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Learning is not compulsory... neither is survival.

W. Edwards Deming (1900 - 1993)





Zusammenfassung

Im primären Sehkortex von Primaten nimmt die Repräsentation des zentralen Sehfeldes

einen verhältnismäßig größeren Raum ein als die des peripheren Sehfeldes. Experimentell

überprüfbare Theorien bezüglich der Faktoren und Mechanismen, die zu dieser inhomogenen

Repräsentation geführt haben, können wertvolle Hinweise auf allgemeine Verarbeitungsprin-

zipien im Sehsystem liefern. Ich habe daher untersucht, an welche Sehsituationen diese

inhomogene Repräsentation des Sehfeldes angepasst ist und welche Mechanismen zu ihrer

Verfeinerung und Stabilisierung während der individuellen Entwicklung beitragen könnten.

Weiterhin habe ich die funktionelle Bedeutung dieser inhomogenen Repräsentation für die

visuelle Verarbeitung an zentralen und peripheren Orten des Sehfeldes untersucht.

Die Verarbeitung von Sehinformationen spielt während Eigenbewegung eine wichtige

Rolle und sollte daher gut an diese spezielle Situation angepasst sein. Ich habe daher ange-

nommen, dass retinale Geschwindigkeitsverteilungen, diedurch statische Objekte während

Eigenbewegung entlang der Blickrichtung auftreten, durchdie inhomogene kortikale Re-

präsentation des Sehfeldes im Mittel in räumlich homogene kortikale Geschwindigkeitsver-

teilungen transformiert werden. Dies hätte den Vorteil, dass die kortikalen Mechanismen

zur Verarbeitung von Eigenbewegung über das gesamte Sehfeld identisch aufgebaut sein

könnten. Das ist der Fall, wenn die Anordnung der Sehobjekte relativ zum Beobachter

in etwa einem Ellipsoid mit dem Beobachter im Mittelpunkt entspricht. Das daraus re-

sultierende Flussfeld habe ich benutzt, um ein neuronales Netzwerkmodell mittels einer

Hebb’schen Lernregel zu trainieren. Die räumliche Verteilung der gelernten rezeptiven Felder

entspricht der inhomogenen kortikalen Repräsentation des Sehfeldes. Diese Ergebnisse zei-

gen, dass Eigenbewegung eine wichtige Rolle bei der Evolution des Sehsystems gespielt

haben könnte, und dass die inhomogene kortikale Repräsentation des Sehfeldes während der

individuellen Entwicklung durch Hebb’sche Lernmechanismen in natürlichen Sehsituationen

verfeinert und stabilisiert werden kann.

Neben der Verarbeitung von Eigenbewegung spielt die Gruppierung und Trennung lo-

kaler räumlicher Sehmerkmale in Sehobjekte eine wichtigeRolle bei der visuellen Ver-

arbeitung. Daher habe ich mir die Frage gestellt, wie die entsprechenden Mechanismen

von der repräsentierten Position des Sehfeldes abhängen. Es wird vermutet, dass neuronale

Verbindungen innerhalb des primären Sehkortex diesen Gruppierungsprozess unterstützen.

Diese Verbindungen werden erst nach der Geburt in Abhängigkeit von der Seherfahrung

spezifiziert. Wie hängt die laterale Verschaltungsstruktur von der repräsentierten Position des

Sehfeldes ab? Mit zunehmendem Sehwinkel werden die rezeptiven Felder der Neuronen im



primären Sehkortex größer, und die kortikale Vergrößerung des Sehfeldes nimmt ab. Daher

habe ich die räumliche Statistik von realen Sehszenen in Abhängigkeit von den räumlichen

Filtereigenschaften kortikaler Neuronen an unterschiedlichen Positionen des Sehfeldes un-

tersucht. Ich zeige, dass die Korrelationen zwischen kollinear angeordneten Filtern gleicher

Orientierung und Größe mit zunehmender Filtergröße längerreichweitig werden. Normiert

man die Abstände der Filter aber auf die Filtergröße, fallen die kollinearen Korrelationen

zwischen großen Filtern schneller mit zunehmendem Abstandab als die zwischen kleinen

Filtern. Das spricht gegen eine homogene kortikale laterale Verschaltungsstruktur über den

gesamten Sehraum bezüglich der Codierung von Objektkonturen.

Zwei wichtige retino-kortikale Signalverarbeitungspfade sind der magnozelluläre (M)

und der parvozelluläre (P) Pfad. Während Neuronen des M-Pfades eine zeitliche Bandpass-

Charakteristik aufweisen, zeigen Neuronen des P-Pfades zeitliches Tiefpassverhalten. Das

Verhältnis von P- zu M-Neuronen ist nicht über das gesamteSehfeld konstant, sondern

nimmt mit zunehmendem Sehwinkel ab. Ich habe daher untersucht, wie sich die unter-

schiedlichen zeitlichen Antworteigenschaften von Neuronen des M- und des P-Pfades auf

die Selbstorganisation im Sehkortex auswirken und was diesfür die Codierung von Seh-

objekten an unterschiedlichen Orten des Sehfeldes bedeutet. Exemplarisch habe ich den

Einfluss der Bewegung von Sehreizen auf die Selbstorganisation horizontaler Verbindungen

an einem Netzwerkmodell mit impulscodierenden Neuronen und Hebb’schem Lernen un-

tersucht. Niedrige Reizgeschwindigkeiten führen zu lateralen Verbindungen, die der räum-

lichen Struktur der Sehreize angepasst sind, wohingegen h¨ohere Reizgeschwindigkeiten zu

einer Verschaltungsstruktur führen, die die Codierung der Bewegungsrichtung der Sehreize

unterstützt. Dies lässt vermuten, dass die zeitlichen Tiefpasseigenschaften von P-Neuronen

die Codierung von räumlichen Reizmerkmalen (Form) unterstützen, wohingegen die zeit-

lichen Bandpasseigenschaften der M-Neuronen die Codierung von raum-zeitlichen Reiz-

merkmalen (Bewegungsrichtung) unterstützen. Das deutetdarauf hin, dass besonders das

zentrale Sehfeld, mit seinem hohen Anteil an P-Neuronen, f¨ur die Codierung von räumlichen

Objektmerkmalen geeignet ist, wohingegen das periphere Sehfeld besser an die Codierung

der Bewegung von Sehobjekten angepasst ist.



Abstract

In the primary visual cortex of primates relatively more space is devoted to the representa-

tion of the central visual field in comparison to the representation of the peripheral visual

field. Experimentally testable theories about the factors and mechanisms which may have

determined this inhomogeneous mapping may provide valuable insights into general pro-

cessing principles in the visual system. Therefore, I investigated to which visual situations

this inhomogeneous representation of the visual field is well adapted, and which mechanisms

could support its refinement and stabilization during individual development. Furthermore,

I studied possible functional consequences of the inhomogeneous representation for visual

processing at central and peripheral locations of the visual field.

Vision plays an important role during navigation. Thus, visual processing should be

well adapted to self-motion. Therefore, I assumed that spatially inhomogeneous retinal ve-

locity distributions, caused by static objects during self-motion along the direction of gaze,

are transformed on average into spatially homogeneous cortical velocity distributions. This

would have the advantage that the cortical mechanisms, concerned with the processing of

self-motion, can be identical in their spatial and temporalproperties across the representa-

tion of the whole visual field. This is the case if the arrangement of objects relative to the

observer corresponds to an ellipsoid with the observer in its center. I used the resulting flow

field to train a network model of pulse coding neurons with a Hebbian learning rule. The

distribution of the learned receptive fields is in agreementwith the inhomogeneous cortical

representation of the visual field. These results suggest that self motion may have played an

important role in the evolution of the visual system and thatthe inhomogeneous cortical rep-

resentation of the visual field can be refined and stabilized by Hebbian learning mechanisms

during ontogenesis under natural viewing conditions.

In addition to the processing of self-motion, an important task of the visual system is

the grouping and segregation of local features within a visual scene into coherent objects.

Therefore, I asked how the corresponding mechanisms dependon the represented position

of the visual field. It is assumed that neuronal connections within the primary visual cortex

subserve this grouping process. These connections developafter eye-opening in dependence

on the visual input. How does the lateral connectivity depend on the represented position

of the visual field? With increasing eccentricity, primary cortical receptive fields become

larger and the cortical magnification of the visual field declines. Therefore, I investigated the

spatial statistics of real-world scenes with respect to thespatial filter-properties of cortical

neurons at different locations of the visual field. I show that correlations between collinearly



arranged filters of the same size and orientation increase with increasing filter size. How-

ever, in distances relative to the size of the filters, collinear correlations decline more steeply

with increasing distance for larger filters. This provides evidence against a homogeneous

cortical connectivity across the whole visual field with respect to the coding of spatial object

properties.

Two major retino-cortical pathways are the magnocellular (M) and the parvocellular

(P) pathways. While neurons along the M-pathway display temporal bandpass character-

istics, neurons along the P-pathway show temporal lowpass characteristics. The ratio of P-

to M-cells is not constant across the whole visual field, but declines with increasing reti-

nal eccentricity. Therefore, I investigated how the different temporal response-properties of

neurons of the M- and the P-pathways influence self-organization in the visual cortex, and

discussed possible consequences for the coding of visual objects at different locations of the

visual field. Specifically, I studied the influence of stimulus-motion on the self-organization

of lateral connections in a network-model of spiking neurons with Hebbian learning. Low

stimulus velocities lead to horizontal connections well adapted to the coding of the spatial

structure within the visual input, while higher stimulus velocities lead to connections which

subserve the coding of the stimulus movement direction. This suggests that the temporal

lowpass properties of P-neurons subserve the coding of spatial stimulus attributes (form) in

the visual cortex, while the temporal bandpass properties of M-neurons support the coding of

spatio-temporal stimulus attributes (movement direction). Hence, the central representation

of the visual field may be well adapted to the encoding of spatial object properties due to the

strong contribution of P-neurons. The peripheral representation may be better adapted to the

processing of motion.
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Chapter 1

Introduction

The human visual system is a highly complex system, able to rapidly process huge amounts

of sensory information. We are able to recognize known objects in different views and dis-

tances, under different lighting conditions, and we perceive locations in space as stable. This

is a remarkable achievement, especially if one considers the continuously changing projec-

tions of the external visual world on our retinas due to self-motion, eye-movements, and the

movement of objects like other people or animals. These accomplishments enable us to suc-

cessfully navigate in and interact with our environment, which is a crucial precondition for

our survival.

From the moment when light is absorbed by the photoreceptorsof our retinas, visual in-

formation is processed in highly parallel networks of nervecells (neurons), in order to form

an internal representation of the outer visual world. To allow an organism to successfully

interact with its environment, the structure of this internal representation must correspond

well to the structure of the external world. Although the rawstructure of the visual system

is determined genetically, many properties depend on visual experience during individual

development, as can be demonstrated by altering specific aspects of the visual input an or-

ganism receives during early stages of development (e.g., Wiesel and Hubel, 1963; Hubel

et al., 1977).

Many scientific disciplines, including neurophysiology, neurobiology, neurophysics, and

psychophysics, have spent much time and effort to better understand the characteristics of

this internal representation and how it adapts on evolutionary and ontogenetic timescales

according to the characteristics of the environment. A better understanding can lead to the

development of flexible technical systems which are able to dynamically and effectively

adapt to spatio-temporal regularities in their environment.
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Figure 1.1: LINEAR DECREASE IN SPATIAL RESOLUTION. (A) Original image with constant

resolution across the whole image. (B) The image is computedfrom the original image by

replacing each pixel by a Gaussian weighted average of its original intensity value and its

surrounding intensity values, with the standard deviationof the Gaussian kernel increasing

linearly with distance from the center. Note that the crane in the center of the image appears

crisp and sharp, while spatial details are lacking in the surrounding scene.

1.1 About this Thesis

1.1.1 Aim

The human visual system samples the external world in a spatially inhomogeneous fashion

(e.g., Daniel and Whitteridge, 1961). Spatial resolution is highest along the direction of gaze

and drops sharply with increasing retinal eccentricity1. Thus, an object whose image falls

on the central region of the retina (fovea) is perceived withhigher spatial resolution than an

object whose image falls outside the central region. This decrease in spatial resolution is

illustrated in Figure 1.1, where a photograph was spatiallyblurred, with the amount of blur

increasing linearly with distance from the center.

Several factors may have played a role during the evolution of this spatially inhomoge-

neous mapping. High spatial resolution enables us to perform actions which require fine

visual and visuo-motor control, like building intricate tools, the visual distinction of friends

from enemies (possibly even at larger distances), or reading this thesis. Limiting factors

are, however, the volume of the eyes, the diameter of the optic nerve, and the size of the

brain. The inhomogeneous retino-cortical mapping may be seen as an evolutionary solution

to these antagonistic constraints. The visual system provides high spatial resolution only in

1Retinal Eccentricityor Eccentricityis the angular deviation of a visual target from the direction of gaze.
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the fovea, and requires eye movements over large areas of thevisual field for the perception

at high spatial resolution. This explanation, however, cannot quantitatively account for the

shape of the inhomogeneous retinal cortical mapping. Experimentally testable theories about

the factors and mechanisms which may have determined this inhomogeneous mapping may

provide valuable insights into general processing mechanisms of the visual system.

Therefore, we2 investigated to which properties of the visual input the spatially inho-

mogeneous retino-cortical mapping of visual space is well adapted and which biologically

plausible principles could lead to its emergence and stabilization under natural viewing con-

ditions. Furthermore, we studied possible functional consequences for visual processing at

central and peripheral locations of the visual field.

We demonstrate that the global retino-cortical mapping maybe well adapted to self-

motion of an observer in its environment. Vision plays an important role in the control

of goal-directed movements during self-motion, thus it seems plausible that the structure

of visual systems is well adapted to this special situation.The importance of motion for

the processing of visual information can be anticipated by the ubiquity of visual motion

processing mechanisms in different species. From insects (Hassenstein and Reichardt, 1956;

Egelhaaf and Borst, 1993), frogs (Barlow, 1953), cats (Hubel and Wiesel, 1962) to primates

(Hubel and Wiesel, 1968), every organism with a visual system has developed mechanisms

for the processing of visual motion, despite their vastly different natural environments and

lifestyles.

However, in addition to the processing of self-motion, an important task of the visual

system is to group and segregate local spatial features within a visual scene into coherent

objects. Real-world3 visual scenes have characteristic statistical spatial properties that distin-

guish them from random noise distributions (e.g., Field, 1987; Ruderman and Bialek, 1994;

Zetzsche and Röhrbein, 2001). Several studies have demonstrated a correspondence between

the statistical structure of real world scenes on the one hand and the neurophysiological and

perceptual properties of visual processing on the other hand (e.g., Olshausen and Field, 1996;

Bell and Sejnowski, 1997; Geisler et al., 2001).

How well is the spatially inhomogeneous retino-cortical mapping adapted to the spatial

structure of the external environment? To investigate thisquestion, we studied the statistics

2Although major parts of this thesis, and all of the computations, are the work of a single author,I use the

form we throughout this thesis to account for the fact that many ideas arose from discussions with colleagues

and the study of scientific publications written by others.
3Throughout the thesis we make a distinction betweennatural scenes, containing only natural objects, and

real-world scenes, which can also contain man-made objects, like cars or houses.
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of real-world scenes with respect to the spatial filter-properties of cortical neurons at different

eccentricities.

Visual information is processed along parallel neuronal pathways with different spatial

and temporal filter properties. Two major retino-cortical pathways are the magnocellular (M)

and the parvocellular (P) pathways, originating in the retina (Perry et al., 1984). While neu-

rons along the M-pathway exhibit temporal bandpass characteristics and provide an achro-

matic, spatially coarse representation of the visual world, neurons along the P-pathway dis-

play temporal lowpass characteristics and provide spatially fine chromatic details (Merigan

et al., 1991a,b). The ratio of P- to M-neurons is not constantacross the whole visual field.

The central visual field is sampled more densely by the P-pathway than by the M-pathway.

With increasing eccentricity, the ratio of P- to M-inputs tothe visual cortex declines from

approximately 35:1 in the fovea to 5:1 at15◦ eccentricity in monkeys (e.g., Azzopardi et al.,

1999).

What is the influence of the retino-cortical M- and P-pathways on the self-organization

in the visual cortex according to spatial and temporal properties in the visual input? What

are the functional consequences of the inhomogeneous representation of the visual field by

neurons of the M- and the P-pathways for visual processing atdifferent eccentricities? We

investigated how the different temporal response properties of neurons along the P- and M-

pathways may subserve the learning of either object-properties corresponding to the spa-

tial structure of the visual input (object forms), or properties corresponding to the spatio-

temporal structure of the visual input (object motion).

1.1.2 Methods

This thesis is theoretical in nature. We performed numerical simulations and calculations

which aimed to mimick basic known aspects of early stages of visual processing. The hu-

man brain consists of approximately1011 neurons, which are believed to be the substrate

of the cognitive processing. Each neuron interacts directly with about 10,000 other neurons

(Braitenberg and Schüz, 1991). This enormous complexity alone prevents us to envision a

model of the entire human brain. Another limitation is the fact that current experiments,

intricate as they are, fail to provide data about how these neurons interact. This is where

biologically motivated theoretical models come into play.The interaction between experi-

ments and theoretical models can iteratively lead to new insights into the principles of neural

processing. While experiments can provide models with biologically realistic constraints,

models can make predictions which can be verified experimentally and in turn provide new
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input for more sophisticated models.

Although we are primarily interested in how the human visualsystem works, we treat the

human and the mammalian cortex in parallel throughout this thesis and highlight distinctions

only where necessary. At first sight, the brains of cats, monkeys and humans do not have

much in common, besides the fact that we do not understand anyof them. However, there

are considerable similarities in the structure of their visual systems, due to the similarities in

their natural environments and their common evolutionary heritage.

In the following we will provide the biological background for this thesis.

1.2 Parallel Processing in the Visual System

1.2.1 Retino-Cortical Processing Pathways

In the eyes, light is focused by cornea and eye lens to form a two-dimensional image on

each retina. The retinal photoreceptors, which can be divided into rods and cones, transduce

the absorbed light into electrical activity. Rods dominateachromatic vision at low levels

of illumination, while cones provide color vision at higherlevels of illumination. From the

photoreceptors information is passed to the retinal bipolar cells. Bipolar cells have spatial

classical receptive fields (cRFs) with a so-called center-surround organization: The direct

input from a group of photoreceptors is balanced by a group ofantagonistic inputs from a

larger spatial region, presumably mediated by neighboringhorizontal cells (e.g., Dacey et al.,

2000). Half of the bipolar cells are hyperpolarized by lightonset in their cRF center (OFF-

center bipolar cells), the other half is depolarized by light onset (ON-center bipolar cells).

The bipolar cells project to approximately 1.5 million retinal ganglion cells (Rodieck, 1988).

Two important morphologically distinct classes of retinalganglion cells are themidget or

parvocellular (P) cellsand theparasol or magnocellular (M) cells. Approximately 80%

of the retinal ganglion cells are of the P-type and have smallcell bodies, thin axons, and

small dendritic trees. In contrast, M-type ganglion cells have large cell bodies, thick axons

and large dendritic trees4 (Watanabe and Rodieck, 1989). Via the optic nerve, most of the

retinal ganglion cells project to the lateral geniculate nucleus (LGN). The LGN has a layered

structure, consisting of six main layers. The upper four layers (parvocellular or P-layers)

receive inputs from retinal P-cells, while the lower two layers (magnocellular or M-layers)

receive inputs from retinal M-cells. The functionally distinct M- and P-fibers from the LGN

project to segregated sublamina of the primary visual cortex.

4The dendritic tree of M-cells resembles a parasol, hence thename.
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Neurons along the M- and P-pathways differ in their sensitivity with respect to different

stimulus attributes:

Spatial sensitivity. While P-cells have relatively small cRFs, the diameters of the cRF cen-

ters of neighboring M-cells are approximately 2 times larger (e.g., De Monasterio and

Gouras, 1975; Derrington and Lennie, 1984; Croner and Kaplan, 1995). Additionally,

some M-cells exhibit nonlinear spatial summation, while the remaining M- and P-cells

show nearly linear spatial summation (Marrocco et al., 1982; Kaplan and Shapley,

1982).

Temporal sensitivity. P-cells respond in a more sustained fashion (resembling a temporal

lowpass filter) to light onset or offset in comparison to M-cells (resembling a tempo-

ral bandpass filter) (Marrocco et al., 1982; Hicks et al., 1983; Purpura et al., 1990;

Kaplan and Bernadete, 2001). P-cells respond best to stimuli temporally modulated

at about 10 Hz and they generally cannot follow temporal modulations at frequencies

higher than 20-30 Hz. M-cells, on the other hand, respond best to temporal modula-

tions at 20 Hz and greater and can follow temporal modulations up to 60-80 Hz (review:

Van Essen and Anderson, 1995).

Spectral sensitivity. P-cells encode most of the chromatic information within a visual scene

due to the spectral opponency of their cRF center and surround, while M-cells are virtu-

ally insensitive to color (e.g., De Monasterio, 1978; Reid and Shapley, 1992; De Valois

and De Valois, 1993).

Contrast sensitivity. While M-cells respond to changes in luminance contrast as low as 1%,

P-cells rarely respond to contrasts below 10% (Purpura et al., 1988; Sclar et al., 1990;

Shapley et al., 1981; Derrington and Lennie, 1984).

Perceptually, lesions of the parvocellular layers of the LGN cause a 3- to 4-fold reduc-

tion in spatial acuity in monkeys while magnocellular lesions do not affect acuity (Merigan

et al., 1991a,b). Luminance and chromatic contrast sensitivities for static gratings of high

spatial frequencies are reduced for parvocellular lesions, but not for magnocellular lesions.

However, luminance contrast sensitivity for low spatial frequency gratings, modulated at 10

Hz is reduced by both parvocellular and magnocellular lesions.

In conclusion, the retino-cortical parvocellular pathwayprovides a chromatic representa-

tion of the visual world at high spatial but low temporal frequencies, while the magnocellular

pathway provides an achromatic representation at low spatial but high temporal frequencies.
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Nevertheless, the sensitivities of neurons along both pathways overlap considerably in both

the temporal and the spatial domain.

1.2.2 Cortical Processing Pathways

The visual cortex is commonly divided into functionally different regions called cortical

areas, which can be distinguished by the response properties of their neurons. There are at

least 32 distinct areas involved in visual processing (e.g., Felleman and Van Essen, 1991).

Neurons within each area form numerous connections with neurons in the same area, and

provide feedback and feed-forward connections to neurons of other cortical areas, often in a

reciprocal fashion (e.g., Felleman and Van Essen, 1991; VanEssen and Gallant, 1994). Early

visual areas such as V1, V2, and MT have a retinotopic organization, which means that the

spatial arrangement of neurons preserves the local topography of the visual field with respect

to their cRFs.

The Primary Visual Cortex

The primary visual cortex (area V1, striate cortex) constitutes the first stage of cortical vi-

sual processing and receives an organized array of projections from the LGN. Neurons in

V1 process information in a localized fashion, generating various representations which are

distributed to other, more specialized areas. The responseproperties of neurons in V1 are

substantially different from the center-surround organization of the cRFs of neurons in retina

and LGN. Many neurons in V1 show selectivity for the orientation of stimuli (like bars),

spatial frequency, ocular dominance and color (e.g., Hubeland Wiesel, 1959). Depending

on their response properties, neurons in V1 are commonly classified as simple or complex

cells (Hubel and Wiesel, 1962). The cRFs of simple cells can be subdivided into separate

antagonistic subregions whose spatial profiles can be approximated by a sine wave, weighted

with a Gaussian envelope (Marčelja, 1980; Pollen and Ronner, 1981; De Valois et al., 1982;

De Valois and De Valois, 1988). Complex cells, on the other hand, are also orientation selec-

tive, but insensitive to the exact position of the stimulus within their cRF (Hubel and Wiesel,

1962). Some simple and complex cells are selective for the direction of stimulus motion

(Hubel and Wiesel, 1968). They respond strongly to orientedbars or gratings moving in a

specific direction, but only weakly to stimuli moving in the opposite direction.

V1 can be divided into six different layers. M- and P-fibers from the LGN terminate in

separate sublamina within layer 4C, 4Cα and 4Cβ, respectively. From there, fibers project to

layers 2, 3, and 4B before projecting to higher cortical areas. Layers 2 and 3 can be divided
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into a mosaic of small regions called blobs, with dividing areas called inter-blobs. Blob

regions, which receive both M- and P-input, are sensitive tocolor and stimulus contrast, but

less to stimulus orientation or motion. Neurons in inter-blob regions which receive mainly

P-input are selective for stimulus orientation, but insensitive to color and motion. Neurons

in layer 4B, which mainly receive M-input, are selective forthe orientation and direction of

motion, but not for color (Livingstone and Hubel, 1984, 1988).

Higher Visual Areas - Dorsal and Ventral Pathways

The many visually driven cortical areas are commonly divided into a ventral and a dorsal

pathway. The ventral pathway leads from area V1 to the inferior temporal cortical areas,

while the dorsal pathway leads from V1 to the posterior parietal cortex (Ungerleider and

Mishkin, 1982). Experimental findings in monkeys and humanssupport the possibility that

these two pathways serve different visual functions. The ventral pathway is thought to be in-

volved in the identification of objects (What-path), while the dorsal pathway is crucial for the

spatio-temporal localization of objects (Where-path). Ungerleider and Mishkin (1982) found

that monkeys with lesions of the inferotemporal cortex had deficits in the discrimination and

recognition of visual patterns, but not in solving distancediscrimination tasks. Lesions of

the posterior parietal cortex produced impaired performance for the distance discrimination

task while retaining the performance during object discrimination learning. Human patients

with lesions in the parietal cortex, but with intact temporal cortex, are able to discriminate

objects according to their shape, but have difficulties grasping them. Conversely, patients

with lesions in the temporal cortex can respond to a stimuluswith a grasping action but are

not able to discriminate the stimulus according to its shape(Goodale et al., 1991, 1994).

Neurons in the higher temporal cortical visual areas of monkeys have large, translation-

invariant RFs and encode shapes and objects in a distributedfashion (Perrett et al., 1982;

Desimone et al., 1984; Logothetis et al., 1995; Rolls, 2000;Quiroga et al., 2005). In the

parietal lobe neurons are sensitive to the location of stimuli with respect to the animal’s

head- or eye-position (e.g., Duhamel et al., 1997), often ina multimodal fashion (Andersen

et al., 1997; Schlack et al., 2002; Bremmer, 2005). In addition, the dorsal pathway seems to

play an important role in the encoding of self-motion (reviews: Duffy, 2000; Bremmer et al.,

2000).

Taken together, these findings suggest that the ventral pathway plays a major role in the

perceptual identification of objects, while the dorsal pathway mediates the spatio-temporal

localization of objects and performs sensorimotor transformations for visually guided ac-
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tions (Goodale and Milner, 1992).

1.3 Spatially Inhomogeneous Retino-Cortical Mapping

1.3.1 Physiology and Anatomy

While spatial resolution in the fovea is extremely high, reaching the optical resolution limits

of the eye (Snyder and Miller, 1977), spatial resolution declines in an approximately linear

fashion with increasing eccentricity (Westheimer, 1979).The neural basis for the decline

in spatial resolution with increasing eccentricity lies mainly in the retina. In primates, the

density of retinal ganglion cells is highest in the fovea, with about 60,000cells/mm2, and

decreases by a factor of more than 1,000 towards the periphery (Wässle et al., 1990). For

both M and P ganglion cells, dendritic field sizes increase linearly with eccentricity (Perry

et al., 1984; Watanabe and Rodieck, 1989). However, this increase has a steeper slope for M-

cells than for P-cells, shown in Figure 1.2. Over a wide rangeof eccentricities, the RF sizes

of M ganglion cells are 2–3 times larger than the RF-sizes of Pganglion cells at the same

eccentricity (e.g., De Monasterio and Gouras, 1975; Derrington and Lennie, 1984). In the

far periphery this ratio increases to approximately 5 in macaques (Watanabe and Rodieck,

1989) and up to 10 in humans (Dacey and Petersen, 1992). In thefovea, approximately 5-6%

of the retinal ganglion cells are of the M-type (Grünert et al., 1993). However, the portion of

M-cells reaches values of 20% in the far periphery (Silveiraand Perry, 1991). The sampling

density, i.e. the number of overlapping RFs of retinal ganglion cells at any given position in

the visual field, seems to be relatively constant at about 3-4for both M- and P-cells (review:

Van Essen and Anderson, 1995).

From the retinal ganglion cells to the primary visual cortexthere is an additional increase

in machinery devoted to the processing of foveal in comparison to peripheral stimuli in mon-

keys (e.g., Perry and Cowey, 1985; Azzopardi and Cowey, 1996; Adams and Horton, 2003)

and humans (Popovic and Sjöstrand, 2001). There is a great emphasis on the representation

of central vision, causing nearly a quarter of the striate cortex to be devoted to the processing

of the central 2.5 degrees of the visual field (De Valois and DeValois, 1988). The dependence

of the spatial RF density of neurons in the primary visual cortex on retinal eccentricity can

be quantitatively described by the linear cortical magnification factorM (Daniel and Whit-

teridge, 1961; Van Essen et al., 1984), which is defined as thecortical distance corresponding

to one degree of visual angle.M depends strongly on the retinal eccentricityE and can be

approximated by
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Figure 1.2: CHANGE OF DENDRITIC FIELD SIZES WITH ECCENTRICITY FORP AND M

GANGLION CELLS. Dendritic field sizes of P and M retinal ganglion cells increase linearly

with eccentricity, with a steeper slope for M ganglion cells. Modified from Van Essen and

Anderson (1995).

M(E) =
A

B + E
, (1.1)

whereA is a scaling factor and the quotientA/B is the cortical magnification in the

fovea (E = 0).

The inversecortical magnification factorM−1(E) increases linearly with eccentricity:

M−1(E) =
B

A
+

1

A
E. (1.2)

By integratingM(E) from the fovea to a given retinal eccentricityE, one obtains the cor-

respondingcortical eccentricity, or cortical distance from the position of thecortical foveal

representation,Ec:

Ec(E) =

∫ E

0

M(e)de = A ln (1 +
E

B
). (1.3)

Thus, retinal coordinates are logarithmically mapped to cortical coordinates.
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1.3.2 Scale Invariance and Log Polar Transformation

The linear increase in inverse cortical magnification, accompanied by a linear increase in RF-

sizes, provides a spatially scale-invariant cortical representation of fixated objects at different

distances from the observer (e.g., Schwartz, 1980; Reitboeck and Altmann, 1984; Van Essen

et al., 1992). If a fixated object is brought closer to the observer, its retinal image becomes

larger, and its outline moves towards the periphery. Cortical magnification is such that the

decrease in cortical magnification with increasing eccentricity compensates for this increase

in size. Thus, the resolution of extrafoveal object parts isnot altered by changes of viewing

distance. There is experimental evidence that if a stimulusis scaled according to the inverse

cortical magnification factor (a procedure called M-scaling) it becomes equally resolvable

across the visual field. Examples include spatial contrast sensitivity and spatial acuity for

static and moving sine gratings (Rovamo et al., 1978; Virsu and Rovamo, 1978; Rovamo and

Virsu, 1979; Virsu et al., 1982), vernier acuity (Levi et al., 1985), or the detection of coherent

motion in stroboscopically moving random-dot patterns (van de Grind et al., 1983). However,

M-scaling cannot account for the decreased performance of contour-grouping with increas-

ing eccentricity (e.g., Hess and Dakin, 1997, 1999) or the identification of faces (Makela

et al., 2001).

The two-dimensional mapping of retinal coordinates onto the primary visual cortex of

monkeys can be approximated by a log-polar transformation.An ideal log-polar transforma-

tion, which has originally been suggested by Fischer (1973), has the form

w = log(z), (1.4)

wherez andw are complex numbers5 representing points in retinal and cortical space,

respectively. Later, Schwartz (1977, 1980) proposed an extension which provides a better

description of the central region of the visual field:

w = log(z + a), (1.5)

where the parametera accounts for deviations of the retino-cortical mapping from an

ideal log-polar mapping for small eccentricities.

5The logarithmlog z of a complex numberz is the set of complex numbersw, for which the equation

ew = z holds. Withr = |z| andφ = arg z, the logarithm of a complex number can be reduced to the real-

valued logarithm:log z = log r+iφ. Thus, the complex logarithm separates magnitude and phaseof a complex

number.
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Figure 1.3: LOG-POLAR MAPPING. (A) Retinal scaling of a stimulus corresponds to trans-

lations in cortical space, (B) rotation around the direction of gaze corresponds to cortical

translations in the perpendicular direction. Modified fromGrossberg et al. (1999).

An ideal log-polar transform (Equation 1.4) converts centered scaling and rotation of ob-

jects in visual space into translations along perpendicular directions in cortical space (e.g.,

Schwartz, 1977; Reitboeck and Altmann, 1984) (Figure 1.3).Thus, the spatial cortical ac-

tivation profile of a fixated object which is scaled or rotatedundergoes a translation on the

cortical surface while retaining its shape. This means thatthe amount of information about

the extrafoveal parts of an object in the visual field remainsroughly constant as it is moved

closer or further away from the observer, or is centrally rotated with respect to the direction

of gaze.

Several studies have highlighted the possible role of the log-polar mapping of visual space

for the processing of form and motion information. It has been proposed that the log-polar

mapping may play a role in the scale- and rotation-invariantrecognition of visual objects

(Schwartz, 1981; Reitboeck and Altmann, 1984). In the modelof Reitboeck and Altmann
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(1984), the retinal images of scaled and rotated objects aretransformed into cortical trans-

lations according to the log-polar mapping. These corticalactivations are extracted with a

translation-invariant mechanism, leading to scale- and rotation-invariant object representa-

tions. A recent model employs the log-polar representationof visual space to account for

the response properties of neurons in area MSTd with respectto optic flow stimuli generated

during self-motion (Grossberg et al., 1999).

1.3.3 Eccentricity-Dependent Projections Between Cortical Areas

There is evidence that inter-areal projections depend on the eccentricity of the corresponding

cortical representations (review: Gattass et al., 2005). On the one hand, the foveal, but

not the peripheral, portion of V1 projects to area V4 (Zeki, 1969; Nakamura et al., 1993).

On the other hand, peripheral V1, but not central V1, projects to area V3A (Zeki, 1980).

Additionally V3A receives projections from the peripheral, but not the foveal portion of area

MT (Ungerleider and Desimone, 1986). Gattass et al. (1997) found that the peripheral, but

not the central field of V2 projects to areas MST, VIP and VTF inthe dorsal pathway.

These findings suggest that cortical areas along the ventralpathway, associated with the

encoding of object form, receive mainly input from the foveal portion of the visual field.

Areas along the dorsal pathway, concerned with the encodingof motion and spatial coordi-

nation, predominantly receive input from the peripheral portion of the visual field (Gattass

et al., 1990, 1999).

1.4 Self Organization

1.4.1 Role of Input-Driven Self-Organization on Cortical Development

It is generally believed that visual input plays an essential role for many aspects of self-

organization in the visual system. Kittens raised in eitherhorizontally or vertically striped

environments developed less neurons sensitive to vertically or horizontally oriented stimuli,

respectively (Blakemore and Cooper, 1970). Experiments onmonocular deprivation (Wiesel

and Hubel, 1963) and strabism (Hubel and Wiesel, 1965) demonstrate that missing or con-

flicting visual information can disturb the development of ocular dominance columns. In a

series of experiments on ferrets, projections from the retina were directed to the immature

auditory pathway (review: Sur and Leamey, 2001). After someweeks, the auditory cortex

exhibited visually driven orientation maps and characteristic horizontal connections between
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neurons. This demonstrates the flexibility of input-drivenself-organization of cortical con-

nectivity.

Although plasticity is typically greatest within a few weeks or months after birth (e.g.,

Wiesel and Hubel, 1963; Daw et al., 1992), it is important to note that some input-driven

synaptic modifications are not restricted to certain critical periods during early development,

allowing cortical sensory maps to be modified continuously by experience: In adult cats,

asynchronous visual stimulation of two adjacent retinal regions induced rapid modifications

of intracortical connectivity and shifts in the positions of cortical RFs, depending on the

temporal interval between the visual stimuli (Fu et al., 2002). A similar stimulation paradigm

caused shifts in human spatial perception. Comparable effects were found for the pairing of

visual stimuli of two orientations, which caused a shift in the orientation tuning of cortical

neurons in cats and a shift in orientation-perception in human subjects (Yao and Dan, 2001).

Synchronous visual stimulation of the RF center and a location in the RF’s surround can

induce a spatial expansion of the RF towards the stimulated surround region in cats (Eysel

et al., 1998). In patients with macular degeneration, a lossof central vision, cortical regions

normally devoted to the processing of foveal stimuli have been shown to become responsive

to peripheral stimuli (Baker et al., 2005).

Taken together, these findings demonstrate convincingly that the initial development of

cortical circuits and their later refinement depends critically on the spatio-temporal struc-

ture of the visual input, and that certain statistical regularities in the visual environment are

reflected in the cortical connectivity.

1.4.2 Synaptic Plasticity

Information transmission between neurons is thought to occur mainly via chemical synapses,

whose efficiency can undergo long-term changes under certain conditions. The idea that

learning and adaptation in neural systems is due to changes in synaptic connectivity is very

old (Cajal, 1894). However, Hebb (1949) was the first to propose a rule based on theoretical

considerations, suggesting under which circumstances these changes in synaptic efficiency

should occur:

When an axon of a cell A is near enough to excite cell B or repeatedly or consis-

tently takes part in firing it, some growth or metabolic change takes place in one

or both cells such that A’s efficiency, as one of the cells firing B, is increased.

An important feature in Hebb’s formulation is the principleof causality. In order to cause

a change in synaptic efficiency, the firing of neuron A must be causally related to the firing
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of neuron B. Furthermore, the formulation implicitly underlines the importance of the timing

of single spikes in the learning process.

Nevertheless, the principle of causality and the influence of single spikes on synaptic

changes were underrepresented for a long time in both experimental and theoretical works.

Experimentally it has been shown that synaptic efficiency can be increased by a brief, high-

frequency stimulation of the presynaptic axon (Lomo, 1971;Bliss and Lomo, 1973), an ef-

fect called long term potentiation (LTP). This effect has been demonstrated in many cortical

areas and species and can last for hours or days (review: Bi and Poo, 2001). This stimula-

tion paradigm suggests an underlying correlational rule, relying on the firing rates of pre- and

postsynaptic neurons. This can be summarized by the phrase ”cells that fire together, wire to-

gether” (Zigmond, 1999). Theoretical models employing correlation based Hebbian learning

rules can account for many adaptive processes. This includes the formation of topographic

maps (e.g., Kohonen, 1989; Sirosh and Miikkulainen, 1997),the extraction of independent

component filters from natural images (e.g., Falconbridge et al., 2006), which resemble the

spatial filter properties of cortical simple cells, and the self-organization of long-range intra-

cortical lateral connections (e.g., Grossberg and Williamson, 2001; Prodöhl et al., 2003).

The temporal specificity of synaptic modifications has become of greater interest only in

the last decade, stimulated by the development of better recording-techniques. An impor-

tant discovery was the fact that action potentials do not only travel along the axon, but also

back-propagate into the neuron’s dendrite (Stuart and Sakmann, 1994). A backpropagating

action potential which was evoked 10 ms after the onset of thepostsynaptic potential induced

LTP, while a reversal of the order caused a weakening of the synapse, an effect called long

term depression (LTD) (Markram et al., 1997; Magee and Johnston, 1997). Neither action

potential nor postsynaptic potential alone was sufficient to evoke synaptic changes. The crit-

ical temporal difference of pre- and postsynaptic activation for which LTP or LTD is evoked

(time window or learning window) is about 50 ms (e.g., Bi and Poo, 1998; Zhang et al.,

1998; Feldman, 2000; Froemke and Dan, 2002). Recent studiessuggest that learning does

not only depend on the temporal interval between pre- and post-synaptic activity, but also on

the history of the pre- and postsynaptic activation (e.g., Sjöström et al., 2001; Froemke and

Dan, 2002), and the location of the synapse on the dendritic tree (Saudargiene et al., 2004;

Froemke et al., 2005).
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1.5 Thesis Outline

The thesis consists of three self-contained chapters, eachendowed with separate introduction

and discussion intended for readers with an elementary background in neuroscience. In order

to preserve the self-containedness of the chapters, parts of the description of the used model-

neurons in Chapter 2 and Chapter 4 are identical.

• In Chapter 2we identify visual situations to which the spatially inhomogeneous retino-

cortical mapping is well-adapted. We demonstrate that cortical magnification is well

adapted to self-motion of an observer walking in the direction of gaze, under the as-

sumption that the retino-cortical mapping transforms an inhomogeneous retinal veloc-

ity distribution into a homogeneous cortical velocity distribution. Applying flow fields

similar to those during self-motion along the direction of gaze to train a simple network

of pulse coding neurons with Hebbian learning, we demonstrate that the distribution

of learned RFs is consistent with primate cortical magnification.

• With increasing eccentricity, the RFs of neurons in V1 become larger and their pre-

ferred spatial frequency shifts to lower values. InChapter 3we investigate how the

spatial statistics of real-world scenes change with respect to the spatial filter properties

of cortical neurons at different eccentricities. We show that the collinear correlations

between filters of the same orientation and wavelength are not scale-invariant, which

provides evidence against a homogeneous lateral cortical connectivity across the visual

field with respect to the spatial statistics of natural scenes.

• In Chapter 4we study the influence of stimulus velocity and the conduction velocity

of lateral connections on the self-organization of lateralconnectivity due to Hebbian

learning mechanisms. We show that stimulus velocities muchlower than the conduc-

tion velocity of the lateral connections favor the development of lateral connections

which are well adapted to the spatial structure of the visualinput. High stimulus ve-

locities lead to lateral connections which support the coding of the spatio-temporal

structure of the visual input. We discuss possible implications for the self-organization

within cortical M- and P-dominated visual pathways and for the self-organization of

lateral connections at different positions in the visual field.



Chapter 2

Inhomogeneous Retino-Cortical

Mapping and Self-Motion

Inhomogeneous Retino-Cortical Mapping is Supported and Stabilized with Correlation-

Learning During Self-Motion

2.1 Abstract

In primates, the area of primary visual cortex representinga fixed area of visual space de-

creases with increasing eccentricity. We identify visual situations to which this inhomoge-

neous retino-cortical mapping is well adapted and study their relevance during natural vision

and development. We assume that cortical activations, caused by stationary objects during

self-motion along the direction of gaze, travel on average with constant speed across the cor-

tical surface, independent of retinal eccentricity. This is the case if the distribution of objects

corresponds to an ellipsoid with the observer in its center.We apply the resulting flow field

to train a simple network of pulse coding neurons with Hebbian learning and demonstrate

that the density of learned receptive field centers is in close agreement with primate cortical

magnification. In addition, the model reproduces the increase of receptive field size and the

decrease of receptive field peak sensitivity with increasing eccentricity. Our results suggest

that self-motion may have played an important role in the evolution of the visual system and

that cortical magnification can be refined and stabilized by Hebbian learning mechanisms in

ontogenesis under natural viewing conditions.

Major parts of this Chapter have been accepted for publication in a special issue of

BioSystems (Proceedings on Neural Coding 2005, in press).
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2.2 Introduction

The spatial resolution of the representation of the visual field in primate primary visual cortex

decreases strongly with increasing eccentricity (e.g., Daniel and Whitteridge, 1961) in par-

allel with the increase of receptive field (RF) sizes of retinal, thalamic and cortical neurons

(Hubel and Wiesel, 1974; Dow et al., 1981; Croner and Kaplan,1995; Xu et al., 2002). A

large number of cortical neurons process stimuli near the fovea, while relatively few represent

the periphery. This inhomogeneous mapping keeps the numberof retino-cortical connections

relatively low, but requires eye movements over larger areas of the visual field for percep-

tion at high spatial resolution. The inhomogeneous retino-cortical mapping is to a large part

determined genetically, but development of theories on itsunderlying principles and its shap-

ing during ontogeny may help to understand fundamental coding mechanisms in the visual

system. We investigate whether visual situations exist to which the inhomogeneous retino-

cortical mapping is well adapted and ask how relevant these situations are during natural

vision and development. Because vision plays an important role during navigation, visual

processing should be well adapted to self-motion. Thus, it is reasonable to hypothesize that

self-motion plays a role in determining retino-cortical mapping and magnification. Virsu

and Hari (1996) showed that cortical magnification can be estimated by linear self-motion

in a world, idealized as a sphere, under the assumption that cortical activations, caused by

stationary objects, travel at constant cortical speed, independent of eccentricity. We take the

complementary approach and investigate which average geometrical arrangement of static

objects in the environment is best suited to predict cortical magnification from flow fields

arising during self-motion along the direction of gaze. Furthermore, we demonstrate that

an RF distribution, whose density is consistent with cortical magnification, can be learned

in a basic network model of spiking neurons by training with flow fields similar to those

experienced during self-motion.

2.3 Relating Cortical Magnification to Self-Motion

The dependence of RF density of neurons in primary visual cortex on retinal eccentricity

can be quantitatively described by the linear cortical magnification factorM (e.g., Daniel

and Whitteridge, 1961; Van Essen et al., 1984), which is defined as the cortical distance

corresponding to one degree of visual angle.M depends on the retinal eccentricityE and

can be approximated as



2.3. Relating Cortical Magnification to Self-Motion 19

M(E) =
C2

C1 + E
, (2.1)

whereC2 is a scaling factor and the quotientC2/C1 is the cortical magnification in the

fovea (E = 0).

In the following we make the assumption that cortical magnification has the effect that

during self motion along the direction of gaze, representations of static objects shift on av-

erage the same cortical distance, independent of eccentricity. This would have the important

advantage that the neuronal modules, concerned with the processing of self-motion, can be

identical in their spatial and temporal properties across the representation of the whole visual

field.

For convenience, we introduce the inverse cortical magnification factorM−1, which has

the form

M−1(E) =
C1

C2

+
1

C2

E. (2.2)

M−1 specifies the change in visual angle that corresponds to a fixed cortical distance.

Thus, cortical activations travel at constant speed, if theangular velocityω(E) of the cor-

responding retinal activations is proportional to the inverse cortical magnification factor

M−1(E) for all eccentricities:

ω(E)
!∝ M−1(E). (2.3)

In the following, we neglect the termC1 of the cortical magnification factor (C1 � E),

which cannot be explained by self-motion along the direction of gaze (Virsu and Hari, 1996),

because a finiteC1 corresponds to non-zero retinal velocities in the fovea. One possibility

to explain a non-vanishing value ofC1 would be to assume velocity jitter across the visual

field, due to eye and body-motion. However, we will show (Section 2.4) that even a vanishing

retinal velocity in the fovea can lead to a magnification factor with C1 6= 0, due to the finite

size of the retinal RFs.

According to the experimentally estimated linear inverse cortical magnification factor

(Equation 2.2, forC1 � E), angular velocity increases linearly with eccentricity for the

condition of constant velocity across the visual cortical representation:

ω(E) ∝ E. (2.4)

In the next step, we determine the geometrical arrangement of objects surrounding an

observer which leads to angular velocities increasing linearly with eccentricity. The retinal

speed of objects depends on their distance, their eccentricity, and the velocity of self-motion.
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Therefore, we have to derive a mathematical expression for the angular velocity of an object

at a given position in visual space during self motion of an observer with velocityv. We

assume rotational symmetry around the axis of fixation, which allows us to solve the problem

in the horizontal plane. We choose a coordinate system that originates in the observer’s eye,

with positive y-direction in the direction of gaze. The distancer of an object in the horizontal

plane at positionP = (x, y) from the observer is

r =
√

x2 + y2, (2.5)

and its retinal eccentricity is

E = arctan
x

y
. (2.6)

To obtain the angular velocityω(E) of the object we differentiateE with respect tot,

using the derivative of the arcus tangens

d

dx
arctan x =

1

1 + x2
, (2.7)

which yields

ω(E) =
1

1 +
(

x
y

)2
· ẋy − ẏx

y2
(2.8)

=
ẋy − ẏx

r2
. (2.9)

We examine the case of the observer moving with velocityv in the positivey-direction.

The coordinates of an object which is initially (t = 0) at positionP = (x0, y0) relative to the

observer’s eye, change according to

y(t) = y0 − vt, (2.10)

x(t) = x0 = const. (2.11)

With Equation 2.9, andx0 = r sin E we obtain

ω(E) =
v sin(E)

r
. (2.12)

This is the general expression for the angular velocity of anobject at eccentricityE with

distancer from the observer’s eye.

According to our initial assumption (Equation 2.4), for a fixed velocityv of the observer,

angular velocity increases linearly with increasing eccentricity:
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E ∝ sin(E)

r
. (2.13)

Thus, we obtain

r ∝ sin(E)

E
. (2.14)

The solid curve in Figure 2.1 shows the arrangement of objects according to this theoret-

ical relationship.

In the following we examine two simple geometrical arrangements of objects, straight

line and ellipse, to test how well they match the required linear increase of angular velocity

with eccentricity.

Objects on a Straight Line. For objects lying on a straight line perpendicular to the move-

ment direction of the observer, with distancey⊥, we obtain the following dependence

of an object’sP = (x, y⊥) distance on its eccentricity:

r =
y⊥

cos (E)
. (2.15)

Thus, angular velocity increases according to

ω(E) =
v sin (E)

r
=

v

y⊥
sin (E) cos (E). (2.16)

Objects on an Ellipse. The representation of an ellipse in polar coordinates is

r =
b

√

1 − ε2 cos2(E)
, (2.17)

with ε as the numerical eccentricity of the ellipse, defined as

ε =

√
a2 − b2

a
. (2.18)

a and b being semimajor and semiminor axis, respectively. For the angular velocity we

obtain

ω(E) =
v

b
sin(E)

√

1 − ε2 cos2(E). (2.19)

The special case of objects on a circle (ε = 0) yields

ω(E) ∝ sin (E), (2.20)

which is identical to the result of Virsu and Hari (1996).
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Figure 2.1: DIFFERENT GEOMETRIES OF OBJECT LOCATIONS AND THEIR RESULTING

INSTANTANEOUS, ANGULAR VELOCITY DISTRIBUTIONS. (A) The four examined geome-

tries (exact, circle, line, and ellipse). The observer is located at (0,0), facing in positive

y-direction. The ellipse corresponds to a numerical eccentricity of ε ≈ 0.56, obtained by

least squares fitting. (B) The corresponding velocity distributions. The increase in angular

velocity is similar for the four examined object-geometries at small eccentricities, but di-

verges for larger eccentricities. (C) The relative deviations of the predicted velocities of the

examined geometries (circle, line, and ellipse) from a linear increase in velocity.

Figure 2.1 illustrates the different object geometries andtheir corresponding velocity-

distributions. Figure 2.1C shows that the resulting velocity distributions for the different

geometries are similar for small eccentricities, but diverge for larger eccentricities. The ve-

locity distribution of objects on a straight line increasesnearly linearly for small eccentrici-

ties, but diverges for larger eccentricities. Points on a circle are a closer match, but for larger

eccentricities these velocities also diverge from the predicted linear increase. The elliptic

geometry with slightly elongated axis along the viewing direction yields the closest match to

the linearly increasing magnification factor for eccentricities larger than≈ 7o.

2.4 Model Simulations

Here we demonstrate that a minimal network model with spiking neurons and other biolog-

ically plausible properties can learn an RF distribution whose density is consistent with the

experimental cortical magnification factor, if trained with flow fields similar to those present

during self motion along the direction of gaze.
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Figure 2.2: MODEL ARCHITECTURE AND SAMPLE INPUT STIMULI. The network consists

of two layers of spiking neurons. The connections between layer-1 and layer-2 are subject to

Hebbian learning. Neurons in layer-2 interact via global inhibitory connections. For clarity,

only projections from a single neuron in each layer are plotted. Input stimuli for the layer-1

neurons are small moving dots with a lifetime of 100 ms and velocities that increase linearly

with eccentricity.

2.4.1 Network Model and Input Stimuli

Network Architecture

The model (Figure 2.2) consists of two one-dimensional layers of pulse coding neurons (Eck-

horn et al., 1990). Neurons in the first layer are directly driven by the visual input. They have

retinotopically arranged, equally spaced RFs, i.e., each neuron is sensitive to stimuli at a

given retinal eccentricity. This choice is not crucial for the results. However, equally spaced

RFs of layer 1 neurons allow us to conveniently assess the learned RFs of layer-2 neurons in

terms of the matrix of synaptic connection strengths from layer-1 to layer-2.

Layer-1 consists of 80 neurons, while layer-2 consists of 30neurons. The connections

between the first and the second layer represent the transformation between retinal surface

and primary visual cortex. They are adapted during learningaccording to a temporal Heb-

bian learning rule. Every neuron in the first layer can form connections with every neuron

in the second layer. Neurons within the second layer inhibiteach other mutually (connec-

tion strengthwI , Table 2.1). This inhibitory competition prevents learnedRFs of the layer-2
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neurons from overlapping substantially. The direct inhibitory interaction between layer-2

neurons was chosen for computational convenience, ignoring the fact that cortical neurons

inhibit each other via inhibitory interneurons. However, the exact form of competitive inter-

actions between layer-2 neurons is not crucial for the functioning of the model.

Model Neurons

We used pulse coding neurons with realistic synaptic potentials and an adaptive spike encoder

with dynamic threshold (Eckhorn et al., 1990). The input stage of a neuroni consists of

synapsesSij(t) to presynaptic neuronsj, which have a synaptic connection strengthwij and

an impulse responseh(t, τ):

Sij(t) = wS
ijIj(t) ∗ h(t, τS), (2.21)

where∗ is the convolution operator,Ij is the spike-output of the presynaptic neuronj.

The synaptic responseh(t, τ) was modelled by a leaky integrator:

h(t, τ) = exp(−t/τ)H(t), (2.22)

whereH(t) denotes the Heaviside function:

H(t) =

{

0 t < 0

1 t ≥ 0
. (2.23)

Thus, each connection performs an exponentially decaying summation of signals from

presynaptic neurons. For layer-1 neurons, presynaptic signals correspond to the visual input.

Excitatory and inhibitory synapses have different time constants,τE andτI , respectively.

Although the exact choice of the time constants is not crucial for the functioning of the

network, a longer inhibitory time constantτI leads to better competition between layer-2

neurons because the longer integration time allows for a more robust estimation of the activity

within layer-2.

Thus, the resulting membrane potential of neuroni, which drives the spike encoder, is

Mi(t) =
∑

j

Fij(t) −
∑

j

Iij(t). (2.24)

In the spike encoder, the membrane potentialMi(t) is compared to a dynamic threshold

Θi(t). If Mi(t) exceedsΘi(t), a spike is generated:

Oi(t) = H(Mi(t) − Θi(t)). (2.25)
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The spike threshold has both a dynamic component, which is modelled as the impulse

response of two leaky integrators, and a static componentΘ0:

Θi(t) = Oi(t) ∗ ((VΘa
exp(−t/τΘa

) + VΘr
exp(−t/τΘr

)) H(t)) + Θ0. (2.26)

One leaky integrator (VΘr
, τΘr

) models the neuron’s refractory period with a short time

constant, the other (VΘa
, τΘa

) accounts for spike rate adaptation. In our model, only layer-2

neurons adapt (VΘa
6= 0).

Learning Rule

Changes in synaptic connection strengths depend on the relative timing of pre- and postsy-

naptic spikes. Each spike initiates a synaptic learning potential in the corresponding neuron:

Li(t) = Oi(t) ∗ (exp(−t/τL)H(t)) . (2.27)

The change in connection strength between a postsynaptic neuron i and a presynaptic

neuronj depends on the product of the corresponding learning potentials:

∆wij(t) = Li(t)Lj(t) − δdecay, (2.28)

wij(t) = wij(t − 1) + ∆wij(t). (2.29)

The termδdecay causes all synaptic connection strengths to decline by a small amount

in every time step. This causes the total synaptic connection strength of neurons which are

inactive for a long time to drop to zero.

If the total connection strength to a postsynaptic neuroni is greater or equal than a max-

imum valueAnorm, every synaptic weight to this neuron is divided by a common factor, so

that the total connection strength is equal toAnorm. Thus, the total connection strength to a

postsynaptic neuroni is always less than or equal toAnorm:

∑

j

wij ≤ Anorm. (2.30)

All network parameters are summarized in Table 2.1.
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layer-1 Parameters

τE 1 ms

Θ0 1.0

τΘr
2 ms VΘr

2

τΘa
0 ms VΘa

0

layer-2 Parameters

τE 5 ms τI 20 ms

Θ0 1.0 wI 3.0

τΘr
20 ms VΘr

2

τΘa
50 ms VΘa

0.3

Learning Parameters

τL 20 ms VL 0.015

δdecay 1 × 10−7 Anorm 10.0

Table 2.1: Network parameters

Input Stimuli

Input stimuli were one pixel wide dots with a movement direction towards the periphery.

Stimulation phases (100 ms) were followed by brief pauses (20 ms) after which a new random

stimulus position is chosen.

In themain simulationvelocitiesv increased linearly with eccentricityE (v(E) ∝ E),

with a maximum value ofv = 0.25 pixels per millisecond in the periphery (Figure 2.3).

Additionally, we performed twosupplemental simulationsto further investigate the in-

fluence of stimulus velocity on the properties of the learnedRFs. First, we wanted to rule

out the possibility that the learned inhomogeneous distribution of RF positions and sizes is

mainly determined by the asymmetry in movement direction towards the periphery and not

by the linear increase in velocity. Therefore, in an additional simulation, stimulus velocities

were constant across the whole visual field (v = 0.05 px/ms).

Second, we wanted to account for the fact that an organism experiences a wide range of

retinal velocities at each eccentricity due to different velocities of self-motion and different

distances of objects in the environment. A realistic, eccentricity-dependent velocity distri-

bution of static objects during self-motion along the direction of gaze would depend on the

distribution of movement velocities during self-motion, the spatial distribution of objects in

the environment , and their sizes, in order to account for possible occlusions. Furthermore,

the velocity of self-motion probably depends on the distances of objects in front of the ob-
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Figure 2.3: DEPENDENCE OF STIMULUS VELOCITY ON ECCENTRICITY. In the main sim-

ulation, stimulus velocity increases linearly with eccentricity. To avoid boundary effects, the

network-fovea was shifted five pixels to the right.

server. For simplicity, we assumed that the distribution ofvelocities has the same shape at

each position within the visual field, but is scaled linearlywith eccentricity. For each stim-

ulus presentation, a random velocity scaling factorS was chosen from a rectified Gaussian

distribution centered at0 (prior to rectification). Stimulus velocities were computed accord-

ing to v(E) = cSE. The constantc was manually chosen to lead to learned RFs similar

in size to RF sizes in the main simulation. Comparable results were obtained with different

velocity distributions (e.g., uniform or power-law distributions).

In every time step (∆t = 1 ms), independent Gaussian white noise (GWN,σN = 0.25)

was added to all excitatory synapses of layer-1 and layer-2.

To avoid boundary effects, the model fovea was shifted five pixels to the right. Thus, the

80 layer-1 neurons correspond to eccentricities from -5 to 74.

Analysis

After learning, we examined the connection matrix between layer-1 and layer-2 neurons. For

convenience we refer to the connection strengths from layer-1 to a single layer-2 neuron as

theRF of the corresponding layer-2 neuron. This neglects the nonlinear response properties

of both layer-1 and layer-2 neurons, which, however, is not crucial for the current analysis.
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For a given layer-2 neuron, itsRF center positionor eccentricity is defined as the eccen-

tricity of the layer-1 neuron with the largest connection strength to this neuron. TheRF peak

amplitudeor peak sensitivityof a layer-2 neuron is defined as the connection strength in the

center of the RF.RF sizeof a layer-2 neuron is the number of layer-1 neurons after which

connection strength is less than1/e of the RF peak amplitude, wheree is Euler’s constant.

For the fits in Figure 2.6, only RFs with sizes greater than 2 pixels were incorporated.

Themodel magnification factorwas assessed by computing a histogram of the positions

of the RF centers. The width of one bin in the histogram was chosen to be proportional to

the RF size at the bin’s center position. To avoid boundary effects, only neurons with RF

center positions greater than or equal to 0 and less than 65 were considered in the analysis.

Layer-2 neurons which had a maximum connection strength less than 0.01 after learning,

were pruned and not considered in the analysis.

2.4.2 Results

Main Simulation

Receptive Field Distribution after Learning. Figure 2.4A shows the matrix of connection

strengths from the first to the second layer after learning. RFs at small eccentricities are

small with high peak amplitudes, RFs at large eccentricities are large with low peak ampli-

tudes. This is a consequence of the spatial stimulus speed distribution. If a layer-2 neuron

is activated, the connections from the layer-1 neurons which were activated before and those

that are activated thereafter are strengthened. For fast moving stimuli, more layer-1 neurons

are active in the near past and future than for slowly moving stimuli. Due to the additional

constraint that the total presynaptic connection strengthis less than or equal to a fixed value,

RF peak amplitudes decrease with increasing RF sizes (compare Figure 2.5), with each RF

having the maximum total presynaptic connection strength.

Figure 2.4B is computed from Figure 2.4A by sorting the RFs according to their center

positions. More neurons have RF centers at small than at large eccentricities. This is due

to the strong all-to-all inhibition between layer-2 neurons, which prevents the RFs of neigh-

boring neurons from overlapping substantially. Consequently, only few neurons respond to

a stimulus at a given position. This is further demonstratedin Figure 2.5, which shows the

corresponding RF profiles. RFs are slightly asymmetric, as aresult of the linearly increasing

velocity and the relatively small network size.

Receptive Field Size Increases Linearly with Eccentricity. Figure 2.6A shows the RF

size of the layer-2 neurons as a function of eccentricity. RFsize increases linearly with
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Figure 2.4: CONNECTION STRENGTHS FROM LAYER-1 TO LAYER-2 AFTER LEARNING.

(A) Connection strengths from each layer-1 neuron (source)to every layer-2 neuron (target)

after learning. Neurons with RFs at small eccentricities have small RFs with high center

sensitivities while neurons with RFs at large eccentricities have larger RFs with lower center

sensitivities. The large overlap of RFs visible at the top ofthe diagram is due to boundary

effects and is not considered in the analysis. (B) RFs of layer-2 neurons, sorted according to

the position of their RF centers. Only layer-2 neurons with RF centers at positions greater or

equal than 0 and less than 65 and with maximum synaptic connection strengths greater than

0.01 are included (see Section 2.4.1).

increasing eccentricity as a consequence of the linearly increasing stimulus velocity.

Receptive Field Peak Amplitude Depends on Receptive Field Size. As can be seen in

Figure 2.6B, RF peak amplitudeA decreases exponentially with RF sizer. The regression

line has the form

A ∝ r−c, (2.31)

with c close to one (here:c ≈ 0.97), due to the normalization term in the learning rule, which

ensures that the total connection strength is kept constant.

Magnification Factor Declines with Increasing Eccentricity. The model magnification

factorM and inverse magnification factorM−1 are shown in Figure 2.7A,B. Qualitatively,

the curves are similar to the empirical relationship (Equation 2.1). The non-zero value of

M−1 in the fovea is a consequence of the strong inhibitory competition between layer-2

neurons, which prevents RFs of different neurons to overlapsubstantially.
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Figure 2.5: RFPROFILES OF LAYER-2 NEURONS FOR A SINGLE SIMULATION. Plotted

are the connection strengths for every layer-2 neuron as a function of the corresponding

layer-1 neurons (compare Figure 2.4). Note the increasing RF size and the decreasing center

sensitivity with increasing eccentricity of the RF center.

Supplemental Simulations

Constant Stimulus Velocity Across the Whole Visual Field.In this simulation, stimulus

velocity was constant across the whole visual field (v = 0.05 px/ms). Figures 2.8 and 2.9

show the distribution and the profiles of the learned RFs. Adjacent RFs have constant dis-

tances across the whole visual field and RF sizes do not dependon eccentricity. Thus, the

inhomogeneous representation of the visual field in the mainsimulation is due to the increase

in velocity with increasing eccentricity, and not a consequence of the asymmetry in stimulus

movement direction.

Random Stimulus Velocities, Scaled Linearly with Eccentricity. The next simulation

demonstrates that qualitatively similar results to those of the main simulation were obtained

if stimulus velocity was not fixed for any given eccentricity, but was taken from a Gaussian

distribution of velocities whose mean was increasing linearly with eccentricity (compare

Section 2.4.1 for details).

Figures 2.10 and 2.11 show the RF structure after learning with random velocities. The

results are comparable to the results from the main simulation. RF sizes increase with in-

creasing eccentricity and magnification declines. However, learning took longer until a stable
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Figure 2.6: RFSIZE AND PEAK AMPLITUDE DEPEND ON ECCENTRICITY(POOLED DATA

FROM N = 3 SIMULATIONS). (A) RF sizer of all layer-2 neurons as a function of the

eccentricityE. RF sizes increase linearly with eccentricity (least square fit: r = 1.0+0.15E).

(B) Double-logarithmic plot of RF peak amplitudeA as function of RF sizer (least square

fit: A = 9.92r−0.97).

distributions of RF positions was obtained, and RFs are morerugged than in the case of the

main simulation (Figures 2.4 and 2.5). The latter could be overcome by reducing the param-

eterVL of the Hebbian learning rule, which determines the amplitude of changes in synaptic

weights.

2.5 Discussion

2.5.1 Summary of Results

Our results demonstrate that cortical magnification is welladapted to represent flow fields

generated during self-motion of an observer walking in the direction of gaze, if the distribu-

tion of stationary objects in the environment corresponds to an ellipsoid with the observer

in its center. Additionally, a distribution of RF centers whose density is in qualitative agree-

ment with primate cortical magnification (Dow et al., 1981; Van Essen et al., 1984; Adams

and Horton, 2003) can be learned in a biologically plausiblenetwork model with Hebbian

learning. The sizes of the learned RFs increase with increasing eccentricity while peak sensi-
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Figure 2.7: MAGNIFICATION FACTOR DERIVED FROM MODEL SIMULATIONS (POOLED

DATA FROM N = 3 SIMULATIONS). (A) Magnification factor, computed from the RF cen-

ters of the layer-2 neurons. (B) Inverse magnification factor. The solid lines in (A) and (B)

show the result of least squares fitting inverse cortical magnification (M−1 = 1.11 + 0.12E,

with eccentricityE).

tivities decrease. Our results support the view that self-motion may have played an important

role in the evolution of the visual system (Virsu and Hari, 1996).

Although in real visual systems the inhomogeneous retino-cortical mapping is to a high

degree determined genetically, it has been shown that even in the adult brain changes in

cortical organization can occur, for example in monkey (e.g., Heinen and Skavenski, 1991)

and human (e.g., Baker et al., 2005). Thus, the mechanisms presented here may play a role

in refining and stabilizing cortical magnification under natural viewing conditions.

2.5.2 Relating Optical Flow to Cortical Magnification

Virsu and Hari (1996) estimated the cortical magnification factor from linear self-motion of

an observer in a world in which objects move on a sphere with the observer in its center.

In contrast, our results show that the linear increase in inverse cortical magnification with

eccentricity can be more accurately deduced from a flow field generated by a distribution
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Figure 2.8: CONNECTION STRENGTHS FROM LAYER-1 TO LAYER-2 AFTER LEARNING

WITH STIMULI OF CONSTANT VELOCITY ACROSS THE WHOLE VISUAL FIELD. (A) Con-

nection strengths from each layer-1 neuron (source) to every layer-2 neuron (target) after

learning. (B) RFs of layer-2 neurons, sorted according to the position of their RF centers.

Only layer-2 neurons with RF centers at positions greater orequal than 0 and less than 65

and with maximum synaptic connection strength exceeding 0.01 are included (see Section

2.4.1). For constant stimulus velocity across the whole visual field, RF size and density do

not depend on the position within the visual field.

of objects whose distances from the observer correspond to an ellipsoid (with a ratio of

semiminor to semimajor axis of≈ 0.8). The interpretation of our findings is as follows.

If the arrangement of objects in the environment was independent of the direction of self-

motion of an observer, the average distances of objects fromthe observer would correspond

to a sphere. It is quite plausible, though, that during self-motion, an observer tends to keep

larger distances to objects in the direction of motion – for example, when walking along paths

or between trees in a forest – in order to minimize the danger of collisions. However, as can

be seen in Figure 2.1, both circle and ellipse provide a good estimate for a linear increase in

angular velocity for eccentricities up to40◦, which renders it difficult to confirm our results

experimentally.
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Figure 2.9: RFPROFILES OF LAYER-2 NEURONS AFTER LEARNING WITH CONSTANT

STIMULUS VELOCITY ACROSS THE WHOLE VISUAL FIELD. Plotted are the connection

strengths for every layer-2 neuron as a function of the corresponding layer-1 neurons. For

constant stimulus velocity across the whole visual field, RFsize and density do not depend

on the position within the visual field. The slight differences in RF shape and RF peak

sensitivity are not systematic and vary during learning.

2.5.3 Minimal Network Model

After training with moving stimuli, the network model developed a spatial distribution of RF

centers whose density is in qualitative agreement with primate cortical magnification. The

spatial distribution arises from correlation-based learning with a temporal Hebbian learning-

rule and competitive interactions between layer-2 neuronsvia inhibitory connections. Heb-

bian learning adapts the RF sizes of the layer-2 neurons to the stimulus velocities at the

corresponding eccentricities, while strong inhibitory competition ensures that RFs of distinct

neurons do not overlap substantially.

RF Sizes Increase Linearly with Eccentricity

The linear increase in model RF size is in accordance with linearly increasing RF diame-

ters of retinal, thalamic and primary visual cortical neurons in monkey (Hubel and Wiesel,

1974; Dow et al., 1981; Croner and Kaplan, 1995; Xu et al., 2002). How well do RF sizes

in our model correspond to experimentally measured RF sizes? In monkey primary visual

cortex, RF sizes are approximately0.4o at 5o eccentricity (Hubel and Wiesel, 1974). If
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Figure 2.10: CONNECTION STRENGTHS FROM LAYER-1 TO LAYER-2 AFTER LEARNING

WITH STIMULI MOVING AT RANDOM VELOCITIES . (A) Connection strengths from each

layer-1 neuron (source) to every layer-2 neuron (target) after learning. (B) RFs of layer-2

neurons, sorted according to the position of their RF centers. Only layer-2 neurons with RF

centers at positions greater or equal than 0 and less than 65 and with maximum synaptic

connection strength exceeding 0.01 are included (see Section 2.4.1). The distribution of RFs

is similar to the one obtained in the main simulation (Figure2.4).

we assume that one pixel in our model corresponds to0.08o, RF sizes are approximately

0.4o for a stimulus speed of8o/s. If we further assume that the position of this RF corre-

sponds to5o eccentricity and that an observer moves with≈ 1 m/s, then the required mean

observer-object-distance would be less than 1 m, accordingto Equation 2.12. This seems to

be fairly small for observer-object-distances during self-motion. However, model RF size is

determined both by stimulus speed and the width of the temporal correlation window of the

learning rule. Thus, a longer temporal correlation window would lead to larger RF sizes. For

example, Földiák proposed possible neuronal mechanismsfor correlating neuronal activity

between neurons on the order of 100 ms (Földiák, 1997). Moreover, many other factors

have not been considered here, such as the spatial structureof single objects, or head- and

eye-movements, that could potentially influence overall RFsize.
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Figure 2.11: RFPROFILES OF LAYER-2 NEURONS AFTER LEARNING WITH STIMULI MOV-

ING AT RANDOM VELOCITIES. Plotted are the connection strengths for every layer-2 neuron

as a function of the corresponding layer-1 neurons. The distribution of RFs is similar to the

one obtained in the main simulation (Figure 2.10).

Dependence of Contrast Sensitivity on Eccentricity

In our model, the sum of synaptic connection strengths to each neuron is restrained. This

is in accordance with experimental results of human contrast sensitivity, which is similar at

different eccentricities if visual stimuli are scaled in size, according to cortical magnification

(Rovamo et al., 1978; Rovamo and Virsu, 1979). In our model, RF peak sensitivityA as a

function of RF sizer has the formA ∝ 1
rc

, with c theoretically equal to 1 (here:c = 0.97).

For two-dimensional RFs we would expectc to have a value close to 2, which is the case

for primate retinal ganglion cells (Croner and Kaplan, 1995). However, in neurons of the

LGN of owl-monkeys (c ≈ 1.3) (Xu et al., 2002) and retinal X- and Y-ganglion cells in

cats (c ≈ 1.2) (Linsenmeier et al., 1982),c was found to be considerably smaller. A reason

for the differences between our model and these physiological measurements could be that

we estimated the neurons’ center-sensitivities by their afferent weights and did not take into

account nonlinearities in the neurons’ response properties and possible interactions between

neurons.
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Influence of Optical Flow on Spatial Visual Acuity During Learning

Another interesting aspect is the influence of the velocity of optical flow fields during learn-

ing on spatial visual resolution and acuity. It has been shown that spatial visual acuity is

consistent with cortical magnification at different eccentricities (Daniel and Whitteridge,

1961; Virsu and Rovamo, 1978; Rovamo and Virsu, 1979). In ourmodel, the decline in

spatial resolution with increasing eccentricity is a direct consequence of the increasing ve-

locity of optical flow with increasing eccentricity during self-motion along the direction of

gaze. Hence, our model provides an example of how thetemporalstructure of the visual

input may determine thespatialresponse properties of cortical neurons during learning.

Differences in Receptive Field Sizes of Visually Driven Neurons

The simulations demonstrate that if the network model is trained with stimuli of different

velocities at the same eccentricity, the learned RF sizes depend on the range of stimulus ve-

locities experienced during learning. This has interesting consequences for the interpretation

of RF sizes of visually driven neurons. In our natural environment, we experience stimuli

at a wide range of retinal velocities, due to self-motion, object-motion or body-, head- or

eye-movements. Retinal velocities range from static viewsup to velocities too high to be

resolved by the visual system. Our model suggests that the size of a neuron’s RF may be

determined by the spatio-temporal response properties of its afferent neurons. Evidence for

this hypothesis comes from experiments which show a correlation between the upper cutoff

velocity of neurons and their RF size in the primary visual cortex of cats (Leventhal and

Hirsch, 1980) and monkeys (Orban et al., 1986).

2.5.4 Extensions to the Model

The aim of our study was to demonstrate a basic principle, using as few ingredients as nec-

essary. Therefore, the current model leaves much space for extensions. We discuss possible

extensions and ideas for further investigations.

Initial Network Connectivity

In our network model, we chose an all-to-all connectivity between layer-1 and layer-2 neu-

rons, in order not to make any assumptions about the expectedmagnification to be learned.

Therefore, the learned representation of the visual field inlayer-2 is not retinotopic. Con-

straining the afferent input region of each layer-2 neuron would provide a raw retinotopic ar-
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rangement of the layer-2 RFs. In addition, distance-dependent conduction delays were shown

to lead to a retinotopic arrangement of RFs during learning (Saam and Eckhorn, 2000). This

would further allow to confine the spatial range of the inhibitory interactions within layer-2

to a spatial region which is in accordance with the spatiallyrestricted range of cortical lateral

connections (Gilbert and Wiesel, 1979; Stettler et al., 2002). Another possibility would be

to apply an anti-Hebbian learning rule to the self-organization of the inhibitory connections,

which was shown to lead to a sparse distribution of RFs (Földiák, 1990; Falconbridge et al.,

2006).

Extending the Model to Two Dimensions

Extending the current model under the assumption of rotational symmetry with respect to the

direction of gaze would lead to radially elongated RFs, withelongations, increasing linearly

with eccentricity. Although we are not aware of data showingradially elongated RFs in the

primary visual cortex of monkeys, neurons with strikingly similar RFs have been described

in area V4A of the visual cortex of monkeys (Pigarev et al., 2002). These RFs have comet-

like shapes, with a preference for radially moving stimuli.It is possible that these RFs play

a role for the encoding of ocularly fixated objects during self-motion, and may self-organize

according to a similar principle like the one shown in this Chapter.

A two-dimensional network model would further allow to extend the variety of flow fields

presented during learning. A next step would be to include rotational flow fields around the

direction of gaze. These can be treated in a similar way to theexpanding flow fields used

in the current model. Training the model with pure rotational flow fields would lead to RFs

with identical tangential angular extension across the whole visual field. This corresponds to

RF sizes, increasing linearly in tangential direction1 with increasing eccentricity. This trans-

forms a retinal velocity-distribution, due to pure rotational flow-fields, to constant cortical

velocities, independent of eccentricity. This is consistent with the two-dimensional mapping

of visual space onto the primary visual cortex, which can be approximated mathematically by

a log-polar transformation (e.g., Schwartz, 1977; Reitboeck and Altmann, 1984), and trans-

forms retinal translations due to expansional and rotational flow fields to cortical translations

along perpendicular directions.

1For small angular differences∆φ, the distance of two points of the same eccentricityr is proportional to

r∆φ
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Realistic Flow Fields

A limitation of the current model is the simplifying assumption that the retino-cortical map-

ping is solely determined by linear self-motion along the direction of gaze. This neglects

deviations of the direction of gaze from the direction of self-motion as well as head and eye

movements (e.g., Lappe et al., 1999). An interesting extension to the current study would be

the recording of movies with a mobile, head-mounted camera in combination with a mobile

eye-tracking device, and the investigation of the velocitydistribution of the corresponding

flow fields. Additionally, it would be interesting to assess differences between results from

these scenes and results from a camera mounted, for example,on a cat’s head (Betsch et al.,

2004). Systematic changes in the retinal velocity distribution across the visual field, de-

pending on the average velocity of self-motion, the altitude of the eyes with respect to the

ground, and the structure of the natural environment, couldhelp to understand differences in

the cortical magnification factors of different species.

2.5.5 Related Studies

Self-Organization of Hippocampal Receptive Fields

When rats move through their environment, a class of hippocampal neurons, so calledplace

cells, are activated in a positionally and directionally selective fashion, which allows to esti-

mate the location of the rat (O’Keefe and Dostrovsky, 1971).Mehta et al. (2000) found that

the spatial shapes of the place cells’ RFs were initially symmetric, but became asymmetric

and directionally selective with increased experience of the rat in a given environment. They

proposed a model to explain this experience-dependent, asymmetric shape of hippocampal

place-fields, which relies on a similar principle like the network model proposed in this

chapter. In contrast to our model, they used a temporally asymmetric Hebbian learning rule,

i.e. weights were strengthened if a presynaptic neuron was activated before the postsynap-

tic neuron, and synaptic weights were weakened otherwise. Thus, for the situation of a rat

moving repeatedly from one location to another (comparableto the situation in our model,

where a stimulus moved repeatedly from small eccentricities towards larger eccentricities),

RFs became skewed, and expanded towards the initial position of the rat. Furthermore, the

RF centers shifted in the direction opposite to the direction of movement. Their results dif-

fer from the results in our model, obtained with a temporallysymmetric Hebbian learning

rule, where learned RFs have a symmetric shape, with RF positions remaining stable. By

using a temporally asymmetric learning rule, we were not able to obtain a stable distribution
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of RFs consistent with cortical magnification, due to the fact that RFs kept shifting towards

the fovea. It remains to be investigated how the self-organization of afferent connections

due to temporally asymmetric learning rules can be stabilized during repeated unidirectional

stimulation by additional, biologically plausible mechanisms.

Temporal Coherence

In order to enable a network model to learn invariant object representations from continuous

spatio-temporal image sequences, Földiák (1991) proposed a learning rule similar to the

temporal Hebbian learning rule used in the current study. Inits original formulation, this so-

called trace learning rule is a modified Hebbian learning rule, where the change in synaptic

weight is proportional to the product of the instantaneous presynaptic activity with a running

average of the postsynaptic activity (the memory trace), although a presynaptic memory

trace was mentioned to lead to similar results (Földiák, 1997; Rolls, 2000). The underlying

idea of the trace learning rule is that transformed versionsof the same object often occur

close together in time, a principle calledtemporal coherence. The principle of temporal

coherence forms the basis for a number of learning rules and mathematical algorithms to

extract invariances from image sequences (e.g. Földiák,1991; Becker, 1993; Wallis, 1996;

Wallis and Rolls, 1997; Becker, 1999; Rolls and Milward, 2000; Körding and König, 2001;

Stringer and Rolls, 2002; Wiskott and Sejnowski, 2002). To our knowledge, our study is

the first to apply the principle of temporal coherence to the learning from flow-fields and to

investigate the influence of retinal stimulus velocity on the sizes of the learned RFs.



Chapter 3

Spatial Statistics of Local Contour

Elements in Real-World Scenes

3.1 Abstract

It has been proposed that primate cortical magnification provides a scale invariant repre-

sentation of ocularly fixated objects with respect to changes in viewing distance. If the

visual system makes use of this scale invariant representation, the mechanisms subserving

the grouping of local contour elements into coherent objects should also be scale invariant

across the visual field. Long-range horizontal connections, which preferably link neurons

with like feature preferences, have been suggested to subserve contour grouping in visual

cortical processing. With increasing eccentricity cortical RFs become larger and their spatial

frequency preference shifts to lower values. Psychophysical evidence exists for an inde-

pendence of the contour grouping mechanisms of the spatial scale for foveal stimuli. Hence,

scaling fixated objects according to cortical magnificationcould, in principle, result in a com-

parable grouping performance in the periphery. Nevertheless, psychophysical experiments

show that contour integration is impaired for targets at non-foveal locations, even if the tar-

gets are scaled according to cortical magnification. In order to better understand how the

mechanisms responsible for contour grouping depend on the spatial scale of local, oriented

contour elements, we investigated the spatial statistics of Gabor wavelet responses derived

from real-world images with respect to the spatial wavelength of the wavelets. For the set of

images and wavelets examined we find nearly scale-invariantcollinear correlations only for

wavelets of horizontal orientation. For vertical and oblique orientations, collinear correla-

tions drop in coordinates normalized to the wavelengths of the wavelets relatively faster for
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long-wavelength wavelets. Assuming that neurons in the primary visual cortex adapt their

horizontal connectivity by correlation-based (Hebbian) learning mechanisms, this would re-

sult in cortically shorter collinear horizontal connections in the peripheral compared to the

foveal representation for neurons with RF-sizes scaled according to cortical magnification.

Our results provide evidence against a uniform mechanism ofcontour grouping across all

spatial scales and across the visual field.

3.2 Introduction

In Chapter 2 we have shown that cortical magnification transforms an inhomogeneousreti-

nal velocity distribution due to self-motion along the direction of gaze into constantcortical

velocities across the whole visual field, if the average arrangement of objects in the environ-

ment corresponds to an ellipsoid with the observer in its center. This has the advantage that

the cortical connectivity for the processing of self-motion can be identical across the whole

visual field. However, in addition to the processing of self-motion, one of the most funda-

mental tasks of the visual system is to group local elements of a visual scene into coherent

objects. Psychophysical, neurophysiological, anatomical, and theoretical studies provide ev-

idence for mechanisms by which this grouping may be accomplished. However, it is not clear

how these mechanisms depend on the position within the visual field. It has been proposed

that cortical magnification provides a scale invariant representation of fixated objects with

respect to changes in viewing distance (Schwartz, 1980; Reitboeck and Altmann, 1984). In

order to make effective use of this cortical scale invariantrepresentation, the contour group-

ing mechanisms should also be scale invariant across the visual field.

In the following we will review experimental and theoretical findings about possible

mechanisms supporting contour grouping on early stages of visual processing.

3.2.1 Contour Grouping in Human Perception

The human visual system exploits a great number of grouping cues at multiple levels of

processing which can be based on spatial and temporal properties within a visual scene. A

prominent set of phenomenological rules was described by the Gestalt psychologists (Koffka,

1935; Wertheimer, 1923). Some of these so calledGestalt Rules(proximity, similarity, and

good continuation) are illustrated in Figure 3.1.

These empirical principles were later refined in psychophysical experiments (e.g. Field

et al., 1993; Polat and Sagi, 1993, 1994; McIlhagga and Mullen, 1996; Dakin and Hess,



3.2. Introduction 43

Figure 3.1: GESTALT RULES AS AN EXAMPLE OF BASIC GROUPING RULES IN HUMAN

PERCEPTION. (A) Grouping by proximity. There is a tendency to perceive elements near

to each other as belonging to the same object. (B) Grouping bysimilarity. Local elements

are perceived to belong together if they are similar. (C) Grouping by good continuation.

Local elements are grouped together if they form a smooth curve. The Gestalt rule of good

continuation plays an important role in contour integration.

1998). Field et al. (1993) carried out a series of seminal experiments in which human subjects

had to identify a continuous path of Gabor elements with similar orientations, which were

embedded in a background of randomly oriented Gabor elements. It turned out that the

relative orientation of neighboring Gabor elements withina path had a large impact on the

detection performance. Performance degraded with increasing difference in orientation of

successive Gabor elements. These results have been formalized by the term association field

(e.g., Field et al., 1993; Hess and Dakin, 1999), which quantitatively describes the tendency

of local contour elements to be perceptually bound togetheras a function of their relative

position, orientation, and spatial frequency.

3.2.2 Spatial Statistics of Contours in Real-World Scenes

If the visual grouping mechanisms arose to subserve the perception of visual objects, they

should be well adapted to the statistical co-occurence of edges and contours in real-world

scenes. The idea that the visual system is structured in a wayto provide an efficient rep-

resentation of the incoming signals goes back to Attneave (1954) and Barlow (1961), who

proposed that information theory could provide a link between the statistics of the environ-

ment and neural responses through the concept of efficient coding. Brunswik and Kamiya

(1953) suggested that there should be a quantitative relationship between the basic Gestalt

principles and the statistics of the visual world.
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Real-world images have characteristic statistical properties that distinguish them from

random noise distributions (e.g., Field, 1987; Ruderman and Bialek, 1994; Krüger, 1998;

Zetzsche and Röhrbein, 2001). For example, Field (1987) showed that the spatial power-

spectrum of the intensity-values of real-world images decreases according to a power law

for nearly 3 octaves of scaling and therefore is scale-invariant. Several studies have demon-

strated that the statistics of local contour elements in real-world scenes correspond to the

Gestalt principle of collinearity (Krüger, 1998), or moregeneralcocircularity (Sigman et al.,

2001; Geisler et al., 2001), and can predict human contour grouping performance (Geisler

et al., 2001).

3.2.3 Neurophysiology and Anatomy

The response properties of neurons on early stages of visualprocessing are commonly clas-

sified by their classical receptive field (cRF) (Hubel and Wiesel, 1962). In the primary visual

cortex of cats and monkeys most neurons respond selectivelyto bars of specific orientations

in their cRF. However, physiological studies have shown that the response of a neuron to a

stimulus within its cRF can be modulated by stimuli outside the cRF, a phenomenon called

contextual modulation(e.g., Maffei and Fiorentini, 1976; von der Heydt et al., 1984; Gilbert

and Wiesel, 1990; Gilbert, 1992; Knierim and van Essen, 1992; Kapadia et al., 1995; Sillito

et al., 1995). These experiments demonstrate that the response of a neuron to an optimally

oriented stimulus in its cRF can, for example, be enhanced bycollinearly arranged stimuli

outside the cRF, while the response can be either enhanced ordiminished by other geometri-

cal arrangements of contextual stimuli.

It has been suggested that these contextual modulations areeither mediated by long-range

horizontal connections in the primary visual cortex of catsand monkeys, which were shown

to preferentially link neurons with similar orientation preferences up to cortical distances of

a few millimeters (monkey: Sincich and Blasdel, 2001; Angelucci et al., 2002; Stettler et al.,

2002, cat: Ts’o et al., 1986; Schmidt et al., 1997; Gilbert and Wiesel, 1989, 1990, tree shrew:

Bosking et al., 1997), or by feedback from higher visual areas (e.g. Angelucci et al., 2002).

Although it has been shown in cats and monkeys that feedback connections from higher

cortical areas can modulate the responses of V1 neurons (Mignard and Malpeli, 1991; Salin

and Bullier, 1995; Hupé et al., 1998, 2001), it is not clear if they preferably connect neurons

with similar orientation preferences (Angelucci et al., 2002) or provide orientation-unspecific

feedback (Stettler et al., 2002).
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3.2.4 Ontogenetic Development of Grouping Mechanisms

There is experimental evidence that contour-grouping mechanisms develop after birth in an

activity-dependent fashion. Children younger than 9 months cannot make use of the basic

Gestalt principles (Spelke et al., 1993). Similarly, in monkeys it has been demonstrated that

contour grouping develops several months after birth (Kiorpes and Bassin, 2003). In humans,

the patchiness of the long-range lateral connections, which is typical in adults, develops at

about eight weeks after eye opening (Burkhalter et al., 1993; Katz and Callaway, 1992).

Several studies have shown that the ordered formation of long-range horizontal connections

happens in an input-dependent fashion in the primary visualcortex of cats (Callaway and

Katz, 1990, 1991; Löwel and Singer, 1992; Kasamatsu et al.,1998; Trachtenberg and Stryker,

2001) and ferrets (Ruthazer and Stryker, 1996). For instance, kittens raised without patterned

visual experience in one eye, as a consequence of suturing the lid of one eye, develop non-

specific lateral interactions for that eye (Kasamatsu et al., 1998). If inputs from both eyes

are decorrelated during development by artificially induced strabism, lateral connectivity

develops mainly between cell groups activated by the same eye (Löwel and Singer, 1992).

Taken together, these experimental findings suggest that the initial development of cor-

tical circuits and their later refinement depends critically on the spatio-temporal structure of

the visual input, and that certain statistical regularities in the visual environment are reflected

in the cortical connectivity.

3.2.5 Models of Contour Grouping

In model studies it has been shown that intra-areal horizontal connections within the pri-

mary visual cortex as well as feedback connections from higher visual areas can support

the grouping of contour elements, consistent with the basicGestalt principles (e.g., intra-

areal: Eckhorn et al., 1990; Ostkamp, 1996; Yen and Finkel, 1998; Li, 1999; Hansen et al.,

2001, feedback: Grossberg et al., 1997; Neumann and Sepp, 1999; Hansen et al., 2001). The

connectivity in these models is fixed and determined in advance, based on theoretical or bio-

logically motivated considerations. However, it has been demonstrated that long-range hori-

zontal connections, linking neurons with similar feature preferences, can be learned through

input-driven self-organization with artificial or real-world scenes through Hebbian learning

mechanisms (Prodöhl et al., 2003; Grossberg and Williamson, 2001; Choe and Miikkulainen,

2004) and sparse coding approaches (Hoyer and Hyvärinen, 2002).
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3.2.6 Dependence of Contour Grouping Mechanisms on RetinalEccen-

tricity

Relatively little is known about how the mechanisms subserving contour grouping depend on

the neurons’ preferred spatial frequencies and cRF-positions within the visual field. Several

psychophysical studies have demonstrated that collinear facilitation in the fovea is indepen-

dent of the spatial scale of the contour elements (Polat and Sagi, 1993; Hess and Dakin, 1997;

Dakin and Hess, 1998; Woods et al., 2002).

With increasing eccentricity, cRFs of neurons in the primary visual cortex become larger

and their peak spatial frequency preference shifts to lowervalues (e.g., De Valois et al., 1982).

The scale independence of perceptual collinear facilitation in the fovea suggests that collinear

facilitation performance could be comparable in the periphery, if stimuli are scaled according

to cortical magnification. However, performance decreasesin many subjects when stimuli

are presented at nonfoveal locations (e.g., Williams and Hess, 1998; Zenger-Landolt and

Koch, 1996; Hess and Dakin, 1997; Shani and Sagi, 2005). Xingand Heeger (2000) found

that surround suppression is markedly stronger and less orientation specific in the periphery

in comparison to the fovea, while the effect of surround facilitation is diminished or even

absent. Importantly, this could not be accounted for by the cortical magnification factor.

In psychophysical experiments Shani and Sagi (2005) demonstrated reduced facilitation for

collinearly arranged Gabor wavelets at eccentricities as small as1◦ − 2◦. Facilitation did

not even increase if the stimuli were scaled according to thecortical magnification factor.

However, facilitation performance could be increased whenattention was directed from the

fovea to the peripheral stimulus location. Similarly, Giorgi et al. (2004) found weak collinear

facilitation for peripheral Gabor targets up to eccentricities of6◦, using a temporal, but not

a spatial, two-alternative forced-choice paradigm. The latter findings underline the possible

role of attention in modulating collinear facilitation.

Neurophysiological and anatomical studies in cats and monkeys demonstrate that long-

range lateral connections in primary visual cortex are not restricted to the foveal represen-

tation, but extend extra-foveally up to retinal eccentricities of10◦. However, no systematic

changes in lateral connectivity with eccentricity have been reported (monkey: Sincich and

Blasdel, 2001; Angelucci et al., 2002; Stettler et al., 2002, cat: Ts’o et al., 1986; Schmidt

et al., 1997; Gilbert and Wiesel, 1989, 1990, tree shrew: Bosking et al., 1997).

The above findings suggest that the lateral connectivity, subserving the grouping of local

contour elements, could be identical in the fovea and in the periphery; with other factors,

like attentional mechanisms, modulating the effect of collinear facilitation (Ito and Gilbert,
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1999; Freeman et al., 2001; Giorgi et al., 2004; Shani and Sagi, 2005). However, the lack,

or at least strong decrease, of collinear facilitation for non-foveal targets could be due to a

different pattern of lateral connectivity in the fovea compared to the periphery.

3.2.7 Aim of the Current Study

The size and the spatial frequency preference of primary cortical cRFs change with ocular

eccentricity. We wanted to know how the statistics of local oriented contour elements in

real-world scenes depend on the spatial filter properties ofcortical neurons at different ec-

centricities. Therefore, we examined the statistics of Gabor wavelet responses in real-world

scenes with regard to wavelets of different orientations and spatial scales.

To our knowledge, no data exists about the statistics of local contour elements in real-

world scenes at different spatial scales. In previous studies, oriented edge elements have

been extracted using fixed-scale spatial filters. Krüger (1998) used oriented Gabor filters of a

fixed scale to extract local contour elements. Sigman et al. (2001) employed quadrature pairs

of fixed-scale steerable filters as a measure of the local oriented energy. Geisler et al. (2001)

used a two-stage filtering process. In a first step, edge locations were identified as the zero-

crossing pixels in the response of a nonoriented log-Gabor function. In a second step, local

orientation energy was measured using quadrature pairs of oriented log-Gabor filters. They

note that a preliminary analysis at a 2 octaves higher spatial scale yielded similar results, but

they show no quantitative comparison.

3.3 Methods

3.3.1 Real-World Scenes

Real-world scenes were taken from a database of freely available still images (van Hateren

and Van der Schaaf, 1998). The image set used consisted of 1800 black and white pictures,

each 1536 pixel× 1024 pixel in size, with an amplitude resolution of 12 bits, and an angular

resolution of approximately 1 min of arc per pixel1. In order to compare the statistics of local

contour elements for different types of environments, we categorized a subset of the images

according to the categoriesplants(N = 255), buildings(n = 96), andforest (N = 112).

Figure 3.2 shows typical images from these different hand-chosen semantical categories.

1Visit http://hlab.phys.rug.nl/imlib/index.html for more information.
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Figure 3.2: SAMPLE IMAGES FROM A DATABASE OF 1800 DIFFERENT IMAGES. Shown

are images from 3 hand-chosen categories and an uncategorized image: (A) close-up pho-

tographs of plants, (B) buildings, (C) forest, and (D) uncategorized image. For better visibil-

ity, the logarithm of the image intensities is shown.
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3.3.2 Extraction of Local Contour Elements

Gabor Wavelets as Spatial Filters

We used Gabor wavelets (Gabor, 1946) of constant spatial frequency bandwidth as a linear

model for the spatial transfer function of cortical simple cells. This is consistent with neuro-

physiological findings (Marčelja, 1980; Pollen and Ronner, 1981; De Valois et al., 1982; Ku-

likowski and Vidyasagar, 1986; Jones and Palmer, 1987; De Valois and De Valois, 1988) and

theoretical considerations, which demonstrate that spatial filters, similar to Gabor wavelets,

can be learned in an unsupervised fashion from the statistics of natural images by apply-

ing constraints either concerning the sparseness of the neural representation (Olshausen and

Field, 1996), or the independence of the resulting filters (Bell and Sejnowski, 1997; van

Hateren and Ruderman, 1998).

A Gabor wavelet is a pixel-wise product of a Gaussian with a plane wave and can be

parametrized by 5 parameters:A, σx, σy, λ, φ, andα. A is the amplitude of the wavelet,σx

andσy characterize the Gaussian envelope function parallel and perpendicular to the wave

vector of the plane wave,λ andφ are the wavelength and spatial phase of the plane wave,

andα is the orientation of the wavelet.

G(x, y, λ, σx, σy, α, φ) = A exp

(

− x′2

2σ2
x

− y′2

2σ2
y

)

cos

(

2π

λ
y′ − φ

)

(3.1)

with

x′ = x cos α + y sin α (3.2)

and

y′ = y cos α − x sin α. (3.3)

For our analysis we used Gabor wavelets of 4 different wavelengths (5, 10, 20, and 40

pixels, corresponding to 12, 6, 3, and 1.5 cycles per degree)and of four different orientations

(0◦, 45◦, 90◦, 135◦), which resulted in a total of 16 different Gabor wavelets. To ensure a

constant spatial frequency bandwidth for all wavelets,σy was chosen proportional toλ:

σy =
2.5

2π
λ. (3.4)

In order to obtain a narrow orientation characteristic for the Gabor wavelets, the Gaussian

envelope function was chosen to be oriented, withσx = 1.5σy, i.e. stretched perpendicular

to the wave vector of the wave function. The wavelets had a size of four times the wavelet’s

wavelength in both x- and y-directions. Finally, we subtracted the mean of every Gabor
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Figure 3.3: EXAMPLES OF GABOR WAVELETS USED TO EXTRACT LOCAL CONTOUR EL-

EMENTS. Shown are eight Gabor wavelets of orientation0◦, with four different wavelengths

of the wave function (5, 10, 20, 40 px, respectively), with a wavefunction of phase0◦ (top

row) and of phase90◦ (bottom row).

wavelet and normalized the sum of the absolute values to 1 in order to obtain identical maxi-

mum responses for the wavelets of all wavelengths. Figure 3.3 shows eight example wavelets

of orientation0◦ for 4 different wavelengths and two different spatial phases.

Spatial Complex Cell Filters

Contour elements were extracted by convoluting each image with a Gabor wavelet of a given

orientation, wavelength and spatial phase. To mimick the spatial response characteristic of

cortical complex cells, the squares of the convolution of two Gabor wavelets with the same

orientation and wavelength, but shifted by90◦ in phase (Adelson and Bergen, 1985; Spitzer

and Hochstein, 1988), were added:

R1(λ, α) = |G(λ, σx, σy, α, 0) ∗ I|2 + |G(λ, σx, σy, α,
π

2
) ∗ I|2, (3.5)

where∗ is the convolution operator. To reduce the amount of necessary computation,

we determined the convolution only for150 × 150 different positions with horizontal and

vertical distances of 4 pixels each, corresponding to an image region of≈ 10◦.
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Normalization of Wavelet Responses

In order to sharpen the orientation characteristics of the wavelet responses, a thresholding

and normalization procedure was applied to the filtered images. Similar approaches were

used in comparable studies (Krüger, 1998; Sigman et al., 2001; Geisler et al., 2001). In a

first step, we applied a thresholdθ in order to discard small wavelet responses:

R2(λ, α) = max {R1(λ, α) − θ, 0} . (3.6)

In a second step, we normalized the total response strength for every single pixel in the

image by dividing the wavelet response for a single orientation i through the sum of the

wavelet responses of all orientations of the same wavelength.

R3(x, y, λ, i) =
R2(x, y, λ, i)

C +
∑

j R2(x, y, λ, j)
(3.7)

The constant C had a small value in comparison to the values ofR2, and ensured that the

denominator was always6= 0. This normalized the responsesR3 to the interval[0, 1], where

1 corresponds to the situation of a single wavelet response being 6= 0 with all others being 0.

Finally, we applied a second threshold (θ2 = 0.5) to the normalized values, and discarded

all wavelet responses which had a value less thanθ2:

R(x, y, λ, i) = max {R3(x, y, λ, i) − θ2, 0} . (3.8)

Although the main purpose of the thresholding procedure is of computational nature, it

is similar to the operations performed by cortical neurons.Thresholding corresponds to the

firing thresholds of cortical neurons and the normalizationis similar to shunting inhibition,

which has a divisive effect on the neurons’ membrane potentials (e.g., Borg-Graham et al.,

1996, 1998).

Figure 3.4 shows the resulting preprocessed wavelet responses for the four different

wavelet wavelengths for an example image.

3.3.3 Data Analysis

In the current study we were mainly interested in the second order statistics of collinearly

arranged contour elements of the same spatial scale. Therefore we computed the correla-

tions between Gabor wavelets of the same orientationα and the same wavelengthλ. The

autocorrelation function of a single filtered imagei is computed according to
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C D
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Figure 3.4: NORMALIZED RESPONSES FOR WAVELETS OF DIFFERENT SPATIAL SCALES.

Shown are the normalized wavelet-responses for the four different filter-sizes: (A)λ = 5 px,

(B) λ = 10 px, (C) λ = 20 px, and (D)λ = 40 px. The different colors correspond to the

four different orientations0◦ (red),45◦ (yellow), 90◦ (blue), and135◦ (green).
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Ci(∆x, ∆y) =

∑

x,y(R(x, y) − R̄)(R(x + ∆x, y + ∆y) − R̄)
∑

x,y
1

150·150

The term
∑

x,y
1

150·150
is the overlap of the shifted image-patches and compensatesre-

duced correlation-values for large values of(∆x, ∆y) due to the finite patch-size. Correla-

tions were computed for values of∆x and∆y in the range from−160 px to160 px.

The mean autocorrelation function for a given Gabor wavelet, averaged over all images,

was computed according to

C(∆x, ∆y) =
1

N

N
∑

i=1

Ci(∆x, ∆y)

To compare the correlation functions for filters of different orientations and wavelengths,

the autocorrelation functions were normalized such that

C(0, 0) = 1. (3.9)

3.4 Results

3.4.1 Average Normalized Wavelet Responses

Figure 3.5 shows the normalized wavelet responses for the 16different Gabor wavelets, aver-

aged across all image locations and images. The average responses for wavelets of horizontal

and vertical orientations are larger than the responses forwavelets of oblique orientations for

all wavelengths examined. Furthermore, wavelet response strength varies in a qualitatively

similar fashion with orientation for wavelets of differentwavelengths, with slightly more

pronounced differences for wavelets of large wavelengths.Figure 3.5B shows the response

strength, averaged across all wavelengths, in dependence on the orientation of the wavelets.

However, the results depend on the stimulus set analyzed. Ifonly a subset of the images

which contain buildings is considered, one obtains the distribution of response strengths

shown in Figure 3.6. The difference between the response strengths for wavelets of cardinal

and oblique orientation is even more pronounced than for thecase of pooling over all images.

This seems to be mainly caused by the edges of the buildings, which, in the stimulus set

examined, are often aligned parallel to the horizontal or the vertical axis.

In contrast, a subset of images which mainly consists of close-up views of plants leads

to similar response strengths for wavelets of all orientations (Figure 3.7), with slightly larger

responses for vertically oriented wavelets.
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Figure 3.5: AVERAGE NORMALIZED WAVELET RESPONSES FOR WAVELETS OF DIFFER-

ENT WAVELENGTHS AND ORIENTATIONS, COMPUTED FROM ALL 1800 IMAGES. (A) De-

pendence of the average normalized wavelet responses on orientation and wavelength, and

(B) averaged across all wavelengths. Note the larger responses for wavelets of horizontal

and vertical orientation and the similar responses for wavelets of the same orientation but

different wavelengths.
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Figure 3.6: AVERAGE NORMALIZED WAVELET RESPONSES FOR WAVELETS OF DIFFER-

ENT WAVELENGTHS AND ORIENTATIONS, COMPUTED FROM IMAGES WITH BUILDINGS.

Compare Figure 3.5.
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Figure 3.7: AVERAGE NORMALIZED WAVELET RESPONSES FOR WAVELETS OF DIFFER-

ENT WAVELENGTHS AND ORIENTATIONS, COMPUTED FROM IMAGES WITH CLOSE-UP

PHOTOGRAPHS OF PLANTS. Compare Figure 3.5.

For images depicting trees and forest-scenes, response strength is highest for wavelets of

vertical orientation (Figure 3.8), most probably caused bythe dominant trunks of the trees.

Interestingly, for the smallest wavelets used, there are similar responses for wavelets of all

orientations. This could be due to the fact that the small structures in the forest scenes are

similar to the above mentioned class of plants in close-up view.

Taken together, differences in the average response strengths of wavelets of different

orientations depend strongly on the image set analyzed. Ourresults indicate further that

the relative response strengths for wavelets of different orientations depend only weakly on

the wavelength of the wavelets. Thus, for the range of wavelengths examined, the relative

contribution of wavelet responses of different orientations is nearly independent of the spatial

scale of the wavelets. It is, however, important to note thatthe wavelength of the largest

wavelets used (40 px) corresponds to a visual angle of less than one degree.

3.4.2 Two-Dimensional Autocorrelation Matrices

Figure 3.9 shows the two-dimensional autocorrelation matrices for wavelets of four different

orientations and four different wavelengths. The correlation profile between wavelets of

the same orientation is elongated along the collinear direction. Collinear correlations are
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Figure 3.8: AVERAGE NORMALIZED WAVELET RESPONSES FOR WAVELETS OF DIFFERENT

WAVELENGTHS AND ORIENTATIONS, COMPUTED FROM IMAGES WITH FOREST-SCENES.

Compare Figure 3.5.

more far-reaching for wavelets of cardinal orientations incomparison to wavelets of oblique

orientations. Furthermore, correlation declines more steeply with distance for wavelets of

short wavelengths in comparison to wavelets of the same orientation but longer wavelength.

3.4.3 Collinear Correlations

Figures 3.10A,B show the distance-dependent collinear correlation strengths for the wavelets

of horizontal orientation. One can see that for any given distance of wavelets correlation is

stronger the larger the wavelength of the corresponding wavelets.

A better understanding of the decline in correlation strength is achieved by normalizing

the distance of the wavelets to their wavelength. This is shown in Figures 3.10C,D. Correla-

tion strengths for pairs of wavelets of different wavelengths are similar at the same relative

distance. Thus, for wavelets of horizontal orientation, collinear correlation is nearly scale

invariant for the wavelets of different wavelengths.

However, this is only the case for the wavelets of horizontalorientation, but not for the

three other orientations examined (Figure 3.11). There is ageneral trend for correlations

to decline more steeply with increasing distance for wavelets with larger wavelengths. It is

further notable that collinear correlations decline faster for wavelengths of oblique orienta-
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Figure 3.9: TWO-DIMENSIONAL AUTOCORRELATION MATRICES FOR WAVELETS OF DIF-

FERENT WAVELENGTHS AND ORIENTATIONS. The contours indicate correlation strengths

of 0.4,0.2, 0.1, and 0.05, respectively. From left to right:0◦, 45◦, 90◦, 135◦. From top to

bottom:λ = 5 px, λ = 10 px, λ = 20 px, andλ = 40 px. Note the elongation of the cor-

relation profiles along the collinear direction with respect to the orientation of the wavelets.

The correlation profiles of wavelets of the same wavelength but different orientations are in

general not rotation invariant. Correlations along the collinear direction as well as in the per-

pendicular direction are more long-range for wavelets of horizontal and vertical orientations

in comparison to wavelets of oblique orientations.
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Figure 3.10: COLLINEAR CORRELATION FOR WAVELETS OF HORIZONTAL ORIENTATION

(0◦). Normalized Correlation (A) in linear coordinates, (B) inlogarithmic coordinates, (C)

in linear coordinates, with distances normalized to the wavelets’ wavelengths, and (D) like

in (C), but in logarithmic coordinates. Collinear correlation decreases more steeply with

distance for wavelets of short wavelengths in comparison towavelets of long wavelengths

(A-B). However, if distances are normalized with respect tothe wavelets’ wavelengths, the

decline in correlation with increasing distance becomes similar for wavelets of different

wavelengths (C-D).
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Figure 3.11: CORRELATION STRENGTH AT DISTANCES NORMALIZED TO THE WAVELETS’

WAVELENGTHS. (A) 0◦, (B) 45◦, (C) 90◦, and (D)135◦. Note the steeper decline in corre-

lation with increasing distance for wavelets of large wavelengths compared to wavelets of

shorter wavelengths.

tions in comparison to correlations for wavelets of the samewavelengths, oriented along the

cardinal orientations.
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Figure 3.12: AVERAGE WAVELET RESPONSES FOR THE CASE OF SHUFFLED IMAGES. The

average responses for wavelets of the same wavelength do notdepend on the orientation of

the wavelets.

3.4.4 Shuffled Images

In order to rule out the possibility that the increased wavelet responses for horizontally and

vertically oriented wavelets and the increased correlation along the collinear direction are

trivially determined by the shape of the spatial filters used, we computed the average wavelet

responses and the two-dimensional autocorrelation matrices for the wavelet responses ob-

tained from a set of 1000 images, with the intensity values ofthe images shuffled across

space. The average wavelet response strengths are shown in Figure 3.12. As one can see,

response strengths are similar for the different wavelet orientations. Thus, the strong wavelet

responses for horizontal and vertical contours in real-world scenes are a consequence of the

spatial structure of the scenes, and not artifacts of the shape of the spatial filters used.

The two-dimensional autocorrelation matrices for the wavelet responses obtained from

the set of shuffled images are shown in Figure 3.13. The autocorrelation profiles merely

resemble the oriented Gaussian envelope functions of the wavelets. Figure 3.14 shows the

correlation along the collinear orientation for the filtersof all orientations and wavelengths.

Correlation is essentially zero for relative differences greater than two times the wavelength

of the wavelets. Wavelets of different wavelengths displayscale-invariant behavior, as ex-

pected from the scale invariance of the wavelets. Furthermore, there is no difference in

collinear correlation for wavelets of different orientations.
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Figure 3.13: TWO-DIMENSIONAL AUTOCORRELATION MATRICES FOR SHUFFLED IM-

AGES. The contours indicate correlation strengths of 0.4,0.2, 0.1, and 0.05, respectively.

From left to right:0◦, 45◦, 90◦, 135◦. From top to bottom:λ = 5 px, λ = 10 px, λ = 20 px,

andλ = 40 px.
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Figure 3.14: COLLINEAR CORRELATIONS FOR SHUFFLED IMAGES. (A) 0◦, (B) 45◦,

(C) 90◦, and (D)135◦. For shuffled images, collinear correlations are scale- androtation-

invariant. Compare Figure 3.11.
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Figure 3.15: TWO-DIMENSIONAL AUTOCORRELATION MATRICES FOR NON-

NORMALIZED WAVELET RESPONSES. The contours indicate correlation-levels of

0.4,0.2,0.1, and 0.05, respectively. From left to right:0◦, 45◦, 90◦, 135◦. From top to bottom:

λ = 5 px, λ = 10 px, λ = 20 px, andλ = 40 px.

3.4.5 Non-Normalized Wavelet Responses

In order to estimate the influence of the thresholding and normalization procedure on the

correlations, we computed the autocorrelation functions for the non-normalized wavelet re-

sponsesR1. This is shown in Figure 3.15. There is an increased correlation in the collinear
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Figure 3.16: COLLINEAR CORRELATIONS OF THE NON-NORMALIZED WAVELET RE-

SPONSES. Compare Figure 3.11.

direction, but the effect is generally not as clearly visible as for the normalized wavelet re-

sponses (Figure 3.9).

However, as can be seen in Figure 3.16, collinear correlations depend in a similar way on

the orientation and wavelength of the wavelets as for the normalized wavelet responses, and

decrease more steeply with increasing distance for wavelets of large wavelengths.



3.5. Discussion 65

3.5 Discussion

The spatial response properties of neurons in the primary visual cortex of cats and monkeys

can be described by Gabor wavelets of different orientations and wavelengths for cortical

simple cells, or, in the case of cortical complex cells, as a nonlinear superposition thereof

(Adelson and Bergen, 1985). We investigated how the statistics of Gabor wavelet responses,

extracted from real-world images, change with both the orientation and the spatial scale of

the wavelets.

3.5.1 Summary of Results

We have shown that the average normalized strength of wavelet responses depends both on

their orientation and the semantical content of the real-world scenes, but that the relative

response strengths for different wavelet orientations do not qualitatively change with the

scale of the wavelets used. However, differences between cardinally and obliquely oriented

wavelets are slightly more pronounced for wavelets of largewavelengths.

Collinear correlations between wavelets of the same orientation are in general not scale

invariant. In retinal coordinates, correlations are more long-range for wavelets of larger

wavelengths. However, transformed to distances, normalized by the wavelength of the

wavelets, correlations are more short-range for wavelets of larger wavelengths. Further-

more, collinear correlations are not invariant with respect to the orientations of the wavelets.

Collinear correlations between wavelets of oblique orientations are more short-range than

collinear correlations between wavelets of cardinal orientations of the same wavelength.

3.5.2 Anisotropy of Normalized Wavelet Responses

We found an anisotropy in the averaged normalized wavelet-responses dependent on the

orientation of local contour elements and on the semanticalscene-category analyzed. The

orientation-anisotropy is consistent with an effect described in psychophysical and neuro-

physiological measurements as theoblique effect. In humans and animals, the perception

of horizontally and vertically oriented contours is superior to the perception of contours of

oblique orientations. This has been documented in psychophysical measurements of con-

trast sensitivity, orientation discrimination and recognition rate (e.g., Appelle, 1972; Heeley

et al., 1997; Krebs et al., 2000). A possible neural substrate for the oblique effect could be an

overrepresentation of neurons selective for horizontal and vertical contours, which has been

demonstrated in single cell recordings in cats (e.g., Orbanand Kennedy, 1981; Leventhal
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and Hirsch, 1980; Bauer et al., 1990; Li et al., 2003), monkeys (e.g., Mansfield and Ronner,

1978) and ferrets (Coppola et al., 1998b). In optical imaging studies in cats it has further been

shown that horizontally and vertically oriented stimuli evoke stronger responses in compar-

ison to obliquely oriented stimuli (Dragoi et al., 2001). Vertically and horizontally oriented

stimuli cause larger visually evoked potentials in comparison to obliquely oriented stimuli

in cats (Bonds, 1982) and monkeys (Mansfield and Ronner, 1978; Bonds et al., 1987), and

result in faster and larger evoked potentials in humans (Arakawa et al., 2000). An anisotropy

with respect to horizontal and vertical orientations has also been demonstrated as early as

in retinal ganglion cells, whose dendrites are preferentially arranged along the vertical and

horizontal meridian (Wässle et al., 1975).

Less is known about the dependence of the oblique effect on the spatial scale of ori-

ented stimuli and their position within the visual field. In the macaque visual cortex there

is a predominance of neurons which respond to high spatial frequencies and prefer cardinal

orientations, while there is no such effect for neurons withlow spatial frequency preference

(De Valois et al., 1982; Li et al., 2003). Another study foundthat neurons selective for middle

to low spatial frequencies even prefer oblique orientations (Nelson et al., 1984). Evidence

exists that the overrepresentation of contours of different orientations depends on the position

within the visual field: While in the striate cortex of cats horizontal and vertical orientations

are overrepresented in the central visual field, in the periphery there is an overrepresentation

of radial orientations in the upper layers and of concentricorientations in the lower layers

(Bauer et al., 1990).

The oblique effect may have its cause in the statistical properties of natural scenes. The

predominance of contours oriented along the cardinal axes is a robust phenomenon in the

statistics of real-world scenes (e.g., Coppola et al., 1998a; Hancock et al., 1992; Van der

Schaaf and Hateren, 1996; Keil and Cristóbal, 2000; Betschet al., 2004). The bias towards

horizontal and vertical contour orientations is most probably due to the horizontal surface

of the earth on the one hand, and gravity on the other hand, which causes plants to develop

supports parallel to the direction of the gravity vector andhorizontal surfaces to effectively

absorb sunlight (Coppola et al., 1998a). However, the quantitative relations between cardinal

and oblique orientations depend on the semantical content of the examined real-world scenes

(e.g., Coppola et al., 1998a; Keil and Cristóbal, 2000). For example, natural scenes with

plants and no man-made objects show a more uniform distribution of orientations than do

scenes with man-made objects (Coppola et al., 1998a), whichis consistent with our results

(Figure 3.7).
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3.5.3 Scale Invariance of Contour Integration

We have demonstrated that correlation strength along the axis of orientation declines faster

with distance for wavelets of large wavelengths compared towavelets of short wavelengths.

If collinear horizontal connections self-organize according to the spatial statistics of the nat-

ural environment, our results imply that the effect of collinear facilitation should be weaker

between neurons with a preference for low spatial frequencies compared to facilitation be-

tween neurons at the same relative distance with a preference for high spatial frequencies.

However, several psychophysical studies have demonstrated an independence of collinear

facilitation on the spatial scale of the targets, at least inthe foveal representation of the visual

field (Polat and Sagi, 1993; Hess and Dakin, 1997; Woods et al., 2002). Our results cannot

account for the independence of collinear facilitation on spatial scale in the fovea.

A possible reason for this discrepancy could be the specific shape of the spatial filters

used in the current study, or the particular choice of the real-world scenes, manually se-

lected by a human observer. Another possibility for this discrepancy could be that neurons

with cRFs of large wavelengths have a larger cRF overlap in the fovea than neurons with

cRFs of small wavelengths, which would result in an effectively stronger lateral coupling

and a better signal-to-noise ratio between neurons of largewavelengths. However, we are

not aware of experimental data subserving this hypothesis.Furthermore, it is possible that

learning of long-range horizontal connections is influenced by scale-combination processes

between neurons of different spatial frequency preferences. It has been demonstrated that

the detection of straight paths of Gabor elements is possible even for paths composed of al-

ternating Gabor elements of different spatial frequenciesfor differences in spatial frequency

up to≈ 1.3 octaves (Dakin and Hess, 1998). Thus, the investigation of spatial correlations

between wavelet-responses of different spatial scales would be a valuable extension of the

current study.

3.5.4 Dependence of Spatial Scene Statistics on Eccentricity

With increasing eccentricity, the peak spatial frequency preference of neurons in the primary

visual cortex shifts to lower values (De Valois et al., 1982), while at the same time corti-

cal magnification declines (e.g., Dow et al., 1981; Van Essenet al., 1984; Slotnick et al.,

2001). If collinear horizontal connections self-organizeaccording to the spatial statistics of

the natural environment, our results imply that the length of these connections is not scale

invariant with respect to the spatial filter properties of the corresponding RFs at different

eccentricities: Lateral connections between neurons withsmall RFs in the fovea should be
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longer in range in cortical coordinates than lateral connections between neurons with larger

RFs in the periphery, scaled in accordance with cortical magnification. This could lead to a

decreased grouping performance for collinearly arranged elements in the periphery, even if

stimuli are scaled according to cortical magnification. However, our results can not explain

the nearly absent collinear facilitation even for stimuli at small retinal eccentricities (e.g.,

Zenger-Landolt and Koch, 1996; Shani and Sagi, 2005).

The extrapolation of our results to the image statistics at different eccentricities depends

on the assumption that the spatio-temporal statistics of the environment, as projected on

the retina, is constant across the whole visual field. This, however, is not strictly the case

(Reinagel and Zador, 1999; Krieger et al., 2000). Vision is an active process. Nearly all

animals with visual systems actively control their gaze with their eyes, head, or body move-

ments. In fact, this active gaze control is the most important mechanism in order to direct

attention to interesting parts of visual scenes. On average, high spatial frequency content,

edge density, and contrast are highest at the point of fixation (Mannan et al., 1996, 1997;

Reinagel and Zador, 1999). Furthermore, spatial correlations at the center of gaze are on

average lower in comparison to the correlations across the whole visual field. Thus, it is

possible that the spatial statistics of peripheral contours in real-world scenes differ from the

spatial statistics in the fovea under natural viewing conditions.

Another reason for the psychophysically decreased collinear facilitation with increas-

ing eccentricity could be a change in the temporal response characteristics of neurons with

increasing eccentricity. With increasing eccentricity, the ratio of parvocellular to magnocel-

lular inputs from the LGN to the primary visual cortex decreases from 35:1 in the fovea to

5:1 at15◦ eccentricity (Azzopardi et al., 1999). If contour integration is mainly accomplished

by parvocellular neurons mediating fine, slowly changing details within visual scenes, this

decrease could account for a reduced performance with increasing eccentricity.

These points cannot be answered on the basis of the set of real-world images used in this

study. A possibility to further study the influence of spatial and temporal inhomogeneities

at different positions within the visual field could be the use of a mobile eye-tracker device

to record movies of visual scenes as seen by freely moving observers and analyze both the

change in spatial and temporal statistics across the visualfield. Furthermore, this could reveal

interesting differences in the cortical connectivity of different species, depending on posture,

movement speed, and the characteristic properties of different environments.

In addition, attentional mechanisms seem to play a role in modulating collinear facilita-

tion (e.g., Ito and Gilbert, 1999; Freeman et al., 2001; Giorgi et al., 2004; Shani and Sagi,

2005), which implies that collinear facilitation performance can not solely be predicted by
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the lateral connectivity.
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Chapter 4

Self-Organization of Lateral Connections

Stimulus Velocity Influences Self-Organization of LateralConnections in a Network

Model of Pulse-Coding Neurons with Hebbian Learning

4.1 Abstract

In the primary visual cortex, horizontal connections between neurons of similar feature pref-

erence are supposed to mediate contextual influences from outside the classical receptive

field (cRF). This provides a mechanism which could support the perceptual grouping and

segregation of localspatial features in visual scenes into coherent visual objects. Addition-

ally, it has been suggested that asymmetric horizontal connections may enhance the selectiv-

ity of neurons for the direction of stimulus movement, thus providing a mechanism for the

coding ofspatio-temporalstimulus attributes. What factors determine the shape of the lateral

connectivity during learning? We investigated the influence of stimulus velocity and the con-

duction velocity of the lateral connections on the self-organization of lateral connections in a

single-layer network model of pulse-coding neurons with a temporal Hebbian learning rule.

We show that stimulus velocities much lower than the conduction velocity of the lateral con-

nections favor the development of lateral connections which are well adapted to the spatial

structure of the visual input. High stimulus velocities lead to lateral connections which sup-

port the coding of the spatio-temporal structure of the visual input. Considering the different

temporal response characteristics of magnocellular (temporal bandpass) and parvocellular

(temporal lowpass) neurons, we discuss possible influencesof these two retino-cortical path-

ways on the encoding of object-motion and object-form in thecortical dorsal and ventral

pathways, respectively. Additionally, our results may help in understanding the decreased
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collinear facilitation and path detection performance forperipheral compared to foveal stim-

uli which has been found in psychophysical experiments.

4.2 Introduction

Lateral connections between neurons of similar feature preference may serve as a possible

neuronal substrate for mediating contextual influences andsupporting the grouping of local

spatial image features within a visual scene into coherent objects (experiment: e.g., Gilbert

and Wiesel, 1989, 1990; Bosking et al., 1997; Schmidt et al.,1997; Stettler et al., 2002,

model: e.g., Eckhorn et al., 1990; Ostkamp, 1996; Yen and Finkel, 1998; Li, 1999; Neumann

and Sepp, 1999; Hansen et al., 2001). In model studies it has been demonstrated that lat-

eral connections can self-organize according to the spatial statistics of artificial or real-world

scenes by Hebbian learning mechanisms (e.g., Grossberg andWilliamson, 2001; Prodöhl

et al., 2003; Choe and Miikkulainen, 2004). In addition to the grouping of spatial features

within a visual scene, lateral connections may enhance the selectivity of cortical neurons for

the direction of stimulus movement, although the actual mechanisms, leading to direction

selectivity are still a matter of debate (e.g., Feidler et al., 1997; Wimbauer et al., 1997; Liv-

ingstone, 1998; Clifford and Ibbotson, 2003). In model studies it has been demonstrated that

asymmetric lateral connections, linking neurons along thedirection of motion, lead to direc-

tion selective response properties (e.g., Mineiro and Zipser, 1998; Shon et al., 2004). The

required lateral connectivity can be learned by Hebbian mechanisms from directed motion

stimuli (e.g., Jastorff and Giese, 2004; Shon et al., 2004; Wenisch et al., 2005). We investi-

gated which properties of the network and the visual input determine the shape of the lateral

connectivity during learning.

4.2.1 Conduction Velocities of Lateral Connections

Interactions between neurons are mediated by action potentials which travel with finite veloc-

ity along axons. The conduction velocity depends on the axon’s diameter and its myeliniza-

tion (e.g., Rushton, 1951; Waxman and Bennett, 1972). Another factor limiting the velocity

of the spread of activation between neurons is the neural activation time, which may vary

substantially depending on the activation state of the neurons. Typical values of conduction

velocities along horizontal connections range from 0.1-0.6 m/s in cats (Komatsu et al., 1988;

Hirsch and Gilbert, 1991) and rats (Murakoshi et al., 1993; Nowak and Bullier, 1998), which

is consistent with the lateral spread of synaptic activity in monkeys, as revealed by optical
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imaging studies (Grinvald et al., 1994; Slovin et al., 2002).

4.2.2 Parallel Retinal and Cortical Processing Streams

Throughout the visual system sensory information is processed along parallel pathways of

neurons with different spatio-temporal response properties.

The two major retino-cortical processing streams are the magnocellular (M) and parvo-

cellular (P) pathways originating in the retinal ganglion cells. The cRFs of M-neurons in

the LGN are by a factor of 2–3 larger than the cRFs of P-neuronsat the same eccentricity

(e.g., Xu et al., 2002). While the temporal response characteristics of P-neurons resemble a

temporal lowpass filter, M-neurons display temporal response properties resembling a tem-

poral bandpass filter (e.g., Hicks et al., 1983; Kaplan and Bernadete, 2001). Additionally,

M-neurons exhibit steeper contrast gain functions than do P-neurons at the same eccentricity

(Kaplan and Shapley, 1986). P-neurons encode most of the chromatic information within

a visual scene due to the spectral opponency of their cRF center and surround, while M-

neurons are virtually insensitive to color and respond primarily to luminance stimuli (e.g.,

De Monasterio, 1978). In the LGN of monkeys, the proportion of P- to M-neurons at a given

eccentricity is not constant across the visual field, but declines with increasing eccentricity

from 35:1 in the fovea to 5:1 at15◦ eccentricity (Azzopardi et al., 1999).

Lesions of the parvocellular layers of the LGN (P-lesions) cause a 3- to 4-fold reduction

in spatial acuity in monkeys while magnocellular lesions (M-lesions) do not effect acuity

(Merigan et al., 1991a,b). Luminance and chromatic contrast sensitivities for static grat-

ings of high spatial frequency are reduced for P-lesions, but not for M-lesions. However,

luminance contrast sensitivity for low spatial frequency gratings, modulated at a temporal

frequency of 10 Hz, is reduced by both P- and M-lesions.

It has been suggested that the P- and M-pathways are dedicated to different visual tasks:

The P-pathway dominates chromatic vision, acuity, and contrast detection at low temporal

and high spatial frequencies, pointing out its role in the analysis of form and color, while the

M-pathway dominates contrast detection at higher temporaland lower spatial frequencies,

suggesting its role in motion analysis (e.g., Merigan et al., 1991b; Kaplan and Bernadete,

2001).

Cortically, information is processed along at least two pathways: The dorsal pathway,

which originates in V1 and leads to the posterior parietal cortex, and the ventral stream,

leading from V1 to the inferior temporal cortical areas (Ungerleider and Mishkin, 1982;

Felleman and Van Essen, 1991; Goodale et al., 1991). There isexperimental evidence that
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these two pathways serve different visual functions, namely the processing of color and shape

information in the ventral pathway (e.g., Ungerleider and Mishkin, 1982; Goodale et al.,

1991, 1994; Perrett et al., 1982; Desimone et al., 1984; Tanaka, 1993; Logothetis et al.,

1995; Rolls, 2000; Quiroga et al., 2005), and position and motion information in the dorsal

pathway (e.g., Andersen et al., 1997; Duhamel et al., 1997; Bremmer et al., 2000, 2001).

It seems plausible that the different spatio-temporal response properties of neurons along

retino-cortical M- and P-pathway may favor different characteristic coding strategies within

both cortical pathways during learning, despite the fact that the mapping of the M- and P-

projections onto the cortical dorsal and ventral pathway isnot complete (e.g., Ferrera et al.,

1994; Yabuta et al., 2001; Sincich and Horton, 2003).

4.2.3 Goal of the Model

We assumed that the development of the lateral connections subserving the coding of both

spatial and temporal properties of visual scenes relies on activity-dependent, Hebbian learn-

ing mechanisms. Therefore, we asked which factors determine the structure of the resulting

lateral connectivity during learning. We investigated theinfluence of stimulus velocity and

the conduction velocity of lateral connections on the self-organization of lateral connections

in a single-layer network model of pulse-coding neurons dueto a Hebbian learning rule. We

demonstrate that stimulus velocities much lower than the conduction velocity of the lateral

connections favor the development of connections adapted to the spatial structure of the vi-

sual input. High stimulus velocities lead to lateral connections supporting the coding of the

spatio-temporal structure of the visual input. We discuss possible influences of the different

temporal filter properties of neurons of the retino-cortical M- and P-pathways on the coding

of spatial (form) and spatio-temporal (motion) stimulus attributes along the cortical dorsal

and ventral pathway, respectively.
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4.3 Methods

4.3.1 Network Architecture

Model Neuron

We used pulse coding neurons with realistic synaptic potentials and a dynamic threshold

(Eckhorn et al., 1990), similar to the ones used in Chapter 21. The input stage of a neuron

i consists of synapsesSij(t) to presynaptic neuronsj, which have a synaptic connection

strengthwS
ij and an impulse responseh(t, τ):

Sij(t) = wS
ijIj(t − ∆ij) ∗ h(t, τS), (4.1)

where∗ is the convolution operator,Ij is the spike-output of the presynaptic neuronj. ∆ij

is the conduction delay between neuroni and neuronj.

The synaptic responseh(t, τ) was modelled as a leaky integrator:

h(t, τ) = exp(−t/τ)H(t), (4.2)

whereH(t) denotes the Heaviside function:

H(t) =

{

0 t < 0

1 t ≥ 0
. (4.3)

Thus, each connection performs an exponentially decaying summation of signals from

presynaptic neurons.

The model neurons have three types of different synapses, excitatory feedingF , in-

hibitory feedingI, and linkingL synapses. The resulting membrane potential of neuron

i, which drives the spike encoder, is

Mi(t) =
∑

j

Fij(t) ·
(

1 +
∑

j

Lij(t)

)

−
∑

j

Iij(t) + Inoise(t), (4.4)

with Inoise(t) being normally distributed noise with standard deviationσnoise, added indepen-

dently to every membrane potential in each time step.

While excitatory (inhibitory) feeding inputs have an additive (subtractive) influence on

the membrane potential, the signals of the linking synapsesact multiplicatively on the excita-

tory feeding-inputs. In V1, long-range lateral connections are mainly found between neurons

1The description of the model neurons has some common parts with the description in Chapter 2. We

decided to maintain this duplication in order to preserve the self-containedness of the different chapters.
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of the upper layers, where the synapses are dominated by NMDA-type channels (Fox et al.,

1989), which have been reported to act on the afferent input in a modulatory fashion (Fox

and Daw, 1992). Modulatory linking-connections ensure that the cRFs of single neurons are

not altered by the lateral connectivity (Eckhorn et al., 1990).

In the spike encoder, the membrane potentialMi(t) is compared to a dynamic threshold

Θi(t). If Mi(t) exceedsΘi(t), a spike is generated:

Oi(t) = H(Mi(t) − Θi(t)). (4.5)

The spike threshold has both a dynamic component, which is modelled as the impulse

response of a single leaky integrator, and a static component Θ0:

Θi(t) = Oi(t) ∗ (VΘ exp(−t/τΘ))H(t) + Θ0. (4.6)

All network parameters are summarized in Table 4.1.

Network Topology

The network-model consists of a single layer of pulse-coding neurons, arranged on a21×21

Cartesian grid (Figure 4.1. In order to avoid boundary effects, toroidal boundary condi-

tions were applied. Each neuron provides input to neighboring neurons via lateral inhibitory

feeding-synapses. Inhibitory synaptic connection strengths decay according to a Gaussian

function (amplitudeGI , width σI ). This form of inhibition was chosen for convenience, in

order to keep the network as simple as possible. The main purpose of the inhibition in the

current network is to counteract the effect of strong excitatory and modulatory inputs. In a

more realistic scenario, excitatory neurons would act inhibitory on other excitatory neurons

only via inhibitory interneurons.

Neurons receive excitatory input via their feeding-synapses, representing the afferent

visual input. Although we did not model the cRFs explicitly,the neurons can be thought of

as having retinotopically arranged, equally spaced cRFs ofidentical orientation and direction

preferences, i.e., each neuron is sensitive to an oriented stimulus at a certain position within

the visual field, moving in a direction perpendicular to its orientation.

Additionally, neurons can form lateral linking connections with all other neurons. The

development of these connections is due to Hebbian learning(see Section 4.3.3).

In the first set of simulations we modelled infinite conduction velocities for both the

modulatory and inhibitory feeding connections. In the remaining simulations, modulatory

linking and inhibitory feeding conduction velocities wereset to 0.1 g.u./ms.
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Figure 4.1: MODEL ARCHITECTURE AND INPUT STIMULI. The network consists of a single

layer of spiking neurons. Every neuron receives input signals from a corresponding region

of the visual field. Neurons interact via inhibitory feeding-connections and lateral linking

connections. The latter were subject to Hebbian learning. Initially, the synaptic connection

strengths of the lateral linking connections were zero. Input stimuli were oriented Gaussian

bars of simulated light intensity of fixed orientation, moving in a direction perpendicular to

their orientation-axis.

4.3.2 Input Stimuli

Input stimuli were elongated Gaussian bars of simulated light intensity with vertical orien-

tation. A Gaussian bar, centered at position (xc, yc) and orientationα is described by the

equation

G(x, y) = exp

(

−(x − xc)
2

2σ2
a

− (y − yc)
2

2σ2
b

)

.

The width- and length-constants were chosen asσa = 0.5 andσb = 3.0 grid units (g.u.).

The bars were presented at random positions within the visual field and moved perpen-

dicularly to their length axis with fixed velocities ofv = 0.0 (0.05, 0.1) g.u./ms, or with

random velocities, taken from different velocity-distributions (compare Section 4.4.3).

Each presentation phase lasted for 100 ms, followed by a pause of 100 ms, after which

a new random position was chosen. The pause of 100 ms was not critical for the qualitative

shape of the learned lateral connections, but it improved the smoothness of the learned con-

nectivity. Without a pause between successive stimulus presentations, the slow lateral con-

duction velocities of 0.1 g.u./ms caused learning events between spikes of neurons activated
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by the current stimulus, and spikes of neurons activated by aprior stimulus presentation.

This effect is due to the small network size and the restricted set of stimuli.

4.3.3 Self Organization

Synaptic coupling strengths between horizontal connections were updated according to a

temporal Hebbian learning rule. Each presynaptic spike initiates a synaptic learning potential

Lij(t) = Oi(t − ∆ij) ∗ (exp(−t/τl)H(t)) . (4.7)

The learning potential was modelled as a leaky integrator with time constantτl. Every

time the postsynaptic neuroni spikes, the connection strengths between all presynaptic neu-

ronsj and the postsynaptic neuron are changed according to the current value of the learning

potentials:

∆wij(t) = γOi(t)Lij(t), (4.8)

wij(t) = wij(t − 1) + ∆wij(t). (4.9)

Hebbian learning rules are inherently unstable: Correlated activity leads to stronger

synaptic connection strengths which in turn lead to correlated activity between the corre-

sponding neurons. In order to prevent the synaptic connection strengths from growing with-

out bounds, we applied a normalization procedure in every time step. If the total connection

strength to a postsynaptic neuroni was greater or equal than a maximum valueAnorm, every

weight to this neuron was divided by a common factor, so that the total connection strength

was equal toAnorm. Thus, the total connection strength to a postsynaptic neuroni was always

less than or equal toAnorm:
∑

j

wij ≤ Anorm. (4.10)

The learning parameters are summarized in Table 4.1.

4.3.4 Data Analysis

In order to quantify the fraction of the total synaptic connection strength between neurons

with collinearly aligned cRFs, we defined acollinearity indexCI as the sum of the synaptic

connection strengths from a single neuronj to neurons with collinearly aligned cRFs, divided

by the total synaptic connection strength from this neuron to all other neurons:



4.4. Results 79

Neuron Parameters

τF 10 ms τL 10 ms

τI 10 ms Θ0 1.0

τΘ 5 ms VΘ 5

σnoise 0.2

Network Parameters

GI 0.005 σI 5 g.u.

Learning Parameters

τl 15 ms γ 2 · 10−4

Anorm 0.5

Table 4.1: NEURON, NETWORK AND LEARNING PARAMETERS

CI =

〈

∑

i||j wij
∑

i wij

〉

j

, (4.11)

where the relationi||j holds for all neuronsi andj with collinearly aligned CRFs.<>j

denotes the average over all neuronsj. The collinearity index has a value of one for lateral

connections only between neurons with collinearly alignedcRFs, and has a value of zero for

lateral connections not connecting neurons with collinearly aligned cRFs at all.

4.4 Results

4.4.1 No Lateral Conduction Delays

In the first set of simulations the conduction delays of the lateral connections were set to

zero, which corresponds to infinitely high conduction velocities. Three different simulations

were carried out, with three different stimulus velocities(0.0, 0.05, and 0.1 g.u./ms). Fig-

ures 4.2A,B,C show the average lateral connection strengths from a single neuron to the

surrounding neurons for the three different simulations.

After training the network with static stimuli, the lateralconnections are adapted accord-

ing to the spatial shape of the bar, with strong reciprocal connections mainly between neurons

along the orientation axis of the bar (Figure 4.2A).

For higher stimulus velocities, the connection profiles arebroader with an asymmetry

towards the direction of the bar-movement (Figures 4.2B,C). Less of the total connection
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Figure 4.2: LATERAL CONNECTIVITY AFTER LEARNING WITHOUT LATERAL CONDUC-

TION DELAYS. (A-C) show the average lateral synaptic connection strengths of a neuron

(centered) to its surrounding neurons after training with stimuli moving at different veloc-

ities (0.0, 0.05, and 0.1 g.u./ms). The intensities are scaled independently for each dia-

gram, with white for low and black for high synaptic connection strengths. After training

with static stimuli, lateral connections are mainly learned between neurons along the vertical

orientation-axis of the bar. For moving stimuli, the lateral connection profile becomes asym-

metric towards the direction of stimulus movement. (D) Average lateral connection strengths

along the collinear direction for the three different stimulus velocities. The higher the stim-

ulus velocity during learning, the smaller are the collinear connection strengths between

neurons with collinearly aligned cRFs. (E) Collinearity index for simulations with different

stimulus velocities during learning. After learning with static stimuli, nearly 90% of the total

connection strength is due to connections between neurons with collinearly aligned cRFs.

For faster stimulus movements, the collinearity index declines due to connections formed

between neurons whose cRFs are not collinearly aligned.
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Figure 4.3: RELATIVE DECLINE IN COLLINEAR CONNECTION STRENGTH AFTER LEARN-

ING WITHOUT LATERAL CONDUCTION DELAYS. Shown are the lateral synaptic connection

strengths along the collinear direction, normalized to thecollinear connection strength for

neurons with a relative distance of 1 grid unit. The shapes ofthe normalized collinear con-

nection profiles are similar for all three stimulus velocities (compare Figure 4.2D).

strength is concentrated along the collinear direction.

Figure 4.2D shows the decline in lateral connection strength with increasing distance

along the collinear direction. This is further quantified inFigure 4.2E which shows the

collinearity indices for the three different simulations.Note that although the absolute con-

nection strengths along the collinear direction decline with increasing stimulus velocity, the

relative shape of the decline does not change qualitatively(Figure 4.3).

The “broadening” of the lateral connectivity profile towards the direction of stimulus

movement is caused by the temporal extent of the Hebbian learning window. This is demon-

strated in Figure 4.4, which shows the results from a set of simulations where the decay

constant of the presynaptic learning potentialτl was set to a small value of 1 ms. In this case,

there are only small changes in the shape of the learned lateral connectivity with increasing

stimulus velocity.
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Figure 4.4: LATERAL CONNECTIVITY AFTER LEARNING WITHOUT LATERAL CONDUC-

TION DELAYS AND A SHORT LEARNING WINDOW. (A-C) show the average lateral synaptic

connection strengths from a neuron (centered) to its surrounding neurons due to input stimuli

moving at different velocities (0.0, 0.05, and 0.1 g.u./ms). For the depicted case of learning

with a short learning window (τl = 1 ms), changes in lateral connectivity with increasing

stimulus velocity are smaller than in the case of a longer learning window (compare Figure

4.2).

4.4.2 Finite Lateral Conduction Velocity

In the next set of simulations, lateral conduction velocities were set to 0.1 g.u./ms, thus being

identical to the highest stimulus velocity applied during learning.

For static stimulation, lateral connections are learned along the direction of orientation of

the bar (Figure 4.5A). A comparison of Figure 4.5D with Figure 4.2D reveals that collinear

coupling is shorter in range for learning with static stimuli and finite conduction velocities

than in the situation of static stimuli and infinite conduction velocities. This effect depends

strongly on the duration of stimulus presentation: Imaginetwo neuronsi andj at a relative

distanced, activated simultaneously by a static stimulus. Due to the finite conduction ve-

locity v, a spike needs the timet = d/v to travel from neuroni to neuronj. With a lateral

conduction velocity ofv = 0.1 g.u./ms and a distanced = 10 g.u., a spike needs 100 ms to

travel from neuroni to neuronj. Thus, if the duration of the stimulus presentation is less

than 100 ms, simultaneous activation of neuronsi andj will never lead to a coincidence of

pre- and postsynaptic spikes. A strengthening of the corresponding synaptic weights is only

possible due to the finite temporal extent of the Hebbian learning window. In the current

simulation, the maximum lateral coupling range is restricted to a distance of approximately

10 g.u., due to the fixed stimulus duration of 100 ms and the lateral conduction velocity

of 0.1 g.u./ms. Longer stimulus presentation times would lead to longer collinear connec-
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Figure 4.5: LATERAL CONNECTIVITY AFTER LEARNING WITH FINITE LATERAL CON-

DUCTION VELOCITIES. (A)-(C) show the average lateral synaptic connection strengths of

a neuron (centered) to its surrounding neurons after training with stimuli moving at differ-

ent velocities (0.0, 0.05, and 0.1 g.u./ms). The intensities are scaled independently for each

diagram, with white for low and black for high synaptic connection strengths. For static stim-

ulus presentations lateral connections are learned between neurons along the orientation-axis

of the bar. For moving stimuli, each neuron forms connections with other neurons at posi-

tions shifted towards the direction of stimulus-movement.For stimulus velocities equal to

the conduction velocity of the lateral connections, neurons form predominantly connections

with neurons along the direction of stimulus movement. (D) Average strength of lateral con-

nections along the collinear direction for the three different stimulus velocities. The higher

the velocity of stimulus movement, the faster collinear connection strengths decline with in-

creasing distance of source- and target-neuron. (E) Collinearity indices for the corresponding

simulations. After learning with static stimuli, 70% of thetotal connection strength is due

to connections between neurons with collinearly aligned cRFs. For higher stimulus veloc-

ities, the collinearity index declines due to the connections formed predominantly between

neurons whose cRFs are not collinearly aligned.
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Figure 4.6: RELATIVE DECLINE IN COLLINEAR CONNECTION STRENGTH AFTER LEARN-

ING WITH SLOW LATERAL CONDUCTION VELOCITIES. Shown are the lateral connection

strengths along the collinear direction, normalized to thecollinear connection strength for

neurons with a relative distance of 1 grid unit. Relative collinear connection strengths decline

faster with increasing distance after learning with high stimulus velocities in comparison to

learning with low stimulus velocities.

tions, comparable to those in the case of infinite conductionvelocities. Note also the lower

collinearity index after static stimulation in the case of finite conduction velocities (Figure

4.5E) in comparison to the case of infinite conduction velocities (Figure 4.2E). This is mainly

due to spurious correlations between the spikes of neurons activated by a stimulus and spikes

caused by preceding stimulus presentations, traveling along the axons for more than 140 ms.

For higher stimulus velocities, lateral connections develop asymmetrically between neu-

rons aligned towards the direction of stimulus movement. For a stimulus velocity of 0.1

g.u./ms (Figure 4.5C), the stimulus velocity equals the lateral conduction velocity. In this

case, lateral connections are formed mainly in the direction of stimulus movement, but not

along the orientation of the bar.

Figure 4.6 shows the relative decline in collinear connection strength for the three differ-

ent stimulus velocities. Unlike in the case of zero conduction delays (Figure 4.3), collinear

connection strengths decline more steeply with increasingdistance for high stimulus veloci-

ties than for low stimulus velocities.
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Figure 4.7: LATERAL CONNECTIVITY AFTER LEARNING WITH VARIABLE STIMULUS VE-

LOCITIES. Upper Row: (A) Stimulus velocities were taken from the positive-valued part

of a Gaussian distribution, centered at 0 g.u./ms with standard deviation of 0.02 g.u./ms.

(B) The average lateral connectivity after learning according to the velocity distribution de-

picted in (A). Lower Row: (C) Stimulus velocities were takenfrom the positive-valued part

of a Gaussian distribution, centered at 0.05 g.u./ms with standard deviation of 0.025 g.u./ms.

(D) Average lateral connectivity after learning accordingto the velocity distribution depicted

in (C).

4.4.3 Random Stimulus Velocities during Learning

During normal viewing, retinal stimulus velocities are notfixed, but cover a range from

static views up to velocities too fast to be resolved by cortical neurons. To account for this

situation, we varied the movement velocity of the Gaussian bar for each presentation phase.

In one simulation, stimulus velocities were chosen from a Gaussian distribution, centered at

vc = 0 g.u./ms, with a standard deviation ofσv = 0.02 g.u./ms (Figure 4.7A). In another
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simulation, the Gaussian distribution was centered atvc = 0.05 g.u./ms with a standard

deviation ofσv = 0.025 g.u./ms (Figure 4.7C). Negative velocity values corresponding to

movements in the opposite direction were discarded.

The resulting lateral connectivity is shown in Figures 4.7B,D. The results are similar to

the results obtained with fixed stimulus velocities (Figure4.5): For a velocity distribution

which contains mainly low velocities, lateral connectionsconnect mainly neurons with cRFs

aligned along the direction of orientation of the bar. For a velocity distribution which con-

tains higher stimulus velocities, lateral connections target predominantly neurons with cRFs

towards the direction of stimulus motion.

4.5 Discussion

4.5.1 Summary of Results

We have investigated the influence of the temporal properties of the visual input and the

conduction velocity of the horizontal connections on the self-organization of the lateral con-

nectivity in a network model of pulse-coding neurons. By training the network with moving

Gaussian light bars of different velocities, we have shown that the learned lateral connectivity

depends on both the velocity of the input stimuli and the conduction velocity of the horizon-

tal connections during learning. For stimuli moving slowlycompared to the velocity of the

horizontal connections, the learned lateral connections are reciprocal and well adapted to the

spatial properties of the stimuli. For fast moving stimuli,lateral connections are asymmetric

with respect to the direction of stimulus motion.

In the case ofinfinite lateral conduction velocities, the asymmetry in the lateral connec-

tivity towards the direction of stimulus movement is due to the finite temporal extent of the

asymmetric Hebbian learning window. In the current model, absolute collinear connection

strengths are lower for higher stimulus velocities due to the synaptic weight normalization

procedure. However, the relative collinear decline in connection strengths with increasing

distance is similar after learning with different stimulusvelocities (Figure 4.3). Thus, if the

normalization procedure would be replaced by a mechanism which restricts the weights of

the single lateral connections rather than the total presynaptic weight of a given neuron, we

expect collinear lateral connections to have comparable synaptic strengths after learning with

stimuli of different velocities. Hence, even if the learnedlateral connectivity is asymmetric

towards the direction of stimulus motion, it retains some specificity for the spatial structure

of the visual input.
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Figure 4.8: COINCIDENCE OF AFFERENT AND LATERAL SIGNALS IN A NETWORK WITH

FINITE CONDUCTION VELOCITIES. The figure demonstrates how the learned connection

structure can be interpreted. A bar-stimulus moves with constant velocity to the right, as

indicated by the black bars. A spike emitted at timet0 by a neuron at positionO travels with

constant velocity along the axon. The travelled distances at different times are indicated by

the blue circles. Coincidence of this spike with direct activations by the stimulus at later

times (t1, t2, t3, t4) can only occur at the intersection of the activation profileof the bar with

the corresponding circle, as indicated by the red lines. Forbars moving with a velocity equal

to the lateral conduction velocity, coincidences of pre- and postsynaptic activations occur

along the direction of motion.

In the case offinite lateral conduction velocities, the asymmetry in lateral connectivity

towards the direction of motion is more pronounced for stimulus velocities similar to the lat-

eral conduction velocity. Collinear lateral connections decline faster with distance the higher

the velocity of the stimuli during learning. For stimulus velocities equal to the lateral con-

duction velocity, lateral connections are learned along the direction of stimulus movement,

but not along the axis of orientation of the bar stimulus. Theresults can be interpreted in

that the lateral connectivity learned with static stimuli consists of two blades along the axis

of orientation. With increasing stimulus velocity these blades turn towards the movement
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direction of the stimulus. If stimulus velocity equals the velocity of the lateral connections,

the blades are parallel to the direction of motion (Figure 4.8). The lateral connectivity de-

picted in Figure 4.5B, which resembles a filled triangle, canbe understood if one considers

the additional influence of the temporal Hebbian learning window, which leads to an increase

in synaptic connection strengths even if the presynaptic activation precedes the postsynaptic

spike (compare Figure 4.2).

Comparable results were obtained if stimulus velocities during learning were chosen ran-

domly according to a fixed distribution of velocities. For a distribution of stimulus velocities

restrained to low velocities in comparison to the lateral conduction velocities, the learned

lateral connectivity is well adapted to the spatial structure of the input. A distribution of

higher stimulus velocities causes lateral connections to be learned between neurons with

cRFs aligned towards the direction of stimulus movement.

For neurons of similar velocity preferences, the results show that slowly conducting hor-

izontal connections, with conduction velocities similar to the velocities in the input, self-

organize according to the coding of stimulus movement direction, enhancing responses to

stimuli moving in the direction of the connections. Fast conducting horizontal connections

self-organize according to the spatial properties within the visual input.

For lateral connections of fixed, finite conduction velocities, the results can be interpreted

in terms of the velocity preference of presynaptic neurons.For neurons sensitive to stimulus

velocities considerably lower than the lateral conductionvelocities, the static correlations in

the input play a dominant role in shaping the pattern of the lateral connectivity. Neurons

sensitive to stimulus velocities similar to the lateral conduction velocities develop lateral

connections according to the spatio-temporal correlations within the input.

In the following, we will relate these results to known experimental data and discuss

different coding strategies along M- and P- dominated cortical pathways.

4.5.2 Network Scaling

Assuming lateral conduction velocities on the order of≈ 0.1 m/s, consistent with the lateral

spread of activity (monkey: Grinvald et al., 1994, cat: Bringuier et al., 1999), and a primate

cortical magnification factor ofM(E) ≈ 8.85 · (0.87 + E)−1 mm/◦ (Adams and Horton,

2003), we obtain lateral conduction velocities of≈ 10◦/s for the center of the visual field,

and velocities of≈ 120◦/s at an eccentricity of10◦. Although relatively fast, the lateral con-

duction velocities are of the same magnitude as the retinal velocities of the visual input. As

we have demonstrated, there is a considerable effect of stimulus movement on the learning
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Figure 4.9: PERCEPTUAL ASSOCIATION FIELDS FOR ORIENTATION- AND MOTION-

DEFINED GROUPING. (A) Association field for static, orientation-defined contours. The

enhancement between neighboring contour-elements is strongest if they form a smooth

contour (solid lines) and weak if they do not (dotted lines).Adapted from (Field et al.,

1993). (B) Association field for motion-defined contours. The enhancement of neighbor-

ing contour-elements is strongest if their motion-directions are similar and form a smooth

contour. Adapted from (Ledgeway et al., 2005).

of the lateral connectivity, even for stimulus velocities slower than the velocity of the lateral

connections (Figure 4.7). Therefore, it seems plausible that stimulus motion may have an ef-

fect on the self-organization of lateral connections in theprimary visual cortex during natural

viewing conditions.

4.5.3 Grouping Mechanisms for Static and Motion-Defined Contours

Our results are consistent with recent psychophysical experiments, investigating the group-

ing performance of static and motion-defined contours (static: e.g., Field et al., 1993, motion:

Ledgeway and Hess, 2002; Ledgeway et al., 2005). For static,orientation-defined contours,

detection is best if the orientations of local contour-elements are aligned along the axis of the

contour (Figure 4.9A). The grouping process could be supported by horizontal connections

between neurons with cRFs aligned collinearly with respectto their orientation preferences.

For motion-defined contours, however, detection performance is best if the local motion

vectors of the local contour-elements are oriented along the contour. The results of Ledge-

way and Hess (2002) suggest an association field for motion-defined contours like the one

depicted in Figure 4.9B. Translating this motion-defined association field into lateral con-
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nectivity corresponds well to the coupling profiles learnedin our model with fast-moving

stimuli, where lateral connections link neurons along the direction of motion.

Taken together, we suggest that the lateral connectivity for the grouping of static contours

could be provided by neurons with low velocity-preference,supposedly receiving mainly P-

input. The required lateral connectivity for the grouping of motion-defined contours could be

provided by neurons with higher preferred stimulus velocities, possibly receiving mainly M-

input. Thus, our results highlight the possible role of the retino-cortical M- and P-pathways

on the self-organization according to spatio-temporal (motion) and spatial (form) properties

of the visual input along the cortical dorsal and ventral pathway, respectively.

4.5.4 Grouping Mechanisms at Different Eccentricities

With increasing eccentricity, the psychophysical contourgrouping performance (e.g., Hess

and Dakin, 1997, 1999) and collinear facilitation (e.g., Giorgi et al., 2004; Shani and Sagi,

2005), as measured in contrast discrimination experiments, declines. Our simulations sug-

gest that the decrease in the ratio of P- to M-inputs to V1 withincreasing retinal eccen-

tricity (e.g., Malpeli et al., 1996; Azzopardi et al., 1999)may play a role in the decrease

in collinear facilitation with increasing eccentricity. Due to the increasing contribution of

the M-pathway in providing input to cortical neurons at larger eccentricities, it seems pos-

sible that lateral connections self-organize according tothe spatio-temporal structure of the

visual input at the expense of the spatial structure (compare Figure 4.7). The spatial statis-

tics of real-world scenes are dominated by horizontal and vertical contours (Coppola et al.,

1998a; Hancock et al., 1992; Van der Schaaf and Hateren, 1996; Keil and Cristóbal, 2000;

Betsch et al., 2004). Thus, we expect lateral connections between neurons which are selec-

tive for low stimulus velocities to predominantly target neurons with collinearly aligned cRFs

along these cardinal directions. The distribution of retinal velocities during self-motion of an

observer is dominated by radial (expansion) and tangential(rotation) velocity components.

Therefore, we expect the lateral connections between neurons selective for high stimulus

velocities to be arranged predominantly along these oblique directions, perpendicular to the

axis of their orientation preferences. Indirect evidence for the plausibility of this hypothesis

comes from the study of the orientation preferences of neurons in the primary visual cortex

of cats (Bauer et al., 1990): While neurons of horizontal andvertical orientation preference

are over-represented in the central visual field, they foundan over-representation of neu-

rons with radial and concentric orientation preferences inthe peripheral visual field. Thus,

it seems plausible that the response properties of corticalneurons in the central and periph-
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eral visual field are specialized for different tasks, namely the encoding of spatial structure

and motion, respectively. This is consistent with the finding that cortical areas along the

ventral pathway of monkeys, associated with the encoding ofobject form, receive mainly

input from the foveal portion of the visual field. Areas alongthe dorsal pathway, concerned

with the encoding of motion and spatial coordination, receive predominantly input from the

peripheral portion of the visual field (review: Gattass et al., 2005). Thus, it seems plausi-

ble that lateral connections could serve different functional roles in the fovea compared to

the periphery. Our study demonstrates that the different patterns of lateral connectivity can

self-organize according to the temporal response characteristics of the corresponding neu-

rons. However, current experimental data on the structure of lateral connectivity reveal no

systematic changes with eccentricity or with respect to theprominent thalamic input of the

corresponding neurons (monkey: Sincich and Blasdel, 2001;Angelucci et al., 2002; Stettler

et al., 2002, cat: Ts’o et al., 1986; Schmidt et al., 1997; Gilbert and Wiesel, 1989, 1990, tree

shrew: Bosking et al., 1997).

4.5.5 Conclusion

Our results demonstrate that the temporal response properties of cortical neurons may have

a considerable impact on the self-organization of the horizontal connectivity under natural

viewing conditions, favoring either the coding of spatial (during fixation) or spatio-temporal

(during observer- or object-motion) characteristics of the visual input. Our model makes

predictions about changes in lateral connectivity depending on the temporal response char-

acteristics of the corresponding cortical neurons with respect to the conduction velocities of

horizontal connections. Due to the declining ratio of P- to M-input to the visual cortex with

increasing retinal eccentricity this should result in a different pattern of lateral connectivity

for the foveal in comparison to the peripheral representation of the visual field.
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Chapter 5

Conclusion and Outlook

In the primary visual cortex of primates, relatively more space is devoted to the represen-

tation of the central visual field in comparison to the representation of the peripheral visual

field (e.g., Daniel and Whitteridge, 1961). Furthermore, the ratio of parvocellular (P) to

magnocellular (M) inputs to the primary visual cortex declines with increasing eccentricity

(Azzopardi et al., 1999; Connolly and Van Essen, 1984; Malpeli et al., 1996). In this thesis

we investigated to which visual situations this inhomogeneous mapping of visual space is

well adapted and studied possible functional consequencesfor visual processing at central

and peripheral locations of the visual field.

Summing up, our results indicate that self-motion may have played an important role

in determining the global retino-cortical mapping. We haveshown that the inhomogeneous

retino-cortical mapping can be refined and stabilized by Hebbian learning mechanisms in

ontogenesis under natural viewing conditions.

The spatially inhomogeneous retino-cortical mapping has the advantage that the neu-

ronal modules, concerned with the processing of self-motion along the direction of gaze, can

be identical in their spatial and temporal properties across the representation of the visual

field. In contrast, our investigation of the spatial statistics of local oriented Gabor wavelet re-

sponses at different spatial scales, obtained from real-world scenes, provides evidence against

uniform mechanisms of contour grouping across the visual field.

Furthermore, we have demonstrated that the development of lateral connections between

neurons in the primary visual cortex may depend on the spatio-temporal response proper-

ties of their afferent inputs. Neurons sensitive to slow changes within the visual input may

develop lateral connections well adapted to the spatial characteristics of the visual input

(form), while neurons sensitive to higher temporal frequency components within the visual

input may lead to lateral connections well adapted to the spatio-temporal characteristics of



94 Chapter 5. Conclusion and Outlook

the visual input (motion). With respect to the different temporal response characteristics of

neurons along the retino-cortical parvocellular and magnocellular pathways, we have sug-

gested that neurons receiving mainly parvocellular input may support the coding of spatial

stimulus attributes (object-form) while neurons receiving mainly magnocellular input may

subserve the coding of spatio-temporal stimulus attributes (object motion) along the cortical

ventral and dorsal pathways, respectively. Due to the larger ratio of parvocellular to magno-

cellular neurons in the fovea in comparison to the periphery, these results suggest that foveal

and peripheral cortical processing may have become specialized for different characteristics

of the visual input: The foveal representation, which receives predominantly parvocellular

input, may be well adapted to the spatial representation of fixated objects. The peripheral

representation, with its increasing ratio of magnocellular input, may be better adapted to the

processing of motion.

5.1 Specific Results

• We have assumed that cortical magnification is such that cortical activations, caused

by stationary objects during self-motion along the direction of gaze, travel on average

with constant speed across the cortical surface, independent of retinal eccentricity. This

would have the important advantage that the cortical mechanisms, concerned with the

processing of self-motion, can be identical in their spatial and temporal properties

across the representation of the whole visual field. This is the case if the distribution

of objects corresponds to an ellipsoid with the observer in its center.

• An RF distribution, consistent with cortical magnification, can be learned in a network

model of pulse coding neurons with Hebbian learning, when trained with flow-fields

similar to those during self-motion along the direction of gaze. RF sizes increase lin-

early with eccentricity, and RF peak sensitivities decrease with increasing eccentricity,

consistent with experimental results.

• The spatial statistics of oriented Gabor wavelet responsesextracted from real-world

scenes are not invariant with respect to the spatial scale ofthe wavelets. Collinear cor-

relations drop in coordinates normalized to the wavelengthof the wavelets relatively

faster for wavelets of long wavelengths. Furthermore, collinear correlations between

wavelets of different orientations are not rotation invariant, with collinear correlations

between wavelets of oblique orientations declining more steeply with increasing ec-

centricity than collinear correlations between wavelets of cardinal orientations.
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• The self-organization of lateral connections of finite conduction velocities due to a

temporal Hebbian learning rule depends on the temporal properties of the visual in-

put. By training a one-layer network of spiking neurons withmoving Gaussian bars of

different velocities, we have shown that static or slowly-moving bars lead to horizon-

tal connections reciprocally linking neurons along the direction of orientation of the

bars, thus subserving the coding of spatial stimulus attributes. For fast moving stim-

uli with velocities comparable to the lateral axonal conduction velocity, the learned

lateral connectivity is asymmetric towards the direction of bar movement, thus sub-

serving the coding of the movement direction of visual stimuli. We have discussed

these results with respect to the different temporal response characteristics of neurons

along the retino-cortical parvocellular and magnocellular pathways. Neurons receiving

mainly parvocellular input may subserve the coding of spatial stimulus attributes (ob-

ject form) while neurons receiving mainly magnocellular input may subserve the cod-

ing of spatio-temporal stimulus attributes (object motion). Considering the decreasing

ratio of parvocellular to magnocellular inputs to the primary visual cortex with in-

creasing eccentricity (e.g., Azzopardi et al., 1999), thiscould further account for the

psychophysically measured decrease in contour grouping performance for peripheral

stimuli (e.g, Hess and Dakin, 1999).

5.2 Proposals for Future Research

Theoretical models, aimed at the understanding of the visual system, are worthless if they

cannot be verified or falsified experimentally. Our investigations provide testable predictions

which may be verified or rejected by future work.

5.2.1 Retinal Velocity Distribution During Self-Motion

According to the spatial retino-cortical mapping, we expect that average retinal stimulus

velocities, due to self-motion of an observer, increase linearly with increasing eccentricity

(Chapter 2). It is difficult to test this hypothesis based solely on theoretical considerations

because of the unknown distribution of objects relative to the observer, deviations of the di-

rection of gaze from the direction of self-motion, and the unknown distribution of movement

velocities; which is most probably dependent on the distribution of objects around the ob-

server. To our knowledge, no data exist about the average retinal velocity distribution across

the whole visual field of a human observer during self-motionwithin natural environments.
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5.2.2 Spatial Statistics of Contour Elements Across the Whole Visual

Field

In Chapter 3 we have assumed that the spatial statistics of natural scenes are constant across

the whole visual field. As we have discussed, this is not strictly the case (Reinagel and Zador,

1999; Krieger et al., 2000). On average, high spatial frequency content, edge density, and

contrast are highest at the point of fixation (Mannan et al., 1996, 1997; Reinagel and Zador,

1999), and spatial correlations at the center of gaze are on average lower in comparison

to the correlations across the whole visual field. The influence of these inhomogeneities

on the spatial statistics of local contour elements at different eccentricities remains to be

investigated.

5.2.3 Lateral Connections in the Primary Visual Cortex

Concerning the structure of lateral connections in the primary visual cortex it would be in-

teresting to study possible changes in lateral connectivity between neurons in dependence

on their spatial frequency preference. Our results from Chapter 3 suggest that lateral con-

nections should be shorter in visual coordinates, normalized to the neurons’ preferred spatial

wavelengths, between neurons selective for low spatial frequencies in comparison to neurons

selective for high spatial frequencies.

It would further be interesting to assess possible changes in lateral connectivity with

respect to the predominant retino-cortical input (magnocellular or parvocellular) of the cor-

responding neurons. We expect that horizontal connectionsdiffer in their pattern of connec-

tivity for cortical patches in V1, dominated by either magnocellular or parvocellular inputs

from the LGN (Chapter 4). Our results suggest that lateral connections between neurons

selective for low stimulus velocities, presumably dominated by parvocellular input, recipro-

cally connect mainly neurons with collinearly arranged cRFs. In contrast, lateral connections

between neurons selective for high stimulus velocities, receiving predominantly magnocel-

lular input, should be between neurons with cRFs aligned towards the axis of their direction

preference. We are not aware of studies which investigated the lateral connectivity of neu-

rons in the primary visual cortex of monkeys with respect to the velocity preferences of the

corresponding neurons or their predominant retino-cortical inputs.
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Löwel S, Singer W. Selection of intrinsic horizontal connections in the visual cortex by
correlated neuronal activity.Science, 255:209–212, 1992.



BIBLIOGRAPHY 107

Maffei L, Fiorentini A. The unresponsive regions of visual cortical receptive fields.Vision
Res, 16(10):1131–1139, 1976.

Magee JC, Johnston D. A synaptically controlled, associative signal for Hebbian plasticity
in hippocampal neurons.Science, 275(5297):209–213, 1997.

Makela P, Nasanen R, Rovamo J, Melmoth D. Identification of facial images in peripheral
vision. Vision Res, 41(5):599–610, 2001.

Malpeli JG, Lee D, Baker FH. Laminar and retinotopic organization of the macaque lateral
geniculate nucleus: Magnocellular and parvocellular magnification functions. J Comp
Neurol, 375(3):363–377, 1996.

Mannan SK, Ruddock KH, Wooding DS. The relationship betweenthe locations of spatial
features and those of fixations made during visual examination of briefly presented images.
Spat Vis, 10(3):167–188, 1996.

Mannan SK, Ruddock KH, Wooding DS. Fixation patterns made during brief examination
of two-dimensional images.Perception, 26(8):1059–1072, 1997.

Mansfield RJ, Ronner SF. Orientation anisotropy in monkey visual cortex.Brain Res, 149
(1):229–234, 1978.
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sanne Klauke, Steffen Klingenhöfer, and Prof. Dr. Reinhard Eckhorn for inspiring discus-

sions and helpful comments on the manuscript.

I am very grateful to all other members of our research group for their cooperation and

friendship, which provided a nice work environment and madedaily work very motivating. I

especially thank the former and current contributors to theNeural Assembly Simulation En-

vironment(N.A.S.E.) for the cooperative development of elementary simulation and analysis

tools.

I would like to thank Rachel Hoover for her dedication to the correction of mistakes

concerning the correct use of the English language.

This work would not have been possible without financial support from the Friedrich-

Ebert-Foundation.

My sincerest thanks goes to my mother, who has been very caring and supportive through-

out my life, and without whom all this would not have been possible.





Scientific CV

Name: Basim Samir Al-Shaikhli

Date of Birth: January, 19th, 1975

Place of Birth: Kassel, Germany

Nationality: German

Present Address: Emil-Mannkopff Str. 6

35037 Marburg

� +49 6421 988192

k basimo@gmail.com

Education:

04/2004 - 06/2006 Graduate Scholarship

Friedrich-Ebert-Foundation, Bonn

09/2001 - 10/2003 Research Associate

Neurophysics Group, Dept. Physics,

Philipps University Marburg

06/2001 Physics Diploma

Subjects of examination: Theoretical Physics, Experimental

Physics, Solid State Physics, Computer Science

Diploma thesis: ”Figur/Hintergrund-Trennung durch

Signalentkopplung ” (Figure/ground segregation by decoupling

of neural signals)

04/1996 - 06/2001 Physics Studies

including Vordiplom (intermediate examination)

Philipps University Marburg

06/1994 Abitur

Gustav-Stresemann-Gymnasium, Bad Wildungen


