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Abstract 

In this paper we shall meet the application of Scott domains to nominalisation and 
explain its problem of predication. We claim that it is not possible to find a solution to such 
a problem within semantic domains without logic. Frege structures are more conclusive 
than a solution to domain equations and can be used as models for nominalisation. Hence 
we dc;:velop a type theory based on Frege structures and use it as a theory of nominalisation. 
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1 Frege structures, a formal introduction 

Having in part I informally introduced Frege structures, I shall here fill in all the technical 
details and show that Frege structures exist. 

Consider Fo, F1"'" a family F of collections where Fo is a collection of objects, and 
('In> O)[Fn is a collection of n-ary functions from F& to FoJ. 

Definition 1.1 (An explicitly closed family) A family F as above is explicitly closed iff: 
For every expression e[xl, ... , xnJ of the metalanguage built up in the usual way from vari
ables ranging over Fo and constants ranging over UnF n, the n-place function denoted by 
< e[xl, ... ,XnJ/Xl, ... ,Xn > is in Fn. More formally, F is explicitly closed iff 1,2 and 3 
below hold: 

1. Closure under constant functions: For each a in Fo, the function fa is in F 1, where 
('Ix )(fa(x) = aJ. 

2. Closure under composition: For each f in F m, for each gl, ... , gm in Fk, f(g}, .. . , gm) 
is in Fk wh'ere (J(gl, ... ,gm))(Xl, ... ,Xk)= f(gl(x}, ... ,Xk), ... ,gm(Xl,,,,,Xk))' 

3. Closure under .. projection: For each n, i 2': 1, Pt is in Fn where Pr(al,"" an) = ai for 
each ai in Fo and, 1 :$ i :$ n. 

For example, if f and 9 are unary functions of F and h is a binary function of F, then 
< fog(h(Xl,XZ))/Xl,XZ > is a2-ary function (i.e. in F2)' 

In what follows, we assume such a closed fantily and call it F. 

Definition 1.2 (F -functional) A function D : F n1 X ... X F nk --+ Fo is an F -functional 
with respect to the explicitly closed family F, iff: ('1m 2': 0)('1 ft in F m +n1 ) ... (V fk in F m +nk) 
[< D( < ft(y,Xt)/Xl >, ... , < ik(y, Xk)/X-k > )/y > is in F mJ 

where fj is a list of m-variables and Xi is a list of nj variables, for i = 1, ... ,k. 

Note that if ft''''/kare 1-placefunctions and D: Fl X ... XFl --+ Fo then D(ft,··· ,h) 
is in Fo. What is the intuitive meaning of F-functionals? We know that an F-functional is a 
functional, so that it operates on functions. But once we include functionals in the structure, 
we need to ensure that any expression which contains functionals should actually be in the 
structure. Assume for the sake of argument that D : Fn1 X ... X Fnk --+ Fo is an F
functional. Assume also that for some m 2': 0, Ii is in Fm+ni for i = 1, ... , k. We know that 
according to the explicit closure, if y is a list of m-variables ranging over Fo and for each i, Xi 
is a list of ni variables ranging over Fo, then < Ji(y, Xi)/Xi > is an element of F nj for each i. 
Therefore it makes sense to talk of the expression D( < !I(y, Xt)/Xl >, ... , < h(y, Xk)/Xk ». 
This expression however is open in y and if we abstract over y in this expression are we 
going to obtain an element of Fm? Nothing so far in the structure ensures that this is the 
case, and we must therefore impose the constraint that these functionals should have such a 
property. A functional which has this property is called an F -functional and now if D is an 
F-functional then [< D« ft(y,Xl)/Xl >, ... ,< h(y,Xk)/Xk »/y > is in FmJ. Hence we 
extend the definition of explicit closure to the following: 

Definition 1.3 (A super explicitly closed family) Taking a family as above, we say that this 
family is super explicitly closed iff for every expression e[6, .. ·, ~mJ of the metalanguage, 
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built up in the usual way from variables ranging over UnF n and constants ranging over UnF n 
and over F -functionals, the m-place function denoted by < e[6, ... , ~mJ/ XiI, ... ~m > is an 
F -functional. 

This notion of explicit closure is going to provide us with the full comprehension principle 
we have been promising. 

Theorem 1.4 Any explicitly closed family which has variables for functions and objects, 
constants for objects, functions and F -functionals, is a super explicitly closed family. (The 
proof is by an easy induction.) 

Example 1.5 As an example of an explicitly closed family, consider Pw as described pre
viously. Define Fo to be the set of all subsets of w {i.e. Pw }. Define, for each n 2': O,Fn 
to be the set of all continuous functions from Fll' ---+ Fo. Using Part I, it can be easily 
seen that the constant functions, the projection functions, etc are continuous. It can also 
be seen that continuity is closed under composition and that any combination e[xI"" ,xnJ 
of variables for objects and constants for both functions and objects results in the function 
denoted by < e[xI,' .. , xnll Xl, ... ,Xn > being an element of F n. Therefore the family (F n)n 
just obtained from Pw {call it FE}, is an explicitly closed family. Furthermore, FE is su
per explicitly closed as it can be proven not only that < e[xI, .. ' ,XnJ/XI, ... ,Xn > denotes a 
continuous function but also that for any expression e[6, . .. , ~nJ built in the usual way out 
of variables ranging over UnF n and constants ranging over both UnF nand F -functionals, 
< e[~l" .. ,~nll~l"",~n> denotes a continuous function. 

So far, we have only explicit closure on our structure. But that is not enough to give a 
logic on the structure. In what follows, we see how to obtain such a logic. 

Assume an explicitly closed family F and a list oflogical constants whlch are the following 
F-functionals: 

• :Fo ---+ Fo 
v, II, -., == : Fo X Fo ---+ Fo 
'1,3: Fl ---+ Fo 

Definition 1.6 {Logical system} A logical system on a super explicitly closed family F, rela
tive to a set of logical constants as above, is < PROP, TRUTH> the set of two collections 
of objects such that TRUTH <;; PROP. These two collections are closed under an adopted 
logical schemata for each logical constant. The logical schemata corresponds to the external 
logic and tells us, for each logical constant from the list, how to build new propositions out 
of other ones using the logical constant. It also gives the conditions of truth for the resulting 
proposition. 

THE LOGICAL SCHEMATA 

• NEGATION If a is in PROP then .a is in PROP and .a is in TRUTH iff a is not 
in TRUTH. 

• CONJUNCTIONIf a,b are in PROP then (aAb) is in PROP and (allb) is in TRUTH 
iff a is in TRUTH and b is in TRUTH. 

• DISJUNCTION If a, b are in PROP then (a Vb) is in PROP and (a Vb) is in TRUTH 
iff a is in TRUTH or b is in TRUTH. 
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• IMPLICATION If a is in PROP and b is in PROP provided that a is in TRUTH 
then (a ---> b) is in PROP and (a ---> b) is in TRUTH iff a is in TRUTH implies b is 
in TRUTH. 

• UNIVERSAL QUANTIFICATIONIf f is a propositional function in Fl then 'If' is in 
PROP and 'If is in TRUTH iff f(a) is in TRUTH for all objects a. 

• EXISTENTIAL QUANTIFICATIONIf f is a propositional function in Fl then 3f is 
in PROP and 3f is in TRUTH iff f(a) is in TRUTH for some object a. 

• EQUALITY If a,b are objects then (a=b) is in PROP and (a=b) is in TRUTH iff 
a = b2

• 

• BI·IMPLICATIONIf a,b are in PROP then (a '" b) is in PROP and (a", b) is in 
TRUTH iff (a is in TRUTH iff b is in TRUTH). 

From now on, we shall use a is true for a is in TRUTH, a is a proposition for a is in PROP 
and a ·is a set for a is in SET. In short, a logical system builds a logic on our structure. But 
something is still missing: even, though we built the logical system on the top of an explicitly 
closed structure, where functional abstraction < e[x" ... , xn]/x" .. . , Xn > and application 
f( x) do exist, we still need a way of turning functions into objects (via>.) and of applying 
such objects to other objects (via app) so that app(>'f,x) = f(x). We do not want to gain 
logic yet lose the bijection between objects and functions. Therefore, our structure must have 
more in it. The next definition will tell us what. 

Definition 1.7 (>..system) A >..system on an explicitly closed family F is a pair of functionals 
< >.,app > such that: >.: Fl --t Fo and app: Fo X Fo --t Fo satisfy: app(>.xf[x],a) = 
f(a), for each fin Fl and a in Fo. 

Example 1.8 If we take the system FE of Example 1.5, and if we define>. : Fl --t Fo as 
>.f = {(n,m) : m is in f(en)} where we take (n,m) to be 1/2(n + m)(n + m + 1) + m and 
define app: Fo X Fo --t Fo as app(a,b) = {m: en C;; b for some n,(n,m) is in a}; 
then (>., app) forms a >..system for FE. 

Proof: app( >.f, a) = {m : en C;; a for some nand (n, m) is in >'I} = 
{m: en C;; a for some nand m is in f(en )} = 
{m in f( en) : en C;; a} = f( a) by continuity. 
Therefore (>.,app) is a >.·systemfor FE. Actually, FE contains>. and app and so it is a 

>..structure, but we leave this to the next definition. 

1 Recall that 'V,3 and A are functions from Fl to FO and hence f does not necessarily contain any free 
variables. For example, < x/x> is the identity function and contains no free variables, .\ < x/x> can be 
written as Ax.x. The same holds for V < x/x> and 3 < x/x >. This might be confusing, as it might be asked 
if < x/x> has no free variables, then what does ..\ < x/x> mean? Despite the fact that < x/x> has no free 
variables (let us denote < x/x> by 1), it is still an element of Fl' I.e. it is still a function and we need to 
make it an object by nominalizing it. Therefore we turn it into an element of FO by using A. Now AI is in 
FO and app(>./, a) = I(a) = a. In fact, A does not abstract on free variables, it is < / > which does so. A 
just turns a function into an object preserving the comprehension axiom: apP(Aj, x) = j(x). When we say 
AX.X, we don't mean that A abstracts over x in x, rather we mean that we first abstract via < / > obtaining 
< x/x > and then we look for the nominal of < x/x > 

2Note the two equal signs, ~ and =. The first is a functional from FO x FO to FO such that a~b is always 
a proposition and a~b is true iff we can prove from the rules of A-calculus with logic that we ate formulating 
that a = b. For example, we know from above that app(Af, x) = j( x), hence the proposition app( ).j, x)== j(x) 
is true. 
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Definition 1.9 (A-structure) A A-structure is an explicitly closed family F which has a A
system. 

Note that the A-structure contains A and app and that it is an explicitly closed family. 

Example 1.10 Now take the A-system FE given in Example 1.8. FE is also a A-structure 
having (A, app) as A-system, because both A and app are in FE, as FE is explicitly closed. 

Definition 1.11 (Frege structures) A Frege structure is a logical system relative to a list of 
logical constants on an explicitly closed family F, together with a A-system. 

Example 1.12 As an example of a Frege structure, take the A-structure FE given in Ex
ample 1.10 and which has a A-system (A,app). Aczel (in [Aczel 1985]) showed that each 
A-structure can be extended to a Frege structure. Therefore we now have an example of a 
Frege structure. 

Let us sketch the proof of how our particular A-structure FE can be extended to a Frege 
structure. This will make the reader understand the notion of Frege structure, and get him 
used to working with it. Before proceeding, however, we must define two missing notions: 
that of an independent family of F -functionals and of a primitive F -functional. 

Definition 1.13 We say that a family of F-funclionals is independent iff for any two F
functionals in the family, the range of values of those F -functionals are disjoint. 

This implies that if F and G belong to an independent family of F-functionals, then for any 
f and g such that F(J) = G(g), we should definitely have F = G. From independence only 
we cannot conclude that f = g. For this we need primitivity and this is the next notion we 
define. 

Definition 1.14 We say that an F-functional F : Fnl x ... x Fnk ~ Fo is primitive iff 

there exists a projection Pi in F llj+l for each 1:::: i:::: k such that Pi(F(f),a) = fiCa) where 

f = It, ... ,!k is in F III X .•• X F Dk and a is in Fb. 

The aim of primitive F-functionals is similar to injectivity; if we have F(f) = F(ll) then we 
should be able to deduce f = g. It can be easily checked from the definition of F-primitiveness 
that this is the case. 

The proof that we can extend any A-structure into a Frege structure is based on two 
theorems. The first is one which asserts the existence of an independent family of primitive 
F-functionals on the A-structure, which include the logical constants, II, V etc. It simply 
states that: 

Theorem 1.15 If for each natural number m we let (vrn!, ••• ,vrn.) be a finite sequence of 
natural numbers, then there is an independent family of primitive F -functionals: 

Fm : Fvm! X ••• X FVmk ---+ Fo, for m:= 0,1,2, .... 

The second is the well known fixed point theorem which applies to monotonic operators and 
helps us to find the logical schema of these logical constants. This theorem simply states the 
following: 
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Theorem 1.16 If A is a partially ordered collection of objects such that every chain in A 
has a least upper bound then any monotonic operator Y from A to A has a fixed point. That 
is (3a E A)[Y(a) = a]. 

Let us apply those two theorems to our FE and obtain out of it a Frege structure. Up to here, 
we know that the A-structure FE exists and Theorem 1.15 enables us to find all the logical 
constants needed. What remains to turn it into a Frege structure is to find a logical system 
for the logical constants. Tltis is the task of Theorem 1.16. The idea is to associate with 
each logical constant two predicates which will ultimately (after we get to the fixed point) 
give all the propositions obtained from the logical constant and all the truths respectively. 
The construction is well known mathematically and is similar to the one followed by Kripke 
in [Kripke 1963]. Now consider our A-structure FE. We can be sure from Theorem 1.15 that 
we have a list of F-functionals which includes: 

~ :Fo - Fo 
V,II,-+,=,=: Fo X Fo - Fo 
'1,3: Fl- Fo 
But we still need to make sure that they satisfy the closure properties we want to impose 

on them. I shall here try to make the construction a little easier than that described by Aczel 
(in [Aczel 1985]). Toconstruct a logical scllema for earn constant, i.e. to define the whole 
logical system, we follow Aczel's intended construction but will carry an example with us at 
all times. The logical system is defined inductively. As the basis of the induction, we start 
with a pair Xo = (Xop, Xo,) such that XOt £; XOp" Intuitively, XOp is the set of propositions at 
stage 0 and XOt is the set of truths at stage O. 

Example 1.17 Let Xo = (Xop, XOt) = ({O, I}, {I}). Note that both {O, I} and {I} are in Pw • 

Before proceeding to the induction step, we must define a couple of auxiliary predicates 
which ensure that the logical constants map their arguments into appropriate values. That is, 
for each logical constant F, there is one predicate i!>F which tests whether a particular tuple 
of arguments has the correct status of propositionhood, and a second predicate Iji F wltich 
states the conditions under which the tuple will be mapped into TRUTH by F. To see why 
we need this, recall the logical scllema for negation that we presented under NEGATION 
above: 

• (1) If a is in PROP then ~a is in PROP, and ~a is in TRUTH iff a is not in TRUTH. 

This is an instance of a general logical schema for those functionals F in a Frege structure 
which correspond to truth-functional connectives: 

• (2) If f is in F nl X ••. X F nk and C'(F,]), then F(]) is in PROP; and F(]) is in 

TRUTH iff C( F, f), where C expresses F's truth conditions and C' expresses F's 
propositionhood. 

Now it is i!>F which tests that the arguments f are in PROP, while IjiF does the work of C 
in (2). 

Example 1.18 i!>~ and Iji~ take arguments in (UXi) X Fo and 
i!>~(Xo, x) is: x is in XOp 
1ji~(Xo,x) is: x is in not XOt 
Thus, i!>~(Xo, x) is true of the set XOP = {O, I}, and Iji ~(Xo, x) is true of all elements in 

Fo \ XOt, i.e. everything except the element 1. 
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In order to carry out the induction step of the construction, we introduce a principle which 
determines how the propositions and truths at stage i + I are built from the propositions and 
truths at stage i. The principle has two parts as follows: 

Principle 1.19 Xi+1p is the collection of those F(!) where F is a logical constant and 
<PF(Xi,!). 

Principle 1.20 Xi+1' is the collection of those F(!) where F is a logical constant and both 
WF(Xi,!) and <PF(Xi,!). 

In other words, given the pair (Xip, Xu), we construct (Xi+lp, Xi+lt) in the following way: 
first, Xi+1p has to contain all and only those elements F(!) such that f belongs to the 

propositions at stage i, i.e. it is in Xip according to <PF(Xi,/); and second, Xi+lt must contain 
all and only those elements F(!) such that f belongs to both the propositions and the truths 
at stage i, i.e. it is in Xip and Xit according to <PF(Xi,!) and WF(Xi, f). Notice that the 
principle guarantees that X(i+1)' ~ X(i+1)p" 

Example 1.21 We wish to build Xl = (Xlp, Xlt) from (Xop,xo,) = ({O, I}, {I}). By Prin
ciple 1.19, Xlp is the set of objects ~x such that <p~(xo,x), i.e. it is the set {~0,~1}. By 
Principle 1.20, Xlt is the set of objects ~x such that <p~(Xo, x) and w~(xo, x), i.e. such that x 
belongs to XOp but does not belong to Xo,. The only thing which satisfies both these conditions 
is 0, so Xlt = {~O}. 

Example 1.22 <P" and W" take arguments in (UXi) X (Fo X FoJ and 
<p,,(Xo, (x,y)) is: x and y are in XOp 
W,,(Xo,(x,y)) is: x andy are inxo, 

Thus, we can supplement the Xlp of the previous example with the set of objects i\(x, y) such 
that (x, y) <;; Xop X Xop, i.e. the set {O i\ 0,0 i\ 1, 1 i\ 0, ... }. Similarly, we add to Xlt the set of 
objects i\(x, y) such that (x, y) <;; XOp X Xo" i.e. the set {I i\ I}. Note that according to our 
example, the collection of objects in TRUTH at stage 1 is {I i\ 1, ~O}. 

Note also that ~O, I i\ 1, 1 VO are distinct objects, even though they are all in TRUTH and 
all have the same truth value in Frege's terms. If we wish, we could reconstruct Frege's notion 
of the True and the False by forming the relevant equivalence classes, but Frege structures 
give us an intensional ontology. This is justified on the grounds that objects with the same 
truth value, e.g. ~O and 1 i\ I are equivalent in truth value but distinct. 

We see that the pair is being enlarged at each step starting from the first step where 
we take XOp = {O, I} and Xo, = {I}, with the property that for each i we have: Xi' ~ Xip. 
Note that we are not imposing the condition that Xi< <;; X(i+l)' or Xip <;; X(i+I)P; in fact our 
construction is monotonic in another sense which we shall see below. The aim is now to keep 
going up to a certain level Q where X" = (X"p, X",) is a logical system, because it is obvious 
that Xi at the levels we met so far are not logical systems. Take for example Xo in our example 
above based on FE. Then XO is not a logical system, as can be seen by taking the logical 
schema for ~: 

If a is a proposition then ~a is a proposition such that ~a is true iff ~a is not true. 

XO is not a logical system because 1 is in Xop (supposed to represent propositions) but ~l 
is not in XOp' Nor is Xl a logical system because ~1 is in Xlp but ~~l is not in Xlp and so 
on. To solve tllis problem, let us consider the fixed point (if it exists) of this construction. It 
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may be that the fixed point is a logical system and if so, we have succeeded. Before we prove 
that the fixed point is a logical system, let us remind ourselves again of the construction. The 
construction is built through an operator Y which takes us from level i to level i + 1 in such a 
way that Y(Xi) = Xi+!, where Xi = (Xip,Xit), Xi+! = (Xi+lp,Xi+lt), Xit <;; Xip, Xi+lt <;; Xi+lp· 
Moreover Xi+!p and Xi+lt are obtained as follows: 

For any F-functional F, Xi+!p is the collection of those F(!) where F is a logical constant 
and cj)F(Xi,1) and Xi+lt is the collection of those objects F(!) where F is a logical constant 
and both cj)F(Xi,!) and WF(Xi,!). Now we prove that any X such that X = Y(X) is a logical 
system. To show that, we have to prove that for each logical constant F, the logical schemata 
of F holds in X. Let F be a logical constant whose logical schema is as follows: 

If 1 is in Fnl x ... X FUk and cj)F(X,!), then F(!) is in Xp; and F(!) is in Xt iff WF(X,!). 

Let us prove that this schema holds in X where X is a fixed point, X = (Xp, Xt) and 
Y(X) = (Xp,Xt). Let 1 be in Fill X •.• X Fn where cj)F(X,!). As cj)F(X,!) then F(!) is in 
X~ by de.!inition, but X~ = X~ (because X = Y(X)), therefore F(!) is in Xp. Now let us prove 
that F(J) is in Xt iff W F(X, fl. 

• (==?) If F(!) is in X; then F(!) is in X;. As F(!) is in X; then there exists an F
functional G and a sequence 9 in Fill x ... X Fllk such that F(g) = G(g) and cj)a(x,g) 
and Wa(x, g) by definition. But the logical constants are independent. Therefore F = G 
and as the family is primitive, 1 = g. Therefore we have from Wa(x, g) that W F(X, g). 

• <== Suppose WF(X,!), since also cj)F(X,!) then F(!) is in X;; but X; = X" therefore 
F(!) is in X,. 0 

This implies that the logical schema of F holds in X. Now we know that if there exists a fixed 
point X then tills X is a logical system. Let ns find a fixed point. 

We define an ordering ~ on (Xi)i as follows: Xi ~ Xi+! if 

• Xip ~ Xi+lp, and 

• if x is in Xip, then x is in Xit iff x is in Xi+lt. 

With this ordering we can show that Y is monotonic. Note that the levels can be any 
ordinal even a transfinite one, for if we are at a finite ordinal j we define Y(Xi) := Xi+l as 
above. If we are at a limit ordinal j, we define Y (Xj) = UXi for i < j. Applying the fixed 
point theorem we get a fixed point of Y. The reason for tills is of course the monotonicity 
of the operator Y, as we know that the ordering relation ~ is a partial ordering on all those 
pairs. 

2 Scott Domains and nominalisation 

The ordering relation on Scott domains makes predication trivial. For, a predicate P is true 
of all the objects in the mode! iff it is true of the bottom element. Both semanticians and 
computer scientists however, share an interest in quantification and hence this problem of 
predication that faced Turner (in [Turner' 1984]) is a major issue for those interested in the 
semantics of either computer or natural languages and who base their work on Scott domains. 
The problem can be described as follows: Assume a language which has both objects and 
functions and assume that wffs are built out of other ones using II, V, V, 3, .... If the model is 
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a Scott domain Eoo then there is no problem interpreting anything which is not a quantified 
sentence, as the interpretations of all such things are continuous functions and hence belong 
to the model. Let us choose the following interpretation for the quantifiers 'land 3 

[[Vx4>119wt = { 
1 if for each din D, [[4>ll9[d/x]wt = 1 
0 iffor some din D, [[4>ll9[d/x]wt = 0 
.L otherwise 

[[3x4>ll9wt = { 
1 if for some din D, [[4>ll9[dfX]wt = 1 
0 if for each din D,[[4>119[d/x]wt = 0 
.L otherwise 

Then the following is a proof of the continuity of the quantifier clause for V . Assume 
by induction that we have [[4>ll is continuous where 4> does not involve quantifiers. To prove 
the continuity of [[Vx4>ll (Le. to prove it in [ASG -+ [S -+ EXTll where ASG is the 
collection of assignment functions, S is the collection of states consisting of worlds and times 
and EXT is the extensional domain of values), we prove it continuous separately in each of 
its arguments, according to a theorem related to semantic domains. 

Let us prove the continuity of [[Vx4>ll for 9 in ASG. Take an w-sequence (gn)n and prove 
that: [[Vx4>llU9nwt = U[[Vx4>ll9nwt . 

• Assume [[Vx4>llU9nwt = 0 ~ by definition, 

(3d E D)([[4>llu9n[d/x]wt = 0) ~ by induction, 

(3d E D)(u[[4>ll9n[d/x]wt = 0) ~ by the structure of BOOL, 

(3d E D)(3n E w)([[4>119n[d/x]wt = 0) ~ by logical laws, 

(3n E w)(3d E D)([[4>ll9n[d/x]wt = 0) ~ by definition, 

(3n E w)(Vx[[4>ll9n[d/x]wt = 0) ~ by the structure of Bool, 

U[[Vx4>ll9nwt = 0 

• Assume [[Vx4>11u9nwt = 1 ~ by definition, 

(Vd E D)([[4>llu9n[d/x]wt = 1) ~ by induction, 

(Vd E D)(u[[4>119n[d/x]wt = 1) ~ by the structure of BOOL, 

(Vd E D)(3n E w)([[4>ll9n[d/x]wt = 1) ~ u <;; d and monotonicity, 

(3n E w)([[4>llgn[d/x]wt = 1) ~ monotonicity, 

(3n E w)(Vd E D)([[4>ll9n[d/x]wt = 1) ¢=> by definition, 

(3n E w)(Vx[[4>119n[d/x]wt = 1) ~ by the structure of Bool, 

U[[\fx4>ll9nwt = 1 

Therefore [[Vx4>ll is continuous. 
Note that this interpretation of quantifiers is abandoned later by Turner (in [Turner' 1984]) 

and he decided to adopt the following clauses instead: 

[[Vx4>ll9wt = { ~ if for each din Eoo \ UEn, [[4>119[d/x]wt = 1 
if for some din Eoo \ UEn, [[4>119[d/x]wt = 0 
otherwise 
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[[3x1>]]gwt = { ~ if for some din Eoo \ UEn , [[1>llg[dfx]wt = 1 
if for each din Eoo \ En, [[1>llg[d/x]wt = 0 
otherwise 

Of course working with Scott domains, you have always to check for continuity and this 
is the case with the new clauses. It can easily be proved that continuity does in fact hold and 
so we can still think of Scott domains as models. 

We now describe the problem which made Turner move from the first definition of quan
tifiers to the second one. By adopting the first definition, we had: [[\fx1>llgwt = 1 iff 
(\fd E D)([[1>llg[dfx]wt = 1). 

As [[1>]] is continuous, therefore monotonic and as u ~ d (where, as noted above, u is the 
undefined) for each din D then we get: (\fd E D)([[1>llg[dfx]wt = 1) iff [[1>llg[u/x]wt = l. 

This clause has serious consequences. I shall illustrate this by taking in the formal language 
an element u' which names u (I.e. [[u']]gwt = u always). Now see what happens if we take 1> 
to be: x = u'. Applying the above clause we get: 

[[x = u']]g[u/x]wt = 1 iff (\fd E D)([[x = U'llg[d/x]wt = 1) which implies: 
u = u iff (\fd E D)(d = u). 
That is absurd. We have to do something about this and the first solution that one thinks 

of is to exclude the undefined element from the quantifier clause. Therefore, instead ofletting 
d range over all of D, we let it range over D. (i.e. D \ {u}). But now Scott domains can 
no longer be models under tills interpretation, for we no longer have [[\fx1>ll is continuous. If 
we go back to the proof of continuity given above, we see that we had to use the undefined 
element in order to prove continuity. Turner, realising this, exploits an important aspect of the 
structure of Scott domains. We explained earlier the existence of finite and infinite elements 
in Eoo and said that for eacll element d of Eoo, d is the limit of (en)n where en belongs to 
En and each En is the domain of finite elements. The infinite (or ideal elements) are those 
which are in Eoo \ UEn . By restricting the quantification over these ideal elements only, we 
can prove again the closure of Scott models. However, by so restricting quantification, only 
infinite elements can be quantified over and finite elements are ignored. 

3 Frege structures and nominalisation 

Frege structures are not only a collection of collections of functions (as in the case of Eoo), 
but they also have a certain logic which works on them, and whose availability solves also the 
problem of Section 1.1 of part I. Therefore, Frege structures solve both problems of section 
1 of part I. In a Frege structure, quantifiers and other connectives are built inductively step 
by step so that at the fixed point one gets all these logical constants. This availability of 
logic, makes Frege structures attractive candidates for the semantics of nominalisation. Their 
other advantage is the type theory that can be built inside them which accommodates self 
application. In fact, we mentioned in 2.2.1 of part I that the theory of types was not adequate 
to the semantics of nominalisation. The typing constraints according to Church's type theory 
are too restrictive for nominalisation and we need to have functions which can apply to 
themselves or to items of the same type. Abandoning Church's type theory does not imply 
getting rid of all the typed theories. We can still keep to typed languages but make the typing 
adequate to deal with nominalisation. This section will develop a type theory based on Frege 
structures such that for any two types a, r the type < a, r > is subsumed by the type a. Some 
types will be circular or vacuous and they will be responsible for avoiding the paradoxes which 
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threaten theories that combine type freeness and logic. Basically, our method is to allow type 
freeness yet to restrict the abstraction of variqus formulae which belong to various types. 
Types can be basic or functional space types. Amongst the functional space types we have 
those types which are circular or vacuous. Abstraction is restricted to those formulae which 
when abstracted over will belong to a non circular, non vacuous type. 

3.1 Polymorphic types 

The set of types is the smallest set T such that 

1. p, t, e are in T are all distinct. 

2. If cr, T are in T then < cr, T > is in T. 

The types defined in 1 are basic types, p is the type of propositions, t is the type of those 
true propositions (which are many according to the intensional framework) and e is the type 
of objects. Of course not every object should be a proposition and not every proposition 
should be a truth. 2 gives the complex types. We impose a subsumption relation :<; on the 
types as follows: 

1. cr:<; e 

2. t :<; P 

3. < cr, T >:<; cr 
We also require that :<; be a partial ordering and therefore impose the following addi
tional conditions: 

4. cr:<; cr 

5. if cr :<; T and T :<; cr, then cr = T 

6. if cr :<; T and T :<; P then cr :<; p 

7. if T:<; p, then < cr,T >:<;< cr,p > 

8. if T :<; p, then < cr, T >:<;< < cr, T >, T > 

1- 6 are obvious. As an example of 7, take the propositional functions which are of type 
< e,p >; these functions are also of type < e,e >. 8 is there to capture those circular types. 
In fact we have the following lemma: 

Lemma 3.1 1fT :<; p, then < cr, T >=« cr, T >,T >=«< cr, T >, T >, T >= ... 
< ... «(1,7>,7>, ... ,7> 
Proof: obvious from 3, 5 and 8. 0 

When cr :<; T, we say that T subsumes, or is a more general type than, cr; intuitively, it 
means that any expression which is of type cr is also of type To Note that e is the maximal 
element of the partial order, since it subsumes every type. We shall see that the subsumption 
relation plays a central role in polymorphism, and that there are models of such a typing 
system; that is, we will have functional domains X =} Y such that (X =} Y) <;; X. 

Our next task is to extend the definition of type so as to characterize the vacuous types, 
that is, the types which may be associated with empty domains. It is useful to first introduce 
the auxiliary notion of a p( ropositional)-cliain type. This is defined inductively as follows: 
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Definition 3.2 (P·Chain Type) 

1. If p $ p and T = e or T = P or T = t then < T, p > is a p-chain type. 

2. If T is a p-chain type, and p $ p then < T, p > is a p-chain type. 

Example 3.3 < e,p >, < p,p >, < t,p >,« e,p >,p > (which is equal to < e,p », 
« p,p >,p > (which is equal to < p,p »,« e,t >,< t,e » ... are p-chain types. 
Moreover, whenever a is a p-chain type, then so are < a,t >, < a,p >, < a, < t, T » and 
< a, < 1', T» (for any type T). 

Note however that the following are not p-chain types: e, < e, e >, < e, < e, e », ... 

Vacuous types below will be associated with empty domains. 

Definition 3.4 (Vacuous Types) a is a vacuous type iff: 

1. a =< T, P > where T and p are p-chain types, and neither T $ l' nor P $ p or 

2. a =< T, P > where p is a vacuous type, or 

3. a $ T, where T is vacuous. 

From 2 and 3 we can conclude that a function space < a, T > is vacuous if its domain a is 
vacuous, using < (1, T >~ (7. 

Example 3.5 The following instances of a =< T,p > are vacuous: 

• a =« e,p >, < e,p », by clause 1, since T = P =< e,p > and not < e,p >$ p' 

• ,,=«<e,t>,<t,e»,«e,t>,<t,e»> 

There are p-chain types which are not vacuous; for example < €,p >. There are types that 
are vacuous but not p-chains. For example « e,p >, < e,p ». There are types which are 
neither vacuous nor p-chains. For example, €, < e, e >, .... 

3.2 The Syntax of Tpol 

The basic expressions of Tpol are as follows: 

1. For each type a, there exists an infinite number of constants. Constants of type a are 
referred to as Cq 

2. For each type a, there exists an infinite number of variables. Variables of type a are 
referred to as Uq • 

Expressions of type a, are defined recursively as follows: 

1. Uu : a. 

2. Cu : (I. 

3. If a : T, U : a and < a, T > is a type which is not vacuous nor circular, then 

Au.a :< a, T >. 
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4. If a:< a,T > and fJ: a', where a' ~ a, then app(a,fJ): T. 

5. If a: a,fJ : a' and a ~ a', then a =q' fJ : p. 

Suppose </> : p and 'I/J : p then 

6 .• </>: p and .</> : t iff not (</> : t). 

7. [</> V 'I/J] : p and [</> V 'I/J] : t iff </> : t or 'I/J : t. 

8. [</>" 'I/J] : p and [</>" 'I/J] : t iff </> : t and 'I/J : t. 

9. [</> J 'I/J] : p and [</> J 'I/J] : t iff 'I/J : t whenever </> : t. 

10. [</>:o 'I/J] : p and [</> :0 'I/J] : t iff 'I/J : t iff </> : t. 

11. If </> : p and u is a variable of any type a then Vu</> : p , and Vu</> : t iff </>[a/u] : t for 
every constant a : a. 

12. If </> : p and u is a variable of any type a then 3u</>: p , and 3u</> : t iff </>[a/u] : t for some 
constant a : a. 

13. If a' ~ a, then a: a' implies a: a. 

Notice that we have placed a syntactic restriction of >.-abstraction to ensure that abstracts 
never have vacuous or circular types. 

3.2.1 Axioms 

In our system, self-application is only possible for those expressions which have a complex 
type; indeed, this is what is required by clause 4 of the syntax above. 

• (a) (>.x.a):< a,T >= (>.y.a[y/x]):< a,T >, where y is not free in a. 

• (fJ) app((>.x.a):< a, T >,fJ : a') = a[fJ/x] : T, if a' ~ a 

• ('Y) If a, :< a,T >= a2:< a,T > and fJ,: a = fJ2: a, 
then app( a" fJ,) : T = app( a2, fJ2) : T 

• (6) If (a, = (2): a and (a, = (3) : a, then (a2 = (3): a 

• (e) If app(a"x): T = app(a2'x): T, then al:< a,T >= a2:< a,T > where 
x : (J is not free in al, Ct"2 or any other assumption. 

• (() app(>'x.a"fJ2) = app(>'x'.a"fJ2) where x: a,x': a', a' ~ a, and fJ2 is any 
term of type a'. 

• (9) (a : a =q' a : a') :0 (a : a =q a : a') if a' ~ a. 

• (p) (a : a = a : a) : t 
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The following version of I)-conversion is derivable: 
If E:< (j,(j' > then Ax.Ex:< (j,(j' >= E:< (j,(j' > for x: T free in E and T $< (j,(j' > 
Proof 
Ax.Ex:< T,< (j,(j' »< T« (j,(j' > E:< (7,(7' > y: (j from (,8) 
(Ax.Ex)y: (j' = Ex[ylx] : (j' = Ey: (j' from (e) 
Ax.Ex :< (j, (j' >- E :< (j, (j' > 0 

Axioms ("), (,8), ('1') and (b) are standard typed A-calculus axioms. Axiom (e) is the 
extensionality axiom. It says that if "1 and "2 give the same results for the same arguments, 
then they are equal. Axiom «() says that if f : A -+ B and if f I A' is the restriction of f to 
A' <;; A, then f and f lA' give the same results for all elements in A'. Axiom (9) says that if 
a : (j' and if (j' $ (j then saying that a equals to itself in (j is the same as saying that a is 
equal to itself in (j'. Axiom (p) is the reflexivity of =. 

3.2.2 Russell's and Curry's Paradoxes 

Russell's paradox does not occur here because paradoxical expressions of the form AX. ,app( x, x) 
are not well-formed. In fact, we have the following lemma: 

Lemma 3.6 If x is of type < (j,P >, then Ax.,app(x,x) of type « (j,P >,p > is not 
well-formed. 

Proof According to the definition of meaningful expressions, it is enough to show that 
« (j,P >,p > is a circular type. This is obvious from Lemma 3.1. 0 

In fact, we have an even stronger lemma: 

Lemma 3.7 Ifx is of type < (j,T >, where T $ p, then Ax.,app(x,x) of type «(j,T >,p > 
is not well-formed. 

Proof Exactly as that of Lemma 3.6. 0 

With these lemmas, if x:< a,T >, where T:O; p, then app(x,x) is of type T:O; p. Hence 
,app(x,x) is of type p. But Ax.,app(x,x) is not well-formed in Tpol, due to clause 3 in the 
definition of the expressions of a type, since its type, namely « e,p >,p >, is circular. 

Curry's paradox comes from the presence of (DT), (MP) and,8 where (DT) and (MP) 
are as follows: 

(DT) 
(MP) 

r u {<p} f- I/; implies r f- <P ...... 1/;, 
r f- <P ...... I/; and r f- <P implies r f-I/;, 

If we take a to be the formula Ax.(app(x,x) ...... J.), then 

1. app( a, a) = app( a, a) ...... J. by ,8-conversion 

2. app(a, a) f- app(a, a), trivial 

3. app(a,a) f- app(a,a) ...... J. by 1 

4. app(a, a) f- J. by (M P) applied to 2 and 3 

5. app(a,a) ...... J. by (DT) 

6. f- app(a,a) by 1 

7. f- J. by (MP) applied to 5 and 6 
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However, our (DT) and (MP) have the following form: 
(DT) r u {cf>: t} I- 1/>: t implies r u {cf>: p} I- (cf> -+ 1/»: t 
(M P) r I- (cf> -+ 1/» : t and r I- cf>: t implies r I- 1/> : t, 

If we take a to be the formula Ax.(app(x,x) -+ .L), then 

1. app( a, a) = app( a, a) -+ .L by !1-conversion 

2. app( a, a) : t I- app( a, a) : t, trivial 

3. app(a,a): t I- (app(a,a) -+.L): t by 1 

4. app( a, a) : t I- .L : t by (M P) applied to 2 and 3 

5. app(a,a): p I- (app(a,a) -+.L): t by (DT) 

6. app(a,a): p I- app(a,a): t by 1 

7. app(a,a): p I-.L: t by (MP) applied to 5 and 6 

However, we cannot show that app(a,a): p. In fact Ax.(app(x,x) -+.L) is not well formed 
due to Lemma 3.6 above as its type is « ,,',p >,p >. This is because if x is of some type ", 
since app( x, x) has to be of type p, we can infer that" must be of the form < ,,', p >. From 
this it follows that a is of type « "',p >,p >, which is circular. 

3.2.3 Models of Tpol 

For the present paper we shall concentrate on Fo, PROP and SET (where PROP n SET = 
0) and then we shall construct domains inside Fo which represent the types described in our 
theory Tpo!. 

Given domains X, Y already in the Frege structure, we build new domains as follows: 
(DOM) X ~ Y = {x EX: Vx' E X[app(x,x') E Y]}. 
As a special case of (DOM), the domain (Fo ~ PROP) = SET inside Fo contains the 

nominals of propositional functions. Now let us see if the structure of types can be captured 
by the domains. 

Lemma 3.8 If X, Y are domains, then (X ~ Y) <;; x. 
Proof Obvious. 0 

Lemma 3.9 If X and Y are domains built as above, then 
Y <;; Y' implies (X => Y) s::: (X => Y'). 

Proof If x E X ~ Y, then \Ix' E X,app(x,x') E Y, by (DOM). Since Y <;; Y', it follows 
that \Ix' E X,app(x,x') E Y' and so x EX=> Y'. 0 

Lemma 3.10 If X and Y are domains built as above, then 
X <;; X, implies (X n (X' => Y)) <;; (X => Y). 

Proof If x E X n (X' ~ Y) then x E X, and x E (X' => Y); by (DOM), \Ix' E 
X',app(x,x') E Y. Hence, we have both that x E X and, since X <;; X', \Ix' E X,app(x,x') E 
Y. Therefore x E X ~ Y. 0 
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We now inductively define a relation ~ between arbitrary domains X and the domain SET. 
This relation is related to the notion of a p-chain type which we defined earlier. The relation 
X ~ SET holds iff 

1. X = SET, or 

2. X = (X' => Y') where X, ~ SET and Y' ~ PROP. 

We say that a domain X is inductively predicable iff X ~ SET. 

Lemma 3.11 If X ~ SET then X ~ SET. 
Proof The proof is by an easy induction. If X = SET then the property holds. Assume by 

induction that the property holds up to X', and show that the property holds for X = (X' => Y) 
where X, ~ SET. By Lemma 3.9, (X' => Y) ~ X', and since X' ~ SET by inductive 
hypothesis, we have by transitivity that X ~ SET. 0 

The following lemma informs us that if X, Yare ind uctive1y predicable then X => Y is 
empty. When we give the denotation of our various types, we will find that the domains 
associated with vacuous types are always empty. 

Lemma 3.12 SET => X is empty whenever X ~ SET. 
Proof The proof is by induction on X: 

1. If X = SET then SET => SET is empty, for the followin9 reason. Suppose x is in 
SET => SET. Then for every x' E SET, app(x, x') E SET. But app(x, x') is also 
in PROP, by the definition of x being a SET. Hence, PROP n SET is not empty. 
Contradiction. 

2. Assume SET => X is empty for X ~ SET, and show that the domain Y = SET => 
(X => Y) is empty. Suppose Y is not empty, then if x is in SET => (X => Y), then 
for any x' in SET, app(x,x') is in X => Y. Hence app(x,x') E X for any x' E SET. 
Hence x is in SET => X which is empty. Contradiction. 0 

Theorem 3.13 X=> Y is empty for X, Y ~ SET. 
Proof The proof is by induction on X ~ SET. If X = SET then the theorem holds 

according to Lemma 3.12. Assume the property holds for X' ~ SET, that is, the domain 
X' => Y is empty for any Y ~ SET; we must show that (X' => Y') => Y is empty for 
Y' ~ PROP. If Z is not empty, i.e. there is some a in (X' => Y') => Y, then a is also in 
X' => Y' and for all x in X' => Y', app(a,x) is in Y' ~ PROP. But for all x in X' => Y', 
app( a, x) is in Y' ~ SET. Hence app( a, x) is in PROP n SET which is empty, absurd. 0 

Example 3.14 The following domains are empty: 

• SET => SET 

• SET => (SET => PROP) 

• (SET => PROP) => SET and 

• every domain built recursively out of the above three using =>. 

16 



3.2.4 Semantics of Types 

A model M for Tpol is a quadriple < F,:>, C, D >, where 

1. F is a Frege structure in which PROP n SET = 0, 

2. :> is as defined above by (DO M), 

3. The function D which maps types into domains of M is defined as follows: 

• De = Fo, 

• Dp = PROP, 

• D, = TRUTH, 

• D<u,r> = Dq ::::} Dr, where < u, T > is non-vacuous. 

4. C is an interpretation function which takes any constant of type (] to an object in Du. 

We also assume the existence of an assigment function 9 which takes any variable of a non
vacuous type (] to an object in Du. 

Lemma 3.15 D<U,T> = (Du :> DT) <;; Du where < <T, T > is non vacuous. 
Proof Obvious by Lemma 3.B. 0 

Lemma 3.16 If DT <;; Dp then (Du :> DT) <;; (Du :> Dp). 
Proof Ifa is in (Du:> DT) then (a E Du) and [(If x E Du)(app(a,x) EDT)] then (a E Du) 

and [(If x E Du)(app(a,x) E Dp)]. 0 

Lemma 3.17 If (] ::; T then Du <;; DT. 
Proof by induction on (] ::; 1". 

1. If <7 = e then T = e and Du = DT. 

2. If <7 = t and T = P then Du = TRUTH and DT = PROP. 

3. If <T =< T,p > then Du = D<T,p> <;; DT by Lemma 3.15. 

4· If T ::; p then D<U,T> <;; D«U,T>,T> 

Proof (Du :> DT) <;; Du. Hence by Lemma 3.10, 

(Du :> DT) n (Du :> DT) <;; (Du :> DT):> DT. 

Hence (Du :> DT) <;; (Du :> DT):> DT. 

Assume that T ::; p implies DT <;; Dp. Then D<U,T> <;; D<u,p>, by Lemma 3.16. 

Note that due to Lemma 3.16, if < (J, T > is circular, then DU,T> = D«U,T>,T>' 0 

Lemma 3.18 If <7 is a p-chain type and not <7 ::; P then Du ::; SET . 
Proof The proof is by induction on (J. 

If (J =< e, T > where T ::; P then Du <;; Fo :> PROP = SET::; SET. 
Take <T =< T, T' >, where <7 is not::; p and T is a p-chain type and property holds for T . 

• case 1 not T ::; p, then D <T,T'> = DT :> DT, where DT, <;; PROP and DT ::; SET by 
inductive hypothesis. Hence D<T,T'> ::; SET. 
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• case 2 T :5 p then < T, T' >:5 T :5 p. But it is not the case that < T, T' >:5 P absurd. 
Hence T is not :5 p. 0 

Lemma 3.19 If (j is vacuous then Du is empty. 
Proof If (j is vacuous, then (j =< T, P > where T and p are p-chain types not :5 p or either 

T or p is vacuous. If either is vacuous then nothing to prove. Else, Du = Dr ~ Dp where 
D"Dp:5 SET according to Lemma 3.18. Hence by Theorem 3.13, Du is empty. 0 

4 COMPARISON AND CONCLUSION 

In this part, we showed that Frege structures provide a solution to both problems; we provided 
a type theory where any function belongs to its domain and hence the theory is a suitable 
framework for nominaJisation. Now we assess further the advantages one obtains with Frege 
structures. We start with type freeness and the fact that SET is isomorphic to Propositional 
functions Fo --+ PROP and that SET <;; Fo. Also, we have the two following functionals: 

III" : SET --+ PF1 

>.: PF1 --+ SET. 
If we assume that the interpretation of verbs takes place in Fj for i ;:: 1 and thus that 

[[walk]] is in Fl, then we get: [[to walk]]g = >..[[walk]]g. 
Now it is straightforward to interpret things like to walk hurts, for: [[to walk hurts]]g = 

[[hurt]]g([[to walk]]g) = [[hurt]]g( >..[[walkllg). 
The advantage of what we just offered lies in the elegance of classifying the denotation 

of our items. With Montague's and Turner's approaches, one has always to check whether 
the denotation of an item is in the right domain. With our approach, we do not need to 
check whether [[to walkllg is in Fo or not using some confusing domain equations. All we 
had to say was that [[walk]]g is in Fl; therefore >.[[walk]]g is in Fo. This actually seems 
to be an encouraging advantage about Frege structures: nominaJisation and self reference 
are a natural process inside the Frege structure. It also seems that we have real application, 
unlike in Scott domains where application is only through the isomorphic embedding. This is 
because instead of interpreting things as above into Fj, for i ;:: 0, we can restrict everything 
to Fo obtaining [[fun is fun]]g = pred([[fun]];, [[fun]]g). 

Therefore it seems that by using Frege structures we get the following advantages over 
Scott domains, 

1. Real self application 

2. Less cumbersome checking for the right typing than that involved with Scott domains. 
It is mainly checking the propositionhood of various items to obtain the type of the 
resulting item. 

3. No redundant semantic types 

4. Nominalisation seems to flow naturally 

5. Quantification 

For the sake of completeness, we mention a new approach to a theory of properties pro
posed by Turner (in [Turner 1987]) which abandons completely the use of Scott domains. 
Turner's new theory is one which starts from Frege's comprehension principle and restricts 
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it in such a way that the paradox is no longer derivable. Thrner starts with a first order 
theory which has a pairing system and adds to this theory a new operator P (to serve as the 
predication operator) together with the lambda operator. Then in this case, if one assumes 
full classical logic and Frege's comprehension principle, one will certainly derive the paradox; 
for, take a = AX.'p(X,x), then p(a,a) <-> .p(x,x)[a/x] <-> .p(a,a). Contradiction. 

Of course, the problem does not come from contraction, i.e. p( Ax.A, t) ..... A( t, x) is always 
true. But the converse implication (i.e. expansion) is problematic. This is due to negation, 
i.e. if A is atomic then we can accept A(t,x) ..... p(Ax.A,t). But we cannot accept it when 
A is like Russell's property, an atomic term proceeded by a negation sign. This is exactly 
what guides Turner in setting his theory. For the theory now will have the following axioms 
replacing Frege's comprehension principle: 

(El) A(t,x) ..... p(Ax.A,t) when A is atomic. 
(R) p(Ax.A,t) ..... A(t,x). 
(I) p(AX.p(Ay.A,t),u) ..... p(Ay.p(AX.A,u),t) 
Now the abandonment of Frege's full comprehension axiom will impose the use of two 

logics, one inside the predication operator in addition to the usual one for wffs. This is due 
to the fact that breaking the equivalence between p(Ax.A,t) and A(t,x) will disconnect the 
reasoning about wffs and properties. To build models for T above, one uses the fixed point 
operator to turn an orclinary model of the first order theory into a model which will validate 
in it as many instances of the comprehension axiom as possible. It will of course validate only 
the safe instances whereas the paradoxical ones will oscillate in truth· values. The inductive 
step to build the model shonld be obvious. As an example, one can start with the first order 
model, and an operator PI which is empty at the beginning. Then at the next step, extend 
PI to also contain the pairs < [[Ax.All, [[tllgM > such that [[Allg[[[t)),/xl = I and so on until 
one gets a limit ordinal X where PI then is to have in it all the pairs < e, d > such that 
for some ordinal smaller than this X, < e, d > belongs to all the intermediate PI's. Now 
we no longer have a full comprehension principle and we cannot do with properties what 
we can do with formulae. But there are still a great deal of tlungs that one can identify 
between properties and wffs; for example, from P(Ax.A, t) and P(Ax.B, t) one can derive 
p(Ax.AII B,t). Thrner showed however that theories of Frege structures are weaker than his 
theory of properties which is a fact that may stand to our advantage for the following reasons. 
Firstly, Turner can prove at least as much in his theory as one can in a theory based on Frege 
structures. Secondly, Thrner is paying a price for the strength of his theory - mainly his use 
of two logics (internal and external) rather than ·one only. On balance it seems better to use 
a theory based on Frege structures for properties. Doing so gains the advantages of Thrner 
without the complications. 

From the point of view of typing, whereas I use a type free theory, Cocchiarella uses a 
second order one. There are however some similarities and differences in these two ways of 
typing that I would like to illustrate. According to axiom (9) under 1.1.2 of Part I, we have 
MEn <;; M Eo for all n > 1, where MEn are the meaningful expressions of any type n. For 
us, we have that MEn <;; M Eo for any 1 :::: n but the pictures of both approaches are quite 
different. According to our approach these types are related to each other in a chain like way. 
That is MEn <;; MEn - 1 ... <;; M Eo. For Cocchiarella we have that each MEn <;; M Eo 
for n > I, yet no relation exists between M. En and M Em for n # m. Also for Cocchiarella, 
propositions are not included in objects, even though they can be embedded in M Eo by axiom 
(8) under the same paragraph. Hence Cocchiarella's whole structure can be understood as 
a collection of objects, which has a denumerably infinite number of sub collections called 
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functions but where propositions are outside the domain of objects and can be mapped into 
it. This structure for Cocchiarella is not a structure of types in the sense that we have in 
the typing structure in [Kamareddine 1988]. In fact everything that Cocchiarella has so far 
we have; as can be seen in [Kamareddine 1988], a Frege structure is Fo, ... ,Fn , where Fo, 
is the collection of objects, Fk is the collection of k-ary functions and each of these Fb can 
be embedded in Fo, by Ak. What we have in addition is a typing system constructed inside 
Fo, which cannot be found in Cocchiarella's theory. Also, our system is first order in that 
the quantification over objects and fnnctions is the same, whereas Cocchiarella's system is 
second order. 
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