
Natural Deduction as Higher-Order Resolution

(Revised version)

Lawrence C Paulson
Computer Laboratory

University of Cambridge

December 1985

Abstract

An interactive theorem prover, Isabelle, is under development. In LCF, each in-
ference rule is represented by one function for forwards proof and another (a tactic)
for backwards proof. In Isabelle, each inference rule is represented by a Horn clause.
Resolution gives both forwards and backwards proof, supporting a large class of logics.
Isabelle has been used to prove theorems in Martin-Löf’s Constructive Type Theory.

Quantifiers pose several difficulties: substitution, bound variables, Skolemization.
Isabelle’s representation of logical syntax is the typed λ-calculus, requiring higher-
order unification. It may have potential for logic programming. Depth-first subgoaling
along inference rules constitutes a higher-order Prolog.

0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/157857996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Background 2

2 The LCF interactive theorem prover 2
2.1 Forwards proof and inference rules . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Backwards proof and tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Putting unification into LCF 6

4 Reasoning with inference rules 7

5 Formalizing quantifier rules 9
5.1 Substitution and the typed λ-calculus . . . . . . . . . . . . . . . . . . . . . 9
5.2 Parameters and Skolemization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Higher-order unification 12
6.1 Huet’s search procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 The implementation 15

8 Experiments with Constructive Type Theory 16
8.1 Constructive Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.2 Functions and the theory of expressions . . . . . . . . . . . . . . . . . . . . 17
8.3 The rules on the computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.4 Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Related work 20

10 Future 21

1



1 Background

At least seven interactive theorem provers use the LCF framework. They differ primarily
in what logic is used for conducting proofs. A new theorem prover, Isabelle, is intended
to unify these diverging paths.

A recurring theme will be the relationship between syntax and semantics. We compute
by means of syntax but think in terms of semantics. A system of inference rules is a
syntactic codification of semantic concepts, and must be shown to respect them. Sets and
functions are semantic; formal type theories and Zermelo-Fraenkel set theory are syntactic.
The ultimate semantic notion is truth, faintly approximated by theorems of formal logic.
Regarding an axiom system as Holy Writ blurs the distinction. Martin-Löf [22] discusses
the evolution of formal logic from an intuitionistic viewpoint. There are many distinct
semantic viewpoints, and accordingly many formal systems. A universal logic is too much
to hope for. However, we all seem to write down formal proofs in the same way: by joining
inference rules together.

Isabelle evolved by trial and error from implementations of Martin-Löf’s Constructive
Theory of Types. I started with ML and the LCF architecture, as described in the next
section. Attempts to put unification into LCF pushed theorems from the dominant posi-
tion, focusing attention on inference rules. Quantifiers posed an endless series of problems.
Martin-Löf’s syntactic theory of expressions, akin to the typed λ-calculus, gave a uniform
framework for bound variables and substitution. This required higher-order unification,
in general undecidable; the literature offered little practical advice. Quantifiers also intro-
duced dependencies between variables in the proof, requiring some form of Skolemization.

As an example, the rules of Martin-Löf’s Constructive Type Theory have been put
into Isabelle, with appropriate tactics. The types of many constructions can be inferred
automatically; simple functions can be derived interactively.

2 The LCF interactive theorem prover

Edinburgh LCF introduced a new approach to theorem proving: embed the formal logic in
a programmable meta language, ML [15]. Terms and formulas are values in ML: they have
an explicit tree structure and can be decomposed and built up by ML functions. Theorems
are values of an abstract data type thm. In place of arbitrary constructor functions,
inference rules map theorems to theorems. This is forwards proof. For backwards proof,
goals, subgoals, and tactics are implemented on top of this abstract type. Each rule checks
that it has received suitable premises, then generates the conclusion. Each tactic checks
that it has received a suitable goal, then generates the subgoals giving the corresponding
rule as validation. Milner [27] explains rules and tactics, while Gordon [12] works out the
representation of a simple logic in ML.

Recent LCF proofs involve denotational semantics, verification of functional programs,
and verification of digital circuits [30]. Logics include two versions of PPλ (for domain
theory) [15, 31], a Logic for Sequential Machines, two higher-order logics [8, 13], and
two constructive type theories [9, 32]. Implementing a logic is a major undertaking:
choosing a representation of formulas, implementing several dozen inference rules and
tactics, implementing many more derived rules and higher level tools, implementing a
theory database, writing a parser and printer, and documenting all these things.

2



2.1 Forwards proof and inference rules

Inference rules are functions from theorems to theorems; axioms are the built-in theorems
of an LCF theory. Theorems can only be created by applying inference rules to axioms
and other theorems. The logic of Cambridge LCF is PPλ, for reasoning in domain theory.
The axiom of reflexivity for the partial ordering v is ` ∀x. x v x, which is bound to the
ML identifier LESS REFL of type thm. The rule of conjunction introduction,

Γ ` A ∆ ` B
Γ,∆ ` A ∧B

is bound to the ML identifier CONJ of type thm → thm → thm.
In natural deduction, each theorem is proved with respect to a set of assumptions.

Conventional textbooks [38] treat the assumptions as leaves of the proof tree; when the
assumption is discharged, the leaf is crossed out. LCF attaches the assumptions directly
to the theorem, resulting in a sort of sequent calculus. The conjunction rule states that if
the premises are ` A and ` B with assumptions Γ and ∆, then the conclusion is ` A ∧B
under the union Γ,∆ of those assumptions.

The incorrect use of a rule is rejected using ML’s exception mechanism: a function can
fail instead of returning a result. The conjunction elimination rules are

Γ ` A ∧B
Γ ` A

Γ ` A ∧B
Γ ` B

They are implemented by ML functions of type thm → thm that fail if the argument is
not a conjunction. Modus Ponens, or implication elimination, is

Γ ` A⇒ B ∆ ` A
Γ,∆ ` B

The function MP checks that its first argument has the form ` A⇒ B and that its second
argument is ` A. If either condition is violated, MP fails.

Disjunction introduction raises a question. What if the conclusion contains formulas
not in the premises?

Γ ` A
Γ ` A ∨B

In LCF, the formula B is supplied as an extra argument. The ML function DISJ1 has
type thm → form → thm.

Implication introduction is also called the discharge rule. It discharges a formula from
the set of assumptions, forming an implication:

Γ, A ` B
Γ ` A⇒ B

The assumption A is an extra argument; DISCH has type form → thm → thm. Notation:
Γ, A abbreviates Γ∪{A}; the order of assumptions does not matter in classical first-order
logic.

2.2 Quantifiers

Quantifiers bring in several concepts: substitution, bound variables, and parameters. A
common convention for substitution writes the formula A as A[t] to emphasize that it

3



may have free occurrences of t. Then A[u] is the result after substituting u for those
occurrences.

In ∀x.A[x], the variable x is bound. The name is immaterial: this formula is equivalent
to ∀y.A[y]. Naive substitution can change the meaning of a formula because of clashes
among variable names. LCF renames bound variables when necessary; the Lisp code to
do this is dismayingly complex.

A parameter stands for an arbitrary, fixed value in a proof,1 as when we say, ‘let ε be
given.’ LCF and many authors let any free variable serve as a parameter. Some authors
regard parameters a, b, . . . as syntactically distinct from variables x, y, . . .; parameters
cannot be bound, and theorems contain no free variables. To be ‘arbitrary’, a parameter
must not appear in certain formulas.

Consider the universal introduction rule. If the theorem ` A[x] holds for arbitrary x,
then ` ∀y.A[y] holds. ‘Arbitrary’ means that the assumptions Γ have no free occurrence
of x:

Γ ` A[x]
Γ ` ∀y.A[y]

x not free in Γ

The restriction on the parameter x prevents contradictions such as

x = 0 ` x = 0 assumption rule
x = 0 ` ∀y.y = 0 incorrect use of ∀-introduction

` x = 0⇒ ∀y.y = 0 ⇒-introduction
` ∀z.(z = 0⇒ ∀y.y = 0) ∀-introduction
` 0 = 0⇒ ∀y.y = 0 ∀-elimination with 0
` ∀y.y = 0 ⇒-elimination with 0 = 0
` 1 = 0 ∀-elimination with 1

In LCF, universal introduction is the function GEN of type term → thm → thm. Its
first argument is the parameter x. If GEN finds an occurrence of x in the assumptions,
then it fails.

The existential introduction rule is ambiguous in forwards proof:

Γ ` A[t]
Γ ` ∃x.A[x]

Which occurrences of t should be replaced by x? The premise ` 0 = 0 gives four different
conclusions:

` ∃x. x = x ` ∃x. 0 = x ` ∃x. x = 0 ` ∃x. 0 = 0

To resolve the ambiguity, the function EXISTS takes two extra arguments: the term t
and the formula stating the conclusion ∃x.A[x].

2.3 Backwards proof and tactics

At the lowest level LCF executes forwards proof, but it also supports backwards proof.

The goal Γ
?
` B expresses the desired theorem Γ ` B. A tactic is a function that reduces

a goal to a list of subgoals. The conjunction of the subgoals should imply the goal, so
repeated use of tactics forms an AND tree of goals. In LCF, this top-down decomposition

1This paper uses parameter only to mean this: never to mean an argument to a function.

4



of the goal must be followed by a bottom-up reconstruction of the proof. Tactics provide
high-level assistance in the search for a proof, but a theorem can only be produced by
executing the primitive inference rules. So each tactic returns a validation function. The
validation ought to produce a theorem achieving the goal, given theorems achieving the
subgoals. If it does not, the tactic is invalid, and can only lead the user down an incorrect
path. We cannot be certain of the validations until they are applied, usually at the very
end of the proof.

In sum, a tactic maps a goal Γ
?
` B to the pair

([Γ1

?
` B1, . . . , Γn

?
` Bn], validation)

of subgoals and validation. Every tactic has the type

goal → ((goal list)× (thm list → thm)) .

For example, the tactic for conjunction introduction is called CONJ TAC. It maps any

goal of the form Γ
?
` A ∧ B to the two-element goal list [Γ

?
` A, Γ

?
` B]. The validation,

which calls the rule CONJ, maps the two-element theorem list [Γ ` A, Γ ` B] to the
theorem Γ ` A ∧B.

Constructing the validation is routine, but there is no uniform method because the rule
may be a function taking extra arguments. The tactic for the discharge rule, DISCH TAC,

maps a goal Γ
?
` A ⇒ B to the one-element goal list [Γ, A

?
` B]. It adds the antecedent,

A, to the assumptions in the subgoal. The validation calls the rule DISCH, passing the

extra argument A. The universal introduction tactic, GEN TAC, maps a goal Γ
?
` ∀x.A[x]

to one subgoal Γ
?
` A[x′], choosing the parameter x′ to differ from all the variables in the

assumptions. The validation calls GEN, passing it x′.
When a premise of a rule contains a term not in the conclusion, its tactic requires extra

arguments to compute the subgoals. The tactic for existential introduction, EXISTS TAC,

takes a term t as an extra argument. EXISTS TAC maps a goal Γ
?
` ∃x.A[x] to the single

goal Γ
?
` A[t]. It attacks the goal ‘there exists an x’ by stating ‘and that x is in fact t.’

Unfortunately, the proper choice for t, the existential witness, may not be evident. A nice
analogy has been mentioned: a program runs in order n2 time if it executes kn2 steps, for
some constant k. A proof that it runs in order n2 time should contain enough information
to deduce the value of k, but we will never find a proof if we have to guess k as the first
step.

3 Putting unification into LCF

The LCF tradition favors one-way matching over unification. An inference rule matches
theorems of a given pattern; a tactic matches goals. However, some researchers have tried
to bring the benefits of unification into LCF.

Resolution tactics work on the goal’s assumptions, adding new assumptions. Most
resolution tactics use one-way matching; Brian Monahan’s use unification [28]. Monahan
has also automated the construction of simple rules and tactics. His function METARULE
turns any theorem P1 ∧ . . . ∧ Pm ⇒ Q into the rule P1···Pm

Q . His METATAC produces the

5



corresponding tactic. Their generality is limited because LCF’s logic, PPλ, does not have
variables ranging over formulas.

Stefan SokoÃlowski used Edinburgh LCF to prove the soundness of Hoare axiomatic
rules with respect to a denotational semantics of a simple programming language [37].
The proof requires the systematic expansion of many definitions. LCF’s simplifier expands
definitions by rewriting, but SokoÃlowski preferred to structure his proof in terms of derived
inference rules.

SokoÃlowski’s innovation was to allow pattern variables in goals, and allow tactics to
instantiate pattern variables by unification [36]. Existential goals are an obvious use for
pattern variables. SokoÃlowski’s tactics could allow the existential witness to be inferred
later in the proof.2 An environment holds instantiations of pattern variables. A unification
tactic takes an environment as well as a goal. It returns an extended environment along
with the subgoals and validation. After all subgoals have been solved, the validation is
given the final environment as well as a list of theorems.

SokoÃlowski extended Edinburgh LCF by writing unification tacticals and simple back-
tracking tactics in ML. There were problems. Edinburgh LCF executed ML slowly. The
treatment of environments during sequential composition (the tactical THEN ) may have
been faulty. Each subgoal could instantiate the environment differently; if the environ-
ments were incompatible then the proof would fail. I prefer to string a single environment
through the subgoals. Even so, SokoÃlowski’s tactics verified the Hoare rules with remark-
able clarity, capturing the high-level structure of the proofs.

4 Reasoning with inference rules

Schmidt argues that inference rules are more natural than axioms for goal-directed proof
[34]. To illustrate the point, he develops natural deduction proof rules from the axioms of
Gödel-Bernays set theory. The subset relation ⊆ is defined by the axiom

∀AB.A ⊆ B ⇐⇒ ∀x. x ∈ A⇒ x ∈ B .

Reasoning directly from this axiom requires fiddling with many quantifiers and connectives.
Schmidt’s subset introduction rule is the typical way to prove that A is a subset of B:

Γ, x ∈ A ` x ∈ B
Γ ` A ⊆ B x not free in Γ

His subset elimination rule is the typical use of the knowledge that A is a subset of B:

Γ ` t ∈ A Γ ` A ⊆ B
Γ ` t ∈ B

With these rules we can easily derive new rules, continuing to work at rule level. The
proof tree

−
Γ, x ∈ A ` x ∈ A

Γ ` A ⊆ B
Γ, x ∈ A ` A ⊆ B

Γ, x ∈ A ` x ∈ B
Γ ` B ⊆ C

Γ, x ∈ A ` B ⊆ C
Γ, x ∈ A ` x ∈ C

Γ ` A ⊆ C
2SokoÃlowski was using Edinburgh LCF, which lacks existential quantifiers. The same reasoning holds

for universally quantified assumptions.

6



derives the rule
Γ ` A ⊆ B Γ ` B ⊆ C

Γ ` A ⊆ C
LCF has powerful mechanisms for deriving rules. For forwards proof, an inference

rule is a function. A new rule is derived by composing functions. For backwards proof,
an inference rule is a tactic. A new tactic is derived from other tactics using tacticals,
operators designed for this purpose. The tactical THEN composes two tactics sequentially.
The tactical REPEAT composes a tactic with itself repeatedly; it can make a proof tree
of arbitrary height, depending on the goal.

Yet LCF’s derived rules and tactics do not fully support reasoning about inference
rules. In the logic PPλ, variables range over individuals, not formulas or predicates. An
induction scheme such as

` A(0) A(n) ` A(n+ 1)
` A(m)

must be implemented by a complicated function or tactic that takes the formula A as an
argument. Applying the function to some formula performs the derivation by executing
all the primitive inferences. Execution can be slow, and can fail. The only way to inspect
a derived rule or tactic is to test it: a function cannot be printed.

One solution is Gordon’s higher-order logic [14]. A formula is simply a term of type
bool ; the theorem

` ∀A.A(0) ∧ (∀n.A(n)⇒ A(n+ 1))⇒ ∀m.A(m)

expresses the induction scheme. But such use of quantifiers and implication is precisely
what Schmidt is trying to escape. So expressed, his subset introduction rule reverts to the
axiom it was derived from:

` ∀AB. (∀x. x ∈ A⇒ x ∈ B)⇒ A ⊆ B

This approach could be used together with Monahan’s METARULE and METATAC.
Isabelle’s solution is to work directly with inference rules, not theorems. Represent

inference rules as explicit syntactic structures, not functions. Formal proof consists of
composing rules with each other; the resulting proof tree is a derived rule. This unifies
the notions of forwards and backwards proof.

Backwards proof takes place by matching a goal with the conclusion of a rule; the

premises become the subgoals. Consider the goal
?
` (A∧B)⇒ (B ∧A). Matching it with

the conclusion of the ⇒-introduction rule gives the subgoal A ∧ B
?
` B ∧ A. Composing

this with ∧-introduction gives gives two subgoals: A∧B
?
` B and A∧B

?
` A. Composing

these with the ∧-elimination rules gives two identical subgoals, A ∧ B
?
` A ∧ B, which is

an instance of the assumption rule. The proof tree is

A ∧B ` A ∧B
A ∧B ` B

A ∧B ` A ∧B
A ∧B ` A

A ∧B ` B ∧A
` (A ∧B)⇒ (B ∧A)

An inference rule is a scheme. It stands for the family of inferences obtained by
uniformly substituting hypotheses for Γ, formulas for A and B, terms for t, etc. A rule

7



with no premises is an axiom scheme or theorem scheme. The example above proves the
theorem scheme ` (A ∧ B)⇒ (B ∧ A). Forwards proof takes place by matching theorem
schemes to the premises of a rule, making a new theorem scheme.

Scheme variables may have as decisive an impact on LCF as they did on provers
based on Herbrand’s theorem. The Davis-Putnam method generated ground clauses.
Robinson’s resolution allowed variables in clauses, whereby one clause stood for an infinity
of ground clauses [6, Chapter 5]. Inference rules are Horn clauses; the composition of rules
is resolution. A subtle difference: classical resolution is an inference rule for first-order
logic; for sentences in clause form, no other inference rule is needed. For Isabelle, resolution
builds proof trees from the inference rules of an arbitrary formal logic.

5 Formalizing quantifier rules

Quantifiers cause enormous complications. Substitution and bound variables can be han-
dled by representing logical syntax in the typed λ-calculus. Skolemization can enforce
parameter restrictions.

5.1 Substitution and the typed λ-calculus

A expression of the λ-calculus is a constant, a free variable x, a bound variable x, an
abstraction λx.t, or a combination (tu). Free variables represent scheme variables in rules,
overlined for emphasis.

Types, denoted by Greek letters α, β, . . ., are recursively formed. There is a set of
atomic types, and also function types (α→ β). Each expression has a type:

• Each variable and constant has one fixed type.

• If x has type α and t has type β, then the abstraction λx.t has type (α→ β).

• If t has type (α→ β) and u has type α, then the combination (tu) has type β.

The usual abbreviations save writing needless parentheses. Let λx1x2 . . . xn.t abbre-
viate λx1.λx2. . . . λxn.t, and t(u1, u2, . . . , uq) abbreviate (· · · ((tu1)u2) · · ·uq). Let α1 →
α2 → · · · → β abbreviate (α1 → (α2 → · · · → (αp → β) · · ·)).

Two λ-expressions are equal if they can be made identical by a sequence of conversions:

• α-conversion is the renaming of a bound variable: λx.t[x] = λy.t[y]

• β-conversion is substitution of an argument into the function body: (λx.t[x])u = t[u]

• η-conversion is extensionality of functions. If x is not free in t, and t has function
type, then λx.(tx) = t

For example, let us represent the syntax of propositional logic. Let term be the type
of terms, and form the type of formulas. Connectives like conjunction and implication
are infix constant symbols: let ∧ and ⇒ have type form → form → form. A function
represents a syntax rule: if A ∈ form and B ∈ form, then also A ∧B ∈ form.

All binding operators are represented using λ. For the universal quantifier, introduce
the constant Π of type (term → form) → form. Let B be a function from terms to
formulas: B ∈ term → form. This simply means that B(t) is a formula for all terms t.
The formula Π(B) represents ∀y.B(y). For example, λx.R(x+0, x) has type term → form.

8



Applied to a term t− 3 it yields the formula R((t− 3) + 0, t− 3), while Π(λx.R(x+ 0, x))
represents ∀x.R(x+ 0, x).

Existential quantifiers can be treated as negated universals, or using another constant
Σ of type (term → form)→ form. As in Gordon’s HOL [13], a theorem prover can parse
and print formulas in the usual notation. Quantifiers become Π(B) only in the internal
representation.

Recall the universal introduction rule:

Γ ` A[x]
Γ ` ∀y.A[y]

x not free in Γ

Write the quantified formula as Π(B). Overline Γ and B: they are scheme variables, while
the parameter x is not a scheme variable. The rule becomes

Γ ` B(x)
Γ ` Π(B)

x not free in Γ, B

The [· · ·] notation, for substitution, has become (· · ·), for function application. There is
a further restriction on x: it may not appear in B itself. The dependence of B(x) upon
x must be purely function application. Otherwise there would be free occurrences of x in
the conclusion.

The ∀-elimination rule allows a universal theorem to be specialized to a term t. Con-
ventional syntax:

Γ ` ∀x.A[x]
Γ ` A[t]

Representation:
Γ ` Π(B)
Γ ` B(t)

The types term and form and the connective ∧ are not part of the general framework;
even the assertion sign ` is just another constant. This representation of syntax is es-
sentially Martin-Löf’s theory of expressions [10] extended to allow more than one atomic
type. Church’s λ-calculus representation of higher-order logic [13] is similar. Church al-
lows quantification over any type, with a different Π for each; its formalization in Isabelle is
likely to resemble Martin-Löf’s Π. The approach encompasses first-order and higher-order,
constructive and classical logics.

5.2 Parameters and Skolemization

Parameter restrictions are currently enforced by Skolemization, a representation resulting
from (too much) trial and error. The end of this section describes a more natural approach
that I intend to try.

The ∀-introduction rule, even using the Π representation, is not ready to be automated:
it contains a parameter restriction. Apart from this restriction, the parameter name has
no significance. The rule might as well specify a name that can never appear in B or Γ —
neither now, nor later by instantiation of B and Γ.

Extend the object syntax with a family of subscripted parameter symbols allΓ,B for all
hypotheses Γ and formulas B. Now symbols and expressions are mutually recursive: Γ and
B are part of the symbol allΓ,B. Clearly allΓ,B cannot appear in Γ or B since expressions

9



are finitely constructed. The occurs check of unification enforces the restriction, ‘not free
in Γ, B.’ Using the new parameters, ∀-introduction becomes a pure Horn clause:

Γ ` B(allΓ,B)
Γ ` Π(B)

The ∃-elimination rule also has parameter restrictions:
Γ ` ∃y.A[y] Γ, A[x] ` C

Γ ` C x not free in Γ, C

Representing the quantifier using Σ gives
Γ ` Σ(B) Γ, B(x) ` C

Γ ` C x not free in Γ, B,C

Decorating the parameter exi with the expressions it must not occur in gives
Γ ` Σ(B) Γ, B(exiΓ,B,C) ` C

Γ ` C
Schmidt also suggests natural deduction rules using Skolemization [35]. He tags a param-
eter with free variables rather than with entire expressions.

Perhaps all should not include the hypothesis, the subscript Γ. The simpler and more
efficient rule

Γ ` B(allB)
Γ ` Π(B)

resembles Robinson’s [33]. His logic includes exemplification terms, a version of Hilbert’s
ε-operator. The rule allows allB to appear in the hypotheses Γ. It is sound with respect
to models that assign allB a value y, if such exists, to make B(y) false. If B(allB) is true
then so is Π(B).

Thus the symbol allΓ,B can be understood syntactically as a way of choosing a name,
or semantically as a choice function. An alternative is the function application all(Γ, B),
with all (now a function symbol) and all(Γ) as subexpressions. In an experiment, such
subexpressions grossly expanded the search space in higher-order unification.

Many people object to Skolemization. In a real proof, where Γ and B are large expres-
sions, printing allΓ,B requires exponential space on the page. Isabelle has an algorithm
for compressing Skolem names to unique identifiers, but this works only for printing, not
input. A derived rule, like subset introduction, may contain an unnatural Skolem parame-
ter consisting of the Skolem parameters of its derivation. Unique names can be generated
by numbering (Lisp’s GENSYM). But this alone does not prevent the parameter from
sneaking into Γ or B by later instantiation.

Lincoln Wallen tells me that an acyclic graph could enforce the parameter restrictions.
The rule

Γ ` B(x)
Γ ` Π(B)

x not free in Γ, B

could be represented as a Horn clause together with a tiny graph: the parameter x would
point to Γ and B. Instantiation of variables in Γ and B would extend the graph. During
resolution of two rules, their graphs would be merged. The occurs check would follow
edges leading from parameters, preventing the introduction of cycles. Resolution requires
scheme variables to be standardized apart : renamed to avoid clashes with variables in
the other rule. The parameter names would also be standardized apart, preserving their
uniqueness.

Wallen [39] applies his technique to first-order logic and a modal logic. Miller [23]
describes a similar technique in the setting of higher-order logic.

10



6 Higher-order unification

Unifying two expressions t and u means solving the syntactic equation t = u by instanti-
ating some of its variables. For ordinary unification, expressions are recursively built up
from variables x and function applications F (t1, . . . , tq). Two expressions are equal only if
they are identical. Expressions and variables are untyped. There are practical algorithms
for computing the most general unifier of two expressions, or reporting that no unifier
exists.

Higher-order unification amounts to solving equations in the typed λ-calculus with
respect to α, β, and possibly η-conversion [17, 19]. It is semi-decidable: if the expressions
cannot be unified, the search for unifiers may diverge. Although a complete set of unifiers
can be recursively enumerated, it may be infinite. Unifying the expression f(x) with the
constant A gives the two unifiers {f = λy.A} and {f = λy.y, x = A}. If A, B1, . . . , Bq
are distinct constants, then unifying f(x) with A(B1, . . . , Bq) gives q + 2 unifiers:

{f = λy.A(B1, . . . , Bq)}
{f = λy.y, x = A(B1, . . . , Bq)}
{f = λy.A(B1, . . . , Bi−1, y, Bi+1, . . . , Bq), x = Bi} i = 1, . . . , q

Unifying f(x1, x2) with A(B1, . . . , Bq) gives q2 + q + 3 unifiers. Too many variables make
the search space explode.

For representing first-order logic, second-order expressions suffice: no function variable
need have functions as arguments. Marek Zaionc [40] gives a third-order example: the
expressions f(λx.x) and A have the infinite set of unifiers

{f = λy.A} {f = λy.y(A)} {f = λy.y(y(A))} and so on.

6.1 Huet’s search procedure

Most implementations use Huet’s procedures SIMPL and MATCH [17]. SIMPL essentially
does first-order unification. Each expression is put into head normal form:

λx1 . . . xn. F (t1, . . . , tp) ,

where F is a constant, free variable, or bound variable. Such an expression is called rigid
if F is a constant or a bound variable, and flexible if F is a free variable.

Outermost lambdas are stripped off; the bound variables x1 . . . xn become part of the
context, behaving much like constants. The input pair of expressions is broken into a set
of disagreement pairs to be unified. A rigid-rigid pair 〈F (t1, . . . , tq), F (u1, . . . , uq)〉 is sim-
plified to the set of pairs 〈t1, u1〉, . . . , 〈tq, uq〉. If F 6= G then 〈F (t1, . . . , tp), G(u1, . . . , uq)〉
is recognized as non-unifiable.

A pair 〈x, t〉 has the most-general unifier {x = t} if x does not occur in t. MATCH can
find this unifier, but it is more efficient if SIMPL instantiates x immediately. Function
variables complicate the occurs check: x and f(x) are unified by both {f = λy.x} and
{f = λy.y}. Huet’s rigid path occurs check gives a practical sufficient condition for x and
t to be unifiable while detecting some non-unifiable cases. Some cases cannot be easily
classified as unifiable or not; the implementor must decide whether an expensive search or
a missed unifier is the lesser evil.

MATCH guesses instantiations of variables, usually function variables. A flex-rigid
pair

〈f(t1, . . . , tp), F (u1, . . . , uq)〉

11



gives rise to as many as p+1 different substitutions for f . For i = 1, 2, . . ., let hi(x1, . . . , xp)
be a new variable of appropriate type. We have

f = λx1 . . . xp. xi(h1(x1, . . . , xp), . . . , hm(x1, . . . , xp)) for certain i, by projection
f = λx1 . . . xp. F (h1(x1, . . . , xp), . . . , hq(x1, . . . , xp)) by imitation

Imitation applies whenever F is a constant, not a bound variable. Projection applies for
those i such that the type of xi allows m to be chosen to give f the correct type. If the
type of f is α1 → · · · → αp → β, then αi must be γ1 → · · · → γm → β. The second-order
case is simpler; the projections are

f = λx1 . . . xp.xi

for those i such that the argument type equals the result type, αi = β.
MATCH gives a choice of substitutions, creating an OR tree. One of these substitu-

tions is chosen, applied to all the disagreement pairs, and the search continues. SIMPL
immediately rejects a projection if ti begins with a constant different from F ; imitation
reduces the disagreement pair to the pairs

〈h1(t1, . . . , tp), u1〉, . . . , 〈hq(t1, . . . , tp), uq〉 .

Sometimes both expressions begin with a free variable, the flex-flex case. Unifying
f(t1, . . . , tp) with g(u1, . . . , uq) yields an explosion of counterintuitive solutions [19]. Huet’s
algorithm reports success when only flex-flex pairs remain: there is a trivial unifier

{f = λx1 . . . xp.h, g = λy1 . . . yq.h} .

Since the trivial unifier throws away too much information, a theorem prover should store
the flex-flex pairs as constraints on future unifications.

6.2 Discussion

Here is an example: unifying f(C, x) with A(B), where A, B, and C are distinct constants.
SIMPL returns 〈f(C, x), A(B)〉. MATCH guesses three instantiations for f :

• f = λyz.y, by projection : SIMPL finds 〈C,A(B)〉, a failure node.

• f = λyz.z, by projection : SIMPL instantiates x and returns success, the unifier
{f = λyz.z, x = A(B)}.

• f = λyz.A(g(y, z)), by imitation : SIMPL returns 〈g(C, x), B〉. MATCH guesses
three instantiations for g:

– g = λyz.y, by projection : SIMPL finds 〈C,B〉, a failure node.

– g = λyz.z, by projection : SIMPL instantiates x and returns success, the unifier
{f = λyz.A(z), x = B}

– g = λyz.B, by imitation : SIMPL returns success, {f = λyz.A(B)}

This search terminated with three unifiers. For an exercise, work through Zaionc’s exam-
ple. The original disagreement pair soon recurs in the search tree, giving an infinite set of
unifiers.

12



Higher-order unification is effective if we use function variables with care. Most dis-
agreement pairs are simple assignments x = t; even assignments of function variables are
easy. Solving a recursive equation like f(t) = u(f) is hard, often causing the search to
diverge. Although the nonrecursive equation f(t1, . . . , tp) = u has the trivial solution
{f = λx1 . . . xp.u}, finding its interesting solutions requires the full search. There are
many different ways of projecting onto the arguments t1, . . . , tp or imitating parts of u.

For example, the equation f(0) = 0 + 0 has four solutions in f : λx.x + x, λx.x + 0,
λx.0 + x, and λx.0 + 0. The first solution is the most natural; the second and third are
sometimes useful. The last solution, produced by pure imitation, is only rarely useful.
MATCH should try projection before imitation, to produce the trivial solution last.

Are types essential? Logic programming traditionally uses no types. Higher-order
unification makes sense for a single atomic type data containing integers, booleans, strings,
and, recursively, tuples of data. But function types must be distinguished from atomic
types. In the untyped λ-calculus, it is undecidable whether an expression has a normal
form, so SIMPL could diverge. Worse, there is a fixedpoint combinator Y such that
Y (f) = f(Y (f)) for all expressions f . This solves any disagreement pair in MATCH:
f(t) = u(f) has the trivial solution {f = Y (λfx.u(f))}.

Huet gives a version of MATCH for unification without η-conversion [17]. The search
space expands: f need not equal λx.f(x), so many more independent substitutions are
possible. These contribute nothing even in a logic with intensional functions, provided
that λ-abstraction is only used as the syntactic representation of binding operators.

Theorem proving is undecidable, but it is unfortunate that each resolution step is
undecidable. We can recover decidability by restricting unification. Limiting the search
gives unpredictable results. Second-order matching is decidable [18], though second-order
unification is not [11]. Perhaps first-order unification plus second-order matching is a
practical compromise. Ketonen’s EKL proves theorems using first-order unification plus
higher-order matching. Ketonen claims that higher-order matching is decidable, without
proof [20]; Huet tells me that decidability is an open question.

Quantifiers go beyond first-order unification, but where do we stop? LCF inference
rules form the union of hypotheses:

Γ ` A ∆ ` B
Γ,∆ ` A ∧B

Must unification must also handle union, an associative, commutative, and idempotent
operator? Fortunately, a different treatment of assumptions is possible:

Γ ` A Γ ` B
Γ ` A ∧B

Unification cannot do everything.

7 The implementation

Isabelle consists of 3200 lines of the new Standard ML [26], compiled by David Matthew’s
Poly/ML on a VAX/750 running Berkeley Unix. Both the language and Matthew’s com-
piler have been assets. Type-checking means that sophisticated code often works first
time. Compiled code runs fast: examples with dozens of higher-order unifications run in
seconds.

13



For the typed λ-calculus, the ML type arity represents types and the ML type term
represents λ-expressions. Scheme variables are represented by (string,integer) pairs. Each
bound variable is also represented by an integer, referring to the depth at which it is bound
[4]. The environment primitives use Boyer and Moore’s structure sharing [3] to standard-
ize variables apart before unification. Normalization, α-convertibility, and substitution
functions are provided. The λ-expression parser and printer are extensible. Each can be
invoked in mutual recursion with parsing/printing functions written for a particular logical
syntax.

Higher-order unification returns a possibly infinite stream of unifiers. Streams are
implemented as usual: each member contains a function for computing the rest of the
stream. The occurs check is slow: each assignment x = t requires scanning t for x.
Omitted in Prolog, the occurs check is essential for enforcing parameter restrictions. Large
expressions, representing assumption lists, must be scanned.

The type rule and the function Resolve provide the basic inference mechanism. In
backwards proof, the goal tree is a rule Q1···Qn

P . The root P is the initial goal, the leaves
Q1 · · ·Qn are the unanalyzed subgoals. Resolving a subgoal with a rule produces a new
goal tree. At present, Isabelle does not store the tree of resolution steps underlying a rule;
as a result, a goal tree has no internal subgoal structure.

An Isabelle tactic is a function on inference rules, regarded as goal trees. It has type
rule → (rule stream): it may return a stream of trees. A tactic for goal-directed proof
just replaces some leaves, but any function on goal trees is a tactic. RulesTac unifies the
conclusion of several rules against a goal. There are two levels of choice: several rules
may apply; a rule may have several unifiers with the goal. The tactical DEPTH FIRST
repeatedly applies a tactic in depth-first search. If the tactic returns an empty stream of
goal trees, then the goal is abandoned. SokoÃlowski used depth-first search for backwards
chaining along hypotheses [37]. It is also effective with introduction rules. Together with
RulesTac it constitutes a higher-order Prolog interpreter. It can execute trivial Prolog
programs (slowly).

The interactive goal package maintains the current proof state. When applying a
tactic, the package uses the first set of subgoals produced, saving the remainder of the
stream. The user can explicitly backtrack any past step: discard the current goal tree,
taking the next tree from that point. The backtrack command fails if the stream for that
step is empty.

In the original goal, scheme variables are useful placeholders for information that is
irrelevant or unknown. New variables crop up as existential witnesses. During the proof,
scheme variables develop gradually and naturally. A variable may occur in more than one
goal; instantiation affects all goals simultaneously.

To minimize backtracking, goals must be tackled in a sensible order. A variable in a
critical place leaves the search unconstrained; a goal is too flexible if its variables allow too
many rules to unify. Experimental depth-first tacticals control the search by expanding
only ‘appropriate’ goals. One argument of DEPTH FIRST is a predicate for classifying
a goal as satisfied or unsatisfied. One argument of DepthRulesFunTac is a function for
analyzing a goal, computing the list of appropriate rules. The function can defer a goal by
returning an empty rule list. Deferred goals can be reconsidered as the search proceeds;
the search stops when all remaining goals continue to be deferred. A goal can be deferred
for any reason, not just if too flexible. A typical application would be to conduct a proof
in stages: solving all equational goals, while leaving the others until later.

14



8 Experiments with Constructive Type Theory

Isabelle has been set up for Martin-Löf’s Constructive Type Theory, with a parser and
printer for its syntax, and tactics for solving typical problems. This thirty percent of the
code is kept separate from the rest.

8.1 Constructive Type Theory

Martin-Löf’s Type Theory is an attempt to formalize constructive reasoning [21, 29]. It in-
terprets propositions as types: the rules for each logical connective express its constructive
meaning as operations on proof objects, elements of the corresponding type. For instance,
the proposition A ∧ B is interpreted as the Cartesian product A × B: a proof of A ∧ B
is a pair 〈a, b〉, where a is a proof of A and b is a proof of B. The proof objects form a
simple functional programming language. All computations terminate, though the set of
functions is much larger than the set of primitive recursive functions.

People are using Constructive Type Theory for program verification and derivation.
By ‘propositions as types’, a small family of primitives provides a full system of logical
connectives, data structures, and programs. A type can express a complete formal speci-
fication: the type of a sorting function can assert that its output is a sorted permutation
of its input. Petersson has implemented Type Theory by modifying Edinburgh LCF [32].
PRL supports a related type theory using ideas from LCF [9].

Type Theory has several kinds of rules:

• Formation rules build types from other types.

• Introduction rules build elements of types. By ‘propositions as types’, they also
introduce logical connectives.

• Elimination rules specify control structures, called selectors, for each type: discrim-
ination for sum types, projections for product types, application for function types,
and primitive recursion for recursive types. By ‘propositions as types’, they also
eliminate logical connectives.

• Equality rules give the result of evaluating expressions.

8.2 Functions and the theory of expressions

A higher-order syntax is practically essential. While predicate calculus has only two
binding operators, ∀ and ∃, Type Theory has Π, Σ, split, when, etc., with various
binding rules. Martin-Löf’s theory of expressions [10] is formally equivalent to the typed
λ-calculus with the single ground type (). The notation and terminology are different,
especially for types. Martin-Löf uses the word arity, reserving type for the types described
by the inference rules. Let us adopt this convention for now.

There are two sets of notation because there are two kinds of function: the arity α→ β
and the (Martin-Löf) type A ⇒ B. If A and B are types, then A ⇒ B is the type of
functions from A to B, and corresponds to logical implication. Call an expression of arity
α → β a function, and an element of type A ⇒ B a function object. An expression
of function arity is also called unsaturated, while an expression of atomic arity is called
saturated. These concepts are due to Gottlob Frege [1]. Functions play important roles in
the rules, but only saturated expressions can denote types or elements of types: a single
expression cannot be both a function and a function object.

15



Consider the function λxy.R(x + y, x). Martin-Löf writes this as (x, y)R(x + y, x),
reserving λ for function objects. I find this hard to read, preferring the traditional λ-
notation, or λ(x, y)R(x + y, x) as a compromise. I use lambda for abstraction of func-
tion objects. If b is a function, then its extension is lambda(x)b(x), a function object.
There are also two forms of application: for functions, b(t); for function objects, f ∗ t or
apply(f, t). The Type Theory rule for β-conversion defines application of function objects
in terms of application of functions: (lambda(x)b(x)) ∗ t = b(t). The η-conversion rule is
lambda(x)(c ∗x) = c. These rules are needed even though the syntactic theory has both
β and η conversion.

The distinction between functions and function objects is not just for Type Theory.
There will be other logics whose notion of function cannot be identified with the λ-calculus
functions. The λ-calculus representation does not prejudice the notion of function in the
logic.

8.3 The rules on the computer

The theorems of Type Theory are called judgements. A judgement of the form A type
means that A is a type, while a ∈ A means that a is an element of type A. A judgement
can have assumptions, an ordered list x1 ∈ A1, . . ., xn ∈ An. Using an assumption a ∈ A
means searching down the list for a, then verifying that A is a type. The Isabelle rules
use the Prolog style of list processing:

Γ ` A type
Γ, a ∈ A ` a ∈ A

Γ ` a ∈ A
Γ, b ∈ B ` a ∈ A

The product introduction rule is handled like ∀-introduction. First of all, Martin-Löf
uses the binding operator Π for product types. The type

∏
y∈AB(y) corresponds to the

proposition ∀y ∈ A .B(y). Elements of the type are function objects. The rule is written

Γ ` A type Γ, x ∈ A ` b(x) ∈ B(x)
Γ ` lambda(y)b(y) ∈ ∏y∈AB(y)

x not free in Γ

In the λ-calculus syntactic representation, the binding operators Π and lambda are
used as constant symbols. The representation of

∏
y∈AB(y) is Π(A,B); the representation

of lambda(x)b(x) is lambda(b). Then making scheme variables explicit gives

Γ ` A type Γ, x ∈ A ` b(x) ∈ B(x)
Γ ` lambda(b) ∈ Π(A,B)

x not free in Γ, b, B

Using the Skolem constant priΓ,b,B, for product introduction, gives

Γ ` A type Γ,priΓ,b,B ∈ A ` b(priΓ,b,B) ∈ B(priΓ,b,B)

Γ ` lambda(b) ∈ Π(A,B)

In Isabelle, the Type Theory parser, read rule, is called from ML. The premises are an ML
list of strings; each variable is indicated by a prefixed question mark; Skolem subscripts
are in square brackets:

val ProdIntrRl = read_rule
( [ "?H |- ?A type",

"?H, pri[?b1,?B1]: ?A |- ?b1(pri[?b1,?B1]) : ?B1(pri[?b1,?B1])" ] ,
{ ------------------------------------------------------------------- }

"?H |- lambda(?b1) : Prod(?A,?B1)" );

16



The horizontal line is simply an ML comment. Omitting the subscript Γ (ASCII syntax
?H) is an old mistake that I have not gotten round to fixing, since there are a dozen similar
rules.

8.4 Tactics

Tactics, built from standard primitives, can solve problems expressed in Type Theory.
Checking that a type A is well-formed takes place by using formation rules to prove the
judgement A type.

By unification, a rule can specify more than one direction of information flow. In
Prolog this is called multi-mode execution: programs can run backwards. The judgement
a ∈ A has several meanings:

• It can mean a is a program of type A. Given a program a, proving a ∈ A determines
the type of a. Type inference comes for free, while Gothenburg’s Type Theory system
[32] directly implements Milner’s algorithm, a lot of code using explicit unification
[25]. A group at INRIA also obtain the effect of Milner’s algorithm by executing
inference rules [7].

• It can mean a is a proof of the proposition A. Given a proposition A, proving
a ∈ A gives a constructive proof of A . While this is undecidable, repeated use of
introduction rules performs a large portion of the proof.

• It can mean a is a program with specification A. Given a specification A, proving
a ∈ A amounts to the program synthesis of a.

The tactic DepthIntrTac uses DepthRulesFunTac to handle variables sensibly in the
formation and introduction rules. The goal A type is deferred if A is a variable. For a ∈ A
either a or A must not be a variable. TypeCheckTac is similar but uses elimination rules
as well as formation and introduction rules. For a ∈ A it requires a to be rigid, since if a
is a variable then all the elimination rules apply. TypeCheckTac handles the type-checking
problems that have come up in my experiments. It can check the type of the addition
operator, as defined by primitive recursion. Solving the goal

lambda(k) lambda(m) rec(m, λ(x, y) succ(y), k) ∈ A

assigns A = Nat⇒ Nat⇒ Nat.
A Type Theory function takes apart its arguments using the awkward selector oper-

ators. An ML function is defined by equations on its patterns of input. To support a
pattern-directed style for Type Theory, I have experimented with tactics for manipulating
equations. Some examples go through with little guidance. For the predecessor function
the tactics discover that pred = lambda(x) rec(x, λ(y, z)y, x) with type A = Nat⇒ Nat
by solving the goal

x ∈
∑

pred∈A

pred ∗ 0 = 0 ×
∏

k∈Nat

pred ∗ succ(k) = k

 .

The function fst , on product types, takes the first component of a pair 〈a, b〉. The tactics
discover that fst = lambda(x) split(λ(y, z)y, x) with type A = (Nat×Nat)⇒ Nat:

x ∈
∑

fst∈A

∏
i∈Nat

∏
j∈Nat

fst ∗ 〈i, j〉 = i

17



This example involves both product and sum types. The tactics discover a binding for
f using the selectors when and split.

x ∈
∏

i∈Nat

∏
j∈Nat

f(inl〈i, j〉) = i × f(inr〈i, j〉) = j

Such use of function variables can cause unification problems. An arithmetic addition
function can be discovered, but addition as a function object of type Nat ⇒ Nat ⇒
Nat performs computation on both numbers and function types. Its derivation produces
subgoals containing unsimplified recursion equations; unification diverges.

9 Related work

The earliest applications of higher-order unification extended resolution to higher-order
logic [19]. Huet’s constrained resolution postponed branching in unification [16]. Rather
than returning multiple unifiers in a resolution step, it recorded the remaining disagree-
ment pairs as constraints on the new clause. Further resolutions satisfied the constraints
or rendered them clearly non-unifiable. Constrained resolution went beyond using only
flex-flex disagreement pairs, which are always unifiable, as constraints.

The TPS theorem prover uses sophisticated heuristics in the search for higher-order
unifiers [24]. In MATCH it chooses a disagreement pair likely to cause the least branching
of the tree. It hashes disagreement sets to determine whether a new set is subsumed
by an older one. Though the subsumption test is expensive it cuts the search space
substantially and prevents some searches from diverging. TPS uses general matings rather
than resolution. The mating approach unifies subformulas against each other without
reducing everything to clause form. TPS can automatically prove Cantor’s Theorem:
every set has more subsets than elements [2]. Unification discovers the diagonalization
function.

The EKL proof checker uses higher-order matching of rewrite rules [20]. N. G. de
Bruijn’s AUTOMATH project has investigated several higher-order λ-calculi, reminiscent
of Martin-Löf’s type theory, as languages for machine-checked proof [5]. Huet and Co-
quand’s theory of constructions is a natural development from AUTOMATH [8]. Gordon’s
HOL is a version of LCF for proving theorems in Church’s higher-order logic [13]. The
logics of HOL, EKL, and TPS are all descended from Church’s.

Gilles Kahn and his group execute operational semantics expressed as inference rules.
The rules are preprocessed, then translated into Prolog. They have considered the dynamic
semantics of several simple languages, and ML type-checking [7]. The system runs inside
the structure editor Mentor, providing type-checking and execution of the program being
edited.

10 Future

Though Isabelle can handle small examples, much work remains before interesting proofs
can be attempted.

Quantifiers have been the number one trouble spot. A list of failed approaches would
fill the page. Skolem constants work but are clumsy. I hope that the acyclic dependency
graph will work.

18



LCF’s simplifier uses equations as rewrite rules. Proving (i + j) + k = i + (j + k)
should be trivial: use induction on i, then simplify the base and step subgoals. Without
a simplifier, this is impossibly tedious. LCF ideas may need drastic change because of
unification.

Higher-order unification behaves well if not provoked by unreasonable use of function
variables. Most of the time first-order unification takes place, so Isabelle does not require
the TPS subsumption test. Decidable restrictions of unification should be found.

An LCF theory is a data base of constants, types, axioms, and theorems. At present,
Isabelle allows only simple abbreviations. We need methods for combining theories and
working in different logics.

The user interface is crude. In LCF, the logic is integrated with ML; in Isabelle, the
parser and printer must be invoked. Goals are designated by number; a high-resolution
display and mouse would help.

Other logics must be considered to test whether Isabelle is really general. One can-
didate is the Logical Theory [10], a first-order intuitionistic logic in which Type Theory
can be constructed. Something radically different, like a Hoare logic or a temporal logic,
should be attempted.

Acknowledgements

David Matthews has worked hard on his Standard ML compiler, with funding from the
Science and Engineering Research Council. The main ideas came from the work of Gérard
Huet, Per Martin-Löf, and Stefan SokoÃlowski. Lincoln Wallen suggested a promising
alternative to Skolemization. Gilles Kahn’s group demonstrated related work. Thanks
also to Peter Aczel, Peter Andrews, Michael Gordon, Dale Miller, Bengt Nordström, Kent
Petersson, Frank Pfenning, Alan Robinson, Jan M. Smith, and Richard Waldinger.

References

[1] P. Aczel, Frege’s formal language, Printed notes, Dept. of Mathematics, University of
Manchester, England (1981).

[2] P. B. Andrews, D. A. Miller, E. L. Cohen, F. Pfenning, Automating higher-order logic, in:
W. W. Bledsoe and D. W. Loveland, editors, Automated Theorem Proving: After 25 Years,
American Mathematical Society (1984), pages 169–192.

[3] R. S. Boyer, J S. Moore, The sharing of structure in theorem-proving programs, in: B.
Meltzer and D. Michie, editors, Machine Intelligence 7 (Edinburgh University Press, 1972),
pages 101–116.

[4] N. G. de Bruijn, Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser Theorem, Indagationes
Mathematicae 34 (1972), pages 381–392.

[5] N. G. de Bruijn, A survey of the project AUTOMATH, in: J. P. Seldin, J. R. Hindley, To H.
B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism (Academic Press,
1980), pages 579–606.

[6] C.-L. Chang, R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving (Academic
Press, 1973).

[7] D. Clément, J. Despeyroux, T. Despeyroux, L. Hascoet, G. Kahn, Natural semantics on the
computer, INRIA Research Report 416, Sophia-Antipolis, France (1985).

19



[8] T. Coquand, G. Huet, Constructions: a higher order proof system for mechanizing
mathematics, in: B. Buchberger, editor, EUROCAL ’85: European Conference on Computer
Algebra, Volume 1: Invited lectures, Springer LNCS 203 (1985), pages 151–184.

[9] R. L. Constable, T. B. Knoblock, J. L. Bates, Writing programs that construct proofs,
Journal of Automated Reasoning 1 (1985), 285–326.

[10] P. Dybjer, Program verification in a logical theory of constructions, in: J.-P. Jouannaud,
editor, Functional Programming Languages and Computer Architecture (Springer LNCS 201,
1985), pages 334–349.

[11] W. D. Goldfarb, The undecidability of the second-order unification problem, Theoretical
Computer Science 13 (1981), pages 225–230.

[12] M. J. C. Gordon, Representing a logic in the LCF metalanguage, in: D. Néel, editor, Tools
and Notions for Program Construction, Cambridge University Press, pages 163–185, 1982.

[13] M. J. C. Gordon, HOL: A machine oriented formulation of higher order logic, Report 68,
Computer Lab., University of Cambridge (1985).

[14] M. J. C. Gordon, Why higher-order logic is a good formalism for specifying and verifying
hardware, Report 77, Computer Lab., University of Cambridge (1985).

[15] M. J. C. Gordon, R. Milner, and C. P. Wadsworth, Edinburgh LCF: A Mechanised Logic of
Computation, Springer LNCS 78 (1979).

[16] G. P. Huet, A mechanization of type theory, Third International Joint Conference on
Artificial Intelligence (1973).

[17] G. P. Huet, A unification algorithm for typed λ-calculus, Theoretical Computer Science 1
(1975), pages 27–57.

[18] G. P. Huet, B. Lang, Proving and applying program transformations expressed with
second-order patterns, Acta Informatica 11 (1978), pages 31–55.

[19] D. C. Jensen, T. Pietrzykowski, Mechanizing ω-order type theory through unification,
Theoretical Computer Science 3 (1976), pages 123–171.

[20] J. Ketonen, EKL— A mathematically oriented proof checker, in: R. E. Shostak, editor,
Seventh Conference on Automated Deduction, Springer LNCS 170 (1984), pages 65–79.

[21] P. Martin-Löf, Intuitionistic type theory (Bibliopolis, 1984).

[22] P. Martin-Löf, On the meanings of the logical constants and the justifications of the logical
laws, Printed notes, Department of Mathematics, University of Stockholm (1984).

[23] D. A. Miller, Expansion tree proofs and their conversion to natural deduction proofs, in: R.
E. Shostak, editor, Seventh Conference on Automated Deduction, Springer LNCS 170
(1984), pages 375–393.

[24] D. A. Miller, E. L. Cohen, P. B. Andrews, A look at TPS, in: D. W. Loveland, editor, Sixth
Conference on Automated Deduction, Springer LNCS 138 (1982), pages 50–69.

[25] R. Milner, A theory of type polymorphism in programming, Journal of Computer and
System Sciences 17 (1978), pages 348–375.

[26] R. Milner, A proposal for Standard ML, ACM Symposium on Lisp and Functional
Programming (1984), pages 184–197.

20



[27] R. Milner, The use of machines to assist in rigorous proof, Philosophical Transactions of the
Royal Society of London 312 (1984), pages 411-422. Also in: C. A. R. Hoare, J. C.
Sheperdson, editors, Mathematical Logic and Programming Languages (Prentice-Hall, 1984).

[28] B. Q. Monahan, Data Type Proofs using Edinburgh LCF, PhD Thesis, University of
Edinburgh (1984).

[29] B. Nordström and J. M. Smith, Propositions and specifications of programs in Martin-Löf’s
type theory, BIT 24 (1984), pages 288–301.

[30] L. C. Paulson, Lessons learned from LCF: a survey of natural deduction proofs, Computer
Journal 28 (1985), pages 474–479.

[31] L. C. Paulson, Interactive theorem proving with Cambridge LCF: A user’s manual, Report
80, Computer Lab., University of Cambridge (1985).

[32] K. Petersson, A programming system for type theory, Report 21, Department of Computer
Sciences, Chalmers University, Göteborg, Sweden (1982).

[33] J. A. Robinson, Logic: Form and Function (Edinburgh University Press, 1979).

[34] D. Schmidt, Natural deduction theorem proving in set theory, Report CSR-142-83, Dept. of
Computer Science, University of Edinburgh (1983).

[35] D. Schmidt, A programming notation for tactical reasoning, in: R. E. Shostak, editor,
Seventh Conference on Automated Deduction, Springer LNCS 170 (1984), pages 445–459.

[36] S. SokoÃlowski, A note on tactics in LCF, Report CSR-140-83, Dept. of Computer Science,
University of Edinburgh (1983).

[37] S. SokoÃlowski, Soundness of Hoare’s logic: an automatic proof using LCF, ACM
Transactions on Programming Languages and Systems 9 (1987), pages 100–120.

[38] N. Tennant, Natural Logic (Edinburgh University Press, 1978).

[39] L. A. Wallen, Generating connection calculi from tableaux and sequent based proof systems,
Research paper 258, Department of Artificial Intelligence, University of Edinburgh (1985).

[40] M. Zaionc, The set of unifiers in typed λ-calculus as regular expressions, Rewriting
Techniques and Applications, Dijon, France (1985).

21


