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a b s t r a c t

In this paper, some results concerning the colorings of graph powers are presented. The
notion of helical graphs is introduced. We show that such graphs are hom-universal with
respect to high odd-girth graphs whose (2t + 1)th power is bounded by a Kneser graph
according to the homomorphism order. Also, we consider the problem of existence of
homomorphism to odd cycles.Weprove that suchhomomorphism to a (2k+1)-cycle exists
if and only if the chromatic number of the (2k + 1)th power of G

1
3 is less than or equal to

3, where G
1
3 is the 3-subdivision of G. We also consider Nešetřil’s Pentagon problem. This

problem is about the existence of high girth cubic graphs which are not homomorphic to
the cycle of size five. Several problems which are closely related to Nešetřil’s problem are
introduced and their relations are presented.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper we only consider finite graphs. A homomorphism f : G −→ H from a graph G to a graph H is a
map f : V (G) −→ V (H) such that uv ∈ E(G) implies f (u)f (v) ∈ E(H). The existence of a homomorphism is indicated
by the symbol G −→ H . Two graphs G and H are homomorphically equivalent if G −→ H and H −→ G. Also, the symbol
Hom(G,H) is used to denote the set of all homomorphisms fromG toH (formore on graph homomorphisms see [2,3,8,13]). If
n and d are positive integers with n ≥ 2d, then the circular complete graph K n

d
is the graph with vertex set {v0, v1, . . . , vn−1}

in which vi is connected to vj if and only if d ≤ |i − j| ≤ n − d. A graph G is said to be (n, d)-colorable if G admits a
homomorphism to K n

d
. The circular chromatic number (also known as the star chromatic number [32]) χc(G) of a graph G is

the minimum of those ratios nd for which gcd(n, d) = 1 and such that G admits a homomorphism to K nd . It can be shown

that onemay only consider onto-vertex homomorphisms [34]. We denote by [m] the set {1, 2, . . . ,m}, and denote by
(
[m]
n

)
the collection of all n-subsets of [m]. For a given subset A ⊆ [m], the complement of A in [m] is denoted by A. The Kneser
graph KG(m, n) is the graph with vertex set

(
[m]
n

)
, in which A is connected to B if and only if A ∩ B = ∅. It was conjectured

by Kneser [16] in 1955, and proved by Lovász [20] in 1978, that χ(KG(m, n)) = m − 2n + 2. A subset S of [m] is called
2-stable if 2 ≤ |x− y| ≤ m− 2 for all distinct elements x and y of S. The Schrijver graph SG(m, n) is the subgraph of KG(m, n)
induced by all 2-stable n-subsets of [m]. It was proved by Schrijver [28] that χ(SG(m, n)) = χ(KG(m, n)) and that every
proper subgraph of SG(m, n) has a chromatic number smaller than that of SG(m, n). The fractional chromatic number, χf (G),
of a graph G is defined as

χf (G)
def
= inf

{ m
n

∣∣∣Hom(G, KG(m, n)) 6= ∅} .
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For more about fractional coloring see [27]. The local chromatic number of a graph was defined in [6] as the minimum
number of colors that must appear within distance 1 of a vertex. For any positive integer k, the k-neighborhood of a vertex
v of G is the set of all vertices whose distance from v is at most k. As a generalization of local chromatic number, it may be
of interest to find a proper coloring which uses few colors for the k-neighborhood of every vertex.

Definition 1. Let G be a graph and k be a positive integer. Define

ψk(G)
def
= min

c
max
v∈V (G)

|{c(u) : u ∈ V (G), dG(u, v) ≤ k}|,

where the minimum is taken over all proper colorings c of G and dG(u, v) denotes the distance between u and v in G. �

Note that ψ1(G) is the local chromatic number of G. Set ψ(G)
def
= ψ1(G) for convenience. One can define ψk(G) via graph

homomorphism. In this regard, k-universal graphs were defined in [6] as follows.

Definition 2. Let n, r , and k be positive integerswith n ≥ r . SetUk(n, r) to be the k-universal graphwhose vertex set contains
all (k+1)-tuples (A0, A1, . . . , Ak) such that for any 0 ≤ i ≤ k, Ai ⊆ [n], |A0| = 1, A0∩A1 = ∅, |A0∪· · ·∪Ak| ≤ r and for any
t ≤ k−2, At ⊆ At+2. Also, two vertices (A0, A1, . . . , Ak) and (B0, B1, . . . , Bk) of Uk(n, r) are adjacent if for any 0 ≤ j ≤ k−1,
Aj ⊆ Bj+1 and Bj ⊆ Aj+1. �

Roughly speaking, the vertices of Uk(n, r) encode the set of colors that can be found within distance k in a coloring. The
following lemma reveals the connection between k-universal graphs and ψk(G).

Lemma A ([6]). Let G be a graph and k and r be positive integers. Then ψk(G) ≤ r if and only if there exists a positive integer n
such that G admits a homomorphism to Uk(n, r).

It is easy to verify that for any graph G, ψ(G) ≤ ψk(G) ≤ χ(G). Also, it was shown in [17] that χf (G) ≤ ψ(G) holds for
any graph G.
For a graph G, let Gk be the kth power of G, which is obtained on the vertex set V (G), by connecting any two vertices u and

v for which there exists a walk of length k between u and v in G. Note that the kth power of a simple graph is not necessarily
a simple graph itself. For instance, the kth power may have loops on its vertices provided that k is an even integer. It should
be noted that the square of a graph G, denoted by G2, is commonly considered the graph on the same vertex set of G and
having edges between pair of vertices at distance at most 2. While in this paper G2 stands for the second power of G. For
a given graph G, the notation og(G) stands for the odd-girth of graph G. Let G be a graph with og(G) ≥ 7, the chromatic
number of G5 provides an upper bound for the local chromatic number of G. In [29], it was proved that ψ(G) ≤ bm2 c + 2
whenever χ(G5) ≤ m. The chromatic number of graph powers has been studied in the literature (see [1,4,7,24,29,31]).
The following simple and useful lemma was proved and used independently in [4,26,31].

Lemma B. Let G and H be two simple graphs such that Hom(G,H) 6= ∅. Then, for any positive integer k, Hom(Gk,Hk) 6= ∅.
Note that LemmaB trivially holdswheneverHk contains a loop, e.g., when k = 2. As immediate consequences of LemmaB,

we obtain χc(P) = χ(P) and Hom(C, C7) = ∅, where P and C are the Petersen and the Coxeter graphs, respectively, see [4].
In what follows we are concernedwith some results concerning the colorings of graph powers. First, the notion of helical

graphs is introduced. We show that such graphs are hom-universal with respect to high odd-girth graphs whose (2t + 1)th
power is bounded by a Kneser graph according to the homomorphism order. Then we consider the problem of existence of
homomorphism to odd cycles. We prove that such homomorphism to a (2k + 1)-cycle exists if and only if the chromatic
number of the (2k + 1)th power of G

1
3 is less than or equal to 3, where G

1
3 is the 3-subdivision of G. We also consider

Nešetřil’s Pentagon problem. This problem is about the existence of high girth cubic graphs which are not homomorphic to
the cycle of size five. Several problems which are closely related to Nešetřil’s problem are introduced and their relations are
presented.

2. Helical graphs

For a given class C of graphs, a graph U ∈ C is called hom-universal with respect to C if for any G ∈ C, Hom(G,U) 6= ∅,
in which case the class C is said to be bounded by the graph U . The problem of the existence of a bound with some special
properties, for a given class of graphs, has been a subject of study in the theory of graph homomorphisms. In the following
definition, we introduce a new family of hom-universal graphs, namely the family H(m, n, k) of the helical graphs.

Definition 3. Let m, n, and k be positive integers with m ≥ 2n. Set H(m, n, k) to be the helical graph whose vertex set
contains all k-tuples (A1, . . . , Ak) such that for any 1 ≤ r ≤ k, Ar ⊆ [m], |A1| = n, |Ar | ≥ n and for any s ≤ k − 1 and
t ≤ k − 2, As ∩ As+1 = ∅, At ⊆ At+2. Also, two vertices (A1, . . . , Ak) and (B1, . . . , Bk) of H(m, n, k) are adjacent if for any
1 ≤ i, j+ 1 ≤ k, Ai ∩ Bi = ∅, Aj ⊆ Bj+1, and Bj ⊆ Aj+1. �

Roughly speaking, analogous to k-universal graphs, the vertices ofH(m, n, k) encode the set of colors that can be found in
certain walks in an n-tuple coloring. Also, note that H(m, 1, 1) is the complete graph Km and H(m, n, 1) is the Kneser graph
KG(m, n). It is easy to verify that ifm > 2n, then the odd-girth of H(m, n, k) is greater than or equal to 2k+1. The statement
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is true for k = 1; hence, assume that k ≥ 2. Indirectly, assume that C2l−1 is an odd cycle of H(m, n, k) where 2 ≤ l ≤ k.
Suppose that u = (A1, . . . , Ak) ∈ V (C2l−1). Consider two adjacent vertices v = (B1, . . . , Bk) and w = (B′1, . . . , B

′

k) of C2l−1
at distance exactly l−1 from u. In view of the definition of helical graphs, we should have A1 ⊆ Bl and A1 ⊆ B′l . On the other
hand, v andw are adjacent; consequently, Bl ∩ B′l = ∅which is a contradiction.
For a given graph G and v ∈ V (G), set

Ni(v)
def
= {u| there is a walk of length i joining u and v}.

Also, for a coloring c : V (G) −→
(
[m]
n

)
, define

c(Ni(v))
def
=

⋃
u∈Ni(v)

c(u).

It is worth noting that it was shown in [7] that the graph H(m, 1, 2) ism-colorable and that there exists anm-coloring of
H(m, 1, 2) such that the neighborhoods of each color class is an independent set. Such colorings can be viewed as ordinary
colorings of the third power of the graph H(m, 1, 2). In the theorem below, we show that, instead of colorings, we look at
the generalized coloring expressed by the existence of homomorphisms into helical graphs. In fact, we show that helical
graphs are hom-universal graphs with respect to the family of high odd-girth graphs whose (2k − 1)th power is bounded
by a Kneser graph.

Theorem 1. Let G be a non-empty graph with odd-girth at least 2k+ 1. Then we have Hom(G2k−1, KG(m, n)) 6= ∅ if and only
if Hom(G,H(m, n, k)) 6= ∅.

Proof. First, let c ∈ Hom(G2k−1, KG(m, n)). If v is an isolated vertex of G, then consider an arbitrary vertex of H(m, n, k) and
let it be f (v). For any non-isolated vertex v ∈ V (G), define

f (v) def= (c(v), c(N1(v)), c(N2(v)), . . . , c(Nk−1(v))).

If i ≤ j and i ≡ j mod 2, we have Ni(v) ⊆ Nj(v), implying that c(Ni(v)) ⊆ c(Nj(v)). Also, since c is a homomorphism
from G2k−1 to KG(m, n), for any i ≤ j ≤ k − 1 and i 6≡ j mod 2, we obtain c(Ni(v)) ∩ c(Nj(v)) = ∅. Hence, for any vertex
v ∈ V (G), f (v) ∈ V (H(m, n, k)). Moreover, for any 0 ≤ i, j+ 1 ≤ k− 1, we have Ni(v) ∩ Ni(u) = ∅,Nj(v) ⊆ Nj+1(u), and
Nj(u) ⊆ Nj+1(v) provided that u is adjacent to v. Hence, f is a graph homomorphism from G to H(m, n, k).
Next, let Hom(G,H(m, n, k)) 6= ∅ and f : G −→ H(m, n, k). Assume v ∈ V (G) and f (v) = (A1, A2, . . . , Ak). Define,

c(v) def= A1. Assume further that u, v ∈ V (G) such that there is a walk of length 2t + 1 (t ≤ k − 1) between u and v in G,
i.e., uv ∈ E(G2k−1). Consider adjacent vertices u′ and v′ such that u′ ∈ Nt(u) and v′ ∈ Nt(v). Also, let f (v) = (A1, A2, . . . , Ak),
f (u) = (B1, B2, . . . , Bk), f (v′) = (A′1, A

′

2, . . . , A
′

k), and f (u
′) = (B′1, B

′

2, . . . , B
′

k). In view of the definition of the helical graph
H(m, n, k), we obtain A1 ⊆ A′t+1 and B1 ⊆ B

′

t+1. On the other hand, A
′

t+1 ∩ B
′

t+1 = ∅, which yields c(v) ∩ c(u) = ∅. Thus,
Hom(G2k−1, KG(m, n)) 6= ∅, as desired. �

It was conjectured in [21] that a classC of graphs is bounded by a graphH whose odd-girth is at least 2k+1 provided that
the set {χ(G2k−1) | G ∈ C} of numbers is bounded and that all graphs in C have odd-girth at least 2k+ 1. It is worth noting
that Theorem 1 shows the above conjecture is true. This conjecture, however, was proved by C. Tardif recently (personal
communication, see [21]).
It was proved by Schrijver [28] that SG(m, n) is a vertex-critical subgraph of KG(m, n). Motivated by the construction of

Schrijver graphs, we introduce a family of subgraphs of helical graphs.

Definition 4. Letm, n, and k be positive integers withm ≥ 2n. Define SG(m, n, k) to be the induced subgraph of H(m, n, k)
whose vertex set contains all k-tuples (A1, . . . , Ak) ∈ V (H(m, n, k)) such that for any 1 ≤ r ≤ k, Ar = ∪s Bs, where every Bs
is a 2-stable n-subsets of [m]. �

One can deduce the following theorem whose proof is almost identical to that of Theorem 1 and the proof is omitted for
the sake of brevity.

Theorem 2. Let G be a non-empty graph with odd-girth at least 2k + 1. Then Hom(G2k−1, SG(m, n)) 6= ∅ if and only if
Hom(G, SG(m, n, k)) 6= ∅.

Now, we introduce a theoremwhich is a generalization of Theorem 1. For two subsets A and B of the vertex set of a graph
G, we write A FG B if every vertex of A is joined to every vertex of B. Also, for any non-negative integer s, define the graph
G−

1
2s+1 as follows

V (G−
1
2s+1 )

def
= {(A1, . . . , As+1) | Ai ⊆ V (G), |A1| = 1,∅ 6= Ai ⊆ Ni−1(A1), i ≤ s+ 1}.
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Two vertices (A1, . . . , As+1) and (B1, . . . , Bs+1) are adjacent in G−
1
2s+1 if for any 1 ≤ i ≤ s and 1 ≤ j ≤ s+ 1, Ai ⊆ Bi+1,

Bi ⊆ Ai+1, and Aj FG Bj. It is easy to verify that if s is a non-negative integer, then the odd-girth of G−
1
2s+1 is greater than or

equal to 2s+ 3.
The next theorem is a generalization of Theorem 1 and Lemma 3(ii) of [31] and its proof is almost identical to that of

Theorem 1 and the proof is omitted for the sake of brevity.

Theorem 3. Let G and H be two graphs and 2r + 1 < og(G). We have G2r+1 −→ H if and only if G −→ H−
1
2r+1 .

The aforementioned theorem also obtained by C. Tardif (personal communication). Also, it should be noted that for given
positive integers k,m, and nwherem > 2n, the helical graph H(m, n, k) and the graph KG(m, n)−

1
2k−1 are homomorphically

equivalent. Although, if k ≥ 2 andm > 2n ≥ 4, then the number of vertices of H(m, n, k) is less than that of KG(m, n)−
1
2k−1 .

In [7], it was proved that χ(H(m, 1, 2)) = m. Later in [1,29], it was shown χ(H(m, 1, k)) = m. We would like to
remark that the graph H(m, 1, k) is defined in a completely different way in [1,29]. Simonyi and Tardos [29] showed that
χ(H(m, 1, k)) = m by proving the existence of homomorphism from SG(a, b) to H(m, 1, k), where a − 2b + 2 = m and a
is sufficiently large. Similarly, one can show that χ(H(m, n, k)) = χ(SG(m, n, k)) = m− 2n+ 2, wherem ≥ 2n.

Lemma C ([29]). Let u, v ⊂ [a] be two vertices of SG(a, b). If there is a walk of length 2s between u and v in SG(a, b), then
|u \ v| ≤ s(a− 2b+ 2).

Theorem 4. Let m, n, and k be positive integers with m ≥ 2n. The chromatic number of the helical graph H(m, n, k) is equal to
m− 2n+ 2. Moreover, χ(SG(m, n, k)) = m− 2n+ 2.

Proof. For a given vertex v = (A1, A2, . . . , Ak) ∈ V (H(m, n, k)), define f (v)
def
= A1. It is easy to check that f is a graph

homomorphism from H(m, n, k) to KG(m, n). It follows that χ(SG(m, n, k)) ≤ χ(H(m, n, k)) ≤ m− 2n+ 2. Now, we prove
that m − 2n + 2 is a lower bound for the chromatic number of SG(m, n, k). To this end, it suffices to show, first, that for
a def= 2(k − 1)m(m − 2n + 2) + m and b def= (k − 1)m(m − 2n + 2) + n, we have Hom(SG(a, b)2k−1, SG(m, n)) 6= ∅.
Then Theorem 2 applies, and hence the assertion follows. Now, let [a] be partitioned into m sets, each of which contains
2(k − 1)(m − 2n + 2) + 1 consecutive elements of [a]. In other words, [a] is partitioned into m disjoint sets D1, . . . ,Dm,
where each Di contains consecutive elements and |Di| = 2(k−1)(m−2n+2)+1. Note that b = (k−1)m(m−2n+2)+n
and

∑m
i=1

(|Di|−1)
2 = (k− 1)m(m− 2n+ 2). Therefore, for every 2-stable subset u of [a] of size b, there are at least n indices

i1, . . . , in such that u contains (k−1)(m−2n+2)+1 elements of Dij , 1 ≤ j ≤ n. Note also that Di contains a unique subset
of cardinality (k− 1)(m− 2n+ 2)+ 1 which does not contain any two consecutive elements. Use Ei to denote this unique
subset of Di, which is readily seen to consist of the smallest elements of Di, the third smallest elements of Di, and so on and
so forth. For any vertex u ∈ SG(a, b), we define a coloring c by choosing n indices ij (1 ≤ j ≤ n) such that Eij ⊆ u and we set

c(u) def= {i1, . . . , in}. Since u is a 2-stable subset of [a], it is easy to verify that c(u) is a 2-stable subset of [m] too. One needs
to show that for any two vertices u and v for which there is a walk of length 2r − 1 between them, where 1 ≤ r ≤ k, we
have c(u)∩ c(v) = ∅. To prove this, suppose that i ∈ c(v) and v = v0, v1, . . . , v2r−1 = u be a walk between u and v, where
1 ≤ r ≤ k. By Lemma C, |v \ v2r−2| ≤ (k− 1)(m− 2n+ 2). In particular, v2r−2 contains all but at most (k− 1)(m− 2n+ 2)
elements of Ei. As |Ei| = (k− 1)(m− 2n+ 2)+ 1, we see that v2r−2 ∩ Ei 6= ∅. Thus, the set u, which is disjoint from v2r−2,
cannot contain all elements of Ei, showing that i 6∈ c(u). This proves that c(u) ∩ c(v) = ∅. Therefore, Theorem 2 applies,
finishing the proof. �

For a given graph G, if u and v are distinct vertices of G and the neighborhood of u is a subset of that of v, then the graph G is
certainly not a vertex-critical graph. Note that in the graph SG(7, 2, 2), the neighborhood of the vertex ({1, 3}, {4, 5, 6, 7})
is a subset of that of the vertex ({1, 3}, {2, 4, 5, 6, 7}). Hence, the graph SG(m, n, k) in general is not a vertex-critical graph.
This motivates us to present the following definition.

Definition 5. Letm, n, and k be positive integers withm ≥ 2n. Define SH(m, n, k) to be the induced subgraph of H(m, n, k)
whose vertex set contains all k-tuples (A1, . . . , Ak) ∈ V (H(m, n, k)) such that for any 1 ≤ r ≤ k, Ar = ∪s Bs and Ar = ∪t Ct ,
where Bs’s and Ct ’s are all 2-stable n-subsets of [m]. �

One can check that SH(m, n, k) has the property that for any two distinct vertices u, v ∈ V (SH(m, n, k)), N(u) 6⊆ N(v)
and N(v) 6⊆ N(u). Also, it is straightforward to see that SH(m, n, k) is the maximal subgraph of SG(m, n, k) with the
aforementioned property. To prove this, we modify the graph SG(m, n, k) by performing the followingWHILE-loop.

WHILE there exist two distinct vertices u = (A1, . . . , Ak) and v = (B1, . . . , Bk), where N(u) ⊆ N(v), then DO the
following: remove the vertex u.
We claim that in theWHILE-loop algorithmwhen the input is the graph SG(m, n, k)withm ≥ 2n, then the output is the

graph SH(m, n, k). To show this, note that in theWHILE-loop each time we search in the new graph for the bad vertex u. So
a vertex umay be good at the beginning, and become bad later. Suppose thatWHILE-loop is not completed yet. In the last
graph obtained from theWHILE-loop algorithm, let i be the greatest positive integer for which there exists at least a vertex
u = (A1, . . . , Ak) ∈ V (SG(m, n, k)) such that Ai is not a union of 2-stable n-subsets of [m]. Note that as |A1| = n, it is easy to
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verify that A1 is a union of 2-stable n-subsets of [m], and hence i ≥ 2. Also, by the assumption, for any i < j, Aj is a union of

2-stable n-subsets of [m]. Set v def= (A1, . . . , Ai−1, Ai ∪ B, Ai+1, . . . , Ak), where

B def= {j | j ∈ Ai and j does not appear in any 2-stable n-subsets of Ai}.

Note that Ai−1 ⊆ Ai and that Ai−1 is a union of 2-stable n-subsets of [m]. Hence, for any j ∈ B, one can show that
{j − 1, j + 1} ⊆ Ai−1 ⊆ Ai (mod m) since otherwise one can extend {j} to a 2-stable n-subsets of Ai−1 ∪ {j} ⊆ Ai which
is a contradiction. Hence, for any j ∈ B, Ai ∩ {j − 1, j + 1} = ∅ which implies that Ai ∪ B is a union of 2-stable n-subsets
of [m]. Also, by considering the assumption, we should have B ⊆ Ai+2. Thus, v ∈ V (SG(m, n, k)) and also N(u) ⊆ N(v).
Consequently, when theWHILE-loop is completed, we obtain the graph SH(m, n, k). Also, this shows that SH(m, n, k) and
SG(m, n, k) are homomorphically equivalent. In view of the above observation, we suggest the following question.

Question 1. Let m, n, and k be positive integers with m ≥ 2n. Is it true that the graph SH(m, n, k) is a vertex-critical graph?

The problem whether the circular chromatic number and the chromatic number of Kneser graphs and Schrijver graphs
are equal has received attention and has been studied in several papers [5,9,15,19,23,29]. Johnson, Holroyd, and Stahl [15]
proved that χc(KG(m, n)) = χ(KG(m, n)) if m ≤ 2n + 2 or n = 2. They also conjectured that the equality holds for all
Kneser graphs.

Conjecture 1 ([15]). For all m ≥ 2n+ 1, χc(KG(m, n)) = χ(KG(m, n)).

It was shown in [9] that if m ≥ 2n2(n − 1), then the circular chromatic number of KG(m, n) is equal to its chromatic
number. Later, it was proved independently in [23,29] that χ(KG(m, n)) = χc(KG(m, n)) = m − 2n + 2 whenever m is
an even natural number. Also in [1,29], it was shown that χ(H(m, 1, k)) = m. Simonyi and Tardos [29] used the fact that
Hom(SG(a, b),H(m, 1, k)) 6= ∅, where a−2b+2 = m, and hencem−1 is a lower bound for the co-index of a particular box
complex of H(m, 1, k). Note that there are several similar, but somewhat different box complexes defined in the literature,
see [22].

Theorem A ([23,29]). If coind(B0(G)) is odd for a graph G, then χc(G) ≥ coind(B0(G))+ 1.

It was shown in [29] that the circular chromatic number and the chromatic number of H(m, 1, k) are equal wheneverm
is an even natural number.

Theorem 5. Let m, n, and k be positive integers, where m ≥ 2n and m is an even positive integer. Then χc(SG(m, n, k)) =
χc(H(m, n, k)) = m− 2n+ 2. Furthermore, χc(SH(m, n, k)) = m− 2n+ 2.

Proof. As proved in Theorem4, if a−2b = m−2n and a = 2(k−1)m(m−2n+2)+m, thenHom(SG(a, b), SG(m, n, k)) 6= ∅.
This implies coind(Bo(SG(a, b))) ≤ coind(Bo(SH(m, n, k))). Also, it is well known that coind(Bo(SG(a, b))) = a − 2b + 1,
see [29]. Thus, by Theorem A, we have χc(SG(m, n, k)) = χc(H(m, n, k)) = m − 2n + 2. Also, two graphs SH(m, n, k) and
SG(m, n, k) are homomorphically equivalent. Thus, χc(SH(m, n, k)) = m− 2n+ 2. �

In [29], the authors made use of Theorem A to prove that χc((SG(a, b))) = χ((SG(a, b))) provided that a is an even
positive integer. In view of χc((SG(a, b))) = χ((SG(a, b))), where a is an even integer number, one can present an alternate
proof of Theorem 5. However, note that the equality coind(Bo(H(m, n, k))) = m− 2n+ 1 provides more information about
the colorings of the helical graph H(m, n, k) (see [29,30]).
It was conjectured in [19] and proved in [9], that for every fixed n, there is a threshold t(n) such that χc(SG(m, n)) =

χ(SG(m, n)) for all m ≥ t(n). Note that H(3, 1, 2) is the nine cycle and that χc(H(3, 1, 2)) = 9
4 . Hence, the following

question arises naturally.

Question 2. Given positive integers n and k, does there exist a natural number t(n, k) such that the equality χc(SH(m, n, k)) =
χc(H(m, n, k)) = χ(H(m, n, k)) = m− 2n+ 2 holds for all m ≥ t(n, k)?

3. Homomorphism to odd cycles

In this section, we investigate the problem of existence of homomorphisms to odd cycles. A graph H is said to be a
subdivision of a graphG ifH is obtained fromG by subdividing some of the edges. The graphG

1
s is said to be the s-subdivision

of a graph G if G
1
s is obtained from G by replacing each edge by a path with exactly s − 1 inner vertices. Note that G

1
1 is

isomorphic to G. Hereafter, for a given graph G, we use the following notation for convenience. Set

G
t
s
def
= (G

1
s )t .

In the following theorem, we prove that a homomorphism to (2k + 1)-cycle exists if and only if the chromatic number of
G
2k+1
3 is less than or equal to 3.
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Theorem 6. Let G be a graph with odd-girth at least 2k+ 1. Then χ(G
2k+1
3 ) ≤ 3 if and only if Hom(G, C2k+1) 6= ∅.

Proof. First, if there exists a homomorphism from G to C2k+1, then it is obvious to see that there is a homomorphism from

G
1
3 to C

1
3
2k+1 = C6k+3 = H(3, 1, k+ 1). In view of Theorem 1, we have χ(G

2k+1
3 ) ≤ 3.

Next, if χ(G
2k+1
3 ) ≤ 3, then in view of Theorem 1, we have Hom(G

1
3 , C6k+3) 6= ∅. Consequently, Hom(G

3
3 , C36k+3) 6= ∅.

Also, it is easy to verify that G and G
3
3 are homomorphically equivalent and that there is a homomorphism from C36k+3 to

C2k+1. Therefore, we have Hom(G, C2k+1) 6= ∅. �

Considering Theorem 6, it is worth studying the following question.

Question 3. Let G be a non-bipartite graph. What is the value of

sup
{
2t + 1
2s+ 1

| χ(G
2t+1
2s+1 ) = χ(G),

2t + 1
2s+ 1

< og(G)
}
?

In [25], Nešetřil proposed the Pentagon problem.

Problem 1 (Nešetřil’s Pentagon Problem [25]). LetG be a cubic graph of sufficiently large girth, is it true that Hom(G, C5) 6= ∅?

It should be noted that if in the problem C5 is replaced by C3, then the answer is affirmative; and in fact it is a quick
consequence of Brooks’ theorem. On the other hand, the answer is known to be negative if one replaces C5 by C11, C9 or
C7 [10,18,33].
In view of Theorem 6, it is possible to rephrase the Pentagon Problem as follows.

Question 4. Let G be a cubic graph of sufficiently large girth, is it true that χ(G
5
3 ) ≤ 3?

If the answer to the Pentagon problem is affirmative, then it follows from Lemma B that there exists a number g0 with
the property that the chromatic number of the third power of any cubic graph with girth larger than g0 is less than six.

Question 5 ([4]). Is it true that for any natural number g0, there exists a cubic graph G whose girth is larger than g0 and
χ(G3) ≥ 6?

It is interesting to find maxg(G)≥g χ(G3), where maximum is taken over all cubic graphs with girth at least g . It should be
noted that by considering a greedy coloring this maximum is less than or equal to 16. In view of Theorem 1, the following
question is equivalent to Question 5.

Question 6. Is it true that for any natural number g0, there exists a cubic graph G whose girth is larger than g0 and
Hom(G,H(5, 1, 2)) = ∅?

Note that H(3, 1, 2) is the nine cycle. It was proved in [33] that the above question has an affirmative answer when
H(5, 1, 2) is replaced by H(3, 1, 2). This motivates us to suggest the following question.

Question 7. Is it true that for any natural number g0, there exists a cubic graph G whose girth is larger than g0 and
Hom(G,H(4, 1, 2)) = ∅?

The fractional chromatic number of graphs with odd-girth greater than 3 has been studied in several papers [11,12].
Heckman and Thomas [12] posed the following conjecture.

Conjecture 2 ([12]). Every triangle free graph with maximum degree at most 3 has the fractional chromatic number at most 145 .

Helical graphs bound high girth graphs. Thus, it may be interesting to compute their fractional chromatic number and
their local chromatic number.

Question 8. Let m, n, and k be positive integers with m ≥ 2n. What are the values of χf (H(m, n, k)) and ψ(H(m, n, k))?

Let P2k+1 be the class of planar graphs of odd-girth at least 2k + 1. Naserasr [24] conjectured an upper bound for the
chromatic number of planar graph powers as follows.

Conjecture 3 ([24]). For every G ∈ P2k+1 we have χ(G2k−1) ≤ 22k.

Again in view of Theorem 1, one can rephrase Naserasr’s conjecture in terms of helical graphs. The following conjecture
is Jaeger’s modular orientation conjecture restricted to planar graphs.

Conjecture 4 (Jaeger’s Conjecture [14]). Every planar graph with girth at least 4k has a homomorphism to C2k+1.

Considering Theorem 6, one can reformulate Jaeger’s conjecture as follows.

Conjecture 5. Let P be a planar graph with girth at least 4k. Then we have χ(P
2k+1
3 ) ≤ 3.
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