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ABSTRACT

Domain-specific languages (DSLs) are increasingly popular, and there are a variety of ways

to create a DSL. A DSL designer might write an interpreter from scratch, compile the DSL to

another language, express DSL concepts using only the existing forms of an existing language,

or implement DSL constructs using a language’s extension capabilities, including macros. While

extensible languages can offer the easiest opportunity for creating a DSL that takes advantage of

the language’s existing infrastructure, existing tools for debugging fail to adequately adapt the

debugging experience to a given domain.

This dissertation addresses the problem of debugging DSLs defined with macros and describes

an event-oriented approach that works well with a macro-expansion view of language implementa-

tion. It pairs the mapping of DSL terms to host terms with an event mapping to convert primitive

events back to domain-specific concepts. Domain-specific events can be further inspected or ma-

nipulated to construct domain-specific debuggers.

This dissertation presents a core model of evaluation and events and also presents a language

design—analogous to pattern-based notations for macros, but in the other direction—for describing

how events in a DSL’s expansion are mapped to events at the DSL’s level. The domain-specific

events can enable useful, domain-specific debuggers, and the dissertation introduces a design for a

debugging framework to help with debugger construction. To validate the design of the debugging

framework, a debugging framework, Ripple, is implemented, and this dissertation demonstrates that

with a modest amount of work, Ripple can support building domain-specific debuggers.
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CHAPTER 1

INTRODUCTION

Domain-Specific Languages (DSLs) have recently attracted increasing attention in the area

of programming languages. They are designed to solve problems in a particular domain with

expressive, domain-specific notations and abstractions (van Deursen et al. 2000) and to achieve

ease of use and gains in productivity (Mernik et al. 2005; Ward 1994). Many tools exist to facilitate

developing and using domain-specific languages such as parser generators (Visser 1997), integrated

development environments (IDEs) (Charles et al. 2009; JetBrains 2004; Kats and Visser 2010), and

program transformations (Bravenboer et al. 2008). With current DSL-construction tools, however,

debugging support for DSLs remains unsatisfactory.

Currently, there are two popular kinds of debuggers. The first kind is a generic, general-purpose

language (GPL) debugger, like GDB (Stallman et al. 2002), capable of debugging multiple GPLs.

The traditional GPL debugger relies on a stepping-based approach, which supports controlling the

execution of a program by setting breakpoints and stepping. Due to the abstraction gap between a

GPL and a DSL, using the traditional GPL debugger to debug DSLs is not effective. The second

kind is a specialized DSL debugger, which provides a most useful debugging experience by tailoring

the debugger to DSL needs. A specialized DSL debugger is effective, but designing and developing

a specialized debugger for each DSL tends to be expensive and unrealistic.

To reduce the cost of building a DSL debugger, there has been a movement toward DSL de-

bugging frameworks (Chis et al. 2014; Henriques et al. 2005; Lindeman et al. 2011; Van Den

Brand et al. 2005; Wu et al. 2008). However, these DSL debugging frameworks exhibit limitations.

Sometimes, the problem is that debugging operations are limited to traditional debugging techniques

for imperative languages, such as setting breakpoints and stepping (Henriques et al. 2005; Van Den

Brand et al. 2005; Wu et al. 2008). Even in an event-based debugging framework, often the

events are insufficiently general (Chis et al. 2014; Lindeman et al. 2011) and expose too much the

constructs of the GPL that hosts the DSL implementation.
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In the realm of debugging for GPLs, a programmer is usually presented with an interface to step

through imperative statements and set breakpoints. A more general model, which is supported by

many debuggers, views the activity of a program as a generator of events that can be inspected and

to some degree controlled (Bates 1995; Marceau et al. 2006; Olsson et al. 1990). An event-based

view enables reuse and extension of a debugger, and I take this view as one of my starting points.

In the same way that GPLs can host DSL implementations, an environment that provides GPL

debugging events can host DSL debugging events. This approach adapts well to many different

kinds of problems, including domain-specific problems where the evaluation rules might not follow

a conventional imperative flow. A gap remains, however, for mapping GPL events back to a DSL in

a precise, reusable, and extensible way.

I combine an event-oriented view of DSL debugging with a view of DSL construction based on

macros, as they are commonly implemented in Lisp environments and especially in Racket (Felleisen

et al. 2015; Tobin-Hochstadt et al. 2011). Macros provide high-level support for converting the

constructs of a DSL into lower-level constructs of a host language. Macros compose well, so

that multiple DSLs can coexist in a larger application along with the host language. Macros also

naturally enable towers of languages (Ward 1994), where terms in a source language are expanded to

successively simpler languages, while each intermediate point serves as a well-defined and reusable

language in its own right.

An event-oriented view of debugging meshes well with a macro-expansion view of language im-

plementation. Macros specify the run-time semantics of a DSL through elaboration into lower-level

constructs. Meanwhile, debugging events from the lower-level language can be filtered, combined,

and transformed to describe debugging events in terms of the DSL. In the same way that static

elements of a language can be associated with macros to implement, say, a type system (Chang

et al. 2017), a protocol for debugging events can be integrated with macro transformations. As a

result, the programmer gets support for DSL debugging on par with support for DSL type systems

and run-time evaluation. I further design and develop a debugging framework that incorporates a

suite of visualization and interaction tools to allow programmers to view and interact with events to

debug programs, where the visualizations and interactions can be tailored to the DSL as needed.
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1.1 Thesis Statement
To assist creation and integration of DSLs, language workbenches (Efftinge and Volter 2006;

JetBrains 2004; Kats and Visser 2010; Krahn et al. 2008) are recent platforms incorporating tools for

most aspects of DSLs, which include means for language creation, interpreter or compiler support,

and IDE services such as syntax checking and syntax completion. DSLs are still recognizably

programming languages, and a good debugging support is indispensable to using any programming

language. However, the existing support for debugging DSLs on most language workbenches is

limited.

This dissertation presents an approach to debugging DSLs, executable DSLs, on the Racket

language workbench that implements DSLs via macros. The thesis statement is: A workbench

for building domain-specific programming languages can offer not only tools for defining the

static and run-time semantics of the language but also a debugging framework to ease the

development of effective, domain-specific debuggers.

I build on the idea of debugging as the inspection and manipulation of domain-specific events

that are generated by a program’s execution. Whereas macros define a DSL’s semantics by rewriting

source terms to more primitive constructs, I use event mappings in macro transformations to convert

primitive events back to domain-specific concepts. Domain-specific events are then suitable for

presenting to a user or wiring into a domain-specific visualaization. To reduce the cost of debugger

construction, I designed and developed a debugging framework, Ripple. Ripple partitions the de-

bugger support into a back end and a front end where the back end facilitates debugging information

collection and where the front end facilitates interface construction.

1.2 Thesis Outline
Chapter 2 gives an overview of existing debugging techniques that dominate the field of de-

bugging, which are stepping-based debugging, scriptable debugging, trace-oriented debugging,

event-based debugging, and aspect-oriented debugging.

Chapter 3 is an initial exploration of instrumentation without using events in its debugging

model. I present a new debugging and program-exploration tool, Medic, that solves the problems

of trace debugging. The development of traces helped to shape my later design of a debugging

framework. After initial development, Medic evolved to use events in its implementation and turned

out to be an example of a DSL for the rest of my dissertation work.
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Chapter 4 lays a foundation for evaluation and describes domain-specific events that support

the back end of my debugging framework in Chapter 5. I present a core programming-language

model that supports debugging events, where the events are sufficient to fully reconstruct the state

of an evaluation. I then describe the constructs that DSL implementers use to map events from

one language level (either the core language or a derived language) to a new language level; those

constructs are ultimately implemented in terms of the core language’s event-reporting mechanism,

but with conversion layers that aggregate and transform core events into domain-specific events.

Chapter 5 presents the design of my debugging framework. The debugging framework incorpo-

rates a suite of tools to support building effective, domain-specific debuggers with low cost.

Chapter 6 presents applications of the debugging framework. To help validate the design of

my debugging framework, I have implemented debugging support for three DSLs, and I report my

experience in finding bugs with these debuggers.

Chapter 7 is an evaluation of the usefulness of the debugging framework. I have tested the

framework on three DSLs, and I demonstrate that with a modest amount of work, my debugging

framework can support constructing effective, domain-specific debuggers.

Chapter 8 presents a perspective on the debugging framework and discusses the issues of com-

position of DSLs and the future work.

Chapter 9 describes the related work about event-based debugging for GPLs and debugging

support for DSLs.



CHAPTER 2

EXISTING DEBUGGING TECHNIQUES

There are many debugging techniques that are proposed in the area of debugging, and this chap-

ter gives a background of five popular debugging techniques: stepping-based debugging, scriptable

debugging, trace-oriented debugging, event-based debugging, and aspect-oriented debugging.

2.1 Stepping-Based Debugging
A stepping-based approach relies on the concepts of setting breakpoints and stepping. The

debugger provided in the Eclipse IDE (Eclipse 2017) represents a common example of a stepping-

based debugger. The program execution can be controlled by breakpoints where a breakpoint is

a location specified in the source program to enable suspension of execution. A stepping-based

debugger also supports stepping-related operations including step, step over, step into, and step out.

The step operation supports stepping through the execution of a program in a line-by-line fashion

or a statement-by-statement fashion. The step over operation supports executing a procedure in one

step. The step into operation jumps into the first statement of a procedure, and the step out operation

finishes executing the remaining code in a procedure if the execution steps into a procedure. When

the execution is paused, the debugger shows the current program states in terms of variables and

stack frames.

2.2 Scriptable Debugging
A scriptable debugger treats debugging as a programmable and repeatable activity where the

debugger provides a debugging language to assist debugging. For users, the debugging process

involves using the debugging language to write a script to describe debugging operations on a

program:

������� ������

Examples of scriptable debuggers are MzTake (Marceau et al. 2006), Dalek (Olsson et al. 1990),
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Duel (Golan and Hanson 1993), and RAIDE (Johnson 1977). A scriptable debugger usually provide

a debugging language, which differs in syntax from the language used in other scriptable debuggers,

and the debugging language is able to express operations that are common to debugging such as

inspecting variable values and controlling program execution.

Because scriptable debuggers incorporate an expressive language, using a scriptable debugger

offers exceptional debugging power by enabling the scripting of debugging tasks. Debugging scripts

have the benefit of eliminating repetitive debugging actions and promoting modular organization

and reuse of debugging code. However, because of the dependence on a debugging language,

the traditional, graphical operations are replaced by textual scripts where learning the debugging

language is a prerequisite to begin any debugging activities. Most debugging languages are system-

dependent, and users need to learn a new language when switching to a different debugging system.

2.3 Trace-Oriented Debugging
A trace-oriented debugger instruments the program to produce traces at run time, and traces are

directed to the debugger for inspection and manipulation:

������� ������ ��������

Trace-oriented debugging includes print debugging, where the traces are generated by instru-

mentation of print-like statements, and omniscient debugging, where the traces are generated

internally by the system. The print debugging method has little cognitive load because the

method only requires the insertion of print statements into the source program, which needs no

debugger support and specific debugging knowledge. Omniscient debugging supports back-in-time

debugging where the execution histories are all recorded and where users can examine the past

execution to find problems. Examples of omniscient debuggers include ODB (Lewis 2003) and

TOD (Pothier et al. 2007).

Trace-oriented debugging enjoys the benefit of never losing any data of interest during program

execution, but different approaches suffer different problems. Though simple, print debugging

bears several limitations. First, the source program is tangled with print statements, which ob-

scures the original code during debugging and requires removing the print statements after de-

bugging. Second, the trace output is usually textual and linear, which is difficult to analyze for

voluminous traces. Omniscient debugging saves every execution state, which contains information
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about variables and stack frames, suffering a bigger problem of space consumption.

2.4 Event-Based Debugging
Event-based debugging views the activity of a program as a generator of events that can be

inspected and to some degree controlled by debuggers:

������� ������ ��������

An event represents the occurrence of an activity during the execution of a program, and event-

based debugging is similar to trace-oriented debugging if the traces are based on events. Examples

of event-based debuggers include Dalek, UFO (Auguston et al. 2003), EBBA (Bates 1995), and

MzTake. A debugger can employ more than one category of debugging techniques. For example,

Dalek as well as MzTake are both scriptable and event-based.

Event-based debuggers generally use events as information units where debugging information

is encapsulated in event attributes, but different debuggers use events differently to support various

models of debugging. For example, UFO treats debugging as a computation over an event trace

(execution histories), which can be performed either at run time or after execution, while EBBA

treats debugging as an activity of matching the actual program behavior to the expected program

behavior expressed by events. Meanwhile, the model of events and creation of new events varies

among systems. UFO views events as an activity that takes place in a time interval, and other

systems model events as points of time. Dalek and EBBA support creating high-level events that

are defined in terms of other events.

2.5 Aspect-Oriented Debugging
Aspect-oriented debugging originates from aspect-oriented programming (AOP) (Kiczales et al.

1997). AOP tries to modularize crosscutting concerns that are usually scattered around the code

and are difficult to develop and maintain. AOP typically involves concepts of join points, pointcuts,

advice, and aspects. A join point represents a location in the execution of a program, and a pointcut

provides a way to specify a collection of join points. Advice describes any concerns that will work

on pointcuts to influence the original code, which is usually written in a method-like construct. With

components of join points, pointcuts, and advice, aspects are units of modularization that express

the implementation of crosscutting concerns.
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When the crosscutting concerns are related to debugging, AOP becomes aspect-oriented debug-

ging, and the debugging process is:

������� �������

Similar to scriptable debugging, the original source program remains intact during debugging,

and aspects, which encapsulate debugging operations, work on the source program to automate

debugging tasks. Most AOP models (Dutchyn 2012; Kiczales et al. 2001; Spinczyk et al. 2002)

provide limited join-point models and limit access to values in advice, which affect the effectiveness

of debugging. There are aspect-oriented systems such as Bugdel (Usui and Chiba 2005) that

try to tackle the limitations of AOP and aim to provide a useful debugging experience. Overall,

aspect-oriented debugging enjoys the benefits of AOP, which include preserving the modularity and

encapsulation of the target language and supporting the organization and reuse of debugging code,

but has some limitations in supporting a full-featured debugging.



CHAPTER 3

MEDIC: METAPROGRAMMING AND

TRACE-ORIENTED DEBUGGING

Even though modern programmers enjoy a wealth of high-level and graphical tools for un-

derstanding and debugging programs, programmers often resort to the simple and the time-honored

technique of inserting print statements into programs to reveal progress and to expose intermediate

values. This technique is called trace debugging or printf debugging. Compared to other debugging

techniques, trace debugging offers many benefits such as lightweight print statements and the

resulting convenience in exposing program states. However, traditional trace debugging also has

several drawbacks, including the need to modify the source program and the need for additional

tools when trace output becomes too voluminous.

This chapter is my exploration of debugging support. I started with the debugging support for

GPLs, and I designed and implemented Medic to improve trace debugging. Medic, a new debugging

and program-exploration tool for Racket, augments the traditional examination of control and state

with output processing, metaprogramming, and visualization features. Medic allows programmers

to leverage the benefits of trace debugging while addressing many of its drawbacks. The work of

Medic used ideas of metaprogramming, data inspection, and data visualizations, which turned out

to be useful for debugging support for DSLs. A variant of this chapter was originally published as

Medic: Metaprogramming and Trace-Oriented Debugging (Li and Flatt 2015) in the Workshop on

Future Programming, http://dx.doi.org/10.1145/2846656.2846658.

3.1 A Trace-Oriented Metaprogramming Language
A Medic programmer uses a metaprogramming language to inject “printing” forms into the

program to be debugged. Figure 3.1 shows the overall grammar of a metaprogram; the grammar

references the ��������� definition in Figure 3.2, and we begin our explanation with ���������.

Medic’s metaprogramming facilities start with the ability to describe the placement of debug-

ging instructions. Programmers must specify the locations in the source program where the debug-
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ging instructions are added. Medic provides three categories of scope specification of locations:

• Module-level. Racket organizes programs into modules, where each module has its own

global namespace and resides in its own file, so all location descriptions start by identifying

the relevant module. The ���������������������������������������� form confines the

scope of ����������s to be within the module named �����������.

• Function-level. Within a module, a function-level scope limits the functions where insertion

specifications apply. Medic supports two kinds of function-level scopes: �������������,

which matches every function, and �������, which specifies one or more functions by name.

• Expression-level. The ������� pattern locates a specific expression in the source program that

matches a �������������. The ������������� can be a complete expression or an expression

pattern where an underscore in the pattern matches any expression. For example, (+ _ 1)

matches (+ x 1), (+ (f 3) 1), and (+ (if (zero? x) 4 5) 1). Patterns specified

after �������� and ������� keywords can further constrain the matching of target ex-

pressions.

After a location is identified in the source program, debugging code can be inserted either

on entry or on exit using the �������������������������� or ������������������������� form.

While some AOP systems constrain inserted code so that it preserves modularity and encapsulation

properties of the original program, Medic imposes no constraints, as is appropriate for debugging

purposes. Medic thus allows an inserted form to access any identifier that is visible in the source

program at the insertion point.

Medic also provides a means of modularity and abstraction. A Medic program consists of

different layers, where a layer modularizes debugging code for a specific functionality and groups

traces produced by the print form. A layer is declared by ������ ������������������������ with an

optional �������� specification that can enable or disable a layer’s output.

Within a layer, the ��������� form enables abstraction and parameterization of a fragment of

code. The code fragment can be either run-time code to inject into the source, as indicated by the

������������� form, or it can be a fragment of metaprogramming specification, as indicated by

the ������������ form. These definitions are referenced using ������������ and ��������������,

which refer to the corresponding fragment of code named by a ������������ or �������� in a suitable

context. Definitions within a layer are exported to other layers and imported from other layers using
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��������������� and ���������������������, respectively. A disabled layer’s definitions remain

available for import by other layers.

Besides allowing access to elements of a source program in debugging instrumentation, Medic

reflects additional information for use in certain debugging forms. The ������������� variable

is bound to the enclosing function or a function being called. For example, instead of tediously anno-

tating each function f, g, etc., with (print "f function entered"), (print "g function

entered"), etc., Medic allows writing

����������������������������������������������������������������

The string-template notation using @ is an alternate representation of an S-expression, and is the

same as used for Scribble (Barzilay 2009; Flatt et al. 2009). Through ��������������������������,

a programmer can define the logging behavior, represented by ��������, of the � function. Inside

��������, ��� and ��� are allowed to escape to access a function’s argument and return value.

3.2 Trace Debugging
Medic supports four kinds of tracing (i.e., variants of print) with associated visualizations,

each of which is useful for different debugging tasks. All traces are directed to an interactive

graphical user interface, the trace browser. The trace browser consists of four panes that correspond

to the four kinds of traces: a Log pane, a Graph pane, an Aggregate pane, and a Timeline pane.

3.2.1 Log Tracing

Log tracing with Medic’s log form is similar to traditional trace debugging with print, but

Medic’s logging facilities simplify the construction and browsing of printed output. The log form

not only produces traces sequentially in execution order, but it also augments traces with useful

context information. For example, suppose that the value of x is 3. The (log x) expression

produces a “x = 3” trace entry in the Log pane of the trace browser. Unlike the traditional print

statement, which merely prints x’s value, log produces extra context information about the value:

the name of the variable under inspection. This automatic addition of context by log relieves the

programmer of tedious string-templating work for simple logging output.

The log form recognizes function calls as well as variable references, and it cooperates with

Medic statements that adjust the format of output for function calls. A programmer can control the

way that log output is written for f calls by using ��������������������������. This centralized
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control provides an alternative to duplicating template constructions at each logging site. Further-

more, the with-behavior form provides access to the result of the function calls, as well as the

arguments, which allows the log form to more completely expose the behavior of the function.

For example, suppose a "f.rkt" program. One can log the behavior of calls to the f function by

writing a Medic program in "f-medic.rkt" as shown in Figure 3.3. The with-behavior clause

in "f-medic.rkt" changes the output produced by log whenever a function call to f is logged.

Instead of printing just the result of calling f, log displays the customized behavior of f— “f:

@x squared plus @y squared is @ret”—with @x, @y, and @ret replaced by arguments’

values and the return value of f function call. After starting a debugging session by running

"f-medic.rkt" and "f.rkt", the log entries are the following (traces showing the behavior of

data are highlighted in blue):

One of the most difficult aspects of trace debugging is determining the right amount of data to

log. Logging too little data defeats the point, but logging too much data makes the interesting infor-

mation difficult to find, and the right amount of logging is not always clear from the start. Medic’s

layers help programmers organize output so that layers of output can be selected interactively, which

helps balance the needs of showing enough information and limiting the amount of information.

f.rkt

(define (f x y)
  (+ (sqr x) (sqr y)))

f-medic.rkt

(layer layer1
  (in #:module "f.rkt"

(with-behavior f
     ����������������������������������������)
[on-exit (log (f 3 4))

(log (f 4 5))]))

Figure 3.3. Showing the behavior of data
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Figure 3.4 shows an example of defining layers for traces. To see the traces produced by (log

"left branch: ∼a, ∼a" (cadr t) left-p), the programmer can click the Log View but-

ton, which opens a layer-view window listing the layers of traces: left-path and right-path.

After selecting the left-path layer, the Log pane updates the display of traces immediately,

highlighting the traces that belong to the selected layer:

Seeing traces in layers enables a programmer to make better comparisons of relevant trace elements

among all mixed traces, while the execution order of traces is preserved.

3.2.2 Graph Tracing

Traces produced by log are linear and text-based. They print primitive values in a typical form,

and by preserving the execution order of traces, they enable analysis of the evolution of a value

in a program. Textual traces, however, provide a poor view of certain relationships among trace

elements that could become immediately apparent in a graph view. With conventional logging tools,

converting textual output to a graph view requires additional tools, careful formatting of output to

fit the tools’ input formats, and isolation of that output from other debugging output.

Medic directly supports the construction of graph output to help programmers see the otherwise

hidden relationships among values. To generate a graph, instead of using log, the programmer uses

the node and edge forms. The node form takes a value, an optional label string, and an optional

color for the node. The edge form takes two values, an optional edge label, optional color, and

optional labels for the two ends of the edge. Naturally, node creates a node in the visualization,

and edge creates an edge between nodes (either declared previously or implicitly created by edge).

Medic also supports remove-node and remove-edge forms to delete the graph trace’s nodes

and edges. To create a simple and aesthetically pleasing visualization, Medic uses force-directed

algorithms to lay out the output (Eades 1984; Fruchterman and Reingold 1991).

To illustrate Medic’s graph tracing facilities, suppose that we have a correct implementation of

a doubly linked list with support for common accessing, inserting, and removing operations. The
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find-path.rkt

(define (find-path t name)
  (cond

  [(string? t) (if (equal? t name) '() #f)]
  [else

(let ([left-p (find-path (cadr t) name)])
  (if left-p

(cons (car t) left-p)
(let ([right-p

(find-path (caddr t) name)])
  (if right-p

(cons (car t) right-p)
#f))))]))

 

(find-path '("a" ("b" "1" "2") ("c" "3" "4")) "3")

find-path-medic.rkt

(layer left-path
(in #:module "find-path.rkt"

[at (if left-p _ _)
[on-entry
(log "left branch: ~a, ~a"

(cadr t) left-p)]]))
 

(layer right-path
(in #:module "find-path.rkt"

[at (if right-p _ _)
[on-entry
(log "right branch: ~a, ~a"

(caddr t) right-p)]]))

Figure 3.4. Showing the layer of interest
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remove method takes an argument, i, and removes the ith element from the list starting from

index 0. We can create a bug in the remove implementation by commenting out the line of code

that updates the previous link of a node, temp-next, to point to the node, temp-prev, when the

node, temp, is to be deleted, as shown in Figure 3.5.

To test the broken library, we add ten numbers from 0 to 9 to the doubly linked list dlist and

then remove five successive elements 3, 4, 5, 6, 7 from the list by calling (send dlist remove

3) five times. We can first use log to print the elements at each step. From Figure 3.6, we notice

we get a faulty list after the removal operation—the final list should be the sequence 0, 1, 2, 8, 9,

instead of a sequence of 0, 1, 2, 4, 5. However, the tracing log gives us little insight into the cause

of the problem. If we use edge to visualize the doubly linked list (see Figure 3.7), we can see the

problem instantly. As shown in Figure 3.8, the doubly linked list is broken with a unidirected edge

between nodes 2 and 4.

In this example, the test and edge declarations were part of the metaprogram. When the library

might have its own tests, Medic’s metaprogramming facilities can be used to weave node and edge

declarations into the library’s implementation to track down the source of a test failure.

3.2.3 Aggregate Tracing

A programmer can use linear traces with multiple values in each entry to detect a relationship

between values and how they change together. A manual inspection of linear output, however, can

make those changes difficult to extract from the layout and noise of traces. Medic’s aggregate

form presents trace output in a way that makes related output values easier to inspect and compare.

Consider the source program:

(define (fact x a)
(if (zero? x) a (fact (sub1 x) (* x a))))

(fact 3 1)

and the Medic program:

(layer fact
(in #:module "fact-iter.rkt"

[(fact) [on-entry (aggregate x a)]]))

In the source program, the x and a values change together across calls to the function, and inspecting

them as a pair can help a programmer understand how they work together. Specifically, using
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doubly-linked-list.rkt

....
(define/public (remove i)
(when (or (< i 0) (> i (sub1 size)))
  (error 'remove-invalid-argument))
(cond
  [(zero? i)

(define res (get-field datum head))
(set! head (get-field next head))
(if head

(set-field! previous head #f)
(set! tail #f))

(set! size (sub1 size))
res]

  [else
(cond
  [(= i (sub1 size))

(define res (get-field datum tail))
(set! tail (get-field previous tail))
(set-field! next tail #f)
(set! size (sub1 size))
res]

  [else
(define temp head)
(for ([j (in-range i)]) (set! temp (get-field next temp)))
(define res (get-field datum temp))
(define temp-prev (get-field previous temp))
(define temp-next (get-field next temp))
(set-field! next temp-prev temp-next)
; (set-field! previous temp-next temp-prev)
(set! size (sub1 size))
res])]))

....

Figure 3.5. The buggy remove implementation
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Figure 3.6. The log view of a doubly linked list

doubly-linked-list-medic.rkt

(layer dlist
(in #:module "doubly-linked-list.rkt"

[on-exit
(define dlist (new doubly-linked-list%))
(for ([i (reverse (build-list 10 values))])
  (send dlist add-at 0 i))
(for ([i (in-range 5)]) (send dlist remove 3))
(for/fold ([temp (get-field head dlist)])

([i (in-range (sub1 (send dlist get-size)))])
  (define next (get-field next temp))
  ; draw an edge: temp -> next
  (edge temp next "" "red"

(get-field datum temp)
(get-field datum next))

  next)
(for/fold ([temp (get-field next (get-field head dlist))])

([i (in-range (sub1 (send dlist get-size)))])
  (define prev (get-field previous temp))
  ; draw an edge: temp -> prev
  (edge temp prev "" #f

(get-field datum temp)
(get-field datum prev))

  (get-field next temp))]))

Figure 3.7. Graph tracing
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Figure 3.8. The graph view of a doubly linked list

(aggregate x a) produces a result that is more organized than a linear trace:

When (aggregate x a) is evaluated many times, as in (fact 1000 1), the resulting large

number of traces must be pruned to expose the values at each step and enable comparison at different

steps. Clicking the red button to the left of the aggregate trace view opens a scrub-view window,

which allows the programmer to inspect the traces step-by-step (currently at step 3):

The scrub view provides two slider handles; the window displays the current step of traces indicated

by the second slider handle, but it compares that value to the one selected by the first slider handle.

For example, moving the orange slider handle to step 3 and right-clicking on it turns the slider red,
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which marks the step for later comparison. Then, moving the green slider handle to step 4 compares

the values at step 4 to the values at step 3. The difference between two steps is highlighted in pink:

3.2.4 Timeline Tracing

When traces involve changes over time, programmers need to see the overview of data in a

temporal fashion. There are a few possible ways to present traces such as using a slider to “time

travel,” using “timeline” views, and using “stroboscopic” views (McDirmid 2013). Inspired by the

timeline view of data presented by Victor (2012), which helps programmers understand data with

visual context, instead of "peeking through a pinhole," Medic provides three forms for timeline

tracing: timeline, assert, and same?. These three forms all generate traces with a view similar

to a timeline view, where each trace element is arranged along the vertical axis, while the changing

values of each trace element are displayed along the horizontal axis. By default, the timeline view’s

horizontal axis corresponds to an abstract execution time reflecting the order of logged events, but

not the delays between events. A clock-based view is available in a separate window.

As a further refinement over aggregate tracing, the timeline view automatically determines

a graphical presentation mode for some logged values. For a given element v in a trace, if all

occurrences of v are numbers, a line plot is rendered on the timeline (where each point is arranged

in the square unit according to its numeric value). For boolean values, each square unit represents a

value with false values colored red and true values colored blue. For other data types, a textual form

is displayed.

To illustrate, for the programs shown in Figure 3.9, the left panel of Figure 3.10 presents

the resulting timeline view. The timeline slider on the top can step through the timeline traces

showing multiple values with the same horizontal coordinates at the same time (see the right panel

of Figure 3.10). Clicking the corresponding square unit shows the current value as a tooltip.

A timeline element produced by (assert pred) is similar to pred as a boolean result, but

true values are deemphasized by coloring them in gray, while false elements are highlighted in red.
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count.rkt

(define (count-length v count)
  (if (null? v)

count
(count-length (cdr v) (+ count 1))))

(count-length (cons 8 (cons 9 '())) 0)

count-medic.rkt

(layer count
(in #:module "count.rkt"

[(count-length)
[on-entry

(timeline count)
(timeline v)
(timeline (null? v))]]))

Figure 3.9. Timeline tracing

Figure 3.10. Timeline traces for timeline form



22

For example, with (assert (> x 0)) and when values of x over time are 3, 2, 1, and 0, the

assertion fails on the fourth value of x producing the following timeline:

Although comparisons between two elements of a trace are sometimes useful, a comparison

of one trace element with its initial value is more often useful. A programmer could change

(through metaprogramming) the source program to propagate the old version, but Medic makes

the comparison considerably simpler through a same? form in a timeline trace. The same? form

always produces true for the initial trace. Afterwards, the result is true only if the trace element’s

value is the same as the initial trace; the same? predicate compares values like Racket’s equal?,

but is extended to perform a deeper comparison by traversing opaque structures and objects. Like

(assert pred), only false values produced by (same? v) are highlighted in red in the timeline.

Clicking the Time View button opens a variant of the timeline view as shown in Figure 3.11. A

programmer can slide through time to see which events take place at a particular time, showing not

only the relative order for events of interest but also the gaps between events.

Figure 3.11. Time view
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3.3 Implementation
The implementation of Medic leverages Racket’s ability to support a completely new lan-

guage, plus Racket’s ability to macro-expand a program written in any language to a common

core language. This combination means that Medic can offer a specialized language for writing

metaprograms, and those metaprograms can introduce debugging annotations on programs written

in any language that compiles to recognizable core forms, such as definitions and functions.

A debugging session starts by interpreting a Medic program, which describes debugging instruc-

tions in terms of a source program and logging instrumentation to add to the program. Interpretation

extracts debugging instructions and their related debugging information, such as source location

and trace layer id, into debugging tables that drive an instrumentation phase. In the instrumenta-

tion phase, logging forms are woven into the source program. The instrumented program is then

compiled and run, and generated traces are piped to the front-end trace browser. The trace browser

processes traces and presents them in a visual way with interactive exploration.

3.3.1 Interpretation of Medic Programs

Metaprograms written with the grammar of Figure 3.1 are interpreted in a straightforward way

to construct three tables: border-insert-table, at-insert-table, and template-table.

The first two tables describe places where debugging instrumentation is to be added, as elaborated

from forms like in, at, and each-function, while the third table describes formatting rules for

function-call logging as specified via �������������.

Each table maps a ����������� to an �, �, or �, respectively, and the representations of �,

�, and � are in Figure 3.12. A table’s content is represented by a combination of lists written as

����������, tuples written as 〈����〉, symbols written as identifiers prefixed by a quote mark,

and syntax objects (Dybvig et al. 1993; Flatt et al. 2012) represented by the ��� nonterminal. In

particular, program fragments in a Medic program, such as logging statements to insert into the

program, are represented by syntax objects.

3.3.2 Weaving Debugging Code

Similar to an AOP implementation, Medic weaves debugging instructions into the source pro-

gram as described by a metaprogram. Unlike a traditional AOP implementation, the program’s

source language is not fixed, but defined through the expansion of macros. Targets for weaving are
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������������������������������

������������������〈������������������������〉
�����������〈�������������������〉

��������������������������

��������������〈������������������������������������������������〉
��������������������

��������〈��������������〉
�����������������

�����������������
��������

���������������������������������������
����������������������

�����������������������
������������������������������������������

Figure 3.12. Debugging tables

defined syntactically, but the source code must be parsed and expanded to support the addition of

code at semantically meaningful points. At the same time, identifier bindings should be resolved

through a combination of the source program’s bindings and the metaprogram’s imports; for exam-

ple, a use of the log form should refer to Medic’s log form, but logged variables should come from

the source program.

Medic relies in part on Racket’s macro system (Flatt et al. 2012) to manage bindings and trans-

formations. Medic expands a source program via Racket’s macro expander to produce a program

in the core language, which is effectively an AST representation of the program. Source terms are

correlated with expanded terms by source location, which is preserved by Racket’s macro expander.

As Medic traverses a program to insert debugging forms, it tracks variable bindings, and it rewrites

inserted fragments so that variables with matching names are captured by the source program’s

bindings. In other words, debugging fragments are added to the program non-hygienically to enable

access to variables in the source program.

When adding tracing statements, including log, aggregate, timeline, and assert, syntax

properties are attached to the tracing statements to record layer and stamp information. The layer

information contains the current ��������, and the stamp is an integer distinguishing different tracing

statements in the Medic program. For example, if two (timeline x) statements are inserted from

two different places, they are marked with different stamp information to produce separate timeline

results.
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The instrumentation model starts with the syntax-object model of Flatt et al. (2012), but since

weaving involves source-location and property information, Medic extends ���with ������ and �����

pieces:

�������������������������������������
������������������������������������������

�����������������������������������
����������������������������������������

������������������������������

���������〈��������〉

The ������ part represents the position of a syntax object in the source program, and ����� is a

sequence of key-value pairs for syntax properties.

Figure 3.13 lists some metafunctions of the model, including ������� and ������������. The

������� metafunction strips each debugging syntax object’s lexical context. When the ������� meta-

function encounters �������������������������������������������� where �� resolves to log, aggregate,

timeline, or assert, layer and stamp syntax properties from the enclosing syntax object are

added to the identifier. The ������������ metafunction traverses a syntax object to locate identifiers

whose names match entries in the �������� table, and when it finds a match, the identifier’s lexical

context is replaced to match the binding identifier in the source. The ������������ metafunction is

also responsible for detecting references to function-name and replacing the function-name

with the ���� of the enclosing function.

Figure 3.14 and Figure 3.15 show specific steps in Medic’s instrumentation pass. The metafunc-

tion, ������������, takes the source program, which is represented as an expanded module of the

form

��������������������������������������������������������������,

as an argument. The ������������ metafunction locates any module-level ������s in �, and the

metafunction �������������������� extracts entry and exit additions from each ������. The ��������

metafunction takes the exit forms to insert and adds them as part of the module body, while entry

additions are added directly, since no global bindings are available for use on module entry.

The��������metafunction transforms expressions in the module body and calls the����������

metafunction to handle expressions other than top-level definitions. For each definition of the form

���������������������������������������������������,
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�������������������� � ����������������� ��� �������������� → ��������������
���������������������������������������������������������������������
���������

���������������� � ��� � ���� ��� �������������� → ��������������
������������������������������������������������������������

������� � ��� → ���
��������������������������������������������������������
����������������������������������������������������������������������

������������ � ��� �������� ���� → ���
����������������������������������������������������
����������������

Figure 3.13. Retrieval and transformation of syntax objects
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Figure 3.14. Process of weaving module-level code
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���������� � ��� �������� ���� � � → ���
����������������������������������������
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Figure 3.15. Process of weaving expression-level code

a new binding of �� is added to ��������, and any possible insertion of debugging code around

the definition is found through ����������������, which calls ������� before returning results. The

definition is augmented with any existing ����������s and ���������s (with ������������ called first) to

make a sequence of syntax objects. The ���������� metafunction is applied to the body of the

definition, which uses ���� obtained from �� for later run-time function scope lookup.

Since ������������� involves function-level insertions of debugging code, we primarily explain

the ������ case in the ���������� metafunction, while other ��� cases just need to consider expression-

level insertions by checking the � table. The list of �������� is extended with the function’s formal

parameters. A sequence of ������s is obtained by finding mappings with the current function-name

scope, �����, and �������������� scope. If there are no ���������s or ��������s, ������������ will

not be called, and no debugging expressions will be inserted. Otherwise, the transformed function

body, �����, has the shape

(lambda (arg ...)
body-entry-expr ...
(begin0 (begin body-expr ...)

body-exit-expr ...))
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Expressions inside a begin0 form are evaluated in order, but the result of the begin0 form is the

result of the first expression, so begin0 keeps the original function’s return value intact. Finally,

������ is transformed into ������, which is ����� wrapped with expression-level insertions, if any.

3.3.3 Generation and Presentation of Traces

Macro transformations are performed on tracing statements to generate appropriate raw traces

at run time for the trace browser’s display.

For the log forms, the macro transformer dispatches on the shape of the log form. For

(log id), it produces a result of “id-name = id-value” where id-name and id-value are

replaced by the identifier’s name and value. For the (log (fun arg ...)) case, Medic looks

up any declared ������������� for the current function, fun, in the template table, �. If

there is a behavior template defined for fun, log produces a result for the behavior template by

substituting the result of evaluating ����� for any occurrence of ����� in the behavior template;

otherwise, the value of (fun arg ...) is augmented with extra context information. For the

(log form v ...) case, where form is a string containing ∼a, log substitutes the value from

the vs corresponding to the position of the ∼a. When the log is prefixed with an � notation,

�������������� or ����� is substituted with its run-time value. Other cases of log return the

literal values. A table records the result of the log statement, its corresponding �������� (obtained

from the syntax object’s layer property), and if the trace is a behavior defined by �������������.

For the node and edge forms, Medic just records the arguments and stores the node-associated

and edge-associated data in two separate tables. The remove-node and remove-edge forms delete

the corresponding node and edge in these two tables. The aggregate, timeline, and assert

forms are implemented to emit an event containing expression labels, values, execution time, and

stamp information where the stamp is obtained from each syntax object’s stamp property. Data with

the same stamp are accumulated in the same entry of a table. For (same? v), the v label, value,

and execution time are recorded.

The trace browser displays different kinds of traces in its associated pane. Log traces, aggregate

traces, and timeline traces (excluding timeline traces produced by same? forms) are displayed lin-

early in recorded order. For graph traces, each node entity n from (node n) should be comparable

and show object identity. A node in the graph pane is created for n, and the same node entity

n cannot produce multiple nodes despite repeated evaluation of (node n). The (edge a b)
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statement adds an edge connecting a to b. If there is no node corresponding to a or b, a new

node will be created. As for (same? v), equality of all the primitive data members of v to the

initial state is recursively checked. If v is a class, all of its public, private, and inherited fields are

checked to see if the state of v changes over time.



CHAPTER 4

DEBUGGING WITH DOMAIN-SPECIFIC

EVENTS

In Racket, a DSL is created by making extensions to existing languages, and macros provide

high-level support for defining new language extensions. After examining the advantages and dis-

advantages of different debugging techniques presented in Chapter 2 and after hands-on experience

with trace-oriented debugging in Chapter 3, the research adopted an event-based debugging model.

There are two reasons. First, an event-based view allows each language to capture run-time states

and evaluation rules and enables reuse and extension of a debugger. Second, an event-based view

meshes well with a macro-expansion view of language implementation where macros can be paired

with events to capture domain concepts. This chapter presents an approach to debugging DSLs

that maps DSLs to domain-specific events. A variant of the chapter was originally published as

Debugging with Domain-Specific Events via Macros (Li and Flatt 2017) in the Software Language

Engineering conference, https://doi.org/10.1145/3136014.3136019.

4.1 Motivation
To see the need for domain-specific events to implement a DSL debugger, consider the case of

POP-PL (Florence et al. 2015). POP-PL is a “patient-oriented prescription programming language”

that is meant to enable a doctor to describe and automate a course of treatment. The language is

message-based, where a message might correspond to adjusting a medical device or calling a nurse

to take a specific action. POP-PL is implemented by macro expansion to conventional functional

and imperative programming constructs. If we try to rely on the underlying GPL’s stepping-based

debugger and map POP-PL source terms to those debugging events, the debugger would not match a

health-care professional’s view of the computation. In fact, the execution flow of POP-PL programs

cannot be easily controlled by setting breakpoints and stepping to suspend and resume execution.

Instead, the execution flow of a POP-PL program is meant to be indefinite and depend on the new

incoming messages in the network and available prescription handlers.
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A debugger for POP-PL should instead present debugging in terms of the events that capture

domain concepts. For example, the following is a POP-PL program named “heparin.pop” that

contains three handles, initially, infusion, and aPTTChecking, to react with messages:

#lang pop-pl

used by JessieBrownVA

initially
giveBolus 80 units/kg of: HEParin by: iv
start 18 units/kg/hour of: HEParin by: iv

infusion:
whenever new aPTTResult
aPTT < 45 | giveBolus 80 units/kg of: HEParin by: iv

| increase HEParin by: 3 units/kg/hour
aPTT > 123 | hold HEParin

| after 1 hour
| restart HEParin
| decrease HEParin by: 4 units/kg/hour

aPTTChecking:
every 6 hours checkaPTT whenever aPTTResult outside of 59 to 101, x2
every 24 hours checkaPTT whenever aPTTResult in range 59 to 101, x2

For the above POP-PL program, we have a debugging interface as shown in Figure 4.1. In

the interface, the checkaptt message entry was clicked in the top-right Messages window, which

triggered a display of the handler information in the bottom-right window. Clicking a message in

the bottom-right window brought navigation to the source context on the left, which was highlighted

in yellow. The POP-PL debugger updates the Messages window when a new message arrives in the

system and when messages are sent from handlers in response to arriving messages. The debugger

supports graphical navigation from a message to a handler and from a message to the source code

as well. We should use domain-specific events such as a receive-msg-e event to capture the

concept of an arriving message and a send-msg-e event to capture the concept of an outgoing

message from handlers.

Figure 4.2 offers a diagram to show the difference between the traditional approach of building

on a GPL debugger and my approach to DSL debugger construction. The traditional approach tries

to reuse the GPL debugger support, resulting in traditional, stepping-based debugging techniques

for DSLs. In comparison, I aim for domain-specific debuggers where the debugger only relies on

the DSL events without the necessity of a GPL debugger and where a DSL can reuse low-level
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Figure 4.1. POP-PL debugger
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Figure 4.2. A comparison of the traditional approach (top) and my approach (bottom) to DSL
debugger construction
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events to define domain-specific events.

4.2 Implementing DSLs with Macros
The approach of mapping general-purpose events to domain-specific events fits together nat-

urally with an evaluation approach that maps DSL programs into GPL programs via macros. In

Racket specifically, building a DSL typically involves a reader-level extension to parse a DSL

program into parenthesized forms (S-expressions), and then an expander-level extension that relies

on macros to expand the parenthesized forms.

A module in Racket is both a unit of compilation and the mechanism for organizing macros

and language layers. In the simplest case, a DSL program resides in its own module, while the

implementation of the DSL itself resides in another module that is referenced by the DSL program.

The DSL implementation is written in some language as defined by module imports, and the DSL’s

macros expand into the imported constructs—where the imports can be macros that expand to

another language, and so on.

Figure 4.3 illustrates the overall process of expanding a single DSL module via macros and

through multiple language layers. (The figure does not show the implementations of the layers,

but only the way that the original module expands into each layer.) Box 1 shows a program

written in a toy DSL called point. The point language contains initialization statements for

the x and y properties and operations such as move x by and move y by to manipulate the two

properties. The #lang point declaration in the box selects the reader that parses the program into

a define-point S-expression, which is sketched in box 2. In addition to that S-expression, box

2 must import a module-begin macro (referred to as “macro 1” among the figure’s arrows) and

a define-point macro (referred to as “macro 2”). The module-begin macro’s job is to add a

definition of point to the beginning of the module, and the define-point macro’s job is to make

an instance of point and call some of its methods.

To a first approximation, each of those macros can be implemented as a simple pattern-based

macro, which uses the form

(define-syntax-rule pattern template)

to indicate that each instance of pattern should be replaced by an instance of template. Pattern

variables bound in pattern are replaced as template is instantiated. So, module-begin and
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4

3

2
1

macro 4

macro 4

macro 3

procedure lang:
(module-begin
  (define point 
    (lambda (x y)
      (define (move-x delta) 
        (set! x (+ x delta)))
      (define (move-y delta)
        (set! y (+ y delta)))
      (define (get-x) x)
      (define (get-y) y)
      (define (dispatch op)
        (cond
          [(eq? op 'move-x) move-x]
          [(eq? op 'move-y) move-y]
          [(eq? op 'get-x) get-x]
          [(eq? op 'get-y) get-y]))
      dispatch))
       
  (begin 
    (define p (point 3 4))
    ((p 'move-x) 4)
    ((p 'get-x))))

macro 2

macro 1

class lang:
(module-begin
  (define point 
    (class
      (field x y)
      (define (move-x delta) 
        (set! x (+ x delta)))
      (define (move-y delta)
        (set! y (+ y delta)))
      (define (get-x) x)
      (define (get-y) y)))
      
  (begin 
    (define p (point 3 4))
    (send p move-x 4)
    (send p get-x)))

parser

S-expression:
(module-begin
  (define-point p
    (x 3)
    (y 4)
    (move-x 4)
    (get-x)))

#lang point
point p:
x = 3
y = 4
move x by 4
get x

Figure 4.3. Macro expansion
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define-point also can be defined as

(define-syntax-rule (module-begin decl ...)
(base-module-begin
; add a point class declaration
(define point

(class
�������������������������������������������))

decl ...))

(define-syntax-rule (define-point name (x x-expr) (y y-expr)
(op arg ...) ...)

(begin
(define name (point x-expr y-expr))
(send name op arg ...) ...))

The pattern (module-begin decl ...) matches any term that starts with module-begin fol-

lowed by any number of terms bound to the pattern variable decl. The ... after decl causes decl

to stand for zero or more matches. The expansion of the macro is a base-module-begin form

that defines the name point and continues with all the supplied decls. Similarly, the pattern

for define-point matches that name followed by at least two terms, where x-expr stands

for the second part of the first term, y-expr stands for the second part of the second term, op

stands for the called method in each subsequent term, and arg stands for the arguments of each

of the called methods (i.e., arg is a list of lists). Note that the number of ...s after a pattern

variable in a template matches the number of ...s after the same pattern variable in the pattern.

The base-module-begin, define, class and send forms used in the macro expansion are all

imported into the module that defines the macros.

Although simple pattern-based macros work for many cases, these macros are not quite right

for module-begin and define-point. The define-point macro wants x and y to be literally

the identifiers x and y, instead of pattern variables that match any term. In addition, the macros

module-begin and define-point independently introduce a definition and references to point,

so macro hygiene keeps them separate (Kohlbecker et al. 1986) instead of shared as intended.

To solve these problems, module-begin and define-point are rewritten as general compile-

time functions with syntax-case forms that help with pattern matching a template instantiation:

(define-syntax id (lambda (source-expr)
(syntax-case source-expr (literal-id ...)

[pattern optional-guard-expr template-expr] ...)))
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The module-begin definition above can be rewritten as

(define-syntax module-begin
(lambda (stx)
(syntax-case stx ()

[(_)
#'(base-module-begin)] ; no decls ⇒ no class
[(_ decl ...)
#'(base-module-begin

(define point ���������������)
decl ...)])))

where define-syntax binds module-begin to a compile-time function that receives a represen-

tation stx of the macro use. The syntax-case form dispatches on that stx to match one of the

subsequent patterns; I add a new pattern here, as a kind of optimization, to drop the definition of

point if there are no decls to use it. After matching a pattern in syntax-case, the corresponding

clause can perform arbitrary compile-time work, but #' produces a compile-time value from a

template instantiation, just like a simple pattern-matching macro.

From now on, I will abbreviate a definition

(define-syntax id (lambda (arg-id) body-expr))
⇒
(define-syntax (id arg-id) body-expr)

To fix module-begin, the point identifier in the template needs to be replaced with point

as if it appeared in the macro-use site. The expression (syntax-local-introduce #'point)

generates such an identifier,1 and I can inject it into the pattern world using with-syntax, which

binds a pattern to the result of a compile-time expression:

(define-syntax (module-begin stx)
(syntax-case stx ()
[(_)
#'(base-module-begin)]

[(_ decl ...)
(with-syntax ([point-id (syntax-local-introduce #'point)])

#'(base-module-begin
(define point-id ���������������)
decl ...))]))

The repair to define-point is similar, but also uses the parentheses that appear after the first ar-

gument to syntax-case, which hold identifiers to be treated as literals instead of pattern variables:

1Using syntax-local-introduce is rarely the best strategy, but it suffices for the example here.
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(define-syntax (define-point stx)
(syntax-case stx (x y)
[(_ name (x x-expr) (y y-expr) (op arg ...) ...)
(with-syntax ([point-id (syntax-local-introduce #'point)])

#'(begin
(define name (point-id x-expr y-expr))
(send name op arg ...) ...))]))

The expansion of the module-begin and define-point macros on the code in box 2 of

Figure 4.3 produces the code in box 3 of the figure. Box 3 shows another module-begin in place

of base-module-begin on the assumption that the form imported as base-module-begin by

the macro-implementing module is exported from its defining module as module-begin.

For the language of box 3, assume that module-begin adds nothing to its content, and consider

further the class and send macros that must be imported there. The class macro implements a

class abstraction in terms of procedures, and the send macro accordingly transforms method calls

into nested procedure calls.

(define-syntax (class stx)
(syntax-case stx (field define)
[(class (field f ...)

(define (method-name arg ...) expr ...) ...)
(andmap identifier?

(syntax->list #'(method-name ... arg ... ...)))
#'(lambda (f ...)

(define (method-name arg ...) expr ...) ...
(define (dispatch op)
(cond

[(eq? op 'method-name) method-name] ...))
dispatch)]))

(define-syntax (send stx)
(syntax-case stx ()
[(send obj method-name arg ...)
(identifier? #'method-name)
#'((obj 'method-name) arg ...)]))

That is, a class form turns into a function that accepts field values for an instance and returns a

dispatch function for the instance, and a send form turns into a call of that dispatch function passing

the method name as a symbol. These macro implementations contain additional compile-time code

as guards to check that each method name and method argument is an identifier (as opposed to,

say, a number) before generating the expansion, which illustrates another use of compile-time

computation.
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Using the class and send forms, the original DSL program is further expanded into the forms

in box 4. If the procedure language is created through more macro transformations into some

other existing language, then the expansion of the DSL program requires additional steps. The

general case of a module expansion is depicted on the left-hand side of Figure 4.4, where a DSL is

eventually compiled to a core language, and each dotted line represents the macro transformations

in a compilation step.

The right-hand side of Figure 4.4 is the contribution of this chapter. I define a set of events

that are produced by the evaluation of a program in the core language, and I show how to enrich

and complement the macro-expansion steps on the left-hand side with event-mapping rules for the

right-hand side.

4.3 Core Events
The core language in the bottom left of Figure 4.4 can be any simple programming language.

For Racket, the core language is a variant of the λ-calculus with primitives and mutable variables,

so a CESK machine (Felleisen and Friedman 1987) can model the core language. A CESK machine

explicitly manages a lexical environment, continuation, and store, so it serves as a general model of

a GPL that exposes features relevant for debugging—but it has no notion of events.
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Figure 4.4. An overview of layered DSL implementation and domain-specific event support
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Figure 4.5 defines an extension of the CESK machine that includes a slot for an event trace,

and Figure 4.6 shows the associated grammars. Each step in the CESKT machine adds one or more

events to the trace component of the machine. The resulting trace models the sequence of events

that a debugger can receive to report on the progress of the computation. The trace component is

similar to the time component in the time-stamped CESK machine for static analyses (Van Horn and

Might 2011) but with an emphasis on capturing evaluation details to report debugging information.

An event is modeled as some interesting point in the dynamic execution of a program. There

are five kinds of core events: construct-e, function-e, variable-update-e, cont-add-e,

and cont-rmv-e. Evaluation of a program generates event instances of these event classes, and

each kind of event carries event-specific debugging information. The ������ metafunction packages

event-specific information into new events:

�������������〈�����������������〉� ��� 〈�������〉
�����������������������������������������������

〈�����������������������〉�������

�������������〈������������〈���〈����〉〉〉� ��� 〈�������〉
��������������������������������������〈����〉��������

〈�������������������〉�������

�������������〈����������������〉� ��� 〈�������〉
���������������������������������������

〈����������������������〉�������

�������������〈����������〉� ��� 〈�������〉
������������〈���������������������∅〉�������
����������������������������� ��� ����
�����������������������������������

���������������������������������

Each event instance is a data structure containing its event class name, source information, an event

tag indicating the event’s origin in the core language, and an event attribute mapping (�).

Every reduction rule in Figure 4.5 starts with a construct-e event to reflect the occasion of a

single-step reduction of an expression. The function-e event and the variable-update-e

event capture the store changes in the ������� and �������� rules. To monitor the continuation

changes of the CESK machine, two continuation-related events are included: cont-add-e and

cont-rmv-e.

The trace does not contain all of the information that will be needed to construct a domain-

specific view of the computation, however. Although domain-specific details can be encoded in
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〈〈��������〉���������〉� �����������

〈〈����〉�����〈����〈����〉���〉������〉
�����������������������������〈�����������������〉��〈������������〈����〈����〉〉〉��������

〈〈��������������〉���������〉� ����������

〈〈����〉�����〈����〈�〉��〈〈����〉�����〉���〉������〉
����������������������������������

〈�����������������〉��〈������������〈����〈�〉��〈〈����〉�����〉〉〉��������

〈〈����〉�����〈����〈�λ���������〉���〉���〉� ��������

〈〈������� ��〉����� 〈����〉����������〉
��������������∉������∉����������������������〈������������������〉�

〈���������������〈���〈����〉〉〉��〈����������〉��������

〈〈����〉�����〈����〈�����〉���〉���〉� ������������

〈〈�����〉�����〈����〈����〉���〉������〉
��������������∉�����������������〈������������������〉�

〈����������〉��〈������������〈����〈����〉〉〉��������

〈〈�����〉�����〈����〈〈������������〉�������〈������〉���〉��〈�〉���〉���〉� �������

〈〈���∅〉������������〉
������������δ�������������������������������������������〈����������������∅〉��〈����������〉��������

〈〈����〉�����〈����〈����������〉��〈〈�����〉���������〉���〉���〉� �����������

〈〈�����〉�����〈����〈〈����〉������������〉��〈�������〉���〉������〉
��������������∉�����������������〈������������������〉��〈����������〉�

〈������������〈����〈〈����〉������������〉��〈�������〉〉〉��������

〈〈����〉���������〉� ������

〈〈�����〉������������〉
����������������������〈�����〉���������������〈������������������〉��������

〈〈������������〉���������〉� ������������

〈〈����〉�����〈�����〈����〉���〉������〉
���������������������������������〈�����������������〉��〈������������〈�����〈����〉〉〉��������

〈〈����〉�����〈�����〈�����〉���〉���〉� ���������

〈��������� 〈����〉����������〉
��������������∉����������������������〈������〉���������������〈�������������������〉�
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Figure 4.5. The CESKT machine
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Figure 4.6. Grammars for the extended CESK machine

aspects of the CESKT machine (analogous to encoding numbers as Church numerals), a more direct

and useful approach is to add an extra instruction to the machine to support the logging of arbitrary

events:

〈〈������������������������〉���������〉 〈〈������∅〉��������〈�������〉〉
������������〈�����������������〉�������

In fact, this rule makes the logging parts of all other CESKT rules redundant in the sense that a

source program can be instrumented with core-emit forms to generate exactly the events that the

other rules would record in the event trace. The instrumentation metafunction, ����, instruments

the input program, �, to generate core events. The ���� metafunction first adds a �� binding to record

the run-time environment:

������� ��� ����������∅����������������

The ��������� metafunction instruments the program with event-generating ��������� terms:
��������
������������ ��� ������

�������������������������������������������������������
��

����������������������〈����〉
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The definition for the ������� metafunction is:

��������〈�����〉��〈〈������〉�������〈������〉���〉��〈�〉����

����������������������������
�������������������������

��������������������������∅���
�������������������������∅�
���

�����������������������〈���∅〉
�����������〈����������〉��〈〈����〉���������〉����

����������������
������������������������

������������������������������
������������������������∅�
�����������������������

���������������〈����〈�������������〉��〈�������〉〉���
���������������

������������������〈�������������〉��〈�������〉��
����������������〈�����〉

The ������ and �������� represent the translation for the let and begin forms:

�������������������
�����������

��� ��λ��
�������������������������������

������������������� ��� ��λ��������

������������������������� ��� ��λ������������������������������

To prove that the event instrumentation with ���� and ��������� is equivalent to the CESKT model,

I go through each 〈〈����〉���������〉 machine state of the CESKT machine:
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• Case � = �����

According to the ���������� reduction step, the CESKT machine generates

〈�������������������������������������������������������〉 = �����

〈����������������������������������������〈����〈����〉〉��〉 = �����

events.

By following the ������� rule, the instrumented version generates the same events before

evaluating �.

• Case � = �

According to the ����� reduction step, the CESKT machine generates a

〈���������������������������������������������������〉 = �����

event where 〈����〉 = �������.

By following the ������� rule, the instrumented version generates the same construct-e

event.

• Case � = �

1. Case � = 〈����〈�λ���������〉���〉

According to the ������� reduction step, the CESKT machine generates

〈���������������������������������������������������� ����〉 = �����

〈�����������������������������������������������〈����〉��〉 = �����

〈���������������������∅〉 = �����

events.

In this case, � is a function, �λ�����. By following the ������� rule, the environment

variable is extended with a new entry, and the instrumented code will generate the same

events.
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2. Case � = 〈����〈�����〉���〉

According to the ����������� reduction step, the CESKT machine generates

〈����������������������������������������������������〉 = �����

〈���������������������∅〉 = �����

〈������������������������������������〈����〈����〉〉��〉 = �����

events.

By following the ������� rule, the instrumented version generates the same events before

evaluating the � argument.

3. Case � = 〈����〈�����������������〉��〈�〉���〉

According to the ������ reduction step, the CESKT machine generates

〈������������������������������������������������∅��〉 = �����

〈���������������������∅〉 = �����

events.

By following the first clause of �������, the instrumented version generates the same

events.

4. Case � = 〈����〈����������〉��〈〈�����〉���������〉���〉

According to the ���������� reduction step, the CESKT machine generates

〈����������������������������������������������������〉 = �����

〈���������������������∅〉 = �����

〈���������������������
���������������〈����〈〈����〉������������〉��〈�������〉〉��〉 = �����

events.

By following the second clause of �������, the instrumented version generates the same

events.

5. Case � = 〈�����〈����〉���〉
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According to the �������� reduction step, the CESKT machine generates

〈���������������������������������������������������������〉 = �����

〈������������������������������������������������������〈����〉��〉 =

�����

〈���������������������∅〉 = �����

events.

By following the ������� rule, the instrumented version generates the same events.

• Case � = �����������

According to the ��������� reduction step, the CESKT machine generates

〈�������������������������������������������������������������〉 = �����

〈�������������������������������

���������������〈����〈�〉��〈〈����〉�����〉〉��〉 = �����

events.

By following the ������� rule, the instrumented version generates the same events.

• Case � = ���������

According to the ����������� reduction step, the CESKT machine generates

〈�����������������������������������������������������������〉 = �����

〈��������������������������������������������〈�����〈����〉〉��〉 = �����

events.

By following the ������� rule, the instrumented version generates the same events.

The core-emit form, therefore, is my basis of generating events for debugging. Since the

core-emit form can simulate built-in events, and since built-in events can reconstruct the CESKT

machine’s entire state, core-emit provides all of the primitive debugging power needed.
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4.3.1 Completeness of Model

If an implementation of the CESKT machine implements environments and program fragments

with sharing, then each event logged to the trace component is a bounded increment in space con-

sumption. Nevertheless, the machine’s trace component contains enough information to reconstruct

the rest of the machine state after each step. The ability to reconstruct the machine state provides

evidence that the trace component contains all of the information that a debugger will need.

Theorem: For an input program, �, and a reduction sequence, � � �� ↦ �� ↦ ��� ↦ �� � �, in

the CESK machine, the machine state after � reduction steps is 〈〈������〉��������〉 for � ∈���� ��. The

following statement holds for a sequence of parallel reduction steps in the extended CESK machine:

Events generated in the parallel reduction steps can reconstruct the machine states in the CESK

machine. At each reduction step, �� ↦ ��, in the CESK machine, events generated by the parallel

step, �� ↦ ��, can reconstruct the next machine state, 〈〈������〉��������〉 from a transitioning state,

〈〈������〉��������〉.

Proof: Let ��������� represent a sequence of events generated in a parallel reduction step, �� ↦ ��.

The construct-e events can help to reconstruct the expression and its enclosing environment,

and function-e, variable-update-e, cont-add-e, and cond-rmv-e events can monitor the

incremental changes of the store and continuation. In consequence, there exists a reconstruction

metafunction that can map events to state changes.

The ����������� metafunction that reconstructs the machine state is as follows:

������������〈〈������〉��������〉������������ ��� 〈〈������〉��������〉
��������������������������������������������

��������〈�������������������������〉��
���������������������
�������������������
���������������������������������������������������
������������������������������������

The sequence of generated events for each reduction step starts with a construct-e event, �����,

which allows reconstructing �� and �� by using �������������� and ������������ to find the

���������� and �������� attribute values in the �� attribute table. The ����������� metafunc-

tion searches through the rest of the events to find a store-related event or returns ����� on failure:
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��������������� ��� �����

������������〈���������������������〉�������������� ��� 〈���������������������〉
������������������������������ ��� �������������������������

The ������������� metafunction reconstructs the store for the next machine state:

����������������������� ����

�����������������〈�������������������〉� ������ ��
�������������������������������������

The ������������� metafunction goes through the event sequence and reconstructs the continuation:

�������������������� ��� �

�����������������〈������������������������〉�������������� ��� ���������������������������������
������������������������������������������������

�����������������〈����������������������∅〉�������������� ��� ���������������������������������
���������������������������

����������������������������������� ��� ������������������������������

where the �������� metafunction is

���������〈����〈����〉〉���� ��� 〈����〈����〉���〉
���������〈����〈����〉〉���� ��� 〈����〈����〉���〉
���������〈����〈〈����〉��������〉��〈〈����〉�����〉〉���� ��� 〈����〈〈����〉��������〉��〈〈����〉�����〉���〉
���������〈�����〈����〉〉���� ��� 〈�����〈����〉���〉

and the ����� metafunction is

��������� ��� ��

������〈����〈����〉���〉� ��� �

������〈����〈����〉���〉� ��� �

������〈����〈〈����〉��������〉��〈〈����〉�����〉���〉� ��� �

������〈�����〈����〉���〉� ��� �

With considerations of all possible cases of the �� grammar and all possible reduction steps

from ��, the case-by-case proof is:

• Case �� = �����

According to the ���������� reduction step, the extended CESK machine generates

〈��������������������������������������������������������〉 = �����

〈����������������������������������������〈����〈�����〉〉��〉 = �����
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events. Therefore,

������������〈〈���������〉��������〉�������������� ��� 〈〈�����〉������〈����〈�����〉����〉〉

For the CESK machine, the reduction step for the �� case is:

〈〈���������〉��������〉 〈〈�����〉������〈����〈�����〉����〉〉

where the next machine state is the same as the result of �����������.

• Case �� = �

According to the ����� reduction step, the extended CESK machine generates a

〈���������������������������������������������������〉 = �����

event where 〈����〉 = ���������. Therefore,

������������〈〈�����〉���������������〉� ��� 〈〈����〉��������〉

which conforms to the CESK reduction rules.

• Case �� = �

1. Case �� = 〈����〈�λ���������〉���〉

According to the ������� reduction step, the extended CESK machine generates

〈���������������������������������������������������� ����〉 = �����

〈�����������������������������������������������〈�����〉��〉 = �����

〈���������������������∅〉 = �����

events. Therefore,

������������〈〈������〉��������〉�������������������� ��� 〈〈������� ��〉��
���� 〈�����〉����〉

which conforms to the CESK reduction rules.

2. Case �� = 〈����〈�����〉���〉

According to the ����������� reduction step, the extended CESK machine generates
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〈����������������������������������������������������〉 = �����

〈���������������������∅〉 = �����

〈������������������������������������〈����〈�����〉〉��〉 = �����

events. Therefore,

������������〈〈������〉��������〉�������������������� ��� 〈〈�����〉������〈����〈�����〉���〉〉

which conforms to the CESK reduction rules.

3. Case �� = 〈����〈�����������������〉��〈�〉���〉

According to the ������ reduction step, the extended CESK machine generates

〈������������������������������������������������∅��〉 = �����

〈���������������������∅〉 = �����

events. Therefore,

������������〈〈������〉��������〉�������������� ��� 〈〈���∅〉�������〉

which conforms to the CESK reduction rules.

4. Case �� = 〈����〈����������〉��〈〈�����〉���������〉���〉

According to the ���������� reduction step, the extended CESK machine generates

〈����������������������������������������������������〉 = �����

〈���������������������∅〉 = �����

〈���������������������
���������������〈����〈〈�����〉������������〉��〈�������〉〉��〉 = �����

events. Therefore,

������������〈〈������〉������

〈����〈����������〉��〈〈�����〉���������〉���〉〉�
������������������

��� 〈〈�����〉������

〈����〈〈�����〉������������〉��
〈�������〉���〉〉

which conforms to the CESK reduction rules.
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5. Case �� = 〈�����〈����〉���〉

According to the �������� reduction step, the extended CESK machine generates

〈����������������������������������������������������〉 = �����

〈������������������������������������������������������〈�����〉��〉 =

�����

〈���������������������∅〉 = �����

events. Therefore,

������������〈〈������〉��������〉�������������������� ��� 〈〈�����〉������ 〈�����〉����〉

which conforms to the CESK reduction rules.

• Case �� = �����������

According to the ��������� reduction step, the extended CESK machine generates

〈��������������������������������������������������������������〉 = �����

〈�������������������������������

���������������〈����〈�〉��〈〈�����〉�����〉〉��〉 = �����

events. Therefore,

������������〈〈���������������〉��������〉�
������������

��� 〈〈�����〉������

〈����〈�〉��〈〈�����〉�����〉����〉〉

which conforms to the CESK reduction rules.

• Case �� = ���������

According to the ����������� reduction step, the extended CESK machine generates

〈������������������������������������������������������������〉 = �����

〈��������������������������������������������〈�����〈�����〉〉��〉 = �����

events. Therefore,
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������������〈〈�������������〉��������〉�������������� ��� 〈〈�����〉������

〈�����〈�����〉����〉〉

which conforms to the CESK reduction rules.

4.4 Mapping Events
Using core-emit directly to implement DSL events would be as painful as programming DSLs

using a pure λ-calculus directly to implement the DSL’s evaluation. The next step is to build a

language for conveniently mapping events at one level of a language tower to events at the next

level. That is, just as a module can implement a language layer by exporting macros that translate

into the forms of a lower language level, a language-implementing module should export events

that adapt the ones reported during evaluation in the lower language level. Besides translating

lower-level events to a new level, the macros of a language-implementing module can inject fresh

emit calls (which are ultimately translated into core-emit core forms), and the events generated

by those emit forms are part of the language’s event interface.

4.4.1 Declaring Events

In the same way that define-syntax binds an identifier to a macro, the define-event form

binds an identifier to an event description:

(define-event event-pat composition-expr option ...)

composition-expr = event-pat
| (seq composition-expr ...)
| (disj composition-expr ...)
| (conj composition-expr ...)
| (rep composition-expr n)

event-pat = event-id
| (event-id arg-id ...)

option = #:when expr
| #:attributes ([id expr] ...)
| #:specific

The event-id in a event-pat is a previously defined event, especially one from the language

layers that the current module extends. For example, the construct-e event corresponds to the

extension of the continuation to evaluate a subexpression, assuming that it is propagated from the

core language to the current language layer.
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The composition operators in a composition-expr are similar to the event expression op-

erators in EBBA (Bates 1995) and involve the sequence operator, (seq), the disjunction operator,

(disj), the conjunction operator, (conj), and the repetition operator, (rep). For example, an event

defined as the disjunction of two other events causes the new event to be emitted whenever either of

the other two is emitted.

The options of a define-event form further control the generation and content of an event.

A #:when expression is evaluated each time the event might be generated, and the generation is

blocked if the #:when expression’s result is false. An #:attributes option adds symbol-keyed

information to the event. The #:specific option connects an event declaration to the evaluation

of an (emit event-id) form for the defined event.

An expr within #:attributes can access fields of the event matching composition-expr

through an attr form to propagate or transform attributes values. When the event is declared with

#:specific, then the expressions can additionally access variables that are in the environment of

an associated (emit event-id) form.

To support parameterization over additional values for matching, an event can be defined as

(define-event (event-id arg-id ...) composition-expr option ...)

In that case, the arg-ids can be used in option expressions, and all references to event-id must

have the form (emit (event-id arg-expr ...)).

An emit expression, which is typically generated by a macro, has either the form (emit

event) or (emit event syntax-expr), where event either takes the form of event-id or

(event-id arg-expr). When syntax-expr is included, it is used to associate program-source

information with the event, and syntax-expr is typically a #' form that produces a template. An

emit form with an associated define-event form to specify the shape of the emitted event’s

event-id can adjust the way the event is reported.

Only events declared with define-event or declared in a previous language and referenced

with emit and then exported with export-event are part of a module’s event interface:

(export-event event-id ...)

Events generated by lower language levels are not automatically propagated as events from the

new language layer. In the unusual case that a module imports from different language modules,
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the macros and events of all imported languages become visible to the importing module. More

typically, however, a module imports a single language module, and so it sees only the syntactic

forms (implemented by macros) and events of that language.

4.4.2 Examples and Kinds of Event Mappings

When performing event mapping from one language over another language, a variety of situa-

tions arise. Sometimes, events from the lower-level language can be propagated with small changes

to the next layer. In other cases, events in a language correspond to a combination of events from a

lower-level language and only when they happen in a particular evaluation context.

Suppose that a DSL program is expanded to the forms in the right box:

(message query "free tomorrow?")
(message book "5/18")
(message book "5/20")

(handle-query "free tomorrow?")
(handle-book "5/18")
(handle-book "5/20")

query "free tomorrow?"
book "5/18"
book "5/20"

Each statement in the DSL program is parsed as a message S-expression, such as book "5/20"

parsed as

(message book "5/20")

and the following macro specifies the message syntax expansion in terms of the lower-level lan-

guage’s handle-query and handle-book constructs:

(define-syntax (message stx)
(syntax-case stx (query book)
[(_ query m)
#'(handle-query m)]

[(_ book date)
#'(handle-book date)]))

A message statement in the DSL translates to a function call in a procedural language. Suppose

further that the procedural language generates a subroutine-e event when a defined function is

called. To constrain an event consumption, subroutine-e is parameterized by the name of the

called function.
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If the execution of a message statement needs to be associated with a message-e event, the

message-e can be defined in terms of events associated with handle-query and handle-book

because of the fact that each statement is equal to the call of a handle-query or handle-book

function:

(define-event message-e
(disj (subroutine-e #:name 'handle-query)

(subroutine-e #:name 'handle-book)))

The message-e falls into the category of a generic event, since the event can just be defined through

define-event to specify the composition relationship of events.

As another example, suppose an L2 language that just extends a lower-level L1 language with

conditional clauses, such as when, cond, and a new assignment syntax set-x. The L2 program is

on the left, and the L1 program is on the right:

(define x 2)
(if (= x 0)
    (set! x 5)
    (void))
(if (< x 0)
    'negative
    (if (= x 0)
        'zero
        (void)))
(set! x 10)

(define x 2)
(when (= x 0)
  (set! x 5))
(cond
  [(< x 0) 'negative]
  [(= x 0) 'zero])
(set-x 10)

The related macros are:

(define-syntax (when stx)
(syntax-case stx ()
[(_ test then ...)
#'(if ....)])) ; details omitted

(define-syntax (cond stx)
(syntax-case stx ()
[(_ (test then ...) rest ...)
#'(if ....)])) ; details omitted

(define-syntax (set-x stx)
(syntax-case stx ()
[(_ v)
#'(set! x v)]))

with when and cond expanded into if forms and set-x expanded into set!.

Because L2 is an embedded language, without instrumentation of event mapping for L2, the
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surface syntax in L2 that belongs to L1 should automatically have event support defined by L1. For

example, suppose that set! is associated with a variable-update-e event in L1 where the event

is exported to L2. The execution of the (set! x 5) statement in L2 will automatically generate a

variable-update-e event, which is called a host event.

Even though (set-x 10) expands to (set! x 10), the variable-update-e event asso-

ciated with set! in L1 will not be lifted to L2’s event stream automatically. The event must be

specifically propagated with an emit declaration. Avoiding automatic propagation helps hide inter-

nal implementation details. For example, a macro for a form that involves no explicit assignment

might be transformed into a sequence that involves assignment,

....
(set! ....)
....
(set! ....)
....

but where the effects are local and not exposed. In the case of set-x, however, the effect is

exposed and explicit; the set-x acts as a syntactic sugar over set! and shares the same semantics.

Instrumenting the set-x macro with an explicit emit specification makes it part of the language’s

interface in the case of a set-x expansion.

(define-syntax (set-x stx)
(syntax-case stx ()
[(_ v)
(with-syntax ([cur-stx stx])

#'(begin
(emit variable-update-e #'cur-stx)
(set! x v)))]))

This kind of variable-update-e event is called an embedded event.

Finally, suppose that L2’s cond construct is associated with a cond-e event, which can be

expressed as:

(define-event cond-e if-e)

This declaration registers a listener for the low-level if-e event and triggers cond-e generation

upon if-e event generation. However, the code expansion contains several if forms from the cond

form and an if form from the when macro, which would cause multiple cond-e event generation

even if the DSL program just contains one cond form. In consequence, a different kind of event—
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an explicit event—to specify run-time context is needed. The explicit event is declared with a

#:specific option:

(define-event cond-e if-e #:specific)

and an (emit cond-e) form needs to be added to the macro transformation to register a listener

for events associated with the evaluation of the expanded macro:

(define-syntax (cond stx)
(syntax-case stx ()
[(_ (test then ...) rest ...)
(with-syntax ([cur-stx stx])

#'(begin
(emit cond-e #'cur-stx)
(if ....)))])) ; details omitted

In general, because debugging events serve as back-end support for a debugger to expose run-

time states and control program execution, event creation for a DSL is driven by debugger needs.

For a DSL or any language, define-event can create an event based on existing, same-level

events, and emit can map immediate, lower-level events. The cross-level event mapping falls into

one of the above four categories of events: a generic event, a host event, an embedded event, and an

explicit event.

4.4.3 Environment Information in Events

The define-event form supports capturing debugging information in event attributes either by

extracting information from constituent events or by obtaining information at emit sites by directly

using identifiers when the #:specific option is used if the former approach fails to capture needed

information.

The state-e and receive-msg-e events illustrate the uses.

The state-e event declares a state attribute and obtains the debugging information from

construct-e’s bindings attribute value:

(define-event state-e construct-e
#:attributes ([state (attr construct-e 'bindings)]))

By declaring an option of #:specific in the define-event definition, the receive-msg-e

event can access identifiers that are available in the environment of the associated emit form such

as m, message-tags, message-values, and message-time.
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(define-event receive-msg-e construct-e
#:attributes ([message m]

[type (last (message-tags m))]
[values (message-values m)]
[msg-time (message-time m)])

#:specific)

(define-syntax (module-begin stx)
(syntax-case stx ()
[(_ decl ...)
(with-syntax ([cur-stx stx])

#'(base-module-begin
....
(define handle-msg

(lambda (m)
(emit receive-msg-e #'cur-stx)
(eval-msg m)))

....
decl ...))]))

In the CESKT model, construct-e captures all bindings in the environment at the point that

the continuation is extended. Propagating all such bindings in an expanded program would reveal

too many implementation details of expansion. For example, in Figure 4.3, the expansion of the

point program into the procedure language introduces a new point identifier representing a

function, which is irrelevant to the DSL program; a user of the DSL should see only that the program

creates a p binding.

Consequently, the bindings created inside a macro expansion are not automatically collected

by construct-e. To help programmers declare which bindings should be exposed for a given

language layer, my system includes a new-bindings form that cooperates with construct-e.

For the point example, I can add new-bindings to the previous define-point macro:

(define-syntax (define-point stx)
(syntax-case stx (x y)
[(_ name (x x-expr) (y y-expr) (op arg ...) ...)
(with-syntax ([point-id (syntax-local-introduce #'point)])

#'(begin
(new-bindings name #'name)
(define name (point-id x-expr y-expr))
(send name op arg ...) ...))]))

This new-bindings declaration causes the construct-e event emitted by the lower-level lan-

guage to include the instantiation of name in its environment attribute.
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4.4.4 Continuation Information in Events

Similar to environment information in emitted events, language implementations that expose

continuation events need to control the emission of events to reflect the language’s own continuation

points, as opposed to the continuation points of the underlying language. The continuation events

of the lower-level language will typically be too fine-grained and expose too much information. For

example, using a simple incr form defined by

(define-syntax (incr stx)
(syntax-case stx ()
[(_ v amt)
#'(set v (+ v amt))]))

an expression (incr v 20) expands into (set v (+ v 20)), which has three subexpressions

that generate continuation frames, as opposed to the original expression’s single subexpression.

To aid the construction of suitable continuation events, I provide new-continuation and

remove-continuation forms, which expand to emit cont-add-e and cont-rmv-e events. The

following is an example of specifying continuation events for the incr construct:

(define-syntax (incr stx)
(syntax-case stx ()
[(incr v amt)
(with-syntax ([cur-stx stx])
#'(begin0 (set v (begin (new-continuation "incr" #'cur-stx)

(+ v amt)))
(remove-continuation #'cur-stx)))]))

The begin and begin0 forms both create sequences, but the begin0 form returns the result of

its first expression instead of its last expression. The (new-continuation "incr" #'incr)

form emits a cont-add-e before the evaluation of (+ v amt), and (remove-continuation

#'cur-stx) emits a cont-rmv-e event afterward.

4.5 Run-Time Event Generation
The CESKT model with core-emit (Section 4.3) shows how the expanded version of a DSL

program can generate core-level events, although it leaves abstract how the resulting event stream

is consumed. The define-event form and associated constructs (Section 4.4), meanwhile, help

language implementers specify filters and transformations of events to create a language-specific

event interface. Run-time event generation and filtering ties these two pieces together. It consumes
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the low-level events generated by the core language, and based on the specification of events at each

language layer between the core and a DSL, it emits events that are suitable for consumption by a

DSL-specific debugger.

Figure 4.7 illustrates the overall pipeline. A DSL implementation implies both a compiler from

the DSL forms to core forms, an instrumentation of the resulting core forms to emit events, and a

dependency graph of output events on core events. The events emitted at run time are triggered and

transformed, based on the dependency graph, and a DSL debugger presents them to the user.

4.5.1 Event Dependency Construction

Figure 4.8 shows the representation of event-related structures as used by dependency con-

struction. The dependency graph is represented by � with every � event node associated with its

node-related information, ����. Each � event node tags an event with ����� information, which dis-

tinguishes events generated at different language layers. Each export-event declaration modifies

the ����� tag to reflect each language layer.

The construction process starts with the bottom language and establishes event dependencies in

a bottom-up fashion. For a primitive event definition or simple high-level event definition involving

just one composition operator, a dependency is created for the event and each of its constituent

events. For example, for

(define-event pe e1)
(define-event ce (disj e1 e2))

the event dependencies are as follows:

pe → e1
ce → e1
ce → e2

For event definitions involving nested event patterns in the composition expression, the dependency-

construction process decomposes the event patterns by creating internal nodes for nested patterns in

the dependency graph to simplify event recognition. For example, for

(define-event se (rep (disj e1
(conj e2 e3)
e4)

2))

two internal nodes, ie1 and ie2, are constructed with their dependencies:
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Figure 4.7. An event framework for domain-specific event creation and generation
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Figure 4.8. Event-related structure representation
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ie1 → (conj e2 e3)
ie2 → (disj e1 ie1 e4)
se → (rep ie2 2)

The event abstraction definition does not have any effect on the event dependency construction

process, unless the definition is invoked in event patterns. For every e exported by export-event,

if there exists no event dependency for e at this language layer, which means that the e event is

inherited from the lower-level language, a new dependency connecting e to the lower-level e is

created.

The semantics of define-event can be formulated as a ������������ metafunction, which adds

an event dependency into the � graph:

������������������������������������������������������������� ������ �����
���������������������������������������������������������

������������������������������

〈�����〈�������������������������〉������〉�������

where ����, ��������, ��������, and ���� are obtained from the event definition. The ������� meta-

function takes the composition-expr component of an event definition, ����, and the current

layer, �����, and tags every event type in ���� with the correct layer information by determining the

language layer to which the event type belongs. The �������� and �������� represent the expressions

specified in an event definition’s #:when and #:attributes options, and the ���� denotes if an

event is an explicit event. The ����� encodes the type of a node, whether it is an internal node

created by the system or another kind of node.

4.5.2 DSL Event Generation

The preparation step for DSL event generation involves trimming event dependencies and build-

ing reverse references. To reduce the size of events, I keep only event dependencies needed by the

top language level. As events originate from the core level, I need a push notification mechanism to

trigger events at a higher language level. Every dependency, e1 → e2, creates a reverse reference,

e2 → e1, and at run time, the event processing unit listens to core events and generates a DSL

event according to the reverse mapping of event dependencies and the event definition’s constraints.

Formally speaking, after the completion of� construction, the reverse references to event nodes,

�, is constructed, and the �, �, and � tables store different aspects of node information. The � table
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stores a mapping of a high-level tagged event to its recognition constraint and a recognition progress

table, �.

The emission of core events initiates the DSL event generation process where the event pro-

cessing unit looks up the parent nodes of an event in �, a list of event nodes to be triggered, and

tries to trigger the parent node, ��, one-by-one through �������. Because the emit form affects the

generation of an explicit event and an embedded event, a � table is used to record the evaluation of

(emit ename stx) forms along with relevant event information:

�������������������������� ��� ��� 〈���������������〉�
����������������������������������������������������������

������������������������

� is a set of attribute mappings associated with the ����� event. The ������� metafunction first

checks if a �� is an explicit event by looking up the � table and then attempts to generate an explicit

event instance after the evaluation of emit. To illustrate, the case of ������� for a high-level, explicit

�� event is:

����������������������������������� ��� 〈������������������������〉
��������������������������������
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������������������������������������������������

��������〈�������������������������〉��
���������������������������������������������������
����������������������������������������������������������
������������������������������������������������������

The ��������������������� metafunction checks if the current recognition state meets its compo-

sition requirement on constituent events, and the ��������������������� metafunction checks if the

�������� constraint is satisfied by obtaining its current matched constituent event values through

���������������. Since emit can either obtain attribute values from the emit evaluation context or

from its event definition’s constituent events, �������������� returns the appropriate attribute values.

The �������������� metafunction also uses the ��������������� metafunction to enrich the event with a

time attribute and updates the loc attribute value if necessary.

The other cases of ������� generate a higher-level event dispatching on the �� kind. If �� is an

embedded event, the generation rule is:
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Depending on the value of ������, ���������� chooses a source value between ������ and ���.

If �� is a primitive, generic event and the run-time condition of the event is satisfied, a new event

instance is generated by packing appropriate attribute values from the event it depends on:
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Otherwise, if �� is a high-level, generic event, the event generation rule is similar to the high-

level, explicit event case but with a different mechanism for generating ��:
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In the process of upward event generation, the ������� metafunction updates events with appro-

priate ��� information so that events belonging to different language layers can be differentiated. In

the end, the event processing unit just keeps the event instances at the DSL level and directs these

events to event handlers set up for a debugger implementation.



CHAPTER 5

DEBUGGING FRAMEWORK

The approach of mapping DSLs to domain-specific events brings many benefits to DSLs, and

domain-specific events can enable a debugging framework that supports building effective, domain-

specific debuggers with a low cost. A DSL-construction tool usually supports creating a variety of

DSLs that differ in program states and evaluation models, but a considerable amount of debugger

effort can be reused to facilitate the collection and presentation of debugging information. I propose

a debugging framework that contains a back end providing support for data collection of debuggers

and a front end incorporating a collection of reusable, DSL-friendly debugging views and other

primitives of interface implementation. Since the event work in Chapter 4 enables encapsulating

debugging information in events, the back-end design is based on the previous event mechanism in

Chapter 4, and this chapter presents the design for the front end and an evaluation of a debugging

framework I implemented on the Racket platform, Ripple.

5.1 Front End
Presenting debugging information in the front end in a user-friendly way is a difficult task

requiring work in interface design and implementation. My front-end design aims to incorporate

a suite of tools to reduce the cost of interface development and employs a composable approach

to enable flexible debugger extensions. The front end involves support for three debugging modes

where a different category of interface tools is built for each debugging mode.

5.1.1 Elementary Mode

Because graphical operations offer an intuitive, user-friendly control to interact with debuggers,

the elementary mode focuses on graphical control where debugger developers need to implement a

set of graphical views for a debugger.

For the interface layout, I use a concept of a view to represent a graphical widget with a desig-

nated functionality. A view denotes a user interface composition unit, which enables customization
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of a debugger interface to cater to domain needs. For example, the interface can have a source

view that is responsible for displaying the source program and providing program-related graphical

operations such as setting breakpoints and highlighting code segments.

The framework provides an �������������� to assist the interface construction:
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For example, the following ui form specifies a layout in the elementary mode:

(ui
'elementary
(h-layout (v-layout step-view source-view 1/6 5/6)

variable-view
3/5 2/5))

The first argument to ui instantiates a debugging mode. The h-layout and v-layout operators

create horizontal layouts and vertical layouts, respectively, for constituent windows having specified

geometric space percentages.

After specification of the interface layout, a view implementation is needed to enable graphical

operations. Because many view implementations can be reused across different debuggers, my

framework provide a library of reusable views:

• A source view supports displaying a program in a text editor, highlighting code, and setting

breakpoints.

• A variable view supports displaying variable bindings.

• A step view supports event-based execution control.

• A continuation view supports visualizing control flow information.

• An event property view supports displaying event attribute information.

• An event view supports visualizing events in timelines.

One of the difficulties of writing a debugger involves information visualization. Debugger

developers may know what domain concepts to present to users, but how to present the information
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remains a challenge. By keeping the system views as a reservoir of standard solutions to com-

mon problems, developers can simply adopt the views as solutions or use the views as sources of

inspiration for new solutions. In the above ui declaration, the step-view, source-view, and

variable-view names refer to the built-in step view, source view, and variable view.

Figure 5.1 shows the process of constructing a debugger in the elementary mode, which in-

volves:

• starting from the front end to decide the features and layout of a DSL debugger,

• instrumenting the DSL implementation with events in the back end, and

• writing event handlers to connect events with the front-end interface and implementing de-

bugger interface features.

To assist the specification of event handlers and implementation of interface views that are

beyond the built-in views, the framework provides the following primitives:
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The ������������ registers an event handler, and ��������� obtains the panel in the interface that

holds the view named ����. The ������� primitive obtains the newest event instance, and

������ obtains a history of event instances. The ���� primitive helps to access an event’s attribute

value, and ������ provides an execution-control facility, which works with an �� from to support

pausing execution whenever an event happens. Figure 4.8 contains the ����� definition.
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Figure 5.1. Debugger construction process
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To illustrate, suppose that a custom-e event needs to be connected with the front-end view,

which is named as custom-view in a ui layout specification. Whenever custom-e happens, the

custom view needs to update its content. The corresponding configuration can be written as:

(define custom-view-widget%
(class object%
data ....
operations ....))

(define custom-wgt
(new custom-view-widget% [panel (view 'custom-view)]))

(on custom-e
(let ([e (current custom-e)])
(send custom-wgt update-content (attr e 'content))
(step)))

First, a new widget class with custom data and operations is implemented, and a widget object,

custom-wgt, is created where (view 'custom-view) accesses the graphical panel reserved for

the view. The on form sets up an event handler for the custom-e event, which is defined in the

back end. The event handler specifies that whenever a new instance of custom-e happens, the

update-content operation of the custom view is called with the information obtained from the

event’s content attribute. The execution of (step) pauses the program’s execution, and the

program resumes execution when a Go or Step button is clicked in the step view.

5.1.2 Motivation for Other Possible Modes

Features in the elementary mode are useful for debugging programs graphically, but fixed oper-

ations cannot anticipate all needs because the efficiency of debugging depends on source program

complexities. For example, a DSL program can deal with messages spanning a significant period

of time, and a view displaying the message history in the elementary mode would become flooded,

making graphical extraction difficult.

Moreover, DSLs are no longer limited to end users who have limited programming skills, which

creates a need for flexible debugger extensions. For example, LaTeX and SQL are widely used by

traditional programmers to typeset documents and perform database queries, respectively. Because

of their expressive power in solving problems in particular domains, DSLs are also popular among

traditional GPL programmers. Therefore, by taking into account the possible diversity of users’

programming backgrounds ranging from programming proficiency to limited programming knowl-
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edge, I present two more debugging modes: an intermediate mode and an advanced mode. The

interface in the elementary mode focuses on purely graphical control, but advancing the interface

mode increases programmatic control support.

5.1.3 Intermediate Mode

The intermediate mode, which offers debugger extensions where users don’t “have to know

everything to do anything” but can learn debugging incrementally, acts as a bridge between the

elementary mode and the advanced mode.

The intermediate features consist of graphical assistance and simple programmatic control. For

the graphical assistance, I include features that are relatively easy for end users to learn and use

such as event inspection, visualization, and assertions (inspired by the positive effect of assertions

on end users for the spreadsheet paradigm (Burnett et al. 2003)). End users being able to construct

some useful visualization for a problem such as visualizing numeric values in a line is desirable, but

this mode just focuses on visualizations for events. The intermediate mode focuses on automatic

support, and the burden of constructing domain-specific visualizations is shifted to the elementary

mode since debugger developers can construct appropriate visualizations. Since end users also

have the ability to learn and use a programming language containing high-level primitives (Nardi

1993), for programmatic control, I restrict accessible programming primitives to be a small set of

event-oriented primitives, which allows users to experiment with simple scripting over debugging

events and eventually transition to the advanced mode.

The primitives available in the intermediate mode are:
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The ������������ primitive allows defining a new event. The �� primitive allows writing an

event handler specifying actions to do when an event with an ����� is triggered. The �������

primitive obtains the latest event instance, and ������ obtains the history of an event. The
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���� primitive obtains an ����� event’s attribute value. The ��� primitive prints an event, and

�������� visualizes an event in a timeline. The ������������� primitive checks that an event

exists, and ������ checks a condition represented by ���� to be true.

5.1.4 Advanced Mode

The advanced mode gives debugger users complete, programmatic control over writing a de-

bugger with desired debugging operations. The GPL community considers a dedicated debugging

language allowing scripting of problem-specific debugging commands to be the most powerful

approach to effective debugging (Johnson 1977; Marceau et al. 2006; Olsson et al. 1990; Win-

terbottom 1994). Inspired by the advantages of a dedicated debugging language for GPLs, the

advanced mode should provide a debugging language.

For the debugging language, I choose an extension of a GPL with the primitives available

in the intermediate mode for the following reasons. First, since the execution details of a DSL

are captured by domain-specific events defined in the back end, the domain-specific events are

accessible in the language, and users can manipulate events by using event primitives. Second,

a GPL affords computational power to achieve any computable debugging task and requires little

transition overhead for a traditional programmer to use the advanced mode.

The debugging language opens the door to unlimited operations, and learning a debugging

language is more useful and rewarding on DSL platforms than on GPL platforms. A GPL platform

debugger typically works for one GPL, and a new syntax for a debugging language is usually

introduced for each GPL platform debugger. However, for the DSL platform debugger, a single

debugging language can be used universally for different DSLs because many DSLs are created on

the same platform.

5.1.5 Front-End Construction

By considering the background and needs of potential users, a DSL debugger can have more

than one debugging mode. The ���������������������������� form creates an elementary

mode requiring the most interface design and implementation effort to create an effective debug-

ger. However, a debugging framework can provide automatic support for the intermediate mode

and the advanced mode. In Ripple, with just declarations of (ui 'intermediate) and (ui

'advanced), the intermediate and advanced features are made available to users.
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APPLICATIONS

To validate the design of the proposed debugging framework, I implemented a debugging frame-

work, Ripple, on Racket. I worked with three DSLs, and I will demonstrate the domain-specific

debuggers built with Ripple in this chapter.

6.1 Scratchy Debugger
Scratchy1 is an imperative language to write Scratch-like applications. Figure 6.1 shows the in-

terface of the Scratchy debugger, which consists of two tabs: an elementary tab and an intermediate

tab. Each tab represents a debugging mode with designated programming complexity.

In the elementary tab, clicking the Debug button in the top-right corner activates the debugger

configuration for the elementary mode. This sets up event listeners, enables graphical operations

for built-in views, and generates custom views built by developers. Figure 6.2 shows a debugging

scenario in the elementary mode. The interface contains a step view in the top-left pane, a source

view in the bottom-left pane, and a variable view on the right. The source view contains the Scratchy

source code, and the step view controls the execution of the program. For example, the Step button

in the step view supports executing the program to the next break event. The Go button supports

executing the program to the end, and the Pause button supports pausing the program execution. A

break event can be created by reaching a breakpoint during program execution or by executing a

statement during stepping. When the mouse is hovering over different positions in the source code,

breakable points (usually the beginning of a statement) are marked by circles, and a breakpoint can

be created by right-clicking a breakable point. At each step, the variable view displays the current

program state in terms of variable bindings.

In Figure 6.2, the execution stops at the turn by random 5 statement, and the variable view

displays the current variable bindings in the program such as rightWall and swimmer. Each

1https://docs.racket-lang.org/scratchy
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Figure 6.1. Scratchy debugger

Figure 6.2. Scratchy debugger interface in an elementary mode
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variable binding consists of a variable name and a variable value. If a variable is a sprite object

such as the swimmer, the sprite’s properties including land, image, x, y, size, and direction

are shown, and visual annotations are added to better understand values. For example, instead of

displaying the direction property of swimmer to be a numerical 270 value, the value is rendered

as an arrow pointing in the direction that the sprite is turning to. The arrow annotation of “x

increases” and “y increases” with the x and y properties also illustrates that the x value and y

value increases when the sprite moves towards the right or top, respectively.

By clicking the intermediate tab, the debugger switches to the intermediate mode. Unlike the

elementary mode that provides fixed operations, the intermediate mode provides selective control

for problems that require different combinations of debugging operations or information process-

ing. There are two kinds of assistance for debugging: event-based, graphical control and simple,

programmatic control.

Figure 6.3 demonstrates a use of the graphical control. Yellow circles in the source program

mark the existence of debugging events for possible exploration. Depending on debugging needs,

a user right-clicks a yellow circle, and the program displays a list of available events in a pop-up

menu. By choosing the event that is relevant to the debugging task, a second-level menu shows a

list of event-related operations:

• Inspect this event: Prints the value of this event in the output view, which can be opened by

clicking the Output button.

• Step this event: Pauses the execution whenever this event is fired and pops up a window that

shows the event information and provides a Continue button to resume execution.

• Visualize this event: Visualizes this event in a timeline, which can be viewed by clicking the

Show Timeline button in the output view.

• Assert event existence: Reports an error if a specified event is never triggered before the

end of execution. When the program finishes execution, clicking the Check Event Existence

button will check the existence of all specified events.

• Assert event attributes: Pops up a graphical window (Figure 6.4) allowing specifying data

constraints of event attributes and reports an error if the constraints are not satisfied.
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Figure 6.3. Scratchy debugger interface in an intermediate mode

Figure 6.4. Event assertion
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Clicking the Script button in the intermediate interface brings a script view next to the source

view. Users who have programming background can use the script view to write scripts to process

and analyze debugging data. The construct-e and touch-e events are fundamental events pro-

vided by the event instrumentation for event processing in the intermediate mode. A construct-e

event is fired whenever a statement is entered, and a touch-e event is fired whenever a touches

statement is executed. Each kind of event carries event-specific debugging information in at-

tribute values. The construct-e event carries a bindings attribute, and the touch-e event

has self-sprite, self-x, self-y, other-spite, other-x, and other-y attributes with

debugging information about two sprites that collide with each other.

6.1.1 Finding Scratchy Bugs in the Elementary Mode

The “scratchy_example2.rkt” program shown in Figure 6.5 contains a bug. The execution

opened a graphical window that showed a swimming fish and a blue rectangular pool. The fish was

expected to swim within the pool, but somehow the fish escaped the pool.

Since the fish was able to leave the pool through the pool’s right wall, breakpoints can be set at

areas of code that are related to the rightWall to check the state of the fish. Therefore, a breakpoint

is set by right-clicking the beginning of move x by 4 inside the if touches rightWall block.

The program executed to the breakpoint with a click of the Step button, and the variable view was

updated. As shown by Figure 6.6, the x property of the fish is about 116.63. With another click of

the Step button, the x property is increased to 122.97 (Figure 6.7).

The “x increases” annotation beside the x value indicates that when the fish moves in a right

direction horizontally, the x value will increase. In this debugging scenario, the fish’s x value kept

increasing after touching the pool’s right wall, which deviated from the desired behavior. If the

fish touches the right wall, the fish should change its horizontal movement to the left, which means

that the x value should decrease. Therefore, the code inside the if touches rightWall block

should be move x by -4. Because the if touches leftWall block is an opposite case of if

touches rightWall, the code for the leftWall case should be changed to be move x by 4,

too.

6.1.2 Finding Scratchy Bugs in the Intermediate Mode

The execution of the “scratchy_example3.rkt” shown in Figure 6.8 produced an error

again with the fish getting out of the pool.
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Figure 6.5. A buggy Scratchy program
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Figure 6.6. Scratchy debugger interface after first step

Figure 6.7. Scratchy debugger interface after second step
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Figure 6.8. Scratchy example
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To find the cause of this erroneous behavior, a programmer used the elementary mode to debug

the program first but ran four trials to find the problem. Because the behavior of the fish is specified

in the forever loop, which executes a block of code endlessly, detecting erroneous information by

stepping through the code without a breakpoint in the first trial was time-consuming. In the second

trail, the programmer set a breakpoint at the move y by 2 statement inside the if touches

bottomWall block because the erroneous behavior involved the fish touching the bottom wall.

However, the debugger was never able to reach the statement, and in the third trial, a new breakpoint

was set at the move y by -2 statement inside the if touches topWall block. The execution

reached the breakpoint set at the move y by -2 statement, but because the fish never touched the

top wall in the generated window, the reason for the execution of this breakpoint was not clear.

In the last trial, the debugger was run again with the two previous breakpoints and the execution

still reached the breakpoint inside the if touches topWall block instead of the if touches

bottomWall block. The programmer went through the variables in the variable view to check the

program states and finally found the problem: incorrect initializations for the top wall and the bottom

wall. The variable view showed that the topWall’s y value is -100 and that the bottomWall’s y

value is 100, but their values should be switched.

Because the elementary mode uses a stepping-based approach, it suffers from the shortcom-

ings of a stepping-based approach, which involve difficulty of setting appropriate breakpoints and

difficulty of extracting relevant information from a fixed interface. Since the intermediate mode

offers selective control, the intermediate mode was used to debug the same program. Choosing

“Step this event” for the touch-e event at four touches places turned four circles red where a

circle represents an event (Figure 6.9). Clicking the Debug button brought up an Event Info window

showing the debugging information about the touch-e event. The Continue button in the pop-up

window enabled execution to the touches bottomWall expression. Figure 6.10 shows the event

information about the current touch-e event where self-sprite and other-sprite show the

sprite values of two colliding sprite objects, and their x and y values are represented by self-x and

self-y, and other-x and other-y, respectively. In the figure, self-sprite represents the fish,

and other-sprite represents the bottom wall. Variables of other-x and other-y show that x

and y values of the bottom wall are 0 and 100. By clicking the Continue button again, the execution

paused at touches topWall as shown in Figure 6.11. Figure 6.11 shows that the x and y values

of the top wall are 0 and -100, where the y value seemed to be incorrect. If the bottom wall’s y value



80

Figure 6.9. Enabling stepping in the intermediate mode

Figure 6.10. Stepping to the bottom wall statement
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Figure 6.11. Stepping to the top wall statement

is 100, the top wall’s y value should be larger. Therefore, through the event information presented

in the pop-up window, the programmer was able to detect the unexpected behavior and find the

problem faster with just four steps. The intermediate mode enabled to choose an event that would

be relevant for a debugging task and presented a more useful, less noisy debugging interface.

6.2 POP-PL Debugger
POP-PL (Florence et al. 2015) is a message-based, declarative DSL to help a doctor describe and

automate medical treatment. The POP-PL debugger contains two debugging modes, an elementary

mode and an advanced mode. In the elementary mode (Figure 6.12), there are a source view (left),

a message view (top-right), and a handler view (bottom-right). Messages sent and received during

the execution of the POP-PL program are appended to the message view. The message view uses

a hierarchical, collapsible tree structure to visualize messages, where a parent-children relationship

denotes message-send causality. The parent node represents a message received, and the child node

represents an outgoing message resulting from the incoming message. In the figure’s message view,

the [checkaptt] message was clicked (marked in blue), and the handler view was immediately

updated to display the name of the handler that was responsible for the clicked message and to

display the message histories associated with a handler. The handler view displays the handler name
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Figure 6.12. POP-PL debugger interface in an elementary mode
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in the title bar of the handler view (in this example, apttchecking) and also uses a hierarchical

tree structure to visualize the message-send causality. Clicking the [checkaptt] message in the

handler view navigates to the origin of messages in the source view. In the source view, the line

every 6 hours checkaPTT whenever aPTTResult outside of 59 to 101, x2

was highlighted in yellow, which indicated that the checkaptt message was caused by this instruc-

tion.

The advanced mode (Figure 6.13) provides a debugging language to assist a fully programmatic

control and a timeline view to visualize the events in a temporal fashion (obtained by clicking the

Timeline button in the top-right corner). Because the advanced mode targets a user who is proficient

in programming (either a traditional programmer who is used to programming in GPLs or a domain

expert who is comfortable with programming), the debugging language is an extension of a GPL

with primitives available in the intermediate mode. In the script view, the debugging language can

manipulate events provided by the debugger implementation.

Figure 6.13. POP-PL debugger interface in an advanced mode
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For the POP-PL debugger, receive-msg-e and send-msg-e are events available in the ad-

vanced mode. The receive-msg-e event represents an incidence of an incoming message, and

the send-msg-e event represents an incidence of an outgoing message.

6.2.1 Finding POP-PL Bugs in the Elementary Mode

The execution of the “heparin.pop” program shown in Chapter 4 produced a failure message:

Because the “heparin.pop” program contains the following unit tests at the end of the program:

--- Tests ---
[giveBolus 80 units/kg of: HEParin by: iv]
[start 18 units/kg/hour of: HEParin by: iv]
[checkaPTT]

> aPTTResult 240
[hold HEParin]

> wait 1.5 hours
[restart HEParin]
[decrease HEParin by: 3 units/kg/hour]

The unit tests specify that a message of [decrease HEParin by: 3 units/kg/hour] in re-

sponse to the wait 1.5 hours message is expected, but the failure message showed “actual:

'([restart HEParin] [decrease HEParin by: 4 units/kg/hour])”, which means that

the actual message was [decrease HEParin by: 4 units/kg/hour].

To debug the program, the programmer used the elementary mode to find and click [decrease

HEParin by: 4 units/kg/hour] to understand why this message was sent. The handler view

was updated showing that the message was sent by a g23 handler, which means that the handler was

an anonymous handler because the name was nonexistent in the program. As shown by Figure 6.14,

the highlighted message in the handler view was clicked to find the message origin, and decrease
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Figure 6.14. Debugging scenario in the elementary mode
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HEParin by: 4 units/kg/hour inside a whenever block was highlighted. By looking at the

code, the programmer realized that he made a typo. The highlighted code should be [decrease

HEParin by: 3 units/kg/hour] instead.

6.2.2 Finding POP-PL Bugs in the Advanced Mode

The execution of the “popa.pop” program produced a failure message:

The failure message indicated that the unit tests at the end of the program were not satisfied due to

the actual list of [notifydoctor] messages. The “popa.pop” program is:

used by OSFSaintFrancis

initially
start 25 micrograms/hour of: fentanyl
set onDemandFentanyl to: 25 micrograms

pain:
notifyDoctor whenever painscore > 5, x2, 1 hour apart,

since last notifyDoctor

minorPain:
whenever painscore < 5, x2, 30 minutes apart
notifyDoctor

--- Tests ---

[start 25 micrograms/hour of: fentanyl]
[set onDemandFentanyl 25 micrograms]
> painscore 9
> wait 61 minutes
> painscore 4
> wait 31 minutes
> painscore 6
> wait 61 minutes



87

> painscore 7
> painscore 2
> wait 31 minutes
> painscore 3
[notifyDoctor]
> wait 61 minutes

In the unit tests, the messages inside the brackets denote messages that should be sent from the

medical system, and the messages after the > prompt denote messages being sent to the system.

The elementary mode was used to debug the program first, but the message view was filled with

a lot of messages because of many internal [time 60] messages sent every 60 seconds by the

system.

To make sure that the program was behaving correctly, the programmer started with a verifi-

cation that the notifyDoctor message is only sent when the painscore message is sent twice

and messages have values both above a threshold of 8. Because extracting meaningful messages

and analyzing the relationship between messages were difficult, the programmer used the advanced

mode to write a script to describe messages of interest:

(define-event pain-e receive-msg-e
#:when (equal? (attr receive-msg-e 'type)

'painscore)
#:when (> (car (attr receive-msg-e 'values)) 8))

(define-event notify-e send-msg-e
#:when (equal? (attr send-msg-e 'type)

'notifydoctor))

(timeline pain-e)
(timeline notify-e)

In the above example, the pain-e event is defined in terms of the provided receive-msg-e

event specifying that the type of the receive-msg-e event should be 'painscore and that

the value of the event should be over 8. The notify-e event describes the occurrence of the

notifyDoctor message, which is defined in terms of the provided send-msg-e event. The two

timeline statements assists visualizing the pattern of events in terms of timelines in the event

view. By clicking the Run button, the debugging script was run, and the event view was opened by

clicking the Timeline button. Figure 6.15 shows the resulting interface. The event view gives an

overview of events first and allows exploration of events by mouse-hovering over the circles. Each



88

Figure 6.15. Debugging scenario in the advanced mode

circle represents an event or a group of events, and time increases moving left to right. The radius

of a circle at a particular interval in time is proportional to the interval’s percentage of events for the

entire range of time.

The programmer checked the detail about the pain-e event circle and found that only one event

instance was triggered. The next event circle happening after the pain-e event was a notify-e

type, and the detail is shown in Figure 6.16. Clicking the event entry in the Event Info window

navigated to the source context of the event (highlighted in yellow), which indicated that the event

was sent by a pain handler. Because this program was expecting that a notify-e event was

triggered only after two instances of pain-e events, the timeline view showed an erroneous be-

havior. By looking at the highlighted code in the source view, the programmer realized that the

notifyDoctor message would be sent if the painscore > 5 ,x2 ,1 hour apart condition

is true, but the desired condition for the painscore should be painscore > 8 as expressed by

the debugging script.

Therefore, the programmer found the mistake, and the pain handler should be written as:
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Figure 6.16. Exploring with timelines in the advanced mode

pain:
notifyDoctor whenever painscore > 8, x2, 1 hour apart,
since last notifyDoctor

6.3 Medic Debugger
As described in Chapter 3, Medic is a metaprogramming language describing program trans-

formation without modifying the original source code. The Medic debugger interface is shown in

Figure 6.17. The step view contains the same buttons as the step view in the Scratchy debugger,

but the stepping operation works with each ���������� in Medic (the current ���������� under

evaluation is highlighted in yellow). At each step, the event property view displays debugging infor-

mation related to the execution effect of ����������. In the event property view, the module-name

represents the module path of the source program to be transformed by the Medic program, and

the target-locs represents a list of positions (a pair of line number and a column number) to be

inserted with the to-insert code. The port and scope indicate the insertion scope. In the right

source view, the insertion points are marked by yellow triangles in a straightforward way.
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Figure 6.17. Medic debugger
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6.3.1 Demonstration of Finding Bugs

In Figure 6.17, the target-locs in the event property view showed that two locations would be

affected by the first ����������, which was not an intended behavior. The programmer just wanted

to add a (printf "table =∼v\n" dependency-table) statement to the location inside an

append-export-entries function in the “src.rkt” program, but the right-side source view

showed that the first ���������� would also insert the printf code into a matched location inside

a set-dependency-table function. The append-export-entries function is:

(define (append-export-entries current-layer)
(let-values ([(lower-layer lower-exports)

(get-lower-exports current-layer)])
(for ([e (in-list (hash-ref export-table current-layer '()))])

(let ([e-pair (cons e current-layer)])
(unless (hash-has-key? dependency-table e-pair)
(let ([res (member e lower-exports)])

(when res
(let ([new-v (if (zero? current-layer) e (cons e lower-layer))])

(hash-set! dependency-table e-pair new-v)))))))))

Before making any changes to the first ����������, the programmer went on to check the

correctness of other ����������s by clicking the Step button to examine the insertion effects. After

stepping to the last ����������, the programmer was sure that the program only contains a bug with

the first ����������. Because the first ���������� would match two locations in the “src.rkt”

program, the scope of the at form was constrained by adding a new #:before option:

[at (hash-set! dependency-table e-pair new-v)
#:before (append-export-entries current-layer)
[on-exit (printf "table =∼v\n" dependency-table)]]

which specifies that the printf code will not be inserted until there is a code segment matching

(append-export-entries current-layer) before the insertion point at the exit of the state-

ment, (hash-set! dependency-table e-pair new-v). By debugging the modified pro-

gram, the programmer confirmed that the new change fixed the bug.



CHAPTER 7

EVALUATION

This chapter evaluates whether Ripple enables more useful and easier debugger construction.

Specifically, I evaluate the support for building domain-specific debuggers, the support for building

effective debuggers, and the support for reducing the debugger construction effort. Since Ripple is

not yet in wide use, this chapter cannot report practical experiences. However, to attempt a robust

evaluation, I tested on the three DSLs presented in Chapter 6: Scratchy, POP-PL, and Medic.

7.1 Support for Domain Customizations
Since DSLs focus on domain problems, an ideal DSL debugger should have an interface mapped

to the domain concepts and notations as closely as possible. To support domain customizations,

Ripple provides means of customizations in the back end as well as the front end where the back

end relies on domain-specific events and the front end relies on flexible views.

Domain customizations for the three example DSLs are shown in Figure 7.1.

Language Domain Concepts Domain Customizations

Scratchy sprite, sprite manipulation

elementary mode: step view,
variable view (Figure 6.2); inter-
mediate mode: touch-e (Fig-
ure 6.3)

POP-PL prescription, actors, messages,
handlers

elementary mode: message view,
handler view (Figure 6.12); ad-
vanced mode: send-msg-e,
receive-msg-e (Figure 6.15)

Medic
layer, debugging code insertion,
location specification

elementary mode: step view,
event property view, debug pro-
gram view (Figure 6.17)

Figure 7.1. Ripple support for domain customizations
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By taking into account the possible debugging needs of a DSL and the programming background

of DSL users, each DSL is enriched with different debugging modes. Like any debugging tool,

familiarity with debugger features is a prerequisite to debugging. Without regard to the features

of the debugger, I assume a debugger to be domain-specific if the knowledge required to use and

understand the debugger falls within the domain knowledge of a DSL user. For the elementary

mode, beyond the debugging knowledge, the knowledge required for each DSL debugger involves:

• Scratchy: the variable view requires a user to understand the interpretation of sprite-state

variables, which are closely related to the domain concepts.

• POP-PL: a user needs to know that the message view visualizes the message history in the

clinical network and the handler view visualizes the message history of a handler, where the

concepts of messages and handlers are within the domain.

• Medic: a user can easily understand the interface where the source view and the debug

program view annotate the entities on which the user is working with visual marks to help

program comprehension. For the event property view, a user needs to understand the meaning

of each property, but these properties can be easily mapped to domain concepts.

Overall, one can see that domain-specific debuggers are achievable for DSLs with Ripple. As

for the intermediate and advanced mode, due to a concern with a more flexible, expressive control,

a significant amount of debugging knowledge is involved, and the only opening for customizations

is events. To bridge the gap between debugging events and domain concepts, debugger developers

can define domain-specific events and enable the use of domain-specific events for the two modes.

However, a user needs to understand the mapping between domain-specific events and domain

concepts and the interpretation of event-specific attributes.

7.2 Support for Effective Debuggers
The evaluation of the support for effective debuggers consists of the discussion of debugging

support available via Ripple and the demonstration of Ripple’s abilities to construct debuggers that

are able to find bugs.

Although featuring domain-specific abstraction and notations, a DSL, by nature, is still a rec-

ognizable programming language. I make the assumption that GPL debugging techniques can be

adaptable to DSLs on the condition that they do not sacrifice domain-specific concepts. As different
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debugging techniques have their advantages and disadvantages in different application domains,

finding a universally powerful collection of debugging techniques is difficult.

However, Zeller (2005) points out that debuggers generally provide the following functionality:

• Execute the program and make it stop on specified conditions

• Observe the state of the stopped program

• Change the state of the stopped program

I designed debugging features in Ripple according to the above guidelines. Due to the limitations

and complications surrounding the functionality to “change the state of the stopped program,”

Ripple replaces it with a navigation facility. In the realm of GPL debugging, large temporal or spatial

chasms between the root cause and the symptom of an erroneous program account for a significant

amount of debugging difficulty (Eisenstadt 1997), so Ripple puts special effort into providing tool

support for navigation. In Ripple, each event instance carries an attribute that records the source

location of an event, and graphical tools support event navigation to its source context.

The debugging facilities Ripple provides range from graphical control to programmatic control.

Execution control can be achieved through event-by-event stepping, state observation is enabled

through a user interface with customizable graphical views, and navigation comes with the con-

nection between graphical entities and source context. In addition, the programmatic control allows

open-ended debugging features (e.g., creating problem-specific operations such as tracing a variable

or asserting a program invariant). However, all debugging support provided by Ripple is based on

the events designed and developed by debugger implementers. Debugger implementers should have

a good knowledge about a DSL design and possibly be informed about common errors associated

with a DSL.

In evaluating the effectiveness of debuggers constructed through Ripple, there are two problems.

First, effectiveness depends on the provided debugger features. For example, if debugger developers

implemented a stepping-based debugger for a reactive programming language such as POP-PL, the

debugger is unlikely to be effective. Second, effectiveness depends on the user groups. Users have

varying programming skills and varying preferences towards different debugger features. For end

users, graphical control will be considered more useful than programmatic control.

As a quantitative analysis of the effectiveness of debuggers requires considerable design of

experimentation, I conducted a qualitative analysis of a debugger’s abilities to find bugs. Specif-
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ically, since Ripple supports building a domain-specific debugger with more than one debugging

mode, I evaluate the merits of the debugger being domain-specific and the debugger having different

debugging modes according to my own debugging experiences.

To evaluate the benefits of domain-specific debuggers, I wrote a small Scratchy program with

an error in the program. I tried to use the traditional, stepping-based GPL debugger in DrRacket,

which would make a good candidate for a non-domain-specific debugger, to debug the Scratchy

program, but the stepping facility did not work. Because the GPL debugger expands the DSL

program into a program with only a small set of Racket kernel constructs, there is a one-to-many

mapping between a DSL’s constructs and kernel constructs, which causes conflicts with the original

stepping mechanism. I decided to make modifications to the GPL debugger to print out the program

states. However, the program output state consisted of low-level variable bindings existing at the

level of the kernel language:

(let-values ([(temp8) (#%app find-method/who
'send temp9 temp7)])

(let-values ([(send-arg11) '4])
(if (#%app wrapped-object? temp9)

(if temp8
(#%app temp8 (#%app wrapped-object-neg-party temp9)

(#%app wrapped-object-object temp9)
send-arg11)

(let-values ([(temp9) (#%app wrapped-object-object
temp9)])

(#%app (#%app find-method/who 'send temp9 temp7)
temp9 send-arg11)))

(#%app temp8 temp9 send-arg11))))

The above output is generated by the Scratchy’s forward by 4 statement. The variable bindings

were temp9 with a value of a sprite object and temp7 with a value of 'forward. The low-level

variables in a non-domain-specific debugger were not very useful for understanding program exe-

cution.

Debugging with the domain-specific debugger was easier. As seen in the demonstration in Sec-

tion 6.1, I was able to see high-level program states, which enabled better program comprehension.

To evaluate the effectiveness of each debugging mode, I experimented with different debugging

modes and demonstrated the experiences in Chapter 6. The overall experiences are:

• Scratchy: I found a bug in a program with the elementary mode. I also tried to debug another

program with the elementary mode, which took 4 attempts to find the bug. However, with
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the intermediate mode, I was able to select events with information in which I was interested,

which generated more useful, less noisy debugging information.

• POP-PL: I demonstrated finding a bug by checking message histories in the message view and

navigating to the source context from the message entry in the handler view in the elementary

mode. I also tried to debug another POP-PL program with the elementary mode, but the

messages shown in the debugger were overwhelming. I switched to the advanced mode and

was able to write a small script to perform the desired operations.

• Medic: Because the Medic program was relatively small, the elementary mode was very

straightforward for showing the effect of program execution.

In conclusion, from the demonstration of finding bugs, there is little doubt that the domain-

specific debuggers built on Ripple are useful for DSLs, but there are no absolute advantages and

disadvantages for each debugging mode. Depending on the debugging scenario, one debugging

mode might be more effective than another. Generally speaking, graphical control in the elementary

mode is effective for debugging programs needing graphical visualizations and interactions, and the

programmatic control is useful for complicated, variable bug queries and explorations. Different

modes can also be used together to achieve a more efficient experience.

7.3 Ease of Debugger Construction
Ripple places great emphasis on reducing the effort of debugger construction, and the emphasis

drives the design principles of the debugging framework.

• Reuse of debugging techniques. Much like each DSL has a strength in solving problems

in a particular domain, there exists a suitable debugging technique for each language. By

encouraging and providing a library of DSL-friendly debugging techniques in the framework,

developers get guidance in choosing and reusing appropriate techniques. So far, my system

is still under development and just provides event-based support, but more useful debugging

techniques can be added such as omniscient debugging since events allow a flexible extension

of features. The debugging language provided by the system enables reuse of debugging

techniques where debugger developers do not need to design and develop a scripting language

to support programmable activities.
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• Reuse of debugging implementation. Ripple supports associating a language with a de-

bugger where a specification of debugging support (through events) is integrated with macro

transformations. When a language is implemented in terms of another language, the language

can reuse the debugging support available in the other language by reusing the debugging

events. Specifically, the language can define events by filtering, combining, and transforming

other languages’ events. Instead of working with common, low-level events such as core

events, a high-level language can just be concerned about its immediate, low-level events,

which would contain debugging information sharing closer abstractions.

• Reduction of user-interface development effort. To reduce the effort of implementing a

user interface, Ripple separates tool support into three debugging modes. Developers can just

focus on one mode and learn to use related tools to implement a debugger. The elementary

mode allows a composable interface to further divide debugger construction work into views

where developers can reuse system views or implement customized views incrementally.

Since Ripple provides automatic support for the intermediate and the advanced modes, if

a DSL does not need graphical control for debugging, the interface development is minimal,

and a debugger can be easily developed by defining debugging events in the back end.

According to my experiences with constructing Scratchy, POP-PL, and Medic debuggers, the

effort involved in debugger construction consists of several nontrivial tasks, learning the DSL’s

domain concepts, designing a debugger’s features, learning the language’s macro implementation,

and writing the debugger implementation. As the first three components are beyond my debugging

framework’s concern, I only measure the effort involved in debugger implementation. Though

efforts can be measured by a time cost, I could not accurately keep track of the hours spent in

debugger construction because of iterative, selective implementation of debuggers. For example,

sometimes I just suspended the whole debugger implementation to learn more about a DSL design.

Sometimes the debugger features were not satisfactory after use, and I restarted the process of a

debugger implementation.

Figure 7.2 shows the size of debugger implementation in lines of code. The size of event instru-

mentation is relatively small. The domain-specific events I created for each DSL are: construct-e

with customized bindings and touch-e for Scratchy, send-msg-e and receive-msg-e for POP-

PL, and module-entry-e and insert-e for Medic. In Scratchy, the construct-e events are
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Figure 7.2. Size of debugger implementation

implemented by defining embedded events and involve the construct-e host events as well. For

the touch-e event in Scratchy and other DSLs’ events, events are defined as explicit events in

terms of the lower-level language’s construct-e events. The interface implementation (only the

elementary mode is needed) remains the majority of work. But the total implementation size for

each DSL is still relatively small compared to implementing debuggers from scratch. Because all

views of the Medic interface reuse the system views, the interface implementation size of Medic is

smallest, which indicates that a debugging framework should provide more tool support for interface

implementation.

From the experiences of debugger construction, the event language in the back end is helpful

for event instrumentation, and the tool support in the front end can reduce the cost of interface

implementation. Overall, Ripple is useful in easing the development of a domain-specific debugger.

7.4 Performance
I examined the performance of debuggers according to time and space cost metrics. Time

overhead added by debuggers includes the back-end event registration, the core debugger instru-

mentation and core program execution, and event mapping. I experimented on three DSL programs

and measured the debugger cost compared to the original time cost. In Figure 7.3, the program size

is measured by lines of code, and one can see that the time cost varies with DSLs. To investigate the

cause of the variance of time, I checked the percentage of language constructs in a DSL program that

would be affected by event instrumentation. As shown by the right-hand-side chart, the debugger

time cost, which is measured by a percentage of increase in program execution time, is roughly

positively correlated with the percentage of program code that is affected by event emission at run

time.

Figure 7.4 shows the memory usage with a debugger and without a debugger, which measured
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Figure 7.3. Time overhead of debuggers
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Figure 7.4. Memory usage

in terms of total heap allocation. Since debugging information is encapsulated in event attributes,

depending on how a DSL debugger interface implementation handles event information, the space

cost varies. For example, because the debugging session of POP-PL stores all the message histories

of a handler, the POP-PL debugger uses the most memory compared to the Scratchy and Medic

debuggers. However, Ripple also tries to optimize the space cost by reducing some avoidable

memory cost such as only generating needed events for a DSL debugger.

In summary, the time and space costs associated with debuggers are largely affected by events,

and the performance of these debuggers is reasonable.



CHAPTER 8

OUTLOOK

I have presented an approach to debugging DSLs defined with macros. Instead of relying on the

debugging support provided for the host language, I employed an event-oriented approach that relies

on events to capture run-time program states and to enable debugger inspection and manipulation. I

provided a core programming-language model and event constructs for mapping the evaluation of a

DSL to domain-specific events and further designed and developed a debugging framework on top

of the domain-specific events. I implemented the debugging framework, Ripple, and used Ripple to

construct various domain-specific debuggers. From my debugging experiences, I demonstrated that

Ripple is useful in easing the development of effective, domain-specific debuggers.

My debugging framework focuses on a macro-expansion view of language implementation and

provides event support that can be integrated with macro transformations. However, for DSLs that

are implemented through means other than macros, the general event design is applicable if the

DSLs can be instrumented with debugging events. The core model and events are vital in event

mapping, and my core programming-language model can serve as a good target for compilation of

a broad range of programming languages. For DSLs that are implemented on other platforms and

are compiled to other host languages, the host languages need to be able to be mapped to the core

model. The constructs specifying the event mapping across language layers are mostly platform

independent and can be adapted easily to a different platform. The categories of event mappings

are universal to all systems. In addition, because the front-end design for the debugging framework

just works with events, the architecture of the debugging framework and the front-end design is

adaptable to other systems.

8.1 Composition of DSLs
A DSL is usually designed to solve a problem in a particular domain, and sometimes a com-

plicated problem spans many domains requiring coordination of multiple DSLs. Composition

of DSLs includes syntactic and semantic composition where the syntactic composition allows a
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combination of constructs from different languages and where the semantic composition deals with

the behavioral semantics. Since Ripple solves the problems of debugging macro-based DSLs, I

will focus on the syntactic composition of multiple DSLs enabled by macros. Because macros are

composable, multiple DSLs can coexist in a larger application along with the host language. This

section discusses the issues of debugging coexisting DSLs.

8.1.1 Debugging Coexisting DSLs

Suppose that we have three DSLs dealing with different problem domains in the field of digital

electronics:

• The Gate language handles the construction of basic logic gates including AND gates, OR

gates, and NOT gates. The Gate language provides define-gate, set-gate-input, and

get-gate-output constructs.

• The Device language handles the construction of digital devices that are abstractions of

wired logic gates. A digital device can be either an adder or a comparator, and each digital

device allows 32 bits input and output. The Device language provides define-device,

set-device-input, get-device-output, and overflow? constructs.

• The Circuit language handles the connection of digital circuit entities and provides a wire

construct.

If we want to combine logic gates and digital devices to construct an electrical circuit, we

can write an application that uses constructs from the Gate, Device, and Circuit languages. The

following program is an example of DSL composition:

(define-gate and-gt [type 'and])
(define-device adder [type 'adder])
(define-gate not-gt [type 'not])

(wire [from (device adder [bit-at 32])]
[to (gate and-gt 'input1)])

(wire [from (gate and-gt)]
[to (gate not-gt 'input1)])

(set-device-input adder [input1 "11100011"] [input2 "00111011"])
(set-gate-input and-gt [input2 1])
(get-gate-output not-gt)
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In this example, an AND gate, an adder device, and a NOT gate are constructed. The first wire

statement wires adder and and-gt together and connects the 32nd bit of adder’s output to the

first input port of and-gt. The second wire statement wires and-gt and not-gt together by con-

necting the output of the and-gt gate to the first input port of not-gt. The set-device-input

initializes the two input ports of the adder device, and the set-gate-input adds an input value

to the second input port of and-gt. The get-gate-output statement obtains the output value of

the not-gt gate.

Suppose that there exist three domain-specific debuggers for the three DSLs, which are built

using the Ripple debugging framework. The following domain-specific events are created for the

debugging support:

• gate-e to denote the occasion of a new logic gate construction, update-gate-e to denote

the occasion of setting a gate’s input, and output-e for accessing a gate’s output.

• device-e to denote the occasion of a new digital device construction, update-device-e

to denote the occasion of setting a device’s input, and output-e for accessing a device’s

output.

• connect-e to denote a wire connection made between two digital circuit entities.

The three domain-specific debuggers are:

• The Gate debugger (Figure 8.1) consists of a step view that provides execution control and

a stepping facility, a gate view that displays the gate information including gate names, gate

types, and gate input, and an output view that displays the output of gates. In the gate view,

any newest input changes are marked by asterisks.

• The Device debugger (Figure 8.2) consists of a step view that provides execution control and

a stepping facility, a device view that displays the device information including device names,

device types, and device input, and an output view that displays the 32-bit output of devices.

In the device view, any newest input changes are marked by asterisks.

• The Circuit debugger (Figure 8.3) consists of a step view that provides execution control and a

stepping facility and a connection view that displays the information about the two connecting

entities.
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Figure 8.1. Gate debugger

Figure 8.2. Device debugger
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Figure 8.3. Circuit debugger

To debug coexisting DSLs, there are two approaches. First, treat the composing languages as a

unit and develop a specific debugger for the whole unit. Second, treat the composing languages as

a combination of sub-languages and reuse the debugging support developed for each sub-language.

Since DSLs can be combined in different ways, which adds difficulty to implementing debugging

support, I choose the latter approach for debugging support for coexisting DSLs.

The event design in Chapter 4 and the architecture of the whole debugging framework in Chapter

5 were originally designed for debugging a single DSL in a debugging session. However, the design

for the debugging events and debugging framework works for debugging multiple DSLs at the

same time as well. Each DSL can still preserve its event instrumentation and front-end interface

implementation to accommodate composition of DSLs. For example, the Gate language can still

keep its gate-e, update-gate-e, and output-e events and its debugger interface. Even though

the Gate language and the Device language both provide an output-e event, the event name

conflicts pose no problem for the composition of DSLs. Each event instance in my event design

contains a ����� field (see ���� in Figure 4.8), which associates an event with its enclosing module

path and can distinguish events generated from different DSLs.
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Ripple is an implementation of the debugging framework presented in Chapter 5, which involves

event generation and interface presentation and has debugging a single DSL in mind. When a user

wants to debug a DSL program, the DSL debugger is shown with the system views first initialized.

The layout of the custom views written by debugger implementers is not initialized until the click of

the Debug button in the DSL debugger to start a debugging session. To enable multiple DSLs in a

debugging session, the debugger interface needs to be switched according to the run-time evaluation

context so that the correct debugger interface is activated. Therefore, the interface presentation

in Ripple needs to be changed to coordinate the dynamic switch of debugger interfaces, but the

algorithms about event generation can remain unchanged.

At run time, the evaluation of a certain construct from a DSL can generate a debugging event,

and a debugger interface for a DSL is changed if the debugging event comes from a different DSL.

To activate the right debugger interface, Ripple needs to find the interface layout specification for

the current DSL, update the debugger interface with correct views, and activate the event handlers

that belong to the DSL. For the previous example of composition of the Gate, Device, and Circuit

languages, the debugger is shown in Figure 8.4 where the interface is updated to the interface be-

longing to the Device language when the debugger executes to the set-device-input statement.

8.2 Improving the Debugging Experience
Future work is needed to further improve the debugging experience. My debugging framework

aims to reduce the cost of debugger construction by incorporating a suite of reusable tools, and more

tool support can be added into the framework. For example, more sophisticated data visualizations

are needed, and a means to support and ease visualization construction for users is desirable.

Currently the debugger visualizations are either implemented by debugger developers or enabled by

the debugging language, which does little to ease users’ burdens in constructing visualizations. The

design of the debugging language in the advanced mode is an extension of the GPL provided by a

DSL-construction platform, which may add learning overhead if users switch to another debugging

framework implemented on a different platform. Further improvements in the debugging language

are necessary, for example, a design for a language-independent debugging language.

My debugging framework also needs to address the issue of language composition and provide

better support. The approach of switching the debugger interface according to the run-time events

seems straightforward, but it has limitations.
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Figure 8.4. Debugger interface for composition of DSLs

First, the interface switch at run time may be confusing and distracting. For example, a user

might be occupied with exploring a debugging interface belonging to a DSL and suddenly be

presented with a different interface due to the activation of a new event.

Second, learning overhead increases with the number of DSLs. Different DSLs might have

different interface layout and interface operations, and users need to be familiar with the features

associated with each DSL to be able to understand and use the current active debugger.

Third, the approach works best with a sequential model of events. The approach assumes that

only one event can be triggered at a time and therefore updates or switches the debugger interface

according to the current event. If events can happen in parallel, a different approach will be needed.

The effectiveness of switching debuggers dynamically remains unclear. When the debugger

is evaluating a construct belonging to a DSL, the debugger switches to a local debugger that is

associated with the DSL and only displays the debugging information relevant to the DSL. In

consequence, the connection between DSLs is unaddressed because the debugger is composed of

independent, local debuggers obscuring the possible evaluation effects of one language on another

within the whole application. However, there are a few means for possibly improving the debugging
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experience.

First, for languages that have conflicting event names, the events sharing the names can ei-

ther have the same semantics or different semantics. For example, the core language provides a

construct-e event that represents the occasion of a single-step reduction of an expression, and

Scratchy also provides a construct-e event having the same semantics. A kind of view for

events having the same semantics is enough to display the debugging information, and the view can

be placed in a fixed area in the debugger to reduce the cognitive load of context switching. For

languages composed together, a fixed interface might be better for events from different languages

sharing names and semantics. For example, we can have a fixed variable view to display the variable

bindings carried by the construct-e events no matter which language the construct-e belongs

to.

Second, the Ripple framework supports a debugging language for DSLs, which is provided

by the advanced mode. A debugging language only works with events, which can eliminate the

context switching problem associated with graphical interfaces. To support a debugging language

for coexisting DSLs, event name conflicts have to be resolved to effectively refer to events without

ambiguity. Events can be renamed to distinguish between events that have the same names in the

composed DSLs.



CHAPTER 9

RELATED WORK

There is a large body of work on debugging techniques and tools for GPLs, and recently there

has been an increase in debugging support for DSLs. Since this dissertation focuses on an event-

based approach to DSL debugger construction, I describe the related work in three parts: event-

based debugging support for GPLs, language workbenches’ debugging support, and other tools’

support for debugging DSLs.

9.1 Event-Based Debugging for GPLs
Coca (Ducasse 1999) is a debugger for C including an expressive breakpoint mechanism and

trace analysis facilities. Coca models program execution as a sequence of events and supports de-

bugging through querying the traces. The events are related to language constructs, and breakpoints

are associated with events instead of source lines. As Coca is only concerned about debugging C

programs, its event model is simple and tied to C constructs such as for and if. In comparison,

the core events in my work are not tied to a particular language, and the core events are able to fully

reconstruct the state of an evaluation.

RAIDE (Johnson 1977) offers a language-independent debugging language to enable debug-

ging, and the debugging language involves some metaprogramming concepts and a model of events

to control the execution. The events in RAIDE are associated with entry and exit to statements or

routines, variable access and update, and other events related to the system. In my framework, a

debugging language is also provided, though not language-independent.

Dalek (Olsson et al. 1990) presents an event-based approach to debugging with a debugging

language and a model of events. Similar to my event model, Dalek supports primitive events and

high-level events. The primitive events are similar to breakpoints requiring explicit event raises from

users. High-level events provide means of expressing complex program behavior and are defined

in terms of a list of constituent primitive events. By comparison, my system only supports defining

primitive events by debugger implementers, and debugger users cannot change the primitive events
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associated with a language.

UFO (Auguston et al. 2003) models debugging as a computation over event traces where events

are modeled by time intervals instead of time points of execution. Each event has a beginning, an

end, and a duration, and consequently events are related by a partial ordering and by inclusion.

UFO presents a fixed set of event types such as types associated with whole program execution,

expression evaluation, function call, or loop iteration. In contrast, the event model I used is based

on time points of execution.

MzTake (Marceau et al. 2006) is a dataflow language that supports event-oriented debugging.

MzTake places an emphasis on the expressiveness of a debugging language to manipulate events

such as providing a collection of event-processing primitives and a means of abstraction. However,

unlike the sophisticated event model in my dissertation, the event concept in MzTake is limited, and

the debugging language can only work with events related to trace points of variables.

To monitor the behavior of a program, a generalized path expression (Bruegge and Hibbard

1983) is proposed to detect event occurrences where a path expression contains repetition, sequenc-

ing, and exclusive selection operators and can use predicates to further delimit events with regard

to request, activation, and termination of events. Compared to the previous event-based systems,

EBBA (Bates 1995) is closer to my model of events. EBBA views debugging as a process of

building models of expected program behavior where the model is based on events. EBBA supports

sequential, choice, concurrency, and repetition event expression operators for modeling the behavior

of a program, which inspired my choice for event composition operators for high-level events. The

EBBA tool also emphasizes using events for debugging information units where an event class has

an event class name and a list of event attributes.

9.2 Debugging Support on Language Workbenches
Spoofax (Kats and Visser 2010), MPS (JetBrains 2004), MontiCore (Krahn et al. 2008), and

xText (Efftinge and Volter 2006) are language workbenches that support language creation and

common IDE services for domain-specific languages. To the best of my knowledge, MontiCore and

xText do not consider debugging support for DSLs, and the debugging support provided by Spoofax

and MPS remains ongoing work since finding a general solution for various DSLs is difficult.

An exploration of debugging support for Spoofax is based on the work of Lindeman et al. (2011),

which aims to reuse the debugging support provided for the host language and proposes mapping a
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DSL to four universal events: step, enter, exit, and var events. The step event is related to an

expression evaluation, the enter and exit events are related to the changes of stack frames, and

the var event is related to variable declarations. These four debugging events are heavily tied to

concepts found in stepping-based debugging, which results in DSL debuggers that mostly support

setting breakpoints, stepping, and observing program states in variable views. DSL debuggers

cannot have flexible debugging views and operations.

MPS also tries to solve the problem of the abstraction gap between a DSL and a hosting GPL

and supports building DSL debuggers with domain concepts. However, the debugging support is

inadequate. MPS focuses on languages that translate to Java and tries to reuse the Java debugger

support for DSLs. Therefore, the interface of custom debuggers on MPS is similar to the Java

debugger, and the debugging operations are related to stepping-based techniques.

In summary, I did not find a language workbench that is able to support domain-specific de-

buggers with domain-specific views and operations. By comparison, my approach of mapping the

execution of a DSL to domain-specific events enables truly domain-specific debuggers.

9.3 Other Debugging Support for DSLs
Debugging support for DSLs is relatively new and rare compared to debugging support for

GPLs. One direction relies on the DSL grammar or language specification to generate DSL de-

buggers such as DDF (Wu et al. 2008), LISA (Henriques et al. 2005), and TIDE (Van Den Brand

et al. 2005). In DDF, the DSL grammar is augmented with additional code to enable abstraction

mappings from the GPL level to the DSL level, and the code can also be weaved into the grammars

using an aspect-oriented approach (Wu et al. 2005). The technology presented in LISA is based on

DDF. TIDE also uses events to enable debugging support, and events are inserted into a language

specification that is based on ASF+SDF (van Deursen et al. 1996). These tools reuse the debugging

tool support at the GPL level, and the features of the DSL debuggers are tied to the GPL debugger

features such as stepping and setting breakpoints. Instead of relying on the stepping-based GPL

debugging technique, my framework enables flexible debugging views and operations.

Another direction focuses on event modeling without language grammars, which is more similar

to our approach. The moldable debugger (Chis et al. 2014) supports building a debugger that

has flexible views and debugging operations. In the moldable debugger, debugging events can

be customized to capture domain concepts by defining high-level events. The debugging events
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provided by the moldable debugger are modeled as predicates over the program’s run-time states,

and primitive events are fixed including attribute read, attribute write, method call, message send,

and state check. In contrast, my event framework does not provide a fixed set of primitive events for

DSL event customization; I allow each language to have its own set of events that suits its language

features and to enable domain-specific events through an event-mapping mechanism.

In the realm of domain-specific modeling languages, events are also used to observe and control

the behavior of a model. BCOoL (Deantoni 2016) relies on domain-specific events to coordinate

the behavior of heterogeneous languages. A variant of omniscient debugging (Bousse et al. 2015),

which was proposed for executable domain-specific modeling languages (xDSMLs), uses events

to capture execution states but only captures values of mutable fields and transition from one

state to another state. In comparison, my core events aim at capturing whole machine states

including information about continuations, and my event model is more general, offering a means

to capture a variety of information depending on debugging needs. For nonexecutable models,

model simulators and model transformations define the semantics of models, which can also be

enabled with debugging support. Simulators can be instrumented with debugging operations (Van

Mierlo et al. 2017), and an omniscient debugging technique can also be provided for model

transformations (Corley et al. 2017).
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