1} (Actually, we could take any two

distinct elements of V). As F is surjective, there exists a v in V such that F(v)

= G. This implies that: G(v) = 1 iff G(v) = 0, which is absurd. □

A.2.3 Existence of models: The above shows that we are going to have problems

15 It may be sufficient here just to point out that 2^CV^ and this implies that card(V^) > card(V).

constructing models of nominalisation - recall that we previously wanted P to be a

subset of U, but by Cantor's theorem the cardinality of P is greater than that of U. In

essence, we need to find ways of restricting P without either lapsing into triviality or

running foul of Cantor's theorem. That is, we are looking for interesting restrictions -

restrictions which leave us with enough functions for nominalisation. We must

break the ties created by the old tradition and build somewhat more original models.

In part B, we shall talk about different ways of proving the existence of non-trivial

models which are not susceptible to Cantor's argument. Those models will contain

denotations for all nominalised items. Scott models and Frege structures both possess

this property; but as we shall see, the former have a difficulty regarding

quantification, while the latter do not.

- 33 -

PART B. THE DIFFERENT ATTEMPTS AT A SOLUTION

We have seen the problems of the semantics of nominalisation from the

theoretical side and from the perspective of those issues pertaining to model

existence. In this part we meet some of the solutions that have been offered to those

problems, and comment briefly on their application to nominalisation.

B.l. Solution to the theoretical problem

We said that the theoretical problem is mainly a problem of set theory and of

predication theory. The following is a summary of various set theories and their

application to the development of theories of nominalisation. This summary looks at

these issues from three different angles. The first has to do with the language of the

theory, the second is concerned with the axioms and the third deals with logic.

B.l.l Notes on set theory:

B.l.1.1. Altering the language: Since Russell's letter to Frege, concerning the

inconsistency of Frege's system, there have been many attempts at overcoming the

paradox. The first two accounts of avoiding the paradox by restricting the language

were due to Russell and Poincar£. They both disallowed impredicative specification:

only predicative specification (as will be defined below) was to be permitted. Russell's

own solution (in [RUl]) was to adopt the vicious circle principle which can be roughly

stated as follows:

"No entity determined by a condition that refers to a certain totality should

belong to this totality."

PoincarS (in [POl]) took refuge in banning "les definitions non predicatives" which

were taken by him to be:16
16 Definitions by a relation between the object to be defined and all individuals of a kind of which ei¬

ther the object itself to be defined is supposed to be a part or other things that cannot be themselves
defined except by the object to be defined.

- 34 -

"Definitions par une relation entre l'objet a clfefinir et tous les individus d'un

genre dont l'objet a dfefinir est suppose faire lui-meme partie ou bien dont sont

supposes faire parties des etre qui ne peuvent etre eux-meme definis que par

l'objet a definir".

So both Russell and Poincare required only predicative sets to be considered, where A

= {x: <£(x)} is predicative iff <3> contains no variable which can take A as a value.17

Russell's and Poincare's solution was to use predicative comprehension, instances of

which start with individuals, then generate sets, then new sets and so on as in the

following example: Take 0 at level 0, {0,{0}} at level 1, {0,{{0}},{0,{0}}} at level 2 and

so on. Russell's simple theory of types in Principia Mathematica applied the vicious

circle principle, assuming all the elements of the set before constructing it. This

theory obviously overcomes the paradox, but it is rather unsatisfactory, for the

following reasons:

1. We need formulas which are not stratified (i.e. where we have

impredicativity), and there are many sets we would like to have but cannot be

provided within this theory.

2. A class can have members only of uniform type. Also, sets here can neither

belong to themselves, nor contain other sets from the same level.

3. There are infinite series of universal classes, one for each level; but no one

unique universal set.

4. -x (the complement of x) comprises all members of x of next lower type

than x; and not everything that does not belong to x.

5. There is an infinite number of null classes, one for each level.

6. Boolean algebra is reproduced in each type.

7. Numbers are no longer unique as we have different sets of natural numbers

at each level.

17 This helps because it is otherwise very easy to get a vicious circle fallacy if we let the arguments of
a certain propositional function (or the elements of a set) presuppose the function (or the set) itself.

Note however, that the theory offered by Russell is quite different from what we

know today as the simple theory of types. For Russell, a sentence is to be placed

(within a context) into a hierarchy according to €, so xGy would be acceptable if the

variable x is going to take values of lower range than that of y and formulae like

(xGx) or ((x€y) & (y€x)) would be unacceptable. Those sentences that satisfy this

requirement of '€' are called stratified and Russell only accepts stratified formulae.

This is how the paradox is overcome, for the sentence <1> denoting ->(y€y) is not

stratified.

Here I should stop to explain the concept of stratification for it is going to form an

important step in our discussion and assessment of our theory in terms of the others.

There are two types of stratification: homogeneous stratification and heterogeneous

stratification. Frege and Russell used stratification in the second sense but Cocchiarella

stuck to the first type. A well formed formula $ is said to be heterogeneously

stratified if there is a function f from the variables and constants of 4> to the natural

numbers such that for each atomic well formed formula F(x.,..,x) of <E>,I n

f(F) = 1+ max [fCx.)].

$ is said to be homogeneously stratified if the function f is further restricted so that

f(xp = f(xj) for O^i, j^h. As an example of a non-stratified formula we take: It is nice
to be nice. We also take John loves Mary and running as an heterogeneously stratified

formula and John loves Mary as an homogeneously stratified one.

B.l.1.2 Altering the axioms: We can avoid the paradox by altering not the language

but the axioms of the theory. The most straightforward such theory is ZF (Zermelo-

Fraenkel) where the axioms are made to fit the limitation of size doctrine; that is, sets

are not allowed to get too big too quickly. Take the system of first order logic

provided in A.1, and alter comprehension to the following:

For each open well formed formula <I>,

3 x Vy [(y£x) <->(y€z)&<!>] where x does not occur in $.

- 36 -

It is exactly this new axiom which is responsible for the elimination of the paradoxes.

Take Russell's paradox: to prove the existence of {x: ->(x€x)} we need a z big enough

so that {x: -> (x€x)} is included in z. But we cannot show the existence of such a z.

Russell's paradox is restricted in ZF as follows:

Take <J(t) to be -i(t€t),

take n = {t: (tSx)^ (t€t)}

If n€n ==>(n€x) and ->(n€n) contradiction,

If ->(n£n) ==>if n€x ==>n€n contradiction,

if -> n 6x then we are fine.

So the limitation of size doctrine exemplified by the above axiom is how we avoid the

paradox.18

It is worth pointing out that although very different conceptually, both the simple

theory of types and ZF give rise to an iterative concept of set. That is, both require

the elements of a set be present before a new set can be constructed. (For a precise

formulation of the iterative conception of set, and a proof that ZF is a typical iterative

theory, see [BOl])

ZF is not the only axiomatic approach aimed at restricting the paradoxes. In NF (New

Foundations), Quine restricts the axiom of comprehension of A. 1.2, to obtain the

following:

SCP: } y Vx [(x€y) <- > <f(x)] where x is not free in $(x)

and <£(x) is stratified.

Thus it applies only to stratified formulae and now the only concepts that are allowed

to have extensions are the concepts that correspond to these stratified formulae. In

ZF, we did not have a universal set whereas in NF we do, for take x=x. this is a

18 To avoid the paradox, we do not accept very comprehensive sets.

- 37 -

stratified formula.

NF has only one universal set, one complement of each set, and one null set.

Furthermore, Cantor's theorem does not hold in NF (the universal set is

equinumerous to its power set.)19 However, NF is said to lack motivation because its

axiom of comprehension is justified only on technical grounds and one's mental image

of set theory does not lead to such an axiom. To overcome some of the difficulties,

Quine adopted similar measures to B-G (Bernays-Godel) set theory. Like B-G, ML

contains a bifurcation of classes into elements and non-elements. Sets can enjoy the

property of being full objects whereas classes cannot. ML was obtained from NF by

replacing SCP by two axioms, one for class existence and one for elementhood. The

rule of class existence provides for the existence of the classes of all elements

satisfying any condition O, stratified or not. The rule of elementhood is such as to

provide the elementhood of just those classes which exist for NF. Therefore, the two

axioms of comprehension of ML are:

The axiom ofcomprehension by a set:

(1)] y Vx (x£y <->$(x)),

where <E(x) is a stratified formula with set variables only

in which y does not occur free.

The axiom ofimpredicative comprehension by a class:

(2)] y Vx(x£y <-><Kx)),

where <t(x) is any formula in which y does not occur free.

ML was liked both for the manipulative convenience we regain in it and the

symmetrical universe it furnishes. It was however proved subject to the Burali-Forti

paradox: (The well ordered set a of all ordinals has an ordinal which is greater than

any member of a> and hence is greater than co.)
19 However, NF is weak for mathematical induction and the axiom of choice is not compatible with

NF. We cannot prove Peano's axiom [s(n) = s(m) —»n = m] in it, unless we assume the existence of a class
with m+1 elements.

- 38 -

Suggestions for making ML consistent:

(1) Fitch suggests staying within the dependable realism where we are assured of

consistency and expanding it as far as possible. Fitch's suggestion comes under non¬

standard logic which we shall meet in the next paragraph.

(2) The other is Black's suggestion to construct a system similar to ML but in which

the contradictions are no longer derivable. Wang's system P fits this program.

Wang keeps to ML except that the axiom (l) is restricted further to the requirement

that <1> should not only be stratified as in NF and ML, but $ should also be normal,

where a normal formula is one in which all bound variables are element variables (so

quantification is restricted). Wang claims that P is the system Quine originally

intended, and proved P consistent relative to NF.

Note that the axiom of infinity can be proved in P and that everything provable in

type theory is also provable in P. Note also that Burali-Forti's paradox is no longer

provable in P; this is because, to prove such paradox, non-normal formulae are used,

but these are excluded in P.

Our description above of Russell's type theory, ZF set theory and Quine's NF

and ML, has been brief, but should suffice to convince the reader of the need to have

as many sets as one can. It has been argued by those who favour the iterative

conception of set that we do not need self-application (see [BOl]). But we have seen

the necessity of type-free theories and the development of many type free systems

such as Feferman's (in [FE2] and [FE9]). Kripke's work on the theory of Truth [KRl]

is further evidence that we should not rule out self referential statements and that we

must look for a theory which allows for it. Godel's work and especially his proof of

the incompleteness theorems, showed that self-referential statements are as legitimate

as arithmetic: and is not set theory the domain with which we study such statements?

- 39-

Natural language is full of self-reference and self-application like: There is nothing

more beautiful than beauty. All this points to the need for as many sets as possible,

including sets that belong to themselves.20

B.l.1.3. Altering the logic:

Rejection ofthe law ofexcluded middle: The paradox we faced was of the form:

CxGx) <->->(x6x).

Clearly the paradox can be avoided by dropping the assumption of LEM that any one

place predicate either applies to a given object or does not. Fitch offered a system

which did just that. Note that here we can stick to two valued logics and that this

system is not necessarily intuitionistic. If we go back to the example of impredicative

specification given at the beginning of this section, according to this approach we can

assume the existence of R, the set of all elements which do not contain themselves.

What we cannot do though is assume that we have either (RGR) or -< (R6R).

Many valued logics: (x6x) <-> ->(xGx) would not be contradictory if a consistent set

of truth values was chosen. Consider as an illustration a three valued logic where the

truth values are 0 (truth), l(false) and u(undefined). The above sentence21 is not

contradictory for we associate with (xGx) the value u and we define in the semantics

that the negation of u is u. Therefore u <- > -> u is not contradictory and the paradox

is avoided. Note here that there are many three valued interpretations and that the

status of u varies from one interpretation to another. For some, u acts as not vet

known, for others it is undefined. If we take the view that u is not yet known then

we can order our models according to the state of our knowledge. Knowledge is

cumulative whereas ignorance is not. What we know up to a stage, will always

20 All the above set theories reject the impredicative specifications and assumptions of classes and
class existence, except ML which assumes impredicative clauses due to axiom (2) above. However, both
the axiomatic approaches and type theoretic approaches to set theory are in need of a model which is
infinite, and we do not know how to construct one in such a way as to avoid the antinomies.

21 According to some interpretations of <->, this sentence has no truth value; this is the case in
Kleene's 3-valued logic.

- 40-

remain known after that stage, but we will also know more things. Domains looked at

in this way are ordered and the fixed point theorem is applicable; this enables the

construction of the limit model which is a model of the limit of our knowledge. Such

an ordering of domains is very useful for Artificial Intelligence and Computer Science

but is problematic for the semantics of nominalisation. Note in passing that not all the

3-valued interpretations would allow us to have a full comprehension principle.

Intuitionistic logic: Intuitionists banish metaphysics from their (mathematical)

theories. Although for them all objects are abstract, they are constructive: existence is

equated with being creatable by constructive methods. However the demand for

constructive evidence is not a sign of limitation, for intuitionists have some secure

means to construct not only the finite objects but also the infinite. The domain of

objects or of the mathematical properties of these objects is not fixed in advance;

things in their universe are incomplete and will remain incompletable (Godel).22 So

existence is constructibility and the ways of constructions are not known a priori.

Objects and their properties are mental constructions. Language is not important; for

it is vague and ambiguous - even if it is a formal one.23 Note that Russell's theory of

types is itself constructive if we neglect the axioms of infinity and of reducibility.

According to the intuitionists there are two ways to build sets, either by constructing

their elements (species) or by characterising a property of their elements (spreads).

We can only admit x to be an element of S (spreads or species) if x has or might have

been constructed before S. In the case of a species S, an object is a member of S if it

has been or might have been defined before S, and which satisfies the condition S.

Intuitionists reject classical mathematics and the law of excluded middle. Their

22 This concept of incompleteness is best illustrated by a quotation from Poincar6 (in [POl]): "Quand
je parle de tous les nombres entiers, je veux dire tous les nombres entiers qu'on a inventfcs et tous ceux
que l'on pourra inventer un jour... et c'est ce "que l'on pourra" qui est l'infini". When I speak of whole
numbers, I mean all whole numbers already invented and all those that could be invented one day... and
it it the "could be" that is infinite.

23 Language remains important in practical terms, of course: otherwise these mental constructions
could not be communicated from mathematician to mathematician.

- 41 -

argument is that classical mathematics is not safe and is subject to the paradoxes.

According to the classical mathematician, the meaning of any sentence consists of its

truth conditions, and as those truth conditions obtain independently of human

knowledge we have only two truth values (true and false). For the intuitionists,

truth is no longer bivalent: the truth of any sentence is a proof for it. The meaning of

a logical connective can no longer be given as the eifect it has on each sentence with

this connective as the main one: instead it is given in terms of proofs. As the

intuitionists reject the LEM, some strange results, or results which the classical

mathematician would not dream of asserting, obtain. For the classical mathematician,

there are continuous24 and non-continuous functions. For the intuitionists, all real-

valued functions which are defined over closed bounded intervals are even uniformly

continuous. Of course the process is not magical: when the classical mathematician

provides an intuitionist with a real valued function defined over a closed interval and

which is not continuous according to the classical conception, the intuitionist would

answer that this function is not defined (in intuitionistic terms). For the classical

mathematician, for each set S included in X, X = S U (X-S). For the intuitionist this is

only true in the case where S is detachable. That is when for each xGX, we have a

proof of either (x€S) or of ->(xSS). For the classical mathematician, interpretation is

based on set-theoretic and truth-theoretic models whereas for the intuitionist, we can

use: topological interpretation.25 Kripke model interpretation26 or Hevting algebra.27

These are not the only ways to avoid the paradoxes. For instance Hintikka (in

[HI2]) avoids them by altering the interpretation. So for CP we have
24 A function is continuous over a domain, if it is continuous at every point in that domain. A func¬

tion is continuous at a point y if whenever we take a point x which is very close to y, f(x) will be very
close to f(y).

25 Where for each P we assign [[P]] (an open set of a topology <X, 0>) to be the set all of whose p-
basic neighbourhoods subsets prove P. Then we use algebraic constructs to interpret the connectives, e.g.
[[P1&P2]] = [[PI]]

26 This is essentially like the ordered models of the many valued logics; at each stage, knowledge is
increased and ignorance reduced.

27 A Heyting algebra is a structure <A, fl, U, = >, T. I > such that A is a lattice with respect to Q
U _!_j. T and where =>is to be interpreted as implication.

- 42 -

] y Vx [(x 6y) <- > [-> (x = y) -»<5(x)]].

Also the tone of our discussion has been concerned only with the logical paradoxes;

solutions to the semantical paradoxes consist in the separation of the object language

and the metalanguage, but this issue is not our direct concern in this thesis.

Frege structures: Frege structures are not only solutions to the problem of model

existence, but are also systems of set theory in their own right: they single out that

part of Frege's theory which is consistent. Frege structures could be classified as a

restriction of logic, and they free Frege's notion of set from the paradox in the

following way: the logical constants can apply to any object, but the result will never

be a truth value unless the object itself was a proposition. The condition x€x is not

necessarily a proposition and so

CxGx) <->-> (x€x) is not contradictory.

The logic is weak in this way: the logical constants still apply to any object as with

Frege but the result is a truth-value only if the object itself is one. With Frege this

was not the case; he had the operator — (which stands for content) and which gives

the content of each object. So —A is always a truth value whether or not the object A

itself was a truth value. All the other logical constants in Frege's theory were applied

to the content of the object and so always resulted in a truth-value. So in particular

-l-A (not A) is always a truth value whether or not A was. Realising this about

Frege's theory, Aczel reduced the logic to a weaker one where the logical constants

only give truth values for truth values. In Aczel's Frege structures, the axiom (Vb) is

not rejected. In fact the whole of axiom (V) is proven as a theorem in Frege structures

and does not need to be asserted as an axiom as with Frege. Also, each concept has an

extension, and decidable sets (the extensions of decidable concepts) are objects to

which LEM applies.28 In a Frege structure you can prove that a set belongs to itself,

(take R = {x: (x = x)}) and so it seems quite convenient to think of Frege structures as

28 This is actually discussed in detail in chapter 3 under the heading "decidable properties".

- 43 -

models for nominalisation, but I shall leave this matter for the next section. What we

have asserted in this section is that Frege structures solve the theoretical (ontological)

problem of set theory and so are candidates to be used for the semantics of

nominalisation.29 Before we move to the use of those theories for nominalisation, we

give a summary of the work that was carried by Feferman in the foundations of set

theory. This is because Feferman's work investigates all of these restrictions (i.e.

restricting the axioms, the logic or the language) and plays a crucial role in the area of

property theory.

B.1.1.4 Feferman and the foundational issues: Feferman, in many of his papers, has

worked on the question of the paradoxes and the possible solutions. He investigated

for instance in [FE9] the strategies of restricting the axioms, the logic or the language.

He also investigated in [FE2] a theory Tq which I believe is worth more attention than
it has received. Feferman's Tq was a formulation of Bishop's constructive
mathematics, as are the theories of Martin-Lofs and Myhill. Yet Martin-Lof's is the

theory which had been most used by Computer Scientists because it is more related to

notions such as computation, program specifications and constructive proofs. Maybe it

is the presence of canonical/noncanonical elements in Martin-Lof's theory and the

notion of types which are very attractive to computer scientists. Yet I believe that

Feferman's theory is simpler, has notions which are more related to property theories

(such as abstraction and application) and it studies classes, properties, comprehension

principles and various other notions of interest to a theory of nominalisation.

Of course in this thesis there is no room to discuss either Tq or any other of
Feferman's theories which avoid the paradoxes by various means. We must still

however introduce the comprehension principles that Feferman uses in two of his

theories.

29 Before closing this section, we mention that the paradox does not occur in free logic. That is if one
assumes that not every term denotes, one can have a consistent theory. [TE2] provides a good account of
how the paradox is avoided in free logic.

- 44 -

In Tq, the comprehension principle is restricted to elementary formulas where a

formula is elementary if it is both stratified and has no bound class variables. Hence

the principle looks like:

ECA: GX)({x:<$(x,y,z)} = X & Vx(x£X <==> <l(x,y,z))),

where <£(x,y,z) can only be an elementary formula.

Tq was a constructive theory. Feferman, before Tq, had investigated the use of full
classical logic. Yet the paradox is avoided by having positive and negative formulas.

The membership relation is now split into two partial predicates 6 and €' with the

axiom:

Dis(€, 6') : -i(x€{u/$(u,y1,..yn)} & x€'{u/fl(u,y1,..y11)})
The comprehension principle is then divided into two comprehension principles: one

for the positive formulas and the other is for the negative formulas as follows:

(CA}(+a)
xdu/^ujj,...^)} <==> <i>+(x,
x€'{u/<l(u,y1,...,yn)} <==>$"(x, y^..^)

Now of course Russell's paradox is avoided here because if we take R = {x/—<x€x},

then

R6R <==>(-.R€R)+ = (R6R)~ = RG'R.

These are two of the ways that Feferman uses to avoid the paradoxes. However none

of them as we see has a full comprehension principle, whereas Frege structures

provide us with a full one.

B.1.2 Effects of set theory on Nominalisation: I have said above that nominalisation

inherits the same problem as set theory. Therefore, it should inherit the same

solution. I shall summarise here the influence that the various approaches to set

theory had on the semantics of nominalisation.

B.1.2.1 Language and nominalisation: The reform of set theory by following the route

of altering the language was based on the vicious circle principle, and resulted in

- 45-

Russell's theory of types. The language here becomes typed and the ladder of types

has to be climbed step by step. Russell's theory of types was made simpler by Church

and this is essentially the language used by Montague (in [TH2]) as an application to

natural languages. (Montague was the first to apply this approach of set theory to the

syntax and semantics of natural languages.) In Chapter 6, we shall find a detailed

description of this account and of its inappropriateness to nominalisation. It is worth

mentioning here that Montague did not himself deal with nominalisation and that his

account is very problematic from the nominalisation point of view. There have been

few attempts at dealing with nominalisation within the Montague tradition.

Examples are Carlson's work and Parson's floating types (in [CAl] and [PA5]). The

main problem with Montague semantics is the typing constraints and the existence of

the function f which has to associate once and for all the syntactic type of each

syntactic category. This could be dealt with by changing the function f, but the

approach is cumbersome and leads to difficulties.

B.1.2.2 Axioms and nominalisation: We said above that type theory is not adequate to

handle nominalisation. What about the solution based on restricting the axioms? Does

it help nominalisation? The way to know the answer is to try the various methods we

have met of restricting the axioms. If we start with ZF set theory, we will still get a

problem. This is because in ZF, we cannot have a set that contains itself. What about

systems like NF or ML? We know that they contain sets that belong to themselves,

and so they should be promising candidates for the semantics of nominalisation. In

fact they have already been applied to this by Cocchiarella who used Quine's approach

to both NF and ML and obtained two systems. We illustrate by going back to

Cocchiarella's system of non-standard second order logic shown in A.1.

1. Altering (CP*) Here, the paradox is avoided by restricting the formulae in (CP*) to

what is called stratified formulae. A stratified formula is one built up with respect to

the vicious circle principle as we explained in the previous section. That is, one cannot

- 46-

assume the undefined in trying to define it. So a stratified formula is one where the

arguments are of lower level than the level of the predicates. This means that in

(CP*), we do not take Fn to be simply free in O, but we impose in addition the
constraint that the whole bivalence be stratified. To return to our example, X(X) is

not a stratified formula and so the comprehension principle cannot assure us of the

existence of the predicate F. We therefore failed to prove the contradiction F(F) <->

->F(F).

2. Altering (A*) Instead of altering (CP*), we alter (A3*) to (A3**) where:

(A3**) Vx } y (x = y)

We then have to add (a = a) as an axiom and replace X-CONV* to:

(E/X-CONY*) [Xxj,..xn <1>] (aj,...an) <->] x1,...xn((a1 = x^)&. &(an = xn)&4>)
where no x. occurs free in any aj, for 1 ^i, j ^i.

Note here that because of the elimination of (A3*), we can no longer prove the

theorem

Vx<I> -»<J(a/x).

Therefore, we cannot substitute F for x in the special instance of (CP*) and so we

cannot derive the paradox.

The option of restricting either (A3*) or (CP*) was put forward by Cocchiarella, and

the two systems were proved to be equivalent to NF and ML respectively ([C02]),

even though Cocchiarella committed himself to a conceptualistic (naive) conception of

set and argued that both NF and ML lack motivation if they are regarded as set

theories in the mathematical sense. However, I have two criticisms of Cocchiarella's

two systems. The first is that the models are not at all easy to imagine: we have no

idea what they look like. The second is that restricting nominalisation to stratified

formulas means that not all the desired items can be nominalised. There are

expressions we can nominalise in natural languages that this approach does not

handle the nominalisation of; e.g. nice(nice). It must be noted of course that this

- 47 -

criticism is basically of his first system, since the second system does allow

nice(nice). But even Cocchiarella himself rejects this system because in it the axiom:

(IND*) (VX)(VY)(X^Y <== >(VxXX(x) <==>Y(x))).

is refutable.

B.1.2.3 Logic and nominalisation: The last category is the use of non-standard logics.

Take for instance the use of a three-valued logic, rather than the classical two-valued

one. F(F) <- > -i F(F) would not be inconsistent any more, for we can give F(F) the

value u(undefined) and in the interpretation of -> and <->, we take: -iu<->u. This

solution has been applied to nominalisation by Ray Turner ([TU2, 3, 4, 5]). Turner

used three valued logics and this allowed him to have an untyped language which

could deal with nominalisation without falling into the paradox. This approach has

been successful as far as predication is concerned, for one can nominalise all formulae.

However it has a problem with quantification, since it is only to quantify over ideal

elements (i.e. the limits of the finite ones). (It has been claimed that this is so

mainly because Scott domains are only suitable for Computer Science applications and

not for linguistics. But as it is a question of models, I shall leave the details of the

problem of quantification to be briefly discussed in part B.2 and in Chapter 7.)

However, anybody who adopts a non-two-valued logic should be able to defend their

use of it. Many-valued logics have been criticised by philosophers as being unnatural,

and Turner did not offer any justification for using them.

In this section, we have talked about the set theoretical approaches that have

been offered. We looked at the theory of types and nominalisation and although we

did not claim it was impossible to work out a theory of nominalisation based on

Montague's semantics, we did say that it was difficult and cumbersome. We recall

here that Russell's theory of types was unsatisfactory and so other theories came into

being. The same applies to nominalisation, for Turner's and Cocchiarella's systems are

- 48 -

less problematic than Montague's approach, because systems like NF and ML, or logics

which are non-standard, were better attempts to provide a system without paradox

than Russell's theory of types. Our criticism of Cocchiarella is that only stratified

formulae can be nominalised and that his models are difficult to imagine. In the light

of the theoretical problem, we do not find anything against Turner except his use of

three valued logics, which have a very controversial status in the literature. However,

when it comes to the question of models, we shall find that a problem occurs which

we shall describe in B.2. It seems therefore that all the theories of nominalisation

that have been worked out so far face some problems. There still are many solutions

for set theory that have not hitherto been applied to the semantics of nominalisation,

one of these being the notion of Frege structures. It seems at this stage that all the

disadvantages of the theories that have been worked out so far can be circumvented

by the use of Frege structures. The use of Frege structures will allow us to keep to

two-valued logic30 which is the first advantage over Turner's work; also, we can

quantify over all our nominalised items, which is another. Moreover, Frege

structures permit us to nominalise all our open well-formed formulae and they are

easy to work with, which gives us two clear advantages over Cocchiarella.

B.1.2.4 The place of logic in the above applications: Of course one here will wonder

why this section did not occur under B.l.2.3. The reason for this is that we are not

here trying to study only how the avoidance of the paradoxes by altering the logic

was applied to nominalisation, but to study what sort of logic one obtains in the

theories of B. 1.2.1, B. 1.2.2 and B.l.2.3. Although this section could have been

accommodated in the three above sections, we decided to single it out on its own to

make the comparison more illustrative.

The primary characteristic of most of the theories discussed in B.l.2.1, B.l.2.2 and

30 Here I do not mean that there are only two propositions. I am trying to say that once something is
a proposition, it is either true or false.

- 49-

B.l.2.3 is that they are extensional rather than intensional. Of course extensionality

simplifies the theory tremendously (as many terms and propositions will be

identified) yet it is not good enough for various reasons. The ideal solution of course

would be if we can have a theory where syntactic elements can reduce to each other as

much as possible yet the theory does accommodate intensionality. None of the theories

explained above does that, yet the one that we shall provide is an intensional theory

where the principle of extensionality applies to functions. It may be objected that

Turner's theory does not have the axiom of extensionality and hence may be

intensional. This is not true however. The loss of extensionality in Turner's thesis is

due to the use of partial predicates. Hence Turner's theory is disadvantageous from

the points of view we are discussing. It does not have the extensionality axiom and it

is not intensional.

Now if we consider the theories of B. 1.2.1, we must say about them that they are

unattractive. We really would like the syntax to be as expressive as possible, and

theories where the syntax is restricted are also restricted for the cases of

nominalisation they can consider. Our discussion hence should concentrate on the

logics obtained from either altering the axioms or the logic. This is the work of

Cocchiarella and Turner. Cocchiarella's two main theories discussed above could be

compared to Quine's NF and ML, which should be viewed as theories of classes in the

logical sense and not the iterative sense. In fact Cocchiarella argues that NF and ML

would lack motivation if they were considered as theories of classes in the iterative

sense. Knowing that Cocchiarella's theories try to accommodate Frege's sense of

classes, we must now mention that one is based on a system which is proposition free.

That is: the following is no longer provable:

Vx<£ - <Ka/x).

This is unattractive and yields undesirable consequences, such as loss of

indiscernability.

- 50-

The theory of Turner uses three valued logic with Kleene's connectives and this forces

the use of partial predicates. It must be noted however that none of the above

theories used an intuitionistic logic. This is not an argument that intuitionistic logic

should be preferred over a classical one. It is rather an argument that this logic should

be investigated.

B.2. Solution to model existence

There were many solutions to the problem shown in A.2. The problem discussed

there is not specific to nominalisation. It is the problem of finding models of the X-

calculus. Therefore I shall start by describing some of those models, and then I shall

discuss how they have been used for the semantics of nominalisation.

B.2.1 \-calculus and its models: We can forget about the formal axiomatisation of the

X-calculus with logic on the top of it and just remember that the X-calculus with logic

is a formal system which has 2 important operations: abstraction and application

together with X- conversion.31 Until recently, models of the X-calculus have been

problematic: do they really exist, and what are they like? One answer can be that the

model itself is a structure which has two operations (abstraction and application); but

this is an unsatisfactory answer. First, we could abstract the formula -> P(x) and then

apply the abstract to itself which would yield Russell's paradox. Second, not every

structure which has the two operations can be a model of the X-calculus. Take for

instance any combinatory algebra (which has K, S and We could prove in a

combinatory algebra that the axiom of abstraction

G F) (Vy1),..,(Vyn) [F(y1,..,yn) = A]
holds, but that does not mean that the combinatory algebra is a model of the X-

calculus. It will be if we consider the extensional X-calculus, but in the absence of

extensionality we will have many choices for the function F in the axiom of

31 There are other rules like {-rule, but we ignore them for the moment.

abstraction and so the structure cannot be a model. What we should really require

from the model is that if two wlfs are equivalent or convertible in the X-calculus then

their values in the model must be the same.

The other problem with defining models of the X-calculus is that some X- terms

denote functions and so they have to take the elements of the structure M itself as

argument. But again they themselves are terms and must take elements of M as

values. We could take what is known as a term model as a model of the X-calculus.

Term models are just a trivial formulation because all they do is translate the syntax

step by step. Two other formulations of models are environment models and

combinatory models. The environment models include in them two embedding

functions P and 3> which belong to D— >[D— >D] and [D— >D]— >D respectively.

[D— >D] is not the set of all functions and it usually is the case that certain

mathematical properties play a role in choosing [D— >D]. Usually, [D— >D] is the set

of all the continuous functions and is closed under the standard operations (such as

composition, abstraction, application,...). The combinatory model is exactly the

combinatory algebra we talked about above but with the very important element e

which obeys some axioms. What e does is to single out the functional part of every

element. In the presence of extensionality we do not need e and that is why in the

case of extensionality, combinatory algebras are models of the X-calculus. Both

environment models and combinatory models are equivalent to each other and for a

proof of this, the reader is referred to [MEl]. These are not the only kinds of models

provided for the X-calculus. The two kinds of models cited above together with the

term models are algebraic, there are others which have a built-in structure. (It is easy

to work with such models as one does not get involved with the cumbersome syntax).

The two main models that I shall talk about throughout the thesis are: Scott domains

and Frege structures. Only the first has been applied to the semantics of

nominalisation and in this thesis I discuss the semantics of nominalisation based on

y /

- 52 -

Frege structures. Scott domains are introduced in the appendix, and Frege structures

are introduced in the second chapter. I shall however briefly mention some

characteristics of Frege structures before I continue as this will enable the reader to

understand what we are talking about without having to jump to the second chapter

yet.

B.2.1.1 Frege Structures: In Chapter 7 we shall meet the application of Scott domains

to nominalisation and explain its problem of predication. We shall also show that it is

not possible to find a solution to such a problem within semantic domains without

logic, therefore semantic domains are not adequate for the semantics of

nominalisation. Frege structures are more conclusive than a solution to domain

equations and they can be used as models for nominalisation. The remaining question

is, do we encounter the same problem as Turner? We show in Chapter 7 that the

answer is negative and that all the advantages that Turner obtained by using Scott

domains, we obtain within our Frege structures. Scott domains are one possible

solution to the problem mentioned in A.2. and have solved it by restricting the

functions to the continuous ones. By so restricting the functions, we do not lose any

power of interpretation in Computer Science or recursion theory, according to results

obtained by Church and Kleene (see [CH6]). However, when it comes to the semantics

of natural languages, we have a problem which may come either from continuity or

from the ordering on the domains. There does not seem to be any solution for it in

Scott domains. In any case, we need to look for another solution to A.2 which holds

more promise for nominalisation. No one would want to work with the cumbersome

structures of the term models, and we would like a model which we can master with

set theoretical or topological techniques as was the case with Scott domains. Pea

([SC3]) is such a model, but unfortunately, there is no extra advantage in using it. Pea

does not have more to offer than Scott domains, as there is an equivalence relation

between the two - and Turner's problem is not going to be solved with Pea. One other

solution to the problem of A.2. is Aczel's notion of Frege structures. Frege structures

are not only a collection of collections of functions (as in the case of E^, but they
also have a certain logic which works on them, and whose availability solves also the

problem of A.l. Therefore, Frege structures solve both problems of part A. The

solution to the technical problem has been discussed in B.l and, I shall not discuss

Frege structures further in this section as they are the subject of Chapter 2.

B.2.2 Using those models for nominalisation: In the previous section, we described two

solutions to the problem of model existence of the \-calculus having in mind that

those two solutions are to be assessed as models of nominalisation. In this section, we

shall comment briefly on how each solution has been or can be used for the semantics

of nominalisation.

B.2.2.1 Scott domains and nominalisation: We mentioned in B.l.2.1 that the theory of

types was not adequate to the semantics of nominalisation. The typing constraints

according to Church's type theory are too restrictive for nominalisation and we need

to have functions which can apply to themselves or to items of the same type.

Abandoning Church's type theory does not imply getting rid of all the typed theories.

We can still keep to typed languages but make the typing adequate to deal with

nominalisation. The area of Computer Science and its use of the X-calculus gives us

good examples of typed theories which still allow functions to be applied to

themselves. Natural languages seem to make more demands on a semantic theory than

computer languages, but the progress in Computer Science could nevertheless lead to

useful insights about natural languages. I am not of course claiming that results in

Computer Science can always be applied to natural languages; indeed Scott domains

are a counterexample. To date, the only result from Computer Science applied to the

semantics of nominalisation seems to have been Turner's work (referenced above).

However, no one has yet applied Frege structures to the semantics of nominalisation.

I intend to work out such an application and to assess its advantages over the use of

- 54 -

Scott domains as models. I shall show in Chapter 7 that the ordering relation on Scott

domains makes predication trivial. For, a predicate P is true of all the objects in the

model iff it is true of the bottom element. Also the use of Scott's domains forced us

to use three valued logics. All these disadvantages do not occur in our application of

Frege structures to nominalisation. From the theoretical point of view, Frege

structures are going to have an equal advantage, and their explicit closure embodies in

it the abstraction principle (see Chapter 2).

CONCLUSION AND COMPARISON WITH COCCHIARELLA

In the first part of this chapter, we outlined two problems with the semantics of

nominalisation. One is a problem of set theory or predication, the second is a problem

of models. The fear of Russell's paradox, which obviously threatens a theory of

nominalisation, led to questions on the nature of universals and predication. These

questions are not new however, and have been the concern of ancient philosophers.

What philosophers nowadays take from them is a decision as to which objects are to

be subject to predication and which concepts have extensions. This is the theoretical

point of view. With respect to model existence, Cantor's diagonal theorem makes us

fear the non-existence of models. The division of the problem into two parts does not

imply a total independence of both problems. In a way, they are strongly related, for

we start from an ontology and build a model which contains that which conforms to

our ontology. Yet, separating those two problems makes us concentrate on each

independently and then later we consider both as a whole.

The second part of this chapter discussed some of the solutions of set theory to

the first problem (A.1) and of the model construction to the second problem (A.2)

and briefly described some of the applications of both set theory and model

construction to the semantics of nominalisation. Frege structures provide a solution

to both problems but have not been used for the semantics of nominalisation. We

have commented that they have all the advantages of the previous applications and

more, they do not have any of the previous disadvantages. In the next chapter, we

shall introduce in detail Frege structures and the theory that we shall be using

together with the semantics. In subsequent chapters, we shall discuss some further

advantages of Frege structures in relation to property theory, intensionality,

quantifiers and type theory; afterwards, we shall compare our work to others. Before

moving to the next chapters however, it would be nice to locate Cocchiarella's

proposal discussed in this chapter to the one proposed here and in chapter 6. The

location is going to be mainly in terms of the typing system, because whereas I use a

type free theory, Cocchiarella uses a second order one. There are however some

similarities and differences in these two ways of typing that I would like to illustrate.

According to axiom (9) under A. 1.2, we have MEnC MEq for all n>l, where

MEn are the meaningful expressions of any type n. For us, we have that MEn CMEq
for any n^l but the pictures of both approaches are quite different. According to our

approach these types are related to each other in a chain like way. That is MEn£

MEn_ j C „MEq. For Cocchiarella we have that each MEn C MEq for n>l, yet no

relation exists between MEn and MEm for n?hn,. Also for Cocchiarella, propositions
are not included in objects, even though they can be embedded in MEq by axiom (8)
under the same paragraph. Hence Cocchiarella's whole structure can be understood as

a collection of objects, which has a denumerably infinite number of subcollections

called functions but where propositions are outside the domain of objects and can be

mapped into it. This structure for Cocchiarella is not a structure of types in the sense

that we have in the typing structure in Chapter 6. In fact everything that

Cocchiarella has so far we have; as will be seen in the next chapter, a Frege structure

is FQ,...Fn.. where Fq is the collection of objects, F^ is the collection of k-ary
lr

functions and each of these F^ can be embedded in Fq by \ . What we shall have in

- 56 -

addition is a typing system constructed inside Fq, which cannot be found in
Cocchiarella's theory. Also, our system is first order in that the quantification over

objects and functions is the same, whereas Cocchiarella's system is second order.

- 57 -

CHAPTER 2. FREGE STRUCTURES AND NOMINALISATION

In this chapter we introduce the reader to Frege structures (see [AC3]) and set

out the theory that we shall be using throughout this work. Afterwards, we give the

semantics to be adopted and lay out the proof theory.

PART A. SUMMARY OF FREGE STRUCTURES

Before launching into this section, let us introduce some convenient notation and

informal definitions:

If f is a function of 2 arguments then we will sometimes write afb for f(a,b). For

example, we write a & b for & (a,b).

Until we give the exact definition of an F- functional, let us understand it to be a

function which takes functions as arguments and returns functions as values.

Fq11 stands for: FqxFqX...xFq, n times.
Metalanguage abstraction: For every expression e[x^,..,xn] of the metalanguage built
up in the usual way from variables ranging over Fq and constants ranging over Un

Fn> the expression <e[xj,..,xn]/xj,..,xn> denotes the n-place function f: FqX..xFq -->

Fq such that for each in Fq, 1 ^ i^sn, f(,.., an) is the value of e[a^ ,.., aQ], the
expression e in which x^ has been replaced by a^ for i = l,..,n. For each expression

etf^,^,..,^] of the metalanguage built in the usual way out of variables (ranging
over Fn for n^O) and constants (ranging over Fn for n^O and over F- functional),
the expression denotes *he n-place function obtained by

abstracting hi e. The next concept is one that we shall be referring to very

often; we therefore introduce it by a named definition, Def*.

Def: If F is a 1-place F- functional and <e[x]/x> is in the domain of F, we write

Fxe[x] for F(<h[x]/x >).

For example, V : Fj — > Fq and X : Fj — > Fq are F- functionals and we write V

- 58 -

<T(x)/x> and X <f(x)/x>as V xf(x) and X xf(x) respectively.

We understand by a propositional function, a function of the Frege structure which

takes propositions as values, Le. f(x) is a proposition for every x.

A1. Informal introduction

Before we introduce Frege structures formally, we need to introduce the reader

to the geography of the field with which we are concerned here. The existing models

of the X-calculus did not deal with logic added on top of the X-calculus, since once

logic is added, consistency might be threatened. Also, if one constructs a theory which

will have logic, X-abstraction and predication, then one has to show the existence of

the models of this theory. This is the work we find with Feferman for instance, yet

his models are not tidy and clear. Hence one would like to have a clear idea of a

model of the X-calculus with logic on it, and Frege structure is such a model.

However, such a construction was not obvious for a long time. It was initiated by

Scott in [SC2] yet the work was incomplete and hence such a model was not achieved.

Then came the construction of Frege structures where simply the idea is to start from

any model of the X-calculus and build logic on top by inductively constructing two

collections (of the possible propositions and the possible truths) and taking the limit

of these two collections which actually draw the logic we now have on the top of the

initially considered model of the X-calculus.

As it sounds, the process is quite simple, yet it depends on having a clear idea of the

structure and on proving some theorems which will ensure the existence of the

various logical connectives in the model considered.

Now that logic has been constructed on the top of a model of the X-calculus, we can

consider the structure only in terms of its objects and functions. The objects include

propositions and truths and the functions obey the condition that propositional

functions can be projected in the domain of objects (i.e. as sets). Those sets can be

- 59-

applied to any object (hence we now have not only functional application such as

f(x), but also the application of one object to another as in app(a,b)), and set

application to an object results in a proposition.

This is the simple idea of a Frege structure. Next, the reader finds the various steps

used to construct a Frege structure.

A Frege structure consists of a denumerably infinite number of collections

(F-r.)^ > n such that:32n n^ u

1. Fq is a collection of objects which has three very important subcollections PROP,
TRUTH and SET where,

PROP is a subcollection of Fq which can be thought of as the collection of
propositions and

TRUTH is a subcollection of PROP which can be thought of as the collection

of true propositions.

SET is a subcollection of Fq which can be thought of as the collection of
objects which are nominals of propositional functions.

2. For each nX), Fn is a collection of n-ary functions which take all their arguments

inFQ.
3. There is a set of F- functionals that operate over (Fn)n^ q and which ensure

important closure properties on (Fn)n^ q. For example:
V : Fj — > Fq is a functional such that:

If f in Fj is a propositional function
then V f is in PROP and

V f is in TRUTH iff f(a) is in TRUTH for each a in Fq
X : F^ — > Fq and app : FqxFq ->Fq are two other functionals which possess the
very important property: app (X f,a) = f(a) for every a in Fq and every f in Fj.
4. (Fn)n^ q is super explicitly closed: Le. for each expression ef^,^.-.^] of the

32 There are variables and constants that range over Fn, for nS?0.

- 60-

metalanguage built in the usual way out of variables (ranging over Fn for n^O) and
constants (ranging over Fn for 0 and over F- functional), the n-place function
denoted by > is an F- functional. This means that Frege

structures are closed under composition, projection, etc.33

Now that we have some idea of the structures' form, let us try to give an intuitive

picture. A Frege structure is a collection of both objects and functions (which are

distinct) where we can map any function f into an object a and this object will

preserve some of the properties of the function. For instance if the function f is a

propositional function then the nominal of the function, Xf, is an object34 which

belongs to the category SET. Moreover SET contains only those objects which are

nominals of propositional functions. Thus, if a is in SET then there must be a k-ary

propositional function f such that a = Xq11!", where: Xq* is X and maps 1-ary
functions into objects (i.e. into Fq); Xq^ maps 2-ary functions into objects;... Xq11
maps n-ary functions into objects. By induction, we can define Xmn which maps n-

ary functions into F .J m

It is natural to ask whether the intersection of SET and PROP is empty or not;

some elements of PROP are elements of elements of SET, yet the intersection between

SET and PROP is not certain to be empty.35 Independently of whether SET and

PROP are disjoint, there is an important relation between them which is the

following;36 they both have strong links with propositional functions. Let us

33 Properties 1-4 are only informally presented here and there are many concepts that were intro¬
duced above but were not quite explained (e.g. F- functionals). This will be done next however. The
above introduction is intended to be as simplified as possible to allow the reader to imagine the structure
of the model first before putting all the details in front of his eyes.

34 (X f) is not an extensional object and even though we write sometimes (X f) = {x: f(x)} this does
not imply extensionality.

35 Take for example an element a of PROP and consider b to be the set {x: (x=a)}. Obviously b is in
SET because <ix=a)/x > is a propositional function, so we have a is in b.

36 SET and PROP are not necessarily disjoint. Take for example, a in PROP and assume the following
principle:
Vx(app(t,x) = app(t',x)) —»t=t'.
Xlal = a can then be seen as follows:

Vx, app(Xlal,x) = lal(x) = app(a,x).
Therefore Vxapp(Xlal,x) = app(a,x) and hence a = Xlal.
Now, if lal is a propositional function, then SET fl PROP is not empty. The question here is whether lal is
a propositional function when a is a proposition. We do not need to answer this question here and we
leave it to Chapter 5.

- 61 -

consider 1-ary functions to illustrate the argument and take a propositional function

f. For any object a, f(a) is a proposition (i.e. is in PROP). X f is a set and app (X f,a)
= f(a). We can always jump from propositional functions to sets (and from sets to

propositions). But we can also jump from sets to propositional functions. Take the

operation I lj defined as: For each object a of the Frege structure, lal^ = <app (a,x)/x>.
Obviously for each a, lal^ is in Fj and if, in particular, we take a to be in SET (say a is
X f) then we have that lal ^ = I X flj = f. Therefore we have an equivalence between sets
and propositional functions; each set corresponds to a propositional function and each

propositional function corresponds to a set. This is important and it is this strong link

that I am trying to emphasise between SET and propositional functions.37

So in a Frege structure, we can take any function into an object and we can

preserve some properties of the function and use them for establishing facts about the

function or its nominal. In short, we do not lose information by mapping the function

into an object. We can switch back from objects to functions using I I , the inverse

operator of Xq11 where we have the following theorem: I Xgnf I = f for any n-ary

propositional function f.

The ability to switch back and forth between objects and functions is not the only

important aspect of the program; the presence of PROP, TRUTH and of a logic in a

Frege structure is also crucial. The logic is built in a way that allows us to talk about

truths and propositions without falling into any contradictions. We have classified

Scott domains as inadequate because they do not have any logic in them - and when

one tries to build a logic on them, one faces problems with quantifiers. In a Frege
37 Note that for each n, this bivalent path holds between P F and SET, through Xq" and I ln where

again we have app (X„n f,a) = f(a), for a in Fq11, and f in F^. The functionals Xq , appn and the
operation I I could oe defined recursively as follows:
Take lal = < app_ (a,£),£ > and X„n+ f(X) = X (<f(X,x)/x >), and
assume^.nn+ f has been defined/Yhen take Xnn+m f = Xnn (Xn+-^n+m f).
appn is also defined by recursion where:

appj = app and assume we have defined up to appn- Then
appn+1 (a,b,t>) = app (app (a,b),t>).

One can prove that appn (XQ f,a) = f(30 for each ninoi and I in Fq11.

- 62 -

structure, we have combined both the elegance of a simple structure (objects and

functions) together with the presence of a consistent logic (and therefore the ability to

talk about semantics and truths in a philosophically sound way). Before we can move

further in this thesis, we need to describe the formal details of a Frege structure.

A.2. The models

Having in the previous section informally introduced Frege structures, I shall fill in

all the technical details in this section and show that Frege structures exist.

Consider Fq, Fj,.., Fn,.. a family F of collections where Fq is a collection of objects,
and

(V n>0) [Fn is a collection of n-ary functions from Fq11 to Fq]
Defl: An explicitly closed family: We say that a family F as above is explicitly closed

iff: For every expression e[xp..,x] of the metalanguage built up in the usual way
from variables ranging over Fq and constants ranging over Un Fn, the n-place
function denoted by <£[xj,..,x]/Xj,..,xn> is in F .

More formally, F is explicitly closed iff 1, 2 and 3 below hold:

1. Closure under constant functions: For each a in Fq, the function f is in Fj,
where (Vx) [f0(x) = a],

a

2. Closure under composition: For each f in Fm, for each gp->gm in Fk'

f('§l'"'§m') is 111 Fk where (f(g1,..,gm))(x1,..,xk)
f(§^(Xj,..,Xk),..,g^(Xj,..,Xk)).
3. Closure under projection: For each n,i^ 1, lbn is in Fn where P.n(ap..,a^) =
a^ for each a^ in Fq and ,1 <i^h.

For example, if f and g are unary functions of F and h is a binary function of F, then

the following function o g(h(x^,X2))/x^,X2 >38 is a 2-ary function (Le. in F2).
In what follows, we assume such a closed family and call it F.

38 I.e. the function which takes any (a1;a2) into f(g(h(a1,a2))), that is fogoh.

- 63 -

Deft. F- functional: A function D: F„ x...xF^ — > Fn is an F- functional with
nl nk 0

respect to the explicitly closed family F, iff:

(WO) (Vfj in Fm+ni)...CVfk in)
[<D(<f1(y,x1)/x1>,..,<fk(y,xk)/xk>)/y>is in Fm].

where y is a list of m-variables and x- is a list of n- variables, for i = Note that

if fjp-.fj, are 1-place functions and D: FjX..xFj — >Fq then D(fj,..fk) is in Fq. What
is the intuitive meaning of F- functionals? We know that an F- functional is a

functional, so that it operates on functions. But once we include functionals in the

structure, we need to ensure that any expression which contains functionals should

actually be in the structure. Assume for the sake of argument that D: Fn x...xFn —

> Fn is an F- functional. Assume also that for some m ^ 0, f • is in F„ . _ for i =0 l m+n.

l,..,k. We know that according to the explicit closure, if y is a list of m-variables

ranging over Fq and for each i, x^ is a list of n- variables ranging over Fq, then

<^i(y,xi)/xi> is an element of Fn for each i. Therefore it makes sense to talk of the
expression DC <T^(y,x^)/xj >,.., <fk(y,xk)/xk>). This expression however is open in y

and if we abstract over y in this expression we are going to obtain an element of Fm?
Nothing so far in the structure ensures that this is the case, and we must therefore

impose the constraint that these functionals should have such a property. A

functional which has this property is called an F- functional and now if D is an F-

functional then

[<D(<f1(y,x1)/x1 >,.., <fk(y,xk)/xk>)/y> is in Fm].
Now we extend the definition of explicit closure to the following:

Deft. A super explicitly closed family: Taking a family as above, we say that this

family is super explicitly closed iff for every expression e[|^,..,^m] of the

metalanguage, built up in the usual way from variables ranging over Un Fn and
constants ranging over Un Fn and over F- functionals, the m-place function denoted
by <^[|1,..,lm]/|1,..|m>is an F- functional.39

39 This notion of explicit closure is going to provide us with the full comprehension principle we have

- 64-

Theorem: Any explicitly closed family which has variables for functions and objects,

constants for objects, functions and F- functionals, is a super explicitly closed

family.

The proof is by an easy induction. □

As an example of an explicitly closed family, consider Po> as described in Chapter 1.

Define Fq to be the set of all subsets of oj (i.e. Pw). Define, for each n ^ 0, Fn to be
the set of all continuous functions from Fq11 — > Fq. We have demonstrated that the
constant functions, the projection functions, etc are continuous. We have also shown

that continuity is closed under composition and that any combination e[x^,..,xn] of
variables for objects and constants for both functions and objects results in the

function denoted by <j[x^,..,xn]/xj,..,xn> being an element of Fn- Therefore the
family (Fn)n just obtained from Pea (call it FE), is an explicitly closed family.
Furthermore, FE is super explicitly closed as it can be proven not only that

-<&[x^,..,xn]/xj,..,xn> denotes a continuous function but also that for any expression

e[£j,..,£n] built in the usual way out of variables ranging over Un Fn and constants

ranging over both Un Fn and F- functionals, denotes a

continuous function.

So far, we have only explicit closure on our structure. But that is not enough to give a

logic on the structure - something we have been arguing is necessary. In what

follows, we see how to obtain such a logic.

Assume an explicitly closed family F and a list of logical constants which are the

following F- functionals:

"" : F0 "" > F0
V, : FQxF0 — > Fq

V,J:F1 ->F0
Def4. Logical system: A logical system on a super explicitly closed family F, relative

been promising.

- 65-

to a set of logical constants as above, is the set of two collections of objects < PROP,

TRUTH> such that TRUTH Q PROP. These two collections are closed under an

adopted logical schemata for each logical constant. The logical schemata corresponds

to the external logic and tells us, for each logical constant from the list, how to build

new propositions out of other ones using the logical constant. It also gives the

conditions of truth for the resulting proposition.

THE LOGICAL SCHEMATA:

NEGATION

If a is in PROP then ^ a is in PROP and -> a is in TRUTH iff a is not in
TRUTH.

CONJUNCTION

If a, b are in PROP then (a & b) is in PROP and (a & b) is in TRUTH iff a is
in TRUTH and b is in TRUTH.

DISJUNCTION

If a, b are in PROP then (a V b) is in PROP and (a V b) is in TRUTH iff a is
in TRUTH or b is in TRUTH.

IMPLICATION

If a is in PROP and the object b is in PROP provided that a is in TRUTH
then (a -»b) is in PROP
and (a -* b) is in TRUTH iff a is in TRUTH implies b is in TRUTH.

UNIVERSAL QUANTIFICATION

If f is a propositional function in F. then V f is in PROP
and V f is in TRUTH iff f(a) is in TRUTH for all objects a.

EXISTENTIAL QUANTIFICATION

If f is a propositional function in F. then j f is in PROP
and ^ f is in TRUTH iff f(a) is in TRUTH for some object a.

EQUALITY

If a, b are objects then (a = b) is in PROP
and (a = b) is in TRUTH iff a=b.

EXTENDED CONJUNCTION

If a is in PROP and the object b is in PROP provided that a is in TRUTH
then (a &-► b) is in PROP

- 66-

and (a &-» b) is in TRUTH iff a is in TRUTH and b is in TRUTH.

BI- IMPLICATION

If a, b are in PROP then (a =b) is in PROP
and (a = b) is in TRUTH iff (a is in TRUTH iff b is in TRUTH).

In short, a logical system builds a logic on our structure.40 But something is still

missing: predication and abstraction. We do not want to gain logic yet lose the

bijection between objects and functions. Therefore, our structure must have more in

it. The next definition will tell us what.

Def5, X-system: A X-system on an explicitly closed family F is a pair of functionals

< X, app > such that:

X : Fj ~ > Fq and app : FqxFq — > Fq satisfy:
app (X xf(x),a) = f(a), for each f in F and a in Fq.

If41 we take the system FE42 given above, and

if we define X : Fj — > Fq as X f = {(n,m): m is in
where we take (n,m) to be l/2(n+m)(n+m+l)+m 43

and define app : FqxFq — > Fq as app (a,b) = {m : en Q b for some n, (n,m) is in a};
then (X,app) forms a X-system for FE.

Proof: app (X f,a) = {m : en Ca for some n and (n,m) is in X f}
= {m : en £a for some n and m is in fCen)}
= {m in f(en) : en Ca}
= f(a) by continuity. □

Therefore (X,app) is a X-system for FE. Actually, FE contains X and app and so it is

a X-structure, but we leave this to the next definition.

40 From now on, we shall use a is true for a is in TRUTH, a is a proposition for a is in PROP and a is
a set for a is in SET.

41 Note that the X-system here is only X and app.
42 I have tried to choose the simplest example and the one I give here is the simplest (apart from the

trivial case where the set is one element only). It is a well known result that there are no finite (non
trivial) models of the X-calculus.

43 Recall that the topology on Pta was defined in Chapter 1; the reader may wish to refer back for
some notations.

- 67 -

Dejft. X-structure: A A.-structure is an explicitly closed family F which has a A-

system.

Note that the A-structure contains X and app and that it is an explicitly closed

family. Now take the example of the A-system on FE given above. FE is also a A-

structure having (A,app) as A-system, because both A and app are in FE, as FE is

explicitly closed.

Def7. Frege structures: A Frege structure is a logical system relative to a list of logical

constants on an explicitly closed family F, together with a A-system.

As an example of a Frege structure, take the A-structure FE given above and which

has a A-system (A,app). Aczel (in [AC3])44 showed that each A- structure can be

extended to a Frege structure. Therefore we now have an example of a Frege structure.

Let us sketch the proof of how our particular A- structure FE can be extended to a

Frege structure. This will make the reader understand the notion of Frege structure,

and get him used to working with it. Before proceeding, however, we must define two

missing notions: that of an independent family of F- functionals and of a primitive F-

functional. We say that a family of F- functionals is independent iff for any two F-

functionals in the family, the range of values of those F- functionals are disjoint. This

implies that if F and G belong to an independent family of F- functionals, then for

any i and g such that F(£) = G(g), we should definitely have F = G. From

independence only we cannot conclude that f = g. For this we need primitivity and

this is the next notion we define.

We say that an F- functional F: Fn x..xFn — > Fq is primitive iff there exists a

projection P- in Fn.+1 for each l^i^k such that P-(F(£),a) = f^(a) where f = f^,..,fj^ is
in Fn x..xFn and a is in Fq1. The aim of primitive F- functionals is similar to

injectivity; if we have F(f) = F(g) then we should be able to deduce f = g. It can be

easily checked from the definition of F-primitivity that this is the case.

44 Dana Scott has found similar results in his Combinators and Classes paper (see [SC2]). However he
used 3-valued logic and did not fully complete his account.

- 68 -

The proof that we can extend any X-structure into a Frege structure is based on two

theorems. The first is one which asserts the existence of an independent family of

primitive F- functionals on the X-structure, which include the logical constants, &, V

etc. It simply states that if for each natural number m we let (v ,..,v) be a finiterJ

m^ m^
sequence of natural numbers, then there is an independent family of primitive F-

functionals: <£>m: Fv x..xFv — > FQ, for m = 0,1,2,... The second is the well
ml mk

known fixed point theorem which applies to monotonic operators and helps us to find

the logical schema of these logical constants. This theorem simply states the

following: if A is a partially ordered collection of objects such that every chain in A

has a least upper bound45 then any monotonic46 operator Y from A to A has a fixed

point. That is (j a 6A) [Y(a) = a]. Let us apply those two theorems to our FE and

obtain out of it a Frege structure. Up to here, we know that the X-structure FE exists

and the first theorem enables us to find all the logical constants needed. What

remains to turn it into a Frege structure is to find a logical system for the logical

constants. This is the task of the second theorem. The idea is to associate with each

logical constant two predicates which will ultimately (after we get to the fixed point)

give all the propositions obtained from the logical constant and all the truths

respectively. The construction is well known mathematically and is similar to the

one followed by Kripke in [KRl].47 Now consider our X-structure FE. We can be sure

from theorem 1 that we have a list of F- functionals which includes:

"1 : F0 > F0'
&, V, = = : FqxFQ - > F0

Vj:F1->F0.
But we still need to make sure that they satisfy the closure properties we want to

impose on them.

45 See appendix for these notions.
46 Y is monotonic <==>(Vx,y in A) [x% ==>Y(x)<Y(y)] where <is the partial order.
41 Please remember the independence property of the F- functionals. This is a very important proper¬

ty and without it we cannot prove the existence of Frege structures.

- 69-

I shall here try to make the construction a little easier than that described by Aczel

(in [AC3]). To construct a logical schema for each constant, i.e. to define the whole

logical system, we follow Aczel's intended construction but will carry an example

with us at all times. The logical system is defined inductively. As the basis of the

induction, we start with a pair Xq = (*Op'*bP suc^ tliat ^Ot^Op' Intuitively» X()p 4S
the set of propositions at stage 0 and is set of truths at stage 0.

Example 1

Let Xq = (Xop'XoP = N°te that b°th and ^ are ^
Before proceeding to the induction step, we must define a couple of auxiliary

predicates which ensure that the logical constants map their arguments into

appropriate values. That is, for each logical constant F, there is one predicate <I>p
which tests whether a particular tuple of arguments has the correct status of

propositionhood, and a second predicate Ikp which states the conditions under which
the tuple will be mapped into TRUTH by F. To see why we need this, recall the

logical schema for negation that we presented under NEGATION above:

(1)

If a is in PROP then -> a is in PROP, and -> a is in TRUTH iff a is not in

TRUTH.

This is an instance of a general logical schema for those functionals F in a Frege

structure which correspond to truth-functional connectives:

(2)

If £ is in Fn-|X...xFn)c and C'(F,£), then F(f) is in PROP; and F(f) is in TRUTH

iff C(F,f), where C expresses F's truth conditions and C expresses F's

propositionhood.48

Now it is Op which tests that the arguments J are in PROP, while Tp does the work
of C in (2).

48 Actually this principle is divided into two parts in (3) below.

- 70 -

Example 2

and take arguments in C U xpx Fq and

(X0>x) is:xis inx0p
(Xq'x^ is: JLis not iaXof

Thus, ^(Xq.x) is true of the set Xqp = (0,1}, and ^(Xq.x) is true of all elements in
F0-X0t. i-e- everything except the element 1.

In order to carry out the induction step of the construction, we introduce a

principle which determines how the propositions and truths at stage i+1 are built

from the propositions and truths at stage i. The principle has two parts:

(3)

(i) Xi+ip is the collection of those F(£) where F is a logical constant and
%(*!>£)•
Cii)X|+^t is the collection of those objects F(f) where F is a logical constant
and both and

In other words, given the pair (Xjp>X^)> we construct (Xj_|_ip»Xi+iP in the following
way: first, X|+ip has to contain all and only those elements F(£) such that £ belongs
to the propositions at stage i, i.e. it is in Xjp according to <I>p(Xp£); and second,
must contain all and only those elements F(£) such that £ belongs to both the

propositions and the truths at stage i, Le. it is in Xjp and according to OpCxpf) and
%(Xi»£)- Notice that the principle guarantees that X(^+^)tQi(^+^)p-

Example 3

We wish to build x1 = (Xip'XitP from ^Op'^Op =C(0,1},{1}). By (3i), xlp is the set
of objects -ix such that ^(XqjxX i-e* it is the set {->0,-> l}. By (3ii), is the set of

objects -> x such that <!>__ (Xq,x) and (Xq,x), i.e. such that x belongs to Xqp but does
not belong to X()f The only thing which satisfies both these conditions is 0, so x^t =
{i 0}.

- 71 -

Example 4

<3>£. and take arguments in (L^.)x(Fq x Fq) and
%(%(x'y)) is: are in x0p

%(%(x'y)) 181 ^and xare in x0t-
Thus, we can supplement the Xjp °f the previous example with the set of objects
&(x,y) such that (x,y) Q<qpxXqp> he. the set { 0 & 0, 0 & 1, 1 & 0,...}. Similarly, we
add to the set of objects & (x,y) such that (x,y)Qfotx^Ot' *'e' t^ie set (l & !)•
Note that according to our example, the collection of objects in TRUTH at stage 1 is

{1 & 1, - 0}.

Note also that -> 0, 1 & 1, 1 V 0 are distinct objects, even though they are all in

TRUTH and all have the same truth value in Frege's terms. If we wish, we could

reconstruct Frege's notion of the True and the False by forming the relevant

equivalence classes, but Frege structures give us an intensional ontology. This is

justified on the grounds that objects with the same truth value, e.g. -» 0 and 1 & 1 are

equivalent in truth value but distinct. We will return to questions of intensionality in

Chapter 5.

We see that the pair is being enlarged at each step starting from the first step where

we take Xgp = {0,1} and Xqj- = {1}, with the property that for each i we have: Xjt £=
Note that we are not imposing the condition that Xjt £ X(i+i)t or Xjp — X(i+i)p:

in fact our construction is monotonic in another sense which we shall see below. The

aim is now to keep going up to a certain level a where x = (x r.»X t) is a logical(X CX.p CX\t

system, because it is obvious that Xj at the levels we met so far are not logical
systems. Take for example Xq in our example above based on FE. Then Xq is not a

logical system, as can be seen by taking the logical schema for -> :

If a is a proposition then -> a is a proposition such that -> a is true iff a is not

true.

Xq is not a logical system because 1 is in Xgp (supposed to represent propositions) but

- 72 -

-i 1 is not in Xgp* Nor is Xj a logical system because -> 1 is in Xjp but -> -> 1 is not in
X^p and so on. To solve this problem, let us consider the fixed point (if it exists) of
this construction. It may be that the fixed point is a logical system and if so, we have

succeeded. Before we prove that the fixed point is a logical system, let us remind

ourselves again of the construction. The construction is built through an operator Y

which takes us from level i to level i+1 in such a way that Y(xp = X|+^» where Xj =

(Xip,XitX Xi+1 = (Xi+1p>W> xit £*ip . xi+lt £*i+lp. Moreover xi+lp and xi+lt
are obtained as follows:

For any F- functional F, X^+jp Is the collection of those F(F) where F is a
logical constant and <I»p(XpF) and X|+jt Is the collection of those objects F(F)
where F is a logical constant and both Op(XpF) and Tp(XpF).

Now we prove that any x such that x = Y(x) is a logical system. To show that, we

have to prove that for each logical constant F, the logical schemata of F holds in X-

Let F be a logical constant whose logical schema is as follows:

If F is in F x....xF and <Xy,(x,F), then F(F) is in x„I and F(F) is in x+ iff
IIJ " P t

%(x,f).
Let us prove that this schema holds in x where x is a fixed point, x = (Xr,>Yt) and Y(x)P ^

= (x'p»X't)- Let F be in Fn x—xFn where <l>p(x,F). As <I>p(x,F) then F(F) is in x^ by
definition, but x"p = Xp (because x = Y(x)). therefore F(F) is in Xp- Now let us prove
that F(F) is in xt iff ^(X.F)-

(==>) If F(F) is in xt then F(F) is in x't- As F(F) is in x't then there exists an

F- functional G and a sequence g in F x....xF such that F(F) = G(g) and
nl k

^(X.g) and ^G(x,g) by definition. But the logical constants are independent.
Therefore F = G and as the family is primitive, F = g. Therefore we have from

that ¥p(x,g).
(<==) Suppose Tp(x,F), since also Op(x,F) then F(F) is in x'p but x't = Xt>
therefore F(F) is in xt-

- 73 -

This implies that the logical schema of F holds in x• Now we know that if there

exists a fixed point x then this X is a logical system. Let us find a fixed point.

We define an ordering ^ on (xpj as follows:

(i) *ip c*i+lp-and
Cii) if x is in Xjp> then x is in Xjt iff x is in

With this ordering we can show that Y is monotonic.49 Note that the levels can be

any ordinal even a transfinite one, for if we are at a finite ordinal i we define Y

(y.);=y-+^ as above. If we are at a limit ordinal j, we define Y (Xj) = U X^ f°r i<j-
Applying the fixed point theorem we get a fixed point of Y. The reason for this is of

course the monotonicity of the operator Y, as we know that the ordering relation ^ is

a partial ordering on all those pairs.

49 This is due to the fact that for each i > 0, we follow the logical schemata for each F- functional to
go from level i to level i+1, and monotonicity is hidden in those schemata together with the fact that we
have an independent family of F- functional.

- 74 -

A3. Frege structures as models and comparison with Scott domains

X-structures are models of the X-calculus in an obvious way. For just take the

interpretation of terms as follows over a defined Frege structure F, where g is an

assignment function which takes variables into objects of Fq :

[[x]]& F = g(x)
[[MN]]g, F = app ([[M]] F , [[N]] F)

[[XxM]]g>F =X<[[M]]g[a/xLF/a>50
Now it is easy to show that this interpretation has the property that:

\ I- M=N ==>[[M]]& F - [[N]] F .51
Therefore, Frege structures are models of the X-calculus and in turn we know that

they solve the second problem. For the remainder of this section, we shall concentrate

on the comparison between both Scott domains and Frege structures as models, and

hence help justify our claim that Frege structures are better candidates for the

semantics of natural languages than Scott domains.

On Scott domains, one has a topology (Scott topology based on a partial ordering

relation) and two special elements Top and Bottom. (Bottom is less than all the other

elements and Top is greater than all of them.) We shall see in Chapter 7 that this

ordering relation, together with the existence of Bottom and the requirement that the

functions be continuous, make Scott domains problematic for the semantics of

natural languages. On Frege structures, however, we have no ordering and no

requirement on the continuity of functions. What we have in a Frege structure is a

collection of objects Fq together with, for each n, a collection Fq of n-ary functions
which take elements of Fq as arguments and return elements of F0 as values. But
although we do not consider all possible functions to be elements of the Frege

structure, we still consider only structures which are explicitly closed. This explicit
50 Note that the second X above is the X-structure one whereas the first one is the formal language one.
51 X I- M=N means that M=N is derivable in the X-theory.

closure imposes the existence of some necessary functions such as projections,

constants, etc, and requires the closure of our structure under some important

functional operations such as composition. We have both constants for functions and

variables for functions, but the functionality on a Frege structure does not stop at

those first order functions; we also have functionals. However, whereas for functions

our language contains both variables and constants, for functionals it only contains

constants.

One should bear in mind that none of the collections PROP, TRUTH or SET is

internally definable. Intuitively, we say that a collection x °f objects is internally

definable if we can talk about it through the object language and just not the

metalanguage. An example of a collection which is not internally definable is the

collection of truths in a theory which contains names for its wffs. If this collection

was internally definable, then there must be a predicate T such that for any object a,

T(a) is true iff a is true.52 But according to Tarski, a theory cannot contain its own

truth predicate (in the object language) without falling into inconsistency and

therefore T is a predicate of the metalanguage. Now if we want to talk about truth in

this metalanguage then again we have to have a truth predicate T' in the meta-

metalanguage and this process iterates. Just as T is not an element of the object

language in Tarski's approach, so inside a Frege structure the collection of truths is

not internally definable. Aczel gives a more formal definition of internal definability

and considers a collection x °f objects in F0 to be internally definable in the Frege
structure iff there exists a propositional function C in Fj such that the following
holds:

(**) For any object a in Fq, C(a) is in TRUTH iff a is in y.

It might be clearer if we set FALSE = PROP - TRUTH, and then replace (**) be the

following:
52 Note that we do not restrict this condition to every wff but range it over all objects.

- 76-

(***) For any object a in Fq, C(a) is in TRUTH iff a is in x and C(a) is in
FALSE otherwise.

Some might find it easier to draw a contrast with the following schematic definition,

where C is not a propositional function:

(**#*) por any 0pject a pi Fq, C(a) is in TRUTH iff a is in x anc* C(a) is in Fq
otherwise.

(*#*) makes x decidable, while (#*#*) only makes semi-decidable.

It may seem unfortunate that the collection of truths is not internally definable,

but it is essentially this that provides Frege structures with consistency. Notice that

since elements of SET are the nominalisations of propositional functions, we have no

way of talking about the nominalised items internally and SET is not internally

definable. Moreover it may also seem that we will encounter a problem in defining

second order quantifiers. I hope that it will become clear throughout the work that

the inability to internally define quantifiers does not have any serious effects. On the

contrary, we keep to simplicity while being able to formalise many concepts within

the theory.

The undefinability of PROP and of SET is due to the undefinability of TRUTH.

The collection of propositions is not internally definable, for if it were (through a

predicate P) we would find that TRUTH is also internally definable (through the

propositional function <P(x) &—> x/x>, which stands for a function in Fj). That
PROP is not internally definable implies that SET is not either. This is because if S

were a propositional function in Fj internally defining SET then <S({y/x})/x> is a

propositional function in Fj internally defining the collection of propositions. Note
also that, for each n, P FR (the collection of n-ary propositional functions) is not

internally definable. For if it were, we get that the collection of propositions is also.

The proof here needs an extension of the definition of internal definability so that

instead of having a function we have a functional.

Let us return to the comparison of Frege structures with Scott domains. Frege

structures do not have any ordering or continuity problems and their restricted

logic53 would allow us to solve the problems of Scott domains (and of Cocchiarella).
But of course the solving part is not going to be easy. We have to do something about

the non-internal definability of SET. There are a few ways to go here: we have to

either see how the function domains (as with Scott) could be built inside Frege

structures, or else show that we do not need second level quantifiers and therefore the

problem does not arise. Now the word inside brings an uncomfortable feeling -

especially after we pointed out that all the interesting collections are not internally

definable. I assure the reader however that this difficulty is only temporary and that

we can always find solutions to the problem.54 It is important for the reader to know

that a Frege structure can be built on the top of a model where continuity and

ordering play a very important role (such as Ej. However the way quantifiers are

constructed on a Frege structure using the fixed point, is not based on the ordering

relation, and so the problem that faced Turner in his work based on (where

quantifiers depended on the ordering relation - see Chapter 7) is not faced by the

quantifier treatment on a Frege structure.

The fact that functions, but not functionals, can be mapped into F0 in a Frege
structure is not a disadvantage, indeed it may even be seen as a virtue, since there

appears to be no justification in NL semantics for nominalizing expressions - for

example determiners - which would require a formalisation as functionals. Also, in

Frege structures we have more possible elements than we do in Scott domains. We

have propositions, truths and sets which are all legitimate elements of the Frege

structure. We could not talk about them internally but that is how it should be.

Tarski's undefinability of Truth and G&del's famous result55 make it impossible for

53 i.e. -i, &, etc do not necessarily have to apply to propositions only but can be applied to any objects
and the result will be a proposition only in case the objects themselves are.

54 Such details are again examined in Chapter 4.
55 According to Godel's theorem, we can only give a proof relative to some other system. The two

theorems of Godel are:

- 78 -

us to be able to internally define any of these collections. So, our inability to

internally define any of these collections is not a weakness in comparison with Scott

domains; Scott domains could not talk about them at all, and therefore can not be

adequate for NL semantics. If we try to extend Scott domains in a way that will

allow us to talk about truths and propositions, we obtain Frege structures.

(1) For any formal system consistent and strong, sufficient for arithmetic, there exists a sentence <I> for-
malisable in that system which is true but not provable.
(2) No consistent formal system which is strong enough for arithmetic is capable of proving its own con¬
sistency.
(2) ==>(!), for <t> is taken to be "O is true but not provable".

- 79-

PART B. A THEORY OF PROPERTIES, ITS SEMANTICS AND PROOF THEORY

In this part, I introduce the theory to be used throughout the rest of the thesis.

This theory is first order, intensional and type free. There have been many arguments

for both type freeness (e.g. Feferman's work [FEl], [FE2] and [FE9]) and

intensionality: further justifications for adopting these features will not be given

here. But why use a first order theory? The reason for using a first order theory is

due to the very nature of Frege structures; this does not, however, imply that one

cannot interpret higher order languages with Frege structures; that would be incorrect.

For instance, the highly typed language of Martin-Lof could be interpreted with Frege

structures. Nonetheless, first order languages are easy to work with, and it is well

known that higher order languages can be reduced to first order languages having

extra predicates to simulate the types.56 People turned to higher order languages for

many reasons, two of them being the issue of expressive power and the paradoxes. On

the question of expressive power, we can talk about second and higher order

quantifiers because they can be reduced to first order ones (we defined in Part B,

clause (14'), [[VXV]]g = V <[[V]]g|- |a|/x]^a>^57 t^ie question of the paradoxes, we
see that people are returning to first order theories (e.g. Feferman, Turner).

I assume full extensionality of functions, in the sense that the following

principle holds:

(EE) Vx [f(x) = g(x)] -» f=g, or

"if two propositional functions are true of the same arguments, then they are

identical"

It is important to distinguish (EE) from a principle of extensionality of properties

which might be formulated as:

(EP) Vx [f(x) is true iff g(x)is true] -» f= g, or

56 Neither am I implying that types and higher order are the same thing.
57 Barwise and Cooper ([BA3]) argued that first order languages cannot be used to define some

quantifiers like Most: but we are concerned with expressivity here and not definability.

- 80 -

"if two propositional functions are true of the same arguments, then they are

identical"58

(EP) is rejected in the current framework. Put briefly, equivalence does not imply

equality; in fact, if it did, a version of Russell's paradox could be constructed. If we

had taken f and g to be propositional functions which denoted truth values, then (EE)

and (EP) would of course collapse. The point to be emphasised is that in a Frege

structure, it can be the case that f(x) and g(x) are both in TRUTH, yet f(x) ^ g(x),

since they are distinct propositions.

Now let us put forward the theory and its semantics. This is a theory of

properties and propositions and for any term t, O t is to be understood as 't is a

proposition'.59

B.l. The theory Tq
Syntactic categories and items

Let us consider the following categories and items:

x, y, z, Xp yp... range over the category of individual variables which is
denumerably infinite.

c, c', Cq, Cp... range over the category of individual constants which is

denumerably infinite,

t, t\ t", tp X2range over terms.

We have the following operators and logical constants: =, D, V, &, j, V, X, app.

Syntactic clauses for T^
t := x I c I app(tp X^) 11j - tj I ' ti^t2 '

tj-»t2 I Htj I Xx.tj I Vxt^ ! j xtp

We define J =c^60 and define three more logical constants '= and '&-*
58 Of course (EE) and (EP) collapse if we take the semantic value of f(x) (and g(x)) to be a truth

value.
59 In Chapter 3 we define properties in terms of propositions.
60 Where Cq and c^ are two distinct constants.

- 81 -

out of the previous ones as follows:

-t-df t-J_

ti=t2 =df Ctj—♦ t2)&(t2-» tj)
tf&-» t2 =df tj&Ctj -* t2).

Bound/free variables and substitution are defined as usual; in t^[t2/x] the bound
variables of t^ are changed to avoid collision.
As can be seen from the above, we only have terms (which are defined recursively

using the logical constants V, &, V, = and the three important operators Q, X and

app). It is the tradition to define inductively both terms and wffs; by contrast

everything here is a term and the logical constants operate not only on the

propositions but on all terms.

Axioms and Rules:

(oO Xx.t = Xy.t[y/x] where y is not free in t

C/3) app((Xx.t),t') = t[t'/x]

. > tl~t2 l'l ~ f2

appCtj.t'j) = app(t2,t'2)

t = t't = tH
(S)

t' = t"

app(t,x) = app(t',x)
(e) where x is not free in t, t' or any open assumptions

t = t'

From the axioms so far, we can deduce the following theorems:

Theorem :

(i) = is reflexive: Le. (r) t = t for any term t.

t = t'
(ii) = is symmetric: Le. (s)

t" = t

- 82-

t = t' t' =t"
(iii) = is transitive: i.e. (t)

t = t"
Proof:

app(Xx.t,x) = t app(Xx.t,x) = t By (j8)
For (i), By (8)

t = t

Cii) is now easy to deduce from both (8) and reflexivity as follows:

t = t'

t = t' t = t (reflexivity)

t' = t By (8)

Also (iii) is easy to deduce as:

t = t' t" = t"
(symmetry)

t' = t t' = t"
(8)

t = t"

□

Theorem : From the above rules we can deduce
t = t'

(0
Xx.t = Xx.t'

Proof: t = t'

t[x/x] = t'[x/x]
(j8) ancj transitivity

app(Xx.t,x) = app(Xx.t\x)
(€)

Xx.t = Xx.t'

and therefore (£) is a theorem. □

Theorem : We can also deduce from above that (t)) is a theorem, where (t)) is:

(t)) (Xy.app(u,y)) =u for y not free in u.

Proof: app(u,y)[x/y] = app(u,x) as y is not free in u

app(Xy.app(u,y),x) = app(u,x) as x is not free in u
(€)

Xy.app(u,y) =u

□

- 83 -

Note, however, that from (e) above we have been able to deduce both (£) and (t)),

but from (£) alone we cannot deduce (e) as we will also need (rj) in the derivation.

This is because if we start the proof:

app(t,x) = app(t',x)
(£)

\x.app(t,x) = \x.app(t',x)

Then we get to a stage where we need Cr)) to be able to deduce t=t'. Note also that the

rules

app(tj,t'j) = app(t2,t'2)
ll =t2

appCt1,t'1) = app(t2,t'2)

are not valid; this means that the converse of (y) does not hold. Take for example, t^
and t2 to be \x.x=c' and Xx.c=x respectively, where c, c' are two distinct constants;
take also t'^ and t'2 to be c' and c respectively, then we have that app(tpt'^) =

app(t2,t'2), but we do not have tj =t2 or t'j =t'2-61

(a:)-(e) are just axioms and rules of the lambda calculus with extensionality; we

still need a logic and we therefore add the following:

(VI)
t fit'

tVt'

t' m

tVt'

(VE)

{t}
tVt' s

{t'J
s

61 This will force us to introduce in the third chapter a relation called pred which makes the two
derivations above valid, 'pred' is highly intensional in that if predCt^^) = predCt'pt^) then we have t^
- t'i and t2 = t'2.

- 84 -

(ftV)
fit fit'

ft(tVt')

ft(tVt') ft(tVt')

fit fit'

(&I)
t'

(t&t')

(&E)
t&t' t&t'

t'

(ft&)
fit fit'

ft (t&t')

ft(t&t')

fit

ft (t&t')

fit'

(-4)

{t}
fit t'

t-»t'

(-©

(ft-0

t t-»t'

t'

{t}
fit fit'

ft(t->t')

(ft_]J ft I 62

(Jj
I

G I)
t[f]

63

Note that this axiom is redundant, as other axioms may be.
We mean J xt[x]; and hence we have to impose the condition that t' is free for x in t.

- 85-

{t[x]}
} t s

(3 E) provided x is not free in t, s
s or any open assumption

ft(t[x])
(ft}) x not free in t or any open assumption

ou t)

t[x] x not free in t or
(VI) in any open assumption

Vt

Vt
(VE)

t[t']

ft(t[x])
(flV) ———— x not free in t or any open assumption

ft(Vt)64

t

(fi>
ftt

(ft=) ft(t=t')

t=t' ft(tH[t])
(qub}

ft(t"[t'])

t=t' t"[t]
(Tsub)

<4

a a b
Wheie === means both — and —

b b a

-86-

B.2. The metatheory ofT^

We write I- t if t is a theorem of and T I- t if t is deducible from

Axioms(T^)Ur.
Theorem: We can prove from our rules above that:

(Tl)

(T2)

(T3)

t = t' t

t'

ti =t'i for i=0,..,n t()[t1/x1,..,trL/xn]

t'o[t'l/xl'"'t'n/xn]
t = t' fit

fit'

Proof:

(Tl) is deducible from (Tsu^)
(T2) is deducible by induction on the way terms are constructed.

(T3) is deducible from (

Now before completing the metatheory of we stop mention with other theories

that were offered as theories of Frege structures. In [AC4] Aczel offered a language of

Frege structures but he made negation primitive (not defined). Here, I use I instead.

Flagg and Myhill (in [FLl] and [FL2]) offered a theory based on the A-calculus. This

implied that where we had to choose between substitution and application in our

axioms and rules, they could use application only. In [SMI], Smith offers a theory of

Frege structures with the aim of interpreting Martin-Lof type theory. I must also

mention Monnich in [MUl] who used Frege structures, but the theory was derived

from [AC4]. Also Beeson in [BE4] offered an axiomatic theory of Frege structures.

Now we proceed with the metatheory of Tfl
(T4) If I- t&t' then I- t'&t

(T5) If I- tVt' then I- t'Vt

- 87 -

(T6) If I- t then I- -> -> t65

(T7) {at} I- t=t

(T8) If I- t=t' and I- t'= t" then {at, at'} 1- tsst"

(T9) If I- t=t' then I- t'=t

(T10) If I- Vt then I- -] (-> t)

(Til) {a(t[x])} I- Vt -♦ -i] (-> t) x not free in t
or any open assumption66

(T12) If I- t then I- Vt

(T13) If T I- t then T I- Vxt for x not free in T.

(T14) If T I- Vt then T I- t

(T15) I-] x.x

(T16) I- 3 x.-" x

(T17) If tGT then T I- t

(T18) From T I- t and T I- t-» t' we deduce T I- t'

(T19) If TU {t} I- t' then TU {at} I- t->t'67

(T20) {at} i-1—»C-1 -»t')

(T2i) {at} i- t^--t68

(T22) {at} I- -i t= -i -i -i t

(T23) {at, at'} i- -Ctvt')=-t&-nt'69

(T24) If {at, at'} I- t=t' then {at, at'} I—■ t= ->t'

(T25) If r I- J then T I- t

(T26) If T I- t then T I-] t

(T27) If r I- t then TU A I- t

(T28) If T I-] xt[x] and AU {t[y]} I- t' then TU Al- t' for y not free in A

65 The other direction does not necessarily hold.
66 The other side does not necessarily hold.
61 This is known as the deduction theorem; please note the insertion of {fit}. This is important as

without it we would get Curry's paradox as is explained in Chapter 3.
6S The other direction does not necessarily hold.
69 But not necessarily {fit, fit'} I—'(t&t')= -■ tV-11'

- 88 -

(T29) If T I- t and A I- t' then TU A I- t&t'

(T30) If T I- tVt', AU {t} I- tj and *U {t'} I- tj then TUAU* I- tj
(T3l) If fia then ->(a&-'a) Le. {fla} I—i(a&->a)

(T32) {fit, fit'} I- t-*(t'-»t)

(T33) {fit, fit'} I- (t-»t')-»((t-»-.?)-»--t)

(T34) {fit, fit'} I- t-»tVt'

(T35) {fit, fit'} I- t-U'Vt

(T36) {fit, fit'} I- t-»(t'-»t&t')

(T37) {fit, fit', fit", t=t'} I- t"[t]= t"[t']

(T38) If I- t and I- t-t' then I- t'70
Proof:

(T4) holds because from t&t' you can deduce t' and from t&t' you can deduce t; but

from t' and t we deduce t'&t.

(T5) holds because if I- tVt' then fi(tVt') and so fit and fit'. Hence, if we assume t

we get t'Vt as fit' and if we assume t' we get t'Vt as fit; this implies that t'Vt due to

(VE).

To prove (T6) it is enough to say that from t we deduce fit and from the assumption

-> t we get I since t is true; hence by (->1) we get -> t-> I . i.e. -> -> t.

The following is a proof of (T7):

{t}
fit t

By (-4)
t-»t

From t-» t and t-» t we get t=t.

For (T8), the proof is as follows:
If I- t=t' and t'= t", then I- t —»t' and I- t'-»t"; hence {fit} I- t-»t".

In the same way we can show that {fit"} I- t" -»t.

Therefore {fit,fit"} I- t= t" and so (T8) is a theorem.

The proof of (T9) goes as follows:
70 We refer to this as Modus Ponens.

- 89-

If I- t=t\ then I- (t->t')&(t'-»t);

hence I- (t'-»t)&(t-+t') and so I- t'= t.

For (T10) we have to show that I- ->] (-> t), he. that I-] (-> t)-» I :

But ftVt), hence CI (t[x]) and so CI (T[x]) for x not free in t or any open

assumption.

0(->t[x]) implies CI (} (it)) by as x is not free in t or any open

assumption.

If we assume that] (-it) then from -<t[x] where x not free in Le. tfxl —» I

we get 1 as I- Vt. Hence from the assumption J (it) we get I .

Now applying (O) we have fl(] (it)) and from assumption j it we get I ,

then } (i t) —» I and so I- i] (i t).

For (Til), the proof goes as follows:

{a(t[x])} I- fl(Vt) by (flV).

But by (T10), if I- Vt, then I- 13 (i t),

hence {fl(t[x])} I- Vt—► i] (it).

In (T13), the condition that x not free in T is there to enable us to apply VI which

imposes that x be not free in t or any open assumptions.

(T14) is a consequence of (VE).

We know that = is reflexive, hence c=c and so x[c=c] is true; this implies by (} I) that

] x.x, hence (T15).

We know that CI I and that from J_we deduce hence I -» I and so i_L If we

take t to be i x, then t[J_J is i I and is true. By (] I) we get 3 x.i x and so (T16) is a

theorem.

(T17) is true due to our definition of T I- t.

(T18) is a consequence of (-»E).

The proof of (T19) is very straightforward due to the addition of CI t; without that,

we could not have proved it.

- 90-

The proof of (T20) goes as follows:

{flt}l
{t} 2
{-> t}3
] By (-HE)

By (_!_}.
t'4

fl(->t) BylandCfl-O

-> t~* t' By 3, 4 and (-»I)

Hence {fit} I-

The proof of (T21) goes as follows:

{flt}l
{t} 2
fl(-it)3 from 1

{-t}4
(_E)

I
(->1)

-» t~> I
(-H!)

t—» —> —< t

Hence {fit} I- t-» -> -> t.

The proof of (T22) goes as follows:

From (T21), we have that {fit} I—< t-» t,

if we assume ->->-« t, then if we assume t, we get -> -> t by (T2l);

but -i -> t is -> -> t—» I and as we have -> -> t, hence I .

Hence -> t and so from the assumption t we get -»t.

As fl(-i -> -i t), then {fit} I— —> —> —> t-> -> t..

Combining both results we get {fit} I—< -< -> t= -> t.

The proof of (T23) goes as follows:

A. fit, fit' then fl(tVt') and so fl(-> CtVt')).

If we assume -> (tVt') then if we assume t then tVt' and so I .

hence -»t; Le. i CtVt') -»-> t. Also -> CtVt')-» -> t\

- 91 -

Hence -> (tVt') -»(-> t &-> t').

B. XI t, fit' then Xl(-it) and Xl(->t'); hence Xl(->t &-it').

If we assume -> t&-> t' then -> t and -> t';

and if we assume tVt', we get from the assumption t, I by -> t and (-C).

Also from the assumption t' we get J by -> t' and (-»E);

and from the assumption tVt' we get J if we already assume -> t&--t\

Hence the assumption -> t&-> t' implies ->(tVt').

A and B imply {fit, XIt'} I- -i(tVt')= (-it&->t').

The proof of (T24) goes as follows:

{X2t, XIt'} I- (t-»t')&(t'-*0.

Now Xlt, XIt' then Xl(-<t) and Xl^t').

If we assume -> t then as XIt' and t'-»t we get t' —» I : i.e. -> t\

Hence {Xlt, fit'} I- -it-»->t\

The same method enables us to get {XI t, XI t'} I—> t'-* -> t.

Hence {->t, ->t'} I- ->t=-it\

(T25) results from C I).

(T26) results from (] I).

For (T27) it is enough to say that if t is a theorem of Axioms(T^) U T then t is a

theorem of Axioms(T^)UTUA
The proof of (T28) follows the usual procedure.

(T29) holds because TU A I- t and TUAI- t', and so TUAI- t&t'.

(T30) is due to (VE).

For (T31) it is enough to say that if XI a then XI (-> a), hence XI (a&-> a). Assume

a&->a, then a and -> a; by (->E) we get I and by (_[_} we get anything and in

particular -> (a&-n a).

For (T32) the proof goes as follows:

Xlt' and from the assumption t and t' we get t,

- 92 -

hence t'-»t from assumption t, but fit and so

(fit, fit'} I- t-»(t'-*t).

The proof of (T33) goes as follows:

We have flCt-^t') as fit and fit'.

We also have fl(t-»-'t') as fit and fl(->t').

If we assume t, we get -> t' and t', hence I and so -> t.

Therefore (t-+ -> t')-» -«t from assumption t-»t' and so

(t—► t')—► CCt—► -• t'D —* -• t) from assumption fit, fit' and so (T33).

The proof of (T34) goes as follows:

If fit, fit' then fl(tVt').

If we assume t then tVt' by (VI) and so t—» (tVt') from assumption fit, fit'.

This means (T34) is a theorem.

The same proof can be followed for (T35).

(T36) and (T38) are obvious and (T37) is done by induction on the way expressions

are constructed. □

Our theory is intuitionistic; if we add either of tV-<t or -> -> t-> t, then we obtain a

classical theory; this is why the axiom

{-t}
fit J_

(jj)
t

leads to a classical theory and this is why we ruled it out.

B.3. The semantics ofT^

We define a model to be a pair M= < F, C> where F is a Frege structure and

C: CON—>U Fn, such that for each constant c-, C(c.) 6Fq.

The semantics with respect to an assignment function g:VAR—>Fq is as follows:

(1) [[x]]g = g(x)

- 93-

(2) [[c]]g = C(c)
(3) [[Xx.t]]g = X a.[[t]]gja/xj
C4) [[t=t']]g = ([[t]]g = [[t']]g)
(5) [[tVt']]g.([[t]]gV[[f]]g)
(6) [[t&t']]g = C[[t]]g & [[t']]g)
(7) [[t-t']]g = ([[t]]g-[[t']]g)
(8) [[3 t|3g - 3 a.[[tnrfa/x]
(9) [[V.]]g - V a.[[t]]g[l/x]
Cio) l[£it]]g - n[[t]]g
(11) [[app(t,t')]]g = app C[[t]]g, [[t'Mg)

Theorem : We can prove from the above that if we assume C to be the constant

function which maps each constant into itself, then for each expression A built in the

usual way and open in x, y.p..,yn,

[[Xx.A[x,ylf..,yn]]]g = X a. A (a,g(y1),..,g(yn)),
where A is built exactly like A except that functionals inside are replaced by the

corresponding F- functionals of the Frege structure.

E.g. [[Xx.(x=y)]l = X a.(a = b) where g(y) =b;
o

also, [[Xx.app(y&z,x)]] = X a. app (b & c,a) where g(y) =b and g(z) =c.
o

Theorem : If we take a model < F, C > as above, then it is a model of the theory T^

Proof: Let g be an assignment of the variables into Fq, then:
(*) For each term t, [[t]]j^g is in F0'
The proof of (*) is by induction on t:

It is trivial for variables or constants.

If t is Xx.t' then [[t]]j^g = X a[[t]]j^ g[a/x]- ^ut an easY induction on terms one can
prove that < [[t]]Hg[a/x]/a> is in Fj, therefore, X ^ ^^^M.gta/x]
is in Fq.
For the case where we have to apply semantic clauses (4)-(7) to t, the proof is trivial

- 94 -

as the logical constants are elements of the Frege structure F and the proof is done by

induction.

(8)-(9) are proved as for the case where t is Xx.t\

(10) is trivial as CI is that F- functional of the Frege structure which has the

following logical schemata:

If a is an object then CI a is an object such that CI (a) is true iff a is a

proposition.71

(11) is trivial as app is an F- functional of the Frege structure and the proof by

induction on t.

What about the axioms and rules? It is tedious to check each of them one by one, but

they all hold in the model. The proof is illustrated with the following:

(&I):

If [[t]]M g is in TRUTH and [[t']]^g is in TRUTH, then [[t&t'jj^g - which by
definition is [[t]]jy^g & - is in TRUTH, due to the logical schema of &
in a Frege structure.

(fl&):

If [[f>t]]M is in TRUTH and [[Ot'flj^ is in TRUTH
then ([[tjjjy^g is a proposition) and ([[t']]jyj is a proposition).
So ([[t&t'Hjyj g is a proposition) from the logical schema of &.
Therefore [[fi(t&t)]]^j g is true. □

B.4. Soundness and completeness

After having made the reader follow the above proof, we now tell her that this

was unnecessary as it is obvious that the theory we put forward is a theory of the

Frege structure; consistency of this theory is assured from the model construction we

gave in part A of this chapter. We shall not repeat the construction but the reader
71 Note that £2 does not internally define propositions; since it is not itself a propositional function.

- 95-

should always remember that we construct our Q, V, &, etc, so that they are

independent and primitive. This means that we can never have a & b = a V c and if a

& b = a' & b' then a = a' and b = b\

The reader may still not be persuaded that we have proved the consistency of the

language T^ The route usually followed to prove consistency is the construction of
a model of the theory and we shall show how this can be done. We understand by a

consistent set of T^a set F of closed expressions of T^such that no contradiction
can be deduced from the assumption ft e for e in T; otherwise T is inconsistent. A

maximal consistent set T of closed expressions is such that if M is any closed

expression not in T then {F, M} is inconsistent. We say that F is satisfiable with

respect to a model M iff there is an assignment function g such that is true

for every $ in T. An expression t is valid iff for every model F which is a Frege

structure, for every assignment function g, [[t]]F is in TRUTH.

Now to prove consistency, we have to show that for any consistent set T of

closed expressions from T^ there exists a model (which is a Frege structure) for T ^
♦

which satisfies the set of closed expressions T, where T ^ is the extension of T^
obtained from T^by adding a countable number of constants.

It must be noted here that the proofs found in the next few pages are only

outline of how things should be followed. For instance the construction of the model

below is not followed to the end. The main idea there should be to assume the

existence of a \-model and to construct the various expressions (which contain the

logical connectives) inductively in a way that the process remains monotonic and then

to take the fixed point. However, as mentioned before we provide only the outline

and how the construction of the model should be initiated.

Theorem 1: If A is any consistent set of closed expressions of T^ then there exists a

model (which is a Frege structure) with respect to which A is satisfiable.

Proof: This theorem should be proved in three parts;

- 96-

*

Part 1: The construction of the extension T ^of T^and then the construction
*

of a maximal consistent set T of which contains A

Part 2: the construction of a model M of T,

Part 3: the proof that M is a Frege structure.

In this theorem, we shall only outline the proof; mainly because parts 1 and 2 are

standard proofs that can be found in any relevant book (e.g. [BE6]); also Monnich

has shown (in [MOl]) a theory not very distinct from the one oifered here to be

complete. Also, part 3 is long and tedious, hence it will not be worked out in full

detail. I shall also make one simplification, that is reduce the work to objects and

unary functions rather than work with n-ary functions for n^ 1.
*

Part 1: T ^is constructed by adding denumerably many primitive constants. A is a

set of closed expressions from T^ we can therefore extend A to a maximal set T of
*

closed expressions in r can be constructed so that it possesses the following

properties:

(i) r is a maximal consistent set.

(ii) T contains A

(iii) We cannot have both $ and -< $> being deducible from T.72

(iv) T contains Vxt[x] iff T contains t[c] for every new constant c;

(v) T contains] xt[x] iff T contains t[c] for some new constant c;

(vi) T contains \x.t[x] iff there is a new constant c such that T contains c=

Xx.t[x].

(vii) For any expression t containing an occurrence of a new constant c,] c'

such that t[c] = app(c',c). D73

Part 2: Now we have to search for a model which satisfies T; this model will

obviously satisfy A and we want it to be a Frege structure. In this part we construct

such a model and in the next part we show it to be a Frege structure.
72 Because, if we did, then we would have J deducible from T and so T inconsistent.
73 Again the reader is referred to [BE6] and [MOl].

- 97 -

The model F is built out of T as follows:

*

We define an equivalence relation — on as follows:

t—t' iff t=t' is deducible from T;

— is obviously an equivalence relation. We take Fq to be the set of equivalence
♦

classes of all the closed expressions of with respect to the relation — above.

What about propositions and truths? For any t of Tn*> [t] (the equivalence class
of t according to the equivalence relation above) is not a proposition if there exists a t'

such that we have both t— t' and t— ->t\ For example,

appCAx.-i app(x,x),\x.-> app(x,x)) is not a proposition. To see this take t and t' to be

-> app(Xx.-> app(x,x),Xx.-> app(x,x)), then we can deduce both t=t' and t= ->t' from T;

therefore we have t—t' and t— ->t'. Truths are all the equivalence classes of all the

closed expressions t which are in F and for which ft t is deducible. E.g. t=t is true

where t is a closed expression.

Now we construct &, V,... as follows:

[a] & [b] = [a&b],

[a] V [b] = [aVb],

[a] —»[b] = [a-» b],

V x[a] = [Vxa]

]x[a] = Mxa]

X. [a] = [X.a]

app ([a],[b]) = [app(a,b)].

We take F^ to be the collection of all the expressions t open in one variable, chosen in
the enumeration such that there is no expression t' which precedes t in the

enumeration and where t'[c] = t[c] can be deduced in T for any new constant c.

Having led the reader up to here, she can now practise trying to build an function g in

the usual way. She can also define the semantic function [[]] relative to the

assignment function g in the usual way.74 Now it is easily provable that this model
74 For help she can refer to [BE6].

- 98 -

*

under the assignment function g is a model of which satisfies T. □

Part 3: Here, one has to show that the model constructed above is a Frege structure.

I.e. one has to show that the structure is explicitly closed, that (X,app) form a X-

system and that the structure above is a logical system relative to the set of logical

constants. As I said above, the proof is long and tedious and hence it will not be done

here. □

Consequently any consistent set of closed expressions of T^is satisfiable by a model
(which is a Frege structure).

Of course from consistency, one obtains soundness as seen below;

Soundness theorem : If an expression t of T^is deducible, then t is valid.
Proof:

This is done by checking that each axiom of is valid and that each rule

preserves validity which is easy to do. Now, as t is deducible, this means that

there is a finite proof tree with bottom element t, where at each stage the

formula is either an axiom (which is valid) or obtained from previous

formulae by application of the rules (which preserve validity). □

Now we come to complement our proof of soundness above by a proof of

completeness. Some people might sacrifice completeness for other results as in the case

of substitutional/referential interpretation. The substitutional interpretation of first

order languages is not strongly complete but it is claimed that it provides some

philosophical and ontological advantages over the referential interpretation [DUl].75

All our interpretations are referential and so we have no reason yet to ignore

completeness; moreover, it is argued that completeness is to be aimed at in our

theories [CH3].

Theorem 2: T I- t iff TU {-> t} is inconsistent.76

Proof:

75 See Chapter 1 for the meaning of Substitutional/Referential interpretation.
76 This theorem together with the consistency theorem gives completeness.

- 99-

r I- t then ru {—• t} I- t from (T27). TU {-> t} I—> t from (T17). Hence TU {—• t}

I- t&it from (T30). therefore TU {->t} I- I which means that TU {->t} is

inconsistent. □

The completeness theorem : If an expression t of T^is valid, then t is deducible.
Proof: Any first order theory interpreted using standard semantics is complete.

Higher order languages are incomplete under standard semantics but there is a

procedure to make them complete; this procedure consists in using Henkin's

techniques which we shall describe below. A second order language interpreted under

standard semantics is incomplete but could be made complete & la Henkin; also the

theory of types is incomplete under standard semantics, but could be made complete 4

la Henkin.77 is complete with respect to the interpretation we gave; this is seen

from both Theorem 1 and Theorem 2.

If t is valid then {-«t} is inconsistent, for if it was consistent then there would exist a

model M in which -> t was satisfiable. As -> t is satisfiable in M then [[-> t]]^ is true
with respect to an assignment function g. But [[t]]^^ is true as t is valid. Hence
contradiction and so -< t is inconsistent. From Theorem 2, we get that I- t. Hence

completeness. □

77 Henkin in [HE2] proposes to make the simple type theory as formalised by Church [CH5], com¬
plete.
The crucial clause in the standard semantics to Church's type theory, is the following:
(l) For each type a, b, Da b is the set of all functions from to D& and it is to provide denotations for
wffs of type ab. In (l) we considered the set of all functions and this is the key to the problem. Look¬
ing back at Church's paper, he proved that his logic satisfies Peano's arithmetic. But according to the
theorem which says that any two sets that satisfy Peano's arithmetic in their higher order must be iso¬
morphic, Church's TRA must be isomorphic to <N,0,+,x,s >. If so, they must then be enumerable. But
Church could not enumerate his TRA and therefore his system is incomplete. The problem comes from
the standard interpretation given above, together with letting the valuations of the functions of order n
be the set of all functions of n-ordered tuples of individuals. The solution consists in reinterpreting sets,
functions and the definition of validity. The values of functions should not be elements of the set of all
the functions as above but only a certain class of functions. So validity of a sentence Q is obtained iff
[[Q]]m v ^ true f°r aH M,V where the domain of values of functions is reinterpreted as above. The ques¬
tion is'of course whether such models exist. For, if one takes an arbitrary class above, IMlj^ y may not
be in any of the domains. Henkin imposes the condition that this arbitrary choice of class' must have
denotations for all the functions. Under this interpretation, he proves that the theory is complete. I.e.
"Ao is valid iff I- Ao in the general sense". Note that the formulation of the simple theory of types is
essentially the language used by Montague. However, Montague semanticists tend to interpret it using
standard techniques, so it is not surprising that the semantics becomes incomplete. It could be made com¬
plete using Henkin's procedure which I just described, and for such a proof the reader is referred to
[GA1].

- 100-

Before closing this chapter it is interesting to see what happens to the compactness

theorem; this is because our deduction theorem (T19) has a different form, that is: If

tl t2 t^ien
The compactness theorem : A set S of sentences of is satisfiable iff every finite

subset of S is satisfiable.

To prove this theorem, one needs prove one direction only. That is:

If every finite subset of S is satisfiable, then S is satisfiable.

If we do the standard proof here, then we get to a stage from which we cannot

proceed, as is shown below.

If S is not satisfiable then S is inconsistent. Next we must prove that if S is

inconsistent then there is a finite subset of S which is not satisfiable. As S is

inconsistent, then anything is deducible from S; and in particular _]_. Therefore there

must be a finite proof of J from t^,...tn in S. Hence, by our version of the deduction
theorem, {fltj,..fltn) I- t^->C....CtJ1-» I)....).

From here, we cannot deduce that tj-» (....(tn~+ is valid and hence that

{tj,..,tn} is not satisfiable. This means that we cannot use the standard method to

prove the compactness theorem. Another way of proving the theorem consists in

applying the Tychonoff's theorem on product spaces. This is done topologically where

the compactness property is used and where a space (X,T) is compact iff

(VfOjJjgj of T-open sets such that UOj =X) [(] J finite subset of I): X= Uj^j

The two versions of the Tychonoff theorem are:

Tychonoff product theorem : If (X-, 0-).gj is a non-empty family of non-empty

compact spaces, then the product space II(X-, 0-) is also compact.

Tychonoff theorem : IIX- is the product space of a countable family of non-empty

spaces Then IIX^ is compact iff each (X-,0-) is compact.
It is interesting to prove compactness using this theorem, especially given that Frege

- 101 -

structures themselves can be built over a topological space; we shall leave this

however to another occasion. □

- 102-

CHAFTER 3. A THEORY OF PROPERTIES AND THEORIES OF TRUTH

In this chapter, we study some basic characteristics of the theory offered in

Chapter 2. We will be concerned here with the logical operations on properties and the

various theories of truths that could be obtained.

PART A. A THEORY OF PROPERTIES

First we start with some definitions. We introduce in our language the

operator A, understanding AP to mean that P is a property. A is defined as follows:

AP =df Vxft(app(P,x)).
That is, something is a property iff whenever it applies to an object, the result is a

proposition; e.g. Xx.->(x=x).

Note that any element of SET is a property, because if P is in SET then app (P,x) is a

proposition for any x and therefore CI (app (P,x)) is true. Hence A P is true. Note that

we introduce a A in the model for A in the formal language (in the same way as we

did for flD.78

A.l. Closure conditions on properties

Having defined properties in T^ let us now look at their closure conditions to
see whether they "behave properly". We can construct properties in the following

way:

1. P U P' = Xx.(app(P,x) V app(P',x))

2. PDP' = Xx.(app(P,x) & app(P',x))

3. Pc = Xx.-> app(P,x)

4. P— >P' = Xx.[Vy(app(P,y) -> app(P',app(x,y)))]

78 A does not internally define properties; this is because if P is not a property then Vx fXp(P,x))
is not a proposition.

- 103 -

5. 0 = Xx.(x=x)

6. V= Xx.-> (x=x)

(l) - (3) give us boolean combinations of properties, using join, meet and

complement. (4) gives us function space, and (5), (6) give us the universal and the

empty property, respectively. Now we can prove the following theorem:

Theorem 1: A0, AVand if AP and AP' then A(PUP'), A(PDP'), APC, A(P->P').

Proof:

We shall only prove that A(P— >P'), as the others are similar.

We have to show that VxH(Vz(app(P,z) -»app(P',app(x,z)))).

If AP' then Vxfl(app(P',x)),

hence fl(app(P',app(x,z))); but X2(app(P,z)) as AP.

Therefore ft(app(P,z) -* app(P',app(x,z))).

Hence fl(Vz(app(P,z) —»app(P',app(x,z)))) and so

Vxfl(Vz(app(P,z) -* app(P',app(x,z))));

hence A(P— >P'). □

0 stands for the universal property, Vstands for the empty property, and, of

course, if P, P' are properties, then so are their disjunction and conjunction. Also, the

complement of any property is a property. This theorem implies that our domain of

properties satisfies some important closure conditions; note especially that if P and P'

are properties then P—>P' is also a property. It is well known that this would not

hold if the notion of property was more comprehensive. For instance, for Turner in

[TU9] (and Feferman in [FE2]), if P, P' are properties (classes) then P— >P' is not

necessarily a property (resp. class) because according to their approach, there were

more properties (or classes) and propositions than there is according to the approach

put forward here.

We understood AP to be P is a property, however some people understand by

this P is a class. Both interpretations work in parallel and to illustrate this point we

- 104 -

introduce 6 by the following definition:

aGP =fjj. app(P,a), and we understand by it: a belongs to the class P.
We can now prove the following:

P=P' AP(i)
AP'

AP(ii)
ft(t€P)

H(app(t,x))(iii) where no assumption depends on x.
A(\x.app(t,x))

Theorem 2:

(i) a€ PHP'= CCaGP) & Ca6P'))

(ii) a£ PUP' = ((aSP) V(a£P'))

Proof:

We only prove (ii) here and leave (i) to the reader.

a£PUP'= app(PUP',a) = app(\x.(app(P,x) V app(P',x)),a)

= app(P,a) V app(P',a)

= (a€P) V(a6P') □

The above theorem shows that properties are closed under union and intersection.

That is, if John is either a lawyer or a doctor then either John is a lawyer or John is a

doctor; also if John is a clever man, then he is both a man and clever. Our latter

example creates a few problems, since it only works for a restricted set of adjectives.

For instance, from Mary is &_ beautiful dancer, one should not deduce that Mary is

beautiful. How can one accommodate this in the above framework? The solution here

would be in not identifying beautiful dancer with beautiful fl dancer: yet still

identifying clever man with clever D man.

Operators such as 14 fl and c are just ways of building new properties (or classes)

- 105 -

out of old ones. We have not yet defined any relations between properties (those

relations may not be properties). Here we take the first step and define the following

between properties:

PCP' = (Vx)(app(P,x) -►appCP'jX))

We understand P£P' to be P is a subproperty of P\

We also define the following operation on properties, which we have not included

with the previous ones because of its distinctive status - a status which will become

clear below.

IIP = Xx.(Vy(app(P,y) -»app(y,x)))

IIP is the collection of subproperties of P. It is obvious that we should not deduce

from AP' and P£P' that AP; but if AP, do we then have A(IIP)? Well, we need to add

another condition, namely, Vy(app(P,y) —»Ay). With this new condition, things fit;

Theorem 3: If AP and Vy(app(P,y) -»Ay) then A(IIP).

Proof:

app(lIP,x) = Vy(app(P,y) -» app(y,x)); and we can show by (i>-») of Chapter

2, ft(app(P,y) ->app(y,x)) if we can show both that

(i) 0(app(P,y)) is deducible, and that

Cii) 0(app(y,x)) is deducible from assumption that app(P,y).

(i) follows from AP and Cii) follows from app(P,y) and Vy(app(P,y) -» Ay).

Hence A(nP). □

Now we start by listing some characteristics of our domain of properties. We have

already seen two of these characteristics in Theorem 2, but we shall be working with

app instead of 6 from now on. With the following theorem we reveal more of our

domain of properties,

Theorem 4:

(i) app(Xx.4>,t) & appCXx.MXt) = app(Xx.(<E>& ^),t)

Cii) app(Xx.-> 3>,t) = -> app(Xx.4>,t)

- 106 -

(iii) app(Xx.3>,t) V app(Xx.MXt) = app(Xx.(<h V UO.t)

(iv) app(Pc,t) = -> app(P,t)

Cv) app(P fl P',t) = app(P,t) & app(P',t)

Cvi) app(P U P',t) = app(P,t) V app(P',t)

(vii) app((Pc)c,t) = 1-1 app(P,t)

Cviii) {AP,AP'} I- app((P U P')C,t) = app(Pc,t) & app(P'c,t)79

Cix) {AP,AP'} I- app(PcUP'c,t) = app(Pc,t) V app(P'c,t)

(x) {AP,AP'} I- app(PcnP'c,t) = app((PUP')C,t)80

(xi) {app(P,t)} I- app((Pc)c,t)81

(xii) If fit then Vy app(Xx.t, t') -» app(Xx.Vyt, t')

(xiii) If fit then 3 y app(Xx.t, t') -»app(Xx.] yt, t')

Proof: We only prove (x) as (i)-(vii) are similar cases of /3-conversion, (viii) comes

from (x) and (v), (ix) is a particular case of (vi) and (xi) comes from (vii) and the

fact that from a we deduce 11 a. Also, (xii) and (xiii) are easy to prove.

app(PcD P'c,t) = app(Xx.(app(Pc,x) & app(P'c,x)),t)
= app(Pc,t) & app(P'c,t)
= i app(P,t) & i app(P',t)

= i (app(P,t) V app(P',t))82

and app((PU P')C,t) = app(Xx.i app(P U P',x),t)

= i app(P U P',t)

= i (app(P,t) V app(P',t))

Hence app(PcnP'c,t) = app((PUP')C,t). □

Now we come to the predication relation; if we allow app to define the predication

relation then we will face some problems related to intensionality. The problem will

79 But not necessarily {£P,AP'} I- app((Pfl P')C,t) =app(Pc,t) V app(P'c,t)
80 But not necessarily: app(PcU P'c,t) = app((PflP')C,t)
81 Not necessarily app((Pc)c,t) I- app(P,t).
82 Due to (T23) of Chapter 2 and the fact that P and P' are properties.

- 107 -

be illustrated in Chapter 5. But here I shall try to accommodate Aczel's solution to

the intensionality problem within our framework: we know that app is really

functional application as we have app(Xf,a) = f(a). So we need a distinct predication

relation which I introduce as follows: pred : Fq x Fq — > Fq, such that pred satisfies
the following axioms:

pred(a,b) app(a,b) A(app(a,b)) A(pred(a,b))
(PI)

app(a,b) pred(a,b) A(pred(a,b)) A(app(a,b))

(P2) Vx(pred(P,x) = pred(Q,x)) -+ P = Q

(P3) pred(P,a) = pred(Q,b) -»(P = Q & a = b).

Now of course we have to make sure that pred belongs to the Frege structure; how

can pred be built such that this holds? pred is built like any primitive independent

F- functional and ^pred are defined as follows:
$pred (X0'x'y) fa:: app (x'y) " ^ *0p

^pred (*0'x'y) ™: app (x'y) is m Xip
The logical schema of pred is:

If a, b are objects where app (a,b) is a proposition then pred (a,b) is in PROP

and pred (a,b) is in TRUTH iff app (a,b) is in TRUTH.

Now it is obvious that pred as defined here enables (Pi), (P2) and (P3) to hold. (Pi)

and (P2) hold because of the characteristics of app; (P3) holds because pred is built

like any other logical constant and it is primitive independent.

After introducing pred. we have to extend our terms to embody the additional

condition: If t, t' are terms then pred(t.t') is a term. Now T^ is extended to T^
where the terms are those of T^ together with the terms obtained from the new

condition; axioms are those of T^ together with (Pl)-(P3). For the remainder of this
chapter, we assume that we are working inside T^.
In any theory of predication we would like to have that (PRED) below is valid:

(PRED) (} z)(Vx)(Vy)({ A(app(x,y))} I- app2(z,x,y) =app(x,y)).83

- 108 -

Theorem 5: (PRED) is valid.

Proof:

This is seen by taking [[z]] to be Xq (pred), which is an object of the Frege
structure. d84

The following shows that the application of a property to an object is equivalent in

truth value to the predication of that property of the object. This does not however

say anything about equality.

Theorem 6: If AP then Vx(app(P,x) = pred(P,x)).

Proof:

We have to show that

Vx(app(P,x) -»pred(P,x)) and Vx(pred(P,x) ->app(P,x)).

AP = > app(P,x);

by (Pi), if we assume app(P,x) then we get pred(P,x);

hence app(P,x) -»pred(P,x).

If fl(app(P,x)) then Xl(pred(P,x)) by (Pi);

again by (Pi), pred(P,x) -»app(P,x).

Hence app(P,x) = pred(P,x).

This is for all x and so Vx(app(P,x) = pred(P,x)). □

Now it is interesting to see what would happen to the closure of our properties if we

understand the predication relation to be given in terms of pred and not app.

We start from our definition of A above. We see that it does not make any difference

if we replace app by pred. I.e. A P Vxfl (pred(P,x)) does not give anything new;

this is because pred and app are equivalent when they result in propositions.
% $

Suppose, however, that we introduce a relation 6 such that a€ P pred(P,a).
*

What would happen to theorems 1-4 if we replace app by pred and G by G ? For
83

app, is to be understood as binary application. It applies the first argument to the pair consisting of
the second and third arguments. In particular, app2(kf,a,b) = f(a,b).

84 It is also obvious that as the axiom (PRED) does not have any reference to pred then the validity of
the axiom can be proven without the functional pred.

- 109 -

theorems 1 and 3, nothing new results, since if AP then pred(P,x) = app(P,x) for any

x.

*

In Theorems 2 and 4, let us replace any occurrences of € by € , = by = and app by

pred. We combine the theorems that work for pred in one theorem, Theorem 7, and

we add the condition that AP and AP':

Theorem 7: If AP, AP' then the following holds,

(i) pred(P, t) & pred(P', t) = pred(P fl P', t)

(ii) pred(Pc U P'c, t) =pred(Pc, t) V pred(P'c, t)

(iii) pred(Pcn P'c, t) =pred((PUP')c, t)85

Civ) pred(P, t) -» pred((Pc)c, t)86

(v) pred(Pc,t) = -i pred(P,t)

Proof:

Ci)

If AP, AP' then A(P fl P').

Therefore il(pred(P flP', t)), fl(pred(P, t)) and 12(pred(P', t)).

But pred(PDP', t) = pred(\x.(app(P,x) & app(P',x)), t)

= app(P, t) & app(P', t), as A(P fl P').

Since pred(P, t) =app(P, t) and pred(P', t) =app(P', t) then

pred(P, t) & pred(P', t) =app(P, t) & app(P', t). Hence (i) is a theorem.

(ii)

AP ==> APC ==> pred(Pc,t) = app(Pc,t).

AP' ==> AP'C ==>pred(P'c,t) = app(P'c,t).
APC and AP'C == > APC U P'c == >

pred(Pc U P'c,t) =app(PcUP'c,t).

85 Not necessarily pred(PcUP'c, t) s pred((PD P')C, t), as we have: {O. t, £21'} I- ->(t V t') = -> t &
t' but not: {CI t, £21'} I- -• (t & t') = -• t V -■ t\
86 But not necessarily: pred((Pc)c, t) —»pred(P, t) ; this will only be the case if DP where DP will be

defined below.

- 110 -

But by Theorem 4 (vi), app(Pc U P'c,t) = app(Pc,t) V app(P'c,t),
hence pred(Pc U P'c,t) = app(Pc,t) V app(P'c,t)

= pred(Pc,t) V pred(P'c,t).

(hi)

AP ==> APC

AP' ==> AP'C

APC and AP'C == > A(PC D P'c) == >

pred(Pcn P'c,t) = app(PcnP'c,t).

AP and AP' == > A(P U P') == > A((P U P')c) == >

pred((PUP')c,t) = app((P U P')c,t).
But by Theorem 4, (V), app(Pc fl P'c,t) = app(Pc,t) & app(P'c,t)
and by Theorem 4, (Viii), app((P U P')c,t) =app(Pc,t) & app(P'c,t).
Hence app(Pcfl P'c,t) =app((PUP')c,t)

and so pred(PcnP'c,t) = pred((P U P')c,t).

(iv)

AP ==> H(pred(P,t))

AP == > APC ==> A(PC)C.

But by Theorem 4, (Vii), app((Pc)c,t) = -• -> app(P,t)

{pred(P,t)}

app(P,t)

i -i app(P,t)

app((Pc)c,t)

0(pred(P,t)) pred((Pc)c,t)

pred(P,t) -»pred((Pc)c,t)

(v)

pred(Pc,t) =app(Pc,t) when AP.

- Ill -

app(Pc,t) = ->app(P,t);

hence pred(Pc,t) = -> app(P,t).

But app(P,t) = pred(P,t); hence by (T24), -> app(P,t) = -> pred(P,t).

Therefore, pred(Pc,t) = -> pred(P,t). □

If AP and AP' are not assumed then the version of Theorem 7 is as follows:

Theorem 8: The following holds in T^,
(i) {pred(PflP', t)} I- pred(P, t) & pred(P', t)

(ii) {pred(P, t) & pred(P', t)} I- pred(PDP', t)

(iii) {pred(Pc, t)} I—'pred(P, t)

(iV) {->pred(P, t)} I- pred(Pc, t).
Proof:

CO

If we assume pred(PflP',t) then ft(pred(P fl P',t)),

hence Xl(app(P flP',t)) and so fl(app(P,t)) and fl(app(P',t)).

This means that fl(pred(P,t)) and fl(pred(P\t)).

But app(P,t) = pred(P,t), app(P',t) = pred(P',t),

app(PflP',t) =pred(PflP',t) and app(PflP',t) = (app(P,t) & app(P',t)).

Hence pred(PflP',t) =(pred(P,t) & pred(P',t)).

Therefore the assumption pred(PflP',t) implies pred(P,t) & pred(P',t);

i.e. pred(P fl P',t) I- pred(P,t) & pred(P',t).

Now (h), (iii) and (iV) are easy. □

A. 2. Decidable properties

Now, even if AP, we still do not have that pred(P,c) V -> pred(P,c); we therefore

define a property to be decidable as follows:

DP =cj^. Vx(pred(P,x) V -> pred(P,x))
E.g. D0; this is because Vx(pred(0,x) V -^pred(0,x)) is true as it is equivalent (in

- 112 -

terms of to Vx((x=x) V ->(x=x)). We know that x=x is always true, therefore

(x=x) V -> Cx=x) is always true and so Vx((x=x) V -> (x=x)) is true.

For V we know that pred(yx) = -■ (x=x) and so for any x, -> pred(yx) = (x=x)

which is true; therefore, Vx(pred(yx) V ->pred(yx)) is true and so Dy

As an example of an undecidable property, take: P& = \x.(x=a); Pa is undecidable for
take pred(Pa,x) = (x=a) and ->pred(Pa,x) = ->(x=a). Therefore, pred(Pa,x) V
-< pred(Pa,x) = (x=a) V -> (x=a) which we do not have a proof for and so we do not
have that P is decidable.87

a

Theorem 9: Let P be a property such that DP. Then for any t,

pred(P, t) = -i -> pred(P, t).

Proof:

(==>) We always have pred(P, t) -»-> -ipred(P, t) for any property P.

(<==)

(1) 0(-> ->pred(P, t)) because fl(pred(P, t)).

(2) pred(P, t) V -> pred(P, t) because DP.

{-• ->pred(P, t)}

{pred(P, t)} {-i pred(P, t)}

I

Xl(-> ->pred(P, t)) pred(P, t) V ->pred(P, t) pred(P, t) pred(P, t)

(3)

-■-■predCP, t) ->pred(P, t)

Therefore the theorem. □

The above theorem shows that the domain of decidable properties obeys classical logic;

the following theorem shows that this domain is closed under U fl and c.

Theorem 10: If DP and DP' then D(P U P'), DPC, D(P PI P').
87 This is mainly because equality is not decidable in the \-calculus; and we are using an intuitionistic

theory.

- 113 -

Proof:

For D(PUP'), it is enough to say that:

pred(P U P',x) V - pred(P U P',x)
= pred(P,x) V pred(P'x) V ->(pred(P,x) V pred(P',x))
= pred(P,x) V pred(P'x) V (->pred(P,x) & -> pred(P',x))
= (pred(P,x) V pred(P'x) V (-> pred(P,x)) & (pred(P,x) V pred(P'x) V -i pred(P',x))

For Pc, we use the above theorem.

The case of P D P' is done by saying that

a V a, bVib
□

(a & b) V -> (a & b)

The following theorem pushes negation inside pred in the definition of DP and shows

that for any object we cannot predicate both a property and its complement to that

object.

Theorem 11:

(i) For any P such that AP, DP = Vx(pred(P,x) V pred(Pc,x))

(ii) Vx, if Ax then [Vy[-> [pred(x,y) & pred(xc,y)]]]
Proof:

(i) If AP then pred(Pc,x) =app(Pc,x) and pred(P,x) = app(P,x);

but app(Pc,x) = ->app(P,x) and app(P,x) =pred(P,x),

hence pred(Pc,x) = -> pred(P,x).

Therefore VxCpred(P,x) V -> pred(P,x)) = Vx(pred(P,x) V pred(Pc,x));
and so DP = Vx(pred(P,x) V pred(Pc,x)).

(ii) If Ax then pred(xc,y) = pred(x,y), from above.

But -> (pred(x,y) & pred(xc,y)) = -> (pred(x,y) & -> pred(x,y)) and

we always have ->(pred(x,y) & -> pred(x,y)). □

Now before we move to our next step, we need to lay out some theorems of the

theory, the first of which is concerned with the conjunction of complements of

- 114 -

properties.

Theorem 12: For any properties P and P\ if DP and DP' then we can derive the

following in T

Ci) app(Pc U P'c, t) = app((P fl P')c, t)

Cii) pred(Pc U P'c, t) = pred((P PI P')C, t)
Ciii) app((Pc)c, t) -* app(P, t)

(iV) pred((Pc)c, t) -» pred(P, t)

Proof:

(i) (== >) We have to show that

(app(P,t) V -i app(P,t)) (app(P\t) Y ->app(P',t)) (->app(P,t) V ->app(P\t))

-i(app(P,t) & app(P',t))

In other words, we need to prove that

CaV-a) (bV-ib) (iaV--b)

-»(a & b)

This is done as follows:

(a V -ia) (bV-ib) a V ->b)

{a & b} Cl)

a b {-ia} {-i b}

I I

C V E) and - a V -■ b

I

By discharging (l)
-• (a & b)

(<==) is similar.

(ii) Now it is enough to say that

- 115 -

pred(PcUP'c,t) = app(PcUP'c,t) and

pred((P fl P')C,t) =app((PnP')C,t).

Ciii) We proved in Theorem 9 that if P is a property such that DP then

pred(P,t) = -» ->pred(P,t). We also proved in Theorem 7 that if P is a property

then pred(Pc,t) = ->pred(P,t). Hence as Pc is a property, pred((Pc)c,t) =

-> pred(Pc,t) = -> -i pred(P,t). Therefore pred((Pc)c,t) =-•-• pred(P,t).
As app((Pc)c,t) = pred((Pc)c,t) and

app(P,t) = pred(P,t) then

app((Pc)c,t) = -i -> app(P,t) and so

app((Pc)c,t) -»app(P,t).

(iV) is a consequence from the proof of Ciii) above. □

Now we define pred(P,x) pred(Pc,x).

Theorem 13:

(i) If DP then we have pred(P,x) V pred(P,x) for any x.

(ii) If DA then predCXx.A, t) = -> pred(Xx.A, t)

Ciii) For P a property, Vx-i Cpred(P,x) & pred(P,x)).88

Proof:

Ci) DP =cj£ Vxpred(P,x) V -> pred(P,x).
But pred(Pc,x) = -> pred(P,x) for any property P,

hence if DP then pred(P,x) V pred(Pc,x) for any x.

(ii) pred(Xx.A,t) = pred((Xx.A)c,t).

If DA then AXx.A) and so

pred((Xx.A)c,t) = -> pred(Xx.A,t).

Hence pred((Xx.A),t) = -> pred(Xx.A,t).

Ciii) If AP then pred(Pc,x) = -> pred(P,x);

as we have Vx-^ (pred(P,x) & -> pred(P,x)),
88 We introduced pred for those who are interested in comparing the theory that is presented here

with those theories presented elsewhere such as Feferman's and Turner's.

- 116 -

then Vx->(pred(P,x) & pred(P,x)). □

One of the basic characteristics of the theory of property ofFered here is the full

(even though weak) comprehension principle. This principle says that:

(CP) For f a propositional function, we have:

app(\x.f(x), t) is true iff f(t) is true.

As mentioned in our discussion in Chapter 1, this full comprehension principle would

lead to inconsistency if the notion of property was strengthened. This is why the

work of Turner, Feferman and others focussed on restricting the principle. The

fullness of the principle is very useful to have because, as we see, it relates the

internal logic to the external one. E.g. because from <£[t] —> T[t] and <t(t] we can derive

T[t] (if we are inside PROP) and because of (CP), we have that from pred(Ax.<l>, t)

and pred(Ax.<F —► % t) we can derive pred(Ax.T, t). Having (CP), one can make do

with just the axioms of first order logic. As we have seen, things are not so easy for

Turner; he had to provide another set of axioms for the internal logic after he got rid

of (CP). According to our theory, if we are inside PROP then we could have the

following;

pred(Ax.<I>, t) & pred(Ax.'5r, t) = pred(Ax.€> & t) and:

pred(Ax.-> <1>, t) = -> <$(t).

Now if we want a more general version of the comprehension principle, we can

introduce the following:

For any W a propositional wff open in x, (j P)(Vt)(pred(P, t) = ^t/x]);

the above principle is valid. Also we of course have extensionality:

(Vx)(Vy)((Vz)(app(x,z) = app(y,z)) -»x=y)

Now we come to our next step, that is, the truth theory of T^. Before
presenting this however we summarise what we have done so far: we built a

predication relation which is equivalent to app (inside SET). But outside SET, the

- 117 -

behaviour of pred is not known. That is we can not say what pred(P, t) is when P is

not a property. Take P to be Xx.-> app(x,x) for example, we find that app(P,P) =

app(P,P) by simple j3-conversion, but there is no way for us to say what pred(P,P)

is. This is because we did not allow /3-conversion to take place inside pred as it did

inside app. This is acceptable if we follow the view that properties are elements of

SET and that predication is restricted to those elements. One might question here

why it is that we introduce pred where we had app. It was not only because pred

solved the problem of Rajneeshee and Fondalee, but also because pred is a primitive

independent F- functional. Thus pred provides properties with the characteristics of

high intensionality; that is, if pred(P,a) = pred(Q,b) then P = Q and a = b. We then

introduced the notion of a decidable property; that is, a property which at any

moment you can decide whether it holds of some object or not.

PART B. THEORIES OF TRUTH

Now we come to build a truth operator T on our structure. The first question

that will be asked here is: why introduce T when if you can deduce A then you know

that A is true? But as Kripke (in [KR2]) and other authors on theories of truth have

stressed, self-reference occurs frequently in natural language and often this self-

reference involves the attribution of truth.

Within the present context of Frege structures the natural question to initiate our

discussion is:

What is the logical schema governing the truth predicate?

We obviously cannot take:

(l) If A is an object then T (A) is a proposition such that T (A) is true iff A is

true

as our logical schema for T. This is because the above internally defines TRUTH.

Also, if we take

- 118 -

(2) If A is an object then T (A) is an object such that T (A) is true iff A is

true,

This will not help as it will give the identity function. What about if we take the

following?

(3) If A is a proposition then T (A) is a proposition such that T (A) is true iff

A is true.

Will this help? The two operators <J>-p and Trj, should then be defined as:

<Iw, (X,x) is x is in XT p

fkrp (X,x) is x is in Xt
All this gives the impression that the way to obtain a truth theory here is to

introduce a new operator T and build T in the model. Assuming this to be the case,

we then extend the formal language T^ to T^t by adding a new constant T such
that if t is a term then T(t) is a term. What axioms should T have? The obvious one

is T(t) = t; this however would tie us to the condition that we are already in. That is,

the introduction of T is unnecessary and it is enough to deduce t. However even

though according to our account the liar sentence is not a proposition and therefore

cannot be a truth, the liar sentence disjoined with its negation is true in any classical

theory and therefore we feel the loss of something which is independent of whether

the theory is classical or intuitionistic. Therefore, what one needs is something more

than the set TRUTH that we have. Before we discuss how truth could be

implemented in a Frege structure, we must stress that the present account is very

elementary and is meant only to lay the foundation for the development of theories

of truth within the context of Frege structures. I do not claim to have provided the

final analysis. Second, I am trying to fit already existing theories of truth on the top

of Frege structures and do not wish to defend the axiom system that I present

below.89 I only use it to highlight the problems that a theory of truth faces: namely,

89 This axiom system is lifted from Turner's paper [TU9].

- 119 -

no theory can support the full Tarski biconditional schema:

T(t) <->t

We would like the predicate T to be such that from the assumption T(t) we

deduce t; but assuming t should not imply T(t). This observation is captured in (TRl)

below. Also we want to have only two levels, t and T(t) and to obtain that from the

assumption T(t) we can deduce T(T(t)); this results in (TR2) below. Again, if T(t)

and T(t —»t') then T(t'), which results in (TR3). (TR3) is the first instance where the

behaviour of T is dictated by the behaviour of the logical constants (here -»). (TR4) is

the case for V and] and (TR5) is the case for &. If we let T(->t) = -iT(t) hold then

we will get the paradox, yet (TR6) can capture negation without falling into

inconsistency. Finally (TR7) could be understood as stating that if you have good

grounds for asserting t (that is t is a theorem of T^) then T(t) must be a theorem of
the theory of truth T

T(t)
(TRl)

t

T(t)
(TR2)

T(T(t))

T(t) &T(t - t')
(TR3)

T(t')

VxT(t)] xT(t)
(TR4)

T(Vxt) TG xt)

T(t & t') T(t & t')
(TR5)

T(t) T(t')

(TR6) T(-> T(t)) = T(T(-> t))

(TR7) If I- t then T^t I- T(t)

- 120 -

B.l. Various truth theories

If we are inside PROP, no gain is obtained as we get not only (TRl)-(TR7) -

and in particular (TRl) - but also the converse of (TRl): i.e. from t we deduce T(t).

This of course will imply that the whole introduction of T inside is a trivial

matter, for not even a better expressivity is gained - this is because we obtain that

I- a is the same thing as I- T(a) and vice versa. But the matter will not be as trivial if

we are interested in discussing the truth of many sentences, even though we know

that they are compounded out of sentences which we deny to be propositions in our

theory. Let us see how various theories of truth could be built on the top of a Frege

structure.

I. Frege structures with Tarski's notion of Truth: This is essentially the notion of

Truth that we have so far in our Frege structure. According to this notion you can

only talk about the truth of a sentence in the metalanguage. Also, if you want to talk

about the truth of sentences in the metalanguage, then you have to go into a higher

metalanguage and so on... This of course leads to a hierarchy of metalanguages each of

which talks about the truth of its predecessor. Here if we want to talk externally

about truth in our structure then we introduce T, an external operator such that

T(#a) is90 true iff a is in TRUTH.

This notion of truth is the weakest notion because we need self-reference and

sentences that talk about their own truth or falsity. The first account to allow for

this was Kripke's in [KRl]; we shall see whether this account can be used to extend

Frege structures to where they can have a theory of truth equivalent to that of

Kripke's - but first, let us provide a completely predicative theory of truth which is

between Tarski's and Kripke's.

II. A predicative theory ofTruth:
90 #a is the code number of a if we assume a certain numbering.

- 121 -

We start with Tq = TRUTH

PQ = PROP
We take T^ = Tq U { T (x) : x is in Tq}

Pj = PqU { T (x) : x is in Pq}
T2 = ti U { T Cx) : x is in Tj}
P2 = P1U{ T(x) :xis inPj}

Tn = Tn-lU{ T(x):xis inT^j}
Pn = Pn-1 U { T Cx) : x is in P^}

For transfinite level co, we take T, = U„, T and P, = U , P • then for oi+l,(o nt(t) n oj n t n

(o+2,.. we repeat the above process. For ordinal a we have two cases:

either a is a successor ordinal, Le. a = (3+1 and so

T^TgUl T (x) : x is in T^}
Pa = P^ U { T (x) : x is in P^}

or a is a limit ordinal then

T = LL . T„a p <a p

P = U, . P„a p <a p

Theorem: If a <B then T CT^andP £P,j.^ a p a p

Proof: Trivial. □

Now to use the fixed point theorem we define a monotonic operator J as follows:

J:{(Ti,Pi)}i->((Ti,Pi)}i
such that

J((T^,Pp) = if i is a successor ordinal
= (^T-, U ^Pp if i is a limit ordinal.

We define an ordering relation ^ on {(T^P-)}- as follows:

- 122 -

(T.,P.) <(Tj,Pj) iff T.CTj and P.CPj
Lemma: J is monotonic; i.e. if (T-,P-) ^(Tj,Pj) then J((T-,P|)) ^ J((Tj,Pj)).

Proof: Easy. □

Applying the fixed point theorem to the operator J above we obtain a pair (T00,?00) =
JCT^P00).

The theory of Truth that we obtain is stronger than Tarski's and weaker than

Kripke's. It is stronger than Tarski's in that we can talk about the truth of a sentence

in the language itself so we can say: snow is white is true, it is true that snow is

white is true. It is weaker than Kripke's in that we remain totally predicative and use

only propositions as arguments of meaningful assertions of truths. For instance the

liar sentence: This sentence is not true (which was taken by Kripke to be

ungrounded), does not lead to any problem for us only because we refuse to assign it

a truth value as we exclude it from PROP. By doing so, we will be subject to

criticism: why should we rule out those sentences as propositions and lose the ability

to discuss their truth value? This is not the right place to defend either taking those

sentences to be propositions or refusing to do so. If one denies the status of these

sentences as propositions then the above predicative theory of truth covers them; for

even though it can continue ad infinitum discussing the truth or falsity of sentences

that are already known to be true or false (e.g. The snow is white), it cannot however

discuss the truth or falsity of sentences which are not propositions such as: This

sentence is not true. For those who prefer to go beyond predicativity to self-

referential sentences involving the concept of truth in a more embedded way rather

than the above predicative simple way, we show them briefly the problem below. If

we make the paradoxical sentences legitimate subjects of the truth predicate, we will

face the possibility of becoming inconsistent. Of course T is a predicate which applies

to any expression and so is defined for any expression, but the information it gives is

only significant when this expression is itself a proposition. However, our notion of

- 123 -

proposition is rather restricted and defined by induction on expressions involving

identity and the logical constants. To be able to build a theory of truth which gives

insight into these paradoxical sentences, and which could be compared with other

existing truth theories, we have to force the truth operator to tell us something about

some sentences (especially the paradoxical ones) which are not propositions. To do so

we start as follows:

We start first from a language Lq which has abstraction and application but no logic.
We then construct logic on top in the same way that we did for a Frege structure,

obtaining = Lq(X^,Tq), where Qq and Tq are those of the Frege structure. 91
We now take fl^a = X^a v X^(X^a) and T^a = TQayTgCTQa)). Hence for any a so far,
if we can prove TQa then a is true, if we can prove X^a and -> TQa then a is false.
We may assume we can continue in this way the construction of the various Ln, Xln,
T , and take the fixed point. However, take the Russell sentence a, then

X^a = u and TQa =u. However, aGPROP^ and aGTRUTH^, Xl^a=l and T^a=l.
So it seems that we are getting the Russell sentence to be true in every stage after

stage 1. This is something we wouldn't want to have and the above construction is

not acceptable. It seems hence that the Kripke construction is not straightforward.

There is however another account which uses the Gupta/Herzberger construction

of a theory of truth (in [GUI] and [HE4]), where the limit is obtained at a

stabilisation ordinal rather than at a fixed point. We shall follow this account next

and construct on the top of a Frege structure a theory of truth which is equivalent to

the Gupta/Herzberger theory of truth.

III. The Gupta/Herzberger notion ofTruth: By constructing a truth operator as above,

we obtain expressivity; the sets PROP and TRUTH are extended to a stage where they

contain statements about the truth of already existing statements. Our use above of

monotonicity to build the truth theory was paralleled by the way all the logical
91 Note that here we use propositions and truths whereas Kripke uses the extensions and antiexten-

sions. These two approaches however are equivalent.

- 124 -

constants were built inside Frege structures. Let us provide another theory of truth

where the process depends on revision rather than monotonicity; that is where the

concept of truth is being revised at each step.

Above, when building a weaker theory of truth than that of Kripke, we kept things

predicative so that at each stage a such that a = (8+1, we have

Ta = T^U { T (x) : x is in T^}. Hence T^CT^. □
Next, when we tried to construct a Kripke truth theory, we counted on monotonicity.

Here, we shall lose both predicativity and monotonicity in favour of the following

revision process. The crucial point is that we do not follow the Kripke construction,

and hence our external logic does not depend on Kleene's connectives but on the fully

classical ones.

We start as above with a Frege structure F which has TRUTH and PROP. We let

TRUTHq = TRUTH

PROPq = PROP
TRUTH j = J(TRUTH0)92
PROPj = J(PROP0)

Where:

T (a) is in J(TRUTHq) iff a is in TRUTHq
a & b is in J(TRUTHq) iff a is in J(TRUTHq) and b is in J(TRUTHq)
a V b is in J(TRUTHq) iff a is in J(TRUTHq) or b is in J(TRUTHq)
and so on ... T (a) is in J(PROPq) iff a is in PROPq...

Note93 here that we shall differ from the above (Kripke's truth) in that if a is in

TRUTHq then this does not imply that a is in J(TRUTHq). This means that J is not
monotonic and so we cannot apply the fixed point theorem to find the limit. There is

92 J is built below in a way that J(S) contains T(a) if a certain condition holds, contains a&b if
another condition holds and so on.

93 We can prove here that truth is closed under the logical connectives. E.g. T (a & b) is in iff T
(a) is in and T (b) is in T . We shall leave this until the construction is given more formally.

- 125 -

however another theorem we can use to find the limit of such a construction; it is the

following theorem of Herzberger (in [HE4]):

Theorem: For any model M there is an ordinal cr in the revision process based on M,

such that Mg.is a stabilisation ordinal.
We still have to explain what a stabilisation ordinal is. A stabilisation ordinal cris an

ordinal such that any element is positively stable iff that element is in TRUTH^
where an element t is positively stable iff (] a)(V/3 ^ o0(t is in TRUTH^).

The above is what should be done if the only way to obtain a theory of truth in

is by extending it to T^t. This however is not the case as we can introduce T in
T^ as follows: T(t) =^£. pred(Xx.t, x). This satisfies (TRl)-(TR7) if we are inside
PROP, as the following theorem shows:

Theorem: If fit and fit' then (TRl)-(TR7) are theorems.

Proof: Easy.94 □

94 The only thing worth mentioning here is that Vxpred(\y.t, t') —»pred(\y.Vxt, t').

- 126 -

CHAPTER 4. DETERMINERS AND QUANTIFIERS IN A FREGE STRUCTURE

We have in the previous chapter offered a few theorems about closures of

properties and classes and discussed the possible truth theories that could be

constructed within our framework. Here, we shall concentrate on both determiners

and quantifiers and prove some relevant theorems about them.

One of Montague's main achievement in PTQ (see [TH2]) was to show how a

logically adequate treatment of quantifier phrases could be systematically

incorporated into a fragment of English. A further round of investigation into the

characteristics of quantifiers and determiners was inaugurated by Barwise and

Cooper's paper [BA3], which explored the way in which mathematical results in the

area of generalised quantifiers could be applied to natural language. Since then, there

has been a copious discussion of this topic - van Benthem provides a good summary of

the main results (in [BEl] and [BE7]). In this chapter, we inquire how natural

language quantifiers might be incorporated into the framework of Frege structures.

Although we will have to leave a number of problems unsolved, we are nevertheless

able to prove some relevant theorems.

In a Montague treatment, a sentence like Every boy runs receives a translation of the

following form:

(1) (every'(boy')Xrun').

Within the framework of [BA3], we say that everv'(bov') is a quantifier - interpreted

as a set of sets (or, intensionally, as a second order property of properties), and that

every' is a determiner - interpreted as a function from sets to quantifiers. An

alternative analysis, adopted by van Benthem, treats determiners as relations between

sets. For example, (2) denotes an instance of the schema (3):

(2) every'(boy\ run')

(3) D(A,B)

- 127 -

As we will see later, (3) provides a convenient notation for expressing interesting

characteristics of determiners.

Introducing D in (3) above prepares us for the important concept of a determiner

relation, also known as the characteristic property of the determiner. A characteristic

property of a determiner is that particular set theoretical relation which characterises

this determiner set theoretically; e.g. for every', it is Q and for al it is fl^. We shall

see below what Cand are.

PART A. TWO EXAMPLES OF DETERMINERS

We start first by defining the two determiners every' and al in our framework. Let

every' =df Xx.Xy.Vz (app(x,z) -»app(y,z))
a' =df z (app(x,z) & app(y,z))

The meanings of every', al are not classes but we can prove some important theorems

about them. We need however to introduce the characteristic properties of these

determiners. We have also to show that these characteristic properties Cor for that

matter the determiners themselves) behave properly; that is when we combine things

together in the right way we get a proposition. This is shown to be the case in the

following few definitions, lemmas and theorems. The characteristic property of

every', namely Q, has already been defined as follows:

If Pp are properties,

=df Vx (aPP(pi> x) ->app(P2, x))
Lemma 1: C is a transitive, reflexive relation on properties.

Proof: Obvious. □

Now what about symmetry or antisymmetry? The relation Q cannot be

antisymmetric (we do not want it to be). As far as symmetry is concerned, all we get

is:

If PjCp^ and P2£Pj then Vx (app(Pj, x) =app(P2, x))

- 128 -

We call this equisymmetry.

Lemma 2: £ is equisymmetric on properties.

Proof: Easy. □

Theorem 1: If and P2 are properties then
(i) app2(every',Pj,P2) = PjCP2 and
(ii) ft(app2(every',P1,P2)).

Proof:

(i) app2(every\Pj,P2) = Vz (appCP^z) -»app(P2,z)) = Pj£P2.
(ii) If Pj and P2 are properties then n(app(P^,x)) and ft(app(P2,x)),
hence fl(app(Ppx) ->app(P2,x)) and so 0(Vx (app(Pj,x) ->app(P2,x))).
Therefore fl(app2(every',P^,P2)). □

We define P^ H*P2 } z (app(P^,z) & app(P2,z)).
It is obvious that P^ n*P2 is a proposition when both P^ and P2 are properties.
Another concept that we introduce here is that of an empty property. We say that a

property P is empty and write 0P iff Vz (-> app(P,z)). E.g. Vis an empty property, as

can be seen from the following proof;

x=x

-> 1 (x=x)

Vx-> -1 (x=x)

Vx-> app(V x)

0P.

Theorem 2: If P, P^ and P2 are properties then the following holds:
(i) If - 0P then 0(P U P)

(ii) If -- 0(Pj U P2) then - 0(P2 U Pj)
Proof:

(i) is trivial to prove since when P is a property, app(P U P,z) = app(P,z)

and so -> 0P = -10(P U P).

- 129 -

Cii) is also trivial as when P^, P2 are properties,
then app(P^ U P2»z) = app(?2 U P j,z). □

Theorem 3: If P^ and P2 are properties then

app2(a',PpP2) = P^ H Pj and

iKappj^P-^Pj))
Proof:

app2(a',P1,P2) =] z (app(Pj,z) & app(P2,z)). By (j3)
-Pjrfpy

If AP^ and AP2 then fl(app(P^,x)) and fl(app(P2,x)).
Hence H(app(Pj,x) & app(P2,x)) and so il(app2(a',PpP2)). □

PART B. NON INTERNAL DEFINABILITY

Outside95 SET we cannot draw useful conclusions about every' because we

cannot decide the propositionhood of an arbitrary formula in which -» is the main

connective.96 This is not a disadvantage as we only want every' to have meaning

when we are inside SET. What we cannot do, however, is to define the type of every'

or of determiners inside Frege structures. Suppose we have the following definitions:

Quant(t) =£j£ Vx (Ax -+ fl(app(t, x)))
Det(t) =^£. Vx (Ax -+ Quant(app(t, x)))97
Quant <[Vx (Ax -» iXapp(t, x)))] /t>

Det <[Vx (Ax -» Quant(app(t, x)))] /t>

Det and Quant do not internally define determiners and quantifiers because

95 Here and thereafter, we shall consider Frege structures where PROP fl SET is empty. In Chapter 5,
we shall see how such Frege structures could be constructed.

96 The reader is reminded again that a—b is a proposition in the case where a is a proposition and b is
a proposition assuming a is true.

97 Note that we could have defined it as: Det(t) = Vxy ((Ax & Ay) —» fl(app2(t,x,y))) which is closer
to van Benthem's approach in [BEl] and [BE7].

- 130 -

Vx (Ax -* Quant(app(t, x))) and

Vx (Ax -» fi(app(t, x)))

are not propositions for any t. In fact even if t is a property, we still do not have a

guarantee that Det(t) and Quant(t) are propositions.98 We can explain the problem

differently; assume we define new domains out of old ones in a Frege structure as

follows:

Fq, Prop and SET are three basic domains. For any two of these domains A
and B we let

A— >B = {a in A: for every x in A, app(a,x) is in B}

The type of quantifiers should be QUANT = SET—>PROP, and that of determiners is

DET = SET— >(SET—>PROP) = SET—>QUANT. QUANT is a non-empty subset of

SET, yet DET is empty. This is because if a is in DET then a is in SET and for every

b in SET, app(a,b) is in QUANT. Since a is in SET then app(a,b) is in PROP. But as

app(a,b) is in QUANT then app(a,b) is in SET. Hence app(a,b) is in PROP fl SET,

which is empty. Absurd.

This creates the first complication. DET should be constructed on the top of Fq even

though terms, verbs, etc.. could be inside F<r The second complication comes from the
fact since SET is not internally definable, QUANT is also not internally definable,

because QUANT CSET."

All the above is not serious as there is no particular reason for wanting

determiners and quantifiers to be internally definable.100 As everything fits together

properly, and we can prove many desirable features of our determiners, why insist on

98 This is because Ax is not a proposition.
99 Actually as it is here QUANT = SET can be easily proven. One might question the acceptability of

this, yet I have nothing to say about it.
100 Sets are not closed under function space: for take A and B to be sets, then if we define to be {f:

fE AxB & (Vx 1 !y)(<x,y >Ef)}, we then cannot show that B is a set. This can be seen as follows:
If we spell out the definition of the function space we get: {f: fC AxB & (VxfiA)G y 6B)(<x,y >6f&(V
y'6B)(-Ct,y'>ef—>y=y'))}. Now if A and B are sets then to have B a set we must restrict f in AxB to be
a set. This is related to the problem that if we have that AP and pQ" in the sense that (V
x)(app(P',x)-<app(P,x)), then we do not necessarily have that AP' as it was shown in Chapter 3.

- 131 -

internal definability? The following lemma proves inside the theory that combining a

determiner and a property results in a quantifier.

Lemma 3: {Det(Q), AP} I- Quant(app(Q,P))

Proof:

{AP}
{Det(Q)}

Vx (Ax -»Quant(app(Q, x))) From DetQ
By (VE)

AP -»Quant(app(Q,P))

AP AP -* Quant(app(Q,P))
By (-»E)

Quant(app(Q,P)).

Hence the lemma. □

PART C. THEDETERMINER "the"

The reader may now wonder why it is we only discussed every and a. This

should not give the impression that the remaining determiners are definable in terms

of the above two. In fact, we now come to the. This determiner might sound

problematic at first, as it deals with definite descriptions and we have a problem

talking about definite descriptions inside Frege structures. Not only should the be a

functional which operates on101 Fq (even though most categories take denotations
inside Fq); but also the has the problem that definite descriptions have in any Frege
structure, every, a had denotations in DET = SET— >(SET— >PROP); the however

should have a denotation in SSET— >(SET—>PROP) Q DET where SSET is the

collection of all singleton sets. Hence it appears that with the we will face more

problems than with other determiners. This is because, not only is SET neither

decidable nor internally definable, but also SSET is neither decidable nor internally

definable.

Let us take the usual translation of the:

the' = XuXv[] y [Vx (app(u, x) =(x=y)) & app(v,y)]]

Let us define for any property P, SN(P)] y [Vx (app(P, x) =(x=y))]. SN is not a

propositional function outside SET and so SN does not internally define singleton

properties. Some properties are obviously singleton properties, e.g. Xx.(x=a). For some

others however we can only tell they are single if there is some information to the

effect. We leave open the question of how this problem should be dealt with.

As mentioned before each determiner is associated with its characteristic

property. For each determiner we introduce, we have to show that if we apply this

determiner to two properties we get a proposition. As the following theorem shows,

the' has this characteristic.

101 Every determiner has this characteristic.

- 133 -

Theorem 4: If P-^ and P2 are properties then
(1) fl(app2(the',Pj,P2)) and
(2) ft(app2(then,P^,P2)).

Proof:

(1) app2(the\P1,P2) = } y [Vx (app(P1,x) = (x=y)) & app(P2,y)].
If AP^ and AP2 then ft(app2(the',Pj,P2)X
(2) app(the", Pr p2) = SN(P1)&P1Qj2-
As AP^ and AP2 then ft(SN(Pj)) and fXP-^S^ aiK* ^eELCe ft(app2(the",Pj,P2)). d102

PART D. HOW TO SHOW SOMETHING IS A DETERMINER

We shall need to define all remaining determiners that haven't yet been defined

(e.g. few), as none is definable in terms of the others; but now the whole method for

doing so should be obvious and the lack of internal definability no longer worrying.

Having determiners such as every', al and the' is one thing; being able to deduce

that every'. §1 and the' are determiners is something else. I.e. we introduced every', a'.

etc.. by equations but can we prove that Det(every'), Det(a'), etc..? Take the formula

for every':

Xx.Xy.Vz [app(x,z) -+app(y,z)];

To show that Det(every') we have to show that

Vx (Ax -» Vy (Ay -+ ft(app2(every',x,y)))).
But to be able to show the implication we need to have ft (Ax), and ft (Ay), which we

cannot assume. For this we need an extension for implication as follows:

We always have that if {a} I- b then {ft a} I- a -» b (our version of the deduction

theorem). We need that if {ft a} I- b then I- ft a -* b. Can we assert this rule? That is:

(*) If {ft a} I- b then I- ft a -»b.

102 However things are not as smooth as may seem. When we come to measure theory, some things
may not be provable inside the theory and some extra devices may be needed. The following for in¬
stance, is not provable in our theory:

If Pj and P2 are properties, PjCPj and SN(P2) and -'0P1 then SNlP^).

- 134 -

It may be claimed here that this rule leads to an inconsistency similar to Curry's

paradox because if a is Xx(fhpp(x,x)->J_J, then a is a well-formed expression.

However it is not the case that we will get Curry's paradox, for take the following

chain of deductions:

app(a,a) = fhpp(a,a) -> J by ^-conversion

app(a,a) I- fhpp(a,a) —»J from above

app(a,a) I- fhpp(a,a) obvious

app(a,a) I- J_ by MP

fhpp(a,a) I- app(a,a) —» J by DT

But now applying (*) we get: I- fhpp(a,a)->(app(a,a) -+ I)

which is not contradictory.

Note that we should not always deduce from {a} I- b that I- a-b; because if we did

then we get Curry's paradox as explained in the previous chapter. However, I am not

sure whether the deduction from {fh} I- b to I- fh—b is harmless and hence the

following theorem that every', al and the' are determiners can only hold if we

conjecture that (*) holds.

Theorem 5: Det(every'), Det(a'), Det(the'), if (*) is consistent.

Proof:

For every': We have to prove that Vx (Ax -»Vy (Ay -» fl(app2(every',x,y)))).
{Ax,Ay} I- fl(app2(every',x,y)) according to Theorem 1, (ii) above.
{Ax} I- fl(app(y,z)) -» fl(app2(every',x,y)) according to (*).
From this we have: {Ax} I- Vz [ft(app(y,z)) -» 0(app2(every',x,y))]
{Ax} I- [VzO(app(y,z))] -» fl(app2(every',x,y))
{Ax} I- Ay -> 0(app2(every\x,y))
{Ax} I- Vy (Ay -> fl(app2(every',x,y))).
Repeating the same process, we get:

I- Ax ->Vy (Ay -> fl(app2(every',x,y)))

- 135 -

I- Vx (Ax -»Vy (Ay -» fl(app2(every\x,y)))).
The proof of al and the' is similar to that of every'. □

From here we see that the theory can be strengthened in many ways: our framework

is powerful yet flexible.

PART R CHARACTERISTICS OF DETERMINERS AND QUANTIFIERS

Here we are concerned with some characteristics of determiners that could be

proven in our theory. We start with the first theorem that asserts that the result of

applying a quantifier to a property results in a proposition.

Theorem 6: {Quant(Q), AP} I- H(app(Q,P))

Proof:

We have to prove that: H (app(Q,P) from assumptions: Vx (Ax —> H

(app(Q,x))) and AP.

But {Vx (Ax -* fl(app(Q,x))), AP} I- AP, AP -» H(app(Q,P))

and {AP, AP -» fl(app(Q,P))} I- fl(app(Q,x))

Hence the theorem. □

We still cannot prove: {Quant(Q), AP, AP'} I- (app(Q,P) & PCp') -♦ app(Q,P'), but

this is not worrying as it should not always hold. The following theorem is to show

that the domain of quantifiers is closed under U, fl and c.

Theorem 7:

(i) {Quant(a), Quant(b)} I- Quant(aHb)103

(ii) {Quant(a), Quant(b)} I- Quant(aUb)104

(iii) {Quant(a)} I- Quant(ac)105

Proof: We illustrate only (i):

103

104

105

E.g. Every man and some women.

E.g. Every man or some women.

E.g. Not every man.

- 136 -

Vx (Ax -» fl(app(a,x))) Vx (Ax -+ fl(app(b,x)))

Vx (Ax -» ft(app(a,x)) & fl(app(b,x)))

Hence Vx (Ax -» H(app(a,x) & app(b,x))). □

Also the following theorem is concerned with the closure on the domain of

determiners. Now closure is in term of fl^, U^, c^.106

Theorem 8:

(i) {Det(a), Det(b)} I- Det(afljb)107
(ii) (Det(a), Det(b)} I- Det(aU^b)108
(hi) {Det(a)} I- Det(ac1)109

Where

afl^b = Xx.(app(a,x) fl app(b,x))

all^b = Xx.(app(a,x) U app(b,x))
ac* = Xx.(app(a,x))c

Proof: We illustrate only (hi).

Det(a) = Vx (Ax -* Quant(app(a,x))

= Vx (Ax -» Quant(app(a,x)c) By Theorem 7, (hi).

Hence Det(ac*). □

We would be interested in proving something in general about these determiner

relations. Let us consider monotonicity. We have two kinds of monotonicity: upwards

monotonicity and downwards monotonicity (see [BEl], [BE7] and [BA3]). These are

defined as follows, where C is a property of sets:

(upwards) If A CA' and C(A) then C(A')

(downwards) If A' CA and C(A) then C(A')

10<s We introduce the subscript '1' to make the distinction between the intersections considered.
107 E.g. many and many
108 E.g. Some or few.
109 E.g. not all, not every.

- 137 -

As an example of an upwards monotone determiner, we take a\ al is monotone in both

arguments. E.g. a. boy who sings walks entails a. boy walks. Also _a_ boy sings and

dances entails a boy sings.

Hence to show that al is upwards monotone in both arguments we need to show that

(i) app2(a',P1,P2) & -♦app2(a,,P'1,P2) and
Cii) app2(a',P^,P2) & P2S3'2 app2(a',PltP'2).

Both (i) and Cii) can be shown as follows:

For (i) :

app2(a\P1, P2) & P^CP'j =

]z(app(P1,z)&app(P2,z)) &
-♦ ^z(appCP'1,z)&app(P2,z)).

The proof of Cii) is similar.

every3 can also be shown monotone in the right argument but not in the left.110

We now consider another property of determiner relations; that is conservativity. We

say that a property of sets C is conservative if

(CONS) D(Pj, P2) = D(Pj, P2OPj), where D is the determiner relation of
C.

As an example, al and every' are conservative. E.g. a boy walks entails a boy is both a

boy and he walks. Also every man runs entails every man is both a man and he runs.

Now to show that al and every' are conservative, we have to show that for any P^
and P2 properties,

(a'coNS) p^p.^ =P1n1(P2np1).
(every'CONS) Pj 0>2 ssPjQ^nPj).

This is shown by the following two theorems:

Theorem 9: If P^ and P2 are properties then P^ fl*P2=P^ n*(P2 0 Pj).
Proof: The only thing worth mentioning here is that app(P2fl P^,z) = app(P2,z) &

110 For a clear discussion of such characteristics of determiners, the reader is referred to [BE7].

- 138 -

app(P-pz). □
Theorem 10: P^Cp^ =Pj£(P2HPj)
Proof: Trivial. □

Of course we would like the conservativity condition to hold of any determiner we

define and we would be happy if we could prove conservativity for determiner

relations as a special type of their own. It is not obvious how to do so and we must be

satisfied with proving properties about each determiner relation individually.

Now we can take the definition of properties of concepts which is given in [BE7; page

459] to be:

"determiners only dependent upon the intersection of their arguments; that is

if

CnD=AnB then D(C,D)=£>(A,B)".

Now we can prove that al has such a property. This is because the determiner

relation for al is fl* and we can prove that if CD D=Afl B then Cn*D=Afl*B.
Before closing this section, we give the following theorem which shows that every'

is a transitive relation:

Theorem 11: (app2(every',Pj,P2), app2(every',P2,P3)} I- app3(every',P^ fl P^)
Proof:

app2(every\P1,P2) & app2(every\P2,P3)=
Vz (app(Pj,z) -»app(P2,z)) & Vz (app(P2,z) -+ app(P3,z)).
Hence Vz (app(Pp) ->app(P3,z)). □

Transitivity does not hold for a'.

PART F. NO LOSS OF QUANTIFICATIONWITH FIRST ORDER THEORIES

We have said that we do not need more than two levels of quantification,

namely quantification over objects and quantification over predicates. An obvious

- 139 -

question, however, is whether we need these two levels of quantification. In this

section we shall discuss this issue and show that the semantics that we have been

following does not result in any loss of quantification. The crucial point here is the

following:

if we had two levels of quantification, one over individual variables and the other

over predicate variables then the universal quantifier clause is defined as:

(1) [[VX<KX)]]g = V<tf<&X)]]g[|a,/X]/a>
However, if we were able in a Frege structure to have higher order quantifiers, then

we would replace (l) by (2):

(2) [[VX<KX)]]g = v<[<Kx)]]g[f/x]/f>
However, our inability to do so is not problematic, since A is isomorphic to Fj, where
A is the collection of lal such that a is in Fq.
Proof:

Take the identity function from A to Fj.
This function is injective, obviously.

It is surjective because for all f in Fj, IXfl is in A and IXfl = f. □
Hence we are fine up to here. As we have shown, quantification over objects coincides

with quantification over functions. What about if we considered

(3) [[VX<KX)]]g = V<[<KX)]]g[a/x]/a>
Do we get any loss of quantification? And if we do not, is this equivalent to (4)

below?

(4) V<tWX)]]g[|a|/x]/a>
Regarding loss of quantification, we are fine as Fq is isomorphic to A.

Take I I : Fq — > A
I I is injective for if lal = Ibl then a=b by (e).

I I is surjective, obvious.

About equivalence, if app(a,x) = lal (x) then we do have equivalence. However,

- 140 -

always app(a,x) = lal (x) and therefore the two definitions are equivalent.

In summary what this chapter shows is that our theory works well for both

quantifiers and determiners; it is also simple, tidy and flexible. We have

demonstrated that even though determiners and quantifiers are not internally

definable, we can prove very useful things about them - things such as monotonicity,

symmetry, and equisymmetry that are the main concerns of workers in this area.

What we have not investigated is the cardinality characteristics of determiners and

quantifiers. We will pursue such questions in future work.

- 141 -

CHATTER 5. INTENSIONALTTY AND EXTENSI0NAL1TY USING A FREGESTRUCTURE

PART A AN INTENSIONAL SOLUTION TO PROPOSHIONAL ATTITUDES

Problems of intensionality have been central to much research in natural

language semantic, at least since the time of Frege. Kripke's possible world semantics

for modal logic has been extremely influential, and plays a major role in Montague's

extensive treatment of intensional constructions in his Universal Grammar and Proper

Treatment of Quantification - see [TH2]. Although Montague made enormous progress

in this area, the analysis of propositional attitudes has remained intractable, for

reasons that we shall briefly review.

On a Possible worlds approach, intensions are functions from worlds to extensions.

For example, the intension of a sentence is a function from worlds to truth values.

Consequently, two intensions are identical if they yield the same value for each

possible world. We call this weak intensionality. One notorious consequence of weak

intensionality is that any two logically necessary propositions have the same

intension, namely the function that yields True at each world. While this may be

acceptable if we only restrict our semantics to alethic modalities, it leads to the

well-known problem of logical omniscience (cf [HI3]) when one considers verbs of

propositional attitude. That is, we have the result that if John believes that 2+2 = 4,

then this entails that John believes that p, where p is any truth of arithmetic. This

consequence seems inevitable if we adopt weak intensionality together with the

principles of compositionality and substitutivity of co-extensive expressions. Rather

than abandoning either of the latter, we would prefer to solve the problem by using a

stronger notion of intensionality. Before showing how Frege structures can help us, let

us explain compositionality and substitutivity, and say why they create difficulties in

weakly intensional frameworks.

Compositionality is the principle that says that the meaning of any complex expression

- 142 -

is a function of the meaning of its parts; for example, the meaning of John runs is a

function of the meaning of John and of the meaning of runs and this function is

specified in advance.

Substitutivity is the process that allows us to replace a by b in <I> where a=b; so that if

the Morning star = the evening star and John dreams of the morning star then John

dreams of the evening star.111

To illustrate a problem that having both substitutivity and compositionality creates

in extensional/weak intensional logics, consider the following example:

Let <t> be John is aware that the least integer greater than x. is greater than

5000.

Let $[x/tj] be the result of replacing x in <1> by t^ = the sum of the first 100
positive integers.

(i.e. <£{x/t^] is John is aware that the least integer greater than the sum of the first
100 positive integers is greater than 5000).

Let TCxA^] be the result of replacing x in <X> by t2 = 5050.
Clearly t^ and t2 have the same extension, and therefore according to one version of
substitutivity, they should be interchangeable salva veritate. However, since x occurs

in an opaque context, we might adopt a stronger version of substitutivity according to

which two terms are only interchangeable if they have the same intension. However,

this will not help us here, since tj and t2 have the same extension in every possible
world, and thus have the same (weak) intension. Consequently, if we assume that

tix/tj] is a compositional function of the intensions of <I> and tj we are still forced to
the conclusion that <l(x/tj] has the same semantic value as <l(x/t2].
To illustrate with an easier example, take

(la) All oculist are doctors

(lb) All eye-doctors are doctors.

111 In this example, I used definite descriptions, which need a different treatment from proper names.
In this chapter I rarely touch on proper names.

- 143 -

According to both extensional and weakly intensional frameworks, both (la) and (lb)

are true and hence John believes (la) iff John believes (lb). This is again unacceptable.

Extensional approaches cannot deal with belief sentences because equality of functions

there coincides with co-extensionality. Montague's IL cannot deal with belief

sentences because equality of functions in that approach coincides with co-

extensionality in all possible worlds. Montague followed Frege in assigning to each

sentence both an intension and an extension (Frege's terms were sense and reference).

Before moving on to provide a better treatment for propositional attitudes, allow me

to discuss Frege's sense and reference as we will be using these terms quite often.

According to Frege (see [FR3]), every expression has both a reference and a sense;

the expression is said to designate its reference and to express its sense. The reference

of a sentence is its truth value, while its sense is the thought which it expresses. Frege

argued, however, that when expressions occur in certain contexts - for example, in

indirect quotation - this view has to be modified: expressions do not have their

customary reference, but have an indirect reference, which coincides with their sense.

In particular, the reference of a subordinate clause, such as that John is nice, is not a

truth value, but its customary sense, namely the thought that John is nice.112 The

question that is asked is: how are we to know when to use the sense or the reference

of an expression?

The key to this problem comes from realizing that the reference of a sentence is not

always a function of the reference of its parts. E.g. The morning star has the same

reference as The evening star, but (□ The morning star = The evening star) is false

because there is a possible state of affairs in which the evening star is not the same as

112 The area of sense/reference, intension/extension is a rich one. We have only mentioned Frege (the
father of the subject) and Montague. Other scholars provided interesting theories which deal with the
subject. Church, for instance developed a whole axiomatic system (in CH7) in which \ was used to give
the intension of a function; for both Montague and Church, intensions play the role of Frege's sense and
extensions play the role of reference. The extension of a property like nice is a set of individuals (or a
function from individuals to truth-values). The intension of nice, on the other hand, is a function from
indices to extensions. For Montague, the indices range over WxT (the cartesian product of the set of pos¬
sible worlds and possible times). One must not also forget Carnap's work in the area - see [CA2].

- 144 -

the morning star. Frege did not abandon functionality for reference but held the view

that the reference of r) depends on the syntactic context in which it occurs. If context

is ordinary then the reference of 7) is ref(r)), if oblique then it is sen(-q). For instance

if we go back to our example of oculist and eye-doctor, Frege's solution consists in

applying believe to the sense of (la) and (lb) rather than to their reference. Even

though ref(la) = ref(lb), sen(la) is not the same as sen(lb). Hence Bel(j,sen(la)) does

not necessarily imply Bel(j,sen(lb)).

Montague attempted to solve the problem along the lines of Frege, yet he built a

weak notion of intensionality which implicated that two expressions have the same

sense if they have the same reference in every possible world, and this led to

difficulties mentioned above. Another problem that should be mentioned concerning

intensionality in weakly intensional frameworks is the following which was given by

Bealer and discussed by Aczel in [AC6]:

Rajneeshee = Xx.follows(x,Rajneesh)

Fondalee = Xx.follows(Jane Fonda, x)

app(Rajneeshee, Jane Fonda) = follows(Jane Fonda, Rajneesh)

app(Fondalee,Rajneesh) = follows(Jane Fonda, Rajneesh)

Therefore app(Rajneeshee, Jane Fonda) = app(Fondalee,Rajneesh)

This conclusion might be questioned since someone could believe that Raineeshee

holds of Fonda, without believing that Fondalee holds of Rajneesh. What is the

solution? Aczel's approach consists in taking properties to be propositional functions

while not making the predication relation be functional application except when the

property is basic (e.g. green). This really amounts to adopting Leibnitz's law in belief

contexts while rejecting the following:

B<I> & (4>=^) -»BT^ where B is a belief operator.

Now the problem of intensionality mentioned above is solved if we replace app by

pred where pred is the relation defined in Chapter 3. This is because:

- 145 -

pred(Rajneeshee, Jane Fonda) = follows(Jane Fonda, Rajneesh) and

pred(Fondalee, Rajneesh) = follows(Jane Fonda, Rajneesh).

Hence all we obtain is that pred(Rajneesh, Jane Fonda) = pred(Fondalee,

Rajneesh) and believing one will not imply believing the other.

Before we introduce the problem of building intensionality out of extensionality,

let us give an informal account of how problems like the first two examples above

could be solved according to our approach. The point to our solution of propositional

attitudes is that the meaning of each sentence is a strongly intensional proposition and

that we look for the truth value only when we are interested in it. Two propositions

might have the same truth value in every possible situation but still not be equal as

objects and hence not be interchangeable in any belief context. We illustrate with our

doctor example:

Under our interpretation, we take: Vx(0(x)-»D(x)) and Vx(ED(x) —>D(x)) to be the

respective representations of the sentences (la) and (lb). Note that those two

representations are already propositions and that when we adjoin that to both

sentences it will not add anything new.

Now the truth values of Vx(0(x)-©(x)) and Vx(ED(x)-D(x)) are the same in any

possible situation, but as objects they are distinct. Therefore, to believe one

proposition is not necessarily to believe the other.

Because of the strong intensionality in a Frege structure, we face a slight problem

which, however, we can mend easily. We know that as a proposition is

equivalent to but not equal to it. Therefore, if someone knows 'F&T, it will not

follow that he knows T&O. This could be mended by postulating some axioms about

the functions know and believe, for example: K(<h&T) = K(T&4>).

Since on our approach the meaning of any sentence O is a strongly intensional

proposition, if we want to find the truth value of $>, then we have to unpack the truth

content of the proposition that it denotes. This chapter is intended to work out in

- 146-

detail the intensionality/extensionality problem and to discuss if one can build from

the strongly intensional structure that we have so far an extensional one which helps

in finding the truth value of any sentence.

As we have now achieved a stronger notion of intensionality, we may ask what

has happened to the possible worlds of Montague's approach? They can be

reconstructed in many ways:

(a) As maximal sets of propositions.

(b) As a set of models

(c) By defining Necessary, and Possible in terms of the equality relation that

already exists in the Frege structure, and studying the modal logic one obtains.

In Part D, we shall very briefly discuss how each of these approaches might be

accommodated in our framework.

In Chapter 3, we defined the operator T and said that if we can deduce T(t) then we

know that t is true. Also, we know that T satisfies the following:

TCA&B) =T(A)&T(B)

T(AVB) =T(A)VT(B)

T(VxA) = VxT(A)

With these equivalences one would wonder if it is possible to construct an extensional

structure out of the intensional one and to see the connection between the intensional

truth operator and the extensional one. However the answer is no and this chapter is

intended to explain this puzzle of intensionality; that is can one accommodate inside a

highly intensional structure an extensional one? Before we start, let me briefly

summarise the points that will be tackled:

We try to build an extensional structure out of an intensional one. This is done by

defining an equivalence relation — on the Frege structure together with both the sense

- 147 -

and the reference of any expression. This equivalence relation is the weakest that one

requires to identify two extensionally equivalent propositions. It will be shown

however that not even this weak notion of extensionality can be added to a Frege

structure as the resulting extensional structure of propositions will either collapse in a

trivial one element or is itself inconsistent. Before we explain this puzzle, we define

the —relation so that the reference of any expression (object, function or proposition)

is the —equivalence class of that expression. The sense of any equivalence class is a

particular way of computing a representative of that class. The relation —allows us to

place the denotations of groundhog and woodchuck in the same equivalence class and

so the reference of groundhog is equal to the reference of woodchuck. even though the

senses are not the same. Application and abstraction are defined on the extensional

structure, and it is shown that113 PROP/[] - the collection of all the equivalence

classes of elements of PROP - is a boolean algebra. It will also be shown that

PROP/[] collapses into a trivial one element set. Of course the reference of any

proposition is True if either that proposition or any one —equivalent to it is in

TRUTH. However we shall show that this cannot be done without resulting in an

inconsistency.

Let me emphasize that we are assuming the principle of extensionality on

functions (we build the Frege structure by starting from a model which allows for

this extensionality, e.g. as opposed to P^); in fact in the theory T^ we assumed
the principle of extensionality in the following form:

(app(a,x) = app(b,x))
(e)

a = b

Assuming this extensionality would allow us to concentrate on Fq (the collection of
objects) and to ignore the remaining Fj, F2,... This is due to the following lemma:
Lemma 1: In a Frege structure, if (e) is assumed then we always have a = Xlal.

113 Of course this is provided extensionalisation can be patched up. Le. provided we do not face the
problem will be explained below.

- 148 -

Proof: Vx, app(\lal,x) = <&pp(a,x)/x>(x) = app(a,x). Using (e), we get that Xlal = a. □

PART B. AN EXTENSIONAL STRUCTURE

It may be questioned here why we are going to construct an extensional

structure when the main aim is to show that building extensionality on the top will

result in inconsistency. This extensional structure however, is built just to illustrate

the problem. It could be viewed hence as an example of the inconsistency of adding

extensionality to a Frege structure.

We need to construct a Frege structure F = Fq, Fl,.„Fn,.... built on the top of

E^ and having certain properties; namely that PROP fl SET = 0. In E^

extensionality holds on functions, and to give the reader a clear idea of how our Frege

structure can be constructed following the techniques explained in Chapter 2, basing

things on top of E^ which is constructed in the appendix, we include the following

summary.

(1) Build E^ following the steps of the appendix.

(2) Define app and X on the top of E^ in the usual way.
Now steps (l)- (2) above still do not guarantee that PROP fl SET = 0 because we

still have not decided what PROP and SET should be built on using the logical

constants. To guarantee that we have PROP DSET = 0, we proceed as follows:

We take Bp = {1,0} C fq = E^ and Bs= { XQn f: f is in E^11- and for all x, f(x)
is in B_}.114

P

Obviously, from this construction, B HB = 0. We then take our construction of the
p s

logical constants so that PROP is the smallest set containing Bp and closed under
1. The logical constants.

2. For all n-ary functions f such that for all o in Fq11, f(o) is in PROP, the

114 1 and 0 are the elements of as in the appendix and are distinct from 1 and 0 of PROP/[]
below.

- 149 -

following are in PROP: Vf,] f.

We then take SET = {XQnf: f is any n-ary propositional function}.
Because HBs= 0, then PROP H SET = 0. Hence the following lemma.
Lemma 2: In a Frege structure built as above, PROP fl SET = 0.

The above lemma guarantees that no element is both the result of predication (of a

propositional function to an object) and of X-abstraction (of a propositional function).

Let us define an equivalence relation on F which associates with each object which is

intensional another object (which is extensional), and which to each function also

associates the extensional part of that function. We will need this equivalence

relation to talk about the intension and extension of an expression. For instance, one

feature of this equivalence relation should be:

ua = u/3 iff a =/3, where 'ua' stands for the extension of a.

Now, we start by defining an equivalence relation on Fq:
Let a b be defined as follows:

a b =df

(i) (a=b) or

(ii) (fh & fib & a=b) or

(iii) (Aa & Ab & (Vx(app(a,x)3ipp(b,x))) or

(iV) On & flb & [] a',a\b',bV

a=app(a',a") & b=app(b',b") & (Vx(app(a',x)3ipp(b',x))) & (a" =^b" Yb" =^a

Note that a b does not imply a =b. In fact a and b might be sets.

Lemma 3: is both reflexive and symmetric.

Proof:

^ is reflexive because a=a for any a, hence a=^a for any a.

is symmetric because if a=^b then
if (i) then b^a,
if (ii) then Lb & fh & (b^), hence b=^a,

- 150 -

if (iii) then Ab & Aa & Vx(app(b,x) =app(a,x))) and hence b=^a
if (iV) then flb & fh & [] b',b",a',a"/

b=app(b',b") & a=app(a',a") & (Vx(app(a\x)sipp(b',x))) & Cb"^a"Va" ^b")],
hence b=^a. □

It is more difficult to establish transitivity, and so we define the following by

induction:

= U{ <3a,b>: G c)[a==QC & c^^b]}
—n+1= —nU{ <a,b>: G c)[a—nc & c=nb]}
~= U==n"

That — is reflexive and symmetric is obvious, as — is the transitive closure of ==q.
The following lemma establishes transitivity.

Lemma 4: —is transitive.

Proof:

If a=b and b=c then] n,m a— b and b— c. If n<m then a—„b and b— c,
n m m m

therefore, a~m+jc and so a==c. □
Note that CiV) is the cause of non-transitivity of and this is what causes us to

build the transitive closure of To see this clearly, take a^b and b=^c where (iV)
holds for both. Then when we get to b=app(b',b")=app(b'j,b"G, no relation at all
can be deduced between b' and b'^ or b" and b" j.

It is extremely interesting, however, to discover what sort of extensionality one gets

from this equivalence relation; below we show the extensional behaviour of =; The

following theorem for instance, states that if f is a propositional function and if a=b

then f(a)=f(b). For example

the morning star —the evening star, hence

the morning star is the star that rises at 4.00 am —

the evening star is the star that rises at 4.00 am.

- 151 -

Theorem 1: If a—b then f(a)—f(b), for any prepositional function f.

Proof: f(a) = app(\f,a), f(b) = app(\f,b) and

[Vx(app(\f,x) ^ipp(Xf,x)) and a—b].

We conclude that app(Xf,a)=app(\f,b) by (iv) since f—f and a—b.

Hence, f(a)—f(b). □

The careful reader might produce an example which fells our aspirations concerning

intensionality. The following is such an example:

If we take a. to be groundhogCt) and b. to be woodchuck(t) where _t_ denotes a

particular individual; and if we have that Vx flCgroundhog(x)).

Vx IXwoodchuckCx)) and Vx(groundhog(x)^woodchuck(x)) then we get that

groundhog(t) =woodchuck(t). Now take f to be <Bel(j,x)/x> and assume that

f is a propositional function. Then according to the above theorem we get the

undesirable consequence that Bel(j,groundhog(t))—BelCj,woodchuckC t)).

However we assumed above that f is a propositional function and this assumption

was crucial in obtaining the undesirable consequence. One way to avoid this is to

prevent <Bel(j,x)/x > from being a propositional function. Note however that even

though we then reject VxfXBelCj.x)), we would still hope to have:

(PB) Vx(fk - flCBel(j,x)).

One way of achieving this would be by taking <Bel(j,x)/x> to be a function which

takes objects and returns objects with the special restriction that when one argument

object is a proposition, the value object is a proposition too. This is a common

construction for functions in a Frege structure and hence (PB) should be postulated as

an axiom in the formal theory.

It is now time to define equivalence inside F , nX). We define f=^g as follows:

f=^g =df Cvx(fCx) = g(x)))v (vx(n(f(x)) & fi(g(x)) & CfCx)=gCx))))
It is seen from this definition that nothing has been mentioned about CiV) or CiV') and

hence our above definition of is suitable for a framework in which either

- 152 -

equivalence relation is assumed. Also the following two theorems show that

equivalence in Fj is isomorphic to equivalence in Fq (for both senses of equivalence).
Theorem 2: f^g iff Xf—Xg; for any f, g propositional functions.

Proof:

(==>)

Assume f^g. If Vx(f(x) = g(x))

then Vx(app(Xf,x) = app(Xg,x))

then Xf = Xg and so Xf—Xg

If Vx(0(f(x)) & 0(g(x)) & (f(x)= g(x)))

then A(Xf) & A(Xg) & Vx(app(Xf,x)sipp(Xg,x))

Therefore Xf—Xg.

(<==)

If Xf = Xg then f^g.
We cannot have 0(Xf) or 0(Xg) as PROP and SET are disjoint.

If (iii) then Vx(0(f(x)) & 0(g(x)) & (f(x)= g(x)) and so f=^g
CiV) is impossible because Xf is a set and so we cannot have 0(Xf). □

Theorem 3: f— g iff Xf—QXg; for any f, g propositional functions.
The proof is the same as above. □

Now we restrict our attention to Fq and having built an equivalence relation on F0 we

see what extensional structure one can obtain on Fq, according to this equivalence
relation.

Let 1 = (a: 0a & a—T} and 0 = {a: 0a & a— J_j where T= Vx.x=x and I =

(cq=Cj);115 then we have the following theorem:
Theorem 4: PROP/[] = { 0,1} where [] is the equivalence class according to =^116

Proof:

lls Where Cq and are distinct.
116 Having an equivalence relation —on PROP, say, one writes PROP/[] the quotient. PROP/[] = { [a]

: a G PROP }, where [a] = { a' : a' 6 PROP and a' ==a} is the equivalence class of a.

- 153 -

0 = [J_l and is in PROP/[] as J_is in PROP. For the same reason 1 is in

PROP/[l hence {0,1 } C PROP/[l

Take a in PROP/[]; a = [b] where b is in PROP. Now if b is in TRUTH then

b=T and so [b] = [T] = 1, i.e a = 1. If b is not in TRUTH then as Ob, b= I

and so [b] = [J_l = 0, i.e a = 0. Therefore PROP/[] = { 0 , 1 }. D117

Note here that we are working inside the model (Frege structure) and not inside the

formal theory. This is why our non intuitionistic argument is allowed - we are

working in the model set theoretically. If we define the boolean operators #,v, I}...118
in PROP/[] as usual then we have the following theorem,

Theorem 5: For any a, b in PROP, the following holds;

(1) [a & b] = [aMb],

(2) [a V b] = [a]v[b],

(3) [a] V 1 = 1,

(4) [a = b] = ([a] = [b])

and so on.

Proof:

If a & b in PROP then [a & b] = 1 or 0. If [a & b] = 1 then a & b is in

TRUTH, then a is in TRUTH and b is in TRUTH, therefore [a] = [b] = 1 and

so C[a]#(b]) = 1. For the remaining cases, the proof is similar. □

Now we know that F/[]119 has a logic on it where PROP/[] has a boolean

structure, what about application? If we characterize application in the quotient

structure as:

(**) [f]([a]) = [fCa)],

then is this well-defined? I.e. if [f] = [g] and [a] = [b] then is [f]([a]) = [g]([b])?

Before we attempt to show that application is well-defined in the above sense, we

117 Note that this theorem is not proved constructively. We used the law of excluded middle in argu¬
ing whether b is in TRUTH or not.

118 Conjunction, disjunction and implication respectively.
119 Again F/[] is the collection of all the equivalence classes according to =i

- 154 -

need a reminder that our construction of a Frege structure made use of a fixed point,

and that for each logical operator F we had both 4>p and MTp. Since we need to use '=
which is defined in terms of in the following sense: a= b is (a-*b)&(b-*a), the

relevant logical constant is Recall that

a->b is true iff a is in PROP, and b is in TRUTH if a is in TRUTH,

is:

"
x is in Xq and y is in Xq provided that x is in X^"

where Xq is the collection of propositions and X^ is the collection of true propositions
with Xj QCq.
This observation enables us to deduce that if a= b and fh then Ob. It can be seen as

follows:

If aSb then (a->b)&(b-»a); hence from <!>_,,((PROP, TRUTH), a,b) and

<!>_,((PROP,TRUTH), b,a) we get that fh and Ob. In fact we did not need the

condition that fh.

The following lemmas are needed to show that application is defined.

Lemma 5: If Oa, Ob, aa', b^b' and a—b then a'—b'.

Proof:

fh and aa' hence Oa' and so a—a'. In the same way we get that b=b\ But a=

b, hence a'—b' by transitivity and symmetry of =•□

Lemma 6: If Aa, Ab, a=b, Vx(app(a,x)^pp(a',x)), Vx(app(b,x) 3app(b',x)) then a'—

b'.

Proof:

If Aa, then VxO (app(a,x)), hence as app(a',x)3app(a,x), we get VxO

(app(a',x)), hence Aa'. From Aa, Aa' and Vx(app(a,x)sapp(a',x)) we get that

a—a'. We follow the same procedure to prove that b—b'. From a—a', b—b',

a—b we get that a'—b'.D

Theorem 6: If Aa, Ab, a—b, c=d then app(a,c)=^app(b,d).

- 155 -

Proof:

As Aa, Ab, a—b, then Vx(app(a,x)= app(b,x)).

Also c—d hence by (iV) app(a,c)—app(b,d). □

Theorem 7: If f,g are propositional functions, and if f=^g and a—b then f(a)—g(b).

Proof:

Since f=^g, we get by Theorem 2 that Xf— Xg. Hence by Theorem 6,

app(Xf,a)=app(Xg,b), hence f(a)—g(b). □

This theorem shows that application is well-defined with respect to =5 on

propositional functions. One wonders whether application is well-defined everywhere

and not solely on propositional functions. It is not obvious how to show this due to

clause (iV). But we do not care about application outside propositional functions and

can be satisfied with this position.

Theorem 8: If Aa, Ab and a==b then pred(a,x)=pred(b,x).

Proof:

By Theorem 6, app(a,x)=app(b,x).

Also by Lemma 5, pred(a,x)==pred(b,x), this is because:

fXapp(a,x)), fXapp(b,x)), app(a,x) = pred(a,x), app(b,x) = pred(b,x)

and app(a,x)=app(b,x). □

Theorem 9: For any a, b, c sets such that a=b, we have:

(app(every'(a),c)} I- app(every'Cb), c).

Proof:

app(every'(a),c) =

Vx(app(a,x) —>app(c,x))

= Vx(app(b,x)-»app(c,x))
= app(every'(b),c). □

Note also that if we mix our structures in the following way:

(*) [f](a) = tfCa)],

- 156 -

then this is well-defined. I.e. the following holds;

Lemma 7: If [f] = [g] then for any a, [f](a) = [g](a).

Proof:

Assume [f] = [g], then for any a, either

(i) f(a) = g(a) or

Cii) fl(fCa)) & fl(g(a)) & f(a)==g(a).

If f(a) = g(a) then [f(a)] = [g(a)],

if Cii) then f(a)=g(a), Le. [f(a)] = [g(a)]. □

Note here that we mixed the types of f and a. This needs attention and anyone who

would like to use this method has to ensure that the typing fits well.

In the extensional structure, we defined functional application as [f]([a]) = [f(a)].

What about abstraction? We define Xe[f] = [\f].

Theorem 10: Xe is well-defined on propositional functions. I.e. if [f] = [g] then Xe[f] =

Xe[g] for f and g propositional functions.

Proof: If [f] = [g], Le. f^g then Xf—Xg by Theorem 2, and so [Xf] = [Xg]. Hence Xe[f]
= Xe[g]. □
We should also build application of an object to another. We define appe([a],[b]) =

[app(a,b)].

Theorem 11: appe is well-defined on classes of properties. That is, if a, b are properties

and if [a] =[b] and [c]=[d] then appe([a],[c]) = appe([b],[d]).

Proof: This is due to Theorem 6. □

In building the boolean connectives of the extensional structure above we did not

mention anything about universal quantification; it can be shown however that once it

has been defined, we can obtain the following theorem,

Theorem 12: [Vxf(x)] = IIx[f(x)] where II is the universal quantifier in the extensional

structure.

Proof: Easy. □

- 157 -

So far it is clear that the extensional structure is explicitly closed. However what we

have not shown yet is that the addition of the extensionality axioms to the system

(by =q) results in either of the following two conclusions:
1. The whole PROP/[] collapses into one trivial element.

2. This can be seen as an inconsistency in the theory.120

Now this means that one cannot build extensionality on the top of the intensional

structure. In fact this has its background in the literature: Gordeev has shown (see

[BE4], page 235) that one cannot add extensionality without making the system

inconsistent. In fact the inconsistency can be shown in our structure above by taking

the following example:

Take R= Xx(x€x = I).

and a = app(\x(x= I). I).

and b = app(\x(x= I). R€R).

Then a = (J_= Jj 6 TRUTH,

and b = (R6R) = _L_6 PROP -TRUTH.

But (R€R) because RGR = I .

Hence a=b

This implies that the whole PROP/[] collapses into a trivial one element algebra,

because 1 = [a] =[b] = 0.

120 Thanks to Uwe Monnich who drew my attention to this point.

- 158 -

PART C. THOMASON'S APPROACH

Another issue of interest concerns the relationship between the present theory

and that of Thomason in [TH4]. Thomason takes propositions to be intensional and

has an extensional truth-finding operator u: PROP — > {0,1}, which unpacks

intensionality and satisfies the usual boolean connectives.121 u is like u in MG but

Thomason does not introduce ~, though it could be constructed when possible worlds

are introduced.

With our approach, the extensional structure is built out of the intensional one and it

satisfies some nice closure properties. Even though, ~ ,Dand other connectives had to

be introduced as new constants by Thomason, and meaning postulates had to be

provided to ensure an homomorphism between propositions and truths, Thomason did

not provide a way to build a model which satisfies these meaning postulates.

Similarly, the relation between intensional quantifiers and extensional ones is

introduced by meaning postulates with Thomason, whereas for us, we have shown

that these axioms can be satisfied in a model where extensionality is built on the top

of intensionality (see theorems 5 and 12). However, because there is no model in

which extensionality and intensionality occur together in this strong sense, the

extensional and intensional models have to be separate and joined by homomorphic

functions. That is, the following two meaning postulates of Thomason

u(Vx<£) = Vxu0

U(a^a2) = (Vua2)
have to be imposed.

Not only does Thomason introduce two constants for each logical constant and

quantifier (for the intensional and extensional structures) - which is something I also

do here - but he also introduces for each verb or common noun two different names,

121 Thomason uses a 2-valued classical logic, where everything is constructed out of and type
freeness is not insisted upon although all the work can be done using constructive and type free theories.

- 159-

one standing for the intensional interpretation and another standing for the

extensional one. For instance, walk+ below is intensional and walk# is extensional.

The connection between these two verbs is again stipulated by means of a meaning

postulate:

Vxe [uwalk+(x) = walk#(x)].

According to the approach adopted here, if we take walk+ to be of type <e,p >, then

we have the result that [walk+] can be considered to be of type Fq/[] U Fq —>

PROP/[X which enables us to apply (*) and obtain the following:

Vxe [[walk+(x)] = [walk+](x)].

As well as introducing walk+ of type <e,p> and walk# of type <fe,t>, Thomason also

postulates a third constant walk' of type <«e,p >,p >,p >. Having the following

constants, walk'. walk+. walk#. John'. John+. (where John' is of type «£,p>,p> and

John+ is of type e) creates a number of possibilities for the translation of John walks

in Thomason's approach. It can be any of:

(1) walk'(John')

(2) walk+(John+)

(3) walk#(John+)

(4) John'(walk+)

(3) is of type t and so is ruled out. The remaining three should have the same truth

value and Thomason ensures this by meaning postulates; something like:

(5) Vy^'P^John'Cy) = uyOohn+)]

(6) Vy<<i'P>'P>[uwalk'(y) = uy(walk+)]
(7) Vxe [uwalk+(x) = walk#(x)]

These enable him to derive uwalk'(John') = uwalk+(John+). What about walk'(John')

and John'(walk+)? To move freely between the 4 formulae, Thomason still needs

two postulates:

(8) Vy "^'P^John'Cy) = y(John+)]

- 160 -

(9) Vy<<fe' p>'p>[walk'(y) = y(walk+)]

Using the above, Thomason can prove: uwalk'(John') =

uJohn'(Xv^ewalk'(Xz ^zCv^))). So they have the same truth value. Note that
even though formula (7) (or its equivalent) is not added as a meaning postulate but is

a consequence of (*) in our approach, it is still to be seen how formulae (5)-(6) could

be obtained here. (5)-(6) are needed because they lift (or lower) the types of walk+

and John+ (or walk' and John'). If we could write John' as XP.P(John+) and walk' as

XP.P(walk+) then (5) and (6) would no longer be needed due to X-conversion. It is a

common feature of both the approach here and Thomason's approach that John',

walk', etc. cannot be written as straightforward X-expressions in terms of their

corresponding elements of a lower level. This is because this actually reduces the

intensionality behaviour of the various constituents. We do not want for instance that

John'(v) = v(John+) but want their truth-values to be the same for every y. With

the approach that I put forward, we can find elements in the model that could be

written using X-expressions without affecting the internal definability of any type.

This will be discussed in detail in Chapter 6.

PART D. POSSIBLEWORLDS

Now we come to the issue of possible worlds and modality. There are many

ways we could deal with this issue, but let us see how to accommodate some of them

within our framework. The three we want to consider are:

A. Take possible worlds to be maximal sets of propositions and define □ in

terms of these possible worlds.

B. Take a collection of Frege structures and define □ in terms of this collection;

that is, each element stands for a possible world.

C. Define □ in terms of the equality relation using one Frege structure only.

- 161 -

Now, (A) seems to be quite hard to do while staying inside the Frege structure.

The reason for this is that maximal sets of propositions are not internally definable.

Again (C) is problematic for the following reasons:

If we take □<* a=(a=a), we can not prove things like: □(white is white). This is

because even though (white is white) = (white is white), there is nothing which

guarantees the equality between (white is white) and (white is white = white is

white). They are equivalent as propositions but not necessarily equal. We could of

course solve this problem by positing some axioms to this elfect; but this is ad hoc.

Solution (B) appears the most convenient within our framework. We just take a

collection of Frege structures, each of them standing for a possible world and then

interpret □ according to the usual techniques. By dealing with modality and possible

worlds in this way, we can dispense with our earlier definitions of ~ and u and

redefine them in terms of possible worlds. This is again straightforward and very

common in the literature.

We will not say more on possible worlds in this thesis but we finish by

summarizing what this chapter was concerned with. We started by defining two

equivalence relations which helped us illustrate that one cannot add extensionality

axioms on the top of a Frege structure. We then compared our work with Thomason

and discussed possible worlds.

- 162 -

CHATTER 6. TYPE THEORY AND THEMONTAGUE FRAGMENT IN A FREGE STRUCTURE

PARTA MONTAGUES IL

The originality of Montague's approach lies in the axiomatisation of a procedure

which maps English terms and expressions into the logical language IL. In doing

ordinary symbolic logic we intuitively translate from English to the formal language.

With Montague, we have two formalised steps: the syntactic step which translates

English into IL, (the language of typed intensional logic that Montague used), and the

semantic step which gives a semantic interpretation of IL. The interpretation thus

obtained is also an interpretation of the English fragment that was translated into IL.

The translation procedure is axiomatised in the following way: first translate the

English basic categories into IL, then with each syntactic rule of the English fragment

(English is axiomatised) associate a translation rule which translates the output of the

syntactic rule into IL. This procedure is set up so that if an expression is assigned by

a syntactic rule to a certain syntactic category, then it is mapped by the translation

rule into a logical expression of the corresponding logical type. Each syntactic category

corresponds to one and only one logical type, though we can have two different

categories associated with the same type. IL employs Russell's type theory, and thus

can be classified under the approach of restricting the language to avoid the

paradoxes. Since Montague offered his approach, most of the subsequent approaches to

natural language semantics seem to have been Montagovian. This is unfortunate -

though not because we think that Montague's approach is not worthy of attention: on

the contrary, it has made tremendous impact on the study of the semantics of

natural languages. However, in so far as it utilises type theory the approach is

problematic. We have already seen that the Montagovian approach consists of two

main components : type theory and the translation procedure. Since PTQ (see [TH2])

was developed, semanticists and linguists have been facing different kinds of problems

- 163 -

with it, which is not surprising. Some of them would perhaps claim that the defects

lie in the translation procedure - which is something I disagree with. The most

problematic issues lie in the theory of types, and that is where semanticists should

start. The translation procedure is elegant and novel and we cannot think of any

other procedure which would work better. Thus the issue first should be to elaborate

a logical theory which works better than type theory, and then to ameliorate any

difficulties with the translation procedure. Fine - but what are the other alternatives

to type theory? We have seen most of them in Chapter 1 when we studied the

theoretical problem of nominalisation. Russell's type theory was merely the first and

the weakest solution offered: as we saw there are many others. It is true that we

were talking in abstract terms in Chapter 1 and that we did not give many linguistic

examples as to why we think our Frege structures would be better suited for natural

languages; we hope that semanticists understand that as type theory was the

weakest theory that could work for mathematics, it is unlikely to be powerful

enough for the semantics of natural languages either. (This is not only because it is

weak mathematically but because it has been claimed by linguists that type theory

does not cope with certain issues.) It is straightforward to list many defects of type

theory that mathematicians complained about years ago, and to demonstrate that

they generate corresponding problems for linguistics. Take again the example of a set

that contains itself: mathematicians realised years ago that this concept was

impossible in type theory - and this is one of the reasons which led to ZF set theory.

Linguists only lately122 recognised their analogous problem: namely that they could

not predicate a property of itself. As another example, consider quantification. In

type theory, there is a different set of natural numbers at each level, and the

quantifier ranged over each level separately. The analogous linguistic problem is that

there is no way to say everything has a_ property but only: everything of level n. has

122 The reader is referred to Parsons work in [PA5] and Turner's work in [TU7].

- 164-

a_ property of level n+1. These and many other problems of type theory for

mathematics are also problems of natural language semantics based on type theory.

This does not mean, of course, that we should follow mathematics blindly - for this

might make us lose philosophical insights. For instance, it is enough for analysis to

use B-G (Bernays-Godel) set theory - but in Natural Language semantics we are also

looking for philosophical insights from the theories we use. Frege structures,

embodying as they do Frege's ideas, have philosophical motivations.

This chapter is concerned with showing why type theory in Montague's sense is

problematic for nominalisation, and then building a type theory similar to Montague's

inside our framework. The result will be that we avoid the disadvantages of

Montague's system and yet retain all the good things that type theory has to offer.

We start first by showing the inadequacy of Montague's typing in IL.

In IL, we can have a function of type <a,b > applied to an element of type a

but we can never apply a function to itself or to any other function of the same type.

The typing of any item is fixed in advance, by the syntactic and translation rules. As

mentioned already, to each category of the English fragment there corresponds a type

in IL such that all the expressions of that category are translated into logical

expressions of that type. In Montague's approach, categories are defined recursively.

A complex category of the form X/Y labels an expression that takes expressions of

category Y as arguments and yields an expression of category X. As an example, the

category IAV is defined to be IV/IV and it takes expressions of type IV, returning

expressions of type IV. Similarly, T=t/IV takes an intransitive verb and gives a

sentence. Types are also defined recursively in Montague's IL and there is a

homomorphism from categories to types. The important point to make here is that

the function f which maps categories into types always makes sure that the type of

the category built out of two old ones is higher than the type of its input; so for

example, the type of T is higher than the type of IV. It is essentially this typing

- 165 -

constraint that creates a problem for nominalisation. We illustrate this by the

following few examples.

(la). John runs

(lb). To run is fun

(lc). John is fun

(id), fun is fun.

Let us assume that in each case the predicate denotes a function which applies to the

denotation of the subject. Thus, in (la), John is of type e and runs is of type <e,t>.

Let us assume that in (lb), to run (which is syntactically built out of run) is of

type <&,t>. In (lc), it is obvious that is fun is of type <h,t>while in (lb), it must be

of type equal or higher than «e,t>,t>. This is a problem; we seem to have two

different types for is fun. Now if we take (id), we see that according to the

Montagovian approach , one fun must be of higher level than the other. Just this

simple sentence on its own creates an infinite number of fun's in the syntax. For

assume we say funQ is fun^. then we also want to say fun^ is fmu and again frn^ is

fun^ and so on. We do not have this problem with Frege structures, since
nominalised forms there take interpretations in SET, IVs are interpreted as

propositional functions, and terms as elements of Fq - and everything fits well

together because of the isomorphism between sets and propositional functions.

However, for those people who like Montague's IL, and especially its type theory, we

introduce the following typing in our framework.

PART B. A TYPE THEORYT^

Let us assume that Fq, SET and PROP constitute three basic intensional domains
where Fq is the domain of objects, SET is the domain of properties and PROP is the
domain of propositions together with the conditions that SET CFq and PROP £Fq.
Then we define other intensional domains out of those ones as follows:

- 166 -

A — > B = {a in A : for every x in A, app (a,x) is in B}

As a special case Fq — > PROP is the collection of all the unary propositional
functions (actually the nominals of these propositional functions). In fact, in a Frege

structure, (Fq — > PROP) = SET as is shown in the following lemma:

Lemma 1: In a Frege structure, SET = Fq — >PROP.
Proof:

(i) If a is in SET £Fq, then for every x in Fq, app (a,x) is in PROP, and hence
a is in Fq ~ > PROP.
(ii) If a is in FQ — > PROP, then a is in Fq and for every x in Fq, app (a,x) is
in PROP, and hence a is in SET.

Hence SET = FQ — > PROP. □
In what follows we assume we are working with Frege structures where PROP fl

SET is empty. Note that PROP — > PROP need not be empty even in the case where

PROP fl SET is empty. If a is in PROP — > PROP, then a is in PROP and for every x

in PROP, app (a,x) is in PROP. But a is not in SET, since we have no guarantee that

app (a,x) is in PROP for arbitrary x in Fq.
Even though PROP—>PROP may not be empty, we do not allow &, etc to be

objects of Fq. They are in the Frege structure, but as functionals rather than objects.
Another non-empty domain in a Frege structure is (Fq ~>PROP)—>PROP = {a in
(Fq — > PROP) : for every x in Fq — > PROP, app(a,x) is in PROP }. It is non-empty
because it contains <x=b/x>. The above domain is the domain of properties of sets

and is similar to Montague's denotation of terms.

Note that the domains defined above have the property that if A and B are domains

then (A— >B) Q A. This is the fact which will enable us to interpret nominalisation.

These domains also have the properties given by the following lemma:

Lemma 2: If A and B are domains built as above then:

(1) If A CA' then (A— >B) 2(A fl(A'—>B)).

- 167 -

(2) If B CB' then (A— >B) C(A-->B').

Proof: Easy.D

Types are defined recursively as follows:

p, e are fixed objects.

1. p is a non-empty intensional type.123

2. e is a non-empty intensional type.

3. If a, b are intensional types then <a,b> is an intensional type.124

A. The basic expressions of T^q^ are as follows:
1. For each type a, there is a denumerably infinite number of constants; Cona
is the collection of all non-logical constants of type a.

2. For each type a, there is a denumerably infinite number of variables; Vara
is the collection of all variables of type a.

3. There is also a set of functional? which take arguments in a particular type

and return values in particular types. For instance the function which takes

elements u in <e,p > and returns Xv <<fe>P ^»P ^appCv.u) is a functional which

takes arguments of type <e,p > and returns values of type <«e,p >,p >,p >. If

G is such a functional, we denote it by and we denote its

type by ME<<^ »p>p»? We do not have variables over functionals
but we have constants over them. Functionals are going to provide

interpretations for determiners, verb phrase adverbs, etc. This is acceptable

because, we have only a denumerably infinite number of determiners, verb

phrase adverbs and infinitive complement verbs and their translation will be

given in Part C. Here is a list of some of the functionals that we assume to be

in our language:

that' is the functional such that for any u of type p,

that'(u) = Xv^'P^appCv.u).
123 The notion of empty type does not occur in Montague. Yet I introduce it here as it makes things

more elegant.

- 168 -

to' is the functional such that u of type <h,p >,

to'(u) = Av<<e'p>'p>app(v,u).

ing' is the functional such that u of type <h,p>,

ing'(u) = Av<<fe'p>'p>app(v,u).
every' is the functional such that for any u of type e,

every'(u) = Av >Vwe(app(u,w) -»app(v,w)).
the' is the functional such that for any u of type e,

the'(u) = Av<fe'p>^we Voe(app(u,o)^o=w))&app(v,w).

aj is the functional such that for any u of type e,

a'(u) = Au<e'p>Av<fe,p>3we(app(u,w)&app(v,w)).
We also have a set of empty types, i.e. types <b,a> where

(1) a = b = <e,p>

(2) a = «h,p >,p > and b = <e,p > or

(3) a = <e,p > and b = <<£,p >,p >.

Note that if we have a type <a,b> which is empty, then the type <alb>need not be

empty.125 We have types where the syntactic categories such as terms, verbs,

common nouns, nominals, etc. will take translations. We also have functionals which

operate on those types. For instance every gets translated as a functional which takes

arguments from the type of common nouns and returns arguments of type terms. The

idea of restricting the type hierarchy to three layers (objects, functions and

functionals) is not novel - see for instance [CH3], page 77.

B. The syntactic rules ofT^
MEa, the collection of meaningful expressions of type a, is defined recursively as

follows:

Bl. Intensional expressions: If a and b are intensional non-empty types then

1. Each variable of type a is in MEa.
12S Note that one could do away with empty types and use a free logic instead.

- 169 -

2. Each constant of type a is in MEa-
3. If a is in ME0 and u is a variable of type b and <b,a> is a non-empty type

a

then \u.a is inME^ a>.

4. If a is in and /3 is in ME&, then app(a,|3) is in ME^ and

pred(a,j3) is in ME&.
5. If a, (i are in MEa then a=/3 is in ME^.
6-10 If $>, ^ are in ME^ then the following are in ME^;

6. -< <I>

7.

8.

9. <E> -»¥

10. O = I'¬

ll. If O is in MEp and u is a variable of any intensional type then Vu3> is in
MEp.
12. If 0 is in MEp and u is a variable of any intensional type then] u<l> is in
MEp.
13. If a is in MDE then Da is in ME .

e e

14. If a is in ME then a is in ME .

a e

15. If a is in ME . then a is in ME .

<h,b> a

16. If G& is a functional in ME<^|^)>and a is in ME& then G& Ca) is in ME^.
If a is in ME_^ ^ c>>, /3 is in ME& and S is in ME^, then we write app2(a,/3,8) for
app(app(o!,/3),8) which is in MEc.
The semantics ofT^
A model structure is a Frege structure where the constants j, m, w, etc.. in Cong -

which correspond to proper names in English - are not propositions nor sets nor

composed out of other objects using app or pred.

The set of denotations of type a is defined as follows:126
126 Notice here that we have nothing which corresponds to Montague's individual concepts, i.e. of type

- 170 -

De = F0
D = PROP
P

D
<a b > = ~~ > w^ere > ^ non-empty and a, b are intensional.

An assignment function g is a function which assigns an element of Da to each
variable u of intensional type a.

We also need a function C which assigns an element of Da to each constant of type a.

Also C assigns an F-functional of the Frege structure F to each constant functional in

Tp0j. Hence a model M is a 2-tuple <F, C>. Now we move to the semantic clauses of
T
pol

1. If a is a non-logical constant then [[a]]^'8 = C(o0.

2. If a is a variable, then [[a]]^8 = g(a).

3. If a is in MEa, u is a variable of type b, a and b are intensional and <a,b> is
non-empty, then [[Au.a]]^'8 = an element h of such that for every x in D^, app
(h,x) = [[a]]^[x/u]Ml
In the previous chapter, we defined Xe[f] to be [Af].

4. If a is in ME^ ^ > and /3 is in MEa and a and b are intensional then
[[app(a,/3)]]M'8 = app ([[a]]™*8,[[jS]]1^8).

4'. If Cab is in ME > and j3 is in ME& then

[[CabO)]]M'g = [[Cab]]M'g([[^]]M'S).128
5. If a, /3 are in MEa and a is an intensional type, then [[a = /3]]^b8 = ([[a]]^'8 =

6. If <F is in ME then [[- (F]]1^8 = _ [[<F]]M'2
Jr

7. If <F and ¥are in MEp then [[(Ffc*]]1^8 = [[<F]]M'g & M]1^8
IxT

<s,e>; e.g. take the pope to denote a function in Dg which picks out a different individual at each mo¬
ment of time. However, there are a number of articles in the literature which dispute the utility of this
type, see for instance [DOl].

127 Note that we impose on our models the very important property needed for clause 3, namely, that
the element h exists. We will have something to say about that in Part C.

128 As remarked earlier, this enables us to deal with determiners, verb phrase adverbs and infinitive
complement verbs whose denotations are not inside Fq but are functional which operate on Fq.

- 171 -

8. If $ and ^ are in MEp then [[W^]]1^8 = [[3#1,8 V M]1^8
9. If <D and ¥are in ME then [[fc-^]]1^8 = [[<1>]]M'8 ->[[¥]]M'8.

XT

10. If O and ¥are in MEp then [[Oee^]]1^8 = [[fc]]1^8 ^M]1^8.
11. If <I> is in MEp and u is a variable then [[Vu<t>]]^'8 = V <[[<h]]^'8^x/'uVx >.
12. If 3> is in MEp and u is a variable then [[} US]]™-8 =] <[[4»]]M'8[x/u]/x>.
The following theorem shows that the above semantics is well defined.

Theorem 4: If a is in MEa then [[a]]^8 is in Da- Also if C^ is in ME^|b > and is in
MEq then [[C^CiS)]]1^8 is in D. .a a O

Proof: We prove this theorem by induction on a.

Clauses 1 and 2 are obvious due to the definitions of g and C.

Clause 3: If a is in MEa and a, b are intensional then [[a]]^8^1^ is in D0 for
a a

any x in by induction. But [[Xu.a]]^'8 = h in such that for every x in

D, , app (h,x) = [[a]]^'8'-x/'u-' which is in D . Hence [[Xu.a]]^'8 is in D. ~ >D .O a O a

The proof of clause 4 is as follows:

If a is in ME<^^)> and j3 is in ME& and a, b are intensional, then
[[app(a,j3)]]^'8 = app ([[a]]^8,[[/3]]^'8), with the condition (from induction)

that

[[a]]1^8 is in D^ b > = Da " > Db and
[t/3]]^8 is in Da.

Hence app C[[q:]]^^'8,[[/3]]^*8) is in by definition of Da — >Db.
The proof of clauses 5-12 are obvious from the logical schemas of the

connectives.□

Now with our type theory Tpo^ and our typed domains inside Fq, let us see how
Montague's approach could be accommodated. There are two routes one could follow

for this purpose:

(1) Interpret the PTQ fragment of Montague inside Tpo^.
(2) Interpret IL inside Tp()j.

- 172-

We shall describe in detail the first route in the next section and avoid commenting

on the second route as we have seen in the previous chapter the difficulty of defining

sense and reference inside the Frege structure using the equivalence relation. There

may be other ways to do so but we shall not have anything to say about it here.

PART C. Interpreting FTQ in T

Now that we have the type theory and the semantics, let us interpret an

extension of the PTQ fragment of Montague inside Tp0^. This extension contains
nominalisation, present tense, and deals better with intensionality. Consider the

following syntactic categories, their translation types and basic expressions:

Syntactic

Category

e

P

T

IVInf

IVGer

IV

VP

AP

Tip

CN

TV

DET

IVInfllV

Category

Definition

primitive

primitive

p/IV

p//IV

p///IV

p/e

p//e

p///e

p////e

IV/e

TICN

Translation

Type

«fe,p>,p>

«fe,p>,p>

«fe,p>,p>

<fe,p>

<fe,p>

<fe,p>

<pl «e,p >,p»

<fe,p>

<e, <e,p»

«e,p X «h,p >,p»

«e,p X «e,p >,p»

Basic

expressions

None

None

John,Mary,Bill,Wally,ninety,heQ,fun
None

None

run,walk,talk,rise,change

None

fun,nice

that

man,woman,park,fish,pen,unicorn,

centaur,woodchuck,hedgehog

find,lose,eat,love,seek,believe,assert

every,the,a(n).

to

- 173 -

IVGerllV <<&,p >1 «fe,p >,p» ing

ele <&,e> be

Note that here we are not dealing with prepositions. Note also that the words to^ ing

and that are expressions in the syntactic categories IVInfllV, IVGerllV and Tip which

are introduced to deal with the nominalisation of verbs and sentences.

The domains

De= Fq, Dp= PROP, DIV= SET, DT= SET->PROP, DCN= SET,
Dp/p= PROP—>PROP, and DIV/ = PROP->SET,

are all subsets of Fq. By contrast, if we had postulated the domains

DIV||IV = SET—>SET, Ddet = SET->(SET- >PROP),
then they would be empty. This is seen from the following theorem:

Theorem 6: The following domains are empty in a Frege structure where PROP fl SET

is empty:129

(1) SET—>SET,

(2) SET— >(SET— >PROP),

(3) (SET— >PROP)— >SET and

(4) Every type built recursively out of the above three types using — >.

Proof:

(1) is empty because if a is in SET then for every x in SET, app(a, x) is in

SET. But, app(a, x) is also in PROP, as a is a set. Hence PROP fl SET is not

empty. Contradiction.

(2) is empty because if a is in SET—>PROP and therefore in SET, then for

every b in SET, app(a,b) is in SET, but since a is in SET,

129 Perhaps here one can prove a more general theorem; that is:
X— >Y is empty for X,Y ^ SET, where X ^ Y is defined inductively as follows:

(i) X = SET or

(ii) X = X'~ >Y and X' < SET.

- 174-

appC a,b) is also in PROP. Hence PROP fl SET is not empty. Contradiction.

(3) is empty because if a is in (SET—>PROP) such that for every b in

(SET— >PROP), app (a,b) is in SET, then as a is in SET, we have that

app (a,b) is in PROP. I.e. app (a,b) is in SET fl PROP. Absurd.

(4) is obvious. □

This implies that verb phrase adverbs, and determiners should be given denotations

outside Fq. They actually will be treated as functionals which operate over F0'
Transitive verbs however will be given denotations in Fq—>SET.

Now we start by translating our basic expressions of PTQ into Tp0j and see how
the type-raising of various items could be accommodated here. We take John first.

John translates to John' of type «e,p >,p > where John' = \u<i'P'>app(u,j). Now we

have to make sure that for any model M and assignment function g, [[John']]^^ is in

the model. I.e. we have to show that there exists an element h of D . such
«e,p>,p>

that for every x in D^ >, app (h,x) = [[app(u,j)]]M'g'-x/u-' = app(x,j). This is seen

as follows:

For any object a in Fq, we are going to construct another object t(a) in SET—>PROP
which also belongs to the structure such that for any set b, app(t(a),b) = app(b,a).

This is done as follows:

Assume a, and let = <app(x,a)/x >.

Take f' (x) to be the conditional proposition: If x is in SET, then f (x) else J_.<X o.

f is a propositional function because:

If x is in SET then f'&(x) = app(x,a) is in PROP,
else C_(x) = I is in PROP.

d.

Now if we take t(a) to be Af'a, then t(a) is in SET— >PROP
Proof: t(a) is obviously in SET because f* is a propositional function.

Moreover, for every x in SET, app(t(a),x) is in PROP.

t(a) also has the property that app(t(a),b) = f'a(b) = app(b,a) for any b in SET.

- 175-

Now take [[John']]^^ which is [[Xu.app(u,j)]]^'£ to be t ([[j]]^'^). We have to show

that [[John']]^^ is an element of D<<fe p>p> and also that it satisfies the conditions
of semantic clause 3 which defined [[Xu.a]]^'^. This is seen as follows:

[[John']]M'8 = t([[j]]M'8),
app (t C[[j]]M'g),x) = appUKj]]^) for any x in SET by definition of t.

[[appCuj)]]^^ = app ([[u]]M'^x/ul [[j]]^^) =

app Cx,[[j]]M'gCx/u]) = app (x,[[j]]M'£). Hence h of clause 3 is t ([[j]]^^).130

Of course we also translate Mary and Bill to Mary' and Bill' in a similar way to John'.

and follow the same procedure to build [[Mary']]^'^ and [[Bill']]^^.
Now we come to translate our basic expressions which belong to the syntactic

category IV. We will take IV to be the category of untensed verb phrases. We start

with run, which translates as run' of type <e,p>. In the model, we assume that a

primitive propositional function run belongs to Fj and that [[run']]^8= Xrun =

run'. Due to issues of type raising, which are a major concern of linguists, it is

interesting to ask what is the semantic effect of type raising run'. If in we define

, run" to be Xu<<k'f>>'I,>app(u,run'), then what is [[run"]]^'^ going to be?

run' = Xrun is in SET, and we construct run" in ((SET—>PROP)—>PROP)

such that app(John',run') = app(run",John'), as follows:

we take f = <app(x,run')/x> and then consider f_„„(x) to be: if x is inrun rr " run

SET then frun(x) else I ,131
run" = Xf'run is in SET and for every x in SET, app(run" ,x) is in PROP.
It is easy to show that run" is in ((SET—>PROP)—>PROP) and that for every

set x, app(run",x) = app(x,run').

Before finishing with run we introduce its extension run#= [Xrun] is in SET/[],

This same process is followed for the intransitive verbs walk, talk, rise and change.

130 One still has to show that h is unique. For this one has to extend the notion of extensionality so
that it applies to app inside each subtype.

131 This is the same process we followed for John'.

-176-

It is now the turn of common nouns. We start with man, which translates into man'

of type <e,p >, and in the model we assume a primitive propositional function man

and that [[man']]^^ = Xman. We apply the same process for woman, park, fish, pen

and unicorn. Also here, the process of constructing [[man"]]^^ is similar to that of

constructing [[run"]]^'^ above, where man" = \u.app(u,man').

Now we come to transitive verbs. We start with find. We assume in our model the

existence of a primitive binary propositional function find, find translates into

Tr(find) of type <t, <fe,p», where Tr(find)=AueAveapp2(find',u,v). [[Tr(find)]]^^ is
in Fq—>SET, because find is a binary propositional function in the Frege structure,

2
hence, Aq find is in SET and it is also in Fq—>SET. This is because for every x in Fq,

2 9

app(A.q find,x) is in SET, as for every y in F0' app(app(AQ find,x),y) =

aPP2(XQ^find,x,y). Now we can show that [[Tr(find)]]*^'^ = XQ^find satisfies
semantic clause 3.

In the same way we get the translations of lose, eat, love, seek. We will leave be for

now and work through some examples.

We have already introduced the category IV of untensed verb phrases. Tense

verb phrases are assigned to a distinct category VP. For some discussion, see [CH3].

Tense Rule S,
tns

If a is in Bjy, then Ft(a) is the present tense third person singular form of a.

and is in MEyp.
Translation rule T{ns:

If a is in Bjy and a translates to a' then Ft(a) translates to Axpred(a',x).
Hence walk in Bjy translates as walk' and walks translates as Axepred(walk',x).
Next we need the following rule of functional application:

Subject-predicate rule S^:
If a is in Pp or in Pjyjnp or in PjyQer and S is in Pyp then F^(a,S) is in P^
where F^(a,8)=aS.132

132 Of course in a more serious fragment we would find a way to avoid this disjunction.

- 177 -

Translation rule T^:
If a in Prp or in Pjyjnf or i11 PjvGer an<* ^ ^ ^VP anc* a' ^ translate i11*0 «'»S'
respectively, then F^(a,S) translates into app(a',8').

For example, John walks translates into app(John',Xupred(walk',u)) =

app(Xuapp(u,j),Xupred(walk',u)) = app(Xupred(walk',u),j) = pred(walk',j) and

[[pred(walk',j)]]^'£ = pred(Xwalk,j). In order to determine the reference of John

walks, we have [[upred(walk',j)]]^'£ = [[[pred((walk',j)]]^'^]

= [pred(Xwalk,j)] = [app(Xwalk,j)], as app(Xwalk,j) —pred(Xwalk,j)

= appe([Xwalkl [j])
= appe(walk#,j)
with the assumption that the representative of [j] is j.

If we wanted to look for [[" upred(walk',j)]]^^, it is
Sen([[upred(walk',j)]]^'S) = SenC app(walk#,j)) and we cannot go any further.

Now we give the following rule:

Determiner-noun rule

If S is in P-picn and | is in Pq^> then F2(8,|) is in P-p where ^2^,0 =

and S' is S except if S is a and the first word in | begins with a vowel, then 8'

is an.

Translation rule T^
If 8 is in P^icn anc* £ ^CN'an<^ ^ translate as f respectively, then

F2(S,|) translates into 8'(£).
Before we illustrate with examples, we need to give the translations of the

determiners. We start with every:

every translates to every' and

[[every']]^'^ is that F-functional such that for any a in Fq,
[[every']]M'g(a) = [[Xv^'P>Vwe(app(u,w)-app(v,w))]]M'g[u/a]

which is an F-functional according to the explicit closure condition on a Frege

- 178 -

structure. Now [[Av^'P>Vwe(app(u,w)-»app(v,w))]]"v^U//x-' is an hx in

D«e,p>,p>such that for every y * D<*,p>
app(hx,y) = [[Vwe(app(u,w)^pp(v,w))]]M'^u,/x^v'/y-' = V <app(x,z)-*app(y,z)/z>
Similarly, a_translates to aland

[[a']]^£ is that F-functional such that for any a in Fq,
[[a#«(a) = [[Av^'P^we(app(u,w)&app(v,w))]]^[u/x]/x>

Now we come to the, which translates to the' and

[[the']]^ is that F-functional such that for any a in Fq,
[[the']]^2(a) _ [[\v<i'P:>Gw-e[Voe(app(u,o)3(o=w))&app(v,w)]]^'^u^a-l

Lemma 3: [[every']]^®, [[a']]^'£ and [[the']]^'& are F-functionals in the Frege
\

structure which when given elements in SET return elements in SET—>PROP.

Proof: That they are F-functionals is obvious.

Take a in SET, [[every']]^£(a) = [[Av<a'P>.Vwe(app(u,w) -appCv.w))]]^^11^
= ha in D<<fe)p>jp>such that for every y in D^ ^ app(h&,y) =
Vz(app(a,z)->app(y,z)). IfyisinD<fep> = SET then app(y,z) is in PROP and as
app(a,z) is in PROP then Vz(app(a,z)->app(y,z)) is in PROP. Hence, [[every']]^'^
takes elements in SET and returns elements in SET—>PROP. The same proof applies

to [[a']]M'§ and [[the']]M'S. □
For example: every man translates to

every'(man') = Av^'P^V we(app(man',w)-»app(v,w)).

[[every'(man')]]^'^ = [[every']]^'^([[man']]^^) = h such that for every y inman

D<a,p>' app^man'y^ = vz(app(man,z)^app(y,z)).
every man talks translates as

appCAv^'P^V we(app(man',w)-<app(v,w)),Aupred(talk',u)) =
V we(app(man',w)->app(Aupred(talk',u),w)) =
V we(app(man',w) -<pred(talk',w))

[[every man talks]]^'& = Vx(man(x)-»pred(Atalk(x)).

- 179 -

The treatment of conjunction is the same as with Montague, hence we omit discussion

of it.

Transitive verb rule S^:
If S is in P-py and (3 is in Pp then F^(S,/3) is in Pjy where F^(S,/3) = S/3 if /8
does not have the form he_, and F-(S,he) = Shim .n j n n

Translation rule Ty
If S is in P-py and (3 is in Pp and if S translates to 8' and (3 translates to f3'
then Fj(8,j8) translates to appCS',/3').

We illustrate here how transitive verbs combine with other constituents to result in

sentences. For instance: Mary finds John. First, find John translates to:

app(A.ue\veapp2(find',u,v),John') = Xveapp2(find',v,John').
Mary finds John translates as:

app(Mary',Xupred(Xveapp2(find',v,John'),u)) =
app(Xupred(Xveapp2(find',v,John'),u),m) =
pred(Xveapp2(find',v,John'),m) =
app2(find',m,John')

Mary finds John gets in the model the denotation: app2(find, m, [[John']]M'S)
Note that even though the formula Tr(Mary finds John) was reduced to contain only

m instead of Mary, this formula could not be reduced so that John' is replaced by

Following Montague, this is what will enable us to distinguish between de-re/de-dicto

readings of sentences. Take the sentence Mary finds a unicorn.

a unicorn translates as : a'(unicorn') =

Xv ^'P >jwe(app(unicorn',w)&app(v,w)).
5* Xv<fe'P>^we(app(centaur',w)&app(v,w)) which is the translation of

centaur.

The extension of the above two expressions are empty sets for Montague. According to

our approach, a_ unicorn walks entails there is a_ unicorn. This is because a. unicorn

- 180 -

walks translates as

appCXv^'P "^w^appCunicorn',w)&app(v,w)),\upred(walk',u))) =

]we(app(unicorn',w)&app(v,w)),pred(walk',u)).

We would like to make sure that this inference is blocked in the case of John seeks a

unicorn, yet goes through in the case of John finds a unicorn.

Here is how this is done: We invoke Montague's meaning postulate (4), pl63 of PTQ

(in [TH2]). In our notation, Montague's MP(4) looks like:

(MP4) }S<fe'<fe'p>>VxeVy<<i'p>'p>Iapp2(a!,x,y) = app(y,app(S,x)],
where translates as TrCfind). Tr(eat). Tr(kiss). etc. And if a is

Tr(/3) then S is written as /3*.133

This should combine with the translation of Mary finds John to yield the equivalent

app(app(find*,m),j) = app2(find*,m,j).
We will still owe some explanation of the typing of the constituents of MP4.

app(a,x) is of type <e,p > and hence can be applied to y of type «e,p >,p > (which is

also of type e). app(app(a;,x),y) = app2(a;,x,y) is of type p. Also, app(S,x) is of type
<e,p>and app(y,app(S,x)) is of type p.

For the sake of uniformity, we treat nominalised verb phrases and sentences as

having the same type as term phrases of type «fe,p>,p>. This has the consequence

that they can occur in subject position without requiring any change to the type of

tensed verb phrases.

We need the following rule:

Infnitive rule Snomf-
If a is in MEjy, then Fnomj(a) = to a is in MEjyjnf

Translation rule T

If a is in MEjy and a translates as a' then Fnomi^a) translates as to'CcF).
to translates as to'.

133 j\j0te that one still needs to show that there exists a model for (MP4).

- 181 -

Hence to run translates as: Xv<<fe'P>'P>app(v,run').
Now we deal with gerunds:

Gerundive rule ^nom2
If a is in Bjy, then Fnom2(a) = «ing is in MEjVGer.

Translation rule ^nom2
If a is in Bjy and a translates as a' then Fnom2^Q!^ translates as

Xv«e'P>'P>app(v,a').
Now it seems that to and ing have the same eifect. Yet the difference is that Snom2
applies to Bjy only, whereas SnQmj accepts any IV. For instance, one can say:

To run and talk is tiring, which is the same as To run and to talk is tiring.

Yet for gerunds we have only one way of saying it. That is:

Running and talking is tiring.

Now we come to self-application. Let's say that fun belongs to two categories, namely

T and AP (adjective phrase), and that be belongs to category e/e.

If fun is in Brp then Tr(fun) = Xx^'P'appCx.fun')134
If be is in Bg2e, then Tr(be) =Xxex
If fun is in B^p, Tr(fun) = fun' of type <e,p>.
be fun in PIV translates as app(Xxx,fun') of type <fe,p>.135
to be fun in P|VTnf translates Xx^'P^" app(x,fun')
is fun in PVP translates as Xzepred(app(Xxx, fun'),z) = Xze pred(fun',z) of type

<£,p>.136

to be fun is fun translates as:

app(Xx ^»P 'appCx.funO.Xz^redCfun'.z)) =
app(Xzpred(fun',z), fun') =

134 This is acceptable because fun' is in <e,p >, and thus fun' is in e according to B1.16.
135 Note that we could apply be to fun of type <e,p> as fun is also of type e. The result of app(\xx,

fun') is fun' of type <e,p >.
13« Note we are dealing with tensed and untensed verbs. Basic untensed verb phrases (e.g. to be

happy) and Gerundive (untensed) verb phrases (e.g. beine happy). The tensed verb phrases are: is happy,
are happy etc..

- 182 -

pred(fun',fun').

As it is seen from above, we have succeeded in getting nominalisation and self-

application to work. Also, being fun and fun (as a member of Prp) get the same

translation as to be fun, we get the same translation when they occur as subjects of

the predication is fun.

Now we come to the translation of that:

Sentence nominalisation

If a is in ME then F.. ,(a) = that a is in
p that <<fe,p>,p>.

Translation rule

If a is in MEp and a translates as a' and that translates as that' then that a
translates as that' (a').

That translates as the functional that'.

Note that since p£ e, we do not have any problem with typing. For instance, John

runs translates as pred(run',j) and that John runs translates as: Xv^'^appCv,
pred(run',j)).

Now, pred(run',j) is of type p, hence it is of type e and so we can apply v of type

<h,p>to pred(run',j).

Mary believes that John runs translates as

aPP2^believe',m,Xv <fe'p ^ppCv,pred(run', j)))=
app(app(believe',m),Xv<fe'^>app(v,pred(run',j)))= by (MP4)

app(app(believe',m),pred(run',j))=

aPP2^believe',m,pred(run',j)).
The following section illustrates few more examples of translating English sentences

into Tpol.
woodchuck translates as woodchuck' of type <e,p>,

a woodchuck translates as

Xv^'P^xfappCwoodchuck',x)&app(p,x)] of type «fe,p>,p>or

- 183 -

be a woodchuck translates as

Av^'P^xfappCwoodchuck',x)&app(p,x)] of type «fe,p>,p>

is a woodchuck. translates as

Az^redCXv^'P^xfappCwoodchuck',x)&app(p,x)],z) of type <<e,p>,p>

wally translates to wally' of type «e,p>,p>.

wallv is a woodchuck translates as

pred(Av<e'P>3x[app(woodchuck',x)&app(p,x)],w')
that wally is a woodchuck translates as

Au '^ppCu.predCAv ^xfappCwoodchuck',x)&app(p,x)],w'))
John believes that wallv is a_ woodchuck translates as

app2(believe', j,Au >app(u,pred(Av ^xfappCwoodchuck',x)&app(p,x)],w'))) =
aPP2(believe', j,pred(Av ^xfappCwoodchuck',x)&app(p,x)],wO).
Mary finds a unicorn translates as

pred(Aueapp2(find',u,Av <fe'p>]we(app(unicorn',w)&app(v,w))),m)=
app2(find',m,Av<fe'P>]weCapp(unicorn',w)&app(v,w))) =by (MP4)
appCAv^'P >3we(app(unicorn',w)&app(v,w)),app(find*,m)) =
]we(app(unicorn',w)&app(app(find*,m),w)) =

]we(app(unicorn',w)&app2(find*,m,w)).
Now we come to discuss why believe is of type <fe, <e,p». This is to enable us to deal

with all the following sentences:

(1) Mary believes John.

(2) Mary believes John runs.

(3) Mary believes that John runs.

Both John and that John runs are of type M&p hence the typing of believe works for
those two cases, believe also works for John runs because the type of the latter is p

and hence it is e.

Validity ofLeibniz' law: We cannot deduce that if

- 184 -

app2(believe',j,pred(\v<i'p =>}x[app(woodchuck',x)&app(p,x)],w')), then
app2(believe',j,pred(Xv ^xfappCgroundhog',x)&app(p,x)],w')).

This is because app(groundhog',x) is not equal to app(woodchuck',x), even though

they both have the same truth value. Hence we haven't invalidated Leibniz' law.137

137 We have omitted discussion of the validity of existential generalisation out of opaque contexts.
That is, we would like to see whether from John believes f(a), we can deduce that there exists an x such
that x=a and John believes f(x). In other words:

J believes f(a) I- x=a & lx(j believes f(x).
We shall say something about this in future work.

- 185 -

CHATTER 7. SUMMARY AND COMPARISON

We have provided in this thesis a new approach to semantics using Frege

structures. The first chapter explained two problems of nominalisation which, along

with intensionality, provided the motivation for the thesis.

The oscillation of previous accounts between restricted comprehension and many

valued logics, and the problems concealed by this oscillation (full quantification and

property existence problems), awakened considerable curiosity as to what properties

we could have: what should we quantify over and what should be nominalised?

Similarly the large number of attempts at solving the problems of the propositional

attitudes aroused curiosity as to how much intensionality one should have. How

could intensionality be accommodated and how could extensionality be restored from

such intensionality if the latter was to be considered basic? Finally the interesting idea

of accommodating types (intensional and extensional ones) in this type free highly

intensional language could not be missed.

There are many other interesting topics that could be accommodated within the

present framework - topics I intend to address in future work. Among them are the

study of temporal logics in Frege structures. It certainly seems that accommodating

temporal logics based on events (such as Kamp's in [KAl]) is most convenient in a

framework using Frege structures. Also it is straightforward to implement other

systems of time (such as McDermott's work in [MC3]) in Frege structures if one

considers a collection of Frege structures, each of them corresponding to a point in

time. However, I do not have any comments on how to implement a theory of times

based on intervals (such as Allen's in [AL2] and [AL3]) as I am not sure how this

could be done as even though points could be gathered into sets, we know that those

sets may not be defined.

Leaving temporal logics and coming to non-monotonic logics, Frege structures

- 186 -

from the point of view of self-reference seem to have some advantages over other

non-monotonic approaches which have to refer to metalanguages to deal with self-

referentiality. All these fascinating areas could be studied within the present

framework and we shall do so in future work. For now however, let us end this

thesis by showing the difference between the treatment of quantifiers in Scott domains

and Frege structures and finally summarizing a few advantages of the present

framework.

PART A. QUANTIFICATION

Both semanticians and computer scientists share an interest in quantification. I

have referred to the topic quite often throughout this thesis and would now like to

show the foundational difference between quantification in a semantics using Frege

structures and that in a semantics using Scott domains. This point is a major issue for

those interested in the semantics of either computer or natural languages and who

base their work on Scott domains. The quantification problem that faced Turner (in

[TU2]) can be described as follows: Assume a language which has both objects and

functions and assume that wffs are built out of other ones using &, V, V, j,... If the

model is a Scott domain EM then there is no problem interpreting anything which is

not a quantified sentence, as the interpretations of all such things are continuous

functions and hence belong to the model. Let us choose the following interpretation

for the quantifiers V and]

[[Vx0]]gwt =
1 if for each d in D, [[0Hg[d/x]wt= 1
0 if for some d in D, H0]]g[d/X]wt= 0

I otherwise

[Nx0]]gwt =
1 if for some d in D, [[«^>]]g[cl/x]wt= 1

- 187 -

0 if for each d in D, tt0Bg[d/x]wt= 0
I otherwise.

Then the following is a proof of the continuity of the quantifier clause for V. Assume

by induction that we have [[0]] is continuous where <f> does not involve quantifiers. To

prove the continuity of [[Vx<£]] (i.e. to prove it in [ASG— >[S— >EXT]] where ASG is

the collection of assignment functions, S is the collection of states consisting of

worlds and times and EXT is the extensional domain of values), we prove it

continuous separately in each of its arguments, according to a theorem we proved in

appendix I. Let us prove the continuity of [[Vx0]] for g in ASG. Take an w-sequence

(gn)n anc* Prove that:

[[v^]]lVrt= U[[V*«]]gnW,
Assume [[Vx^]]^ wt = 0 <==>ton

GdeD)([[0]]^[d/x]wt = o) ^=>
G d €D)(uMgjd/x]wt = 0) <^=>
(3 d€D)G n€wX[[0]]g [d/x]wt = 0) <=
Gn€wXi d€D)([[0]]g [d/x]wt = 0) <=
G n€w)([[Vx<£]] = 0) <==>

^n

U[[Vx0]]gnWt = O.

by definition,

by induction,

by the structure of BOOL,

<==> by logical laws,

> by definition,

by the structure of BOOL,

Assume [[Vx^]]^ wt = 1 <==>"n

(Vd€DX[W]%[d/x]wt-l)

= 1 <==> by definition,

by induction,

(] n£wXVd€D)([[<£]]g [d/x]wt = 1) <==>by definition,

- 188 -

Therefore [[Vx0]] is continuous. □

Note that this interpretation of quantifiers is abandoned later by Turner (in [TU4]

and [TU5]) and he decided to adopt the following clauses instead:

"Vx<^gwt=
1 iff for each dGE^- UEq, [[<£]]g[d/x]wt = 1
0 iff for some dGE^- UEn, [[0]]g[d/x]wt = 0
J otherwise

& * x^]]gwt=
1 iff for some aGE^- UEn, [[0]]g[a/x]wt = 1
0 iff for each aGE^- LEn, [[0]]g[a/x]wt = 0
I otherwise

Of course working with Scott domains, you have always to check for continuity and

this is the case with the new clauses. It can easily be proved that continuity does in

fact hold and so we can still think of Scott domains as models.

We now describe the problem which made Turner move from the first definition

of quantifiers to the second one. By adopting the first definition, we had:

- 1 Iff (Vd In D)C[[0]]g[d/x]wt - 1)
As [[0]] is continuous, therefore monotonic and as uQl (where, as noted above, u is

the undefined) for each d in D then we get:

(Vd in E>)C[[0]]g£d/xjwt - 1) iff [[^]]g[ll/x]wt - 1.
This clause has serious consequences. I shall illustrate this by taking in the formal

language an element u' which names u. I.e. [[u']]gWt =u always. Now see what
happens if we take cf> to be: x=u\ Applying the above clause we get:

[[x=U']]g[u/x]wt = 1 iff (Vd in D)([[x=u'%d/x]wt = 1}
which implies:

u=u iff (Yd GD)(d=u).

- 189-

That is absurd. We have to do something about this and the first solution that one

thinks of is to exclude the undefined element from the quantifier clause. Therefore,

instead of letting d range over all of D, we let it range over D* (i.e. D-{u}). But now

Scott domains can no longer be models under this interpretation, for we no longer

have [[Vx0]] is continuous. If we go back to the proof of continuity given above, we

see that we had to use the undefined element in order to prove continuity. Turner,

realising this, exploits an important aspect of the structure of Scott domains. We

explained in Chapter 1 the existence of finite and infinite elements in and said that

for each element d of E . d is the limit of (e)„ where e„ belongs to E„ and each E„cd nn n°n n

is the domain of finite elements. The infinite (or ideal elements) are those which are in

Em- UE^. By restricting the quantification over these ideal elements only, we can

prove again the closure of Scott models. Although Turner's trick is very clever,

unfortunately it does not work. By so restricting quantification, only infinite elements

can be quantified over and finite elements are ignored. This is unsatisfactory as is

illustrated in the following example:

Take the sequence given by Turner,

(i) John is fun

(ii) John runs

(iii) To run is fun.

We can agree with Turner that is fun and runs should both be infinite elements, to be

able to apply them to everything in the domain especially their nominals. But if we

take 4> to be x is fun and apply Turner's quantifier clause for V where [[Vx</>]] = 1, we

get: for each ideal element d, fun'(d) which means that we can only quantify over

those ideal elements. But John, Mary, one's Table and so on are finite elements - how

can we quantify over them? In [TU3], Turner makes the domain of individuals A a

basic domain and builds all other domains out of superclasses of A. This restriction of

quantification to the ideal elements makes us lose the power of ascribing properties to

- 190 -

our individuals and prevents quantifiers like every from having any of their usual

natural language interpretation.

Having seen that this solution to quantification in Scott domains is unsatisfactory,

why is it that Frege structures do not have this problem, even though they themselves

can be built on top of a Scott domain? It is because Scott domains themselves do not

have any logic on them. Turner tried to incorporate a logic (and in consequence an

interpretation of all the connectives) by attaching Kleene's three-valued logic to a

Scott domain. In a Frege structure on the other hand quantifiers and other

connectives are built inductively step by step so that at the fixed point one gets all

these logical constants.

PART B. FURTHER ADVANTAGES

Now we assess further the advantages one obtains with Frege structures. We

start with type freeness and the fact that SET is isomorphic to Propositional

functions Fn
— >PROP and that SET Q Fq. Also, we have the two following

functionals in a Scott domain:

I \t : SET — >PF1
X : PF1-- > SET.

If we assume that the interpretation of verbs takes place in F. for i^ 1 and thus that

[[walk]] is in F^, then we get:

[[to walk]]^ = X.[[walk]]g
Now it is straightforward to interpret things like to walk hurts, for:

[[to walk hurts]] = [[hurt]] ([[to walk]])
o o o

= [[hurt]]g(\.[[walk]]g).
The advantage of what we just offered lies in the elegance of classifying the

denotation of our items. With Montague's and Turner's approaches, one has always to

check whether the denotation of an item is in the right domain. With our approach,

- 191 -

we do not need to check whether [[to walk]] is in FQ or not using some confusing
o

domain equations. All we had to say was that [[walk]] is in F.; therefore X[[walk]]
O O

is in Fq. This actually seems to be an encouraging advantage about Frege structures:
nominalisation is a natural process inside the Frege structure. It also seems that we

have real application, unlike in Scott domains where application is only through the

isomorphic embedding. This is because instead of interpreting things as above into F^,
for i^ 0, we can restrict everything to Fq. We did this in the previous chapter and
obtained that

[[fun is fun]]^ = pred ([[fun]]g,[[fun]]g)
Therefore it seems that by using Frege structures we get the following advantages

over Scott domains,

(1) Real self application

(2) No cumbersome checking for the right typing

(3) No redundant semantic types

(4) Nominalisation seems to flow naturally

(5) Quantification

For the sake of completeness, we mention a new approach to a theory of properties

proposed by Turner (in [TU9]) which abandons completely the use of Scott domains.

Turner's new theory is one which starts from Frege's comprehension principle and

restricts it in such a way that the paradox is no longer derivable. Turner starts with

a first order theory which has a pairing system and adds to this theory a new

operator p (to serve as the predication operator) together with the lambda operator.

Then in this case, if one assumes full classical logic and Frege's comprehension

principle, one will certainly derive the paradox;

for, take a = \x.->p(x,x),

p(a,a) <->-i p(x,x)[a/x]

<- > -i p(a,a). Contradiction.

- 192 -

Of course, the problem does not come from contraction, i.e. p(Xx.A,t) -» A(t,x) is

always true. But the converse implication (i.e. expansion) is problematic. This is due

to negation, i.e. if A is atomic then we can accept A(t,x) -»p(Xx.A,t). But we cannot

accept it when A is like Russell's property, an atomic term proceeded by a negation

sign. This is exactly what guides Turner in setting his theory. For the theory now will

have the following axioms replacing Frege's comprehension principle:

(El) A(t,x) -» p(Xx.A,t) when A is atomic.

(R) p(Xx.A,t) -»A(t,x).

(I) p(Xx.p(Xy.A,t),u) <->p(Xy.p(Xx.A,u),t)

Now the abandonment of Frege's full comprehension axiom will impose the use of

two logics, one inside the predication operator in addition to the usual one for wffs.

This is due to the fact that breaking the equivalence between p(Xx.A,t) and A(t,x)

will disconnect the reasoning about wffs and properties. To build models for T above,

one uses the fixed point operator to turn an ordinary model of the first order theory

into a model which will validate in it as many instances of the comprehension axiom

as possible. It will of course validate only the safe instances whereas the paradoxical

ones will oscillate in truth-values. The inductive step to build the model should be

obvious. As an example, one can start with the first order model, and an operator PI

which is empty at the beginning. Then at the next step, extend PI to also contain the

pairs <f[Xx.A]],[[t]]gjyj> such that [[A]]g[[[t]] /x] = * anc* so on unt^ one §ets a limit
ordinal £ where PI then is to have in it all the pairs <e,d > such that for some ordinal

smaller than this |, <e,d> belongs to all the intermediate Pi's. Now we no longer

have a full comprehension principle and we cannot do with properties what we can do

with formulae. But there are still a great deal of things that one can identify between

properties and wlfs; for example, from P(Xx.A,t) and P(Xx.B,t) one can derive

p(Xx.A&B,t). Turner showed however that theories of Frege structures are weaker

than his theory of properties which is a fact that may stand to our advantage for the

- 193-

following reasons. Firstly, Turner can prove at least as much in his theory as one can

in a theory based on Frege structures. Secondly, Turner is paying a price for the

strength of his theory - mainly his use of two logics (internal and external) rather

than one only. On balance it seems better to use a theory based on Frege structures

for properties. Doing so gains the advantages of Turner without the complications.

- 194 -

AFPENDIX I. FOUNDATIONS OF DOMAIN THEORY

In the main chapters of the thesis, I assumed that the reader knew what models

of the lambda calculus were and that he was able to build them. In this appendix, I

show how these models can be built and cite important properties about them. My

introduction to those models is not definitive however, and the interested reader is

referred to [BAl] and [BA2].

I. Definitions:

Defl: semantic domains: A domain D with a binary relation Q on D is a semantic

domain iff:

(i) D is a set which has a bottom element u satisfying:

(Vx€D) [u CX],

Cii) The binary relation Q is a partial ordering on D. I.e:

(1) C is reflexive: (Vx€D) [x Cx]

(2) C is antisymmetric:

(Vx€D) (Vx'€D) [Cx Cf and x' Cx) ==>x=x']

(3) C is transitive:

(Vx,y,z6D) [(x £y and y Cz) ==> x=z].

(iii) every co-sequence has a least upper bound in D. (see Def2,3,4)

We denote the least upper bound of (x) by U , xn ntco J n€co n

and when no confusion occurs, we write U xn.

We denote a semantic domain by (D, C).

De/2: u-sequences: An co-sequence in a semantic domain (D, C) is a sequence (x^^g^
of elements of D such that (Vn^O) [xn Cxn+^]. When no confusion occurs, we write

(xn}n-
Deft: Upper bound: An element d in D is an upper bound of a subset X of D, iff

(Yd'€X) [d' Cd],

- 195-

Def4: Least upper bound: An element d in D is the least upper bound of a subset X of

D iff

(1) d is an upper bound of X

(2) (Vd'GD) [(d' is an upper bound of X) ==>d Cd']

Deft: Continuous functions: A function f from a semantic domain D into another

semantic domain D' is continuous iff

(for each co-sequence (dn)n6D) [f(Udn) = Uf(dn)]
Hereafter, D* will denote the domain D without its bottom element. I.e. D* = D-{u}.

II. Domains out ofother domains: Now that we have the notion of a domain, we need

to do useful things with it and for that we should be able to build domains out of

other domains. These constructions will be based upon three functors:

II. 1. Domains out ofold ones using '+':

II.l.l. Sum of two domains: Let (Dp C^) and (D2, be two semantic domains. We
define (D^hT^. £) to be:

D1+D2 = {(dpi) such that d^GDA} U {u}139
and (Vd = (d^,i), d' = (d'j,j) €D^+D2) [d Cd'<==>(d=u or (i=j and d^ C^dL))]

Lemma: (Dj+Dj, £) as constructed above is a semantic domain:
Proof:

(i) u is the bottom element because:

(YdGD^HTi^) [u £d] following the definition of Q.
(ii) C is a partial order on

(1) £ is reflexive:

Let dGDj+D2-
If d=u then d C d.

Otherwise d = (dpi) where d -GD-*. But £ is reflexive,
then d^ Q d^. Hence, d Q d.

139 - (u e d1ud2)

- 196 -

(2) C is antisymmetric:

Let d,d'£D^+D2 such that d £d' and d' Cd.
If d=u then also d'=u and so d=d'.

Otherwise d = (d^i) and d' = (d'j,j),
d C d' == > i=j and d^ C^d'j
d' Cd =>d'j ^di
but Q is antisymmetric, then dpd'j and therefore d=d'.

(3) C is transitive:

Let d, d', d" be € Dj+D2 such that d Cd' and d' £d".
If d=u then d Cd" (definition of C)

Otherwise d = (d^,i) where d-£ D-*
d Cd' ==> d' = Cd*j,j) where d'j£Dj*, i=j and d^ £^d'j,
d' Cd" ==> d" = (d"^,k) where d"^£D^*, j=k and dL £.d"
therefore i=j=k, d- CdL and dL Cd"

But £ is transitive hence i=k and d. £d"

by definition, this is: d Cd".

Hence C is transitive.

Combining (l), (2) and (3), we get that C is a partial order,

(iii) Every sequence of D^+Dj has a least upper bound in Dj+D2^
Let (dn)n£w be an oi-sequence in Dj+D2«
If the (d) ,, is of the form:u Cu.... Cu.,., then u is the limit,n ntfti

Otherwise, there is a certain natural number k such that the

elements of indices ^ k are ^ u and

(Vn^k) [dn£Dj*] or (Vn^k) [dn€D2*]. This is because:
1. If d^€D^* then so is d^+j (as d^ Cd^)
by induction assume that d €D.*. As d Cd , 1 we get

n 1 n n+1 0

dn+l £D1*- So (Vn^k^ [dn6Di*J

- 197 -

2. If dj,€D2*, we prove as above that (Vn^k) [dn€D2*L
(a) If (Vn>k) [dn€Dt*] then:
(dn)n^k an ^-sequence of and so it has a limit in D^.
Actually it does not matter if we start at k instead of 0, because

we can always stick bottom to the first k places of the sequence.

Let d be the limit of (d) >. in D. then,n n^k l

d is the limit of (d)„ _ in D.+D-. To see this:n new l 2

(1) d is an upper bound in

Vn, ifO ^ n < k == > dn=u

==>dn Cd (by definition of £)
if n^k ==> d Qd ==> d £d (definition of £)

n 1 n

So (Vn6oj) tdQ Cd].
(2) d is the least upper bound of (dn)n in D^+D2*
If d' is an upper bound of (dn)n € D^+D2 then:
d' is an upper bound of because

Vn^kd Cd' and d'€D * ==> d £,d'n In 1

d £d' ==> (Vn^k) [dn £^d']. But d is the least upper
bound in ==> d £^d\

Therefore d is the least upper bound of (dn)Q in
(b) If (Vn^k) [dn6D2*] the proof goes as in (a)
Hence (iii)

From (i), (ii) and (iii) we conclude that Dj+Dj is a semantic domain.D
77.7.2. Sum of any number (possibly infinite) of domains: Let (D-)-be a set of

semantic domains with the ordering

C^ on each D-.
Let D = { <d,i>: d in D-*} U {u}, we denote D by U D^. For d, d' in D we define:

d £d' <==> (d=u or (] i£l) (] x,y£Dp [x <^y and d = <x,i>and d'=<y,i>])

- 198 -

Lemma: (D, £) as defined above is a semantic domain:

Proof:

(1) u is the least element (bottom) of D:

following the definition of £, (Vd€D) [u £d].

(2) £ is a partial ordering:

(i) £ is reflexive

Let d€D,

If d=u, nothing to prove.

If d=u then (5 i€l) (5 d^€D^*) [<d^,i> = d]
But £ is reflexive, then d- £d-

Therefore d £ d.

(ii) £ is antisymmetric

Let d, d' be in D such that d £ d' and d' £ d

If d=u or d'=u nothing to prove

Otherwise:

(I) d £d' ==>

(3 i€I) (3 x^,y. 6D-*) [xi £yi and
d = <x.,i> and

d'=<y.,i>]

(II)d' £d ==>

(3 j €1) (3 Xj'.yj* € Dj*) [yj £xj' and
d = <x.',j>and

J

d'=<yj',j>].
d = <x-,i> = <Xj',j>==>i=j and x.=Xj'.
d'=<yi,i>= <yj',j>==>i=j and y/=yj.
The set of equations {x- £y. and y/ £Xj'} reduces to
{xi £lYi and Yi £Xi}.

- 199-

But C is antisymmetric, so we get x^y-.

Therefore d = <xi,i>= <yi,i>and C is antisymmetric,
(hi) C is transitive:

Let d, d\ d" € D such that d Cd' and d' Cd"

If d=u then d Q d"

Otherwise,

d Cd' ==> (3 [d = <x^,i>, d'=<xi',i>and xi ^x^],
d' Cd" ==>(] j»Xj',Xj") [d'= <xy,j >, d" = <Xj",j > and xj CjXj"].
d'=<x.',i>= <x.',j> ==> x-'=x.'and i=j.1 j J I j J

The set of equations: {x- Cx-' and Xj' —jxj'} reduces to:
{xi Qxd and x^ £Xj"}.
But C is transitive ==> x- ^Xj" and Xj" GD-.
d = <x-,i> and d" = <Xj",i> and x- Qxj" ==> d Cd".

Therefore C is transitive.

(3) The least upper bound of sequences exist:

Let (x) be an to-sequence. Each x is of the form <d■ ,i>,
n ntoj ^ n l '

n

where d^ is in D^*. It should be clear now that if (d-,i) C(d.,j) then
n J

d. and dj belong to the same domain and i=j.
Therefore for each i, (d-)n is an oi-sequence of D-.

n

But D- is a semantic domain, so let d. = U d. in D-.
i i n I l

n

The task now is to prove that d = <d.,i> = U x .r inn

(i) (VnGcu) ,i> C <di?i>]?
n

d. = U d. ==> d. £d-
l n€w i l 11

n n

So by definition of C, xn C <H-,i>= d.
Therefore (VnGto) [x Cd]

(2i) Let d' in D such that (VnGai) [x Cd'], prove d Cd'?

d'is of the form <dj',j> where j in I and dj in Dj.

- 200-

(VnGca) [xn £d'] ==>
(Vn€w) [<d. ,i> C <d ' j>].

n J
(VnGto) [Ci=j) and (d^ ==>

n -1
d.' is an upper bound of (d.) c,k in D;.

1 i_ ntw 1J n

But d- is the least upper bound so:

d. Qdj' and <dj,i> £ <d\i>,
hence d Q d'.

Therefore d is the least upper bound of (x) in D.rr n ntw

Using (l), (2) and (3) we get: (D, Q) is a semantic domain. □

II.2. Domains out ofold domains using 'x': Let (D', C) and (D", C) be two semantic

domains. We define (D'xD", C) as follows:

D = D'xD" = { <d', d" > where d' GD' and d" GD"} and

(V<d'0,d"0>, <d'1,d"1>GD'xD")
[<d'0,d"0> C <d'1,d"1X==>d'0 Cd'j and d"0 Cd"^

Lemma: (D'xD", O is a semantic domain.

Proof: (1) Let u=<u',u" > where u' is the bottom of D' and

u" is the bottom of D".

u is the bottom of D'xD" because:

If <&', d" >GD, then d' GD' and d" GD"

==>u' 2d' and u" Cd",

hence by definition of Q, <u',u" > Q <d',d" >.

(2) Q is a partial order:

(0 C is reflexive:

Let <d',d" >be in D ==>(d'GD') and (d" GD") ==>

d' Cd' and d" C'd" ==>

<d',d'> C <d',d">.

Cii) c is transitive:

- 201 -

Let X, Y, Z be in D'xD" such that X Cy and Y £Z.

X= <x',x" >, Y= <y',y" > and Z= <z',z" >.

X CY ==>x' Cy* and x" £'y"

Y £Z ==>y' £z' and y" G'z"

By transitivity of £ and £' we get:

x' £z' and x" £'z".

Hence, X £Z.

(hi) c is antisymmetric:

Let X and Y be in D'xD" such that X C y and Y £X.

X= <x',x" > and Y=<y\y" >.

X £Y==>x' Gy' and x" C'y"

Y cx ==>y' Cx' and y" C'x"

==> (by transitivity of e, e1),

x'=y' and x"=y" ==>X=Y

Using (i),(ii) and (hi) we get that £ is a partial order.

(3) o>-sequences have limits in D'xD":

Let (xp^gj be an to-sequence in D'xD".
Each X- is of the form <x-',x." >.

As (X.p.gw is an to-sequence in D, we can prove that:

((xpigi is an to-sequence in D' and

(xi")igl is an to-sequence in D"}
But D' and D" are semantic domains, So:

Let d' be the limit of (x.'); c, in D'1 ltto

and d" be the limit of (x."). , in D".
1 ICto

Our task now is to prove that:

<d',d" > is the limit of (Xp^£a) in D.
(a) (Vi€to) [(x.' Gd') and (X|" G'd")]

- 202-

because d' and d" are the limits.

Hence (Vi€w) [<xT,x/' > Q <d',d" >]

and so (View) [x^ Q <d',d" >].
Therefore <d',d" >is an upper bound of (X.)^^ in D'xD".

(b) Let dj be an upper bound of (X-)^^ in D'xD".
d^=<ii^',d^" > where ((d^'GD') and (d^" €D")).
(View) [x- Cd^ therefore
(View) [(x2 Qd^') and x^" C'd^"].

Because d^' is an upper bound of (X'p^^ in D' and

d^" is an upper bound of CX".)^g in D",
d' Q d^' and d" £'d^" hence
<d',d" > £ <d^\dj" >.
Hence <d',d" >is the least upper bound of (X-)|gw in D'xD"

Using (l), (2) and (3), we get that D'xD" is a semantic domain.D

I1.3. New domains out ofold ones using —>

Let [Dj—>02] be the set of continuous functions from the domain (D^
to the domain (D2, ^,).
We shall define a binary relation on [D^—^2]
as follows:

(Vf,g in [D1->D2]) [f Cg <==>(VdeD) [f(d) ^gCd)]].
Lemma:

([Dj— >02], S) as defined above is a semantic domain.
Proof:

(l) Let us take u = Ad^, u is the bottom of D.
(i) u is well defined:

Obvious, for u is the constant function.

(ii) u is continuous:

- 203 -

For each w-sequence (dn)n£&J in D^,
u(U dn) = u2 = U u2 = U Cu(dn)).

(iii) u is the bottom of D:

Let f be in D.

(VdeD1) [u(d) = Uj]. But Uj ==>

(VdGDj) [u(d) S^fCd)] ==>
u Cf,

Therefore u is the bottom of D.

(2) C is a partial order

CO C is reflexive:

Let f be in [D>02],
(VdGD) [f(d) S^f(d)].
Therefore, f Cf.

(ii) C is antisymmetric:

Let f,g in D such that f £g and g Cjf.

Consider d in D^.
(a) f Cg ==>f(d) C^g(d).
(b) g Cf ==>g(d) C^f(d).
But ^ ^ antisymmetric, hence (a)+(b) ==> f(d) =g(d).
Therefore (Vd€D) [f(d) =g(d)]

Using extensionality, we get f =g.

Hence C is antisymmetric.

(iii) C is transitive:

Let f,g,h be in D such that f Cg and g Ch.

Consider d in D,

(a) f Cg==>f(d) £^g(d)
(b)g £h==>g(d) C^h(d)

- 204-

But £2 is transitive, hence (a)+(b) ==>f(d) C^hXd).
Hence: (Vd€D) [f(d) C^hCd)] and so f £h.

By (i), (ii) and (iii) C is a partial order.

(3)Every ca-sequence has a least upper bound.

Let be an ta-sequence of [D^— ^2] and
consider f = Ad. U fn(d).
f = U f because:

n

(i) f is well defined:

Let d in D. 6 (f (d)) - is an (a-sequence of D~ because:1 n ntw ^ 2

(Vn€ca) [fnCfn+1] ==>
(VnGfa) [fn(d) Cjfn+1(d)] ==>
(fn(d))ngw is an ca-sequence of D2 and
its limit U f (d) is well defined,

n

So f = Ad.Uf (d) is well-defined,
n

(ii) f is continuous:

Let (d)„, c, be an ca-sequence of D-,.m mcca 1

f(Udm) = Unfn(Umdm) = Un(Umfn(dm):) (fn 18 continuous).
= Um(LJ^fnCdm)) (using next lemma).
= Umf(dm) (by definition of f).

Therefore f(U dm) = U f(dm) and f is continuous.
Before continuing the proof that f = U f , we need the following lemma:

Lemma: Let (fn)n and (dm)m be ca-sequences of [Dj—>D2] and respectively.
Then U (U f (d)) = U (U f (d))

nmnm mnnm

Proof: First we need to prove a little sublemma:

Sublemma: Let (a_)_ c,, and (b)„, be ca-sequences of an ntw m mtca n

semantic domain D such that (Vn€ca) [an £t>nl
Then U a C u b .

n n

- 205-

Proof: Vn€w, an £t>n (hyp.)
and b £ Ub (def. of limit)

n n

But Q is transitive ==>

(Vntco) [an GUbJ.
Therefore Ubn is an upper bound of (an)ngcu == >
U a £Ub . Hence the proof of the sublemma.n n

(f (d)) r. is an co-sequence in D~ because (f) is an co-sequence in D.n m ntco ^ 2 n n

Therefore U_f_(d_) exists in D~ and (Vntco) [f_(d) U f (d)].
nnm 2 n m 2 n n m

But Cf (d)) is an co-sequence because :
n m mtco ^

f is continuous ==>
n

fn is monotonic, i.e (Vmtco) [dm £dm+1 ==>fn(dm) -fn^dm+l^'
this implies that (Vmtco) [fn(dm) —

==> ^fn^dm^m6<o is an co-sequence.

Also (U f (d)) ,, is an co-sequence because:n n m mtco ^

(Vmtco) [dm Cdm+1] ==>
(Vmtco) [fQ(dm) as fn is monotonic ==>

Unfn(dm) ^Unfn(dm+j) using above sublemma ==>
(U f (dj) _ is an co-sequence,n n m m tco ^

Applying the above sublemma on (unfn(dm))m6(U and (fn(dm):)mtco'
we get U f (d) CL U (U f (d)).° mnm 2m nnm

This means that U (U f (dJ) is an upper bound of (U f(d)) _m nnm mnm ntco

~>(a) : Un(Umfn(dm» =2Um(Unfn(dtn»-
Now let us prove that UmC Unfn(dm) ^ Un(Vn(dm)):
d C. U d
m m m

==>(Vn€co) [f Cd) Q,f (UId)] as f is monotonic.n m 2 n mm

==>(Vntco) [f Cd) U f (d)] as f is continuous,
n m 2 m n m

However (f (dm))„ - and (U f (d)) _ are co-sequences,n m ntco m n m ntco 1

- 206 -

Therefore by the above sublemma: unfn(dm) '"mg^f^d^).
Therefore Ufl(umfn(dm^ is an upper bound of (unfn(dm))met0-
-Xb): Um(Unfn(dm)) %Un(Umfn(dm)).
But ^2 is antisymmetric, hence Ca)+(b) == >
U (U f (d)) = U (U f (d)). End of proof of lemma,nmnm mnnm r

Now back to the proof that every co-sequence of [D^~ ^2]
has a least upper bound. We continue as follows:

(iii) f is the limit of (f) c :n ntco

VnGco, f Cf because:
n

If deDj ==>f(d) = Ufn(d) ==>fn(d) CjfCd).
Therefore f is an upper bound of (f) ,, .rr n ntco

Suppose g is an upper bound of and consider d in D.

fCd) = UfnCd).
(Vneco) [fn Cg] ==>(Vn€co) [fQ(d) C^gCd)] ==>
Ufn(d) Cjg(d) == > f(d) Cjg(d).
Therefore (Vd€D) [f(d) ^gCd)] ==>f Cg.

Hence each co-sequence in [D*~ ^2] has a limit,
using (l),(2) and (3) we get that ([D^—^jL £) is a semantic domain.D

So far we have seen a way of building a domain out of two (or more) old domains.

Later, we shall see that we are really interested in domains E which satisfy an

equation of the form: E— [E— >£]. We define B the set of truth values, i.e. B =

{0,1,Uq} where Uq C 1, Uq CO (B is a semantic domain). We build our domain E by
building a sequence of domains (by induction). We start with Eq= B and build En+1=
B + [En~ >Enl for n>0. For all n, En is a semantic domain. We would like, however,
to relate all those domains with an ordering relation and find the limit of such a

sequence. This limit is going to be the required E. We start with some definitions:

Definition.: A projection pair of on D2 is a pair <<I>,T> such that:

207

<h: D-j— >D2, ®2~^1 anc*
(a) <F, IF are both continuous,

(b) (VxCDj) [¥(4(x)) =x]
(c) CVxeD2) [SC^Kx)) Cjx]

For each n^O, we define a proiection pair The aim of each <J>n is to embed

En into En+j, whereas ?n is a surjection from En+^ to En> Our construction of
(<!>„)„ is done by induction as follows:140n nto) J

% : E0" ^1 *0 : El" ^0

<I>q(x) = x GB* > x,u^ = x > x'u0

(iQ) % is well defined and is an injection: obvious.

C21q) Tq is well defined and is a surjection: obvious.

(3^) ^((FqCx)) = x for all x in Eq:

^0(«I>0Cx)) = xGB*—->^0Cx),^0(u1)
= xGB* >x,uq
= x.

(41q) OqC^qCx)) for all x in Ej:

<t>0OQ(x)) = xGB* >4>q(x),<1>q(uq)
= xGB* >x,Uj

If <Fq(>Fq(x)) = x ==> QqCVqCx)) CjX as is reflexive.
If <5>q(^q(x)) = u^ ==> <Fq("^q(x)) C^x (bottom element).
Therefore (VxGEj) [OqCiFqCx)) £^x].

(5i0) *0 is continuous:
Let (xn)ngw be an cu-sequence of Eq. Two cases arise:

(a)Uxn=UQ ==>
U xn^ = ui and [x - Uq] ==>

<S0(Uxn) = Uj and (VnGca) [3>0(xn) = Uj] ==>
140 (the notation "f(x) =p(x) >a, b" is to be understood as: if p(x) is true then f(x) =a otherwise

f(x) =b)

- 208

*0(U x) = Uj and U = U1 ==>

(b)Ux is in B* ==>
n

<I>o(UXn)= Uxn and k6ca) (Vn^k) [x^= xn = Uxn€B*] ==>
<E>a(Ux) = Ux = x = x, GB* for all n^k ==>On n n k

(a>0(u xn) = U xn) and (OqCx^) = xn= xfc = U xfl for all n^k) == >

C<3>0(U xn) = U xn) and (U 3>0(xn) = = U xQ) == >

W-UW
Therefore we always have 4>q(U x) = U <I>Q(xn).

(6ig) is continuous:
Let (x) g be an oj-sequence of E.. Two cases arise:
Ca) Uxn€B*: the proof as in (b) above.
Cb) Uxn is in [Eg~>E0]U {Uj}
(i) If Ux = u1:n l

the proof is as in (5iQ,a) with interchanging Uq, u^.

Cii)lf U xn 6 [Eq—>Eq] then:
G k€ca) (Vn^k) [xn€ [Eq~>Eq]] (definition of '+') ==>

V u xn) = uQ and (Vn>k) [TqCx^ = uQ] ==>
*0C U xn^ = u0 and U ^xn^ = u0 ==>

Therefore, we always have 1Pq(Ux^) = U TqCx^.

By induction, we build <5n+^ and ¥ j assuming that <£>n and Tn have been
defined satisfying (in), (2in), (3in), (4in), (5in) and (6in).
^n+l: En+l-->En+2

Vl(x) = X6B*-—>x, (x= un+1-->un+2,fnoxoV
^n+l: En+2" ^n+l

Vl(x) = x6B* >x' (x= un+2 >un+l'Vxo<I>n)

- 209 -

(in+P ^n+j is well defined and injective:
Well defined: obvious.

Injective: Let x,x' be in En+^such that On+^(x) = 4>n+^(x').
If x€B* ==> On+1(x) = x£B* ==>

x' is in B and 3>n+.(x') = x'
== > x= x'.

If x= un+l ==> Vl(x) = un+2 = Vl(x'}
==> X'= un+1 ==> x=x\

If x€ [En-^Bn] ==>
x'€ [En->En] and <Dn+1(x) = <J>n+1(x') ==>
$oxo = G> ox'o1ir., ==>n n n n

f o$ oxof = ¥o<I> ox'oTL ==>
n n n n n n

xo"*p = x'oML (by induction o<I> (x) = x) ==>n n J n n

xoT o<J> = x'oT o<L ==> x= x\
n n n n

Therefore 3>n+^(x) = <J>n+^(x') ==>x= x'. Hence 0+. is injective

(2in+j) Tn is surjective and well-defined:
Well defined: obvious.

Surjective: Let f in En+r
If f = U1 then u26En+2 and *n+1(u2) = ur
If f 6B* then f 6En+2 and ^n+1(f) = f.
Otherwise f e [En~ >En] ==> <hn+1(f) SEn+2
'5r:a+^(<I>n+j(f)) = f As we shall prove in (3i ^).
Therefore is surjective.

(3in+p Tn+^(<I>n+^(f)) = f: (remember our notation f(x) =p(x) >a,

Vl'Vl™ -

(f - un+l Vl(Vf0'

- 210 -

= f€B»-—>f,

(f = un+l >un+l'V(VfoW
But ofo?)o$„ = ((lPo$)ofo(lP o<l>)nn n n nn n n

= f because o<3> = the identity function,n n J

Therefore = E

(4v+i>WVi(t))W-f°r a11 f 1,1W
L« f in E„+2'

(f - vr-^/uJ.VitV0*.)'
= f 6B* >f,

(f = un+2 >un+2>V(Vfo<I>n)olpn)-
Let x in En+1>

(4>no(Vfo<I>n)o^n)(x) =W«WX»»
But 4> (f) QL,-.f and $no? is monotonic ==>n n n+1 n n

$n°(^nof0$n)0 x) Ti+1f^*n^^xX)-
But again ^(SE^Cx)) ~n+lx and f is continuous (monotonic)

~>f(®n(^(x») ^+1f(x).
Using transitivity of ^n+j we get:
(<E> ("SLofoOJoNUXx) C f(x) for all x in E_ ==>
n n n n n+1 n+1

®„o(tfofo®,)o* C fn n n n n+2

f —n+2^ (refLexivity)

un+2 —n+2^ (bottom element)
Therefore always ~n+2f*

(5in+j) <£^1 is continuous:
Let (xn)nea) be an co-sequence of En+^.

VUxn)= Uxn€B»—->Uxn,
(U xn= un+l >un+2'V(U xn)oV

211 -

ButWxn) = xii6B*-->xn'

(xn= un+l—->un+2'Vxn°V
(a) If U xn is in B*, the proof goes as in (5iQ,b)

and we get 4>n+1(Uxfl)=UVl(xnX
(b) If Uxn= un+i» the proof goes as in (5iQ,a)

and we getwuv -uVi(V-
(c) Otherwise, U is in [E— >Eq] and we can use the
continuity together with the definition of U f , where

f is a function, to prove that <E> o(Ux„)o^„ = U (<E> oxoMLn n n n n n

And we getWUI.'-UVW'
(a), (b) and (c) ==> $>n+1(Uxn) = U ^n+1(xn)

==> ^>n+^ is continuous.

l°in+]_) is continuous:
Let Cxn)ngw be an co-sequence of En+2-

WUxn)=UxneB*-->UV
(U xn= un+2 >Un+l'V(U xn)o<I>n)

n(xn) = xneB >xn'

(xn= un+2 >un+l'Vxn0<I,n)
(a) If Uxn€B*, the proof goes as in (a) above

and we have ML ,(U x) = U ML ,(x„)n+l n n+1 n

(b) If Uxn= un+j» then the proof goes as in (b) above
and we have Mrn+1C U xn) = U M'n+^(xn)

(c) If Uxn is in [En+^ >Bn+l-' tBen we can use tBe
continuity of Mf together with the definition of

U xn where x is a function, to prove that:
MLo(Uxn)o$ = U (MLox o<I>).n n n n n n

And so we get Mrn+j(U xfl) = U M^^^Cx^.

212 -

(a), (b) and (c) ==> ^n+1(Uxn) = u^n+i(xn)
==> ¥ j is continuous.

To conclude the construction, we draw the picture which shows the relations clearly:

%
E0 E1 E2 En En+1
<— <— <—

Where: For all n^O,

$n is injective continuous,
IP is surjective continuous,

Wf» =n+A
•p (4 (f)) . f
n n

<&n and IP can be so extended so that instead of running through two consecutive
domains, they run through any 2 domains. This is done as follows:

: E„— >33 such that:nm n m

for all n,m in N,

n= m ==> = Id„ = AxGE .xnm n n

n <m == > <5 = O .o<D .

nm m-1 nm-1

n>m==>4> =<F . ..

nm n-lm n-1

Lemma: (Vn,m^0) [<t>nrn is continuous]
Proof:

Sublemmal: Let n^O, (V m^n) [<3> „ is continuous]nm

Proof: By induction,

case n=m true because O = Id continuous.
nm n

Assume that (V m^n) [<l>nm is continuous],
and prove that <l)nm+j is continuous.
5> , = o<Pnm+1 m nm

and <Pr|rn are continuous (induction hypotheses),

- 213 -

Then <£> o<I> is continuous.
m nm

Therefore (V m^n) [<J>nm is continuous].
Sublemma2: (V n^m) [^nm is continuous].
Proof: similar to above.

Using sublemmal,2 we get 4>nm continuous, for all n,m ^0. □
Lemma: (V n,m: 0 ^ n ^ m) [<I>rnn(<I>r|rn(f)) = f].
Proof: If m=n ==> O (4> (f)) = ®__(f) = f.

mn nm mn

Assume that the property is true for all m^n^O such that m-n ^c.

Let us prove the property holds for m^n^O such that m=n+k+l.

$mn(V(f)) = $mn((Vl°Vl)(f)) as n<m
= (Vln°VlX(Vl0<I)nm-lXf)) as m>n
= 4)m_lll((>lfn_10<I)m ^)(<l)nm_1)(f))) as o is associative.
= <I> -i-.(f)) as V ,o<I> 1(x) = x.m-ln nm-1 m-1 m-1

= f by induction, because m-n-l=k ^k. □

Note that here a stronger lemma could be proved. That is:<^mi0<^nm = ^np Our above
lemma will be a special case of this one by taking l=n.

Lemma: <£> ("IhCg)) £ g for 0 <n ^ m.nm mn ° m°

Proof: By induction as above.

1. n=m ==> Dnm($mn(g)) = g Cmg (reflexivity)
2. Suppose that for all 0 ^ n ^ m such that m-n ^ k and k^O,

the property that <l>rirr|COrnr|(g)) C^g holds.
3. Let us prove that it also holds for m^n^O such that m=n+k+l:

$nm(<I>mn(S)) = <1>nm((4>m-ln0^m-l)(8)) as m>n
= ^m-l0°nm-lX(Vln^m-P^^ as n<m
= Vl(Vl(Vln(Vl(S)))} as 0 18 associative-

However, m-l-n <k, so following the hypotheses of induction we get:

(a) Vl(Vln(x)) ~m-lx*

- 214 -

But (VnGoi) [4>n is continuous] ==>
(Vn€n>) [<3>n is monotonic] ==>
4> * is monotonic.
m-1

Therefore using (a) and the monotonicity of we get:

Vl(Vl(Vln(x))) Sn*m-l(x)
==>(b) :4,nm($mn(S)) SnVl(Vl(?)}
But (c):Vi(Vi^)
As C is transitive, we get from (b)+(c):

<£ ($> Cg)) £ g.nm mn° m5

And so for all 0 <n <m, Onrr,(Orrir,(g)) £mg. □
We still have not found a domain E—[E— >E]. Here we see how to do it.

Having constructed all the (E) ,, , we can construct a domain E which will° n nfcGr oo

contain all the E forn€o>.
n

Eoo-l<fn>AeEnand','n(fn+l)-fn>-
The ordering relation on Emwill be:
(V <fn>, ^n> (EEJ [<fn>new C <^n>n6ftJ <==>(Vn<Eca) [fn S^gJ]
we shall prove next that (E^ C) is a semantic domain.
Lemma: (E^ O is a semantic domain.
Proof:

(l) Bottom element:

Let <u„ > where u is the bottom element of E .n n n n

<u„ > is the bottom element of E :n n oo

(i) is in E :
n n oo

u is in E„ for all n,n n

L(u„,i) = u by definition of V ,

Therefore <u > is in E .

n n oo

(ii) <u„ > is the bottom element of E :n n co

- 215 -

Let <f > GE
n n oo

(Vn6w) [u is the bottom element of En] ==>
(VneaO [un CfJ „>
<lln>n=<rn>n->
<u > is the bottom element of E.
n n oo

(2) C is a partial order:

(i) Q is reflexive:

Let <f > be in E .

n n oo

As fn is in En which is a semantic domain, fn C^f^ (refLexivity)
==>(Vn6w) [fn Vn] _> <fn>n C <fn>n.
Hence C is reflexive.

(ii) C is transitive:

Let <f > , <? > and <h > be in E such that:
n n °n n n n oo

<fn> C <^n>and <gn> C <hn> ==>
(VnGw) [fn Cngn] and (Vn€w) [gn ^hQ] =>
(Vn€o>) [fn £ngn and gn ^nhn], but is transitive ==>
(Vn€<u) [fn -> <fn>n C <hn>n _>
Q is transitive.

(hi) C is antisymmetric:

Let <f > and <? > be in E such that:
n n °n n 00

<T_ > Q <%_ > and <g > Q <f >■ . Then,n n °n n °n n n n

(VnGoj) [fn and (VnGw) [gn C^fJ ==>
(VnGca) [fn Cngn and gn Qjj, but is antisymmetric.
==>(VnGca) [fn-gn] ==> <?n> = <£n>
Hence, Q is antisymmetric.

Using (i), (ii) and (hi) we get that £ is a partial order on E .

(3) Every w-sequence has a limit in E :

- 216 -

Let (X) be an (^-sequence in E .mm 00

Every X is of the form <f__ > where:^ m. nm n

f is in E„ and ¥_(f_ , 1 „) = f„„.nm n n n+lm nm

But (VmGca) [Xm ==>
(VmGeu) [(Vn€&>) [fnm ^fnm+1]] ==>
(Vneco) [CVm€<a) [fnm I ==>
(Vn€ca) [Cf)m is an co-sequence of En].
En is a semantic domain == > (fnm)m has a limit gn = Urr|frirr| in En>
Let X= <g„ > , then X is the limit of (X_) in E :°n n m m 00

Proof:

(a)X is in E :
OO

(VnGco) [gn€En],
(Vn€co) [> (g ,).?(U f ,)L msn+ly nv m n+lnr

- U (f ,.) (as IP is continuous),m n n+lm n

= U f (as X =<f > ==>>P (f) = f).
m nm m nm n n n+lm nm

=gn

So X is in E .

OO

(b)X is the limit of (Xm)m6w in E^:
(i) X is an upper bound:

Let m 6w, then X„= <f > ,m nm n

Let us prove that Xm Q X.
For n in to, Xnm= f _ £,g„ = Ufnm n°n nm

==>

(Vn«») lfm q,gn] ~> xmcX„>
(VmGco) [X £X] ==>X is an upper bound of (X-m) .

(ii) X is the least upper bound:

Let Y be an upper bound of (X)„, - in E„==> Y=<v > .rr m mtea 00 •'n n

For n€co,

- 217 -

(Vm€o>) [Xm CY] ==>
(Vm€w) [fnm ~nyn] ==>
yn is an upper bound for (fnm)mew ==>

Umfnm ~nyn == >
(VnGw) [gn Cnyn] ==> <%n>n C <yn>n ==>X CY.

Therefore X is the least upper bound of (X„)„ in E .mm co

Using (l), (2) and (3) we get that E^is a semantic domain. □
We define $: E -- >E and <I> : E -- >E„ such that:noo n co ocn oo n

*nJ«-<®nk®>kimd'Wf)-fn-
Lemma: <I> is well defined and is continuous for all n€o>.

oqtl

Proof:

(1) Well defined: Obvious.

(2) Continuous: Obvious, as being the nth projection.

Lemma: <E> is well defined and is continuous, for all n€co.
noo

Proof:

Cl) Well defined:

ViO-^nk^k-
(Vk€w) [^nkCf)€Ek and *k(»nk+l«» "V®'
Therefore O (f) €E .

noo oo

(2) Continuous:

Let (f„)„ be an &>-sequence is in E .mm ^ n

LiUf) = «*> t(Uf)>,noo m nk m k

" <Um3>nk(fm) >k (as °nk 15 continuous)
= Um<<I)nk^fm')\ ^can be Proved)
= U <5 (f)

m noov m

Hence 0 is continuous. □
noo

Lemma: <£>(<!> „If)) = f for all n,f.ocn noo

- 218 -

Proof:

= "X> (<<!> V(f)>Joca noo oca nK K

= 0 (f) = f. □
nn

Lemma: ^^C'P^Cg)) Cg for all n,g.
Proof:

UW?" = ^noo^n3 =<<1>nk(g)>k
= ^no^^^nl^n^-^nn^n^^nn+l^n)'" >

= ^O'gl—Sn^n^n^- > ^n^n+P =Sn)
(a) (Vm<n) [C<I>nooCg)))mth=gm £mgJ (refl.)^!
Actually this is not necessary.

(b) We shall prove that:

(Vm^n) [(l»noo(^oqI1(g))mth = ~mgnr'
Ci) m=n <I> (g„) =g„ Q,g =g„,.nm °n °n ii0n °m

Cii) Suppose that the property holds for m>n.

(iii) Prove it for m+1:

^nm+l(^ = V^nm^
But §m -VWP ==>

= Wgm+1)) -m+lSm+1 but

V+l^ = ^m(^nm(^n)) hence

$nm+l(§n)
(by induction and monotonicity of <l>m).

Therefore(Vm>n) K®noo(®oen(g)))mth Smgm]
(a)+(b) implies (Vm€oi) ^gm ==>

V(V(8)} D

141 We use mth to say that it is element m in the sequence. If there was no parenthesis, then we can
say fn< meaning the nth element in the sequence (fn)n- However, for the above case, it will be confusing
to say (<t,noo(<bocn(g)))m, as we will not understand whether we mean the sequence or the element.

219

Lemma: (VfGE^ [(f €En) ==>(f = fn)].
Proof: f is in E ==>

oo

f = < ^f),f,<Kf),<K<Kf)) >

And so f = f. □
n

Lemma: (VfGE^) [(f €En) ==>(<I>n(f) = f)].
Proof: (S> (f) is in E) ==> <X> (f) in E is written as:

n co n co

V fn(OXfn(f),'Vl(0n(f»- >.
I.e^O^Cf))^^ - ^n+lkC^n^f))' ^ut ° ^ associat^ve:

= (fl>j£_jO...G>nXf) for k>n+l.
(®n<f»n+lth " Vln+l(*n(t» " *n<«-
(°n(f):)kth = ^>n+lk^n^^'^,ut 0 ^ assoc^a^ve:

= (¥to....o1Ir o<I>)(f), but ¥oO = Id :k n n n n n

= (^c°..."$n_j)(f) for k<ti+l.
f is in E„ == >n

fk = (f)kth = °nk(f) = (4>k_i°....°4>nXf) for k>n+l.
fn+l = ^«n+lth = <Wf> = *n(f>
fk = (f)kth = °nk(f) = (V-o\-1)(f) k<n<n+l.

Therefore, f = 3>n(f). □
Lemma: CVfGEj t(f€En+1) ==>On(f) Cf)].
Proof: (^n(f))k = f°r all k €&>, as ^(f) is in E

k>n+l >n ==>

(^nCf^k = but o is associative. =
-

and fk = (^.1°—o$n+1Xf)
But $n(^n(f)) £n+^f and ^k_i0—0<^n+i ^ monotonic

*n(f»kth "ArtWn®1
^(®k_j0...o»n+1Xf) - fk

- 220 -

Hence, (Vk>n+l) [(^(f))^ ^fjJ-
We conclude from here that: lP„(f) Q f.n

Note: Here, we do not have to go through the cases

k <n+l, But I shall do it for the sake of completeness:

ClPCf)) = ¥_(f) because ^(f) is in E.n n n n n

f = M'(f) because f is in E„ . 1.n n n+l

<*n«»n+l " W "d fn+l" f (f En+1>
->0Pn(f))n+l SwlW
k ^n ==>C^_(f))i, = o...o^„ i)('4r„(f)), o is associative:n K. k n-1 n

= Oko...o^n(f)
=fk

Therefore, (Vk^o) [On(f))k %fkl ==>^n(f) Cf. □
Lemma: In E^ f^- fmin(n>m).
Proof: fnm = <I»nm(f)

n= m ==>fnm = 4>nn(fn) = fn = fmin(n,n0-
n> m == >fnm = (V-oVpCy, as Vl(fn} = fn-l

By induction

^m^m+P ^m ^min(n,m)'
n<m ==>fnm = (*m_l0...o®n)(fn), as <I>n(fn) = fQ for fn in En.

But f = <X> (f) is in E -. ==> 3> -,(fn) = f.n n n n+l n+l n n

By induction we prove that = fn for all k^n.
Therefore, f^ = fn = fmin(n>m). □

Lemma: n ^ m then f Q f C f.
n m

Proof:

(a) fn £=fn+i for all n^O:

- 221 -

We proved that if f is in En+j then ^(f) Cf,
So as fn+1 is in En+1, *n(fn+P Cfn+r
ButVW " fn' fn =fn+l-

(b) We could therefore prove by induction that:

(Vm^n^O) [fn Cfm].
This is by using (a)+transitivity+refl.exivity of Q.

(c) f =<f > . So to prove f £f,ve have to prove that:n n n

(View) [(fn). ^f.].
Let i€<y,

f _ £ni min(n,i)
= (n<i) >fn,fr

But f Cf. for n<i, and L Cf- ==>

men.) £&]-> fn Cf.
Therefore,(V m>n»0) [fn Cfm Cf]. □

Lemma: f = U f
n

Proof: We proved above that: (Vn ^ m) [fn Q fm].
Therefore (fn)n is an gj-sequence in
and so its limit U f exists in E .

n co

We also proved that: (Vn€oi) [fn Cf].
Therefore f is an upper bound of (f„V in E .n n oo

Let us prove that f = U f :

Each f is of the form <if)•>• =<f •>.,n n 1 1 ni 1

So Ufn= Un^ni>i
= <Unfni>i
= <Unfno'Unfnl"">

But(Vn>0) [fno = f0] ==>
U f = fn. The same for Uf, = f, for all k^O.n no 0 n nk k

- 222 -

and we get: U fn = <^Q»f > = <f->^ = f. □
Now we define application in E^.
Let f,e be in E„and define f»e = Uf x1(eJ' oo n+1 n

Lemma: Application is well defined.

Proof:

(i)This is because if fn+j is in En+^ and e^ in En then:

fn+l*en = fn+l^en')'
Because:

fn+l*en = Um^fn+Pm+l^en^nP

~ U ^n+Pm+l^n-W
m>n

_ ^n+l^en^ as ^nm ~ ^min(n,m)
= fn+l('en')

Therefore it makes sense to talk of fn+l*en as application
from E_ .xE -- >E_.n+1 n n

Cii)We know that we are talking about limits here for co-sequences,

therefore we have to show that (fn+i(en))n is an ^-sequence.

Proof:

e^ Ce^ and fj £f2 ==>

f^Ce^) Cf^Ce^). But f2 is continuous == >monotonic ==>

^2^e(P — ^2^el^* ®ut ^ ^ transi*-ive

fl(e0) Cf2(e1).
By induction we can assume that f (e J Cf (e).n n-1 n+1 n

We prove that fn+1(en) ^fn+2(en+i):
en Cen+j and fn+j monotonic ==>

fn+l^en"* ~fn+l^en+P" But fn+l ~fn+2==>
fn+l(en+l) £fn+2(en+l)- But - is transitive ==>

- 223 -

fn+l(en) -fn+2(en+l)*
Therefore (fn+^(en))n is an o>-sequence in E^and

Ufn+l(en) exists in Eco
Therefore the application from E^xE^ to E^as above is well defined.
Lemma: Let f: DjxD2~ >D^ (3 semantic domains),

Then f is continuous iff

f is continuous in terms of its arguments taken separately.

Proof:

(a)Assume f is continuous and let a in D^.
We will show that f : D~—>D~ such that f (x) = f(a, x) is continuous.

a Z> j a

f (U x) = f(a, U x) = f(U a, U x) = f(U (a, x)). But f is continuous == >
a. 11 n n n

= U fCa, xn)
- UW-

We can do the same to prove that g (x) = f(x,a) is continuous.cL

(b)Assume f is continuous in terms of each of its arguments separately.

f(U an) = f(U Cxn,yn)) = f(U xn, U y). But f is continuous in terms of its 1st argument:
= Unf(xn, U y). But f is continuous in terms of its 2nd argument:
" "aVVrn''
" Uf(Vyn)'D

Lemma: Let Dj,D2 be two semantic domains and f: D^—
f is continuous ==> f is mono tonic.

Proof: Take x,y in Dj such that x C^y.
we construct the w-sequence (xn)n where Xq = x and xn =y V nX).
This is obviously an (o-sequence and its limit is y= Ux^.
But f is continuous ==>f(y) = f(Ux) = Uf(x).n n

<*xn»n is an (o-sequence which has U f(xn) as a limit == >

Kxq) = f(x) C^UfCx^. Therefore f(x) ^f(y) and so

- 224-

every continuous function is monotonic. □

Lemma: Application App: E^xE^-- is continuous.
Proof: we have that g: En. jxEn+i~ >En+^such that

g^-fn+l,en^ = fn+l^en^ is continuous.
We also have that App(f,e) = U fn+^en)-
So App is the limit of continuous functions.

Therefore App is continuous. □

Lemma: (Vm^n) Kfn+lm+1(em)) = fn+l(en)]
Proof: By induction.

(1) m=n: obvious.

(2) assume the property holds for m and prove it for m+1.

(3) ^fn+i)m+2^em+l^ = ^®m+l^fn+Pin+l^em+P
= (^>mo(fn+l)m+l°^m)(em+l)" But ° 18 associative:
= V(Wm+l(*m(em+l):))- But \(em+l} =em:
=Wm+lM'

But the argument of G> is in E :° mm

= ^n+Pm+l^em^' B^ Eduction hypotheses we get:
= fn+l^en^*

Therefore, (Vm^n) K(fn+1)m+1)Cem) = fn+1(en)]. □
femma:fn+1.e = fn+1(en)

Proof: fn+1.e = Um((fn+1)m+1(em))
= U«fn+iWmM
m^n

= Ufn+l(en)' by previous lemma,
m^n

= fn+l(en>> by independence of m. □
Lemma: (Vm)n) [(fm+1(enm))n = fn+1(en)]
Proof:

225

Cl) m=n ==> (fm+1(enm))n = fn+1(en).
(2) Assume the property holds for m.

(3) (fm+2(enm+l))n = <J>m+ln(fm+2(enm+l))- But m>n:
= $mn^m^m+2^enm+P^
= 0mn((^mofm+2o0mXenm))
= Wfm+2»(enm»
= $m.(L , i(e))mn m+1 nm

= ^m+lW But by induction:
= fn+l(en)-

Therefore fn+1(e) = fn+1(en) = (fCen))n. □
Lemma: (f(e)n)n = fn+1(en)
Proof: (fCe)) -(Uf.Ce J)

n n m m+1 nm n

= Um(fm+l(enm))nth But by above lemma:
- UmWen>
= fn+l(-enX

Therefore, fn+^*e = fn+l(en) = (f*en}nth' for a11 n€w" D
We have still not proved that E — [E — >E 1.

Let us see how to do it.

First we shall need the following theorem:

Theorem: (Vf€ [E^->Ej) Q XftEj [(VeGE^ [f(e) =Xf*e]].
Proof: Let f be in E^and take Xf = U(\yGEn(f(y))n).

Xf is what we are looking for because:

(i) Xf is well defined and is in E (Obvious).
OO

(ii) Let e be in E .
OO

Xf»e = E|mXfm+j(em), by definition of application.
= Um(Xf*em)m> by above lemma.
= Um(C Un(XyeEn(f(y))n))»em)m, by definition of Xf.

- 226 -

= Um(Un((Xy€En(f(y))n))»em)m, by continuity in terms of Un.
= umun((:xy6En(f(y))n)*em)m' by contirLuity in terms of Um.
= Uk((Xy€Ek(fCy))k)«ek)k, by a lemma.
= Uk(f(ek))k> by X-conversion.

= U (f(e))n by a lemma.
n,m

= Un^ Umf^em^n by continuity-
= Un(f(Umem))n, by continuity.
= U (f(e)) .

n n

= f(e), by continuity of f. □

Theorem: -^oJ-
Proof: Let R: [E^— >EQJ — ^^such that R(f) =Xf (as above).
(i) R is well defined: obvious.

(ii) R is injective:

R(f) =R(g) == >Xf =Xg == > f =g?

f(e) =Xf«e = Xg*e = g(e), Assuming extensionality we get f =g.

(iii) R is surjective: obvious.

(iv) R is continuous:

R(U f) =XUf
n n

= um^yeEm(using contilluity ==>
= Um(Un(XyeEm(fn(y))m)), using limit ==>
= Un(Um(Xy eEm(fn(y))m)), using definition of Xf^ ==>
= UXf .

n

= UR(fn).
Therefore R is an isomorphism and so we have:

Actually, E^ is the least upper bound of the sequence of domains (En)n, but as it

- 227 -

takes a lot of work to prove it, I shall ignore the proof.

That was a short introduction to how one can define the Scott domain E^.

However, what I have not given is a definition of the model of a lambda calculus in

general. For such a definition, the reader is referred to [MEl].142

142 For those who are familiar with category theory, it is worth
side of this construction. They would have guessed already that <t> is
category of domains and continuous functions and that E = (E-,W).OO 11

reminding them of the categorical
a contraction if the category is the

- 228 -

BIBLIOGRAPHY

[ABl] Abbott J.C (1969), Sets, Lattices and. Boolean Algebras; Allyn and Bacon, Inc.,
Boston.

[ACl] Aczel P. (1974), The strength of Martin-Lofs intuitionistic type theory with
one universe; Proceeding of the Symposium on Mathematical Logic, in Oulu 1974,
Report No 2 of Department of Philosophy, University of Helsinki (1977), pp 1-32.

[AC2] Aczel P. (1977), The type theoretic interpretation of constructive set theory;
Logic Colloquium '77, edited by A. Maclntyre, L. Pacholski and J. Paris, North-
Holland, Amsterdam, pp 55-66.

[AC3] Aczel P. (1980), Frege structures and the notions of proposition, truth and set;
The Kleene Synposium, Edited by Barwise et.al, Studies in Logic 101, North-Holland,
NewYork, pp 31-60.

[AC4] Aczel P. (1981), A formal language; privately circulated note, Manchester
University.

[AC5] Aczel P. (1984), Lecture notes on non-well founded sets; Lecture notes at
Stanford University.

[AC6] Aczel P. (1985), Properties and propositional functions; privately circulated
note, Manchester University.

[ALl] Allen J.F and Perrault C.R (1980), Analysing intensions in utterances; Artificial
Intelligence 15, pp 143-178.

[AL2] Allen J.F (1981), A general model of action and time; privately circulated note,
University of Rochester.

[AL3] Allen J.F (1981), An interval-based representation of temporal knowledge;
International Journal ofComputing and Artificial Intelligence '81, pp 221-226.

[AL4] Allen J.F and Koomen J.A (1983), Planning using a temporal world model;
International Journal ofComputing and Artificial Intelligence '83, pp 741-747.

[AL5] Allen J.F (1984), Towards a general theory of Action and Time; Artificial
Intelligence 23, pp 123-154.

[AL6] Allison L. (1984), Denotational semantics; Computer Science 4, University of
Edinburgh.

[AVI] Avron A. (1987), Simple Consequence relations; Talk given at the conference
on General Logic in Computer Science, March '87, Edinburgh University.

[BA1] Barendregt H.P (1981), The type free lambda calculus; Handbook of
Mathematical Logic edited by J. Barwise. North-Holland, New York, pp 1091-1132.

[BA2] Barendregt H.P (1981), The lambda calculus: its syntax and semantics. North-
Holland, Amsterdam.

[BA3] Barwise J. and Cooper R. (1981), Generalised quantifiers and natural language.

- 229-

Linguistics & Philosophy 4, pp 159-219.

[BA4] Barwise J. and Perry J. (1983), Situations and Attitudes. MIT Press.

[BA5] Backhouse R. (1986), Notes on Martin-LftFs theory of types; Sections 1 and 2.
University of Essex. CSM 81-82.

[BEl] Van Benthem J. (1984), Questions about quantifiers; Journal ofSymbolic Logic
49, pp 443-469.

[BE2] Bethke I. (1986), How to construct extensional Combinatory Algebras;
Proceedings of the Koninklijke Nederlandse Akademic Van Wetenschappen 89, pp
243-257.

[BE3] Beeson M.J (1978), Continuity in intuitionistic set theories; Logic Colloquium
'78, edited by M. Boffa et al, North-Holland, Amsterdam, pp 1-52.

[BE4] Beeson M.J (1987), Foundations of constructive Mathematics; Springer-Verlag,
Berlin.

[BE5] Ben-Chorin S. (1982), Sentence meanings as a formal basis for intensional Logic;
Proceedings of the first West Coast Conference on Formal Linguistics, Stanford
University.

[BE6] Bealer G. (1982), Quality and concept; Clarendon press, Oxford.

[BE7] Van Benthem J. (1983), Determiners and logic; Linguistics & Philosophy 6, pp
447-478.

[BIl] Bishop E. (1967), Foundations ofconstructive analysis; Mcgraw-Hill, New York.

[BOl] Boolos G. (1971), The iterative conception of set; Journal ofPhilosophy LXVIII,
pp 215-231.

[B02] Boolos G. and Jelfrey R. (1980). Computability and logic; 2nd edition,
Cambridge University Press.

[B03] Boolos G. (1982) Extremely undecidable sentences; Journal ofSymbolic logic 47,
pp 191-197.

[BUI] Burgess J.P (1986), The Truth is never simple; Journal ofSymbolic Logic 51, pp
663-681.

[CAl] Carlson G. (1987), Reference to kinds in English; Ph.D. Dissertation, University
of Massachusetts.

[CA2] Carnap (1947), meaning and necessity; Chicago press.

[CHl] Chierchia G. (1982), Nominalisation and Montague grammar: A semantics
without types for natural languages; Linguistics and Philosophy 5, pp 303-354.

[CH2] Chierchia G. (1982), Bare plurals, Mass nouns and Nominalisation; In
D.Flickinger, M.Macken and N.Wiegand (eds.), Proceedings ofWest Coast Conference
on Formal Linguistics I, Stanford, California.

- 230 -

[CH3] Chierchia G. (1984), Topics in the Syntax and Semantics of infinitives and
Gerunds; PhD dissertation, University of Massachusetts.

[CH4] Chierchia G. and Turner R. (1985), Semantics and property theory;
Essex/Massachusetts.

[CH5] Chierchia G. (1985), Formal semantics and the grammar of predication;
Linguistic Inquiry 16, pp 417-443.

[CH6] Church A. (1940), A formulation of the simple theory of types; Journal of
Symbolic Logic 5, pp 56-68.

[CH7] Church A. (1941), Calculi of lambda-conversion; Annals of Mathematical
Studies 6, Princeton University Press, Princeton.

[CH8] Church A. (1956), Introduction to Mathematical Logic I; Princeton University
Press, Princeton.

[COl] Cocchiarella N.B (1984), Frege's Double Correlation Thesis and Quine's set
theories NF and ML; Journal ofPhilosophical Logic 13.

[C02] Cocchiarella N.B (1986), Conceptualism, Ramified Logic and Nominalised
predicates; privately circulated note, Indiana University.

[CO3] Cocchiarella N.B (1986), Philosophical Perspectives on Formal theories of
Predication; Handbook ofPhilosophical Logic 4, D. Reidel, Dordrecht.

[C04] Coquand Th. (1985), An analysis of Girard's paradox; CMU and INRIA,
privately circulated note.

[C05] Constable R. and Howe D. (1987), NUPRL as a framework for defining logics;
technical report, Computer Science, Cornell University.

[CUl] Curry H.B and Feys R. (1968), Combinatory Logic I; North-Holland,
Amsterdam.

[DAl] Van Dalen D. (1985), Intuitionistic Logic; Handbook of Philosophical Logic 3,
D.Reidel, Dordrecht.

[DIl] Diller J. (1980), To H.B.Curry: Essays on Combinatory Logic, lambda calculus and
formalism; edited by J.P. Seldin and J. R. Hindley, Academic press, New York.

[DOl] Dowty D., Wall R. and Peters S. (1981), Introduction to Montague semantics;
D.Reidel, Dordrecht.

[DUl] Dummett M. (1977), Elements ofintuitionism; Clarendon press, Oxford.

[DU2] Dummett M. (1981), Frege philosophy oflanguage; Duckworth.

[DU3] Dunn J.M. and Belnap N.D (1968), The substitution interpretation of the
quantifiers; Nous 2, pp 177-185.

[ENl] Enderton H.B (1972), A Mathematical introduction to Logic; Academic press,
New York, London.

- 231 -

[FEl] Feferman S. (1975), A language and axioms for explicit Mathematics; Algebra &
Logic, lecture notes in mathematics 450, Springer, Berlin, pp 87-139.

[FE2] Feferman S (1979), Constructive theories of functions and classes; In M.Bolfa,
D.Van Dalen, K. McAloon (eds), Logic Colloquium '78, edited by M. Boffa et al,
North-Holland, Amsterdam, pp 159-224.

[FE3] Feferman S. (1981), Working foundations; A revised version of a paper
presented to the workshop The present state of the problem of foundations of
Mathematics, Florence.

[FE4] Feferman S. (1981), A theory of variable types; privately circulated note,
Stanford University.

[FE5] Feferman S. (1982), Inductively presented systems and the formalisation of
Meta-Mathematics; Logic Colloquium '80, edited by D. Lascar and J. Smiley, North-
Holland, Amsterdam, pp 95-128.

[FE6] Feferman S (1983), Intensional Mathematics; Logic Colloquium '83.

[FE7] Feferman S. (1984), Between constructive and classical Mathematics; in Logic
Colloquium '83.

[FE8] Feferman S (1984), Intensionality in Mathematics; For the symposium on
intensions and set theory; Meeting of the Pacific Division of the American
Philosophical Association.

[FE9] Feferman S (1984), Towards useful type-free theories I; Journal of Symbolic
Logic 49, pp 75-111.

[FIl] Fine K. (1974), Models for entailments; Journal of Philosophical Logic 3, pp
347-372.

[FI2] Fine K. (1984), Critical review of Parsons' non-existent objects; Philosophical
Studies 45, pp 95-142.

[FLl] Flagg R. and Myhill J. (1984), Notes on a type-free system extending ZFC;
privately circulated note, Ohio State University and University of New York at
Buffalo.

[FL2] Flagg R. and Myhill J. (1984), An extension of Frege structures; privately
circulated note, Ohio State University and University of New York at Buffalo.

[FL3] Flagg R. and Myhill J. (1984), Implication and Analysis in classical Frege
Structures; privately circulated note, Ohio State University and University of New
York at Buffalo.

[FL4] Flagg R. (1984), K-continuous lattices and Comprehension principles for Frege
Structures; privately circulated note, Ohio State University.

[FL5] Flagg R. (1985), Church's thesis is consistent with epistemic arithmetic;
Intensional Mathematics; edited by S. Shapiro, Elsevier Science publishers B.V.,
North-Holland.

- 232-

[FOl] Font J.M (1985), Modality and Possibility in some intuitionistic modal logics;
Faculty of Mathematics, University of Barcelona.

[FRl] Fraenkel A. (1966), Set theory and Logic; Addison-Wesley, U.S.A.

[FR2] Fraenkel A., Bar-Hillel Y. and Levy A. (1973), Foundations of set theory;
North-Holland, Amsterdam.

[FR3] Frege G. (1970), Translations from the philosophical writings ofFrege; Edited by
Peter Geach and Max Black, Basil Blackwell, Oxford.

[GAl] Gallin D. (1975), Intensional and higher-order modal Logic; North-Holland,
Mathematics Studies 19.

[GEl] Geminiani M., ELementary topology; Addison-Wesley, U.S.A.

[GOl] Godel K. (1962), On formally undecidable propositions ofPrindpia Mathematica
and related systems; Translated by Meltzer, 1st English edition, Oliver and Boyd.

[G02] Gordon M. (1979), The denotational description ofprogramming languages, An
introduction; Springer-Verlag, New York.

[G03] Goodman N. (1985), A Genuinely Intensional set theory; Intensional
Mathematics, edited by S. Shapiro, Elsevier Science publishers B.V., North-Holland.

[GUI] Gupta A. (1982), Truth and Paradox; Journal ofPhilosophical Logic II, pp 1-
60.

[HAl] Hanna and Saber (1971), Sets and Logic; Irwin, Inc.

[HA2] Harper R. (1986), Introduction to standard ML; technical report, Computer
Science, University of Edinburgh.

[HEl] Henderson P. (1980), Functional programming, Application and Implementation;
Prentice Hall-International Series in Computer Science, London.

[HE2] Henkin L. (1950), Completeness in the theory of types; Journal of Symbolic
Logic 15, pp 81-91.

[HE3] Heyting A. (1966), Intuitionism, An introduction; North-Holland, Amsterdam.

[HE4] Herzberger, H. (1982), Notes on Naive semantics; Journal ofPhilosophical Logic
II, pp 62-102.

[HIl] Hindley J.R and Seldin J.P (1986), Introduction to Combinators and Lambda-
Calculus; Cambridge University Press, Cambridge.

[HI2] Hintikka K.J (1956), Identity, variables, and impredicative definitions; Journal
ofSymbolic Logic 21, pp 225-245.

[HI3] Hintikka KJ (1975), Impossible possible worlds vindicated; Journal of
Philosophical Logic 4, pp 475-484.

[HOl] Hodges W. (1975), Logic; Penguin books, London.

- 233 -

[HUl] Hughes G.E and Cresswell M.J (1968), An introduction to modal Logic;
Methuen.

[KAl] Kamp, H. (1979), Events, Instants and temporal reference; edited by Bauerle,
Egli and von Stechow. semantics from difjerent points ofview, De Gruyter: Berlin pp
376-471

[KA2] Kamp H. (1983), A Scenic tour through the land of naked infinitives;
unpublished.

[KA3] Kamp H. (1981), A theory of Truth and semantic representation; In
Groenendijk, J.T. Janssen and M. Stokhof eds, Formal methods in the study of
language, Amsterdam: Mathematics centrum.

[KA4] Kamareddine F. (1987), Second order quantifiers in Frege structures; in
preparation.

[KA5] Kamareddine F. (1987), Theories of truths in Frege structures; in preparation.

[KA6] Kamareddine F. (1988), Interpreting IL in a two-levelled theory.

[KEl] Kelley J.L (1955), General Topology; D.Van Nostrand co., Princeton.

[KE2] Keenan E.L (1982), Eliminating the universe, A study in ontological perfection;
Proceedings of the First West Coast Conference on Formal Linguistics; Stanford
University.

[KLl] Klein E. (1977), On sentences which report beliefs, desires and other mental
attitudes; PhD dissertation, University of Cambridge.

[KL2] Kleene, S.C (1952), Introduction to Metamathematics; D.Van Nostrand co, Inc.,
Princeton

[KL3] Kleene, S.C (1968), Mathematical Logic; Wiley&Sons, Inc.

[KOI] Kowalski R. and Sergot M (1984), A Logic-based calculus of events; technical
report, Imperial college, London University.

[K02] Kock A. and Wraith G.C (1971), Elementary toposes; Lecture notes series 30,
Aarhus University.

[KRl] Kripke S.A (1963), Semantical considerations on Modal Logic; In Reference and
Modality, L.Linsky.

[KR2] Kripke S.A (1975), Outline of a theory of Truth; The Journal of Philosophy
LXXII, pp 690-716.

[KR3] Kripke S.A, A puzzle about belief; in Margalit, pp 239-283.

[LAI] Lambek J & Scott P.J (1986), Introduction to higher order categorial Logic;
Cambridge University Press, Cambridge.

[LEI] Lemmon E.J (1965), Beginning Logic; Nelson's University Paperbacks series,
London.

- 234 -

[LIl] Link G., Plural; to appear in the Handbook of Semantics, edited by D.
Wunderlich and A. V. Stechow.

[LI2] Link G. (1983), The logical analysis of plural and mass terms: A lattice theoretic
approach; In Meaning, Use and Interpretation ofLanguage, De Gruyter, pp 302-323.

[LI3] Link G. (1986), Generalised quantifiers and plurals; CSLI.

[LI4] Lifschitz V. (1985), Calculable natural numbers; Intensional Mathematics.
edited by S. Shapiro, Elsevier Science publishers B.V. North-Holland.

[LLl] Lloyd J.W (1984), Foundations of Logic programming; Springer-Verlag, Berlin
Heidelberg New-York Tokyo.

[LOl] Longo G. (1983), Set theoretical models of Lambda Calculus: Theories,
Expansions, Isomorphisms; Annals ofPure and Applied Logic 24, pp 153-188.

[MAI] Martin-Lof P. (1973), An intuitionistic theory of Types: Predicative part; Logic
Colloquium '73, edited by H.E. Rose and J.C. Shepherdson, North-Holland, Amsterdam,
pp 73-118.

[MA2] Martin-Lof P. (1980), Intuitionistic Type Theory; Notes by Giovanni Sambin
of a series of lectures given in Padova.

[MCI] McCarty D.C (1983), Intuitionism: an introduction to a seminar; Journal of
Philosophical Logic 12, pp 105-149.

[MC2] McCarty D.C (1984), Subcountability and Realisability; technical report at
Monash University.

[MC3] McDermott D. (1982), A temporal logic for reasoning about processes and
plans; Cognitive Science 6, pp 101-155.

[MEl] Meyer A. (1981), What is a model of the Lambda Calculus? Unpublished ms.,
M.I.T. Lab., Computer Science.

[MOl] Monnich U. (1983), Toward a calculus of concepts as a semantical
metalanguage; In Meaning, Use and Interpretation ofLanguage, De Gruyter, pp 342-
360.

[MYl] Myhill J. (1975), Constructive set theory, Journal of Symbolic Logic 40, pp
347-382.

[MY2] Myhill J. (1985), Intensional set theory; Intensional Mathematics, edited by S.
Shapiro, Elsevier Science publishers B.V. North-Holland.

[NAl] Nagel E. and Newman J. (1959), Godel's Proof; Routledge & Kegan Paul.

[PAl] Parsons C. (1971), A plea for substitutional quantification; The Journal of
Philosophy LXVIII, pp 231-237.

[PA2] Partee B. (1986), Noun phrase Interpretation and type shifting principles;
Studies in discourse representation and the theory ofgeneralised quantifiers, edited by
J. Groenendijk and M. Stokhof, Grass 8, Foris, Dordrecht.

- 235 -

[PA4] Partee B. (1986), Ambiguous pseudoclefts with unambiguous Be; To appear in
Proceedings ofNorth Eastern Linguistic Society 16, edited by Steve Berman, Joe Choe
and Joyce McDonough, GLSA.

[PA5] Parsons T. (1979), The theory of types and ordinary language; in Davies S. and
Mithun M. (eds), Linguistics, Philosophy and Montague Grammar, University of Texas
Press, Austin

[PEl] Peirce (1955), Philosophical Writings; selected and edited by Buchler, Dover
publications, New York.

[PE2] Perlis D. (1987), Languages with Self-Reference II: Knowledge, Belief and
Modality; University of Maryland.

[POl] Poincarfe H. (1902), Du role de l'intuition et de la logique en mathematiques;
C.R. du if Congr. Intern, des Math., Paris 1900, pp 200-202.

[QUI] Quine W.V (1952), Methods ofLogic; Routledge & Kegan Paul ltd.

[QU2] Quine W.V (1964), New foundations for Mathematical Logic; In From a logical
point ofview, Nine Logico-philosophical essays, Harvard University Press, Harvard.

[QU3] Quine W.V (1969), Set theory and its Logic; Belknap Press, Harvard.

[ROl] Partee B. and Rooth M. (1983), Generalised conjunction and type ambiguity;
Meaning, Use and Interpretation ofLanguage, De Gruyter, pp 361-381.

[RUl] Russell B. (1908), Mathematical logic as based on the theory of types; American
Journal of ofMath. 30, pp 222-262.

[RU2] Russell B. (1905), On denoting; in Logic and Knowledge, Essays 1901-1950,
edited by R. Marsh, Capricorn books, New York.

[SCI] Scott D.S (1968), Constructive validity; Symposium on automatic demonstration,
Lecture notes in Mathematics 25, Springer-Verlag, Berlin.

[SC2] Scott D.S (1975), Combinators and classes; In Lambda Calculus and Computer
Science, edited by C. Bohm, Lecture notes in computer Science 37, Springer, Berlin,
pp.1-26.

[SC3] Scott D.S (1976), Data types as Lattices; Technical Monograph PRG-5, Siam
Journal on Computing 5, pp 522-587.

[SC4] Scott D.S (1980), Lambda calculus: Some models, some philosophy; edited by J.
Barwise, H.J. Keisler and K. Kunen, The Kleene Symposium, North-Holland,
Amsterdam, pp 223-265.

[SC5] Scott D.S (1981), Notes on the Formalization ofLogic, Parts I&II, III&IV.

[SC6] Scott D.S (1981), Lectures on a Mathematical theory of computation; Technical
Monograph PRG-19, Oxford University Computing Laboratory.

[SC7] Scedrov A. (1985), Extending Godel's modal interpretation to type theory and
set theory; Intensional Mathematics, edited by S. Shapiro, Elsevier Science publishers

- 236 -

B.V. North-Holland.

[SHI] Shapiro S. (1985), Introduction: Intensional Mathematics and Constructive
Mathematics; Intensional Mathematics, edited by S. Shapiro, Elsevier Science
publishers B.V. North-Holland.

[SH2] Shapiro S. (1985), Epistemic and Intuitionistic Arithmetic; Intensional
Mathematics, edited by S. Shapiro, Elsevier Science publishers B.V., North-Holland.

[SH3] Shoenfield J. (1976), Mathematical Logic; Addison Wesley.

[SMI] Smith J. (1984), An interpretation of Martin-Lofs type theory in a type-free
theory of propositions; Journal ofSymbolic Logic 49, pp 730-753.

[SM2] Smith J. (1985), On a nonconstructive type theory and program derivation;
technical report, Computer Science Department, University of Goteberg.

[SM3] Smorynski C. (1977), The incompleteness theorems; Handbook ofMathematical
Logic, pp 821-865, Edited by Bar-wise, North-Holland.

[SM4] Smullyan R. (1985), Modality and Self-Reference; Intensional Mathematics,
edited by S. Shapiro, Elsevier Science publishers B.V. North-Holland.

[SM5] Smullyan R. (1985). Some principles related to Lob's theorem; Intensional
Mathematics, edited by S. Shapiro, Elsevier Science publishers B.V., North-Holland.

[STl] Stenlund S. (1972), Combinators, lambda-terms and proof-theory; D.Reidel,
Dordrecht, Holland.

[ST2] Stoy J. (1977), Denotational semantics: The Scott-Strachey approach to
programming language theory; The MIT Press, Cambridge, Massachusetts.

[ST3] Stalnaker R.C (1984), Inquiry; The MIT Press, Cambridge, Massachusetts.

[ST4] Stalnaker R.C. and Thomason R.H. (1968), Abstraction in First-Order Modal
Logic, Theoria 3, pp 203-207.

[SUl] Suppes P. and Hill S. (1964), First course in Mathematical Logic; Blaisdell.

[TEl] Tennent R.D (1976), The denotational semantics of programming languages;
Communications ofthe ACM 19, pp 437-453.

[TE2] Tennant N. (1978), Natural Logic; Edinburgh University Press.

[TE3] Tennant N. (1982), Proof and Paradox; Dialectica.

[THl] Thomason R.H (1970), Symbolic Logic, An introduction; Collier-Macmillan.

[TH2] Thomason R.H (1974), Formal Philosophy; Selected papers by Richmond
Montague, Yale University.

[TH3] Thomason R.H (1976), Some extensions of Montague grammar; Montague
Grammar, Edited by Barbara Partee, Academic Press.

- 237 -

[TH4] Thomason R.H (1980), A model theory for propositional attitudes; Linguistics
and Philosophy 4, pp 47-70.

[TH5] Thomason R.H and Stalnaker R.C. (1973), A semantic theory of adverbs;
Linguistic Inquiry 4, pp 195-220.

[TH6] Thomason R.H (1968), Modal Logic and Metaphysics, The logical way ofdoing
things, edited by K. Lambert, Yale University Press, New Haven.

[TRl] Troelstra A.S (1969), Principles of Inflationism; Lecture notes in Mathematics,
Springer-Verlag, Berlin-Heidelberg, New York.

[TUl] Turner R. (1982), Montague grammar and Scott-strachey semantics; In
D.Flickinger, M.Macken and N.Wiegand (eds.), Proceedings of the frst West Coast
Conference on Formal Linguistics, Stanford University.

[TU2] Turner R. (1983), Montague Semantics, Nominalization and Scott's Domains;
Linguistics & Philosophy 6, pp 259-288.

[TU3] Turner R. (1984), Formal semantics & type free theories; Proceedings of the 5th
Amsterdam Symposium on Formal Semantics.

[TU4] Turner R. (1984), Logics for AI; Ellis Horwood series in Artificial Intelligence.

[TU5] Turner R. (1984), Three Theories of Nominalized Predicates; Studia Logica
XLIV2, pp 165-186.

[TU6] Turner R. (1984), Nominalization and Scott's Domains II; Notre Dame Journal
ofFormal Logic 26.

[TU7] Turner R. (1984), The Semantics of Nominalized Predicates; privately
circulated note.

[TU8] Turner R. (1986), Towards a new foundation for semantic theory; Conference
on property theory at Amherst,

[TU9] Turner R. (1987), A theory of properties; Journal ofSymbolic Logic 52.

[TU10] Turner R. (1987), Intentional Semantics; privately circulated note.

[TUll] Turner R. (1987), Procedural semantics; privately circulated note.

[TU12] Turner R. (1987), Generalised Frege structures; Invited talk, American
Philosophical Association.

[TUl 3] Turner R. (1987), Semantics in the lambda calculus; privately circulated.

[VEl] Veltman F. (1984), Data Semantics; MC Tract 136, Formal methods in the study
of language, Edited by Groenendijk, Janssen and Stochof.

[VE2] Veltman F. (1985), Logics for conditionals; PhD thesis, University of
Amsterdam.

[WAl] Wallace J. (1971), Convention T and Substitutional quantification; Nous 5, pp

- 238 -

199-211.

[WA2] Wang H. (1950), A formal system of Logic; Journal ofSymbolic Logic 15, pp
25-32.

[WA3] Wang H. (1955), On formalization; Mind 64, pp 226-238.

[WIl] Willard S. (1941), General topology; Addison-Wesley Series in Mathematics.

[WRl] Wright C. (1983), Frege's conception ofnumbers as objects; Scott Philosophical
Monographs 2, Aberdeen University Press.

[YAl] Yablo S. (1985), Truth and Reflection; Journal of Philosophical Logic 14, pp
297-349.

[ZEl] Zeevat H. (1985), A treatment of belief sentences in discourse representation
theory; privately circulated note.

