198 research outputs found

    Models of learning in the visual system: dependence on retinal eccentricity

    Get PDF
    In the primary visual cortex of primates relatively more space is devoted to the representation of the central visual field in comparison to the representation of the peripheral visual field. Experimentally testable theories about the factors and mechanisms which may have determined this inhomogeneous mapping may provide valuable insights into general processing principles in the visual system. Therefore, I investigated to which visual situations this inhomogeneous representation of the visual field is well adapted, and which mechanisms could support its refinement and stabilization during individual development. Furthermore, I studied possible functional consequences of the inhomogeneous representation for visual processing at central and peripheral locations of the visual field. Vision plays an important role during navigation. Thus, visual processing should be well adapted to self-motion. Therefore, I assumed that spatially inhomogeneous retinal velocity distributions, caused by static objects during self-motion along the direction of gaze, are transformed on average into spatially homogeneous cortical velocity distributions. This would have the advantage that the cortical mechanisms, concerned with the processing of self-motion, can be identical in their spatial and temporal properties across the representation of the whole visual field. This is the case if the arrangement of objects relative to the observer corresponds to an ellipsoid with the observer in its center. I used the resulting flow field to train a network model of pulse coding neurons with a Hebbian learning rule. The distribution of the learned receptive fields is in agreement with the inhomogeneous cortical representation of the visual field. These results suggest that self motion may have played an important role in the evolution of the visual system and that the inhomogeneous cortical representation of the visual field can be refined and stabilized by Hebbian learning mechanisms during ontogenesis under natural viewing conditions. In addition to the processing of self-motion, an important task of the visual system is the grouping and segregation of local features within a visual scene into coherent objects. Therefore, I asked how the corresponding mechanisms depend on the represented position of the visual field. It is assumed that neuronal connections within the primary visual cortex subserve this grouping process. These connections develop after eye-opening in dependence on the visual input. How does the lateral connectivity depend on the represented position of the visual field? With increasing eccentricity, primary cortical receptive fields become larger and the cortical magnification of the visual field declines. Therefore, I investigated the spatial statistics of real-world scenes with respect to the spatial filter-properties of cortical neurons at different locations of the visual field. I show that correlations between collinearly arranged filters of the same size and orientation increase with increasing filter size. However, in distances relative to the size of the filters, collinear correlations decline more steeply with increasing distance for larger filters. This provides evidence against a homogeneous cortical connectivity across the whole visual field with respect to the coding of spatial object properties. Two major retino-cortical pathways are the magnocellular (M) and the parvocellular (P) pathways. While neurons along the M-pathway display temporal bandpass characteristics, neurons along the P-pathway show temporal lowpass characteristics. The ratio of P- to M-cells is not constant across the whole visual field, but declines with increasing retinal eccentricity. Therefore, I investigated how the different temporal response-properties of neurons of the M- and the P-pathways influence self-organization in the visual cortex, and discussed possible consequences for the coding of visual objects at different locations of the visual field. Specifically, I studied the influence of stimulus-motion on the self-organization of lateral connections in a network-model of spiking neurons with Hebbian learning. Low stimulus velocities lead to horizontal connections well adapted to the coding of the spatial structure within the visual input, while higher stimulus velocities lead to connections which subserve the coding of the stimulus movement direction. This suggests that the temporal lowpass properties of P-neurons subserve the coding of spatial stimulus attributes (form) in the visual cortex, while the temporal bandpass properties of M-neurons support the coding of spatio-temporal stimulus attributes (movement direction). Hence, the central representation of the visual field may be well adapted to the encoding of spatial object properties due to the strong contribution of P-neurons. The peripheral representation may be better adapted to the processing of motion

    Saliency Driven Vasculature Segmentation with Infinite Perimeter Active Contour Model

    Get PDF
    Automated detection of retinal blood vessels plays an important role in advancing the understanding of the mechanism, diagnosis and treatment of cardiovascular disease and many systemic diseases, such as diabetic retinopathy and age-related macular degeneration. Here, we propose a new framework for precisely segmenting retinal vasculatures. The proposed framework consists of three steps. A non-local total variation model is adapted to the Retinex theory, which aims to address challenges presented by intensity inhomogeneities, and the relatively low contrast of thin vessels compared to the background. The image is then divided into superpixels, and a compactness-based saliency detection method is proposed to locate the object of interest. For better general segmentation performance, we then make use of a new infinite active contour model to segment the vessels in each superpixel. The proposed framework has wide applications, and the results show that our model outperforms its competitors

    Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model

    Get PDF
    A two stage statistical model based on texture and shape for fully automatic choroidal segmentation of normal and pathologic eyes obtained by a 1060 nm optical coherence tomography (OCT) system is developed. A novel dynamic programming approach is implemented to determine location of the retinal pigment epithelium/ Bruch’s membrane /choriocapillaris (RBC) boundary. The choroid–sclera interface (CSI) is segmented using a statistical model. The algorithm is robust even in presence of speckle noise, low signal (thick choroid), retinal pigment epithelium (RPE) detachments and atrophy, drusen, shadowing and other artifacts. Evaluation against a set of 871 manually segmented cross-sectional scans from 12 eyes achieves an average error rate of 13%, computed per tomogram as a ratio of incorrectly classified pixels and the total layer surface. For the first time a fully automatic choroidal segmentation algorithm is successfully applied to a wide range of clinical volumetric OCT data

    Retinal vessel segmentation:An efficient graph cut approach with Retinex and local phase

    Get PDF
    Our application concerns the automated detection of vessels in retinal images to improve understanding of the disease mechanism, diagnosis and treatment of retinal and a number of systemic diseases. We propose a new framework for segmenting retinal vasculatures with much improved accuracy and efficiency. The proposed framework consists of three technical components: Retinex-based image inhomogeneity correction, local phase-based vessel enhancement and graph cut-based active contour segmentation. These procedures are applied in the following order. Underpinned by the Retinex theory, the inhomogeneity correction step aims to address challenges presented by the image intensity inhomogeneities, and the relatively low contrast of thin vessels compared to the background. The local phase enhancement technique is employed to enhance vessels for its superiority in preserving the vessel edges. The graph cut-based active contour method is used for its efficiency and effectiveness in segmenting the vessels from the enhanced images using the local phase filter. We have demonstrated its performance by applying it to four public retinal image datasets (3 datasets of color fundus photography and 1 of fluorescein angiography). Statistical analysis demonstrates that each component of the framework can provide the level of performance expected. The proposed framework is compared with widely used unsupervised and supervised methods, showing that the overall framework outperforms its competitors. For example, the achieved sensitivity (0:744), specificity (0:978) and accuracy (0:953) for the DRIVE dataset are very close to those of the manual annotations obtained by the second observer

    Children, Humanoid Robots and Caregivers

    Get PDF
    This paper presents developmental learning on a humanoid robot from human-robot interactions. We consider in particular teaching humanoids as children during the child's Separation and Individuation developmental phase (Mahler, 1979). Cognitive development during this phase is characterized both by the child's dependence on her mother for learning while becoming awareness of her own individuality, and by self-exploration of her physical surroundings. We propose a learning framework for a humanoid robot inspired on such cognitive development

    Automatic segmentation and classification methods using optical coherence tomography angiography (Octa): A review and handbook

    Get PDF
    Optical coherence tomography angiography (OCTA) is a promising technology for the non-invasive imaging of vasculature. Many studies in literature present automated algorithms to quantify OCTA images, but there is a lack of a review on the most common methods and their comparison considering multiple clinical applications (e.g., ophthalmology and dermatology). Here, we aim to provide readers with a useful review and handbook for automatic segmentation and classification methods using OCTA images, presenting a comparison of techniques found in the literature based on the adopted segmentation or classification method and on the clinical application. Another goal of this study is to provide insight into the direction of research in automated OCTA image analysis, especially in the current era of deep learning
    corecore