
ar
X

iv
:1

60
2.

02
74

7v
1

 [
m

at
h.

C
O

]
 8

 F
eb

 2
01

6

Independent sets and cuts in large-girth regular graphs

Endre Csóka∗

Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Abstract

We present a local algorithm producing an independent set of expected size 0.44533n
on large-girth 3-regular graphs and 0.40407n on large-girth 4-regular graphs. We also
construct a cut (or bisection or bipartite subgraph) with 1.34105n edges on large-girth 3-
regular graphs. These decrease the gaps between the best known upper and lower bounds
from 0.0178 to 0.01, from 0.0242 to 0.0123 and from 0.0724 to 0.0616, respectively. We are
using local algorithms, therefore, the method also provides upper bounds for the fractional
coloring numbers of 1/0.44533 ≈ 2.24554 and 1/0.40407 ≈ 2.4748 and fractional edge
coloring number 1.5/1.34105 ≈ 1.1185. Our algorithms are applications of the technique
introduced by Hoppen and Wormald. [7]

1 Introduction

There is a large literature on the relative size of the largest structures with a locally defined
property, these questions are also motivated by statistical physics and graph limit theory. The
most classical parameter of this kind is the independence ratio, but there is a significant liter-
ature on the size of the largest cut and some other parameters, as well.

All of the lower bounds we have are constructive and valid for all large-girth regular graphs.
Namely, these largest independent sets and the cuts are constructed by local algorithms, or
in other words, by constant-time distributed algorithms. On the other hand, all of the upper
bounds are showed for random regular graphs, and these are important open questions whether
the random regular graphs have asymptotically the lowest independence ratio, cut ratio, etc.
In 2014, Gamarnik and Sudan [4] proved that for large d, the independence ratio of random
d-regular graphs cannot be approximated by a local algorithm, not even the 85.4% of it can
be achieved. However, the question is open for small d, and the best known upper and lower
bounds are very close to each other for d = 3 and d = 4. The question is open for the cut ratio
for all d.

An independent set in a graph is a subset of the vertices so that no two of them are adjacent.
The independence ratio of a graph is the size of the maximum independent set divided by the
number of vertices. In 1981, Bollobás [1] showed that the supremum of the independence ratios
of random 3-regular graphs on n → ∞ vertices is less than 1

2
. In particular, he showed that

this is at most 0.4591. In this paper, Bollobás introduced the configuration model of random
graphs, many of the results we will mention are using this tool. In 1982, McKay [10] improved
the upper bound to 0.45537, using the same technique but with much more careful calculations.
This is still the best upper bound we have.

In 1983, Shearer [12] proved the first lower bound on the independence ratio of large-girth
3-regular graphs, this bound was 0.4139. In 2008, Hoppen [6] improved the bound to 0.4328,

∗Supported by ERC grants 306493 and 648017.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/78475694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1602.02747v1

his method was improved by Kardoš, Král’ and Volec [8], providing independence ratio 0.4352.
In 2015 (2013 in arXiv), Csóka, Gerencsér, Harangi and Virág [2] showed the lower bound of
0.4361 or 0.438,1 using Gaussian wave functions. Slightly later but with independent techniques
(2013 in arXiv), Hoppen and Wormald [7] achieved2 0.43757. They are using the configuration
model to build a random graph and an independent set of it at the same time. This is the
technique we will use with some additional observations, hereby achieving independence ratio
0.44533.

For 4-regular random graphs, McKay showed the best upper bound of 0.41635, and Hoppen
and Wormald had the best lower bound of 0.39213. We improve the lower bound to 0.40407.

A cut is a 2-coloring of the vertices of a graph, and the size of a cut is the number of edges
having endpoints of different colors. The relative size of the cut is the size of the cut divided
by the number of vertices.

The best known upper bound of the relative size of the largest cut for random 3-regular
graphs is 1.4026. It was announced by McKay in 1982 [11], its rigorous proof was made by
Hladkỳ [5]. The problem could also be translated to a problem in statistical physics and
applying non-rigorous methods suggests that 1.386 is an upper bound [13].

In 1990, Zỳka proved that the relative size of the maximum cut in cubic graphs with large
girth is asymptotically at least 9/7 ≈ 1.2857. In 2002, Dı́az, Do, Serna and Wormald [3]
improved the lower bound to 1.32595. In 2012, Kardoš, Král’ and Volec [9] constructed 1.33008.
Then Csóka, Gerencsér, Harangi and Virág introduced the Gauss wave function, and a simple
calculation shows that the vertices with positive and negative values make a cut of size 3

4
+

3
π
arctan 1√

2
≈ 1.33774. Moreover, this bipartition is not even locally optimal, so it is easy

to improve that bound. However, they did not point out this result in their paper, because
they were focusing only on the independence ratio. The technique of Hoppen and Wormald [7]
provided a bound of 1.33021. With an additional idea, we improve this bound to 1.34105.

2 Results on the independence ratio

First, we show a randomized algorithm that chooses an independent set of expected size at
least 0.44531 · n− o(n) in a random 3-regular graph on n vertices. Then we will see that this
algorithm is local, therefore, this works on all 3-regular graphs with large girth. We will use
the technique of Hoppen and Wormald combined with the following observation.

Observation 1. Assume that a vertex y of a graph G has exactly two neighbors: x and z. Let
G′ be the graph constructed from G by contracting x, y and z, or in other words, replacing them
with a new vertex v with deg(v) = deg(x) + deg(z) − 2 and connecting v to the non-deleted
neighbors of x and z. Then for any independent set I ′ of G′, we can construct an independent
set I of G of size |I| = |I ′| + 1. Namely, if v ∈ I ′, then I = I ′ \ {v} ∪ {x, y}, otherwise
I = I ′ ∪ {y}.

Now we construct a random 3-regular graph and an independent set in it. We use the
configuration model introduced by Bollobás [1]. Namely, in the beginning, we have n vertices
of degree 3, but we do not make the pairing of the open edges. Then we construct a random 3-
regular graph and an independent set of it at the same time. During the process, we will always

1≈ 0.4362 ± (proved numeric error bound 0.0001) + (a nonnegative remaining term, statistical computer
simulation showed that this is ≈ 0.0019, but more than 0.0018)

2This was the numerical result of a differential equation system. Therefore, there were three best lower
bounds: 0.4361 is rigorously proved, 0.43757 uses a numerically stable kind of computer computation but with
no proved numerical error bound, and 0.438 uses statistical computer simulation. We consider 0.43757 to be
the most relevant known lower bound prior the present paper. Our result uses the same kind of numerically
stable computation.

2

have isolated vertices, each of them having some open edges, and only the degree distribution
and the number of vertices are changing.

We use the abbreviation k-vertex for a vertex of degree k. If there is a 2-vertex, then we
query its neighbours, or in other words, we choose its two neighbors at random with probabilities
proportional to the degrees, and we contract these three vertices. If all ”survival” vertices
(including the new vertices after contraction) have degrees at least 3, then we delete a vertex
of the highest degree. This also means that we choose its neighbors at random, and those
neighbors lose an open edge. Vertices with degree 0 or 1 will appear in o(n) number of times
in expectation, so we can ignore them. At the end, when only εn vertices remain, we choose
the empty set as independent set. Then recursively applying Observation 1, this provides an
independent set of a random 3-regular graph of the same size as many contractions we used.

The entire process can be approximated by a quadratic differential equation system on the
space of degree distributions. Hoppen and Wormald [7] rigorously proved that this calculation
always provides the true asymptotical value, with o(n) error. We cannot solve the system
explicitly, but many different versions of calculations provide the same result with 6 digit
precision: 0.445312.

We have to add the technical note that in order to apply the theorems of Hoppen and
Wormald, instead of using vertices with open edges, we should use trees with the following
bipartite structure. The first class only consists of vertices with degree 2, and both neighbors of
each of these vertices go to the second class. The edges leaving from the second class are either
go to the first class or these are open edges. (Therefore, the second class is larger then the first
class by exactly 1 vertex.) Now the degree of a vertex is replaced with the total number of the
open edges of a tree. Deleting a vertex is replaced with adding the first class to the independent
set and deleting the tree including the randomly chosen pairs of the open edges. Contracting a
2-vertex is replaced with connecting 3 trees, and hereby all vertices in the middle tree change
to the other class.

We give a sketch about what is happening during the process. At the very beginning, we
delete 1 (or maybe εn) number of 3-vertices. Then, there are positive fractions of 3- and 4-
vertices only. At each step, we delete a 4-vertex (potentially creating 2-vertices) and we make a
contraction with all vertices of degree 2 (potentially creating 5- and 6-vertices), and we delete
all vertices of degree 5 or 6 (potentially creating 2-vertices), until none of them exist. Let us
consider an arbitrary point of the process when the proportion of 4-vertices is λ and µ = 4λ

3+λ
.

Now deleting a random open edge changes a 4-vertex to a 3-vertex with probability µ and a 3-
vertex to a 2-vertex with probability 1−µ. A 2-vertex contracts two 3-vertices with probability
(1 − µ)2, a 3- and a 4-vertex to a 5-vertex with probability 2µ(1 − µ) and two 4-vertex to a
6-vertex with probability µ2. After a contraction, deleting a these 5- and 6-vertices deletes
5 · 2µ(1−µ) + 6µ2 = (10− 4µ)µ open edges, in expectation. Therefore, if (10− 4µ)µ < 1, then
if we delete an εn fraction of the 4-vertices, then it induces a total of 4

1−(10−4µ)µ
εn deletions

of random open edges, 4(1−µ)
1−(10−4µ)µ

εn contractions, 4µ−4(1−µ)(3−2µ)
1−(10−4µ)µ

εn change in the number of

3-vertices and 4(1−µ)3−4µ−1
1−(10−4µ)µ

εn change in the number of 4-vertices.

After a point where (10 − 4µ)µ = 1, we no longer delete 4-vertices. But there are positive
fractions of 3-, 4- and 5-vertices, we immediately use contractions at all 2-vertices and delete
all 6-, 7- and 8-vertices, and if none of them exist, then we delete a 5-vertex. After two
more phases, the process converges to a stationary degree distribution d3 ≈ 0.55, d4 ≈ 0.26,
d5 ≈ 0.131, d6 ≈ 0.055 and d7 ≈ 0.004. This means that if we run the process with this
degree distribution, then the number of vertices of each kind decreases proportionally, their
ratio remains the same. We delete approximately 24%, 50%, 25% and 0.5% of the vertices in
the four phases, respectively (in the sense that a contraction counts two deletions). We note
that the total proportion of 5-, 6- and 7-vertices, compared to the original number of vertices

3

remains below 0.016 throughout the process.
We made a minor improvement that in the first phase, when we choose a vertex of degree

4, we choose its four neighbors, and if we find two of them with degree 4, then we delete those
two vertices and apply contraction at the original vertex. Otherwise we just delete the original
vertex. Unfortunately, this improved the resulting independence ratio from 0.445312 to only
0.445327. The computer calculation can be found at http://codepad.org/dtBqmn2H .

Now we sketch how this process can be applied in any graph with large girth. This is a
classical technique from local algorithms, also described in [7]. We approximate this continuous
process by a finite-round discretized version, similarly to what the numeric calculation does.
Namely, in each round, we delete εn vertices of the highest degrees, and then we make the con-
tractions at the 2-vertices. When we delete some of the vertices of the same degree, then we use
independent randomization at each vertex, with the same probability. Say, in the second phase,
we delete all 6- 7- and 8-vertices, and we delete each 5-vertex with a small fixed probability.
We stop the process when the survival graph has less than εn vertices, in expectation. Hereby,
the resulting independence ratio can be arbitrarily close to the ratio provided by the continuous
process. This way, after a constant number of rounds, the result at each vertex depends only
on the randomization in its constant-radius neighborhood. Therefore, the probability of being
in the independent set depends only on the constant radius neighborhood of the vertex. Thus,
we can construct a random independent set of expected size 0.445327 in any graph with girth
large enough.

Almost the same process provides independence ratio 0.404073 on 4-regular graphs. The
only difference is that if we have no vertex of degree 2 or at least 6, then we do the following.
We choose a 3-vertex v, we choose its neighbors, and if all of them are 3-vertices, then we delete
v, otherwise we delete its neighbor with the highest degree, and apply contraction at v. The
computer calculation can be found at http://codepad.org/lEBUQJu2 .

3 Results on the size of the maximum cut

With almost the same techniques, we construct a cut with relative size 1.34105 on large-girth
3-regular graphs. However, we will temporarily have multiple-vertex components. We will color
the vertices with the output colors red and green. Except that we will color some vertices v the
”temporary output color” white and choose a neighbor w of v in the survival graph declaring
that after the end of the process, if w will be red, then v will be recolored green, and if w will
be green, then v will be red. Whenever we assign an output color to the vertex, we immediately
remove it from the survival graph. At the very last step, we will not use the color white, this
guarantees that all vertices will have the final color red or green. The role of red and green will
be symmetric and their distributions will be the same throughout the process.

For the types of the survival vertices, we use the notation [list of output colors R, W or G
of neighbors]. E.g. [] denotes a 3-vertex, [R] denotes a 2-vertex in the survival graph with a red
third neighbor, [GG] is a 1-vertex with two other green neighbors. Components are denoted
by e.g. []− [R]− [G], all of our components will be paths, and vertices of type T will be called
T -vertices.

Observation 2. For a [W]-vertex v, let us delete it and if both of its neighbors are in the
component, then we connect these two neighbors and we flip the colors from red to green and
vice versa on one side of v. E.g. [R]− [W]− [R] is transformed to [R]− [G] or [G]− [R], and
[] − [W] − [R] − [W] − [W] − [R] − [W] − [G] − [W] is transformed to [] − [G] − [G] − [G] or
[] − [R] − [R] − [R]. When a component with flipped colors expands, then this flipping extends
to the new vertices. The final color of v will be the opposite of the color of one of its neighbors.

4

http://codepad.org/dtBqmn2H
http://codepad.org/lEBUQJu2

Therefore, assuming that the entire process is symmetric to red and green, we can delete all
vertices of type [W] with each time just increasing the number of good edges by 1.

Observation 3. A subgraph [R] − [R] − [R] can be replaced with [R] so that the output color
of the left and right vertices will be the same as the color of the new vertex, and the color of
the middle vertex will be the opposite of it. With this transformation, we should increase the
number of good edges (which is in the cut) by 3 and the number of bad edges by 1.

The following table shows the list of components in the survival graph and the action we
make with them. We apply these rules for any subgraphs of the components of the survival
graph. Also, we apply the rules with exchanging red and green.

Component After action Action in words

[RR] or [RW] G color it green
[RG] or [WW] W color it white, choose the only survival neighbor

[W] nothing apply Observation 2
[G]− [R] R,G color them red and green
[]− [R]− [] [G], G, [G] color the middle vertex green

[]− [R]− [R]− [] [G], G, [RG]− [] color one of the middle vertices green
[R]− [R]− [R] ∼= [R] apply Observation 3

[]− [R] []− [R]−? query the other neighbor of [R]
[]− [R]− [R] []− [R]− [R]−? query the other neighbor of the second [R]

[R]
lowest priority: IF we only have components [] and [R] and [G]:

[R]−? we query a neighbor of a random [R] or [G]

We apply the last step with [R] or [G] with equal probabilities, each time independently.
The distribution of the components at an intermediate step is λ proportion of [R], λ proportion
of [G] and 1 − 2λ proportion of [], ignoring the [W]-vertices. All the other components are
removed immediately. In order to follow the process, we have to solve the following equation
system describing what happens while the number of []-vertices decreases by 1. p = 2λ

2+2λ
, c

refers to the expected number of times the different types of actions are used, vR is the change
in the total number of [R]- and [G]-vertices, r is the number of times we match an open edge
of a vertex with output color red or green to a random open edge, w is the same for white, g
and b are the number of good and bad edges (in or not in the cut).

vR = −cR − 2p · (cR + r + c3R + c3RR + cRR + w) + (1− 2p) · (r + c3RR) + (2− 3p) · c3R + p · cRR

0 = −r + p · (2 · cR + r + c3R + c3RR + cRR + 2 · w)

0 = −c3R + (1− 2p) · cR + p · c3RR

0 = −c3RR + p · c3R + (1− 2p) · cRR

0 = −cRR + p · cR

0 = −w + p · (r + cRR)

−1 = −(1− 2p) · (cR + r + c3R + c3RR + cRR + w)

g = 3p · cR + 4p · r + (1 + p) · c3R + (4 + p) · c3RR + 8p · cRR + w

b = p · r + c3RR + 2p · cRR

The results multiplied by 2 − 4p − 4p2 + 8p3 + 2p4 − 4p5 are vR = 1 − 8p + 4p2 + 8p3 +
3p4 − 10p5, g = 1 + 8p − 11p2 − 6p3 + 12p5 and b = p(1 − p)2(2 + p + 2p2). From here,
http://codepad.org/f66tIj1o shows the computer calculation.

5

http://codepad.org/f66tIj1o

References

[1] Béla Bollobás. The independence ratio of regular graphs. Proceedings of the American
Mathematical Soc., pages 433–436, 1981.

[2] Endre Csóka, Balázs Gerencsér, Viktor Harangi, and Bálint Virág. Invariant gaussian
processes and independent sets on regular graphs of large girth. Random Structures &
Algorithms, 47(2):284–303, 2015.

[3] Josep Dı́az, Norman Do, MJ Sernal, and Nicholas C Wormald. Bisection of random cubic
graphs. In Randomization and Approximation Techniques in Computer Science, pages
114–125. Springer, 2002.

[4] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs.
In Proceedings of the 5th conference on Innovations in theoretical computer science, pages
369–376. ACM, 2014.

[5] Jan Hladkỳ. Bipartite subgraphs in a random cubic graph. Bachelor Thesis, Charles
University, 2006.

[6] Carlos Hoppen. Properties of graphs with large girth. 2008.

[7] Carlos Hoppen and Nicholas Wormald. Local algorithms, regular graphs of large girth,
and random regular graphs. arXiv preprint arXiv:1308.0266, 2013.

[8] Frantǐsek Kardoš, Daniel Král’, and Jan Volec. Fractional colorings of cubic graphs with
large girth. SIAM Journal on Discrete Mathematics, 25(3):1454–1476, 2011.

[9] Frantǐsek Kardoš, Daniel Král’, and Jan Volec. Maximum edge-cuts in cubic graphs with
large girth and in random cubic graphs. Random Structures and Algorithms, 41(4):506–520,
2012.

[10] B. D. McKay. Independent sets in regular graphs of high girth. Ars Combin., 23A:179–185,
1987.

[11] Brendan D McKay. Maximum bipartite subgraphs of regular graphs with large girth. In
Proceedings of the 13th Southeastern Conf. on Combinatorics, Graph Theory and Comput-
ing, Boca Raton, Florida, 1982.

[12] James B Shearer. A note on the independence number of triangle-free graphs. Discrete
Mathematics, 46(1):83–87, 1983.

[13] Lenka Zdeborová and Stefan Boettcher. A conjecture on the maximum cut and bisection
width in random regular graphs. Journal of Statistical Mechanics: Theory and Experiment,
2010(02):P02020, 2010.

6

Appendix

We show here the program codes we used. In these calculations, the proportions which should
be 0 are fluctuating between ±ε. We note that many different ways of calculations were tested,
and all of them agree with 6 digits precision. These codes run at codepad.org, in C++.

Independence ratio for large-girth 3-regular graphs

http://codepad.org/dtBqmn2H

int main()

{

const long double eps = 0.0000000063;

cout << setprecision(9);

const int deg = 8; // Maximum degree + 1

long double v[deg];

for (int i = 0; i < deg; ++i)

v[i] = 0.;

v[3] = 1;

long double independent = 0;

long double erase = 0;

int round = 0;

while (v[3] > eps)

{

++round;

long double s = 0;

for (int i = 3; i < deg; ++i)

if (v[i] > eps)

s += i * v[i];

if (erase > eps)

{

long double r = (erase + eps) / s;

for (int i = 3; i < deg; ++i)

if (v[i] > eps)

{

long double del = r * i * v[i];

v[i] -= del;

v[i - 1] += del;

}

erase = -eps;

}

s = 0;

for (int i = 3; i < deg; ++i)

if (v[i] > eps)

s += i * v[i];

if (v[2] > eps)

{

long double r = (v[2] + eps) / s;

long double add[2 * deg - 3];

for (int i = 3; i < 2 * deg - 3; ++i)

add[i] = 0;

7

http://codepad.org/dtBqmn2H

for (int i = 3; i < deg; ++i)

for (int j = 3; j < deg; ++j)

add[i + j - 2] += i * v[i] * j * v[j];

independent += v[2] + eps;

v[2] = -eps;

for (int i = 3; i < deg; ++i)

v[i] += r * (add[i] / s - 2 * i * v[i]);

for (int i = deg; i < 2 * deg - 3; ++i)

erase += i * r * add[i] / s;

}

int max = deg - 1;

while ((max > 4) && (v[max] < eps))

--max;

v[max] -= 2 * eps;

erase += 2 * max * eps;

if (max == 4)

{

long double p4444 = 2 * eps * pow(4 * v[4] / s, 4);

v[3] -= 4 * p4444;

erase += 12 * p4444;

independent += p4444;

long double p4443 = 8 * eps * pow(4 * v[4] / s, 3) * 3 * v[3] / s;

v[3] -= 3 * p4443;

v[2] -= p4443;

erase += 11 * p4443;

independent += p4443;

long double p4433 = 12 * eps * pow(12 * v[4] * v[3] / s / s, 2);

v[4] += p4433;

v[3] -= 2 * p4433;

v[2] -= 2 * p4433;

erase += 6 * p4433;

independent += p4433;

}

if ((round % 131072 == 0) || (v[3] <= eps))

{

cout << "independent = " << independent;

for (int i = 3; i < deg; ++i)

cout <<", v[" << i << "] = " << v[i];

cout << endl;

}

}

return 0;

}

8

Independence ratio for large-girth 4-regular graphs

http://codepad.org/lEBUQJu2

int main()

{

const long double eps = 0.00000001;

const int deg = 8; // Maximum degree + 1

cout << setprecision(9);

long double v[deg];

for (int i = 0; i < deg; ++i)

v[i] = 0.;

v[4] = 1;

long double independent = 0;

long double erase = 0;

int round = 0;

while (v[4] > eps)

{

++round;

long double s = 0;

for (int i = 3; i < deg; ++i)

if (v[i] > eps)

s += i * v[i];

if (erase > eps)

{

long double r = (erase + eps) / s;

for (int i = 3; i < deg; ++i)

if (v[i] > eps)

{

long double del = r * i * v[i];

v[i] -= del;

v[i - 1] += del;

}

erase = -eps;

}

s = 0;

for (int i = 3; i < deg; ++i)

if (v[i] > eps)

s += i * v[i];

if (v[2] > eps)

{

long double r = (v[2] + eps) / s;

long double add[2 * deg - 3];

for (int i = 3; i < 2 * deg - 3; ++i)

add[i] = 0;

for (int i = 3; i < deg; ++i)

for (int j = 3; j < deg; ++j)

add[i + j - 2] += i * v[i] * j * v[j];

independent += v[2] + eps;

v[2] = - eps;

for (int i = 3; i < deg; ++i)

9

http://codepad.org/lEBUQJu2

v[i] += r * (add[i] / s - 2 * i * v[i]);

for (int i = deg; i < 2 * deg - 3; ++i)

erase += i * r * add[i] / s;

}

int max = deg - 1;

while ((max > 5) && (v[max] < eps))

--max;

if (max > 5)

{

v[max] -= 2 * eps;

erase += 2 * max * eps;

}

else

{

const long double rat3 = 3 * v[3] / (3 * v[3] + 4 * v[4] + 5 * v[5]);

const long double rat4 = 4 * v[4] / (3 * v[3] + 4 * v[4] + 5 * v[5]);

const long double rat5 = 5 * v[5] / (3 * v[3] + 4 * v[4] + 5 * v[5]);

v[2] += eps * 3 * rat3 * rat3 * rat3;

v[3] += eps * (-1 - 3 * rat3);

v[4] += eps * 3 * (- rat4 + rat3 * rat3 * (1 - rat3));

v[5] += eps * 3 * (- rat5 + rat3 * rat4 * (rat4 + 2 * rat5));

independent += eps * (1 - rat3 * rat3 * rat3);

erase += eps * (6 - 12 * rat3 * rat3 + 6 * rat3 * rat3 * rat3

+ (15 * rat3 * rat4 + 3) * (rat4 + 2 * rat5));

}

if ((round % 131072 == 0) || (v[4] <= eps))

{

cout << "independent = " << independent;

for (int i = 3; i < deg; ++i)

cout <<", v[" << i << "] = " << v[i];

cout << endl;

}

}

return 0;

}

10

Size of the maximum cut for large-girth 3-regular graphs

http://codepad.org/f66tIj1o

int main()

{

const long double eps = 0.000000011;

cout << setprecision(9);

long double good = 0;

long double bad = 0;

long double rat3 = 1;

long double rat2 = 0;

int round = 0;

while (rat2 + rat3 > eps)

{

++round;

const long double q = rat2 / (2 * rat2 + 3 * rat3);

const long double q2 = pow(q, 2);

const long double q3 = pow(q, 3);

const long double q4 = pow(q, 4);

const long double q5 = pow(q, 5);

rat2 += eps * (1 - 8 * q + 4 * q2 + 8 * q3 + 3 * q4 - 10 * q5);

rat3 += eps * (-2 + 4 * q + 4 * q2 - 8 * q3 - 2 * q4 + 4 * q5);

good += eps * (1 + 8 * q - 11 * q2 - 6 * q3 + 12 * q5);

bad += eps * q * (1 - q) * (1 - q) * (2 + q + 2 * q2);

if ((round % 1048576 == 0) || (rat2 + rat3 <= eps))

cout << "good = " << good << ", bad = " << bad << ", rat3 = " << rat3

<< ", rat2 = " << rat2 << endl;

}

return 0;

}

11

http://codepad.org/f66tIj1o

	1 Introduction
	2 Results on the independence ratio
	3 Results on the size of the maximum cut

