2,456 research outputs found

    Vision-Based Finger Detection, Tracking, and Event Identification Techniques for Multi-Touch Sensing and Display Systems

    Get PDF
    This study presents efficient vision-based finger detection, tracking, and event identification techniques and a low-cost hardware framework for multi-touch sensing and display applications. The proposed approach uses a fast bright-blob segmentation process based on automatic multilevel histogram thresholding to extract the pixels of touch blobs obtained from scattered infrared lights captured by a video camera. The advantage of this automatic multilevel thresholding approach is its robustness and adaptability when dealing with various ambient lighting conditions and spurious infrared noises. To extract the connected components of these touch blobs, a connected-component analysis procedure is applied to the bright pixels acquired by the previous stage. After extracting the touch blobs from each of the captured image frames, a blob tracking and event recognition process analyzes the spatial and temporal information of these touch blobs from consecutive frames to determine the possible touch events and actions performed by users. This process also refines the detection results and corrects for errors and occlusions caused by noise and errors during the blob extraction process. The proposed blob tracking and touch event recognition process includes two phases. First, the phase of blob tracking associates the motion correspondence of blobs in succeeding frames by analyzing their spatial and temporal features. The touch event recognition process can identify meaningful touch events based on the motion information of touch blobs, such as finger moving, rotating, pressing, hovering, and clicking actions. Experimental results demonstrate that the proposed vision-based finger detection, tracking, and event identification system is feasible and effective for multi-touch sensing applications in various operational environments and conditions

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required

    Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization

    Get PDF
    Hyperspectral remote sensing images contain hundreds of data channels. Due to the high dimensionality of the hyperspectral data, it is difficult to design accurate and efficient image segmentation algorithms for such imagery. In this paper, a new multilevel thresholding method is introduced for the segmentation of hyperspectral and multispectral images. The new method is based on fractional-order Darwinian particle swarm optimization (FODPSO) which exploits the many swarms of test solutions that may exist at any time. In addition, the concept of fractional derivative is used to control the convergence rate of particles. In this paper, the so-called Otsu problem is solved for each channel of the multispectral and hyperspectral data. Therefore, the problem of n-level thresholding is reduced to an optimization problem in order to search for the thresholds that maximize the between-class variance. Experimental results are favorable for the FODPSO when compared to other bioinspired methods for multilevel segmentation of multispectral and hyperspectral images. The FODPSO presents a statistically significant improvement in terms of both CPU time and fitness value, i.e., the approach is able to find the optimal set of thresholds with a larger between-class variance in less computational time than the other approaches. In addition, a new classification approach based on support vector machine (SVM) and FODPSO is introduced in this paper. Results confirm that the new segmentation method is able to improve upon results obtained with the standard SVM in terms of classification accuracies.Sponsored by: IEEE Geoscience and Remote Sensing SocietyRitrýnt tímaritPeer reviewedPre prin

    Multilevel optimisation for computer vision

    Get PDF
    The recent spark in machine learning and computer vision methods requiring increasingly larger datasets has motivated the introduction of optimisation algorithms specifically tailored to solve very large problems within practical time constraints. This demand in algorithms challenges the practicability of state of the art methods requiring new approaches that can take advantage of not only the problem’s mathematical structure, but also its data structure. Fortunately, such structure is present in many computer vision applications, where the problems can be modelled with varying degrees of fidelity. This structure suggests using multiscale models and thus multilevel algorithms. The objective of this thesis is to develop, implement and test provably convergent multilevel optimisation algorithms for convex composite optimisation problems in general and its applications in computer vision in particular. Our first multilevel algorithm solves convex composite optimisation problem and it is most efficient particularly for the robust facial recognition task. The method uses concepts from proximal gradient, mirror descent and multilevel optimisation algorithms, thus we call it multilevel accelerated gradient mirror descent algorithm (MAGMA). We first show that MAGMA has the same theoretical convergence rate as the state of the art first order methods and has much lower per iteration complexity. Then we demonstrate its practical advantage on many facial recognition problems. The second part of the thesis introduces new multilevel procedure most appropriate for the robust PCA problems requiring iterative SVD computations. We propose to exploit the multiscale structure present in these problems by constructing lower dimensional matrices and use its singular values for each iteration of the optimisation procedure. We implement this approach on three different optimisation algorithms - inexact ALM, Frank-Wolfe Thresholding and non-convex alternating projections. In this case as well we show that these multilevel algorithms converge (to an exact or approximate) solution with the same convergence rate as their standard counterparts and test all three methods on numerous synthetic and real life problems demonstrating that the multilevel algorithms are not only much faster, but also solve problems that often cannot be solved by their standard counterparts.Open Acces

    Real-time automatic multilevel color video thresholding using a novel class-variance criterion

    Get PDF
    [[abstract]]Color image segmentation is a crucial preliminary task in robotic vision systems. This paper presents a novel automatic multilevel color thresholding algorithm to address this task efficiently. The proposed algorithm consists of a learning process and a multi-threshold searching process. The learning process learns the color distribution of an input video sequence in HSV color space, and the multi-threshold searching process automatically determines the optimal multiple thresholds to segment all colors-of-interest in the video based on a novel class-variance criterion. For the learning process, a simple and efficient color-distribution learning algorithm operating with a color-pixel extraction method is proposed to learn a color distribution model of all colors-of-interest in the video images, which simplifies the search for optimal thresholds for the colors-of-interest through a conventional multilevel thresholding method. For the multi-threshold searching process, a nonparametric multilevel color thresholding algorithm with an extended within-class variance criterion is proposed to automatically find the optimal upper bound and lower bound threshold values of each color channel. Experimental results validate the performance and computational efficiency of the proposed method by comparing with three existing methods, both visually and quantitatively.[[booktype]]紙
    corecore