
A Conceptual Generic Framework to Debugging in
the Domain-Specific Modeling Languages for
Multi-Agent Systems
Baris Tekin Tezel
Department of Computer Science, Dokuz Eylul University, Izmir, Turkey
International Computer Institute, Ege University, Izmir, Turkey
baris.tezel@deu.edu.tr

Geylani Kardas
International Computer Institute, Ege University, Izmir, Turkey
geylani.kardas@ege.edu.tr

Abstract
Despite the existence of many agent programming environments and platforms, the developers may
still encounter difficulties on implementing Multi-agent Systems (MASs) due to the complexity of
agent features and agent interactions inside the MAS organizations. Working in a higher abstraction
layer and modeling agent components within a model-driven engineering (MDE) process before going
into depths of MAS implementation may facilitate MAS development. Perhaps the most popular
way of applying MDE for MAS is based on creating Domain-specific Modeling Languages (DSMLs)
with including appropriate integrated development environments (IDEs) in which both modeling
and code generation for system-to-be-developed can be performed properly. Although IDEs of these
MAS DSMLs provide some sort of checks on modeled systems according to the related DSML’s
syntax and semantics descriptions, currently they do not have a built-in support for debugging these
MAS models. That deficiency causes the agent developers not to be sure on the correctness of the
prepared MAS model at the design phase. To help filling this gap, we introduce a conceptual generic
debugging framework supporting the design of agent components inside the modeling environments of
MAS DSMLs. The debugging framework is composed of 4 different metamodels and a simulator. Use
of the proposed framework starts with modeling a MAS using a design language and transforming
design model instances to a run-time model. According to the framework, the run-time model is
simulated on a built-in simulator for debugging. The framework also provides a control mechanism
for the simulation in the form of a simulation environment model.

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Soft-
ware and its engineering → Software testing and debugging; Computing methodologies → Multi-agent
systems; Computing methodologies → Modeling and simulation

Keywords and phrases debugging, domain-specific modeling languages, multi-agent systems, simu-
lation

Digital Object Identifier 10.4230/OASIcs.SLATE.2019.8

Funding Baris Tekin Tezel: The first author would like to thank TUBITAK-BIDEB for financial
support during his PhD studies.

1 Introduction

Agents are mostly defined as the computer systems which are capable of autonomous actions
inside an environment in order to achieve its design objectives [44]. They may behave as
simple as just responding environmental changes or their behavior model can be too complex
and the agents may need to proactively act to anticipate future goals. These agents interact
with other agents and hence constitute Multi-agent Systems (MASs). Despite the existence
of many agent programming environments and platforms such as CLAIM [35], GOAL [19],

© Baris T. Tezel and Geylani Kardas;
licensed under Creative Commons License CC-BY

8th Symposium on Languages, Applications and Technologies (SLATE 2019).
Editors: Ricardo Rodrigues, Jan Janoušek, Luís Ferreira, Luísa Coheur, Fernando Batista, and Hugo Gonçalo
Oliveira; Article No. 8; pp. 8:1–8:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4873-7848
mailto:baris.tezel@deu.edu.tr
mailto:geylani.kardas@ege.edu.tr
https://doi.org/10.4230/OASIcs.SLATE.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 A Conceptual Generic Framework to Debugging in the DSMLs for MAS

JADE [1], JACK [21], MOISE+ [22], the developers may still encounter difficulties on
implementing MAS due to above mentioned features of agents and agent interactions inside
the MAS organizations [8].

Working in a higher abstraction layer and modeling agent components within a model-
driven engineering (MDE) process before going into depths of MAS implementation may
help building MAS [23]. Various agent metamodels (e.g. [3, 16, 40]) are defined by the
Agent-oriented Software Engineering (AOSE) [36] community for modeling agents, their
plans, beliefs, goals and agent interactions inside MAS organizations. Perhaps the most
popular way of applying MDE for MASs is based on creating Domain-specific Modeling
Languages (DSMLs) with including appropriate integrated development environments (IDEs)
in which both modeling and code generation for system-to-be-developed can be performed
properly [25]. Proposed MAS DSMLs (e.g. [15, 7, 14, 2, 12, 26] have abstract syntaxes based
on the above referred agent metamodels and they usually support modeling both the static
and the dynamic aspects of agent software from different MAS viewpoints including agent
internal behaviour model, interaction with other agents, use of other environment entities,
etc. To give some flavor of current modeling environments of these DSMLs, screenshots
taken from the IDEs of two relatively new MAS DSMLs, Sam [12] and DSML4BDI [26], are
given in Figure 1.

As can be seen from the screenshots, these IDEs provide a modeling area with a palette (at
the right side) with including the graphical representations of MAS components. Developers
may drag and drop these components and create the agent models pertaining to the specific
MAS viewpoints. Upon completion of modeling, a series of model-to-model and/or model-to-
text transformations are applied on the models to generate the executables (e.g. agent codes)
required for the exact implementation of the MAS. Although IDEs of these MAS DSMLs
provide some sort of checks on modeled systems according to the related DSML’s syntax
and (mostly static) semantics descriptions, currently they do not have a built-in support for
debugging these MAS models [41]. That deficiency causes the agent developers not to be
sure on the correctness of the prepared MAS model at the design phase. To help filling this
gap, we introduce how a conceptual generic debugging framework can be derived for MAS
DSMLs in this paper. The framework is conceptual since its components are defined but not
fully implemented yet.

Understanding of software execution behavior has always been very hard task. Debuggers
help developers to understand execution behavior of software by accessing directly executed
programs [17, 46, 13]. Besides, debugging activities have a broader meaning in the domain-
specific modeling (DSM) since a model developer usually needs to debug models at the model
level, not at the code level [29]. In our previous study [41], we investigated the ways of
creating debugging mechanisms for MAS DSMLs and introduced two possible approaches.
The first approach is based on the construction of a mapping between MAS model entities
and the generated codes while the second one considers the metamodel-based description
of the operational semantics of executing agents. A brief evaluation of these approaches
showed that the application of the first approach can be easier since it benefits from using
already existing general-programming language (GPL) debuggers. However, use of MAS
DSMLs do not only produce executable codes; other artifacts (e.g. agent configuration
files, service descriptions) also need debugging. Moreover, generated codes mostly do not
contain complete behavioral logic required for the exact implementation of agents. These
can make the application of the first approach inefficient. The second approach, utilizing
the metamodel-based description of agent operational semantics, seems promising since
it is free from underlying GPL structures. However, it is more difficult to apply because



B.T. Tezel and G. Kardas 8:3

(a) A screenshot from the IDE of Sam [12].

(b) A screenshot from the IDE of DSML4BDI [26].

Figure 1 Screenshots from the IDEs of two different MAS DSMLs.

SLATE 2019



8:4 A Conceptual Generic Framework to Debugging in the DSMLs for MAS

it needs addition of parts describing the run-time state of MAS model into the language
metamodel and writing the corresponding model to model (M2M) transformation rules.
Based on the findings of this previous work, in this paper, we present how the current design
structures of the existing MAS DSMLs can be enriched with additional run-time, simulation
and visualization languages to construct a conceptual debugging framework. That framework
is generic to provide the design of both agent internals and communications and it may
pave the way for implementing MAS DSMLs with built-in debuggers. Thus, it is possible to
complete the debugging phase at the modeling level before the code generation which leads
to creating a MAS model conforming to the specifications at the beginning.

The rest of the paper is organized as follows: In section 2, we introduce the overview of
the proposed conceptual generic debugging framework. Debugging operations which can be
managed inside the framework is given in section 3. Supporting model simulator is described
in section 4. A brief review of the related work within the context of debugging on DSMLs,
software agents and MAS is given in section 5. Finally, section 6 concludes the paper.

2 The conceptual generic debugging framework for MAS DSMLs

In this study, our goal is to provide a generic framework for debugging during MAS modeling
inside IDEs of MAS DSMLs.The framework may enable providing debugging abilities to
existing MAS DSMLs as well as guiding DSML developers for the insertion of model debugging
features during design and implementation of new MAS DSMLs. The debugging framework
is generic enough to be reusable and easily adaptable for various aspects and viewpoints
of MAS DSMLs. For instance, it would be possible to model and validate the execution of
agents plans, consistency of beliefsets or construction of the agent communications according
to the well-defined agent protocols, such as Contract Net [39]. Overview of the proposed
framework is shown in Fig 2. The framework is the composition of 4 different metamodels and
a simulator enabling the MAS operational semantics. This formalization of the framework is
adopted from [43] which provides a structured approach for turning modelling and simulation
environments into interactive debugging environments. Furthermore, the overall structure
of the proposed framework is inspired from the sub-languages descriptions discussed in the
ProMoBox [30] system and the dynamic modeling language composition defined in [18].

Inside the framework, a MAS design language metamodel, MMMASDL, defines the
structure of design language which is used for modelling the static structure of a MAS.
Existing MAS DSMLs already have this kind of viewpoint(s) usually merged with their
behaviour representations. So, if the debugging ability is desired for any existing MAS
DSML, probably the metamodel of the language is needed to be refined to achieve the related
static structure. For example, MAS DSMLs such as DSML4BDI [26], DSML4MAS [15]
and SEA_ML [7] can be considered as the design languages since they does not have any
behavioral diagram. However, if a MAS DSML has both behavior and structural viewpoints,
while structural viewpoints considered as the design language, behaviour viewpoints or part
of these viewpoints can be used in the run time language which is explained in the next.
An instance of this metamodel is called the MAS design model (MMASDL). The general
structure of the system could be modeled with these instance models. They are designed
and created by the users. The concepts such as agents, roles, capabilities, plans or events
and the relationships between these concepts would be modelled in this model.

Next, a MAS run-time language metamodel MMMASRL supports modeling in the frame-
work to represent the run-time states of the above discussed design models. For example;
meta-entities such as currentPlan, nextPlan, currentAction, nextAction, and currentBelief



B.T. Tezel and G. Kardas 8:5

Figure 2 Overview of the conceptual generic debugging framework for MAS DSMLs.

are possibly included in this metamodel. Run-time model (MMASRL) of the system is the
instance of MMMASRL. It represents the system run-time states and it is originated from
the design model. In other words, these models express the snapshots of the MAS states
at run-time.

Third, a metamodel for MAS simulation environment language (MMMASEML) lets
modeling of the simulation environment in which the MAS model is simulated. It can also be
said that MAS simulation scenarios are modeled as being the instance models (MMASEML)
of MMMASEML. Actually, this model represents the behavior of the simulation environment.
Situations such as the results of the actions of an agent in the simulation environment,
the events that will arise in the environment, communication conditions between agents,
resource accesses and resource utilization cases should all be modelled with this simulation
environment model. It is worth indicating that it expresses the conditions under which the
MAS will be tested.

Finally, a MAS visualization language metamodel, MMMASV L, allows to create custom-
ized models which graphically shows the related parts of a MAS in a way that increasing the
comprehension of the MAS models by the developers. These models (MMASV L) are requested
by the developer. For example, if a developer is just interested in the communication between
the specified agents, then the simulator generates the visualization of a complete simulation
trace that is used to present the communication step-by-step. Moreover, the simulation trace
is generated for not only MAS views but also inner views of an agent such as plan execution.

This conceptual framework supports debugging on a MAS, which is designed with the
help of MAS DSML models created by the agent developers before the implementation phase.
Thus, it is aimed to minimize the bugs on the MAS to be constructed. According to proposed
framework, run-time model is initialized from the design model. Initialized run-time model
represents the zero-moment of the system. At the same time, the simulated environment
in which the run-time model is located, should be modeled by the simulation environment
modeling language by the developer.The run-time model and the simulation environment
model are given as inputs to the simulator, while the simulator builds the next state of the
MAS by modifying the run-time model. The user is responsible for initiating and using the
simulator with the debugging operations. In the next section of this paper, debug operations
are introduced.

SLATE 2019



8:6 A Conceptual Generic Framework to Debugging in the DSMLs for MAS

If a MAS DSML developer wants to re-tailor an existing MAS DSML with the proposed
framework, s/he has to derive the abstract syntaxes of the above mentioned sub-languages.
The metamodels of these languages could be generated from the existing DSML metamodel.
For this purpose, the DSML metamodel should be divided into parts which are static /
dynamic, agent internal / MAS organization, etc. and the developer determines which of them
can be input into the simulation environment. By this way, initial version of the metamodels
of the sub-languages become evident. This process can be completed automatically (or at
least) semi-automatically in case the metamodel of the DSML is already annotated to provide
additional information. After the abstract syntax of the sub-languages are generated, the
developer has to create transformation rules between the sub-languages. As a final step, a
simulator has to be implemented.

Once a concrete implementation of the framework is already available for a specific MAS
DSMLs, it is also possible to inherit the same implementation for another MAS DSML by
just re-engineering the model transformations via constructing transformations between the
metamodel of the new DSML and current run-time language inside the framework. It is
worth indicating that providing a horizontal transformation between the metamodels of
MAS DSMLs can also enable debugging for the target DSML when the framework is already
applied for the source DSML in the transformation. A discussion on how the mechanism for
bridging MAS DSMLs with horizontal model transformations can be found in [24].

3 Debugging Operations

In this section, we discuss some debugging operations that may take place in the simulation
environment to be built within the proposed framework.

3.1 Steps
In code debugging, stepping through code is often used by the users to understand how
system states change during execution. This brings an opportunity for exposing a detailed
representation of the behavior of the relevant system. If we want to use this kind of approach
for debugging on models, it can be considered as changing current model state to the next
state according to operational semantics provided by the simulator. Since the coding structure
in the current agent programming languages / environments (such as JADE [1]) is generally
similar to the coding structure of the object-oriented paradigm, the run-time states of the
program is a kind of call hierarchy. In its simplest form, we can observe that the software
agents can call their plans, which can be triggered by the events in the environment and,
if necessary, call for more sub-plans to achieve their goals. As in object-oriented paradigm,
stepping over code can usually be achieved in three possible operators: Step into, Step
over, and Step out. The definition of these operators within our debugging framework are
presented as follows:

Step into: As it is well known, an object is an encapsulation unit in object-oriented paradigm.
It encapsulates data and methods and also hides its current state from the outside. Similar
to object-oriented paradigm, an agent is also an encapsulation unit covering agent beliefs,
goals and plans. These encapsulated elements could be considered as the composite
elements of an agent entity in a model. Step into refers to stepping through the model
element including any composite elements defined within this model element. For example,
when the user tries to step into an agent’s internal state, stepping contains all possible
plans with all possible actions or sub-plans of the selected plans.



B.T. Tezel and G. Kardas 8:7

Step over: Step over and step into concepts state a duality. Step over refers to the stepping
through the model at the composite level. It may be considered as some kind of filters
while debugging. However, it does not mean that underlying elements of the model at
the composite level are executed. It only hides them. For example, when the user steps
over a plan of an agent, the user just observes elements which compose this agent plan.
Actions or sub-plans can still trigger something at lower levels, but that is hidden.

Step out: Step out refers to stepping through a model element from inner composition level
of it. For example while the user steps into a plan of an agent, the user has the option to
step out from inside this plan to the composition level of the plan. At that state, the
simulation continues at the composite level and the details inside the plan are hidden.

3.2 Breakpoints
Basic assertions in programming are breakpoints. When the assertion fails, execution of the
program is interrupted. Generally, in breakpoints concept, this situation can be triggered by
reaching specific code line. For debugging on models, interruption is defined as pausing the
simulation in our framework. Here, the user will place specific breakpoints on the model,
allowing the simulation to pause when certain conditions are met. Three possible stopping
points are introduced:
State based: This is the case when the simulation is stopped if the model reaches a certain

predefined state or a specific pattern within the state. For example, the emergence of a
particular event may trigger a plan of an agent, reaching a pattern of beliefs for a specific
agent or capturing a predefined communication pattern between agents.

Condition based: When some agent features are defined in the model, provide certain logical
conditions which will be checked on these features. For example, if the agent’s beliefs are
not valid anymore due to the changes in the environment facts, update the agent belief
set.

Time based: A predefined time has been reached in the simulation environment. However,
this is directly related to the time definition of the simulation environment. (Real-time,
scaled real-time, as fast as possible, timeless (discrete event-based), etc.)

3.3 Execution Modes
A simulator allows the transition from one execution mode to another. By this way, the
control of the simulation is left to the user. The user can stop or pause and then resume
the simulation of the run-time model at any point in time. We define 4 different execution
modes and transitions between them. The different execution modes and transitions are
illustrated in Figure. 3. These execution modes are briefly described as follows:
Ready: It is the default state of the run-time model. Also, it refers to the first state of

the simulation which is also the initial state of a MAS. That state may consist e.g. the
initialization of agent beliefs, goals and plans.

Running: When the user starts the simulation, the simulation environment switches to
Running mode. In Running mode, the simulation can switch to different simulation
modes. However, this is just possible if something such as breakpoint interrupts interrupts
the run of simulation. For instance, in a state of the running mode, each agent of a MAS
executes an atomic event that is simply a action in a plan of an agent.

Pause: While the simulation continues, the simulation environment can be passed to Pause
mode. In Pause mode, the simulation is freezed in the current state. The user can switch
back to Running mode at any time. In pause mode, a user can see a screenshot of current

SLATE 2019



8:8 A Conceptual Generic Framework to Debugging in the DSMLs for MAS

state of a MAS including execution traces of the plans of each agent, communication
traces between agents, etc.

Stopped: If the simulation is terminated, it switches to Stopped mode. In this case, it can
only be passed to Ready mode. When simulator stops, current MAS model is transformed
to the initial state of itself. From this moment on, it cannot be possible to turn back to
continue the simulation.

Ready Running Pause Stopped
Start

Stop

Pause

Continue
Stop

Reset

Figure 3 Execution modes transition graph of the simulator.

4 Model Simulator

In the proposed framework, operational semantics of the modelled MAS is provided by a
simulator. A number of options are available to define the simulator. For example, directly
modifying the run-time model by model transformation rules to obtain next state of the
system is one of these options. However, general structure of the simulation algorithms are
very similar at a higher level abstraction. The algorithm 1 is an abstract pseudocode of the
simulator considered in the framework. As can be seen from the algorithm 1, the simulation
is divided into the following functions:

initialize: This function is responsible for generating the initial state of the simulation,
which is represented by the MAS run-time model.

terminationCondition: This function takes the run-time model, simulation environment
model and the time as inputs and returns “true” if the desired termination condition is
provided.

updateBeliefs: This function updates the current beliefs of an agent according to the
run-time model and the simulation environment model.

updateGoals: After updating the belief of an agent, the simulator has to decide which goals
to be achieved by an agent. In order to achieve updating goal, simulator calls this function
with the run-time model, current state of an agent and the simulation environment model.

updateActivePlan: This function uses reasoning mechanism to find a plan to achieve goals
of an agent. If there is a plan already in progress, it expects the plan to end in order not
to disturb the integrity. If the active plan has ended, it determines a new active plan.

nextAction: This function executes next action of an agent according to the active plan.
increaseTime: This function increases the simulation time by adhering to the time semantics

determined according to the simulation setup.



B.T. Tezel and G. Kardas 8:9

checkForBreakpoints: This function supports to check breakpoints to pause the simulation
pauseSimulation: The simulation environment allows users to set breakpoints and when the
condition holds, this function pauses the simulation.

Algorithm 1: Generic Simulation Algorithm.
Input: to be simulated Model (M), Simulation Environment Model (E)
Output: Run-time Model (RM), time (t)
(time) t, (run-time model) RM ← initialize(M ,E) ;
while not terminationCondition(RM,E,t) do

foreach agent ai ∈ RM do
ai ← updateBeliefs(RM ,ai,E);
ai ← updateGoals(RM ,ai,E);
ai ← updateActivePlan(RM ,ai,E);
ai ← nextAction(RM ,ai,E);

end
t ← increaseTime(RM ,t);
if checkForBreakpoints(RM) then

pauseSimulation();
end

end

Every turn of the while loop in the Algorithm 1 runs one step of the simulation . By
applying endogenous transformation to run-time model with the help of the defined functions,
it creates a snapshot of the next state of the system.

5 Related Work

The most common approaches to debugging of MASs have been to adopt visualization
techniques [42, 32, 31, 34].van Liedekerke and Avouris [42] introduce a technique using
abstractions to reduce the amount of information being presented to the user during agent
development. Nwana et al. [32] provide debugging tools based on multiple views of the com-
putation to limit the information flow by combining results from different views. Poutakidis
et al. [34] suggest applying a method for the translation from Agent UML (AUML) to
Petri nets that should enable developers to construct, or convert their own protocols into an
equivalent Petri net. This generated Petri net is used for debugging MASs by monitoring the
exchange of messages between agents. Also, there exist some basic tools visualizing agent
states in the development environments [10, 11, 19, 33]. Such tools give information about
the current state of an agent while running MAS. Some of them allow users to modify the
state of an agent too. In addition, Hindriks[20] presents a more advanced approach enabling
users to ask questions about MAS behaviors.

All above approaches are primarily concerned with only providing a visual representation
of message exchange between agents in a MAS and do not consider the embracing model of
agent internals and agent interactions altogether as in existing MAS DSMLs. We believe
that the study introduced in this paper contributes those efforts by composing the static and
dynamic aspects of MAS modeling as well as covering the debugging needs of full-fledged
MAS DSMLs which own much more complicated modeling environments comparing the
visual environments considered in the above studies.

SLATE 2019



8:10 A Conceptual Generic Framework to Debugging in the DSMLs for MAS

On the other hand, the studies on DSML debugging are rare and recently emerging.
Mannadiar and Vangheluwe [29] propose the matching of the concepts of debugging between
the programming languages and the DSMLs. This study can be accepted as the starting
point for the development of the DSML debuggers. As an application of the conceptual
mapping described in [29], Kosar et al. [27] present a DSML with the debugging tool called
Sequencer, which is developed for the measurement systems. A similar approach appears in
[9] to present a debugger development framework for domain-specific languages (DSLs).

One of the most advanced domain-specific debuggers to date is presented in [45]. Wu
et al. provide the reuse of existing, tried and familiar debugging facilities in DSLs. The
approach allows the DSL designer to use the internal debugging possibilities of a general
programming language by the detailed mapping between model elements and the synthesized
code. Lindeman et al. [28] enrich a language definition to support debugging similar
to Wu et al.

Blunk et al. [4] propose a method to model debuggers for a DSML. This approach
requires a metamodel-based description of the abstract syntax of the language. Debugging is
defined by the process semantics at the meta-modeling level where possible run-time states
are modeled as part of a DSL metamodel and the transitions are defined as a transformation
from one model to another. The omniscient debugger in executable DSMLs (xDSML) is
explored in [5]. In that study, the domain-specific metamodels are produced, as well as a
domain tracking manager is generated to enable developers to use a general all-inclusive
debugger with xDSMLs.

Although these noteworthy DSML debugging studies have guided us on evaluating design
issues and helped the derivation of the framework proposed in this paper, none of them
considers the needs of debugging in MAS DSMLS and in fact, the agent domain is already
out of these studies’ scope. Being inspired from these efforts, possible ways of constructing
debugger mechanisms for MAS DSMLs are investigated in our previous work [41] which, to
the best of our knowledge, is the only work so far concerned with providing debugging on
MAS DSMLs.

6 Conclusion

A conceptual generic debugging framework supporting the design of both agent internals
(plans, goals, etc.) and interaction between agents inside the modeling environments of MAS
DSMLs has been introduced in this paper. The debugging framework is composed of 4
different metamodels and a simulator. Use of the proposed framework starts with modeling a
MAS using a design language and transforming design model instances to a run-time model.
According to the framework, the run-time model is simulated on a built-in simulator for
debugging. The framework also provides a control mechanism for the simulation in the form
of a simulation environment model. With this model, simulation scenarios can be sent to the
simulator as an input. Hence, it allows a user to model agent behaviors and environment
responses while the simulation is running. Finally, the framework supports the visualization
of models while they are executed on the simulation environment.

In our future work, a concrete implementation of the generic framework will be completed
for one of the newest MAS DSMLs, called DSML4BDI [26] in order to support the debugging
of software agents according to Belief-Desire-Intention model. In fact, we already divided the
metamodel of DSML4BDI into the parts to generate the metamodels of the sub-languages.
So, we will provide transformation rules among the metamodels of the design language
and the visual language. Finally, we will implement a simulator, which takes the instances



B.T. Tezel and G. Kardas 8:11

of the run-time language and the simulation environment language as inputs in order to
modify both the run-time model step-by-step and generate visual models for each step in
the simulation. Beside that, we will investigate the ways of adopting different debugging
approaches such as omniscient debugging[6], model slicing[38] and algorithmic debugging[37]
in the framework.

References
1 Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing multi-agent

systems with JADE. John Wiley & Sons, 3 edition, 2007.
2 Federico Bergenti, Eleonora Iotti, Stefania Monica, and Agostino Poggi. Agent-oriented

model-driven development for JADE with the JADEL programming language. Computer
Languages, Systems & Structures, 50:142–158, 2017.

3 Ghassan Beydoun, Graham Low, Brian Henderson-Sellers, Haralambos Mouratidis, Jorge J
Gomez-Sanz, Juan Pavon, and Cesar Gonzalez-Perez. FAML: A Generic Metamodel for MAS
Development. IEEE Transactions on Software Engineering, 35(6):841–863, 2009.

4 Andreas Blunk, Joachim Fischer, and Daniel A. Sadilek. Modelling a Debugger for an
Imperative Voice Control Language. In SDL 2009: Design for Motes and Mobiles. SDL 2009.
Lecture Notes in Computer Science, volume 5719, pages 149–164. Springer, 2009.

5 Erwan Bousse, Jonathan Corley, Benoit Combemale, Jeff Gray, and Benoit Baudry. Supporting
efficient and advanced omniscient debugging for xDSMLs. In Proceedings of the 2015 ACM
SIGPLAN Int. Conf. Software Language Engineering (SLE 2015), pages 137–148, 2015.

6 Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer, and Benoit Baudry.
Omniscient debugging for executable DSLs. Journal of Systems and Software, 137:261–288,
2018.

7 Moharram Challenger, Sebla Demirkol, Sinem Getir, Marjan Mernik, Geylani Kardas, and
Tomaz Kosar. On the use of a domain-specific modeling language in the development of
multiagent systems. Engineering Applications of Artificial Intelligence, 28:111–141, 2014.

8 Moharram Challenger, Marjan Mernik, Geylani Kardas, and Tomaž Kosar. Declarative
specifications for the development of multi-agent systems. Computer Standards & Interfaces,
43:91–115, 2016.

9 Andrei Chiş, Marcus Denker, Tudor Gîrba, and Oscar Nierstrasz. Practical domain-specific de-
buggers using the Moldable Debugger framework. Computer Languages, Systems & Structures,
44(Part A):89–113, 2016.

10 Rem Collier. Debugging agents in agent factory. In International Workshop on Programming
Multi-Agent Systems, pages 229–248. Springer, 2006.

11 Mehdi Dastani, Jaap Brandsema, Amco Dubel, and John-Jules Ch Meyer. Debugging BDI-
based multi-agent programs. In International workshop on programming multi-agent systems,
pages 151–169. Springer, 2009.

12 Joao Faccin and Ingrid Nunes. A tool-supported development method for improved BDI plan
selection. Engineering Applications of Artificial Intelligence, 62:195–213, 2017.

13 Josep Silva Galiana. The New Generation of Algorithmic Debuggers. In 1st Symposium on
Languages, Applications and Technologies (SLATE 2012), page 3, 2012.

14 Enyo José Tavares Gonçalves, Mariela I Cortés, Gustavo Augusto Lima Campos, Yrleyjander S
Lopes, Emmanuel SS Freire, Viviane Torres da Silva, Kleinner Silva Farias de Oliveira, and
Marcos Antonio de Oliveira. MAS-ML 2.0: Supporting the modelling of multi-agent systems
with different agent architectures. Journal of Systems and Software, 108:77–109, 2015.

15 Christian Hahn. A Domain Specific Modeling Language for Multiagent Systems. In Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems -
Volume 1, pages 233–240, Estoril, Portugal, 2008. International Foundation for Autonomous
Agents and Multiagent Systems. AAMAS ’08. URL: http://dl.acm.org/citation.cfm?id=
1402383.1402420.

SLATE 2019

http://dl.acm.org/citation.cfm?id=1402383.1402420
http://dl.acm.org/citation.cfm?id=1402383.1402420


8:12 A Conceptual Generic Framework to Debugging in the DSMLs for MAS

16 Christian Hahn, Cristian Madrigal-Mora, and Klaus Fischer. A platform-independent
metamodel for multiagent systems. Autonomous Agents and Multi-Agent Systems, 18(2):239–
266, 2009.

17 Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing, and verification.
IBM Systems Journal, 41(1):4–12, 2002.

18 Ábel Hegedüs, István Ráth, and Dániel Varró. Replaying execution trace models for dynamic
modeling languages. Periodica Polytechnica Electrical Engineering and Computer Science,
56(3):71–82, 2012.

19 Koen V Hindriks. Programming rational agents in GOAL. In Multi-agent programming:
languages and tools and applications, pages 119–157. Springer, New York, 2009.

20 Koen V Hindriks. Debugging is explaining. In International Conference on Principles and
Practice of Multi-Agent Systems, pages 31–45. Springer, 2012.

21 Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. JACK intelligent
agents-summary of an agent infrastructure. In 5th International conference on autonomous
agents, 2001.

22 Jomi F Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. Instrumenting multi-agent
organisations with organisational artifacts and agents. Autonomous agents and multi-agent
systems, 20(3):369–400, 2010.

23 Geylani Kardas. Model-driven development of multiagent systems: a survey and evaluation.
The Knowledge Engineering Review, 28(04):479–503, 2013.

24 Geylani Kardas, Emine Bircan, and Moharram Challenger. Supporting the platform extens-
ibility for the model-driven development of agent systems by the interoperability between
domain-specific modeling languages of multi-agent systems. Comput Sci Inf Syst, 14(3):875–912,
2017.

25 Geylani Kardas and Jorge J. Gomez-Sanz. Special issue on model-driven engineering of
multi-agent systems in theory and practice. Computer Languages, Systems & Structures,
50:140–141, 2017.

26 Geylani Kardas, Baris Tekin Tezel, and Moharram Challenger. Domain-specific modelling
language for belief–desire–intention software agents. IET Software, 12(4):356–364, 2018.

27 Tomaž Kosar, Marjan Mernik, Jeff Gray, and Tomaž Kos. Debugging measurement systems
using a domain-specific modeling language. Computers in Industry, 65(4):622–635, May 2014.
doi:10.1016/j.compind.2014.01.013.

28 Ricky T Lindeman, Lennart C L Kats, and Eelco Visser. Declaratively Defining Domain-
Specific Language Debuggers. In International Conference on Generative Programming and
Component Engineering (GPCE), pages 127–136, 2012. doi:10.1145/2189751.2047885.

29 Raphael Mannadiar and Hans Vangheluwe. Debugging in Domain-Specific Modelling. In
Lecture Notes in Computer Science, volume 6563, pages 276–285. Springer, 2011.

30 Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans Vangheluwe, and Manuel
Wimmer. ProMoBox: a framework for generating domain-specific property languages. In
International Conference on Software Language Engineering, pages 1–20. Springer, 2014.

31 Divine T Ndumu, Hyacinth S Nwana, Lyndon C Lee, and Jaron C Collis. Visualising and
debugging distributed multi-agent systems. In Proceedings of the third annual conference on
Autonomous Agents - AGENTS ’99, pages 326–333, New York, New York, USA, 1999. ACM
Press. doi:10.1145/301136.301220.

32 Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Collis. Zeus: A toolkit
for building distributed multiagent systems. Applied Artificial Intelligence, 13(1-2):129–185,
January 1999. doi:10.1080/088395199117513.

33 Alexander Pokahr, Lars Braubach, Andrzej Walczak, and Winfried Lamersdorf. Jadex-
engineering goal-oriented agents. Developing multi-agent systems with JADE, pages 254–258,
2007.

34 David Poutakidis, Lin Padgham, and Michael Winikoff. Debugging multi-agent systems using
design artifacts: The case of interaction protocols. In Proceedings of the first international

http://dx.doi.org/10.1016/j.compind.2014.01.013
http://dx.doi.org/10.1145/2189751.2047885
http://dx.doi.org/10.1145/301136.301220
http://dx.doi.org/10.1080/088395199117513


B.T. Tezel and G. Kardas 8:13

joint conference on Autonomous agents and multiagent systems: part 2, pages 960–967. ACM,
2002.

35 Amal El Fallah Seghrouchni and Alexandru Suna. Claim and sympa: A programming
environment for intelligent and mobile agents. In Multi-Agent Programming, pages 95–122.
Springer, 2005.

36 Onn Shehory and Arnon Sturm. Agent-Oriented Software Engineering: Reflections on Ar-
chitectures, Methodologies, Languages, and Frameworks. Springer-Verlag Berlin Heidelberg,
2014.

37 Josep Silva. A survey on algorithmic debugging strategies. Advances in engineering software,
42(11):976–991, 2011.

38 Josep Silva. A vocabulary of program slicing-based techniques. ACM computing surveys
(CSUR), 44(3):12, 2012.

39 Reid G. Smith. The contract net protocol: High-level communication and control in a
distributed problem solver. EEE Transactions on computers, 12:1104–1113, 1980.

40 Baris T. Tezel, Moharram Challenger, and Geylani Kardas. A metamodel for Jason BDI agents.
In 5th Symposium on Languages, Applications and Technologies (SLATE’16), volume 51, pages
8:1—-8:9, 2016.

41 Baris Tekin Tezel and Geylani Kardas. Towards Providing Debugging in the Domain-Specific
Modeling Languages for Software Agents. In Proceedings of the Second International Workshop
on Debugging in Model-Driven Engineering (MDEbug 2018) co-located with ACM/IEEE 21st
International Conference on Model Driven Engineering Languages and Systems (MODELS
2018), 2018.

42 Marc H Van Liedekerke and Nicholas M Avouris. Debugging multi-agent systems. Information
and Software Technology, 37(2):103–112, 1995.

43 Simon Van Mierlo. A multi-paradigm modelling approach for engineering model debugging
environments. PhD thesis, University of Antwerp, 2018.

44 Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.
45 Hui Wu, Jeff Gray, and Marjan Mernik. Grammar-driven generation of domain-specific

language debuggers. Software: Practice and Experience, 38(10):1073–1103, 2008.
46 Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann,

2009.

SLATE 2019


	Introduction
	The conceptual generic debugging framework for MAS DSMLs
	Debugging Operations
	Steps
	Breakpoints
	Execution Modes

	Model Simulator
	Related Work
	Conclusion

