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Learning is not compulsory... neither is survival.
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Zusammenfassung

Im primaren Sehkortex von Primaten nimmt die Reprasemtadles zentralen Sehfeldes
einen verhaltnismalig groferen Raum ein als die deplpenen Sehfeldes. Experimentell
uberprufbare Theorien bezuglich der Faktoren und Meigmaen, die zu dieser inhomogenen
Reprasentation gefuhrt haben, kdnnen wertvolle Hisevauf allgemeine Verarbeitungsprin-
zipien im Sehsystem liefern. Ich habe daher untersucht, elch® Sehsituationen diese
inhomogene Reprasentation des Sehfeldes angepasstlistalcthe Mechanismen zu ihrer
Verfeinerung und Stabilisierung wahrend der individaelEntwicklung beitragen konnten.
Weiterhin habe ich die funktionelle Bedeutung dieser inbgenen Reprasentation fur die
visuelle Verarbeitung an zentralen und peripheren OrtenSinfeldes untersucht.

Die Verarbeitung von Sehinformationen spielt wahrendeBlgewegung eine wichtige
Rolle und sollte daher gut an diese spezielle Situation @exggt sein. Ich habe daher ange-
nommen, dass retinale Geschwindigkeitsverteilungenddieh statische Objekte wahrend
Eigenbewegung entlang der Blickrichtung auftreten, dutehinhomogene kortikale Re-
prasentation des Sehfeldes im Mittel in raumlich homegieortikale Geschwindigkeitsver-
teilungen transformiert werden. Dies hatte den Vortedssldie kortikalen Mechanismen
zur Verarbeitung von Eigenbewegung tUber das gesamte I8db&ntisch aufgebaut sein
konnten. Das ist der Fall, wenn die Anordnung der Sehobje&lativ zum Beobachter
in etwa einem Ellipsoid mit dem Beobachter im Mittelpunktsgmicht. Das daraus re-
sultierende Flussfeld habe ich benutzt, um ein neuronakizvwéerkmodell mittels einer
Hebb’schen Lernregel zu trainieren. Die raumliche Véuteg der gelernten rezeptiven Felder
entspricht der inhomogenen kortikalen ReprasentatienSshfeldes. Diese Ergebnisse zei-
gen, dass Eigenbewegung eine wichtige Rolle bei der Ewludies Sehsystems gespielt
haben konnte, und dass die inhomogene kortikale Repeisandes Sehfeldes wahrend der
individuellen Entwicklung durch Hebb’sche Lernmecharesnm naturrlichen Sehsituationen
verfeinert und stabilisiert werden kann.

Neben der Verarbeitung von Eigenbewegung spielt die Gerppg und Trennung lo-
kaler raumlicher Sehmerkmale in Sehobjekte eine wichRgde bei der visuellen Ver-
arbeitung. Daher habe ich mir die Frage gestellt, wie disgethenden Mechanismen
von der reprasentierten Position des Sehfeldes abhargewird vermutet, dass neuronale
Verbindungen innerhalb des primaren Sehkortex diesep@emungsprozess unterstitzen.
Diese Verbindungen werden erst nach der Geburt in Abh&egigon der Seherfahrung
spezifiziert. Wie hangt die laterale Verschaltungsstruikbn der reprasentierten Position des
Sehfeldes ab? Mit zunehmendem Sehwinkel werden die reeedEelder der Neuronen im



primaren Sehkortex grofer, und die kortikale Vergrofdgrdes Sehfeldes nimmt ab. Daher
habe ich die raumliche Statistik von realen Sehszenen maAgigkeit von den raumlichen
Filtereigenschaften kortikaler Neuronen an unterscitegh Positionen des Sehfeldes un-
tersucht. Ich zeige, dass die Korrelationen zwischenrk@dlr angeordneten Filtern gleicher
Orientierung und GrofRe mit zunehmender Filtergro3gdareichweitig werden. Normiert
man die Abstande der Filter aber auf die Filtergro3egefalilie kollinearen Korrelationen
zwischen grof3en Filtern schneller mit zunehmendem Abssndls die zwischen kleinen
Filtern. Das spricht gegen eine homogene kortikale ladeverschaltungsstruktur ber den
gesamten Sehraum bezuglich der Codierung von Objektkemtu

Zwei wichtige retino-kortikale Signalverarbeitungspéasind der magnozellulare (M)
und der parvozellulare (P) Pfad. Wahrend Neuronen dedadd? eine zeitliche Bandpass-
Charakteristik aufweisen, zeigen Neuronen des P-Pfad8glzes Tiefpassverhalten. Das
Verhaltnis von P- zu M-Neuronen ist nicht Uber das gesaBekfeld konstant, sondern
nimmt mit zunehmendem Sehwinkel ab. Ich habe daher untafswie sich die unter-
schiedlichen zeitlichen Antworteigenschaften von Neerodes M- und des P-Pfades auf
die Selbstorganisation im Sehkortex auswirken und was filiegie Codierung von Seh-
objekten an unterschiedlichen Orten des Sehfeldes beadebtemplarisch habe ich den
Einfluss der Bewegung von Sehreizen auf die Selbstorgamidadrizontaler Verbindungen
an einem Netzwerkmodell mit impulscodierenden Neuroneth Habb’'schem Lernen un-
tersucht. Niedrige Reizgeschwindigkeiten fuhren zurtden Verbindungen, die der raum-
lichen Struktur der Sehreize angepasst sind, wohingegherk Reizgeschwindigkeiten zu
einer Verschaltungsstruktur fuhren, die die CodierungBEwvegungsrichtung der Sehreize
unterstutzt. Dies lasst vermuten, dass die zeitlichefip@isseigenschaften von P-Neuronen
die Codierung von raumlichen Reizmerkmalen (Form) umi¢zen, wohingegen die zeit-
lichen Bandpasseigenschaften der M-Neuronen die Codjevon raum-zeitlichen Reiz-
merkmalen (Bewegungsrichtung) unterstitzen. Das delatetuf hin, dass besonders das
zentrale Sehfeld, mit seinem hohen Anteil an P-Neuronerdi€' Codierung von raumlichen
Objektmerkmalen geeignet ist, wohingegen das periphenéeliiebesser an die Codierung
der Bewegung von Sehobjekten angepasst ist.



Abstract

In the primary visual cortex of primates relatively more spas devoted to the representa-
tion of the central visual field in comparison to the repréagon of the peripheral visual
field. Experimentally testable theories about the factoid mechanisms which may have
determined this inhomogeneous mapping may provide vaduiisights into general pro-
cessing principles in the visual system. Therefore, | itigased to which visual situations
this inhomogeneous representation of the visual field isagzpted, and which mechanisms
could support its refinement and stabilization during imndliial development. Furthermore,
| studied possible functional consequences of the inhomemes representation for visual
processing at central and peripheral locations of the Viseld.

Vision plays an important role during navigation. Thus,wakprocessing should be
well adapted to self-motion. Therefore, | assumed thatighatnhomogeneous retinal ve-
locity distributions, caused by static objects during $edtion along the direction of gaze,
are transformed on average into spatially homogeneougabvelocity distributions. This
would have the advantage that the cortical mechanismsecoed with the processing of
self-motion, can be identical in their spatial and temp@ralperties across the representa
tion of the whole visual field. This is the case if the arrangatrof objects relative to the
observer corresponds to an ellipsoid with the observesioenter. | used the resulting flow
field to train a network model of pulse coding neurons with dblan learning rule. The
distribution of the learned receptive fields is in agreenmwith the inhomogeneous cortical
representation of the visual field. These results suggass#if motion may have played an
important role in the evolution of the visual system and thatinhomogeneous cortical rep-
resentation of the visual field can be refined and stabilizelddbbian learning mechanisms
during ontogenesis under natural viewing conditions.

In addition to the processing of self-motion, an importasgkt of the visual system is
the grouping and segregation of local features within aalisgene into coherent objects.
Therefore, | asked how the corresponding mechanisms depeice represented position
of the visual field. It is assumed that neuronal connectiomisinvthe primary visual cortex
subserve this grouping process. These connections deatoeye-opening in dependence
on the visual input. How does the lateral connectivity deben the represented position
of the visual field? With increasing eccentricity, primaryriical receptive fields become
larger and the cortical magnification of the visual field dee$. Therefore, | investigated the
spatial statistics of real-world scenes with respect tosihatial filter-properties of cortical
neurons at different locations of the visual field. | showt tt@relations between collinearly



arranged filters of the same size and orientation increaie imcreasing filter size. How-
ever, in distances relative to the size of the filters, celincorrelations decline more steeply
with increasing distance for larger filters. This providesdence against a homogeneous
cortical connectivity across the whole visual field withpest to the coding of spatial object
properties.

Two major retino-cortical pathways are the magnocelluMd) @nd the parvocellular
(P) pathways. While neurons along the M-pathway displayptaa bandpass character-
istics, neurons along the P-pathway show temporal lowpaasacteristics. The ratio of P-
to M-cells is not constant across the whole visual field, edlides with increasing reti-
nal eccentricity. Therefore, | investigated how the diiertemporal response-properties of
neurons of the M- and the P-pathways influence self-orgéoizan the visual cortex, and
discussed possible consequences for the coding of visjedtslat different locations of the
visual field. Specifically, | studied the influence of stimgHootion on the self-organization
of lateral connections in a network-model of spiking newrenth Hebbian learning. Low
stimulus velocities lead to horizontal connections wekpigd to the coding of the spatial
structure within the visual input, while higher stimuluda@ties lead to connections which
subserve the coding of the stimulus movement direction.s Baggests that the temporal
lowpass properties of P-neurons subserve the coding obsptimulus attributes (form) in
the visual cortex, while the temporal bandpass properfidoneurons support the coding of
spatio-temporal stimulus attributes (movement direQtidtence, the central representation
of the visual field may be well adapted to the encoding of gpabject properties due to the
strong contribution of P-neurons. The peripheral repregan may be better adapted to the
processing of motion.
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Chapter 1
Introduction

The human visual system is a highly complex system, ableptidlsaprocess huge amounts
of sensory information. We are able to recognize known dbjecdifferent views and dis-
tances, under different lighting conditions, and we pete&cations in space as stable. This
is a remarkable achievement, especially if one considersadmtinuously changing projec-
tions of the external visual world on our retinas due to sedftion, eye-movements, and the
movement of objects like other people or animals. Thesemptishments enable us to suc-
cessfully navigate in and interact with our environmentjclihis a crucial precondition for
our survival.

From the moment when light is absorbed by the photorecepfarar retinas, visual in-
formation is processed in highly parallel networks of nere#ts (neurons), in order to form
an internal representation of the outer visual world. Towlan organism to successfully
interact with its environment, the structure of this intrnepresentation must correspond
well to the structure of the external world. Although the ratnucture of the visual system
is determined genetically, many properties depend on Visxerience during individual
development, as can be demonstrated by altering specifecisspf the visual input an or-
ganism receives during early stages of development (e.ggs&Vvand Hubel, 1963; Hubel
etal., 1977).

Many scientific disciplines, including neurophysiologgunobiology, neurophysics, and
psychophysics, have spent much time and effort to betteenstehd the characteristics of
this internal representation and how it adapts on evolatpmnd ontogenetic timescales
according to the characteristics of the environment. Adreihderstanding can lead to the
development of flexible technical systems which are ableytwachically and effectively
adapt to spatio-temporal regularities in their environtmen
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Figure 1.1: LNEAR DECREASE IN SPATIAL RESOLUTION (A) Originalimage with constant
resolution across the whole image. (B) The image is compiuted the original image by
replacing each pixel by a Gaussian weighted average of iggaf intensity value and its
surrounding intensity values, with the standard deviatbthe Gaussian kernel increasing
linearly with distance from the center. Note that the cranthe center of the image appears
crisp and sharp, while spatial details are lacking in theaurding scene.

1.1 About this Thesis

1.1.1 Aim

The human visual system samples the external world in aalyatihomogeneous fashion
(e.g., Daniel and Whitteridge, 1961). Spatial resolut®highest along the direction of gaze
and drops sharply with increasing retinal eccentricitfhus, an object whose image falls
on the central region of the retina (fovea) is perceived Witiher spatial resolution than an
object whose image falls outside the central region. Thigaese in spatial resolution is
illustrated in Figure 1.1, where a photograph was spatlallyred, with the amount of blur
increasing linearly with distance from the center.

Several factors may have played a role during the evolutfdhis spatially inhomoge-
neous mapping. High spatial resolution enables us to parfmtions which require fine
visual and visuo-motor control, like building intricateols, the visual distinction of friends
from enemies (possibly even at larger distances), or reathiis thesis. Limiting factors
are, however, the volume of the eyes, the diameter of the ogtive, and the size of the
brain. The inhomogeneous retino-cortical mapping may lea ss an evolutionary solution
to these antagonistic constraints. The visual system gesvinigh spatial resolution only in

!Retinal Eccentricityor Eccentricityis the angular deviation of a visual target from the direciid gaze.
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the fovea, and requires eye movements over large areas wistna field for the perception

at high spatial resolution. This explanation, howeverncdrguantitatively account for the
shape of the inhomogeneous retinal cortical mapping. Exgetally testable theories about
the factors and mechanisms which may have determined tindsringeneous mapping may
provide valuable insights into general processing medmasiof the visual system.

Therefore, wé investigated to which properties of the visual input thetiglst inho-
mogeneous retino-cortical mapping of visual space is wadipgéed and which biologically
plausible principles could lead to its emergence and staliibn under natural viewing con-
ditions. Furthermore, we studied possible functional egences for visual processing at
central and peripheral locations of the visual field.

We demonstrate that the global retino-cortical mapping meywell adapted to self-
motion of an observer in its environment. Vision plays an amant role in the control
of goal-directed movements during self-motion, thus itnseelausible that the structure
of visual systems is well adapted to this special situati®he importance of motion for
the processing of visual information can be anticipated h®y ubiquity of visual motion
processing mechanisms in different species. From inseetssenstein and Reichardt, 1956;
Egelhaaf and Borst, 1993), frogs (Barlow, 1953), cats (Hahd Wiesel, 1962) to primates
(Hubel and Wiesel, 1968), every organism with a visual sydt@s developed mechanisms
for the processing of visual motion, despite their vastlfedent natural environments and
lifestyles.

However, in addition to the processing of self-motion, ampamant task of the visual
system is to group and segregate local spatial featuresnwatlrisual scene into coherent
objects. Real-worllvisual scenes have characteristic statistical spatiggsties that distin-
guish them from random noise distributions (e.g., Field37;9Ruderman and Bialek, 1994;
Zetzsche and Rohrbein, 2001). Several studies have deratatsa correspondence between
the statistical structure of real world scenes on the onel lazual the neurophysiological and
perceptual properties of visual processing on the othed keug., Olshausen and Field, 1996;
Bell and Sejnowski, 1997; Geisler et al., 2001).

How well is the spatially inhomogeneous retino-corticalppiag adapted to the spatial
structure of the external environment? To investigate qiisstion, we studied the statistics

2Although major parts of this thesis, and all of the compotati are the work of a single authbnise the
form we throughout this thesis to account for the fact that manysdease from discussions with colleagues

and the study of scientific publications written by others.
3Throughout the thesis we make a distinction betweaiural scenescontaining only natural objects, and

real-world sceneswhich can also contain man-made objects, like cars or louse



4 Chapter 1. Introduction

of real-world scenes with respect to the spatial filter-gmbips of cortical neurons at different
eccentricities.

Visual information is processed along parallel neurondghyways with different spatial
and temporal filter properties. Two major retino-corticatipways are the magnocellular (M)
and the parvocellular (P) pathways, originating in then@iiPerry et al., 1984). While neu-
rons along the M-pathway exhibit temporal bandpass cheniatits and provide an achro-
matic, spatially coarse representation of the visual war&lirons along the P-pathway dis-
play temporal lowpass characteristics and provide spafiale chromatic details (Merigan
et al., 1991a,b). The ratio of P- to M-neurons is not consaandss the whole visual field.
The central visual field is sampled more densely by the Pvgaththan by the M-pathway.
With increasing eccentricity, the ratio of P- to M-inputstte visual cortex declines from
approximately 35:1 in the fovea to 5:1 Et° eccentricity in monkeys (e.g., Azzopardi et al.,
1999).

What is the influence of the retino-cortical M- and P-pathsvay the self-organization
in the visual cortex according to spatial and temporal prigpe in the visual input? What
are the functional consequences of the inhomogeneoussepegion of the visual field by
neurons of the M- and the P-pathways for visual processimtiffarent eccentricities? We
investigated how the different temporal response progexi neurons along the P- and M-
pathways may subserve the learning of either object-ptigsecorresponding to the spa-
tial structure of the visual input (object forms), or projes corresponding to the spatio-
temporal structure of the visual input (object motion).

1.1.2 Methods

This thesis is theoretical in nature. We performed numésgaulations and calculations
which aimed to mimick basic known aspects of early stagedsafal processing. The hu-
man brain consists of approximatel9!! neurons, which are believed to be the substrate
of the cognitive processing. Each neuron interacts diyegilh about 10,000 other neurons
(Braitenberg and Schiiz, 1991). This enormous complexityeaprevents us to envision a
model of the entire human brain. Another limitation is thetfthat current experiments,
intricate as they are, fail to provide data about how theseores interact. This is where
biologically motivated theoretical models come into plde interaction between experi-
ments and theoretical models can iteratively lead to neigims into the principles of neural
processing. While experiments can provide models withdgiglally realistic constraints,
models can make predictions which can be verified experiatigrand in turn provide new
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input for more sophisticated models.

Although we are primarily interested in how the human visyatem works, we treat the
human and the mammalian cortex in parallel throughout b@sis and highlight distinctions
only where necessary. At first sight, the brains of cats, regaland humans do not have
much in common, besides the fact that we do not understandfatmem. However, there
are considerable similarities in the structure of theiuaissystems, due to the similarities in
their natural environments and their common evolutionamthge.

In the following we will provide the biological backgroundrfthis thesis.

1.2 Parallel Processing in the Visual System

1.2.1 Retino-Cortical Processing Pathways

In the eyes, light is focused by cornea and eye lens to formaadivmensional image on
each retina. The retinal photoreceptors, which can be @d/idto rods and cones, transduce
the absorbed light into electrical activity. Rods dominatéiromatic vision at low levels
of illumination, while cones provide color vision at highewels of illumination. From the
photoreceptors information is passed to the retinal bipoddls. Bipolar cells have spatial
classical receptive fields (cRFs) with a so-called centemesind organization: The direct
input from a group of photoreceptors is balanced by a grougntdéigonistic inputs from a
larger spatial region, presumably mediated by neighbdrorizontal cells (e.g., Dacey et al.,
2000). Half of the bipolar cells are hyperpolarized by lightet in their cRF center (OFF-
center bipolar cells), the other half is depolarized by tighset (ON-center bipolar cells).
The bipolar cells project to approximately 1.5 million redl ganglion cells (Rodieck, 1988).
Two important morphologically distinct classes of retiganglion cells are thenidget or
parvocellular (P) cellsand theparasol or magnocellular (M) cells Approximately 80%
of the retinal ganglion cells are of the P-type and have so#llbodies, thin axons, and
small dendritic trees. In contrast, M-type ganglion cebisdnlarge cell bodies, thick axons
and large dendritic treégWatanabe and Rodieck, 1989). Via the optic nerve, most®f th
retinal ganglion cells project to the lateral geniculateleus (LGN). The LGN has a layered
structure, consisting of six main layers. The upper fouetay(parvocellular or P-layers)
receive inputs from retinal P-cells, while the lower twoéay (magnocellular or M-layers)
receive inputs from retinal M-cells. The functionally dmtt M- and P-fibers from the LGN
project to segregated sublamina of the primary visual gorte

4The dendritic tree of M-cells resembles a parasol, hencadhee.
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Neurons along the M- and P-pathways differ in their sengjtiwith respect to different
stimulus attributes:

Spatial sensitivity. While P-cells have relatively small cRFs, the diameterdiefdRF cen-
ters of neighboring M-cells are approximately 2 times laigeg., De Monasterio and
Gouras, 1975; Derrington and Lennie, 1984; Croner and Kadl895). Additionally,
some M-cells exhibit nonlinear spatial summation, whilke tmaining M- and P-cells
show nearly linear spatial summation (Marrocco et al., 1982plan and Shapley,
1982).

Temporal sensitivity. P-cells respond in a more sustained fashion (resemblinghpdeal

lowpass filter) to light onset or offset in comparison to Mis€¢resembling a tempo-
ral bandpass filter) (Marrocco et al., 1982; Hicks et al.,3;9Burpura et al., 1990;
Kaplan and Bernadete, 2001). P-cells respond best to stiemaporally modulated
at about 10 Hz and they generally cannot follow temporal netchns at frequencies
higher than 20-30Hz. M-cells, on the other hand, respondtbaeemporal modula-
tions at 20 Hz and greater and can follow temporal modulatigrto 60-80 Hz (review:
Van Essen and Anderson, 1995).

Spectral sensitivity. P-cells encode most of the chromatic information withinsuail scene
due to the spectral opponency of their cRF center and sutliauimile M-cells are virtu-
ally insensitive to color (e.g., De Monasterio, 1978; Reid &hapley, 1992; De Valois
and De Valois, 1993).

Contrast sensitivity. While M-cells respond to changes in luminance contrastaain1%,
P-cells rarely respond to contrasts below 10% (Purpura e1@88; Sclar et al., 1990;
Shapley et al., 1981; Derrington and Lennie, 1984).

Perceptually, lesions of the parvocellular layers of theN_Guse a 3- to 4-fold reduc-
tion in spatial acuity in monkeys while magnocellular lesalo not affect acuity (Merigan
et al., 1991a,b). Luminance and chromatic contrast seis for static gratings of high
spatial frequencies are reduced for parvocellular lesibnsnot for magnocellular lesions.
However, luminance contrast sensitivity for low spati&duency gratings, modulated at 10
Hz is reduced by both parvocellular and magnocellular lesio

In conclusion, the retino-cortical parvocellular pathvagvides a chromatic representa-
tion of the visual world at high spatial but low temporal fusscies, while the magnocellular
pathway provides an achromatic representation at lowaldait high temporal frequencies.
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Nevertheless, the sensitivities of neurons along bothvpatk overlap considerably in both
the temporal and the spatial domain.

1.2.2 Cortical Processing Pathways

The visual cortex is commonly divided into functionally feifent regions called cortical
areas, which can be distinguished by the response propeitigeir neurons. There are at
least 32 distinct areas involved in visual processing (&eglleman and Van Essen, 1991).
Neurons within each area form numerous connections witlmamsuin the same area, and
provide feedback and feed-forward connections to neurbother cortical areas, often in a
reciprocal fashion (e.g., Felleman and Van Essen, 1991P¢gaen and Gallant, 1994). Early
visual areas such as V1, V2, and MT have a retinotopic orgdiniz, which means that the
spatial arrangement of neurons preserves the local topbygaf the visual field with respect
to their cRFs.

The Primary Visual Cortex

The primary visual cortex (area V1, striate cortex) constis the first stage of cortical vi-
sual processing and receives an organized array of profecfrom the LGN. Neurons in
V1 process information in a localized fashion, generatiagous representations which are
distributed to other, more specialized areas. The respprigeerties of neurons in V1 are
substantially different from the center-surround orgatin of the cRFs of neurons in retina
and LGN. Many neurons in V1 show selectivity for the oriertatof stimuli (like bars),
spatial frequency, ocular dominance and color (e.g., Habdl Wiesel, 1959). Depending
on their response properties, neurons in V1 are commongsiflad as simple or complex
cells (Hubel and Wiesel, 1962). The cRFs of simple cells ecasubdivided into separate
antagonistic subregions whose spatial profiles can be ajppabed by a sine wave, weighted
with a Gaussian envelope (Marcelja, 1980; Pollen and Rpid881; De Valois et al., 1982;
De Valois and De Valois, 1988). Complex cells, on the othedhare also orientation selec-
tive, but insensitive to the exact position of the stimuluthim their cRF (Hubel and Wiesel,
1962). Some simple and complex cells are selective for thextion of stimulus motion
(Hubel and Wiesel, 1968). They respond strongly to orieti@s or gratings moving in a
specific direction, but only weakly to stimuli moving in thpposite direction.

V1 can be divided into six different layers. M- and P-fibersnfrthe LGN terminate in
separate sublamina within layer 4C,4@nd 4Q3, respectively. From there, fibers project to
layers 2, 3, and 4B before projecting to higher cortical areayers 2 and 3 can be divided
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into a mosaic of small regions called blobs, with dividingas called inter-blobs. Blob
regions, which receive both M- and P-input, are sensitiveolor and stimulus contrast, but
less to stimulus orientation or motion. Neurons in inteskbfegions which receive mainly
P-input are selective for stimulus orientation, but ins&@resto color and motion. Neurons
in layer 4B, which mainly receive M-input, are selective foe orientation and direction of
motion, but not for color (Livingstone and Hubel, 1984, 1288

Higher Visual Areas - Dorsal and Ventral Pathways

The many visually driven cortical areas are commonly didid®o a ventral and a dorsal
pathway. The ventral pathway leads from area V1 to the iofdemporal cortical areas,
while the dorsal pathway leads from V1 to the posterior gatieortex (Ungerleider and
Mishkin, 1982). Experimental findings in monkeys and humsungport the possibility that
these two pathways serve different visual functions. Theraépathway is thought to be in-
volved in the identification of object¥\(hat-path), while the dorsal pathway is crucial for the
spatio-temporal localization of objectd/fere-path Ungerleider and Mishkin (1982) found
that monkeys with lesions of the inferotemporal cortex hefiits in the discrimination and
recognition of visual patterns, but not in solving distamiggcrimination tasks. Lesions of
the posterior parietal cortex produced impaired perforcedior the distance discrimination
task while retaining the performance during object disangtion learning. Human patients
with lesions in the parietal cortex, but with intact temgarartex, are able to discriminate
objects according to their shape, but have difficulties grasthem. Conversely, patients
with lesions in the temporal cortex can respond to a stimwiitis a grasping action but are
not able to discriminate the stimulus according to its sh&modale et al., 1991, 1994).

Neurons in the higher temporal cortical visual areas of negskhave large, translation-
invariant RFs and encode shapes and objects in a distritfasétbn (Perrett et al., 1982;
Desimone et al., 1984; Logothetis et al., 1995; Rolls, 2@@0iroga et al., 2005). In the
parietal lobe neurons are sensitive to the location of dtimvith respect to the animal’s
head- or eye-position (e.g., Duhamel et al., 1997), oftes mmultimodal fashion (Andersen
et al., 1997; Schlack et al., 2002; Bremmer, 2005). In addjtihe dorsal pathway seems to
play an important role in the encoding of self-motion (revse Duffy, 2000; Bremmer et al.,
2000).

Taken together, these findings suggest that the ventralvpgthlays a major role in the
perceptual identification of objects, while the dorsal pati mediates the spatio-temporal
localization of objects and performs sensorimotor tramaftions for visually guided ac-
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tions (Goodale and Milner, 1992).

1.3 Spatially Inhomogeneous Retino-Cortical Mapping

1.3.1 Physiology and Anatomy

While spatial resolution in the fovea is extremely highal@ag the optical resolution limits
of the eye (Snyder and Miller, 1977), spatial resolutionlices in an approximately linear
fashion with increasing eccentricity (Westheimer, 197%he neural basis for the decline
in spatial resolution with increasing eccentricity liesimgin the retina. In primates, the
density of retinal ganglion cells is highest in the foveathwabout 60,00@ells/mm?, and
decreases by a factor of more than 1,000 towards the peyigiiédssle et al., 1990). For
both M and P ganglion cells, dendritic field sizes increasedrly with eccentricity (Perry
et al., 1984; Watanabe and Rodieck, 1989). However, this@se has a steeper slope for M-
cells than for P-cells, shown in Figure 1.2. Over a wide raoigeccentricities, the RF sizes
of M ganglion cells are 2—-3 times larger than the RF-sizes gaRglion cells at the same
eccentricity (e.g., De Monasterio and Gouras, 1975; Dgton and Lennie, 1984). In the
far periphery this ratio increases to approximately 5 in ataes (Watanabe and Rodieck,
1989) and up to 10 in humans (Dacey and Petersen, 1992). loviba, approximately 5-6%
of the retinal ganglion cells are of the M-type (GrunertletE93). However, the portion of
M-cells reaches values of 20% in the far periphery (Silvamd Perry, 1991). The sampling
density, i.e. the number of overlapping RFs of retinal gammgtells at any given position in
the visual field, seems to be relatively constant at about®-Both M- and P-cells (review:
Van Essen and Anderson, 1995).

From the retinal ganglion cells to the primary visual cortiegre is an additional increase
in machinery devoted to the processing of foveal in comparts peripheral stimuliin mon-
keys (e.g., Perry and Cowey, 1985; Azzopardi and Cowey, 1888ms and Horton, 2003)
and humans (Popovic and Sjostrand, 2001). There is a gmgattasis on the representation
of central vision, causing nearly a quarter of the striat@ecoto be devoted to the processing
of the central 2.5 degrees of the visual field (De Valois an&/&leis, 1988). The dependence
of the spatial RF density of neurons in the primary visuat&oon retinal eccentricity can
be quantitatively described by the linear cortical magatimn factor)/ (Daniel and Whit-
teridge, 1961; Van Essen et al., 1984), which is defined asdftieal distance corresponding
to one degree of visual anglé/ depends strongly on the retinal eccentricifyand can be
approximated by
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Figure 1.2: GIANGE OF DENDRITIC FIELD SIZES WITH ECCENTRICITY FORP AND M
GANGLION CELLS. Dendritic field sizes of P and M retinal ganglion cells irase linearly
with eccentricity, with a steeper slope for M ganglion celodified from Van Essen and
Anderson (1995).

A
"B+ E
where A is a scaling factor and the quotiedt/ B is the cortical magnification in the
fovea (£ = 0).
Theinversecortical magnification factoi/ —!( £) increases linearly with eccentricity:

M(E) (1.1)

B 1
M YE)==+=FE. 1.2
(B)=7+7 (1.2)
By integrating) ( £) from the fovea to a given retinal eccentricity one obtains the cor-
respondingcortical eccentricity, or cortical distance from the position of dwatical foveal

representationf,.:

E.(F) = /OE M(e)de = Aln (1 + g) (1.3)

Thus, retinal coordinates are logarithmically mapped tdical coordinates.
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1.3.2 Scale Invariance and Log Polar Transformation

The linear increase in inverse cortical magnification, agganied by a linear increase in RF-
sizes, provides a spatially scale-invariant cortical @spntation of fixated objects at different
distances from the observer (e.g., Schwartz, 1980; Rastbaed Altmann, 1984; Van Essen
et al., 1992). If a fixated object is brought closer to the olesg its retinal image becomes
larger, and its outline moves towards the periphery. Caktisagnification is such that the
decrease in cortical magnification with increasing ecceitgrcompensates for this increase
in size. Thus, the resolution of extrafoveal object partsasaltered by changes of viewing
distance. There is experimental evidence that if a stimiglgsaled according to the inverse
cortical magnification factor (a procedure called M-sog)iit becomes equally resolvable
across the visual field. Examples include spatial contrassisivity and spatial acuity for
static and moving sine gratings (Rovamo et al., 1978; VirsliRovamo, 1978; Rovamo and
Virsu, 1979; Virsu et al., 1982), vernier acuity (Levi et,dl985), or the detection of coherent
motion in stroboscopically moving random-dot patterns(@ea Grind et al., 1983). However,
M-scaling cannot account for the decreased performancerabar-grouping with increas-
ing eccentricity (e.g., Hess and Dakin, 1997, 1999) or tlemiification of faces (Makela
etal., 2001).

The two-dimensional mapping of retinal coordinates on® himary visual cortex of
monkeys can be approximated by a log-polar transformaforideal log-polar transforma-
tion, which has originally been suggested by Fischer (197&) the form

w = log(z), (1.4)

wherez andw are complex numbetgepresenting points in retinal and cortical space,
respectively. Later, Schwartz (1977, 1980) proposed aensxbn which provides a better
description of the central region of the visual field:

w = log(z + a), (1.5)

where the parameter accounts for deviations of the retino-cortical mappingriran
ideal log-polar mapping for small eccentricities.

5The logarithmlog z of a complex numbet is the set of complex numbets, for which the equation
e¥ = z holds. Withr = |z| and¢ = arg z, the logarithm of a complex number can be reduced to the real-
valued logarithmiog z = log r+i¢. Thus, the complex logarithm separates magnitude and pfiassomplex
number.
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Figure 1.3: LOG-POLAR MAPPING (A) Retinal scaling of a stimulus corresponds to trans-
lations in cortical space, (B) rotation around the directaf gaze corresponds to cortical
translations in the perpendicular direction. Modified fr@rossberg et al. (1999).

An ideal log-polar transform (Equation 1.4) converts cestescaling and rotation of ob-
jects in visual space into translations along perpendiatitactions in cortical space (e.qg.,
Schwartz, 1977; Reitboeck and Altmann, 1984) (Figure 1T3)us, the spatial cortical ac-
tivation profile of a fixated object which is scaled or rotatedlergoes a translation on the
cortical surface while retaining its shape. This means ttiiamount of information about
the extrafoveal parts of an object in the visual field remamgghly constant as it is moved
closer or further away from the observer, or is centrallatetl with respect to the direction
of gaze.

Several studies have highlighted the possible role of telalar mapping of visual space
for the processing of form and motion information. It hasrbpeoposed that the log-polar
mapping may play a role in the scale- and rotation-invarraobgnition of visual objects
(Schwartz, 1981; Reitboeck and Altmann, 1984). In the modi&eitboeck and Altmann
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(1984), the retinal images of scaled and rotated objectsransformed into cortical trans-
lations according to the log-polar mapping. These cortacdivations are extracted with a
translation-invariant mechanism, leading to scale- andtian-invariant object representa-
tions. A recent model employs the log-polar representatiovisual space to account for
the response properties of neurons in area MSTd with respegqitic flow stimuli generated

during self-motion (Grossberg et al., 1999).

1.3.3 Eccentricity-Dependent Projections Between Cortad Areas

There is evidence that inter-areal projections depend ®@ecthkentricity of the corresponding
cortical representations (review: Gattass et al., 2005h tl@ one hand, the foveal, but
not the peripheral, portion of V1 projects to area V4 (Zeldp?; Nakamura et al., 1993).
On the other hand, peripheral V1, but not central V1, prgjgotarea V3A (Zeki, 1980).
Additionally V3A receives projections from the peripheralit not the foveal portion of area
MT (Ungerleider and Desimone, 1986). Gattass et al. (1990nd that the peripheral, but
not the central field of V2 projects to areas MST, VIP and VThi& dorsal pathway.

These findings suggest that cortical areas along the veydtaay, associated with the
encoding of object form, receive mainly input from the folvpartion of the visual field.
Areas along the dorsal pathway, concerned with the encadfingption and spatial coordi-
nation, predominantly receive input from the peripherattipn of the visual field (Gattass
etal., 1990, 1999).

1.4 Self Organization

1.4.1 Role of Input-Driven Self-Organization on Cortical Development

It is generally believed that visual input plays an essémtie for many aspects of self-
organization in the visual system. Kittens raised in eiti@iizontally or vertically striped
environments developed less neurons sensitive to vdytioahorizontally oriented stimuli,
respectively (Blakemore and Cooper, 1970). Experimentaonocular deprivation (Wiesel
and Hubel, 1963) and strabism (Hubel and Wiesel, 1965) dstrair that missing or con-
flicting visual information can disturb the development etitar dominance columns. In a
series of experiments on ferrets, projections from theneetvere directed to the immature
auditory pathway (review: Sur and Leamey, 2001). After sameks, the auditory cortex
exhibited visually driven orientation maps and charasterihorizontal connections between
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neurons. This demonstrates the flexibility of input-drivesif-organization of cortical con-
nectivity.

Although plasticity is typically greatest within a few weekr months after birth (e.g.,
Wiesel and Hubel, 1963; Daw et al., 1992), it is important édenthat some input-driven
synaptic modifications are not restricted to certain aitfweriods during early development,
allowing cortical sensory maps to be modified continuouglyekperience: In adult cats,
asynchronous visual stimulation of two adjacent retinglams induced rapid modifications
of intracortical connectivity and shifts in the positionsamrtical RFs, depending on the
temporal interval between the visual stimuli (Fu et al., 20@\ similar stimulation paradigm
caused shifts in human spatial perception. Comparabletsfieere found for the pairing of
visual stimuli of two orientations, which caused a shift e torientation tuning of cortical
neurons in cats and a shift in orientation-perception in &aisubjects (Yao and Dan, 2001).
Synchronous visual stimulation of the RF center and a lonaith the RF’s surround can
induce a spatial expansion of the RF towards the stimulatedwnd region in cats (Eysel
et al., 1998). In patients with macular degeneration, addsentral vision, cortical regions
normally devoted to the processing of foveal stimuli haverbghown to become responsive
to peripheral stimuli (Baker et al., 2005).

Taken together, these findings demonstrate convincingliyttie initial development of
cortical circuits and their later refinement depends altcon the spatio-temporal struc-
ture of the visual input, and that certain statistical regties in the visual environment are
reflected in the cortical connectivity.

1.4.2 Synaptic Plasticity

Information transmission between neurons is thought tooe@inly via chemical synapses,
whose efficiency can undergo long-term changes under nectmditions. The idea that

learning and adaptation in neural systems is due to changggaptic connectivity is very

old (Cajal, 1894). However, Hebb (1949) was the first to psgpa rule based on theoretical
considerations, suggesting under which circumstancesetbleanges in synaptic efficiency
should occur:

When an axon of a cell A is near enough to excite cell B or regmhgtor consis-
tently takes part in firing it, some growth or metabolic chamakes place in one
or both cells such that As efficiency, as one of the cells @) is increased.

An important feature in Hebb’s formulation is the principliecausality. In order to cause
a change in synaptic efficiency, the firing of neuron A must &esally related to the firing
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of neuron B. Furthermore, the formulation implicitly untiees the importance of the timing
of single spikes in the learning process.

Nevertheless, the principle of causality and the influericsirmgle spikes on synaptic
changes were underrepresented for a long time in both erpatal and theoretical works.
Experimentally it has been shown that synaptic efficiencylmaincreased by a brief, high-
frequency stimulation of the presynaptic axon (Lomo, 1Bliss and Lomo, 1973), an ef-
fect called long term potentiation (LTP). This effect hasbeéemonstrated in many cortical
areas and species and can last for hours or days (review:dBPan, 2001). This stimula-
tion paradigm suggests an underlying correlational r@lyimg on the firing rates of pre- and
postsynaptic neurons. This can be summarized by the phecalie that fire together, wire to-
gether” (Zigmond, 1999). Theoretical models employingelation based Hebbian learning
rules can account for many adaptive processes. This inslteformation of topographic
maps (e.g., Kohonen, 1989; Sirosh and Miikkulainen, 1988 extraction of independent
component filters from natural images (e.g., Falconbridgd.e2006), which resemble the
spatial filter properties of cortical simple cells, and tkeé-®rganization of long-range intra-
cortical lateral connections (e.g., Grossberg and Wilsam 2001; Prodohl et al., 2003).

The temporal specificity of synaptic modifications has beeofgreater interest only in
the last decade, stimulated by the development of betterdew-techniques. An impor-
tant discovery was the fact that action potentials do noy tialvel along the axon, but also
back-propagate into the neuron’s dendrite (Stuart and 8aknil994). A backpropagating
action potential which was evoked 10 ms after the onset gbtis¢ésynaptic potential induced
LTP, while a reversal of the order caused a weakening of thazse, an effect called long
term depression (LTD) (Markram et al., 1997; Magee and Joim4.997). Neither action
potential nor postsynaptic potential alone was sufficier@oke synaptic changes. The crit-
ical temporal difference of pre- and postsynaptic actowafor which LTP or LTD is evoked
(time window or learning window) is about 50 ms (e.g., Bi ambP1998; Zhang et al.,
1998; Feldman, 2000; Froemke and Dan, 2002). Recent stedggest that learning does
not only depend on the temporal interval between pre- andgosptic activity, but also on
the history of the pre- and postsynaptic activation (e.gstgom et al., 2001; Froemke and
Dan, 2002), and the location of the synapse on the dendwtic(Saudargiene et al., 2004;
Froemke et al., 2005).
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1.5 Thesis Outline

The thesis consists of three self-contained chapters,eratwed with separate introduction
and discussion intended for readers with an elementarygsagkd in neuroscience. In order
to preserve the self-containedness of the chapters, ddahe description of the used model-
neurons in Chapter 2 and Chapter 4 are identical.

¢ In Chapter 2we identify visual situations to which the spatially inhogemeous retino-
cortical mapping is well-adapted. We demonstrate thaiariagnification is well
adapted to self-motion of an observer walking in the digcif gaze, under the as-
sumption that the retino-cortical mapping transforms dromogeneous retinal veloc-
ity distribution into a homogeneous cortical velocity disaition. Applying flow fields
similar to those during self-motion along the direction akg to train a simple network
of pulse coding neurons with Hebbian learning, we demotestteat the distribution
of learned RFs is consistent with primate cortical magniiica

¢ With increasing eccentricity, the RFs of neurons in V1 beedarger and their pre-
ferred spatial frequency shifts to lower values. Ghapter 3we investigate how the
spatial statistics of real-world scenes change with redpdbe spatial filter properties
of cortical neurons at different eccentricities. We shoattthe collinear correlations
between filters of the same orientation and wavelength arscae-invariant, which
provides evidence against a homogeneous lateral corboalectivity across the visual
field with respect to the spatial statistics of natural ssene

¢ In Chapter 4we study the influence of stimulus velocity and the condunctielocity

of lateral connections on the self-organization of late@inectivity due to Hebbian
learning mechanisms. We show that stimulus velocities niowker than the conduc-
tion velocity of the lateral connections favor the devel@miof lateral connections
which are well adapted to the spatial structure of the visyalit. High stimulus ve-
locities lead to lateral connections which support the egdf the spatio-temporal
structure of the visual input. We discuss possible impidset for the self-organization
within cortical M- and P-dominated visual pathways and fog self-organization of
lateral connections at different positions in the visudtifie



Chapter 2

Inhomogeneous Retino-Cortical
Mapping and Self-Motion

Inhomogeneous Retino-Cortical Mapping is Supported and Sbilized with Correlation-
Learning During Self-Motion

2.1 Abstract

In primates, the area of primary visual cortex represenéiritxed area of visual space de-
creases with increasing eccentricity. We identify visualaions to which this inhomoge-
neous retino-cortical mapping is well adapted and study thkevance during natural vision
and development. We assume that cortical activationsechlng stationary objects during
self-motion along the direction of gaze, travel on averagk vonstant speed across the cor-
tical surface, independent of retinal eccentricity. Thithie case if the distribution of objects
corresponds to an ellipsoid with the observer in its centée.apply the resulting flow field
to train a simple network of pulse coding neurons with Hebbearning and demonstrate
that the density of learned receptive field centers is ineckigreement with primate cortical
magnification. In addition, the model reproduces the ingeea receptive field size and the
decrease of receptive field peak sensitivity with increg@ocentricity. Our results suggest
that self-motion may have played an important role in thdwgian of the visual system and
that cortical magnification can be refined and stabilized bplban learning mechanisms in
ontogenesis under natural viewing conditions.

Major parts of this Chapter have been accepted for publarain a special issue of
BioSystemsRroceedings on Neural Coding 2005 press).
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2.2 Introduction

The spatial resolution of the representation of the visedd in primate primary visual cortex
decreases strongly with increasing eccentricity (e.gni€and Whitteridge, 1961) in par-
allel with the increase of receptive field (RF) sizes of rakjthalamic and cortical neurons
(Hubel and Wiesel, 1974; Dow et al., 1981; Croner and Kapl@95; Xu et al., 2002). A
large number of cortical neurons process stimuli near thedpwhile relatively few represent
the periphery. This inhomogeneous mapping keeps the nuohbetino-cortical connections
relatively low, but requires eye movements over larger si&ahe visual field for percep-
tion at high spatial resolution. The inhomogeneous retiodical mapping is to a large part
determined genetically, but development of theories oaritterlying principles and its shap-
ing during ontogeny may help to understand fundamentalngpgiechanisms in the visual
system. We investigate whether visual situations existhakvthe inhomogeneous retino-
cortical mapping is well adapted and ask how relevant theésat®ns are during natural
vision and development. Because vision plays an importatduring navigation, visual
processing should be well adapted to self-motion. Thus,riéasonable to hypothesize that
self-motion plays a role in determining retino-cortical pping and magnification. Virsu
and Hari (1996) showed that cortical magnification can bemeded by linear self-motion
in a world, idealized as a sphere, under the assumption tnaca activations, caused by
stationary objects, travel at constant cortical speecpeddent of eccentricity. We take the
complementary approach and investigate which average egeical arrangement of static
objects in the environment is best suited to predict cdriicagnification from flow fields
arising during self-motion along the direction of gaze. tharmore, we demonstrate that
an RF distribution, whose density is consistent with caitimagnification, can be learned
in a basic network model of spiking neurons by training withwflfields similar to those
experienced during self-motion.

2.3 Relating Cortical Magnification to Self-Motion

The dependence of RF density of neurons in primary visuakgaon retinal eccentricity
can be quantitatively described by the linear cortical nifegation factor M (e.g., Daniel
and Whitteridge, 1961; Van Essen et al., 1984), which is ddfias the cortical distance
corresponding to one degree of visual anglé.depends on the retinal eccentricikyand
can be approximated as
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C
M) =535

where(, is a scaling factor and the quotiefit /C; is the cortical magnification in the
fovea (£ = 0).
In the following we make the assumption that cortical magatfon has the effect that

(2.1)

during self motion along the direction of gaze, represématof static objects shift on av-
erage the same cortical distance, independent of ecagntfibis would have the important
advantage that the neuronal modules, concerned with treegsng of self-motion, can be
identical in their spatial and temporal properties acrbssépresentation of the whole visual
field.

For convenience, we introduce the inverse cortical magatifia factorA/ !, which has
the form o .

_ 1
M YE)= G @E. (2.2)

M~! specifies the change in visual angle that corresponds to @ ¢iagical distance.
Thus, cortical activations travel at constant speed, ifahgular velocityw(E) of the cor-
responding retinal activations is proportional to the myeecortical magnification factor

M~*(FE) for all eccentricities:

w(E) x M~Y(E). (2.3)

In the following, we neglect the terf; of the cortical magnification facto(; < F),
which cannot be explained by self-motion along the directibgaze (Virsu and Hari, 1996),
because a finit€'; corresponds to non-zero retinal velocities in the foveae Possibility
to explain a non-vanishing value 6f; would be to assume velocity jitter across the visual
field, due to eye and body-motion. However, we will show (®ecR.4) that even a vanishing
retinal velocity in the fovea can lead to a magnificationdaetith C; # 0, due to the finite
size of the retinal RFs.

According to the experimentally estimated linear inversetical magnification factor
(Equation 2.2, forC';, <« FE), angular velocity increases linearly with eccentricitr the
condition of constant velocity across the visual cortiegdresentation:

w(F) x E. (2.4)

In the next step, we determine the geometrical arrangenfeoijects surrounding an
observer which leads to angular velocities increasingalityewith eccentricity. The retinal
speed of objects depends on their distance, their ecciytand the velocity of self-motion.
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Therefore, we have to derive a mathematical expressioméangular velocity of an object
at a given position in visual space during self motion of asewber with velocityv. We
assume rotational symmetry around the axis of fixation, tvaitows us to solve the problem
in the horizontal plane. We choose a coordinate system tigihates in the observer’s eye,
with positive y-direction in the direction of gaze. The dister of an object in the horizontal
plane at positior? = (z, y) from the observer is

r= %+ 92 (2.5)

and its retinal eccentricity is

E = arctan 2. (2.6)
Y

To obtain the angular velocity(E) of the object we differentiaté with respect ta,
using the derivative of the arcus tangens

1
T arctanx = 152 (2.7)
which yields
1 TY — YT

w(E) = 5 - 5 (2.8)

(i)

TY — Yyx

= — 3 (2.9)

We examine the case of the observer moving with velociity the positivey-direction.
The coordinates of an object which is initiallyy-€ 0) at positionP = (xg, yo) relative to the
observer’s eye, change according to

y(t) = yo — vt, (2.10)

x(t) = xg = const. (2.11)
With Equation 2.9, and, = r sin £/ we obtain

w(E) = LSnE) (2.12)

r

This is the general expression for the angular velocity oblaject at eccentricityr with
distance- from the observer’s eye.

According to our initial assumption (Equation 2.4), for aefikvelocityv of the observer,
angular velocity increases linearly with increasing ectgeity:
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B o SnE) (2.13)
T
Thus, we obtain
sin(E)
. 2.14
r o z ( )

The solid curve in Figure 2.1 shows the arrangement of cbgotording to this theoret-
ical relationship.

In the following we examine two simple geometrical arrangets of objects, straight
line and ellipse, to test how well they match the requireddinincrease of angular velocity
with eccentricity.

Objects on a Straight Line. For objects lying on a straight line perpendicular to the srov
ment direction of the observer, with distange, we obtain the following dependence
of an object’'sP = (z, y, ) distance on its eccentricity:

oy
r= cos (B)° (2.15)

Thus, angular velocity increases according to

_ usin(b) (E) _ Y sin coS
w(F) = " = (E)cos (E). (2.16)

Objects on an Ellipse. The representation of an ellipse in polar coordinates is

b
r= , (2.17)
1 — €2 cos?(F)

with € as the numerical eccentricity of the ellipse, defined as

2 _ K2
eo YO U (2.18)
a

a and b being semimajor and semiminor axis, respectivelytiéoangular velocity we

obtain
w(F) = %sin(E)\/l — €2 cos?(E). (2.19)
The special case of objects on a cirale{ 0) yields
w(F) o« sin (F), (2.20)

which is identical to the result of Virsu and Hari (1996).
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Figure 2.1: DFFERENT GEOMETRIES OF OBJECT LOCATIONS AND THEIR RESULTGN
INSTANTANEOUS, ANGULAR VELOCITY DISTRIBUTIONS. (A) The four examined geome-
tries (exact, circle, line, and ellipse). The observer isated at (0,0), facing in positive
y-direction. The ellipse corresponds to a numerical ecagtytrof ¢ ~ 0.56, obtained by
least squares fitting. (B) The corresponding velocity dstions. The increase in angular
velocity is similar for the four examined object-geomedrag small eccentricities, but di-
verges for larger eccentricities. (C) The relative dewas of the predicted velocities of the
examined geometries (circle, line, and ellipse) from adimacrease in velocity.

Figure 2.1 illustrates the different object geometries #rar corresponding velocity-
distributions. Figure 2.1C shows that the resulting vejodistributions for the different
geometries are similar for small eccentricities, but diyefor larger eccentricities. The ve-
locity distribution of objects on a straight line increasesarly linearly for small eccentrici-
ties, but diverges for larger eccentricities. Points orreleiare a closer match, but for larger
eccentricities these velocities also diverge from the joted linear increase. The elliptic
geometry with slightly elongated axis along the viewingedtron yields the closest match to
the linearly increasing magnification factor for eccentiés larger tharx 7°.

2.4 Model Simulations

Here we demonstrate that a minimal network model with sgjkiaurons and other biolog-
ically plausible properties can learn an RF distributioroaé density is consistent with the
experimental cortical magnification factor, if trained wftow fields similar to those present
during self motion along the direction of gaze.
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Figure 2.2: MODEL ARCHITECTURE AND SAMPLE INPUT STIMULI The network consists

of two layers of spiking neurons. The connections betwegertd and layer-2 are subject to
Hebbian learning. Neurons in layer-2 interact via globailtory connections. For clarity,

only projections from a single neuron in each layer are pthtinput stimuli for the layer-1

neurons are small moving dots with a lifetime of 100 ms andaiéies that increase linearly
with eccentricity.

2.4.1 Network Model and Input Stimuli
Network Architecture

The model (Figure 2.2) consists of two one-dimensionalfagépulse coding neurons (Eck-
horn et al., 1990). Neurons in the first layer are directlyeni by the visual input. They have
retinotopically arranged, equally spaced RFs, i.e., eaalran is sensitive to stimuli at a
given retinal eccentricity. This choice is not crucial faetresults. However, equally spaced
RFs of layer 1 neurons allow us to conveniently assess tineddd&rFs of layer-2 neurons in
terms of the matrix of synaptic connection strengths fropetel to layer-2.

Layer-1 consists of 80 neurons, while layer-2 consists oh&0rons. The connections
between the first and the second layer represent the tramsfimn between retinal surface
and primary visual cortex. They are adapted during learaicgprding to a temporal Heb-
bian learning rule. Every neuron in the first layer can formmmections with every neuron
in the second layer. Neurons within the second layer inl@hih other mutually (connec-
tion strengthw?, Table 2.1). This inhibitory competition prevents learifés of the layer-2
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neurons from overlapping substantially. The direct intaky interaction between layer-2
neurons was chosen for computational convenience, iggdhnia fact that cortical neurons
inhibit each other via inhibitory interneurons. Howevée exact form of competitive inter-
actions between layer-2 neurons is not crucial for the fionatg of the model.

Model Neurons

We used pulse coding neurons with realistic synaptic patisrand an adaptive spike encoder
with dynamic threshold (Eckhorn et al., 1990). The inpugstaf a neuron consists of
synapses;;(t) to presynaptic neurons which have a synaptic connection strengthand

an impulse responsg, 7):

Sij(t) = wiL;(t) = h(t, 7s), (2.21)

wherex is the convolution operator;; is the spike-output of the presynaptic neuron
The synaptic respongg, 7) was modelled by a leaky integrator:

h(t,7) = exp(—t/T)H(t), (2.22)
whereH (t) denotes the Heaviside function:
0 t<0
H(t) = . 2.23
(0 {1t20 (2:29)

Thus, each connection performs an exponentially decayungnsation of signals from
presynaptic neurons. For layer-1 neurons, presynapti@asgorrespond to the visual input.

Excitatory and inhibitory synapses have different timestants; z andr;, respectively.
Although the exact choice of the time constants is not ctuoiathe functioning of the
network, a longer inhibitory time constant leads to better competition between layer-2
neurons because the longer integration time allows for &maiust estimation of the activity
within layer-2.

Thus, the resulting membrane potential of neuromhich drives the spike encoder, is

M;(t) = Z Fij(t) — Zfzj(t)- (2.24)

In the spike encoder, the membrane potentia(t) is compared to a dynamic threshold
©,(t). If M;(t) exceed®;(t), a spike is generated:

Oi(t) = H(Mi(t) — O4(1)). (2.25)
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The spike threshold has both a dynamic component, which dettedl as the impulse
response of two leaky integrators, and a static compoBgnt

0i(t) = Oi(t) * ((Ve, exp(—t/7e,) + Vo, exp(—t/7e,)) H(t)) + Op. (2.26)

One leaky integratorl(y, , 7¢,) models the neuron’s refractory period with a short time
constant, the othelg, 7o,) accounts for spike rate adaptation. In our model, onlyr&ye
neurons adaptifs, # 0).

Learning Rule

Changes in synaptic connection strengths depend on theegliening of pre- and postsy-
naptic spikes. Each spike initiates a synaptic learningmuadl in the corresponding neuron:

Li(t) = Oy(t) * (exp(—t/m) H (1)) (2.27)

The change in connection strength between a postsynaptromé and a presynaptic
neuron; depends on the product of the corresponding learning patent

Awij (t) = Lz (t)LJ (t) — 5decay7 (228)

The termdge.., Causes all synaptic connection strengths to decline by #l amaunt
in every time step. This causes the total synaptic connesti@ngth of neurons which are
inactive for a long time to drop to zero.

If the total connection strength to a postsynaptic neurngrgreater or equal than a max-
imum valueA, ..., every synaptic weight to this neuron is divided by a comnamidr, so
that the total connection strength is equal4Q,.,. Thus, the total connection strength to a
postsynaptic neuronis always less than or equal #nhorm:

> wij < Avorm: (2.30)
J

All network parameters are summarized in Table 2.1.



26 Chapter 2. Inhomogeneous Retino-Cortical Mapping and SeMotion

layer-1 Parameters

TR 1ms

Oy 1.0

To, 2ms Ve, 2
To, Oms Ve, 0

layer-2 Parameters
TR 5ms TI 20 ms
O 1.0 w! 3.0
To, 20 ms Vo 2

To, 50 ms Vo 0.3
Learning Parameters
L 20 ms VL 0.015
Sdecay | 1 X 1077 || Aporm | 10.0

Table 2.1: Network parameters

Input Stimuli

Input stimuli were one pixel wide dots with a movement dil@cttowards the periphery.
Stimulation phases (100 ms) were followed by brief pauses(&) after which a new random
stimulus position is chosen.

In the main simulatiorvelocitiesv increased linearly with eccentriciti (v(E) o« F),
with a maximum value ob = 0.25 pixels per millisecond in the periphery (Figure 2.3).

Additionally, we performed twsupplemental simulatiornt® further investigate the in-
fluence of stimulus velocity on the properties of the learRé. First, we wanted to rule
out the possibility that the learned inhomogeneous digtioin of RF positions and sizes is
mainly determined by the asymmetry in movement directiavaials the periphery and not
by the linear increase in velocity. Therefore, in an addiilssimulation, stimulus velocities
were constant across the whole visual fieldH 0.05 px/ms).

Second, we wanted to account for the fact that an organismerexes a wide range of
retinal velocities at each eccentricity due to differenedies of self-motion and different
distances of objects in the environment. A realistic, etiagty-dependent velocity distri-
bution of static objects during self-motion along the dil@t of gaze would depend on the
distribution of movement velocities during self-motiohetspatial distribution of objects in
the environment , and their sizes, in order to account fosids occlusions. Furthermore,
the velocity of self-motion probably depends on the dis¢ésnaf objects in front of the ob-
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Figure 2.3: DEPENDENCE OF STIMULUS VELOCITY ON ECCENTRICITYIn the main sim-

ulation, stimulus velocity increases linearly with eccaaitty. To avoid boundary effects, the
network-fovea was shifted five pixels to the right.

server. For simplicity, we assumed that the distributiovelbcities has the same shape at
each position within the visual field, but is scaled lineawigh eccentricity. For each stim-
ulus presentation, a random velocity scaling facgowvas chosen from a rectified Gaussian
distribution centered 4t (prior to rectification). Stimulus velocities were compaigccord-
ing tov(E) = ¢SE. The constant was manually chosen to lead to learned RFs similar
in size to RF sizes in the main simulation. Comparable reswdire obtained with different
velocity distributions (e.g., uniform or power-law didiutions).

In every time stepA&t = 1 ms), independent Gaussian white noise (GWN,= 0.25)
was added to all excitatory synapses of layer-1 and layer-2.

To avoid boundary effects, the model fovea was shifted fixelpito the right. Thus, the
80 layer-1 neurons correspond to eccentricities from -54to 7

Analysis

After learning, we examined the connection matrix betweswei-1 and layer-2 neurons. For
convenience we refer to the connection strengths from aytera single layer-2 neuron as
theRF of the corresponding layer-2 neuron. This neglects theineat response properties
of both layer-1 and layer-2 neurons, which, however, is matial for the current analysis.
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For a given layer-2 neuron, iBF center positiomr eccentricity is defined as the eccen-
tricity of the layer-1 neuron with the largest connectioresgth to this neuron. THeF peak
amplitudeor peak sensitivitpf a layer-2 neuron is defined as the connection strengthein th
center of the RFRF sizeof a layer-2 neuron is the number of layer-1 neurons afterctvhi
connection strength is less thape of the RF peak amplitude, wheeeis Euler’s constant.
For the fits in Figure 2.6, only RFs with sizes greater thanx2Igiwere incorporated.

Themodel magnification factovas assessed by computing a histogram of the positions
of the RF centers. The width of one bin in the histogram wasehdo be proportional to
the RF size at the bin’s center position. To avoid boundaigces, only neurons with RF
center positions greater than or equal to 0 and less than 65acuasidered in the analysis.
Layer-2 neurons which had a maximum connection strengthtlesn 0.01 after learning,
were pruned and not considered in the analysis.

2.4.2 Results
Main Simulation

Receptive Field Distribution after Learning. Figure 2.4A shows the matrix of connection
strengths from the first to the second layer after learningrs Bt small eccentricities are
small with high peak amplitudes, RFs at large eccentritiee large with low peak ampli-
tudes. This is a consequence of the spatial stimulus speatbdtion. If a layer-2 neuron
is activated, the connections from the layer-1 neurons vhiere activated before and those
that are activated thereafter are strengthened. For fagingstimuli, more layer-1 neurons
are active in the near past and future than for slowly movingudi. Due to the additional
constraint that the total presynaptic connection strergyss than or equal to a fixed value,
RF peak amplitudes decrease with increasing RF sizes (aqenkjigure 2.5), with each RF
having the maximum total presynaptic connection strength.

Figure 2.4B is computed from Figure 2.4A by sorting the RFsoading to their center
positions. More neurons have RF centers at small than a kegentricities. This is due
to the strong all-to-all inhibition between layer-2 neuspwhich prevents the RFs of neigh-
boring neurons from overlapping substantially. Consetjyeonly few neurons respond to
a stimulus at a given position. This is further demonstrateldigure 2.5, which shows the
corresponding RF profiles. RFs are slightly asymmetric, ri@salt of the linearly increasing
velocity and the relatively small network size.

Receptive Field Size Increases Linearly with EccentricityFigure 2.6A shows the RF
size of the layer-2 neurons as a function of eccentricity. d’4e increases linearly with
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Figure 2.4: ®NNECTION STRENGTHS FROM LAYERL TO LAYER-2 AFTER LEARNING.
(A) Connection strengths from each layer-1 neuron (soureyery layer-2 neuron (target)
after learning. Neurons with RFs at small eccentricitiegehsmall RFs with high center
sensitivities while neurons with RFs at large eccentesithave larger RFs with lower center
sensitivities. The large overlap of RFs visible at the tophaf diagram is due to boundary
effects and is not considered in the analysis. (B) RFs ofrf@yeeurons, sorted according to
the position of their RF centers. Only layer-2 neurons wikhd@nters at positions greater or
equal than 0 and less than 65 and with maximum synaptic ctiopnestrengths greater than
0.01 are included (see Section 2.4.1).

increasing eccentricity as a consequence of the lineachgasing stimulus velocity.
Receptive Field Peak Amplitude Depends on Receptive FieldZg. As can be seen in
Figure 2.6B, RF peak amplitudé decreases exponentially with RF sizeThe regression
line has the form
Aoxr e, (2.31)

with ¢ close to one (here: =~ 0.97), due to the normalization term in the learning rule, which
ensures that the total connection strength is kept constant

Magnification Factor Declines with Increasing Eccentricity. The model magnification
factor M and inverse magnification factdr —! are shown in Figure 2.7A,B. Qualitatively,
the curves are similar to the empirical relationship (EgquraR.1). The non-zero value of
M~! in the fovea is a consequence of the strong inhibitory coitipetbetween layer-2
neurons, which prevents RFs of different neurons to ovesidystantially.
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Figure 2.5: RFPROFILES OF LAYER2 NEURONS FOR A SINGLE SIMULATION Plotted
are the connection strengths for every layer-2 neuron asetiin of the corresponding
layer-1 neurons (compare Figure 2.4). Note the increaskhgi® and the decreasing center
sensitivity with increasing eccentricity of the RF center.

Supplemental Simulations

Constant Stimulus Velocity Across the Whole Visual Field.In this simulation, stimulus
velocity was constant across the whole visual field<( 0.05 px/ms). Figures 2.8 and 2.9
show the distribution and the profiles of the learned RFs.agéit RFs have constant dis-
tances across the whole visual field and RF sizes do not depeerdcentricity. Thus, the
inhomogeneous representation of the visual field in the siailation is due to the increase
in velocity with increasing eccentricity, and not a consauge of the asymmetry in stimulus
movement direction.

Random Stimulus Velocities, Scaled Linearly with Eccentitity. The next simulation
demonstrates that qualitatively similar results to thasthe main simulation were obtained
if stimulus velocity was not fixed for any given eccentrigibyt was taken from a Gaussian
distribution of velocities whose mean was increasing lityeaith eccentricity (compare
Section 2.4.1 for details).

Figures 2.10 and 2.11 show the RF structure after learnitig andom velocities. The
results are comparable to the results from the main sinuatRF sizes increase with in-
creasing eccentricity and magnification declines. Howdgarning took longer until a stable
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Figure 2.6: RFSIZE AND PEAK AMPLITUDE DEPEND ON ECCENTRICITY(POOLED DATA
FROM N = 3 SIMULATIONS). (A) RF sizer of all layer-2 neurons as a function of the
eccentricityE. RF sizes increase linearly with eccentricity (least squiérr = 1.04+0.15F).
(B) Double-logarithmic plot of RF peak amplitudéeas function of RF size (least square
fit: A =9.92r7097),

distributions of RF positions was obtained, and RFs are magged than in the case of the
main simulation (Figures 2.4 and 2.5). The latter could bercvme by reducing the param-
eterV/, of the Hebbian learning rule, which determines the ampéitatichanges in synaptic
weights.

2.5 Discussion

2.5.1 Summary of Results

Our results demonstrate that cortical magnification is \adlpted to represent flow fields
generated during self-motion of an observer walking in tineation of gaze, if the distribu-

tion of stationary objects in the environment correspormdart ellipsoid with the observer
in its center. Additionally, a distribution of RF centers @de density is in qualitative agree-
ment with primate cortical magnification (Dow et al., 198 5rnVEssen et al., 1984; Adams
and Horton, 2003) can be learned in a biologically plausitdavork model with Hebbian

learning. The sizes of the learned RFs increase with incrg&scentricity while peak sensi-
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Figure 2.7: MAGNIFICATION FACTOR DERIVED FROM MODEL SIMULATIONS (POOLED
DATA FROM N = 3 SIMULATIONS). (A) Magnification factor, computed from the RF cen-
ters of the layer-2 neurons. (B) Inverse magnification facite solid lines in (A) and (B)
show the result of least squares fitting inverse corticalmifagtion (/! = 1.11 + 0.12F,
with eccentricityF).

tivities decrease. Our results support the view that seifiom may have played an important
role in the evolution of the visual system (Virsu and Hari9&®

Although in real visual systems the inhomogeneous retorntical mapping is to a high
degree determined genetically, it has been shown that evémeiadult brain changes in
cortical organization can occur, for example in monkey .(e-ginen and Skavenski, 1991)
and human (e.g., Baker et al., 2005). Thus, the mechanisesemied here may play a role
in refining and stabilizing cortical magnification underunad viewing conditions.

2.5.2 Relating Optical Flow to Cortical Magnification

Virsu and Hari (1996) estimated the cortical magnificatiactér from linear self-motion of
an observer in a world in which objects move on a sphere wighatbserver in its center.
In contrast, our results show that the linear increase iers® cortical magnification with
eccentricity can be more accurately deduced from a flow fieldegated by a distribution
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Figure 2.8: ®NNECTION STRENGTHS FROM LAYERL TO LAYER-2 AFTER LEARNING
WITH STIMULI OF CONSTANT VELOCITY ACROSS THE WHOLE VISUAL FELD. (A) Con-
nection strengths from each layer-1 neuron (source) toyelasrer-2 neuron (target) after
learning. (B) RFs of layer-2 neurons, sorted according &gbsition of their RF centers.
Only layer-2 neurons with RF centers at positions greatexquial than 0 and less than 65
and with maximum synaptic connection strength exceedifig @re included (see Section
2.4.1). For constant stimulus velocity across the wholeali$ield, RF size and density do
not depend on the position within the visual field.

of objects whose distances from the observer correspona tellgsoid (with a ratio of
semiminor to semimajor axis of 0.8). The interpretation of our findings is as follows.
If the arrangement of objects in the environment was inddpenof the direction of self-
motion of an observer, the average distances of objectstinemobserver would correspond
to a sphere. It is quite plausible, though, that during sedtion, an observer tends to keep
larger distances to objects in the direction of motion — f@raple, when walking along paths
or between trees in a forest — in order to minimize the danfjeoliisions. However, as can
be seen in Figure 2.1, both circle and ellipse provide a gatichate for a linear increase in
angular velocity for eccentricities up t®°, which renders it difficult to confirm our results
experimentally.
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Figure 2.9: RFPROFILES OF LAYER2 NEURONS AFTER LEARNING WITH CONSTANT
STIMULUS VELOCITY ACROSS THE WHOLE VISUAL FIELD Plotted are the connection
strengths for every layer-2 neuron as a function of the epoading layer-1 neurons. For
constant stimulus velocity across the whole visual field,sdRieé and density do not depend
on the position within the visual field. The slight differ&scin RF shape and RF peak
sensitivity are not systematic and vary during learning.

2.5.3 Minimal Network Model

After training with moving stimuli, the network model dewgled a spatial distribution of RF
centers whose density is in qualitative agreement with giéntortical magnification. The
spatial distribution arises from correlation-based lgagwith a temporal Hebbian learning-
rule and competitive interactions between layer-2 neuxaasnhibitory connections. Heb-
bian learning adapts the RF sizes of the layer-2 neuronsettimulus velocities at the
corresponding eccentricities, while strong inhibitoryrquetition ensures that RFs of distinct
neurons do not overlap substantially.

RF Sizes Increase Linearly with Eccentricity

The linear increase in model RF size is in accordance witkalily increasing RF diame-
ters of retinal, thalamic and primary visual cortical neason monkey (Hubel and Wiesel,
1974; Dow et al., 1981; Croner and Kaplan, 1995; Xu et al.2208low well do RF sizes
in our model correspond to experimentally measured RF Bizeasnonkey primary visual
cortex, RF sizes are approximatdlyl® at 5° eccentricity (Hubel and Wiesel, 1974). If
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Figure 2.10: @NNECTION STRENGTHS FROM LAYERL TO LAYER-2 AFTER LEARNING
WITH STIMULI MOVING AT RANDOM VELOCITIES. (A) Connection strengths from each
layer-1 neuron (source) to every layer-2 neuron (targagrdéarning. (B) RFs of layer-2
neurons, sorted according to the position of their RF cent®nly layer-2 neurons with RF
centers at positions greater or equal than 0 and less thamd%Svish maximum synaptic
connection strength exceeding 0.01 are included (seedBezi.1). The distribution of RFs
is similar to the one obtained in the main simulation (Fig2i).

we assume that one pixel in our model corresponds.8°, RF sizes are approximately
0.4° for a stimulus speed df°/s. If we further assume that the position of this RF corre-
sponds tdh° eccentricity and that an observer moves withl m/s, then the required mean
observer-object-distance would be less than 1 m, accotdigguation 2.12. This seems to
be fairly small for observer-object-distances during-setition. However, model RF size is
determined both by stimulus speed and the width of the teatporrelation window of the
learning rule. Thus, a longer temporal correlation windoauwd lead to larger RF sizes. For
example, Foldiak proposed possible neuronal mechanisntorrelating neuronal activity
between neurons on the order of 100 ms (Foldiak, 1997). elehr, many other factors
have not been considered here, such as the spatial strwdtsirgle objects, or head- and
eye-movements, that could potentially influence overalsiE.
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Figure 2.11: RFPROFILES OF LAYER2 NEURONS AFTER LEARNING WITH STIMULI MOV
ING AT RANDOM VELOCITIES. Plotted are the connection strengths for every layer-2oreu
as a function of the corresponding layer-1 neurons. Theilligion of RFs is similar to the
one obtained in the main simulation (Figure 2.10).

Dependence of Contrast Sensitivity on Eccentricity

In our model, the sum of synaptic connection strengths tt @&uron is restrained. This
is in accordance with experimental results of human conhgassitivity, which is similar at
different eccentricities if visual stimuli are scaled i@esj according to cortical magnification
(Rovamo et al., 1978; Rovamo and Virsu, 1979). In our modElpRak sensitivityd as a
function of RF size- has the formA ri with ¢ theoretically equal to 1 (here: = 0.97).
For two-dimensional RFs we would expecto have a value close to 2, which is the case
for primate retinal ganglion cells (Croner and Kaplan, 1998owever, in neurons of the
LGN of owl-monkeys ¢ ~ 1.3) (Xu et al., 2002) and retinal X- and Y-ganglion cells in
cats ¢ ~ 1.2) (Linsenmeier et al., 1982%,was found to be considerably smaller. A reason
for the differences between our model and these physiadbgieasurements could be that
we estimated the neurons’ center-sensitivities by théarant weights and did not take into
account nonlinearities in the neurons’ response proseainel possible interactions between
neurons.
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Influence of Optical Flow on Spatial Visual Acuity During Learning

Another interesting aspect is the influence of the veloditypical flow fields during learn-
ing on spatial visual resolution and acuity. It has been shtvat spatial visual acuity is
consistent with cortical magnification at different ecceities (Daniel and Whitteridge,
1961; Virsu and Rovamo, 1978; Rovamo and Virsu, 1979). Inroadel, the decline in
spatial resolution with increasing eccentricity is a direansequence of the increasing ve-
locity of optical flow with increasing eccentricity duringlémotion along the direction of
gaze. Hence, our model provides an example of howtéhgporalstructure of the visual
input may determine thgpatialresponse properties of cortical neurons during learning.

Differences in Receptive Field Sizes of Visually Driven Naons

The simulations demonstrate that if the network model imé@ with stimuli of different
velocities at the same eccentricity, the learned RF sizpsrteon the range of stimulus ve-
locities experienced during learning. This has intergstionsequences for the interpretation
of RF sizes of visually driven neurons. In our natural emire@nt, we experience stimuli
at a wide range of retinal velocities, due to self-motionjeabmotion or body-, head- or
eye-movements. Retinal velocities range from static viawdo velocities too high to be
resolved by the visual system. Our model suggests that #eeasia neuron’s RF may be
determined by the spatio-temporal response properties afferent neurons. Evidence for
this hypothesis comes from experiments which show a caiel®etween the upper cutoff
velocity of neurons and their RF size in the primary visuatteo of cats (Leventhal and
Hirsch, 1980) and monkeys (Orban et al., 1986).

2.5.4 Extensions to the Model

The aim of our study was to demonstrate a basic principleguas few ingredients as nec-
essary. Therefore, the current model leaves much spacatEmsons. We discuss possible
extensions and ideas for further investigations.

Initial Network Connectivity

In our network model, we chose an all-to-all connectivityvibeen layer-1 and layer-2 neu-
rons, in order not to make any assumptions about the expetgdification to be learned.
Therefore, the learned representation of the visual fieldyer-2 is not retinotopic. Con-
straining the afferent input region of each layer-2 neurauld provide a raw retinotopic ar-
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rangement of the layer-2 RFs. In addition, distance-depetabnduction delays were shown
to lead to a retinotopic arrangement of RFs during learn8apMm and Eckhorn, 2000). This
would further allow to confine the spatial range of the intoby interactions within layer-2
to a spatial region which is in accordance with the spatiatricted range of cortical lateral
connections (Gilbert and Wiesel, 1979; Stettler et al.,2Z0@nother possibility would be
to apply an anti-Hebbian learning rule to the self-orgatiaraof the inhibitory connections,
which was shown to lead to a sparse distribution of RFs (B&|dL990; Falconbridge et al.,
2006).

Extending the Model to Two Dimensions

Extending the current model under the assumption of ratatisymmetry with respect to the
direction of gaze would lead to radially elongated RFs, witimgations, increasing linearly
with eccentricity. Although we are not aware of data showiagjally elongated RFs in the
primary visual cortex of monkeys, neurons with strikingigngar RFs have been described
in area V4A of the visual cortex of monkeys (Pigarev et alQ20 These RFs have comet-
like shapes, with a preference for radially moving stimitlis possible that these RFs play
a role for the encoding of ocularly fixated objects during-sebtion, and may self-organize
according to a similar principle like the one shown in thisa@ter.

A two-dimensional network model would further allow to extithe variety of flow fields
presented during learning. A next step would be to includati@nal flow fields around the
direction of gaze. These can be treated in a similar way teipanding flow fields used
in the current model. Training the model with pure rotatildit@v fields would lead to RFs
with identical tangential angular extension across thelevisual field. This corresponds to
RF sizes, increasing linearly in tangential directianith increasing eccentricity. This trans-
forms a retinal velocity-distribution, due to pure rotatad flow-fields, to constant cortical
velocities, independent of eccentricity. This is congisteith the two-dimensional mapping
of visual space onto the primary visual cortex, which cangy@aximated mathematically by
a log-polar transformation (e.g., Schwartz, 1977; Reithcend Altmann, 1984), and trans-
forms retinal translations due to expansional and rotafifiow fields to cortical translations
along perpendicular directions.

1For small angular difference&¢, the distance of two points of the same eccentrigity proportional to
rA¢
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Realistic Flow Fields

A limitation of the current model is the simplifying assunapt that the retino-cortical map-
ping is solely determined by linear self-motion along theediion of gaze. This neglects
deviations of the direction of gaze from the direction ofsebtion as well as head and eye
movements (e.g., Lappe et al., 1999). An interesting extearts the current study would be
the recording of movies with a mobile, head-mounted canretimbination with a mobile
eye-tracking device, and the investigation of the velodistribution of the corresponding
flow fields. Additionally, it would be interesting to assesedlences between results from
these scenes and results from a camera mounted, for examma;at’'s head (Betsch et al.,
2004). Systematic changes in the retinal velocity distrdsuacross the visual field, de-
pending on the average velocity of self-motion, the al&twd the eyes with respect to the
ground, and the structure of the natural environment, chald to understand differences in
the cortical magnification factors of different species.

2.5.5 Related Studies
Self-Organization of Hippocampal Receptive Fields

When rats move through their environment, a class of hippged neurons, so callgulace
cells, are activated in a positionally and directionally seleefashion, which allows to esti-
mate the location of the rat (O’Keefe and Dostrovsky, 19%1ghta et al. (2000) found that
the spatial shapes of the place cells’ RFs were initially syatric, but became asymmetric
and directionally selective with increased experiencénefrat in a given environment. They
proposed a model to explain this experience-dependentrasyric shape of hippocampal
place-fields, which relies on a similar principle like thetwmerk model proposed in this
chapter. In contrast to our model, they used a temporallynasgtric Hebbian learning rule,
i.e. weights were strengthened if a presynaptic neuron wtgased before the postsynap-
tic neuron, and synaptic weights were weakened otherwikes,Tfor the situation of a rat
moving repeatedly from one location to another (compar&bbie situation in our model,
where a stimulus moved repeatedly from small eccentricitigvards larger eccentricities),
RFs became skewed, and expanded towards the initial posiithe rat. Furthermore, the
RF centers shifted in the direction opposite to the direcabmovement. Their results dif-
fer from the results in our model, obtained with a temporalynmetric Hebbian learning
rule, where learned RFs have a symmetric shape, with RFigositemaining stable. By
using a temporally asymmetric learning rule, we were nog¢ ablobtain a stable distribution
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of RFs consistent with cortical magnification, due to the taat RFs kept shifting towards
the fovea. It remains to be investigated how the self-ozgion of afferent connections
due to temporally asymmetric learning rules can be staalduring repeated unidirectional
stimulation by additional, biologically plausible mecl&ns.

Temporal Coherence

In order to enable a network model to learn invariant objeptesentations from continuous
spatio-temporal image sequences, Foldiak (1991) pexpaslearning rule similar to the
temporal Hebbian learning rule used in the current studitslariginal formulation, this so-
called trace learning rule is a modified Hebbian learning rulhere the change in synaptic
weight is proportional to the product of the instantaneaesynaptic activity with a running
average of the postsynaptic activity (the memory tracdhoaigh a presynaptic memory
trace was mentioned to lead to similar results (FoIdi&97 Rolls, 2000). The underlying
idea of the trace learning rule is that transformed versiointhe same object often occur
close together in time, a principle calléedmporal coherence The principle of temporal
coherence forms the basis for a number of learning rules amithematical algorithms to
extract invariances from image sequences (e.g. Foldia8]1; Becker, 1993; Wallis, 1996;
Wallis and Rolls, 1997; Becker, 1999; Rolls and Milward, @ORording and Konig, 2001,
Stringer and Rolls, 2002; Wiskott and Sejnowski, 2002). To knowledge, our study is
the first to apply the principle of temporal coherence to #ering from flow-fields and to
investigate the influence of retinal stimulus velocity oa #izes of the learned RFs.



Chapter 3

Spatial Statistics of Local Contour
Elements in Real-World Scenes

3.1 Abstract

It has been proposed that primate cortical magnificatiorviges a scale invariant repre-
sentation of ocularly fixated objects with respect to chanigeviewing distance. If the
visual system makes use of this scale invariant representdhe mechanisms subserving
the grouping of local contour elements into coherent objsbibuld also be scale invariant
across the visual field. Long-range horizontal connectiavfsch preferably link neurons
with like feature preferences, have been suggested to sughsentour grouping in visual
cortical processing. With increasing eccentricity catiRFs become larger and their spatial
frequency preference shifts to lower values. Psychophyseidence exists for an inde-
pendence of the contour grouping mechanisms of the spatid for foveal stimuli. Hence,
scaling fixated objects according to cortical magnificatioald, in principle, resultin a com-
parable grouping performance in the periphery. Neverdslpsychophysical experiments
show that contour integration is impaired for targets at-foreal locations, even if the tar-
gets are scaled according to cortical magnification. In otdébetter understand how the
mechanisms responsible for contour grouping depend onpihigas scale of local, oriented
contour elements, we investigated the spatial statisfi€ador wavelet responses derived
from real-world images with respect to the spatial wavetbraj the wavelets. For the set of
images and wavelets examined we find nearly scale-invac@hmear correlations only for
wavelets of horizontal orientation. For vertical and obkgorientations, collinear correla-
tions drop in coordinates normalized to the wavelengthsiefwwavelets relatively faster for
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long-wavelength wavelets. Assuming that neurons in theg@ny visual cortex adapt their
horizontal connectivity by correlation-based (Hebbiagrhing mechanisms, this would re-
sult in cortically shorter collinear horizontal connectgin the peripheral compared to the
foveal representation for neurons with RF-sizes scaledrdany to cortical magnification.
Our results provide evidence against a uniform mechanisgonfour grouping across all
spatial scales and across the visual field.

3.2 Introduction

In Chapter 2 we have shown that cortical magnification trams$ an inhomogeneousti-
nal velocity distribution due to self-motion along the directiof gaze into constabrtical
velocities across the whole visual field, if the averagerayesment of objects in the environ-
ment corresponds to an ellipsoid with the observer in itsere his has the advantage that
the cortical connectivity for the processing of self-maotican be identical across the whole
visual field. However, in addition to the processing of salftion, one of the most funda-
mental tasks of the visual system is to group local elemengsvisual scene into coherent
objects. Psychophysical, neurophysiological, anatoirceal theoretical studies provide ev-
idence for mechanisms by which this grouping may be accahnedl. However, it is not clear
how these mechanisms depend on the position within the Miglch It has been proposed
that cortical magnification provides a scale invariant espntation of fixated objects with
respect to changes in viewing distance (Schwartz, 198a@b&etk and Altmann, 1984). In
order to make effective use of this cortical scale invari@presentation, the contour group-
ing mechanisms should also be scale invariant across thalVisld.

In the following we will review experimental and theoretidandings about possible
mechanisms supporting contour grouping on early stagesoélprocessing.

3.2.1 Contour Grouping in Human Perception

The human visual system exploits a great number of groupies @t multiple levels of
processing which can be based on spatial and temporal piepw®ithin a visual scene. A
prominent set of phenomenological rules was describedd@tstalt psychologists (Koffka,
1935; Wertheimer, 1923). Some of these so caestalt Rulegproximity, similarity, and
good continuation) are illustrated in Figure 3.1.

These empirical principles were later refined in psychoma®xperiments (e.g. Field
et al., 1993; Polat and Sagi, 1993, 1994; Mcllhagga and Mull®96; Dakin and Hess,
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Figure 3.1: GESTALT RULES AS AN EXAMPLE OF BASIC GROUPING RULES IN HUMAN
PERCEPTION (A) Grouping by proximity. There is a tendency to perceilengents near
to each other as belonging to the same object. (B) Groupingjrhjarity. Local elements
are perceived to belong together if they are similar. (C)upiog by good continuation.
Local elements are grouped together if they form a smoothecufhe Gestalt rule of good
continuation plays an important role in contour integmatio

1998). Field et al. (1993) carried out a series of seminadarpents in which human subjects
had to identify a continuous path of Gabor elements with Isingrientations, which were
embedded in a background of randomly oriented Gabor elesnetturned out that the
relative orientation of neighboring Gabor elements withipath had a large impact on the
detection performance. Performance degraded with incrgalifference in orientation of
successive Gabor elements. These results have been foethbly the term association field
(e.g., Field et al., 1993; Hess and Dakin, 1999), which gtatively describes the tendency
of local contour elements to be perceptually bound togedisea function of their relative
position, orientation, and spatial frequency.

3.2.2 Spatial Statistics of Contours in Real-World Scenes

If the visual grouping mechanisms arose to subserve theepgon of visual objects, they
should be well adapted to the statistical co-occurence gég@nd contours in real-world
scenes. The idea that the visual system is structured in atavpyovide an efficient rep-
resentation of the incoming signals goes back to Attnea984)Land Barlow (1961), who
proposed that information theory could provide a link begwéhe statistics of the environ-
ment and neural responses through the concept of efficiehbhgo Brunswik and Kamiya
(1953) suggested that there should be a quantitative sakdtip between the basic Gestalt
principles and the statistics of the visual world.
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Real-world images have characteristic statistical prigethat distinguish them from
random noise distributions (e.g., Field, 1987; Rudermath Bialek, 1994; Kruger, 1998;
Zetzsche and Rohrbein, 2001). For example, Field (198@yvel that the spatial power-
spectrum of the intensity-values of real-world images dases according to a power law
for nearly 3 octaves of scaling and therefore is scale-iaw&r Several studies have demon-
strated that the statistics of local contour elements ihweesld scenes correspond to the
Gestalt principle of collinearity (Krtiger, 1998), or magenerakocircularity (Sigman et al.,
2001; Geisler et al., 2001), and can predict human contaming performance (Geisler
etal., 2001).

3.2.3 Neurophysiology and Anatomy

The response properties of neurons on early stages of \psoe¢ssing are commonly clas-
sified by their classical receptive field (cCRF) (Hubel and $#le1962). In the primary visual
cortex of cats and monkeys most neurons respond selectvélyrs of specific orientations
in their cRF. However, physiological studies have shown tha response of a neuron to a
stimulus within its cRF can be modulated by stimuli outside tRF, a phenomenon called
contextual modulatiofe.g., Maffei and Fiorentini, 1976; von der Heydt et al., 498ilbert
and Wiesel, 1990; Gilbert, 1992; Knierim and van Essen, 1B@padia et al., 1995; Sillito
et al., 1995). These experiments demonstrate that thenmsspd a neuron to an optimally
oriented stimulus in its cRF can, for example, be enhancecbbiynearly arranged stimuli
outside the cRF, while the response can be either enhanciohimished by other geometri-
cal arrangements of contextual stimuli.

It has been suggested that these contextual modulatioeglaee mediated by long-range
horizontal connections in the primary visual cortex of catsl monkeys, which were shown
to preferentially link neurons with similar orientationgberences up to cortical distances of
a few millimeters (monkey: Sincich and Blasdel, 2001; Anigel et al., 2002; Stettler et al.,
2002, cat: Ts'o et al., 1986; Schmidt et al., 1997; Gilbed ®esel, 1989, 1990, tree shrew:
Bosking et al., 1997), or by feedback from higher visual arag. Angelucci et al., 2002).
Although it has been shown in cats and monkeys that feedbackections from higher
cortical areas can modulate the responses of V1 neuron@vtigand Malpeli, 1991; Salin
and Bullier, 1995; Hupé et al., 1998, 2001), it is not cléanéy preferably connect neurons
with similar orientation preferences (Angelucci et al.02Dor provide orientation-unspecific
feedback (Stettler et al., 2002).
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3.2.4 Ontogenetic Development of Grouping Mechanisms

There is experimental evidence that contour-grouping rmeicms develop after birth in an
activity-dependent fashion. Children younger than 9 memimnot make use of the basic
Gestalt principles (Spelke et al., 1993). Similarly, in rkeys it has been demonstrated that
contour grouping develops several months after birth (Bésrand Bassin, 2003). In humans,
the patchiness of the long-range lateral connections, wisitypical in adults, develops at
about eight weeks after eye opening (Burkhalter et al., 18@8z and Callaway, 1992).
Several studies have shown that the ordered formation gftange horizontal connections
happens in an input-dependent fashion in the primary visadakx of cats (Callaway and
Katz, 1990, 1991; Lowel and Singer, 1992; Kasamatsu €it@08; Trachtenberg and Stryker,
2001) and ferrets (Ruthazer and Stryker, 1996). For ingtgkittens raised without patterned
visual experience in one eye, as a consequence of sutuerigltbf one eye, develop non-
specific lateral interactions for that eye (Kasamatsu etl@P8). If inputs from both eyes
are decorrelated during development by artificially indistrabism, lateral connectivity
develops mainly between cell groups activated by the saméléyvel and Singer, 1992).

Taken together, these experimental findings suggest thahital development of cor-
tical circuits and their later refinement depends criticalh the spatio-temporal structure of
the visual input, and that certain statistical regulasitrethe visual environment are reflected
in the cortical connectivity.

3.2.5 Models of Contour Grouping

In model studies it has been shown that intra-areal hor&ardnnections within the pri-
mary visual cortex as well as feedback connections from dnigiisual areas can support
the grouping of contour elements, consistent with the b&astalt principles (e.g., intra-
areal: Eckhorn et al., 1990; Ostkamp, 1996; Yen and Finlg981Li, 1999; Hansen et al.,
2001, feedback: Grossberg et al., 1997; Neumann and Sep, H@nsen et al., 2001). The
connectivity in these models is fixed and determined in adeabased on theoretical or bio-
logically motivated considerations. However, it has beemdnstrated that long-range hori-
zontal connections, linking neurons with similar featurefprences, can be learned through
input-driven self-organization with artificial or real-wd scenes through Hebbian learning
mechanisms (Prodohl et al., 2003; Grossberg and Willian3@01; Choe and Miikkulainen,
2004) and sparse coding approaches (Hoyer and HyvarigéerR) 2
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3.2.6 Dependence of Contour Grouping Mechanisms on Retin&ccen-
tricity

Relatively little is known about how the mechanisms sulsgreontour grouping depend on
the neurons’ preferred spatial frequencies and cRF-positivithin the visual field. Several
psychophysical studies have demonstrated that collireditation in the fovea is indepen-
dent of the spatial scale of the contour elements (Polat agd $993; Hess and Dakin, 1997,
Dakin and Hess, 1998; Woods et al., 2002).

With increasing eccentricity, cRFs of neurons in the priynasual cortex become larger
and their peak spatial frequency preference shifts to leakres (e.g., De Valois et al., 1982).
The scale independence of perceptual collinear faciiteiti the fovea suggests that collinear
facilitation performance could be comparable in the pegighif stimuli are scaled according
to cortical magnification. However, performance decreasesany subjects when stimuli
are presented at nonfoveal locations (e.g., Williams angdsH&998; Zenger-Landolt and
Koch, 1996; Hess and Dakin, 1997; Shani and Sagi, 2005). XimgHeeger (2000) found
that surround suppression is markedly stronger and lesgtation specific in the periphery
in comparison to the fovea, while the effect of surroundlitation is diminished or even
absent. Importantly, this could not be accounted for by thitical magnification factor.
In psychophysical experiments Shani and Sagi (2005) detrated reduced facilitation for
collinearly arranged Gabor wavelets at eccentricitiesraalisas1° — 2°. Facilitation did
not even increase if the stimuli were scaled according toctircal magnification factor.
However, facilitation performance could be increased waiention was directed from the
foveato the peripheral stimulus location. Similarly, Gjoet al. (2004) found weak collinear
facilitation for peripheral Gabor targets up to eccentigs of 6°, using a temporal, but not
a spatial, two-alternative forced-choice paradigm. Thietdindings underline the possible
role of attention in modulating collinear facilitation.

Neurophysiological and anatomical studies in cats and mysmkemonstrate that long-
range lateral connections in primary visual cortex are Betricted to the foveal represen-
tation, but extend extra-foveally up to retinal eccentigs of 10°. However, no systematic
changes in lateral connectivity with eccentricity haverbesported (monkey: Sincich and
Blasdel, 2001; Angelucci et al., 2002; Stettler et al., 2064: Ts'o et al., 1986; Schmidt
et al., 1997; Gilbert and Wiesel, 1989, 1990, tree shrewkBaset al., 1997).

The above findings suggest that the lateral connectivitysstving the grouping of local
contour elements, could be identical in the fovea and in #rgppery; with other factors,
like attentional mechanisms, modulating the effect ofinelr facilitation (Ito and Gilbert,
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1999; Freeman et al., 2001; Giorgi et al., 2004; Shani and, 38§5). However, the lack,
or at least strong decrease, of collinear facilitation fon+ioveal targets could be due to a
different pattern of lateral connectivity in the fovea caangd to the periphery.

3.2.7 Aim of the Current Study

The size and the spatial frequency preference of primarycabrcRFs change with ocular
eccentricity. We wanted to know how the statistics of loca¢mted contour elements in
real-world scenes depend on the spatial filter propertiesodical neurons at different ec-
centricities. Therefore, we examined the statistics of @ atavelet responses in real-world
scenes with regard to wavelets of different orientatiorts sratial scales.

To our knowledge, no data exists about the statistics ofl lo@atour elements in real-
world scenes at different spatial scales. In previous sgjdiriented edge elements have
been extracted using fixed-scale spatial filters. Krlig8®8) used oriented Gabor filters of a
fixed scale to extract local contour elements. Sigman e2@0X) employed quadrature pairs
of fixed-scale steerable filters as a measure of the locattedeenergy. Geisler et al. (2001)
used a two-stage filtering process. In a first step, edgeitotsatvere identified as the zero-
crossing pixels in the response of a nonoriented log-Galmstion. In a second step, local
orientation energy was measured using quadrature pairsesfted log-Gabor filters. They
note that a preliminary analysis at a 2 octaves higher dsai#de yielded similar results, but
they show no quantitative comparison.

3.3 Methods

3.3.1 Real-World Scenes

Real-world scenes were taken from a database of freelyadlaiktill images (van Hateren
and Van der Schaaf, 1998). The image set used consisted 0fil&€k and white pictures,
each 1536 pixek 1024 pixel in size, with an amplitude resolution of 12 bitsda@n angular
resolution of approximately 1 min of arc per piXeln order to compare the statistics of local
contour elements for different types of environments, wegarized a subset of the images
according to the categorigdants(N = 255), buildings(n = 96), andforest(N = 112).
Figure 3.2 shows typical images from these different hamasen semantical categories.

visit http://hlab.phys.rug.nl/imlib/index.html for merinformation.
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Figure 3.2: 3MPLE IMAGES FROM A DATABASE OF 1800 DIFFERENT IMAGES Shown
are images from 3 hand-chosen categories and an uncaegamage: (A) close-up pho-
tographs of plants, (B) buildings, (C) forest, and (D) uegatized image. For better visibil-
ity, the logarithm of the image intensities is shown.
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3.3.2 Extraction of Local Contour Elements
Gabor Wavelets as Spatial Filters

We used Gabor wavelets (Gabor, 1946) of constant spat@hércy bandwidth as a linear
model for the spatial transfer function of cortical simp#dls. This is consistent with neuro-
physiological findings (Marcelja, 1980; Pollen and Roni®81; De Valois et al., 1982; Ku-
likowski and Vidyasagar, 1986; Jones and Palmer, 1987; Da@s/and De Valois, 1988) and
theoretical considerations, which demonstrate that ajfters, similar to Gabor wavelets,
can be learned in an unsupervised fashion from the statisfieatural images by apply-
ing constraints either concerning the sparseness of thalnepresentation (Olshausen and
Field, 1996), or the independence of the resulting filtersl(Bnd Sejnowski, 1997; van
Hateren and Ruderman, 1998).

A Gabor wavelet is a pixel-wise product of a Gaussian withanplwave and can be
parametrized by 5 parametets; o,, 0, A, ¢, anda. A is the amplitude of the wavelet,
ando, characterize the Gaussian envelope function parallel @noepdicular to the wave
vector of the plane wave\ and ¢ are the wavelength and spatial phase of the plane wave,
anda is the orientation of the wavelet.

2 2
G(x,y, N\, 04,0y, 0, 0) = Aexp (— r _JY ) cos <2—7Ty' — gb) (3.1)

202 207 A
with
¥ = xcosa+ysina (3.2)
and
Yy =ycosa — wsina. (3.3)

For our analysis we used Gabor wavelets of 4 different wangthes (5, 10, 20, and 40
pixels, corresponding to 12, 6, 3, and 1.5 cycles per deguae pf four different orientations
(0°, 45°, 90°, 135°), which resulted in a total of 16 different Gabor wavelet® ehsure a
constant spatial frequency bandwidth for all waveleswas chosen proportional ta

oy = g/\. (3.4)

In order to obtain a narrow orientation characteristic far Gabor wavelets, the Gaussian
envelope function was chosen to be oriented, with= 1.50,, i.e. stretched perpendicular
to the wave vector of the wave function. The wavelets hadeadfifour times the wavelet’s
wavelength in both x- and y-directions. Finally, we subtealcthe mean of every Gabor
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Figure 3.3: XAMPLES OF GABOR WAVELETS USED TO EXTRACT LOCAL CONTOUR EL
EMENTS. Shown are eight Gabor wavelets of orientatiSnwith four different wavelengths
of the wave function (5, 10, 20, 40 px, respectively), with aefunction of phase® (top
row) and of phas@0° (bottom row).

wavelet and normalized the sum of the absolute values to dder o obtain identical maxi-
mum responses for the wavelets of all wavelengths. Fig@sl®ws eight example wavelets
of orientation0° for 4 different wavelengths and two different spatial plsase

Spatial Complex Cell Filters

Contour elements were extracted by convoluting each imatieanzabor wavelet of a given
orientation, wavelength and spatial phase. To mimick ttaiabresponse characteristic of
cortical complex cells, the squares of the convolution a¥ @abor wavelets with the same
orientation and wavelength, but shifted &y in phase (Adelson and Bergen, 1985; Spitzer
and Hochstein, 1988), were added:

Ri(\ @) = |G\, 04,04, 0,0) % I+ |G(N, 04, 0y, 0, g) « 2, (3.5)

wherex is the convolution operator. To reduce the amount of necgssanputation,
we determined the convolution only fab0 x 150 different positions with horizontal and
vertical distances of 4 pixels each, corresponding to agemwagion of~ 10°.
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Normalization of Wavelet Responses

In order to sharpen the orientation characteristics of thgelet responses, a thresholding
and normalization procedure was applied to the filtered esagSimilar approaches were
used in comparable studies (Kruiger, 1998; Sigman et ab12Geisler et al., 2001). In a

first step, we applied a threshaldn order to discard small wavelet responses:

Ro(M\, ) = max {R;(\, ) — 6,0} . (3.6)

In a second step, we normalized the total response streagdvéry single pixel in the
image by dividing the wavelet response for a single oriémtat through the sum of the
wavelet responses of all orientations of the same wavétengt

, Ro(z,y, A\, 1)
Rs(x,y, \,i) = : 3.7

The constant C had a small value in comparison to the valu&s,and ensured that the

denominator was alwayg 0. This normalized the responsg&s to the interval0, 1], where

1 corresponds to the situation of a single wavelet respoesgy k- 0 with all others being O.
Finally, we applied a second threshold & 0.5) to the normalized values, and discarded

all wavelet responses which had a value less than

R(‘r?y7)‘7i) = max {R?)('rvyu)\?i) _9270}' (38)

Although the main purpose of the thresholding procedurd momputational nature, it
is similar to the operations performed by cortical neuroRstesholding corresponds to the
firing thresholds of cortical neurons and the normalizai®similar to shunting inhibition,
which has a divisive effect on the neurons’ membrane paknfe.g., Borg-Graham et al.,
1996, 1998).

Figure 3.4 shows the resulting preprocessed wavelet reggofor the four different
wavelet wavelengths for an example image.

3.3.3 Data Analysis

In the current study we were mainly interested in the secaodércstatistics of collinearly
arranged contour elements of the same spatial scale. TDinerefe computed the correla-
tions between Gabor wavelets of the same orientati@nd the same wavelength The
autocorrelation function of a single filtered image computed according to
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C %=20px

Figure 3.4: NORMALIZED RESPONSES FOR WAVELETS OF DIFFERENT SPATIAL SCAB.
Shown are the normalized wavelet-responses for the fotardiit filter-sizes: (AN = 5 px,
(B) A = 10 px, (C) A = 20 px, and (D)X = 40 px. The different colors correspond to the
four different orientation$®° (red),45° (yellow), 90° (blue), andl35° (green).
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2 ey (Blz,y) — RB)(R(x + Az, y + Ay) — R)

1
Zx,y 150-150

The termzw m is the overlap of the shifted image-patches and compensates
duced correlation-values for large values(dfz, Ay) due to the finite patch-size. Correla-
tions were computed for values dfx and Ay in the range from-160 px to 160 px.

The mean autocorrelation function for a given Gabor waye@lstraged over all images,
was computed according to

N
1
C(Az, Ay) =+ > Ci(Az, Ay)
=1

To compare the correlation functions for filters of differenientations and wavelengths,
the autocorrelation functions were normalized such that

C(0,0) = 1. (3.9)

3.4 Results

3.4.1 Average Normalized Wavelet Responses

Figure 3.5 shows the normalized wavelet responses for tloffeBent Gabor wavelets, aver-
aged across all image locations and images. The averagmsespfor wavelets of horizontal
and vertical orientations are larger than the responsesduelets of oblique orientations for
all wavelengths examined. Furthermore, wavelet respaoimeagth varies in a qualitatively
similar fashion with orientation for wavelets of differemavelengths, with slightly more
pronounced differences for wavelets of large wavelengiigure 3.5B shows the response
strength, averaged across all wavelengths, in dependenibe @rientation of the wavelets.

However, the results depend on the stimulus set analyzeshlyifa subset of the images
which contain buildings is considered, one obtains theribigion of response strengths
shown in Figure 3.6. The difference between the responsegitis for wavelets of cardinal
and oblique orientation is even more pronounced than focaise of pooling over all images.
This seems to be mainly caused by the edges of the buildinigighwin the stimulus set
examined, are often aligned parallel to the horizontal entértical axis.

In contrast, a subset of images which mainly consists ofeclgs views of plants leads
to similar response strengths for wavelets of all orieotadi(Figure 3.7), with slightly larger
responses for vertically oriented wavelets.
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Figure 3.5: AAERAGE NORMALIZED WAVELET RESPONSES FOR WAVELETS OF DIFFER
ENT WAVELENGTHS AND ORIENTATIONS COMPUTED FROM ALL 1800IMAGES. (A) De-
pendence of the average normalized wavelet responsesaemtairon and wavelength, and
(B) averaged across all wavelengths. Note the larger regsofor wavelets of horizontal
and vertical orientation and the similar responses for Vedseof the same orientation but
different wavelengths.
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Figure 3.6: AAERAGE NORMALIZED WAVELET RESPONSES FOR WAVELETS OF DIFFER
ENT WAVELENGTHS AND ORIENTATIONS COMPUTED FROM IMAGES WITH BUILDINGS
Compare Figure 3.5.
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Figure 3.7: AAERAGE NORMALIZED WAVELET RESPONSES FOR WAVELETS OF DIFFER
ENT WAVELENGTHS AND ORIENTATIONS COMPUTED FROM IMAGES WITH CLOSEUP
PHOTOGRAPHS OF PLANTSCompare Figure 3.5.

For images depicting trees and forest-scenes, resporsgirs highest for wavelets of
vertical orientation (Figure 3.8), most probably causedh®/dominant trunks of the trees.
Interestingly, for the smallest wavelets used, there arglai responses for wavelets of all
orientations. This could be due to the fact that the smalicstires in the forest scenes are
similar to the above mentioned class of plants in close-apvi

Taken together, differences in the average response g wavelets of different
orientations depend strongly on the image set analyzed. r€ults indicate further that
the relative response strengths for wavelets of differel@ntations depend only weakly on
the wavelength of the wavelets. Thus, for the range of wangthes examined, the relative
contribution of wavelet responses of different orientasies nearly independent of the spatial
scale of the wavelets. It is, however, important to note thatwavelength of the largest
wavelets used (40 px) corresponds to a visual angle of lessdhe degree.

3.4.2 Two-Dimensional Autocorrelation Matrices

Figure 3.9 shows the two-dimensional autocorrelation itedrfor wavelets of four different
orientations and four different wavelengths. The correfaiprofile between wavelets of
the same orientation is elongated along the collinear timec Collinear correlations are
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Figure 3.8: AERAGE NORMALIZED WAVELET RESPONSES FOR WAVELETS OF DIFFERIT
WAVELENGTHS AND ORIENTATIONS, COMPUTED FROM IMAGES WITH FORESTSCENES
Compare Figure 3.5.

more far-reaching for wavelets of cardinal orientations@mparison to wavelets of oblique
orientations. Furthermore, correlation declines moreiewith distance for wavelets of
short wavelengths in comparison to wavelets of the sameatatien but longer wavelength.

3.4.3 Collinear Correlations

Figures 3.10A,B show the distance-dependent collineaeltadion strengths for the wavelets
of horizontal orientation. One can see that for any givetagice of wavelets correlation is
stronger the larger the wavelength of the correspondingeless.

A better understanding of the decline in correlation sttbng achieved by normalizing
the distance of the wavelets to their wavelength. This iswhio Figures 3.10C,D. Correla-
tion strengths for pairs of wavelets of different waveldrsggare similar at the same relative
distance. Thus, for wavelets of horizontal orientationljicear correlation is nearly scale
invariant for the wavelets of different wavelengths.

However, this is only the case for the wavelets of horizoot&ntation, but not for the
three other orientations examined (Figure 3.11). Theredsrzeral trend for correlations
to decline more steeply with increasing distance for wasehath larger wavelengths. It is
further notable that collinear correlations decline faste wavelengths of oblique orienta-
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Figure 3.9: WO-DIMENSIONAL AUTOCORRELATION MATRICES FOR WAVELETS OF DIF
FERENT WAVELENGTHS AND ORIENTATIONS The contours indicate correlation strengths
of 0.4,0.2, 0.1, and 0.05, respectively. From left to rigbft; 45°, 90°, 135°. From top to
bottom: A = 5 px, A = 10 px, A = 20 px, and\ = 40 px. Note the elongation of the cor-
relation profiles along the collinear direction with respecthe orientation of the wavelets.
The correlation profiles of wavelets of the same wavelengttdifferent orientations are in
general not rotation invariant. Correlations along thdigear direction as well as in the per-

pendicular direction are more long-range for wavelets agfzomtal and vertical orientations
in comparison to wavelets of oblique orientations.
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Figure 3.10: @LLINEAR CORRELATION FOR WAVELETS OF HORIZONTAL ORIENTATON
(0°). Normalized Correlation (A) in linear coordinates, (B)logarithmic coordinates, (C)
in linear coordinates, with distances normalized to theeletg’ wavelengths, and (D) like
in (C), but in logarithmic coordinates. Collinear corrétet decreases more steeply with
distance for wavelets of short wavelengths in comparisowdeelets of long wavelengths

(A-B). However, if distances are normalized with respectht® wavelets’ wavelengths, the

decline in correlation with increasing distance becomeslar for wavelets of different
wavelengths (C-D).
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Figure 3.11: ®RRELATION STRENGTH AT DISTANCES NORMALIZED TO THE WAVELES®'
WAVELENGTHS. (A) 0°, (B) 45°, (C) 90°, and (D)135°. Note the steeper decline in corre-
lation with increasing distance for wavelets of large wawnegjths compared to wavelets of
shorter wavelengths.

tions in comparison to correlations for wavelets of the saraeelengths, oriented along the
cardinal orientations.
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Figure 3.12: AERAGE WAVELET RESPONSES FOR THE CASE OF SHUFFLED IMAGEShe
average responses for wavelets of the same wavelength diepend on the orientation of
the wavelets.

3.4.4 Shuffled Images

In order to rule out the possibility that the increased wavetsponses for horizontally and
vertically oriented wavelets and the increased correfasitong the collinear direction are
trivially determined by the shape of the spatial filters yseel computed the average wavelet
responses and the two-dimensional autocorrelation nestfiar the wavelet responses ob-
tained from a set of 1000 images, with the intensity valuethefimages shuffled across
space. The average wavelet response strengths are showgune B.12. As one can see,
response strengths are similar for the different wavelenvations. Thus, the strong wavelet
responses for horizontal and vertical contours in realldvecenes are a consequence of the
spatial structure of the scenes, and not artifacts of thpesbthe spatial filters used.

The two-dimensional autocorrelation matrices for the vietveesponses obtained from
the set of shuffled images are shown in Figure 3.13. The awdaton profiles merely
resemble the oriented Gaussian envelope functions of theleta. Figure 3.14 shows the
correlation along the collinear orientation for the filtefsall orientations and wavelengths.
Correlation is essentially zero for relative differencesager than two times the wavelength
of the wavelets. Wavelets of different wavelengths disgegle-invariant behavior, as ex-
pected from the scale invariance of the wavelets. Furthesmitiere is no difference in
collinear correlation for wavelets of different orientais.
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Figure 3.13: WO-DIMENSIONAL AUTOCORRELATION MATRICES FOR SHUFFLED IM
AGES. The contours indicate correlation strengths of 0.4,0.2, @nd 0.05, respectively.

From left to right:0°, 45°, 90°, 135°. From top to bottomA = 5 px, A = 10 px, A = 20 pX,
and\ = 40 px.
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Figure 3.14: ©LLINEAR CORRELATIONS FOR SHUFFLED IMAGES. (A) 0°, (B) 45°,

(C) 90°, and (D)135°. For shuffled images, collinear correlations are scale-ratation-
invariant. Compare Figure 3.11.
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Figure 3.15: WO-DIMENSIONAL AUTOCORRELATION MATRICES FOR NON
NORMALIZED WAVELET RESPONSES The contours indicate correlation-levels of
0.4,0.2,0.1, and 0.05, respectively. From left to right:45°, 90°, 135°. From top to bottom:

A =5px, A =10 px, A = 20 px, and\ = 40 px.

3.4.5 Non-Normalized Wavelet Responses

In order to estimate the influence of the thresholding andnadization procedure on the
correlations, we computed the autocorrelation functiamdlie non-normalized wavelet re-
sponsed?;. This is shown in Figure 3.15. There is an increased coragiah the collinear
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Figure 3.16: OLLINEAR CORRELATIONS OF THE NONNORMALIZED WAVELET RE-
SPONSES Compare Figure 3.11.

direction, but the effect is generally not as clearly visibk for the normalized wavelet re-
sponses (Figure 3.9).

However, as can be seen in Figure 3.16, collinear correlaiiepend in a similar way on
the orientation and wavelength of the wavelets as for thenabzed wavelet responses, and
decrease more steeply with increasing distance for wassefdarge wavelengths.
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3.5 Discussion

The spatial response properties of neurons in the primayaicortex of cats and monkeys
can be described by Gabor wavelets of different orientatiamd wavelengths for cortical
simple cells, or, in the case of cortical complex cells, a®alinear superposition thereof
(Adelson and Bergen, 1985). We investigated how the staiet Gabor wavelet responses,
extracted from real-world images, change with both thertaton and the spatial scale of
the wavelets.

3.5.1 Summary of Results

We have shown that the average normalized strength of wanesponses depends both on
their orientation and the semantical content of the realdvecenes, but that the relative
response strengths for different wavelet orientations dbqualitatively change with the
scale of the wavelets used. However, differences betweslnedly and obliquely oriented
wavelets are slightly more pronounced for wavelets of lavgeelengths.

Collinear correlations between wavelets of the same atent are in general not scale
invariant. In retinal coordinates, correlations are mayeg-range for wavelets of larger
wavelengths. However, transformed to distances, norewhlizy the wavelength of the
wavelets, correlations are more short-range for wavelétgarger wavelengths. Further-
more, collinear correlations are not invariant with reggeche orientations of the wavelets.
Collinear correlations between wavelets of oblique oaéinhs are more short-range than
collinear correlations between wavelets of cardinal dagans of the same wavelength.

3.5.2 Anisotropy of Normalized Wavelet Responses

We found an anisotropy in the averaged normalized wavekgtonses dependent on the
orientation of local contour elements and on the semansicahe-category analyzed. The
orientation-anisotropy is consistent with an effect dissa in psychophysical and neuro-
physiological measurements as tigique effect In humans and animals, the perception
of horizontally and vertically oriented contours is supetio the perception of contours of
oblique orientations. This has been documented in psycfsigdl measurements of con-
trast sensitivity, orientation discrimination and rectgm rate (e.g., Appelle, 1972; Heeley
etal., 1997; Krebs et al., 2000). A possible neural sulestaatthe oblique effect could be an
overrepresentation of neurons selective for horizontdlhaartical contours, which has been
demonstrated in single cell recordings in cats (e.g., Ordoath Kennedy, 1981; Leventhal
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and Hirsch, 1980; Bauer et al., 1990; Li et al., 2003), mosKeyg., Mansfield and Ronner,
1978) and ferrets (Coppola et al., 1998b). In optical imggitudies in cats it has further been
shown that horizontally and vertically oriented stimulo&e stronger responses in compar-
ison to obliquely oriented stimuli (Dragoi et al., 2001).rieally and horizontally oriented
stimuli cause larger visually evoked potentials in comguamito obliquely oriented stimuli
in cats (Bonds, 1982) and monkeys (Mansfield and Ronner,; 1B3t&ds et al., 1987), and
result in faster and larger evoked potentials in humansk#@we et al., 2000). An anisotropy
with respect to horizontal and vertical orientations haodleen demonstrated as early as
in retinal ganglion cells, whose dendrites are preferdgte@rranged along the vertical and
horizontal meridian (Wassle et al., 1975).

Less is known about the dependence of the oblique effect ersphtial scale of ori-
ented stimuli and their position within the visual field. letmacaque visual cortex there
is a predominance of neurons which respond to high spaéglincies and prefer cardinal
orientations, while there is no such effect for neurons Wtk spatial frequency preference
(De Valois etal., 1982; Li et al., 2003). Another study fouhdt neurons selective for middle
to low spatial frequencies even prefer oblique orientatifdelson et al., 1984). Evidence
exists that the overrepresentation of contours of diffeoeientations depends on the position
within the visual field: While in the striate cortex of catsrizontal and vertical orientations
are overrepresented in the central visual field, in the perpthere is an overrepresentation
of radial orientations in the upper layers and of concerdgrientations in the lower layers
(Bauer et al., 1990).

The oblique effect may have its cause in the statistical gntggs of natural scenes. The
predominance of contours oriented along the cardinal ax@srobust phenomenon in the
statistics of real-world scenes (e.g., Coppola et al., 2898%8&ncock et al., 1992; Van der
Schaaf and Hateren, 1996; Keil and Cristobal, 2000; Betseth., 2004). The bias towards
horizontal and vertical contour orientations is most pldipalue to the horizontal surface
of the earth on the one hand, and gravity on the other hand;hwddauses plants to develop
supports parallel to the direction of the gravity vector &mdizontal surfaces to effectively
absorb sunlight (Coppola et al., 1998a). However, the diadine relations between cardinal
and oblique orientations depend on the semantical contéiné @xamined real-world scenes
(e.g., Coppola et al., 1998a; Keil and Cristobal, 2000)r &@ample, natural scenes with
plants and no man-made objects show a more uniform disioivatf orientations than do
scenes with man-made objects (Coppola et al., 1998a), visicbnsistent with our results
(Figure 3.7).
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3.5.3 Scale Invariance of Contour Integration

We have demonstrated that correlation strength along tisecdxorientation declines faster
with distance for wavelets of large wavelengths comparasiaeelets of short wavelengths.
If collinear horizontal connections self-organize acaogdo the spatial statistics of the nat-
ural environment, our results imply that the effect of aodlar facilitation should be weaker
between neurons with a preference for low spatial frequeencompared to facilitation be-
tween neurons at the same relative distance with a prefefentigh spatial frequencies.

However, several psychophysical studies have demondtiatendependence of collinear
facilitation on the spatial scale of the targets, at leagt@foveal representation of the visual
field (Polat and Sagi, 1993; Hess and Dakin, 1997; Woods,&2@02). Our results cannot
account for the independence of collinear facilitation pat&l scale in the fovea.

A possible reason for this discrepancy could be the spedifips of the spatial filters
used in the current study, or the particular choice of thé-weald scenes, manually se-
lected by a human observer. Another possibility for thisdépancy could be that neurons
with cRFs of large wavelengths have a larger cRF overlap énftrea than neurons with
cRFs of small wavelengths, which would result in an effesivstronger lateral coupling
and a better signal-to-noise ratio between neurons of laageelengths. However, we are
not aware of experimental data subserving this hypothésisthermore, it is possible that
learning of long-range horizontal connections is influehbg scale-combination processes
between neurons of different spatial frequency preferendehas been demonstrated that
the detection of straight paths of Gabor elements is passNen for paths composed of al-
ternating Gabor elements of different spatial frequenfoeslifferences in spatial frequency
up to~ 1.3 octaves (Dakin and Hess, 1998). Thus, the investigatiopatia correlations
between wavelet-responses of different spatial scalesdimia valuable extension of the
current study.

3.5.4 Dependence of Spatial Scene Statistics on Eccenttyci

With increasing eccentricity, the peak spatial frequen@fgrence of neurons in the primary
visual cortex shifts to lower values (De Valois et al., 198&hile at the same time corti-

cal magnification declines (e.g., Dow et al., 1981; Van Esgeal., 1984; Slotnick et al.,

2001). If collinear horizontal connections self-organgmeording to the spatial statistics of
the natural environment, our results imply that the lendtthese connections is not scale
invariant with respect to the spatial filter properties oé ttorresponding RFs at different
eccentricities: Lateral connections between neurons svithll RFs in the fovea should be



68 Chapter 3. Spatial Statistics of Local Contour Elementsn Real-World Scenes

longer in range in cortical coordinates than lateral cotines between neurons with larger
RFs in the periphery, scaled in accordance with corticalmfagtion. This could lead to a
decreased grouping performance for collinearly arrandechents in the periphery, even if
stimuli are scaled according to cortical magnification. l@er, our results can not explain
the nearly absent collinear facilitation even for stimulisanall retinal eccentricities (e.g.,
Zenger-Landolt and Koch, 1996; Shani and Sagi, 2005).

The extrapolation of our results to the image statisticsfégrént eccentricities depends
on the assumption that the spatio-temporal statistics ®fettvironment, as projected on
the retina, is constant across the whole visual field. Thesyever, is not strictly the case
(Reinagel and Zador, 1999; Krieger et al., 2000). Visionnsaative process. Nearly all
animals with visual systems actively control their gazewtiteir eyes, head, or body move-
ments. In fact, this active gaze control is the most impdnaechanism in order to direct
attention to interesting parts of visual scenes. On averaigl spatial frequency content,
edge density, and contrast are highest at the point of fixdfitannan et al., 1996, 1997;
Reinagel and Zador, 1999). Furthermore, spatial corgglatiat the center of gaze are on
average lower in comparison to the correlations across th@ewisual field. Thus, it is
possible that the spatial statistics of peripheral corgaureal-world scenes differ from the
spatial statistics in the fovea under natural viewing cbads.

Another reason for the psychophysically decreased cadalfifigcilitation with increas-
ing eccentricity could be a change in the temporal respohageacteristics of neurons with
increasing eccentricity. With increasing eccentricihe tatio of parvocellular to magnocel-
lular inputs from the LGN to the primary visual cortex deges from 35:1 in the fovea to
5:1 at15° eccentricity (Azzopardi et al., 1999). If contour integoatis mainly accomplished
by parvocellular neurons mediating fine, slowly changintpde within visual scenes, this
decrease could account for a reduced performance withasirg eccentricity.

These points cannot be answered on the basis of the set efogdl images used in this
study. A possibility to further study the influence of sphtiad temporal inhomogeneities
at different positions within the visual field could be thesuwf a mobile eye-tracker device
to record movies of visual scenes as seen by freely movingreess and analyze both the
change in spatial and temporal statistics across the viglgl Furthermore, this could reveal
interesting differences in the cortical connectivity offelient species, depending on posture,
movement speed, and the characteristic properties ofeifteenvironments.

In addition, attentional mechanisms seem to play a role idutating collinear facilita-
tion (e.g., Ito and Gilbert, 1999; Freeman et al., 2001; @iet al., 2004; Shani and Sagi,
2005), which implies that collinear facilitation performze can not solely be predicted by
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the lateral connectivity.
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Chapter 4
Self-Organization of Lateral Connections

Stimulus Velocity Influences Self-Organization of LateralConnections in a Network
Model of Pulse-Coding Neurons with Hebbian Learning

4.1 Abstract

In the primary visual cortex, horizontal connections besweeurons of similar feature pref-
erence are supposed to mediate contextual influences fraésideuthe classical receptive
field (cRF). This provides a mechanism which could suppatghrceptual grouping and
segregation of locadpatialfeatures in visual scenes into coherent visual objects.itfad
ally, it has been suggested that asymmetric horizontal@ctions may enhance the selectiv-
ity of neurons for the direction of stimulus movement, thusviding a mechanism for the
coding ofspatio-temporastimulus attributes. What factors determine the shapesifitieral
connectivity during learning? We investigated the inflleen€tstimulus velocity and the con-
duction velocity of the lateral connections on the selfamigation of lateral connections in a
single-layer network model of pulse-coding neurons witeraporal Hebbian learning rule.
We show that stimulus velocities much lower than the coridaatelocity of the lateral con-
nections favor the development of lateral connections whie well adapted to the spatial
structure of the visual input. High stimulus velocitiesdda lateral connections which sup-
port the coding of the spatio-temporal structure of the @&isoput. Considering the different
temporal response characteristics of magnocellular (teedpandpass) and parvocellular
(temporal lowpass) neurons, we discuss possible influesfdbese two retino-cortical path-
ways on the encoding of object-motion and object-form in ¢bdical dorsal and ventral
pathways, respectively. Additionally, our results mayphiel understanding the decreased
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collinear facilitation and path detection performancegderipheral compared to foveal stim-
uli which has been found in psychophysical experiments.

4.2 Introduction

Lateral connections between neurons of similar featuréepgace may serve as a possible
neuronal substrate for mediating contextual influencessamgorting the grouping of local
spatialimage features within a visual scene into coherent objesiggriment: e.g., Gilbert
and Wiesel, 1989, 1990; Bosking et al., 1997; Schmidt et1897; Stettler et al., 2002,
model: e.g., Eckhorn et al., 1990; Ostkamp, 1996; Yen ankidkii998; Li, 1999; Neumann
and Sepp, 1999; Hansen et al., 2001). In model studies it &as demonstrated that lat-
eral connections can self-organize according to the dissiastics of artificial or real-world
scenes by Hebbian learning mechanisms (e.g., Grossberyvdiimson, 2001; Prodohl
et al., 2003; Choe and Miikkulainen, 2004). In addition te grouping of spatial features
within a visual scene, lateral connections may enhancedleetssity of cortical neurons for
the direction of stimulus movement, although the actuallraatsms, leading to direction
selectivity are still a matter of debate (e.g., Feidler etE97; Wimbauer et al., 1997; Liv-
ingstone, 1998; Clifford and Ibbotson, 2003). In model g&adt has been demonstrated that
asymmetric lateral connections, linking neurons alongdinection of motion, lead to direc-
tion selective response properties (e.g., Mineiro and &tips998; Shon et al., 2004). The
required lateral connectivity can be learned by Hebbianhaeisms from directed motion
stimuli (e.g., Jastorff and Giese, 2004; Shon et al., 200dni¥¢h et al., 2005). We investi-
gated which properties of the network and the visual inpteheine the shape of the lateral
connectivity during learning.

4.2.1 Conduction Velocities of Lateral Connections

Interactions between neurons are mediated by action palentich travel with finite veloc-
ity along axons. The conduction velocity depends on the ‘axdiameter and its myeliniza-
tion (e.g., Rushton, 1951; Waxman and Bennett, 1972). Asrddctor limiting the velocity
of the spread of activation between neurons is the neuralagicin time, which may vary
substantially depending on the activation state of thear@ur Typical values of conduction
velocities along horizontal connections range from 0A.0/s in cats (Komatsu et al., 1988;
Hirsch and Gilbert, 1991) and rats (Murakoshi et al., 1998wk and Bullier, 1998), which
is consistent with the lateral spread of synaptic activityrionkeys, as revealed by optical
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imaging studies (Grinvald et al., 1994; Slovin et al., 2002)

4.2.2 Parallel Retinal and Cortical Processing Streams

Throughout the visual system sensory information is preedsalong parallel pathways of
neurons with different spatio-temporal response propsrti

The two major retino-cortical processing streams are thgrmoeellular (M) and parvo-
cellular (P) pathways originating in the retinal ganglicglls. The cRFs of M-neurons in
the LGN are by a factor of 2-3 larger than the cRFs of P-neuabriie same eccentricity
(e.g., Xu et al., 2002). While the temporal response charitics of P-neurons resemble a
temporal lowpass filter, M-neurons display temporal resgoproperties resembling a tem-
poral bandpass filter (e.g., Hicks et al., 1983; Kaplan anch&iete, 2001). Additionally,
M-neurons exhibit steeper contrast gain functions than-dedtons at the same eccentricity
(Kaplan and Shapley, 1986). P-neurons encode most of tloenettic information within
a visual scene due to the spectral opponency of their cRFecand surround, while M-
neurons are virtually insensitive to color and respond prify to luminance stimuli (e.g.,
De Monasterio, 1978). In the LGN of monkeys, the proportibR-0to M-neurons at a given
eccentricity is not constant across the visual field, butides with increasing eccentricity
from 35:1 in the fovea to 5:1 dt° eccentricity (Azzopardi et al., 1999).

Lesions of the parvocellular layers of the LGN (P-lesiors)se a 3- to 4-fold reduction
in spatial acuity in monkeys while magnocellular lesionsl@dions) do not effect acuity
(Merigan et al., 1991a,b). Luminance and chromatic conhsaasitivities for static grat-
ings of high spatial frequency are reduced for P-lesions nioti for M-lesions. However,
luminance contrast sensitivity for low spatial frequenacgtngs, modulated at a temporal
frequency of 10 Hz, is reduced by both P- and M-lesions.

It has been suggested that the P- and M-pathways are detiicaddferent visual tasks:
The P-pathway dominates chromatic vision, acuity, andreshtetection at low temporal
and high spatial frequencies, pointing out its role in thalgsis of form and color, while the
M-pathway dominates contrast detection at higher temyanellower spatial frequencies,
suggesting its role in motion analysis (e.g., Merigan etE91b; Kaplan and Bernadete,
2001).

Cortically, information is processed along at least twahpatys: The dorsal pathway,
which originates in V1 and leads to the posterior parietateoq and the ventral stream,
leading from V1 to the inferior temporal cortical areas (lérigider and Mishkin, 1982;
Felleman and Van Essen, 1991; Goodale et al., 1991). Thepgerimental evidence that
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these two pathways serve different visual functions, ngutihe processing of color and shape
information in the ventral pathway (e.g., Ungerleider angikin, 1982; Goodale et al.,
1991, 1994; Perrett et al., 1982; Desimone et al., 1984; Kegn#93; Logothetis et al.,
1995; Rolls, 2000; Quiroga et al., 2005), and position antionanformation in the dorsal
pathway (e.g., Andersen et al., 1997; Duhamel et al., 1985mher et al., 2000, 2001).

It seems plausible that the different spatio-temporaleasp properties of neurons along
retino-cortical M- and P-pathway may favor different chaegistic coding strategies within
both cortical pathways during learning, despite the faat the mapping of the M- and P-
projections onto the cortical dorsal and ventral pathwayotscomplete (e.g., Ferrera et al.,
1994; Yabuta et al., 2001; Sincich and Horton, 2003).

4.2.3 Goal of the Model

We assumed that the development of the lateral connectidrsesving the coding of both
spatial and temporal properties of visual scenes reliecovity-dependent, Hebbian learn-
ing mechanisms. Therefore, we asked which factors deterthia structure of the resulting
lateral connectivity during learning. We investigated th#uence of stimulus velocity and
the conduction velocity of lateral connections on the sedfanization of lateral connections
in a single-layer network model of pulse-coding neuronstdueHebbian learning rule. We
demonstrate that stimulus velocities much lower than thmelaotion velocity of the lateral

connections favor the development of connections adapt#tketspatial structure of the vi-
sual input. High stimulus velocities lead to lateral cortimts supporting the coding of the
spatio-temporal structure of the visual input. We discusssfble influences of the different
temporal filter properties of neurons of the retino-cottida and P-pathways on the coding
of spatial (form) and spatio-temporal (motion) stimulusibtites along the cortical dorsal
and ventral pathway, respectively.
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4.3 Methods

4.3.1 Network Architecture
Model Neuron

We used pulse coding neurons with realistic synaptic p@ksnand a dynamic threshold
(Eckhorn et al., 1990), similar to the ones used in ChapteiThe input stage of a neuron
i consists of synapseS;(t) to presynaptic neurong, which have a synaptic connection
strengthwfj and an impulse respongét, 7):

Sij(t) = wiL;(t — Ay) * h(t, 7s), (4.1)

wherex is the convolution operatol,; is the spike-output of the presynaptic neuror;;
is the conduction delay between neutaand neurory.
The synaptic responggt, 7) was modelled as a leaky integrator:

h(t,7) = exp(—t/T)H(1), (4.2)

whereH (t) denotes the Heaviside function:

H(t):{(l) zig (4.3)

Thus, each connection performs an exponentially decayungnsation of signals from
presynaptic neurons.

The model neurons have three types of different synapsestagxy feedingF’, in-
hibitory feeding/, and linking L synapses. The resulting membrane potential of neuron
i, which drives the spike encoder, is

M;(t) = Z F;(t) - <1 + Z Lz’j(t)> - Z Ii;(t) + Inoise(1), (4.4)

with 7,,0isc(t) being normally distributed noise with standard deviatiQg,., added indepen-
dently to every membrane potential in each time step.

While excitatory (inhibitory) feeding inputs have an adgst(subtractive) influence on
the membrane potential, the signals of the linking synapseshultiplicatively on the excita-
tory feeding-inputs. In V1, long-range lateral connecsiane mainly found between neurons

The description of the model neurons has some common patitstiié description in Chapter 2. We
decided to maintain this duplication in order to presenedblf-containedness of the different chapters.
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of the upper layers, where the synapses are dominated by Npé&channels (Fox et al.,
1989), which have been reported to act on the afferent impatmodulatory fashion (Fox
and Daw, 1992). Modulatory linking-connections ensuré the cRFs of single neurons are
not altered by the lateral connectivity (Eckhorn et al.,@P9

In the spike encoder, the membrane potentia(t) is compared to a dynamic threshold
O,(t). If M;(t) exceed®;(t), a spike is generated:

Oi(t) = H(Mi(t) — O4(1)). (4.5)

The spike threshold has both a dynamic component, which dettedl as the impulse
response of a single leaky integrator, and a static compddgen

O;(t) = O4(t) * (Vo exp(—t/10)) H(t) + Oy. (4.6)

All network parameters are summarized in Table 4.1.

Network Topology

The network-model consists of a single layer of pulse-cgdi@urons, arranged or2a x 21
Cartesian grid (Figure 4.1. In order to avoid boundary effetoroidal boundary condi-
tions were applied. Each neuron provides input to neiglmgomieurons via lateral inhibitory
feeding-synapses. Inhibitory synaptic connection stitehgecay according to a Gaussian
function (amplitude’;, width o;). This form of inhibition was chosen for convenience, in
order to keep the network as simple as possible. The mairoparpf the inhibition in the
current network is to counteract the effect of strong exoitaand modulatory inputs. In a
more realistic scenario, excitatory neurons would actbitbry on other excitatory neurons
only via inhibitory interneurons.

Neurons receive excitatory input via their feeding-symapgepresenting the afferent
visual input. Although we did not model the cRFs explicitlyge neurons can be thought of
as having retinotopically arranged, equally spaced cRkgenitical orientation and direction
preferences, i.e., each neuron is sensitive to an orietitedlss at a certain position within
the visual field, moving in a direction perpendicular to iteeatation.

Additionally, neurons can form lateral linking connectsowith all other neurons. The
development of these connections is due to Hebbian lea(ag®Section 4.3.3).

In the first set of simulations we modelled infinite conductieelocities for both the
modulatory and inhibitory feeding connections. In the revimg simulations, modulatory
linking and inhibitory feeding conduction velocities weset to 0.1 g.u./ms.
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e cXxcitatory feeding

modulatory linking
@ inhibitory feeding

yd

Figure 4.1: MODEL ARCHITECTURE AND INPUT STIMULL The network consists of a single

visual field

layer of spiking neurons. Every neuron receives input dgyfram a corresponding region
of the visual field. Neurons interact via inhibitory feedingnnections and lateral linking
connections. The latter were subject to Hebbian learningjially, the synaptic connection
strengths of the lateral linking connections were zeroutrgiimuli were oriented Gaussian
bars of simulated light intensity of fixed orientation, mogiin a direction perpendicular to
their orientation-axis.

4.3.2 Input Stimuli

Input stimuli were elongated Gaussian bars of simulatdut ligtensity with vertical orien-
tation. A Gaussian bar, centered at positiap, {.) and orientation is described by the
equation

Glr.y) = exp <_ (z =) (y— yc)Q).

202 207

The width- and length-constants were chosenas 0.5 ando, = 3.0 grid units (g.u.).

The bars were presented at random positions within the Mi&ld and moved perpen-
dicularly to their length axis with fixed velocities ef = 0.0 (0.05, 0.1) g.u./ms, or with
random velocities, taken from different velocity-distitibns (compare Section 4.4.3).

Each presentation phase lasted for 100 ms, followed by aepafus00 ms, after which
a new random position was chosen. The pause of 100 ms wasitic#ldor the qualitative
shape of the learned lateral connections, but it improvedthoothness of the learned con-
nectivity. Without a pause between successive stimuluseptations, the slow lateral con-
duction velocities of 0.1 g.u./ms caused learning eventsdxn spikes of neurons activated
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by the current stimulus, and spikes of neurons activated pyica stimulus presentation.
This effect is due to the small network size and the resttiset of stimuli.

4.3.3 Self Organization

Synaptic coupling strengths between horizontal connestisere updated according to a
temporal Hebbian learning rule. Each presynaptic spikeaieis a synaptic learning potential

Lij(t) = Oi(t — Aij) * (exp(—t/m) H(t)) . (4.7)

The learning potential was modelled as a leaky integratthm wine constant;. Every
time the postsynaptic neurarspikes, the connection strengths between all presynagtic n
rons; and the postsynaptic neuron are changed according to thentwalue of the learning
potentials:

Aw;(t) = v0;(t) Li; (1), (4.8)

Hebbian learning rules are inherently unstable: Corrdlaetivity leads to stronger
synaptic connection strengths which in turn lead to coteelactivity between the corre-
sponding neurons. In order to prevent the synaptic conmestrengths from growing with-
out bounds, we applied a normalization procedure in eveng step. If the total connection
strength to a postsynaptic neurbwas greater or equal than a maximum valyg,.,, every
weight to this neuron was divided by a common factor, so thatotal connection strength
was equal tod,...,. Thus, the total connection strength to a postsynapticamewwas always
less than or equal tdnorm:

Zwij S Anorm- (410)
J

The learning parameters are summarized in Table 4.1.

4.3.4 Data Analysis

In order to quantify the fraction of the total synaptic coaten strength between neurons
with collinearly aligned cRFs, we definectallinearity indexC'I as the sum of the synaptic
connection strengths from a single neuydo neurons with collinearly aligned cRFs, divided
by the total synaptic connection strength from this neuooalltother neurons:
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Neuron Parameters

s 10ms|| 7 | 10 ms
TI 10ms|| ©, | 1.0

To 5ms || Vo | 5
Onoise | 0.2

Network Parameters
Gy 0.005 | o; | 54g.u.
Learning Parameters
T 15ms|| vy |2-107*
Aporm | 0.5

Table 4.1: NN URON, NETWORK AND LEARNING PARAMETERS

) 2 Wi
CI = <27wj> . (4.11)

where the relatior||; holds for all neurons and; with collinearly aligned CRFs<>;
denotes the average over all neurgng he collinearity index has a value of one for lateral

connections only between neurons with collinearly aligoRés, and has a value of zero for
lateral connections not connecting neurons with colliyealigned cRFs at all.

4.4 Results

4.4.1 No Lateral Conduction Delays

In the first set of simulations the conduction delays of ttierl connections were set to
zero, which corresponds to infinitely high conduction véies. Three different simulations
were carried out, with three different stimulus velocit{@0, 0.05, and 0.1 g.u./ms). Fig-
ures 4.2A,B,C show the average lateral connection strenfgtim a single neuron to the
surrounding neurons for the three different simulations.

After training the network with static stimuli, the latei@nnections are adapted accord-
ing to the spatial shape of the bar, with strong reciprocaheetions mainly between neurons
along the orientation axis of the bar (Figure 4.2A).

For higher stimulus velocities, the connection profiles lam@ader with an asymmetry
towards the direction of the bar-movement (Figures 4.2BL@¥s of the total connection
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Figure 4.2: IATERAL CONNECTIVITY AFTER LEARNING WITHOUT LATERAL CONDUC-
TION DELAYS. (A-C) show the average lateral synaptic connection sthtengf a neuron
(centered) to its surrounding neurons after training wtthngli moving at different veloc-
ities (0.0, 0.05, and 0.1 g.u./ms). The intensities areescaldependently for each dia-
gram, with white for low and black for high synaptic conneatistrengths. After training
with static stimuli, lateral connections are mainly leatietween neurons along the vertical
orientation-axis of the bar. For moving stimuli, the laterannection profile becomes asym-
metric towards the direction of stimulus movement. (D) Aage lateral connection strengths
along the collinear direction for the three different stimsivelocities. The higher the stim-
ulus velocity during learning, the smaller are the collineannection strengths between
neurons with collinearly aligned cRFs. (E) Collinearitylex for simulations with different
stimulus velocities during learning. After learning wittagc stimuli, nearly 90% of the total
connection strength is due to connections between neurdghscullinearly aligned cRFs.
For faster stimulus movements, the collinearity index mhed due to connections formed
between neurons whose cRFs are not collinearly aligned.



4.4. Results 81

10 T T T T T T T T T
S I
2 r — 0g.u/ms
5 08- -~~~ 0.05 g.u/ms
c R\ N
i} I
g 0.6+
c L
c
S I
(&) L
g 0.4+
() L
£ i
El I
= 0.2+
9 L
O.OV n N N i N N X L ) ) ) | ) ) ‘ 1 ‘*\‘\":;;\\;
0 2 4 6 8 10

distance / g.u.

Figure 4.3: RELATIVE DECLINE IN COLLINEAR CONNECTION STRENGTH AFTER LERN-
ING WITHOUT LATERAL CONDUCTION DELAYS. Shown are the lateral synaptic connection
strengths along the collinear direction, normalized to ¢bBinear connection strength for
neurons with a relative distance of 1 grid unit. The shapas®hormalized collinear con-
nection profiles are similar for all three stimulus veloesticompare Figure 4.2D).

strength is concentrated along the collinear direction.

Figure 4.2D shows the decline in lateral connection sttength increasing distance
along the collinear direction. This is further quantifiedkigure 4.2E which shows the
collinearity indices for the three different simulatior$ote that although the absolute con-
nection strengths along the collinear direction declingnwicreasing stimulus velocity, the
relative shape of the decline does not change qualitat{edyure 4.3).

The “broadening” of the lateral connectivity profile towarthe direction of stimulus
movement is caused by the temporal extent of the Hebbianifeawindow. This is demon-
strated in Figure 4.4, which shows the results from a set miktions where the decay
constant of the presynaptic learning potentialas set to a small value of 1 ms. In this case,
there are only small changes in the shape of the learneclatemnectivity with increasing
stimulus velocity.
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Figure 4.4: IATERAL CONNECTIVITY AFTER LEARNING WITHOUT LATERAL CONDUC-
TION DELAYS AND A SHORT LEARNING WINDOW. (A-C) show the average lateral synaptic
connection strengths from a neuron (centered) to its sadimg neurons due to input stimuli
moving at different velocities (0.0, 0.05, and 0.1 g.u./n&)r the depicted case of learning
with a short learning windowr{ = 1 ms), changes in lateral connectivity with increasing
stimulus velocity are smaller than in the case of a longanieg window (compare Figure
4.2).

4.4.2 Finite Lateral Conduction Velocity

In the next set of simulations, lateral conduction velesitivere set to 0.1 g.u./ms, thus being
identical to the highest stimulus velocity applied duriegring.

For static stimulation, lateral connections are learned@lthe direction of orientation of
the bar (Figure 4.5A). A comparison of Figure 4.5D with Figuyr.2D reveals that collinear
coupling is shorter in range for learning with static stimamd finite conduction velocities
than in the situation of static stimuli and infinite condoativelocities. This effect depends
strongly on the duration of stimulus presentation: Imadwe neurons and; at a relative
distanced, activated simultaneously by a static stimulus. Due to thiéeficonduction ve-
locity v, a spike needs the time= d/v to travel from neuron to neuron;. With a lateral
conduction velocity obh = 0.1 g.u./ms and a distaneé= 10 g.u., a spike needs 100 ms to
travel from neuron to neuronj. Thus, if the duration of the stimulus presentation is less
than 100 ms, simultaneous activation of neuroasd; will never lead to a coincidence of
pre- and postsynaptic spikes. A strengthening of the cporeding synaptic weights is only
possible due to the finite temporal extent of the Hebbiamiegrwindow. In the current
simulation, the maximum lateral coupling range is residcto a distance of approximately
10 g.u., due to the fixed stimulus duration of 100 ms and thexdatconduction velocity
of 0.1 g.u./ms. Longer stimulus presentation times wouédl | longer collinear connec-
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Figure 4.5: IATERAL CONNECTIVITY AFTER LEARNING WITH FINITE LATERAL CON-
DUCTION VELOCITIES. (A)-(C) show the average lateral synaptic connectiomsiites of

a neuron (centered) to its surrounding neurons after tigimith stimuli moving at differ-
ent velocities (0.0, 0.05, and 0.1 g.u./ms). The intersdie scaled independently for each
diagram, with white for low and black for high synaptic contien strengths. For static stim-
ulus presentations lateral connections are learned bata@gons along the orientation-axis
of the bar. For moving stimuli, each neuron forms connectiaith other neurons at posi-
tions shifted towards the direction of stimulus-movemdrudr stimulus velocities equal to
the conduction velocity of the lateral connections, nearfmmm predominantly connections
with neurons along the direction of stimulus movement. (D¢rage strength of lateral con-
nections along the collinear direction for the three défrstimulus velocities. The higher
the velocity of stimulus movement, the faster collinearreeetion strengths decline with in-
creasing distance of source- and target-neuron. (E) @altity indices for the corresponding
simulations. After learning with static stimuli, 70% of th&al connection strength is due
to connections between neurons with collinearly aligne&sRFor higher stimulus veloc-
ities, the collinearity index declines due to the connewitbrmed predominantly between
neurons whose cRFs are not collinearly aligned.
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Figure 4.6: RELATIVE DECLINE IN COLLINEAR CONNECTION STRENGTH AFTER LERN-
ING WITH SLOW LATERAL CONDUCTION VELOCITIES Shown are the lateral connection
strengths along the collinear direction, normalized to ¢blinear connection strength for
neurons with a relative distance of 1 grid unit. Relativdinelar connection strengths decline
faster with increasing distance after learning with higimstus velocities in comparison to
learning with low stimulus velocities.

tions, comparable to those in the case of infinite conductedacities. Note also the lower
collinearity index after static stimulation in the case aiite conduction velocities (Figure
4.5E) in comparison to the case of infinite conduction veiesi(Figure 4.2E). This is mainly
due to spurious correlations between the spikes of neurdivated by a stimulus and spikes
caused by preceding stimulus presentations, travelinggaloe axons for more than 140 ms.

For higher stimulus velocities, lateral connections depelsymmetrically between neu-
rons aligned towards the direction of stimulus movementr &atimulus velocity of 0.1
g.u./ms (Figure 4.5C), the stimulus velocity equals therkdtconduction velocity. In this
case, lateral connections are formed mainly in the direatibstimulus movement, but not
along the orientation of the bar.

Figure 4.6 shows the relative decline in collinear conmecstrength for the three differ-
ent stimulus velocities. Unlike in the case of zero condurctielays (Figure 4.3), collinear
connection strengths decline more steeply with increadisigince for high stimulus veloci-
ties than for low stimulus velocities.
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Figure 4.7: LATERAL CONNECTIVITY AFTER LEARNING WITH VARIABLE STIMULUS VE-
LOCITIES. Upper Row: (A) Stimulus velocities were taken from the pwstvalued part
of a Gaussian distribution, centered at 0 g.u./ms with stechdeviation of 0.02 g.u./ms.
(B) The average lateral connectivity after learning acoaydo the velocity distribution de-
picted in (A). Lower Row: (C) Stimulus velocities were takieom the positive-valued part
of a Gaussian distribution, centered at 0.05 g.u./ms wéhdsrd deviation of 0.025 g.u./ms.
(D) Average lateral connectivity after learning accordiaghe velocity distribution depicted
in (C).

4.4.3 Random Stimulus Velocities during Learning

During normal viewing, retinal stimulus velocities are ribted, but cover a range from
static views up to velocities too fast to be resolved by caftheurons. To account for this
situation, we varied the movement velocity of the Gaussarfdr each presentation phase.
In one simulation, stimulus velocities were chosen from assan distribution, centered at
v. = 0 g.u./ms, with a standard deviation @f = 0.02 g.u./ms (Figure 4.7A). In another
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simulation, the Gaussian distribution was centered.at 0.05 g.u./ms with a standard
deviation ofs, = 0.025 g.u./ms (Figure 4.7C). Negative velocity values corresipog to
movements in the opposite direction were discarded.

The resulting lateral connectivity is shown in Figures 40BThe results are similar to
the results obtained with fixed stimulus velocities (Figdrg): For a velocity distribution
which contains mainly low velocities, lateral connecti@osinect mainly neurons with cRFs
aligned along the direction of orientation of the bar. Foretoeity distribution which con-
tains higher stimulus velocities, lateral connectiongéapredominantly neurons with cRFs
towards the direction of stimulus motion.

4.5 Discussion

4.5.1 Summary of Results

We have investigated the influence of the temporal proedifethe visual input and the
conduction velocity of the horizontal connections on tHésmanization of the lateral con-
nectivity in a network model of pulse-coding neurons. Byrtirgg the network with moving
Gaussian light bars of different velocities, we have shdvat the learned lateral connectivity
depends on both the velocity of the input stimuli and the catidn velocity of the horizon-
tal connections during learning. For stimuli moving slowlympared to the velocity of the
horizontal connections, the learned lateral connectiomsexiprocal and well adapted to the
spatial properties of the stimuli. For fast moving stimtdieral connections are asymmetric
with respect to the direction of stimulus motion.

In the case oinfinite lateral conduction velocitieshe asymmetry in the lateral connec-
tivity towards the direction of stimulus movement is duette finite temporal extent of the
asymmetric Hebbian learning window. In the current modegadute collinear connection
strengths are lower for higher stimulus velocities due ® siinaptic weight normalization
procedure. However, the relative collinear decline in amtion strengths with increasing
distance is similar after learning with different stimuleocities (Figure 4.3). Thus, if the
normalization procedure would be replaced by a mechanismohaiestricts the weights of
the single lateral connections rather than the total prastia weight of a given neuron, we
expect collinear lateral connections to have comparabiayc strengths after learning with
stimuli of different velocities. Hence, even if the leardateral connectivity is asymmetric
towards the direction of stimulus motion, it retains somecsficity for the spatial structure
of the visual input.
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movement direction

Figure 4.8: @INCIDENCE OF AFFERENT AND LATERAL SIGNALS IN A NETWORK WITH
FINITE CONDUCTION VELOCITIES The figure demonstrates how the learned connection
structure can be interpreted. A bar-stimulus moves withstamt velocity to the right, as
indicated by the black bars. A spike emitted at titp®y a neuron at positio® travels with
constant velocity along the axon. The travelled distanteiff@rent times are indicated by
the blue circles. Coincidence of this spike with direct \aaions by the stimulus at later
times (1, t-, t3, t4) can only occur at the intersection of the activation pradiléhe bar with

the corresponding circle, as indicated by the red lines biaos moving with a velocity equal

to the lateral conduction velocity, coincidences of pred @ostsynaptic activations occur
along the direction of motion.

In the case ofinite lateral conduction velocitieghe asymmetry in lateral connectivity
towards the direction of motion is more pronounced for stiuswelocities similar to the lat-
eral conduction velocity. Collinear lateral connectioeslihe faster with distance the higher
the velocity of the stimuli during learning. For stimuludegties equal to the lateral con-
duction velocity, lateral connections are learned alorgdinection of stimulus movement,
but not along the axis of orientation of the bar stimulus. Tésults can be interpreted in
that the lateral connectivity learned with static stimunsists of two blades along the axis
of orientation. With increasing stimulus velocity thesad#s turn towards the movement
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direction of the stimulus. If stimulus velocity equals theocity of the lateral connections,
the blades are parallel to the direction of motion (Figui®) 4The lateral connectivity de-
picted in Figure 4.5B, which resembles a filled triangle, barunderstood if one considers
the additional influence of the temporal Hebbian learningdeiv, which leads to an increase
in synaptic connection strengths even if the presynaptieaton precedes the postsynaptic
spike (compare Figure 4.2).

Comparable results were obtained if stimulus velocitiagdpearning were chosen ran-
domly according to a fixed distribution of velocities. Foriatdbution of stimulus velocities
restrained to low velocities in comparison to the laterahduction velocities, the learned
lateral connectivity is well adapted to the spatial stroetaf the input. A distribution of
higher stimulus velocities causes lateral connectionsetderned between neurons with
cRFs aligned towards the direction of stimulus movement.

For neurons of similar velocity preferenceke results show that slowly conducting hor-
izontal connections, with conduction velocities similarthe velocities in the input, self-
organize according to the coding of stimulus movement twa¢c enhancing responses to
stimuli moving in the direction of the connections. Fastawcting horizontal connections
self-organize according to the spatial properties withisual input.

For lateral connections of fixed, finite conduction velastthe results can be interpreted
in terms of the velocity preference of presynaptic neurdits.neurons sensitive to stimulus
velocities considerably lower than the lateral conductielocities, the static correlations in
the input play a dominant role in shaping the pattern of ther#h connectivity. Neurons
sensitive to stimulus velocities similar to the lateral doation velocities develop lateral
connections according to the spatio-temporal correlatigithin the input.

In the following, we will relate these results to known expegntal data and discuss
different coding strategies along M- and P- dominated calfpathways.

4.5.2 Network Scaling

Assuming lateral conduction velocities on the orderof.1 m/s, consistent with the lateral
spread of activity (monkey: Grinvald et al., 1994, cat: Burer et al., 1999), and a primate
cortical magnification factor of\/(E) ~ 8.85 - (0.87 + E)~! mmF (Adams and Horton,

2003), we obtain lateral conduction velocities~of10°/s for the center of the visual field,
and velocities ofs 120°/s at an eccentricity of0°. Although relatively fast, the lateral con-
duction velocities are of the same magnitude as the retelakities of the visual input. As

we have demonstrated, there is a considerable effect otistsmovement on the learning
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Figure 4.9: BRCEPTUAL ASSOCIATION FIELDS FOR ORIENTATION AND MOTION-
DEFINED GROUPING (A) Association field for static, orientation-defined coats. The
enhancement between neighboring contour-elements iagsst if they form a smooth
contour (solid lines) and weak if they do not (dotted line®)dapted from (Field et al.,
1993). (B) Association field for motion-defined contours.eTénhancement of neighbor-
ing contour-elements is strongest if their motion-dirent are similar and form a smooth
contour. Adapted from (Ledgeway et al., 2005).

of the lateral connectivity, even for stimulus velocitiésvger than the velocity of the lateral
connections (Figure 4.7). Therefore, it seems plausildegtimulus motion may have an ef-
fect on the self-organization of lateral connections ingheary visual cortex during natural
viewing conditions.

4.5.3 Grouping Mechanisms for Static and Motion-Defined Cotours

Our results are consistent with recent psychophysical iaxeats, investigating the group-
ing performance of static and motion-defined contoursistatg., Field et al., 1993, motion:
Ledgeway and Hess, 2002; Ledgeway et al., 2005). For statentation-defined contours,
detection is best if the orientations of local contour-edeis are aligned along the axis of the
contour (Figure 4.9A). The grouping process could be suepdsy horizontal connections
between neurons with cRFs aligned collinearly with respatheir orientation preferences.
For motion-defined contours, however, detection perfoireais best if the local motion
vectors of the local contour-elements are oriented aloegctintour. The results of Ledge-
way and Hess (2002) suggest an association field for mogdinetl contours like the one
depicted in Figure 4.9B. Translating this motion-definegoagation field into lateral con-
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nectivity corresponds well to the coupling profiles learmeadur model with fast-moving
stimuli, where lateral connections link neurons along tineadion of motion.

Taken together, we suggest that the lateral connectivithizgrouping of static contours
could be provided by neurons with low velocity-preferersgpposedly receiving mainly P-
input. The required lateral connectivity for the groupirfgration-defined contours could be
provided by neurons with higher preferred stimulus velesitpossibly receiving mainly M-
input. Thus, our results highlight the possible role of tego-cortical M- and P-pathways
on the self-organization according to spatio-temporalt{om) and spatial (form) properties
of the visual input along the cortical dorsal and ventrahpaty, respectively.

4.5.4 Grouping Mechanisms at Different Eccentricities

With increasing eccentricity, the psychophysical contgrauping performance (e.g., Hess
and Dakin, 1997, 1999) and collinear facilitation (e.g.0@i et al., 2004; Shani and Sagi,
2005), as measured in contrast discrimination experimeiaslines. Our simulations sug-
gest that the decrease in the ratio of P- to M-inputs to V1 witlreasing retinal eccen-
tricity (e.g., Malpeli et al., 1996; Azzopardi et al., 1999py play a role in the decrease
in collinear facilitation with increasing eccentricity. ue to the increasing contribution of
the M-pathway in providing input to cortical neurons at Ergccentricities, it seems pos-
sible that lateral connections self-organize accordinthéospatio-temporal structure of the
visual input at the expense of the spatial structure (compagure 4.7). The spatial statis-
tics of real-world scenes are dominated by horizontal antdoa contours (Coppola et al.,
1998a; Hancock et al., 1992; Van der Schaaf and Hateren,, ¥X@6and Cristobal, 2000;
Betsch et al., 2004). Thus, we expect lateral connectiotveda® neurons which are selec-
tive for low stimulus velocities to predominantly targeumens with collinearly aligned cRFs
along these cardinal directions. The distribution of retwelocities during self-motion of an
observer is dominated by radial (expansion) and tangefnotdtion) velocity components.
Therefore, we expect the lateral connections between newselective for high stimulus
velocities to be arranged predominantly along these obldjtections, perpendicular to the
axis of their orientation preferences. Indirect evidermettie plausibility of this hypothesis
comes from the study of the orientation preferences of neuno the primary visual cortex
of cats (Bauer et al., 1990): While neurons of horizontal eadical orientation preference
are over-represented in the central visual field, they foandver-representation of neu-
rons with radial and concentric orientation preferencethaperipheral visual field. Thus,
it seems plausible that the response properties of corimalons in the central and periph-
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eral visual field are specialized for different tasks, ngmke encoding of spatial structure
and motion, respectively. This is consistent with the figdihat cortical areas along the
ventral pathway of monkeys, associated with the encodingbgéct form, receive mainly

input from the foveal portion of the visual field. Areas alahg dorsal pathway, concerned
with the encoding of motion and spatial coordination, reegiredominantly input from the

peripheral portion of the visual field (review: Gattass et 2005). Thus, it seems plausi-
ble that lateral connections could serve different funr@iaoles in the fovea compared to
the periphery. Our study demonstrates that the differettepes of lateral connectivity can

self-organize according to the temporal response charsiits of the corresponding neu-
rons. However, current experimental data on the structtitateral connectivity reveal no

systematic changes with eccentricity or with respect toptteeninent thalamic input of the

corresponding neurons (monkey: Sincich and Blasdel, 288gglucci et al., 2002; Stettler

et al., 2002, cat: Ts'o et al., 1986; Schmidt et al., 1997b&i and Wiesel, 1989, 1990, tree
shrew: Bosking et al., 1997).

45.5 Conclusion

Our results demonstrate that the temporal response prepeiftcortical neurons may have
a considerable impact on the self-organization of the lootial connectivity under natural
viewing conditions, favoring either the coding of spat@li(ing fixation) or spatio-temporal
(during observer- or object-motion) characteristics af thsual input. Our model makes
predictions about changes in lateral connectivity depsmnadn the temporal response char-
acteristics of the corresponding cortical neurons witlpees to the conduction velocities of
horizontal connections. Due to the declining ratio of P- tardut to the visual cortex with
increasing retinal eccentricity this should result in detént pattern of lateral connectivity
for the foveal in comparison to the peripheral represeotatif the visual field.
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Chapter 5
Conclusion and Outlook

In the primary visual cortex of primates, relatively moreasp is devoted to the represen-
tation of the central visual field in comparison to the repreation of the peripheral visual
field (e.g., Daniel and Whitteridge, 1961). Furthermoreg thtio of parvocellular (P) to
magnocellular (M) inputs to the primary visual cortex deeb with increasing eccentricity
(Azzopardi et al., 1999; Connolly and Van Essen, 1984; Mafgel., 1996). In this thesis
we investigated to which visual situations this inhomogersemapping of visual space is
well adapted and studied possible functional consequefiocassual processing at central
and peripheral locations of the visual field.

Summing up, our results indicate that self-motion may haagegul an important role
in determining the global retino-cortical mapping. We hatewn that the inhomogeneous
retino-cortical mapping can be refined and stabilized by bikaib learning mechanisms in
ontogenesis under natural viewing conditions.

The spatially inhomogeneous retino-cortical mapping tesadvantage that the neu-
ronal modules, concerned with the processing of self-nnationg the direction of gaze, can
be identical in their spatial and temporal properties axithe representation of the visual
field. In contrast, our investigation of the spatial statsbf local oriented Gabor wavelet re-
sponses at different spatial scales, obtained from realv8oenes, provides evidence against
uniform mechanisms of contour grouping across the visulal.fie

Furthermore, we have demonstrated that the developmeaterl connections between
neurons in the primary visual cortex may depend on the spatigoral response proper-
ties of their afferent inputs. Neurons sensitive to slownges within the visual input may
develop lateral connections well adapted to the spatiatacieristics of the visual input
(form), while neurons sensitive to higher temporal freqryecomponents within the visual
input may lead to lateral connections well adapted to théigpamporal characteristics of
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the visual input (motion). With respect to the different fgaral response characteristics of
neurons along the retino-cortical parvocellular and magtaolar pathways, we have sug-
gested that neurons receiving mainly parvocellular inpaysupport the coding of spatial
stimulus attributes (object-form) while neurons recegvimainly magnocellular input may
subserve the coding of spatio-temporal stimulus attrio(éject motion) along the cortical
ventral and dorsal pathways, respectively. Due to the taage® of parvocellular to magno-
cellular neurons in the fovea in comparison to the periphémgse results suggest that foveal
and peripheral cortical processing may have become spestddbr different characteristics
of the visual input: The foveal representation, which reesipredominantly parvocellular
input, may be well adapted to the spatial representatiorxafdd objects. The peripheral
representation, with its increasing ratio of magnocetiitgut, may be better adapted to the
processing of motion.

5.1 Specific Results

e We have assumed that cortical magnification is such thaicebdctivations, caused
by stationary objects during self-motion along the dir@ctof gaze, travel on average
with constant speed across the cortical surface, indepg¢onéieetinal eccentricity. This
would have the important advantage that the cortical mashes) concerned with the
processing of self-motion, can be identical in their spadiad temporal properties
across the representation of the whole visual field. Thikesdase if the distribution
of objects corresponds to an ellipsoid with the observetsicenter.

e An RF distribution, consistent with cortical magnificatj@an be learned in a network
model of pulse coding neurons with Hebbian learning, whaiméd with flow-fields
similar to those during self-motion along the direction azg. RF sizes increase lin-
early with eccentricity, and RF peak sensitivities deceasih increasing eccentricity,
consistent with experimental results.

e The spatial statistics of oriented Gabor wavelet resporsgascted from real-world
scenes are not invariant with respect to the spatial scadleeoiavelets. Collinear cor-
relations drop in coordinates normalized to the wavelemgttne wavelets relatively
faster for wavelets of long wavelengths. Furthermore,iceir correlations between
wavelets of different orientations are not rotation ingaati, with collinear correlations
between wavelets of oblique orientations declining moeeslty with increasing ec-
centricity than collinear correlations between waveldtsasdinal orientations.
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e The self-organization of lateral connections of finite coctibn velocities due to a
temporal Hebbian learning rule depends on the temporalepti@s of the visual in-
put. By training a one-layer network of spiking neurons witbving Gaussian bars of
different velocities, we have shown that static or slowlgvimg bars lead to horizon-
tal connections reciprocally linking neurons along theediion of orientation of the
bars, thus subserving the coding of spatial stimulus aittes For fast moving stim-
uli with velocities comparable to the lateral axonal cortdut velocity, the learned
lateral connectivity is asymmetric towards the directidrbar movement, thus sub-
serving the coding of the movement direction of visual stimMe have discussed
these results with respect to the different temporal respaharacteristics of neurons
along the retino-cortical parvocellular and magnocelpkthways. Neurons receiving
mainly parvocellular input may subserve the coding of gpatimulus attributes (ob-
ject form) while neurons receiving mainly magnocellulgouth may subserve the cod-
ing of spatio-temporal stimulus attributes (object mo}id@onsidering the decreasing
ratio of parvocellular to magnocellular inputs to the prina&isual cortex with in-
creasing eccentricity (e.g., Azzopardi et al., 1999), tiwsld further account for the
psychophysically measured decrease in contour groupirfgrpgnce for peripheral
stimuli (e.g, Hess and Dakin, 1999).

5.2 Proposals for Future Research

Theoretical models, aimed at the understanding of the vstsiem, are worthless if they
cannot be verified or falsified experimentally. Our inveatigns provide testable predictions
which may be verified or rejected by future work.

5.2.1 Retinal Velocity Distribution During Self-Motion

According to the spatial retino-cortical mapping, we expiat average retinal stimulus
velocities, due to self-motion of an observer, increasedity with increasing eccentricity
(Chapter 2). It is difficult to test this hypothesis basedbobn theoretical considerations
because of the unknown distribution of objects relativenedbserver, deviations of the di-
rection of gaze from the direction of self-motion, and th&mmwn distribution of movement
velocities; which is most probably dependent on the distridm of objects around the ob-
server. To our knowledge, no data exist about the averagmtetlocity distribution across

the whole visual field of a human observer during self-motigiin natural environments.
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5.2.2 Spatial Statistics of Contour Elements Across the WHe Visual
Field

In Chapter 3 we have assumed that the spatial statisticiwfahacenes are constant across
the whole visual field. As we have discussed, this is notttrilse case (Reinagel and Zador,
1999; Krieger et al., 2000). On average, high spatial fraquecontent, edge density, and
contrast are highest at the point of fixation (Mannan et 8961 1997; Reinagel and Zador,
1999), and spatial correlations at the center of gaze areverage lower in comparison
to the correlations across the whole visual field. The infbgeaf these inhomogeneities
on the spatial statistics of local contour elements at gifie eccentricities remains to be
investigated.

5.2.3 Lateral Connections in the Primary Visual Cortex

Concerning the structure of lateral connections in the arinvisual cortex it would be in-
teresting to study possible changes in lateral connegtbatween neurons in dependence
on their spatial frequency preference. Our results fromp@#ra3 suggest that lateral con-
nections should be shorter in visual coordinates, norredlin the neurons’ preferred spatial
wavelengths, between neurons selective for low spatigligacies in comparison to neurons
selective for high spatial frequencies.

It would further be interesting to assess possible changéatéral connectivity with
respect to the predominant retino-cortical input (magiolze or parvocellular) of the cor-
responding neurons. We expect that horizontal connectdfes in their pattern of connec-
tivity for cortical patches in V1, dominated by either magabbular or parvocellular inputs
from the LGN (Chapter 4). Our results suggest that lateraineations between neurons
selective for low stimulus velocities, presumably doméhby parvocellular input, recipro-
cally connect mainly neurons with collinearly arranged sRIf contrast, lateral connections
between neurons selective for high stimulus velocitiesgikeng predominantly magnocel-
lular input, should be between neurons with cRFs alignectds/the axis of their direction
preference. We are not aware of studies which investigdtedateral connectivity of neu-
rons in the primary visual cortex of monkeys with respecti® ¥elocity preferences of the
corresponding neurons or their predominant retino-catiigputs.
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