101 research outputs found

    Fractional colorings of cubic graphs with large girth

    Get PDF
    We show that every (sub)cubic n-vertex graph with sufficiently large girth has fractional chromatic number at most 2.2978 which implies that it contains an independent set of size at least 0.4352n. Our bound on the independence number is valid to random cubic graphs as well as it improves existing lower bounds on the maximum cut in cubic graphs with large girth

    Fractional colorings of cubic graphs with large girth

    Get PDF
    International audienceWe show that every (sub)cubic n-vertex graph with sufficiently large girth has fractional chromatic number at most 2.2978, which implies that it contains an independent set of size at least 0.4352n. Our bound on the independence number is valid for random cubic graphs as well, as it improves existing lower bounds on the maximum cut in cubic graphs with large girth

    On Colorings of Graph Powers

    Get PDF
    In this paper, some results concerning the colorings of graph powers are presented. The notion of helical graphs is introduced. We show that such graphs are hom-universal with respect to high odd-girth graphs whose (2t+1)(2t+1)st power is bounded by a Kneser graph. Also, we consider the problem of existence of homomorphism to odd cycles. We prove that such homomorphism to a (2k+1)(2k+1)-cycle exists if and only if the chromatic number of the (2k+1)(2k+1)st power of S2(G)S_2(G) is less than or equal to 3, where S2(G)S_2(G) is the 2-subdivision of GG. We also consider Ne\v{s}et\v{r}il's Pentagon problem. This problem is about the existence of high girth cubic graphs which are not homomorphic to the cycle of size five. Several problems which are closely related to Ne\v{s}et\v{r}il's problem are introduced and their relations are presented

    Maximum edge-cuts in cubic graphs with large girth and in random cubic graphs

    Full text link
    We show that for every cubic graph G with sufficiently large girth there exists a probability distribution on edge-cuts of G such that each edge is in a randomly chosen cut with probability at least 0.88672. This implies that G contains an edge-cut of size at least 1.33008n, where n is the number of vertices of G, and has fractional cut covering number at most 1.127752. The lower bound on the size of maximum edge-cut also applies to random cubic graphs. Specifically, a random n-vertex cubic graph a.a.s. contains an edge cut of size 1.33008n

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Disjoint list-colorings for planar graphs

    Full text link
    One of Thomassen's classical results is that every planar graph of girth at least 55 is 3-choosable. One can wonder if for a planar graph GG of girth sufficiently large and a 33-list-assignment LL, one can do even better. Can one find 33 disjoint LL-colorings (a packing), or 22 disjoint LL-colorings, or a collection of LL-colorings that to every vertex assigns every color on average in one third of the cases (a fractional packing)? We prove that the packing is impossible, but two disjoint LL-colorings are guaranteed if the girth is at least 88, and a fractional packing exists when the girth is at least 6.6. For a graph GG, the least kk such that there are always kk disjoint proper list-colorings whenever we have lists all of size kk associated to the vertices is called the list packing number of GG. We lower the two-times-degeneracy upper bound for the list packing number of planar graphs of girth 3,43,4 or 55. As immediate corollaries, we improve bounds for ϵ\epsilon-flexibility of classes of planar graphs with a given girth. For instance, where previously Dvo\v{r}\'{a}k et al. proved that planar graphs of girth 66 are (weighted) ϵ\epsilon-flexibly 33-choosable for an extremely small value of ϵ\epsilon, we obtain the optimal value ϵ=13\epsilon=\frac{1}{3}. Finally, we completely determine and show interesting behavior on the packing numbers for HH-minor-free graphs for some small graphs H.H.Comment: 36 pages, 8 figure

    Independent sets and cuts in large-girth regular graphs

    Get PDF
    We present a local algorithm producing an independent set of expected size 0.44533n0.44533n on large-girth 3-regular graphs and 0.40407n0.40407n on large-girth 4-regular graphs. We also construct a cut (or bisection or bipartite subgraph) with 1.34105n1.34105n edges on large-girth 3-regular graphs. These decrease the gaps between the best known upper and lower bounds from 0.01780.0178 to 0.010.01, from 0.02420.0242 to 0.01230.0123 and from 0.07240.0724 to 0.06160.0616, respectively. We are using local algorithms, therefore, the method also provides upper bounds for the fractional coloring numbers of 1/0.445332.245541 / 0.44533 \approx 2.24554 and 1/0.404072.47481 / 0.40407 \approx 2.4748 and fractional edge coloring number 1.5/1.341051.11851.5 / 1.34105 \approx 1.1185. Our algorithms are applications of the technique introduced by Hoppen and Wormald

    Circular edge-colorings of cubic graphs with girth six

    Get PDF
    We show that the circular chromatic index of a (sub)cubic graph with girth at least six is at most 7/2.Comment: 13 pages, 6 figure

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8
    corecore