19,227 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationDomain-specific languages (DSLs) are increasingly popular, and there are a variety of ways to create a DSL. A DSL designer might write an interpreter from scratch, compile the DSL to another language, express DSL concepts using only the existing forms of an existing language, or implement DSL constructs using a language's extension capabilities, including macros. While extensible languages can offer the easiest opportunity for creating a DSL that takes advantage of the language's existing infrastructure, existing tools for debugging fail to adequately adapt the debugging experience to a given domain. This dissertation addresses the problem of debugging DSLs defined with macros and describes an event-oriented approach that works well with a macro-expansion view of language implementation. It pairs the mapping of DSL terms to host terms with an event mapping to convert primitive events back to domain-specific concepts. Domain-specific events can be further inspected or manipulated to construct domain-specific debuggers. This dissertation presents a core model of evaluation and events and also presents a language design-analogous to pattern-based notations for macros, but in the other direction-for describing how events in a DSL's expansion are mapped to events at the DSL's level. The domain-specific events can enable useful, domain-specific debuggers, and the dissertation introduces a design for a debugging framework to help with debugger construction. To validate the design of the debugging framework, a debugging framework, Ripple, is implemented, and this dissertation demonstrates that with a modest amount of work, Ripple can support building domain-specific debuggers

    A Conceptual Generic Framework to Debugging in the Domain-Specific Modeling Languages for Multi-Agent Systems

    Get PDF
    Despite the existence of many agent programming environments and platforms, the developers may still encounter difficulties on implementing Multi-agent Systems (MASs) due to the complexity of agent features and agent interactions inside the MAS organizations. Working in a higher abstraction layer and modeling agent components within a model-driven engineering (MDE) process before going into depths of MAS implementation may facilitate MAS development. Perhaps the most popular way of applying MDE for MAS is based on creating Domain-specific Modeling Languages (DSMLs) with including appropriate integrated development environments (IDEs) in which both modeling and code generation for system-to-be-developed can be performed properly. Although IDEs of these MAS DSMLs provide some sort of checks on modeled systems according to the related DSML\u27s syntax and semantics descriptions, currently they do not have a built-in support for debugging these MAS models. That deficiency causes the agent developers not to be sure on the correctness of the prepared MAS model at the design phase. To help filling this gap, we introduce a conceptual generic debugging framework supporting the design of agent components inside the modeling environments of MAS DSMLs. The debugging framework is composed of 4 different metamodels and a simulator. Use of the proposed framework starts with modeling a MAS using a design language and transforming design model instances to a run-time model. According to the framework, the run-time model is simulated on a built-in simulator for debugging. The framework also provides a control mechanism for the simulation in the form of a simulation environment model

    A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging Tools

    Get PDF
    Today's complex software systems combine high-level concurrency models. Each model is used to solve a specific set of problems. Unfortunately, debuggers support only the low-level notions of threads and shared memory, forcing developers to reason about these notions instead of the high-level concurrency models they chose. This paper proposes a concurrency-agnostic debugger protocol that decouples the debugger from the concurrency models employed by the target application. As a result, the underlying language runtime can define custom breakpoints, stepping operations, and execution events for each concurrency model it supports, and a debugger can expose them without having to be specifically adapted. We evaluated the generality of the protocol by applying it to SOMns, a Newspeak implementation, which supports a diversity of concurrency models including communicating sequential processes, communicating event loops, threads and locks, fork/join parallelism, and software transactional memory. We implemented 21 breakpoints and 20 stepping operations for these concurrency models. For none of these, the debugger needed to be changed. Furthermore, we visualize all concurrent interactions independently of a specific concurrency model. To show that tooling for a specific concurrency model is possible, we visualize actor turns and message sends separately.Comment: International Symposium on Dynamic Language

    Abstract Diagnosis for Timed Concurrent Constraint programs

    Full text link
    The Timed Concurrent Constraint Language (tccp in short) is a concurrent logic language based on the simple but powerful concurrent constraint paradigm of Saraswat. In this paradigm, the notion of store-as-value is replaced by the notion of store-as-constraint, which introduces some differences w.r.t. other approaches to concurrency. In this paper, we provide a general framework for the debugging of tccp programs. To this end, we first present a new compact, bottom-up semantics for the language that is well suited for debugging and verification purposes in the context of reactive systems. We also provide an abstract semantics that allows us to effectively implement debugging algorithms based on abstract interpretation. Given a tccp program and a behavior specification, our debugging approach automatically detects whether the program satisfies the specification. This differs from other semiautomatic approaches to debugging and avoids the need to provide symptoms in advance. We show the efficacy of our approach by introducing two illustrative examples. We choose a specific abstract domain and show how we can detect that a program is erroneous.Comment: 16 page

    Developing a Generic Debugger for Advanced-Dispatching Languages

    Get PDF
    Programming-language research has introduced a considerable number of advanced-dispatching mechanisms in order to improve modularity. Advanced-dispatching mechanisms allow changing the behavior of a function without modifying their call sites and thus make the local behavior of code less comprehensible. Debuggers are tools, thus needed, which can help a developer to comprehend program behavior but current debuggers do not provide inspection of advanced-\ud dispatching-related language constructs. In this paper, we present a debugger which extends a traditional Java debugger with the ability of debugging an advanced-dispatching language constructs and a user interface for inspecting this

    Debugging Scandal: The Next Generation

    Get PDF
    In 1997, the general lack of debugging tools was termed "the debugging scandal". Today, as new languages are emerging to support software evolution, once more debugging support is lagging. The powerful abstractions offered by new languages are compiled away and transformed into complex synthetic structures. Current debugging tools only allow inspection in terms of this complex synthetic structure; they do not support observation of program executions in terms of the original development abstractions. In this position paper, we outline this problem and present two emerging lines of research that ease the burden for debugger implementers and enable developers to debug in terms of development abstractions. For both approaches we identify language-independent debugger components and those that must be implemented for every new language. One approach restores the abstractions by a tool external to the program. The other maintains the abstractions by using a dedicated execution environment, supporting the relevant abstractions. Both approaches have the potential of improving debugging support for new languages. We discuss the advantages and disadvantages of both approaches, outline a combination thereof and also discuss open challenges
    • …
    corecore