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Abstract

The interpretation of ophthalmic images is typically performed by trained clinical

experts. However, due to the volume and complexity of these images, and the large

variation in pathology, in addition to the variation among experts, there has been

increasing interest in computer-assisted assessment and diagnosis of such images.

There has been particular interest in finding a cost-effective approach with high

sensitivity and specificity, independent of human intervention, and robust enough

to be applied to large populations in a timely manner to identify retinal diseases.

This thesis introduces novel deep learning methodologies based on convolu-

tional neural networks (CNNs) to address key challenges in different retinal image

analysis tasks. Three retinal image analysis objectives have been considered in

this research project: fovea and optic disc (OD) localisation, choroid and optic

disc/cup segmentation, and disease and lesion classification tasks.

In the first retinal image analysis task, simultaneous detection of the centres of

the fovea and the optic disc from colour fundus images is considered as a regres-

sion problem. A deep multi-scale sequential CNN is designed and trained. The

proposed method achieves an accuracy of 97%, 96.7% for the detection of the OD

centre, and 96.6%, 95.6% for the detection of the foveal centre of the MESSIDOR

and Kaggle test sets respectively. These promising results demonstrate the excel-

lent performance of the proposed CNNs in simultaneously detecting the centres

of both the fovea and OD without human intervention or hand-crafted features.

Moreover, the landmarks of an image can be localised in 0.007 seconds.

In the second phase, two segmentation schemes are presented to identify inter-

esting regions in fundus and optical coherence tomography (OCT) images. In the

first scheme, a new framework that features three stages: partitioning OCT images

into super-pixels combining spatial, intensity and texture information; classifica-

tion using CNNs; and refinement of the segmentation has been proposed. The

proposed framework achieves state-of-the-art accuracy of 0.986%, demonstrating

its effectiveness in segmenting the choroid which can pave the way for more ac-

curate diagnoses of a range of diseases. The second scheme defines the method

to segment the OD and the optic cup (OC) in fundus images. The core of the

proposed method is DenseNet incorporated with a fully convolutional network for
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accurate and robust segmentation. The predicted boundaries of the OD and OC

are then used to estimate the cup-to-disc ratio (CDR) for glaucoma diagnosis. Our

method is generalised to segment five datasets of fundus images taken from differ-

ent devices, outperforming the state of the art on three and achieving comparable

results on the remaining two.

Finally, based on the image classification concept, three new feature learning

approaches for detecting glaucoma using colour retinal fundus images, grading the

severity of diabetic macular oedema (DMO) on colour retinal fundus images and

identifying retinal lesions in OCT volumes have been presented. Developing these

automated diagnosis systems based on the feature learning approach helps early

diagnosis of the disease and thus averts (or delays) its progression. The proposed

systems relying on CNN and transfer learning concept are capable of identifying

and extracting features that are characteristic of glaucoma and DMO diseases, and

retinal lesions automatically without the need of any kind of user intervention.

Overall, new automation methods based on deep learning have been developed

and demonstrated to be effective in addressing the main weaknesses of traditional

systems where image features are extracted manually. This kind of automated

systems could provide ophthalmologists with novel strategies to identify retinal

diseases from fundus and OCT images. These presented deep feature learning

based approaches will be valuable tools to be used for these and other challenging

medical problems. Furthermore, the integration of automated grading systems

will also significantly reduce the manual grading workload and thus help towards

reducing unnecessary costly referrals.
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Chapter 1

Introduction

1.1 Background

For a long time, the study of the anatomical structure of the human eye has

been considered in order to avoid and treat the diseases of the eye. With the

development of new systems and the invention of new techniques, research into

eye disease diagnosis has accelerated and developed significantly. In particular, the

advancement of medical imaging modalities has been significantly improved with

the availability of new technologies to capture and process digital images. This

improvement has required crucial innovation in computational technologies for

the different types of image processing. In addition, medical image processing and

analysis exhibit an excellent solution as a non-invasive procedure for the diagnosis

and control of diseases.

Medical imaging research requires the analysis of images of different organs

such as the brain, bones, kidneys, heart and eye, which involves different pro-

cessing strategies. Furthermore, various types of images such as ultrasound, to-

mography and magnetic resonance images cannot all be manipulated by a single

processing technique. Moreover, the type of image acquisition process is itself

an independent and mature area of development. Research in medical imaging

has contributed to the diagnosis and avoidance of diseases such as cerebral tu-

mours, kidney dysfunctions, arthritis, retinopathy, glaucoma, age-related macular

1
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degeneration and many others.

Several retinal eye diseases such as retinopathy, glaucoma and age-related mac-

ular degeneration have been extensively studied in clinical science as they are the

most prevalent causes of blindness. Different image types such as optical coher-

ence tomography (OCT), fundus photographs and angiography are used for the

management of retinal diseases by ophthalmologists. Manual investigation of med-

ical images is a time-consuming process and therefore developing automatic image

analysis systems is a significant task. The analysis of retinal images, such as

segmentation, localisation, identification, classification and so on, provides vital

information about the health of the vision system by detecting pathological risk or

damage. The automated analysis of images can be basically fulfilled by designing

interactive and automated systems.

The purpose of this chapter is to provide an introduction to the research, show-

ing the problem statement and motivation behind the research, and highlighting

the aim and objectives. Finally, the novelty and publications emerging from this

thesis are presented. The structure of the thesis is also described in order to create

a clear road map and assist the reader in navigating the document.

1.2 Problem Statement and Motivation

The retina is vulnerable to microvascular changes as a result of many retinal dis-

eases. To prevent the vision impairment caused by retinal conditions, periodic

eye examination is recommended for patients under high risk [1]. Since diagnos-

tic and investigation procedures involve a high attention of ophthalmologists, as

well as regular monitoring of the condition, and the number of patients is con-

stantly increasing, in addition to the shortage of physicians, these demands will

eventually exceed the current healthcare capabilities. Due to the workload, hu-

man graders are supposed to grade images for several patients per day. Therefore,
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they can become easily fatigued, causing a decrease in their examination accu-

racy. Furthermore, despite firm grading guidelines, human graders are subjective

and therefore grades for certain image can vary considerably amongst different

graders [2]. Automatic image analysis algorithms based on image processing and

computer vision strategies have been gaining momentum in various medical appli-

cations and, in particular, retinal disease diagnosis. By automating the analysis

process for retinal images, more patients can be screened and referred for further

tests, allowing the ophthalmologists to have more time for patients who need their

attention. In the literature, a large number of researchers have reported various

analysis techniques for retinal images with a noticeable improvement in the per-

formance. Nevertheless, researchers face several challenges and issues which cover

different retinal image analysis aspects including localisation, segmentation and

classification. Some of the issues that should be taken into consideration include:

1. Autonomy and Independence: existing automated retinal image analy-

sis models have been based on supervised systems that work on features ex-

tracted from images manually [3], [4], [5], [6]. The performance of these sys-

tems highly depends on the type of features extracted from a specific dataset.

Furthermore, those features might be applicable for a specific dataset but

may not generalise well on other datasets. The-state-of-the-art retinal im-

age analysis has the need for automated systems that perform the analysis

of retinal images independent of any human interaction or pre-selection of

features.

2. Speed: retinal image processing tasks often require complex computations.

Although there are several retinal image analysis methodologies that achieve

a good performance, but they cost a long processing time [7], [3], [8]. Hence,

the need for time-efficient and cost-effective algorithms has become critical.

3. Performance Improvement: commercialisation of computer-aided ap-

proaches as clinical applications in the medical field is limited as it requires
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much more accurate computerised analysis systems [9]. Therefore, to achieve

the goal of considering the computerised systems as an important comple-

ment to the physicians professional knowledge and judgement in making

decisions, highly sensitive and accurate methods should be developed and

provided.

4. Robustness and Generalisation: retinal images usually contain noise due

to interference, they also have inhomogeneous intensities, blurred edges and

poorly defined boundaries. These characteristics have affected the process

of image analysis in many methods in the literature, especially in image seg-

mentation tasks [10], [11]. Therefore, development of robust methods that

continue to work well even on poor-quality images is a significant require-

ment. In addition to that, the developed methods need to generalise well to

various datasets which are captured from different imaging modalities.

Feature learning algorithms have emerged recently in the form of deep learning

including many algorithms such as convolutional neural networks (CNNs). Deep

feature learning algorithms require computationally intensive operations which are

made up of multiple matrix multiplications during the learning process. The re-

cent advancement of hardware resources represented by graphics processing units

(GPUs) has enabled researchers to develop such automated feature learning algo-

rithms. The availability of such hardware capabilities enables the mathematical

operations to be processed as parallel computations; thus, computational perfor-

mance has been significantly improved. This technology development has therefore

made it possible to propose new ways of retinal image analysis that automate the

feature extraction process at a low cost.
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1.3 Aim and Objectives

The main aim of this research is to develop automated computer-aided systems

based on deep learning that can help in image analysis to diagnose retinal diseases

such as age-related macular degeneration, diabetic retinopathy/maculopathy and

glaucoma using OCT and colour retinal fundus images. Therefore, in this project

the feasibility of feature learning algorithms has been studied. Features are learnt

from data automatically to analyse retinal images as opposed to the process in tra-

ditional feature engineering methods where the features are designed and selected

manually.

In response to the limitations mentioned earlier, in Section 1.2, the research

described in this thesis is focused on proposing novel solutions to address retinal

image analysis-related problems based on deep learning techniques. Towards this

end, the following specific objectives have been identified that are categorised

according to the image analysis task, which comprises localisation, segmentation

and classification:

1. The development of a methodology for the automated localisation of the

most important retinal landmarks: optic disc and fovea.

2. The design of automated segmentation frameworks to segment the anatomic

landmarks including the choroid, and the optic disc and cup areas.

3. The proposal of automated classification systems to detect the presence of

glaucoma , grade the severity of diabetic maculopathy, and identify the reti-

nal lesions (fluids).
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1.4 Novelty and Contribution

Novelty and scientific contribution arising from the work presented in this thesis

are reflected by developing novel approaches based on deep learning towards au-

tomating retinal disease diagnosis process. A number of high-quality publications

have also been generated and published in peer-reviewed international journals and

conferences. The main novelty and contribution aspects are outlined as follows:

1. A novel approach based on a multiscale sequential deep learning for the

simultaneous detection of the centres of the optic disc and fovea in colour

fundus images is proposed, designed and successfully implemented. This

is achieved by extracting complex data representations from retinal images

without the need for human supervision.

2. The development of a new framework for image segmentation which is tar-

geted towards EDI-OCT images of the choroid region. The developed frame-

work, which is based on clustering and deep learning algorithm, uses not only

image intensities but also automatically enhanced intensities and distance in-

formation introducing a new energy function for partitioning the image into

unlabelled clusters which should not cross the boundaries of the choroid and

achieving improved choroid segmentation performance over previous work.

3. Development of a new segmentation method based on the most recent CNN

architectures for the optic disc and cup regions in colour fundus images.

This is achieved by adapting a fully-convolutional DenseNet. Most compre-

hensive study involving five publicly available datasets are carried out. This

allows for evaluation with images from many different devices and conditions

proving the robustness of the proposed method.

4. Investigating potential application of the transfer learning concept in detect-

ing the presence of glaucoma in small dataset of colour fundus images. This

has led to utilising pre-trained weights of the CNN to extract the features of
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glaucoma and use them to train a support vector machine classifier (SVM)

to detect the presence of the disease.

5. Development of an enhanced diabetic macular oedema grading system in

which features of colour fundus images are automatically learnt through

developing a multi-stage CNN.

6. Proposing a novel framework to estimate the probability of presence of the

retinal fluids existing in OCT volumes. The proposed framework comprises

three main stages; (i) preprocessing, (ii) deep learning, and (ii) ensemble

learning and parameter selection. Furthermore, in the deep learning stage,

identification of the retinal fluids is formulated as multi-label classification

task. This is achieved through an appropriate adaptation of the Inception

CNN.

The work contribution is also reflected through publication of the following list

of papers.

Journal Publications

1. B. Al-Bander, W. Al-Nuaimy, B. M. Williams, Y. Zheng, “Multiscale Se-

quential Convolutional Neural Networks for Simultaneous Detection of Fovea

and Optic Disc ”. Biomedical Signal Processing and Control, 40:91-101, 2018.

2. B. Al-Bander, B. M. Williams, W. Al-Nuaimy, Y. Zheng, “Dense Fully

Convolutional Segmentation of the Optic Disc and Cup in Colour Fundus

for Glaucoma Diagnosis”. Symmetry, 10(4):87, 2018.

3. B. Al-Bander, B. M. Williams, W. Al-Nuaimy, Y. Zheng, “A Framework

for Automatic Segmentation of the Choroid in EDI-OCT Images using Deep

Learning and Clustering”, IEEE Transactions on Medical Imaging. Under

Revision. 2018.
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4. H. Pratt, B. M. Williams, J. Y. Ku, C. Vas, E. McCann, B. Al-Bander, Y.

Zheng, “Automatic Detection and Distinction of Retinal Vessel Bifurcations

and Crossings in Colour Fundus Photography”, Journal of Imaging, 4(1),

2017.

5. I. MacCormick, B. M. Williams, Y. Zheng, K. Li, B. Al-Bander, S. Czan-

ner, R. Cheeseman, C. Willoughby, E. Brown, G. Czanner, “Accurate Glau-

coma Diagnosis with Automated Spatial Analysis of the Cup to Disc Profile”,

Nature Scientific Reports. Under Revision. 2018.

Conference Publications

1. B. Al-Bander, W. Al-Nuaimy, M. A. Al-Taee, Y. Zheng, “Diabetic Mac-

ular Edema Grading based on Deep Neural Network,” in 19th International

Conference on Medical Image Computing and Computer Assisted Interven-

tion Ophthalmic Medical Image Analysis International Workshop MICCAI

OMIA, Greece, 2016, pp. 121-128.

2. B. Al-Bander, W. Al-Nuaimy, M. A. Al-Taee, Y. Zheng, “Automatic Fea-

ture Learning Method for Detection of Retinal Landmarks,” in 9th Interna-

tional Conference on the Developments on eSystems Engineering (DeSE),

UK. IEEE, 2016, pp. 13-18.

3. B. Al-Bander, W. Al-Nuaimy, M. A. Al-Taee, Y. Zheng, “Automated Glau-

coma Diagnosis using Deep Learning Approach,” in 14th International Multi-

Conference on Systems, Signals & Devices (SSD), Morocco. IEEE, 2017, pp.

207-210.

4. B. Al-Bander, B. M. Williams, M. A. Al-Taee, W. Al-Nuaimy, Y. Zheng,

“A Novel Choroid Segmentation Method for Retinal Diagnosis Using Deep

Learning,” in 10th International Conference on the Developments on eSys-

tems Engineering (DeSE), France. IEEE, 2017.
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5. B. Al-Bander, W. Al-Nuaimy, D.G. Parry, S. Leach, Y. Zheng, “Auto-

matic Detection of Optic Disc and Fovea using Deep Neural Network,” 26th

EASDec abstract in European Journal of Ophthalmology, UK, 2016.

6. B. M. Williams, B. Al-Bander, H. Pratt, S. Lawman, Y. Zhao, Y. Zheng,

Y. Shen, “Fast Blur Detection and Parametric Deconvolution of Retinal

Fundus Images,” in Ophthalmic Medical Image Analysis. Springer, Cham,

2017, pp. 194-201

1.5 Thesis Structure

The remaining chapters of this thesis are organised as follows.

Chapter 2 - Background

This chapter presents the literature review, and an investigation of the clinical

problems and relevant technical background. The anatomical components of the

human eye including the anatomy of the retina are explained. A description of

diseases related to the retina and an overview of the most common retinal imag-

ing techniques are also provided. The deep learning concept, architectures, and

the differences between traditional machine learning and feature learning tech-

niques are also discussed. Finally, a review of the use of deep convolutional neural

networks in medical image analysis is included.

Chapter 3 - Optic Disc and Fovea Detection

This chapter describes the developed retinal landmarks detection methodology.

Initially, existing detection and localisation of optic disc and fovea techniques are

described. Following this, the proposed method to overcome the limitations exist-

ing in the previous methods is presented. The performance evaluation technique

and experimental results are next described, demonstrating the effectiveness of

this work.

Chapter 4 - Choroid and Optic Disc/Cup Segmentation
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This chapter presents two developed segmentation methodologies. The first

method is for choroid segmentation in enhanced depth imaging optical coherence

tomography images (EDI-OCT). The second method is proposed for the optic disc

and cup segmentation from fundus images.

Chapter 5 - Retinal Disease and Lesion Classification

This chapter presents retinal disease diagnosis and fluid identification based on

deep convolutional neural networks in two types of images: digital colour fundus

and OCT. First, the system is designed to detect the presence of glaucoma in

fundus images based on features extracted by CNN to train SVM classifier. Next,

a multi-stage CNN to diagnose the diabetic maculopathy disease from fundus

images is proposed. Finally, the concept of using pre-trained weights in the CNN

and ensemble learning is considered to identify the retinal fluids: IRF, SRF, and

PED in OCT images.

Chapter 6 - Conclusions and Future Work

This chapter summarises the main findings concluding the work presented in

this thesis, and discusses the possible future research directions that can be ex-

plored based on this work.



Chapter 2

Background

In this chapter, the clinical problems and relevant technical background are pre-

sented for the benefit of the reader. The first section explains the anatomical

structure of the human eye including the retina; this is followed by a descrip-

tion of diseases related to the retina in the second section. An overview of the

most common retinal imaging techniques is provided in the third section. The

deep learning concept, deep learning architectures, and the differences between

traditional machine learning and feature learning techniques are then discussed,

concluding with a review of deep convolutional neural networks in the medical

image analysis in Section 5, followed by a short summary.

2.1 The Eye and Retinal Diseases

2.1.1 Anatomy of the Eye

The human eye is a specialised sense organ capable of receiving visual images,

which are then carried to the brain. It is shaped like a sphere, giving us the sense

of sight by reacting to light [12]. The human eye comprises the anterior segment,

which is made up of the cornea, iris and lens, and the posterior segment, which is

composed of the vitreous body, retina, choroid and the sclera. Figure 2.1 presents

a cross section of the human eye with the anatomical structure labelled.

11
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Figure 2.1: The anatomical structure of the human eye [12].

The eye processes data in a similar way to a camera. Similar to light passing

through the camera’s optics to a sensor, light reflected from an external medium

passes through the eye’s cornea, pupil and lens, and focuses onto the retina to be

mapped into meaningful information which is interpretable by the brain.

The cornea is the clear front surface of the eye which is protective outer layer

lying directly in front of the iris and pupil. It receives the incoming light which

travels through the pupil. The pupil is the centre of the iris, a muscle locates

between the cornea and the lens. The iris can contract and relax according to the

light conditions so as to allow a certain amount of the light to pass to the lens.

The lens, which is shaped like a convex disc, shrinks or stretches the light to focus

it on the retina. Subsequently, the light received by the retina is transformed into

electrical signals and analysed by the brain [13].

The cavity of the eye between the lens and retina is filled with the vitreous body,
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which is like a colourless and transparent gel. Anatomically, there are three layers

of tissue wrapped around the vitreous body which are responsible for maintaining

the shape of the eye. The outer layer is the sclera, a white tissue that covers the

whole eye excluding the cornea region with muscles and protects the inner structure

of the eye. The layer next to the sclera is the choroid, which is filled with blood

vessels that are in charge of supplying the retinal cells with the necessary oxygen

and nutrition. The inner-most layer is the retina, which comprises different layers

of cells that contain the light-sensitive cells, photoreceptors (cones and rods) and

neurons. These cells create signals that can be sent to the brain for further analysis.

The thickness of the retina is about 0.5 mm where the centre of the retina, the

fovea, has a thickness of less than 300 µm thick [14]. Figure 2.2 provides a deep

view of the anatomical structure of the human retina in cross section.

Figure 2.2: Cross section of the human retina showing the anatomical struc-
ture [15].
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From the view of the fundus photography, it is apparent that there are three

components that characterise the retina: the fovea (centre of the macula), the

optic nerve head and the blood vessels. The macula (its centre is the fovea) is

the spot where the eye has the ability to best recognise the visual details. Any

damage in this region will cause loss of the central vision. All the photoreceptors

(rods and cones) are linked to the brain through millions of nerves which leave

the eye in the optic nerve. The blood vessels provide nutrients and oxygen to the

inner layers of the retina [14]. Figure 2.3 shows a colour retinal fundus image with

the key anatomical structures denoted.

Figure 2.3: An example fundus image illustrating the key retinal anatomical
structures.

2.1.2 Retinal Diseases

There are various disorders, diseases and age-related changes that may affect the

vital tissue in the eye, the retina. These issues can affect the vision of the eye
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and subsequently cause blindness. Some of the most common retinal diseases are

discussed below.

Age-related Macular Degeneration

Age-related macular degeneration (AMD) is the leading cause of irreversible visual

impairment worldwide. This condition is common in people over 50 years old and

causes damage to the central vision of the eye. In the UK, it affects 600,000 people

currently and it is estimated that almost 700,000 patients will suffer from AMD

by 2020 because of ageing population [16].

Figure 2.4: Vision with Age-related macular degeneration (AMD). AMD
causes loss of sight in the centre of the field of vision [17].

It has a major effect on the centre of vision, the macula, where vision becomes

increasingly blurred, as shown in Figure 2.4. AMD can be mainly classified as

either dry AMD in which gradual loss of visual acuity can result, or wet AMD,

which can be considered the type that most threatens the vision. Although in the

dry form there are limitations in the vision that happen at night or under poor

illumination, there is no leaking of blood or serum. In wet AMD, abnormal blood

vessels start to appear under the macula and damage its cells [18].
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Figure 2.5: Fluid leakage affecting the retina [19].

One of the anatomic changes associated with wet AMD presence is accumulat-

ing fluids (shown in Figure 2.5) as a result of decreases in the outflow or increases

in the inflow of fluid. Clinically, three types of fluids are distinguishable in medical

images: Intraretinal fluid (IRF), Subretinal fluid (SRF) and Pigment Epithelial

Detachment (PED) [20]. The fluids visualised using optical coherence tomography

(OCT) images are shown in Figure 2.6.

Figure 2.6: Fluids as visualised in OCT images [19]. IRF: Intraretinal fluid,
SRF: Subretinal fluid, PED: Pigment Epithelial Detachment.
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Glaucoma

Glaucoma is one of the chronic retinal diseases, which results from damage to the

optic nerve head due to hypertensive intra-ocular pressure (IOP) of the eye. By

2020, it is predicted to affect around 80 million people worldwide. In the early

phases of the disease, patients do not have symptoms of vision loss while as the

disease progresses, the loss of peripheral vision occurs (as shown in Figure 2.7).

In the advanced stage of glaucoma, patients may suffer total blindness [21].

Figure 2.7: Visual loss in glaucoma. Visual field loss begins at the periphery
and moves towards the centre [22].

In fundus images, the optic nerve head (ONH) is divided into two regions:

a peripheral zone called the neuroretinal rim and a central bright region called

the optic cup, as shown in Figure 2.8. One of the indicators of glaucoma is the

enlargement of the cup zone with respect to OD, which can be estimated by

measuring the vertical cup to disc ratio (CDR) [23].

Diabetic Retinopathy and Maculopathy

Diabetic retinopathy (DR) is a condition that is associated with diabetes mellitus

where high blood glucose levels cause damage to the vessels supplying blood to

the retina. It can cause blood vessels in the retina to leak fluid or haemorrhage
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Figure 2.8: Fundus image shows the optic nerve head from a healthy subject
[24].

(bleed), distorting vision. In its most advanced stage, new abnormal blood vessels

appear on the surface of the retina, which can lead to scarring and cell loss in the

retina. It is the main reason of poor vision in people with type 1 diabetes or type

2 diabetes. The major issue with this disease is that the patient has no signs of

any degradation in the vision at the early stages of the disease. It can be broadly

divided into two stages: non-proliferative DR (NPDR) and proliferative DR (PDR)

where, with NPDR, damage in the retinal blood vessels occurs when, in PDR,

new abnormal blood vessels start to appear. Many retinal lesions are taken into

consideration while determining the severity of the DR such as microaneurysms

(MAs), haemorrhages (HMs), exudates (hard and soft) (EXs) and intra-retinal

microvascular abnormalities (IRMA) [25, 26].

It is worth pointing out that DR has been classically considered a microvas-

cular disease of the retina. However, there is emerging evidence to suggest that

retinal neurodegeneration is an early event in the pathogenesis of DR which could

participate in the development of microvascular abnormalities [27–29]. In general,

there are three possible relationships between microvascular DR and diabetic reti-

nal neurodegeneration (DRN): i) microvasculopathy causes neurodegeneration; ii)
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neurodegeneration causes microvasculopathy or iii) they are mutually independent

[30].

Figure 2.9: Abnormal vision effected by diabetic macular oedema condition
associated with diabetic retinopathy [17].

DR can cause a breakdown in the inner endothelial blood-retinal barrier (BRB)

which results in diabetic macular oedema (DMO) disease [31]. DMO, also known

as Diabetic Maculopathy (DM), usually develops at any time during the progres-

sion of DR, as shown in Figure 2.9. According to the Early Treatment Diabetic

Retinopathy Study (ETDRS), DMO is characterised by the thickening of the mac-

ula, hard exudate (HE) and blot haemorrhage (HA) [25]. Clinically, the severity of

DMO is mainly divided into two classes: non-clinically significant macular oedema

(non-CSMO) and clinically significant macular oedema (CSMO). Non-CSMO is

a mild class of maculopathy in which the distance between the lesions and the

centre of the macula is greater than one optic disc diameter. It is characterised by

retinal thickening and hard exudate as clinical features. CSMO is the severe form

of maculopathy in which lesions (blot haemorrhage and exudate) occur within a

distance of less than one optic disc diameter from the centre of macula [25, 32].

Early detection and treatment of the retinal conditions helps in preventing the
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progression of the disease. Considering the increasing number of people suffer-

ing from these conditions, relying on medical devices to diagnose and detect the

disease may become infeasible. Extensive research using various image process-

ing techniques is being applied to overcome the aforementioned problem for early

detection of retinal diseases.

2.2 Retinal Imaging Modalities

To enable ophthalmologists to diagnose retinal diseases accurately, a vast array of

imaging cameras dedicated to capture retinal images have been developed. The

principles of some imaging modalities are briefly introduced below.

2.2.1 Fundus Photography

Fundus photography is the earliest type of retinal imaging techniques. Its first

appearance was in the mid-1800s when the ophthalmoscope was introduced, in

1861. In fundus photography, a photograph of the back of the eye (i.e. fundus)

is captured. To image the retina, specialised fundus cameras are used where the

central and peripheral retina, macula and optic disc are the main structures that

can be visualised on the photo. Many manufacturer of fundus camera are currently

available such as Topcon, Zeiss and Canon. Fundus retinal images can be mainly

classified into colour fundus and monochromatic fundus.

Colour fundus photography is obtained using a customised camera attached to

a specialised microscope with mirrors and lenses. The fundus cameras are designed

to image the interior surface of the eye by illuminating the retina and screening

it in full colour. The importance of the colour fundus photograph in imaging

belongs to its crucial role in documenting and recording the presence and progress

of diseases such as diabetic retinopathy and maculopathy, age related macular

degeneration, glaucoma and retinal detachment in the optic nerve, retina blood
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vessels, macula, optic disc and posterior pole (the fundus) [33]. Figure 2.10 shows

a colour fundus image captured using a Zeiss FF450+ fundus camera.

Figure 2.10: Colour fundus image captured by Zeiss camera.

The monochromatic/red free photography utilises infrared light to illuminate

the retina instead of the white light used in colour fundus photography. In order

to improve the level of observation and allow a good contrast of viewing for some

lesions and abnormalities in the retina, a filter is used to prevent red wavelengths

of the light in this type of image. Monochromatic images can be captured by a

monochrome sensor which produces grayscale images as it is more light sensitive

than colour sensors [34].

2.2.2 Optical Coherence Tomography

Optical Coherence Tomography (OCT) visualises the changes in the layers of the

retina via cross-sectional tomographic imaging of the internal structure. OCT

has emerged as an objective tool that provides detailed 2-dimensional and 3-

dimensional images for the retina. The principal work of OCT is to provide

non-invasive and non-contact tomographic imaging of the retina tissue by using



Chapter 2. Background 22

low-coherence interferometry. It has been widely used in clinical practice to mea-

sure the thickness and volume of the retina and carry out quantitative assessment

with high resolution and scan speed [35].

The earliest use of OCT was in the mid-1980s when measurements of one-

dimensional (axial information) which is equivalent to ultrasound A-scans were

demonstrated. In 1991, the generation of two-dimensional images (cross-sectional)

which is equivalent to ultrasound B-scans was demonstrated by [36]. Since that

time, OCT has quickly developed as an optical medical diagnostic imaging tech-

nique. Acquiring three-dimensional OCT images and providing volumetric infor-

mation is a crucial advance because it provides comprehensive structural details.

These details and information can be used for generating cross-sectional images

that precisely give retinal layer thicknesses and volumetric views of retinal struc-

ture analogous to magnetic resonance (MR) images. One of the earliest uses of

3D-OCT retinal images called en-face OCT was demonstrated using time domain

detection [37].

Different types of OCT imaging modalities have been developed such as time

domain (TD-OCT) and frequency domain (FD-OCT) techniques. In time domain

OCT, the path length of the reference arm is varied in time where the most popular

TD-OCT configurations are full-field OCT and A-scan acquisition while in FD-

OCT (Fourier domain), swept-source and spectral are the most commonly utilised.

Over the years, several OCT imaging techniques for both TD-OCT and FD-OCT

have been created and developed such as polarisation-sensitive and spectroscopic

OCT.

Nowadays, many commercial OCT devices are available such as Cirrus, Hei-

delberg’s Spectralis, Topcon, Optovue and Stratus. To compare the OCT image

variability among different manufactures, three spectral-domain OCT images, Cir-

rus, Spectralis and Topcon, for a normal retina are shown in Figure 2.11.
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Figure 2.11: Normal retina imaged with OCT from three different devices.
(a) Cirrus (b) Spectralis (c) Topcon [19].

2.3 Medical Image Analysis

Following the description of some retinal imaging modalities in the previous sec-

tion, the aim is now to explain some image processing techniques used to analyse

and process the medical images. Recently, the automatic detection and anal-

ysis of retinal diseases from digital images has received increasing attention in

the medical image processing community. This may support the development of

computer-aided diagnosis (CAD) tools for the better management of eye disease.

For several decades, many techniques of digital image processing and analysis

have been developed to extract meaningful information from the images. Gener-

ally, computer image processing and analysis comprises the fields of imaging and

computer vision with heavy exploiting of signal processing and pattern recogni-

tion. Digital image processing facilitates the use and development of much more

sophisticated algorithms which can be used for different purposes.

In this section, some low-level image analysis techniques such as enhancement

and denoising for image pre-processing purposes are described and some high-level

image analysis strategies such as segmentation, detection, and classification which

are taken into consideration through the thesis.
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2.3.1 Low-level Image Analysis

Low-level image analysis algorithms are often a pre-requisite step to make images

more appropriate for further analysis by high-level analysis algorithms.

Enhancement

Image enhancement has been widely used in many applications of image process-

ing where the principal objective is to improve the visual appearance of the images

and make them more interpretable for humans and suitable for further analysis.

Enhancement can be achieved by sharpening the image features such as bound-

aries, edges or contrast. The implementation of image enhancement techniques

can be based on either spatial or frequency domain.

Typically, image enhancement algorithms are mainly classified into enhance-

ment by point processing, enhancement by spatial operations, enhancement by

transform operations and pseudo-colouring [38–42]. In point processing enhance-

ment methods, an immediate manipulation is applied to the intensity image pixels

such as contrast stretching, window slicing and histogram processing (equalisa-

tion, specification and local enhancement). However, in spatial operations, spatial

masks such as smoothing and sharpening filters are utilised over the pixels of the

images. In contrast to the spatial domain, the frequency domain operations are

used by applying the Fourier transform on the image pixels using a filter transform

function. An example of original and contrast-enhanced image by contrast-limited

adaptive histogram equalisation (CLAHE) algorithm [43] is shown in Figure 2.12.

Different enhancement techniques such as contrast, histogram specification and

filtering have been considered in this thesis to provide a better representation of

the images.
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Figure 2.12: An example of contrast image enhancement. (a) Original (b)
Enhanced.

Noise Reduction

Generally, medical images are acquired by instruments which are prone to be

contaminated by noise such as Gaussian, salt and pepper, poisson, speckle noise,

etc.; causing degradation to the images. To manipulate and compensate for image

corruption, many denoising algorithms have been proposed to prepare the images

before passing them for further analysis. However, implementation of accurate

image denoising algorithms still remains a challenge because the noise removal

causes blurring and artefacts to the images.

Image denoising approaches can be broadly grouped into two basic areas, filter-

ing such as spatial and frequency domain filtering [44–46], and variational energy

minimisation techniques [47, 48]. Figure 2.13 shows the use of a filtering technique

in image denoising.

2.3.2 High-level Image Analysis

High-level image analysis algorithms are concerned with giving a higher level of

interpretation to the images. This interpretation can be achieved by detecting

an object in an image, classifying and diagnosing the severity of a disease by

analysing the disease’s characteristics in an image, or locating the area of interest

by segmenting the desired object in an image.
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Figure 2.13: Image denoising by filtering technique. (a) Original image (b)
Image corrupted with Gaussian noise (c) Denoised image by Wiener filter.

Segmentation

Image segmentation is the process of dividing an image into regions in which the

pixels have common characteristics such as colours, intensity, texture and any

other common feature by assigning a label to every pixel such that pixels that

share the same characteristics are allocated the same label. There has been a

significant amount of research in developing segmentation techniques for problems

in many areas including medical imaging, astronomical imaging and industry [49].

Segmentation algorithms can be widely categorised into five main techniques:

thresholding [50], edge-based methods [51], region-based methods [52], machine

learning [53] and model based methods [54]. Each of these segmentation techniques

has distinctive advantages and disadvantages. Thus, to obtain better segmentation
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for the objects in the medical images, a mixture of these techniques has been

adopted and adapted in this thesis.

Classification/Detection

Image classification refers to the task of assigning an input image one label from

a fixed set of categories/labels while object detection is defined as the process

of finding a specific object in an image. Many techniques have been introduced

and developed to accomplish these tasks. The techniques are based on machine

learning algorithms by training a system to recognise or classify an image/object

and then provide unseen input image to be classified/object recognised.

Depending on the goal behind designing machine learning algorithms, which is

either for synthesis/generation or recognition/classification, machine learning tech-

niques can be broadly categorised as generative, discriminative and hybrid meth-

ods. The main difference between generative and discriminative models is that

the discriminative models learn the conditional probability distribution p(y|x),

i.e. learn the boundary between classes, while the generative models learn the

joint probability distribution p(x, y), i.e. model the distribution of the classes and

how the data were generated [55].

Depending on the availably of true labels during the learning stage, machine

learning algorithms fall under two main categorises: supervised and unsupervised

learning. In supervised learning and during the training stage, the real image labels

of images are fed along with the images into the classifier while, in unsupervised

learning, no labels are given to the learning algorithms [56]. More details about

such concepts are given in the next section.
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2.4 Artificial Intelligence, Machine Learning and

Deep Learning

Artificial intelligence is implementing technologies that behave like a human, i.e.

algorithms that do something deemed smart. While achieving such a goal still

seems to be in the distant future, many important tools and strategies have been

implemented, developed and successfully applied to a wide variety of scientific

fields and problems such as self-driving cars, smart homes, personal assistants

and many other emerging technologies. Machine learning (ML) is a branch of the

artificial intelligence field that uses programs to learn from datasets. In fact, ML

has now become widespread technology and there is a wide variety of algorithms

for implementing such intelligent systems.

An emerging research trend in ML is deep learning (DL). The origin of the

term deep learning term come from the new strategies implemented to generate

deep hierarchies of non-linear features whilst overcoming the vanishing gradients

problem. The vanishing gradient issue [57] appears in the very deep layers where

the gradients become too small to provide a learning signal and get stuck in ap-

parent local minima. This problem has been alleviated in the developed deep

learning architectures so that architectures with many layers can be trained effec-

tively [58]. Figure 2.14 shows a Venn diagram that explains the relation among

artificial intelligence, machine learning and deep learning.

find an appropriate representation of data in order to perform a machine learn-

ing task

Many of the new computational techniques rely on the ability of Graphical Pro-

cessing Units (GPUs) to quickly run complex algorithms in parallel form. GPUs

have become the platform for training large and complex deep learning-based sys-

tems where the success of deep learning networks has been greatly accelerated. It

is shown that, contrary to the raw processors which are not efficient, it is adequate



Chapter 2. Background 29

Figure 2.14: Deep learning is a subset of representation learning which aims
at finding an appropriate representation of input data in order to perform a
machine learning task which is in turn a subset of artificial intelligence. Adapted

from [59].

to train deep architectures without major difficulties by utilising GPUs with acti-

vation functions that give better gradient flow. The main difference between the

traditional multi-core processors and GPUs is that traditional processors typically

contain 4-24 general purpose Central Processing Unites (CPUs) but GPUs might

have 1000-4000 specialised data processing cores as explained in Figure 2.15. This

makes GPUs highly parallel and ideal for floating-point vector operations [60].

2.4.1 Feature Engineering and Learning

In traditional machine learning methods and for a long time, the features of im-

ages have been extracted manually through adopting various feature-engineering

approaches. Feature engineering can be defined as the art of extracting useful

and important patterns from data. Extracting features makes it easier for ma-

chine learning models to distinguish between classes. This feature is useful for the

machine learning algorithms because it limits the number of labels that need to
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Figure 2.15: CPUs versus GPUs. Each green square represents a core in the
GPU while the blue square refers to CPU [60].

be considered for good classification. Therefore, to achieve good results for most

predications tasks, feature engineering is the most important skill [61].

Traditional image classification and prediction methods usually utilise hand-

designed image features, such as colour, edges, shape, texture, local binary pattern

(LBP) and histograms of the oriented gradients (HOG), and machine learning clas-

sifiers and regressors such as k-Nearest Neighbours (k-NN) algorithm, Multi-class

Support Vector Machines (SVM) and Artificial Neural Network (ANN). After ex-

tracting the features, a classifier is trained to complete the classification, detection

or prediction task for the images.

However, the existing generic guidelines for extracting features from different

datasets are unable to fulfil the requirements of different datasets. For example,

the features that are usable for one dataset are often not usable for other datasets.

Therefore, the search for new algorithms that are capable of learning features

automatically has become a key requirement for developing more accurate machine

learning analytics.
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Figure 2.16: Deep learning versus machine learning [62].

To overcome the problems of the feature engineering techniques, feature learn-

ing from data methods have been proposed and developed. The feature learning

can be defined as the process of finding the common patterns in the data which

are significant to distinguish among classes. Feature learning technique is seen as

engineering and extracting of the features automatically by algorithms to be used

in the regression and classification tasks [63]. Figure 2.16 shows the concept of

traditional machine learning versus feature learning algorithms.

Generally, the extracted features play an important role in many computer

vision tasks such as object recognition/classification, localisation, object detection

and image segmentation where the accuracy of the implemented algorithms greatly

depends on the type and meaning of the features.

2.4.2 Deep Learning Architectures

Various deep learning architectures such as deep belief networks (DBNs) [64], deep

Boltzmann machines (DBMs) [65], variational autoencoder [66], generative adver-

sarial networks (GAN) [67] and Long short-term memory recurrent neural network
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architectures (LSTM) [68] as unsupervised generative models, and deep convolu-

tional neural networks (CNNs)[69] as supervised discriminative models have been

introduced and developed. These architectures have been widely applied to many

applications like automatic speech recognition [70], natural language processing

[71], face generation [72], visual recognition and description [73], image-to-image

translation [74], generation images [75] and 3D object detection [76] where they

have been shown to produce state-of-the-art results for various tasks.

In this thesis,a supervised discriminative architecture- CNNs has been adopted

as feature learning algorithm because the convolutional neural layers have credible

ability in detecting good features in the images and forming hierarchies of non-

linear features where their complexity grow in while going deeper through the

network. The main idea of CNN is stacking such very deep hierarchies of non-

linear features because complex features cannot be learnt from a few layers. For

images, it can be mathematically shown that edges and blobs are the best features

that can be extracted in the earlier layers. To generate features that contain more

information, earlier features (edges and blobs) are transformed again in order to

obtain more complex features that consist of more information to discriminate

among the classes, as shown in Figure 2.17.

Figure 2.17: Features are generated by a feature learning technique. From
left to right: low-level feature, mid-level-feature, and high-level feature [63].
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2.4.3 General Components of Deep CNNs

A typical CNN comprises one or more convolutional layer alternated with pool-

ing layers (subsampling layers) and then followed by fully connected layers (FC)

and finally a classification/regression layer. CNNs can be considered as a special

form of feed-forward multilayer perceptron neural networks (MLPs). However, the

number of parameters that need to be tuned is reduced to a level that becomes

tractable for the current computing power. For example, in convolution layers, a

limited number of convolutional kernels is needed. Furthermore, whereas multi-

layer perceptron neural networks perform a composition of weighted sum of inputs

and an activation function, CNNs perform a composition of convolution of inputs

with trainable kernels and an activation function.

Below is a description to the main components of the CNN model including

layers, function, and learning process and its set-up:

1. Convolutional Layer: the convolutional layer [77] represents the core

building block of a deep CNN. The neurons in the convolutional layer con-

nect to local regions of the input and compute their outputs based only on

these local regions. This layer is parameterised by a set of learnable filters

(kernels) convolved over the width and height of the input image and the

result of each filter is called a feature map as shown in Figure 2.18.

Given an input volume size Ni × Ni × Di, the filter or receptive field size

F , the depth of the convolutional layer K, the stride parameter S and the

amount of zero padding Pi, the number of neurons in the output volumes

No ×No ×Do can be calculated by the formula

No =
(Ni − F + 2P )

S + 1
;Do = K (2.1)
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Figure 2.18: Diagram shows convolution operation between a sub-image (I)
and kernel (K) [78].

where the value of the stride parameter S should be chosen such that No is

an integer. The convolution layers use learned filters k over the input Xi by

considering all possible offsets in the input image:

Xo = F (
∑
i

Xi ∗ ki + b) (2.2)

where F is a non-linear activation function. Figure 2.19 shows how the

number of parameters is calculated in the convolutional layers.

Figure 2.19: An example of a convolutional layer. Let the input is 32 feature
maps and the output is 64 feature maps, the size of the filter is 3× 3 then the
size of filter in the input space is 3× 3× 32. Thus, the total number of weights

is 3× 3× 32× 64.
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2. Pooling Layer: the feature map resulting from a convolution layer is usually

subsampled with R × R non-overlapped regions (windows), where R is a

hyper-parameter that can be empirically defined by the user. This window

is shifted over the feature map: each time, the value within this window that

is most responsive (highest activation value) is selected while other values are

neglected as Max-pooling scheme. In the Average-pooling scheme, while the

window is shifted over the image, the elements located within the window

are averaged and considered as the output of this layer. The purpose of

this layer is to speed up convergence by reducing the number of parameters

and amount of computation in the deep neural network, and to provide

translation invariance [79]. Given an input volume of size Ni × Ni × Di,

max-pooling window size R×R, and the stride parameter S, the number of

neurons in the output volumes No ×No ×Do is calculated by the formula

No =
(Ni −R)

S + 1
;Do = Di (2.3)

Figure 2.20 presents the two types of the pooling, Max and Average pooling,

witha window size of 2× 2.

Figure 2.20: Max and Average pooling layer.

3. Activation Functions: this layer is also commonly referred to as the non-

linearity layer. This layer follows the convolutional layer and is applied
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to each kernel. Rectified function is the one most commonly used as an

activation function for deep neural networks because it is less susceptible to

vanishing gradient problems [80]. A unit employing the rectifier is called a

Rectified Linear Unit (ReLU) which is defined by the formula

θ : x→ max(0, x) (2.4)

The smoothed version of the ReLU is called the Softplus function, which can

be represented as follows:

f(x) = ln(1 + expx) (2.5)

Figure 2.21 explains the principal work of the ReLU activation function by

setting the negative values into 0 and retaining the positive values.

Figure 2.21: ReLU activation function work

Other non-linearities such as tanh or sigmoid can also be used rather than

ReLU, but ReLU has been found to achieve better performance in most

cases.

4. Fully Connected Layer: this usually represents the final layers of a deep

neural network architecture. Each node in the fully connected layer is com-

pletely connected to all of the nodes in the previous layer and the weights
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of these links are specific to each node. The number of neurons in the fully

connected layers is considered as a hyper-parameter to be empirically chosen.

5. Normalisation Layer: the distribution of the input changes during the

learning stage due to parameter updates which result in an internal covariate

shift problem that slows down the converging process. To ensure that the

model can continue training on the same input distributions (inputs are

whitened, i.e. they have zero mean and unit variance, and decorrelated)

and to make the network convergence faster, then normalisation becomes a

crucial step.

In [81], it was shown that this idea can be simply achieved by performing

standardisation of each input mini-batch and the statistics are collected from

the input data during the learning process, which is called batch normalisa-

tion (BN). The collected statistics are then used for the processing, which

is also has an advantage as a regulariser, keeping the weights of the deep

network small.

Consider x is the layer that we want to normalise, d is the dimensions of

layer x where x = (x1, ...xd). Then, we can normalise the kth dimension as

follows [81]:

x̂k =
xk − E[xk]√
V ar[xk]

(2.6)

So, in order to scale and shift the resulted normalised input, x̂ is transformed

by:

yk = γkx̂+ βk (2.7)

Where γ and β are parameters to be learned. The normalisation layer is

usually added just before the non-linearity (activation function). Assume

a model z = f(Wx + b), where W , x, b and f(.) are the parameters to



Chapter 2. Background 38

be updated, the network input, the network bias and activation function,

respectively. Thus, it becomes z = f(BN(Wx)) with batch normalisation,

where β of the BN taking over the role of the bias b.

6. Softmax Function: for the classification task, given the input feature map,

the Softmax function is a normalised exponential probability of class obser-

vations which assigns probability of input x belongs to class l. Softmax

function is a generalisation of the binary form of Logistic Regression. This

function is used widely in multiclass classification problems such as linear

discriminant analysis, naive Bayes classifiers, and in the final layer of artifi-

cial neural networks. It can be given by:

ρ(z)i =
expzi∑l
l=1 expzl

(2.8)

where z is a vector of the inputs to the output layer, i indexes the output

units, so i = 1, 2, ..., l.

7. Regularisation: there are several regularisation methods used in CNNs

to prevent or decrease the overfitting problem such as L2 norm regularisa-

tion, L1 norm regularisation and Dropout. The most common regularisation

method is L2 norm, which can be implemented by penalising the squared

magnitude of all parameters directly in the loss function. For every weight

in the network, the term 1
2
λw2 is added to the cost function, where λ is

the regularisation strength. In contrast, in L1 norm form, for each weight,

the term λ|w| is added to the objective function. L1 and L2 norm regular-

isation on least square loss function are defined by the following equations,

respectively:

w∗ = argminw

∑
j

(
t(xj)−

∑
i

wihi(xj)

)2

+ λ

k∑
i=1

|wi| (2.9)
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w∗ = argminw

∑
j

(
t(xj)−

∑
i

wihi(xj)

)2

+
λ

2

k∑
i=1

w2
i (2.10)

A dropout layer [82] is an effective regularisation strategy that stochastically

adds noise to the hidden layers of deep neural networks. More specifically, the

overfitting problem can be alleviated by randomly dropping out the output

of each hidden unit with a certain probability at each training step (i.e.

multiplying hidden activations by Bernoulli distributed random variables

that take the value 1
p

with probability p and 0 otherwise; p = 1 means no

drop out and low values of p imply more dropout). A deactivated unit will

not take part in forward propagation or backpropagation in the training

stage. At the testing stage, all of the units are re-enabled by multiplying

them with one minus the probability p of masking.

Given a neural network with L hidden layers, l ∈ 1, ..., L is the index of the

hidden layers in the network, and i is any unit in a hidden layer. Let z(l)

denote the vector of inputs into layer l, y(l) denotes the vector of outputs

from layer l, W (l) and b(l) are the weight and biases at layer l, and f is any

activation function. The feed-forward operation can be represented by:

z
(l+1)
1 = w

(l+1)
i yl + b

(l+1)
i ,

y
(l+1)
i = f(z

(l+1)
i ), (2.11)

With dropout, the feed-forward operation becomes

r
(l)
j ∼ Bernoulli(p),

ỹ(l) = r(l) ∗ y(l),

z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i ,
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y
(l+1)
i = f(z

(l+1)
i ). (2.12)

where ∗ denotes an element-wise product. Figure 2.22 explains the mecha-

nism of deactivation of some nodes during the training after applying dropout.

Figure 2.22: Comparison between two networks without and with dropout.
(a) Without dropout (b) With dropout [82].

8. Loss Function: the function that should be optimised and minimised

through the network learning process. Given the true and predicted labels of

an image, the loss function is responsible for guiding the training process by

measuring the predication error for an input image. There are many types

of loss function which are used in different machine learning problems like

L1, L2, Hinge, (log) cross entropy, etc. For classification problems, mean

squared error L2 (MSE) and cross entropy loss are widely used while for

regression problems L1 loss is usually used. As an example, cross entropy

loss function is given in the following equation:

Hŷ(y) = −y log(ŷ)− (1− y) log(1− ŷ) (2.13)

Where ŷ is the ground truth label and y is the prediction result of the

classifier.
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9. Weight Initialisation: after building the CNN and before starting the

training, the parameters (weights) of the network should be initialised. Weight

initialisation has a great impact on the convergence rate and on the final

quality, and performance of a network. Many weight initialisation strategies

for CNN have been introduced where they are usually chosen to be small and

centred around zero. One way to characterise various initialisation strategies

is given by

w ∼ α.υ[−δ, δ] + β.η(0, δ) + γ with α, β, γ ≥ 0 (2.14)

Where υ[−δ, δ] refers to the uniform distribution in the range [−δ, δ] and

η(0, δ) is the normal distribution with mean zero and variance δ. Initiali-

sation by Gaussian distributions, constant values [83], uniform distribution,

orthogonal and sparse matrix [84], Xavier [85] and He [86] are some exam-

ples of weight initialisation schemes. TABLE 2.1 shows some commonly used

weight initialisation schemes.

Table 2.1: Weight initialisation schemes. nin, nout is the number of nodes in
the previous and next layers.

Method α β γ δ

Constant α = 0 β = 0 γ ≥ 0 N/A

Xavier/Glorot uniform α = 1 β = 0 γ = 0 δ =
√

6
nin+nout

Xavier/Glorot normal α = 0 β = 1 γ = 0 δ =
√

2
nin+nout

He α = 0 β = 1 γ = 0 δ =
√

2
nin

To study the effect of the parameter initialisation method, a comparison of

many initialisation techniques is presented in Figure 2.23 [87]. In the left-

most plot of the figure, the parameters are initialised by setting them to zeros

but the network does not have the ability to learn. In the middle case, the

weights are initialised from a normal distribution with a standard deviation

of 0.4, while in the third plot they are initialised from normal distributions
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with variances that are inversely proportional to the number of inputs into

each neuron. In the second case, the loss improves over time but the rate of

convergence is very low. In the third plot, the convergence has been highly

accelerated.

Figure 2.23: Training loss of CNN over 12 epochs with different weight ini-
tialisation schemes [87].

10. Learning/Training: the above explained components - data, connectivity,

loss and activation functions and layers - are the static parts of the CNN. To

consider dynamic part of the CNNs, the process of parameters learning and

finding an optimal objective function are introduced. The CNNs are typi-

cally learned by minimising a loss function with respect to the parameters

(weights) of the network based on a batch of training images using a certain

optimisation strategy. The training of deep CNNs is almost the same learn-

ing as the traditional neural network (ANN) (i.e. gradient-descent method

combined with a backpropagation algorithm). However, due to some special

mechanisms in CNNs such as weight sharing, local receptive field, and pool-

ing, slight changes in the gradient calculation in backpropagation are needed

[88]. In backpropagation of CNNs, the matrix multiplications are replaced

by convolutions and the pooling layer computes the error which is acquired

by a single value (winning value). This value is either the maximum value

within a window if it resulted from applying Max-pooling or the average

value if it resulted from applying Average-pooling. Therefore, the backward
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propagations in CNNs differ depending on what layer is being propagated

through.

Most relevant optimisation strategies for CNNs are based on Stochastic Gra-

dient Descent (SGD), which updates the parameters according to the rule:

W
(t+1)
ji ← W

(t)
ji +4W (t+1)

ji with W
(t+1)
ji = −η ∂EB

∂Wji

(2.15)

Where η ∈ (0, 1) is called the learning rate.

Optimisation algorithms based on SGD such as Momentum [89], AdaGrad

[90], AdaDelta [91], RMSProp [92] and Adam [93] are proposed and de-

veloped to reduce the convergence time by using a certain adjustment of

learning rate. For example, the Momentum scheme can be represented as

follows:

W
(t+1)
ji ← W

(t)
ji +4W (t+1)

ji with W
(t+1)
ji = −η ∂EB

∂Wji

+ α4W (t)
ji , α ∈ [0, 1]

(2.16)

11. Data Augmentation: it increases the size of data artificially (the CNN

requires a huge data size to be trained) in order to decrease the possible

overfitting problem. In every epoch (single pass of all training data through

the network) during training, the image is randomly augmented. There are

many ways to perform data augmentation, such as random rotation, ran-

dom horizontal and vertical flipping, random translations, random zooming

and random shearing. It has been noticed that applying a variety of data

augmentation strategies can boost the network performance [94].

12. Transfer Learning: this can be defined as the transfer of knowledge from

one learned task to a new task. Deep convolutional neural networks typically

demand a huge data size in order to be trained but sometimes a provided

dataset may not be adequate (too small) to train a full network. While data
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augmentation is found to be effective in doubling the size of data artificially,

transfer learning has also proven to be a valuable option in order to deal

with the lack of enough annotated images. Transfer learning strategy can be

achieved by fine-tuning the pre-trained CNN which was trained on a huge

data size through removing top layers (the fully connected layers) and re-

training the CNN by initialising it from the trained weights rather than from

scratch. Another way to exploit this strategy can be achieved by considering

the convolutional layers of the pre-trained CNN as a fixed feature extractor

and then passing these features into a linear classifier to train it [95].

13. Software/Hardware Designing: many libraries have been introduced to

design and setup the operations and components of the deep neural networks

by allowing a high-level implementation rather than worrying about low-level

efficient implementations. These libraries have alleviated the need for im-

plementation from scratch, which can be time consuming. The open source

frameworks such as Caffe [96], Tensorflow [97], Theano [98] and Torch [99]

which are written in different programming languages like Python, C/C++

and Java, provide efficient GPU implementations (parallel computing) for

the important components of the CNNs. Also, there are many packages

written based on one or more of these libraries such as Lasagne (https:

//github.com/Lasagne/Lasagne) and Keras (https://keras.io/).

For hardware, the NVIDIA Company has launched many GPUs and suites of

tools such as CUDA parallel programming platform to help in running deep

learning software. Figure 2.24 shows one of the GPUs invented by NVIDIA

[100].

All of the experiments in this study were conducted on an HP Z440 run-

ning Linux Mint with 16GB RAM, an Intel Xeon E5 3.50GHz processor

and NVIDIA GTX TITAN X 12GB GPU card with 3072 CUDA parallel-

processing cores. Python deep learning library; Lasagne, built on the top

https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne
https://keras.io/
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Figure 2.24: NVIDIA GPU which was used to run our experiments [100].

of Theano [98] was used to implement and train our convolution neural net-

works. Lasagne has efficient implementations of each of the CNN layers, a

diversity of activation functions, many optimisation methods, and transpar-

ently supports training networks on GPUs.

2.4.4 Deep Convolutional Neural Network Architectures

The very first convolutional neural network was developed in 1998 by Yann LeCun

and called LeNet [77]. The architecture of LeNet was very fundamental, comprising

of 3 layers, convolutional filters followed by subsampling operations with non-

linearities in form of tanh or sigmoid. With very slow CPUs available during that

time, it was tricky to train the network. In the years from 1998 to 2010, there was

no or very slow progress in developing of deep neural network. Availability more

and more data and developing the computing power represented by GPUs made

deep neural network progress by tackling the difficulties that had been encountered

a decade ago.
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In 2010, Ciresan et al. [101] published the first implementation of GPU neural

network in hand-written digit recognition application. In 2012, Alex et al. [69]

released AlexNet (shown in Figure 2.25) which was a deeper and wider version of

LeNet and won the difficult ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) (1.2 million images and 1000 classes). AlexNet was a significant break-

through with respect to the previous methods and following this network, a variety

of CNN models have been produced but all of them are attributed to Alex’s work.

Figure 2.25: AlexNet architecture [69].

Recently, many convolutional neural networks (CNNs) architectures have achieved

state-of-the-art performance due to their ability to learn hierarchical features from

raw input data without the need of hand-crafted features such ZF net (2013) [83],

Network In Network (NIN) (2013) [102], VGG Net (2014)(shown in Figure 2.26)

[103], GoogleNet (Inception) (2015) [104], Spatial transformer net (2015) [105],

Spectral net (2015) [106], Fully CNN (2015) [107], U-net (2015) [108], ENet (2016)

[109], ResNet (2015) [110], and DenseNet (2017) [111].

Figure 2.27 shows different CNN models comparing them in terms of the num-

ber of operations required for a single forward pass and number of parameters

versus the accuracy in the ImageNet [113] challenge. These deep convolutional

neural net (convnet) architectures have succeed in improving many computer vi-

sion applications such as image classification [69], object recognition [114], key-

point localisation [115] and many other applications [116], [117].
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Figure 2.26: VGG architecture [103].

Figure 2.27: Performance of different CNN models in a classification task
[112].
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While the main layers, functions and learning process demanded in the CNN

design were described in the previous section, more complex components will be

discussed in this section (i.e. CNN blocks). CNN blocks are the base of the design

in the recent CNN architectures; they act in a similar way to a layer, but they are

themselves composed of layers. The blocks are described as follows.

1. Inception Block: unlike traditional CNNs (i.e. AlexNet and VGG), the

CNN operations are happening in parallel in the inception block, which was

introduced in GoogleNet [104] by Google. Whereas in typical CNNs only

one operation at a time (either pooling or convolution) can be considered,

the inception block allows all these operations to be performed in parallel.

Moreover, the inception module suggests the use of more than one convolu-

tional filter size in one block such as 1 × 1, 3 × 3, and 5 × 5, as shown in

Figure 2.28). The output of all the filters is concatenated and passed on as

input to the next layer.

Figure 2.28: Inception block [104].

2. Residual Block: residual blocks were first introduced in the Residual Net-

work (ResNets) [110] by Microsoft. The idea behind residual blocks is to add

an identity connection which skips two layers, as shown in Figure 2.29. Let
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us have an input feature, X, that goes through two convolutional filters; the

output will be F (X) after passing on the activation function, which is alter-

nated with the convolution layer. That result is then added to the original

input feature X to produce H(X) = F (X)+X. In traditional CNNs, H(X)

is equal to F (X) where there is no more consideration for the input feature

X and it does not keep any information about it. In a residual network, the

identity connection adds the input feature map onto the other feature maps.

Figure 2.29: Residual block [110].

3. Dense Block: this is introduced in the Dense Network (DenseNet) [111].

Contrary to ReseNet, DenseNet suggests concatenating outputs from the

previous layers instead of using the summation by connecting each convolu-

tional layer to subsequent convolutional layers. In traditional CNNs, there

are only L connections between layers but the dense block has L(L+1)
2

connec-

tions. The authors [111] claim that their proposed network prevents features

from being relearned and allows many fewer filters per convolutional layer se-

quentially. Transition layers, which consist of pooling and 1x1 convolutions,

are used to connect the dense blocks. A dense block is shown in Figure 2.30,

where k represents the number of filters added per layer (growth rate).

The mentioned blocks are the basic units required to implement the most recent

convlutional networks shown in Figure 2.31.
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Figure 2.30: Dense block [118].

Figure 2.31: Advanced (block-based) deep convolutional neural network ar-
chitectures.

2.5 Applications of Deep CNNs in Medical Im-

age Analysis

Medical image analysing tasks requires abnormalities identification, quantify mea-

surement and changes overtime. Decades ago, medical image analysis was per-

formed using either low-level pixel processing strategies such as region growing

and edge detector filters or mathematical modelling such as line fittings in order
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to solve a particular task. As the size of healthcare images has been increasing

due to the rapid growth and the huge advancements in image capturing devices,

the analysis of medical images has become more challenging.

However, the deep learning techniques have overcome many obstacles, sup-

ported by the most successful deep learning form for medical image analysis in a

variety of applications, which is deep convolutional neural networks (CNNs) [119].

The contribution of deep neural networks in medical images can be categorised

according to the canonical image analysis tasks, detection, classification, segmen-

tation, and many other tasks such as registration, content image retrieval, image

generation and enhancement.

1. Detection/Localisation: the detection task in medical images involves

anatomical/landmark localisation. Dou et al. [120] exploited a 3D fully

convolutional network (FCN) model to retrieve the candidates of cerebral

microbleed (CMBs), and then applied a pre-trained 3D CNN model to dis-

criminate CMBs from hard mimics. The author of [120] evaluated their

method on magnetic resonance (MR) images and achieved sensitivity of

93.16%. Furthermore, Ghesu et al. [121] merged a reinforcement learning

model with hierarchical features extracted through a deep neural network to

detect the anatomical landmarks in many image types, 2D magnetic reso-

nance, 2D ultrasound and 3D computed tomography (CT) images, achieving

mean detection errors of 1-2 pixels. In [122], Lu et al. presented a frame-

work exploiting CNN to capture global context and FCN to capture the

local context aiming for 3D organ localisation in CT images and achieved

a mean Euclidean distance error of 3.9 pixels. Automated kidney detection

was reported in [123] by Ravishankar and Sudhakar through fine-tuning a

pre-trained CNN which achieved 20% higher performance than some other

methods.
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2. Segmentation: the objective of medical image segmentation is to identify

the pixels/voxels that form the boundary or the area of a specific organ

or lesion. One of the earliest segmentation tasks performed based on CNN

was reported by Ciresan et al. [124] in 2012. They segmented neuronal

membrane in electron microscopy (EM) images and achieved a pixel-error

rate of 0.06. Following Ciresan’s paper, many authors started exploiting

the CNN in different segmentation issues. Cernazanu-Glavan and Holban

[125] segmented the bone structure in X-ray images by using a CNN-based

approach and obtained a pixel error rate of 0.204. Zhang et al. [126] proposed

a method to segment infant brain tissue in MR images by employing CNNs

and reported dice coefficients of 0.8323, 0.8531 and 0.8798 for cerebrospinal

fluid (CSF), grey matter (GM) and white matter (WM) tissues, respectively.

Moreover, Fu et al. [127] combined a CNN with a Conditional Random

Field (CRF) to model long-range pixel interaction in order to segment the

vessels of the retina. They used fundus images from different datasets and

obtained accuracy of 0.9523% in an average time of 1.3s. Most recently,

Zilly et al. [128] presented a method to segment the optic disc and optic

cup in the retinal fundus images using ensemble learning based on CNNs.

They evaluated their method on a public dataset and reported an F-score of

97.3% for optic disc segmentation and 87.1% for optic cup.

3. Classification: Medical image classification involves investigating the pres-

ence of a certain lesion or disease and grading the severity level of that disease

in a given image. In 2013, Malon and Cosatto [129] combined shape-based

features with CNN to identify the mitotic figures and achieved precision of

0.747% and F-score of 0.659% in histology images. Furthermore, Payan and

Montana [130] used a 3D CNN pre-trained with sparse auto-encoders to pre-

dict the presence of Alzheimer’s disease in magnetic resonance images (MRI)
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and reported a classification accuracy of 89.47%. In addition, Anthimopou-

los et al. [131] proposed a CNN-based method to classify interstitial lung

disease into the disease stages in CT images, achieving a classification accu-

racy of 85.5%. Moreover, Antony et al. [132] quantified the severity of knee

osteoarthritis (OA) by fine-tuning a pre-trained CNN model on OA X-ray

images and achieved 94.4% correctly classified images. In [133], Wang et al.

developed an automated system based on CNNs to identify the breast ar-

terial calcifications (BACs) in mammograms and evaluated their system by

linear regression analysis, yielding a coefficient of determination of 96.24%.

2.6 Summary

This chapter has presented an overview of the anatomical structure of the eye,

retinal diseases, retinal imaging modalities, and the theoretical concept of deep

learning including CNNs. From the works reported in this chapter it can be no-

ticed that deep neural networks have demonstrated an interesting performance and

provided state-of-the-art results in many applications on variety types of medical

images. As result of that, we were encouraged to exploit deep CNNs to solve

issues related to retinal images considering different tasks such as localisation in

Chapter 3, segmentation in Chapter 4 and classification in Chapter 5. In Chap-

ter 3, the work on detecting the location of the most important retinal landmarks

will be presented. Next, in Chapter 4, the segmentation of choroid boundaries as

well as the optic disc/cup boundaries will be taken into consideration. Finally, the

classification of retinal diseases such as glaucoma and DM and the identification of

the presence of retinal fluids will be considered in Chapter 5. More details about

the methodologies used to achieve these tasks are explained and discussed in each

individual chapter.
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Detection of Optic Disc and Fovea

In this chapter, the problem of locating the centres of both fovea and optic disc

(OD) in the retinal fundus images is considered. In §3.1, an introduction of both

of these retinal landmarks and their definition in retinal fundus images are given.

§3.2 provides a brief review of the previous work related to the detection of the

OD and the fovea followed by presenting the novelty of this work in §3.3. In §3.4,

the proposed methodology for detecting the OD and fovea locations is presented.

Next, the experimental results are described in §3.5. Finally, this work is discussed

in §3.6 and the chapter is concluded in §3.7.

3.1 Introduction

The knowledge of the OD and fovea (centre of the macula) locations in the retina is

considered essential for the diagnosis and screening of many retinal diseases, such

as glaucoma, diabetic maculopathy (DM) and age-related macular degeneration

(AMD). The additional significance of detecting the fovea is that the closer a lesion

is to it, the more likely the lesion is to cause visual impairment or blindness. On

the other hand, the OD centre is often regarded as a reference point for locating

other retinal structures. For example, it can be used as the starting point for

tracking retinal vessels in blood vessel tracking algorithms [134]. In addition, the

54
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OD diameter (D) is usually used as the reference to measure the size and location

of other anatomical and pathological structures in the retina.

The OD appears as a bright yellowish oval region within colour fundus images

through which the blood vessels enter the eye. The macula is the centre of the

retina which is responsible for our central vision. The fovea is a small depression in

the centre of the macula. It has a darker appearance compared to the surrounding

retinal tissue due to the high concentration of macular pigment. On average the

vertical OD diameter is about 1800 µm. The location of the fovea centre is about

2.5D from the optic disc centre. The foveal radius is between 1/3 and 1/4 of the

macula radius which is roughly equal to one optic disc diameter (D) [135],[136].

3.2 Related Work

In the literature, there has been a number of studies conducted to determine the

locations of the fovea and OD. Many of these studies only locate either the OD or

fovea and not both. Below is a brief review of the major algorithms published in

the literature for detecting the OD, followed by fovea detection methods.

Many of the reported methods use geometric information of the vascular tree

to detect the OD [137], [7]. Hoover and Goldbaum [137] exploited the spatial

relationship between the OD and retinal blood vessels and proposed a fuzzy con-

vergence algorithm to locate the origination point of the blood vessel network. This

origination point was considered as the OD centre in the retinal fundus image.

Foracchia et al. [138] proposed a geometrical model to calculate the general

direction of retinal blood vessels at any given location in an image using the

coordinates of the OD centre as the two model parameters. Simulated annealing

optimisation technique was used to identify these two parameters.

Furthermore, Fleming et al. [139] presented a method based on the elliptical

form of retinal blood vessels to obtain the approximate locations of the OD and
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fovea. The circular edge of the OD and the darker appearance of the fovea were

exploited to refine these approximated locations.

In addition, Tobin et al. [140] used vasculature segmentation results for optic

disc detection by determining density, average thickness, and average orientation

of the blood vessels in relation to the position of the OD. Youssif et al. [7] described

a method that can detect the optimal OD centre point by measuring the difference

between the matched filter output and the vessels directions.

Niemeijer et al. [3] formulated the problem of detecting the OD and foveal

centres as a regression problem. They utilised a k-nearest neighbours regressor to

measure the distance in an image to the object of interest at any given location

using a set of features extracted at that location.

Furthermore, a method based on Sobel operators and the Hough transform for

the detection of the OD in retinal fundus images was formulated by Zhu et al.

[141]. They determined the centre and radius of the OD by approximating the

margin of the optic nerve head into a circle using the Hough transform.

Moreover, Lu et al. [142] designed a technique based on the circular transfor-

mation to locate the circular shape of the optic disc and colour variation across

the OD boundary. The centre and the boundary of the optic disc were located by

exploiting the pixels with the maximum variation along radial line segments.

Yu et al. [143] presented a method for detecting the optic disc location us-

ing template matching techniques. The OD location was determined using the

characteristics of the vessels on the OD.

In [144], Dehghani et al. proposed a histogram based method which uses four

images from the DRIVE dataset as a template to locate the centre of the OD where

each histogram represents one colour from the RGB colour image components (red,

blue, and green). The template was constructed by calculating the average of these

histograms.

Harangi et al. [145] adapted the most recent OD detectors and organised them

into an ensemble and complex framework in order to merge their strengths and
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maximise the accuracy of OD detection. To determine the final OD position, a

maximum-weighted clique was founded.

Many of the fovea localisation approaches presented in the literature have ex-

ploited the vasculature and other contextual information. Li and Chutatape [146]

presented a model-based approach by combining the information provided by the

main vessel arcades and the low intensity pixels in the fovea region. A parabola

fitting method was used to detect the fovea and the fovea centre was identified

using a thresholding scheme in the region of interest.

Niemeijer et al. [147] formulated a method based on a cost function that is

based on both global and local cues to find the fovea. In addition, mathematical

morphology and anatomical knowledge based methods were used to estimate the

location of the fovea by Welfer et al. [148]. In their proposed system, extracting

the region of interest containing the fovea was achieved initially by calculating the

centre and diameter of the OD. After that, a set of fovea candidates was obtained

using a morphological operation. To detect the centre of the fovea, it was selected

as the centroid of the darkest candidate.

Qureshi et al. [149] proposed a method based on a combination of several

algorithms for detecting the fovea and OD. They proved that ensemble algorithms

can achieve better performance than a single algorithm for detecting these centres.

Moreover, a fast radial symmetry transform was used by Giachetti et al. [150]

for the detection of the fovea and OD centres. The centres of symmetry of dark

and bright regions were detected by applying the transform on coarsened and

vessel-inpainted images and the results were combined with a vascular density

estimator.

Gegundez-Arias et al. [151] detected the location of the fovea centre by means

of prior known anatomical features. These features were used to localise a ROI

fovea-containing sub-image. A multi-thresholding scheme using gray-level value

criteria was applied and a contour map was created to calculate the fovea centre.

In [8], Aquino et al. formulated a method based on combining the visual and
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anatomical features of the macula and the OD for detecting the fovea centre.

Table 3.1 summarises the methods reported in the literature. Detection accuracy,

computational time, evaluation criterion and the dataset used are presented in

this table for previous work where they are available in the original paper.

Table 3.1: Existing optic disc (OD) and fovea (F) detection methods in the
literature.

Authors Approach Detected

land-

marks

1R Success

rate

Run

time

Dataset(Name

,size,[images

size])

Hoover

[137]

Relationship

between OD

and blood

vessels, fuzzy

convergence

algorithm

OD 60 Acc.: 89% 4 min. (STARE [152],

81, [605×700])

Foracchia

[138]

Geometrical

model, blood

vessels direc-

tion

OD 60 Acc.:

97.53%

2 min. (STARE, 81,

[605×700])

Li [146] Parabola fit-

ting

F NA Sensitivity:

100%

NA (Local, 35,

[512×512])

Fleming

[139]

Visual char-

acteristics

of blood

vessels, fovea

and OD

OD, F 119 Acc.: 98.4%,

96.5%

2 min. (Local, 1056,

[2160×1440])

Tobin [140] Characteristics

of blood ves-

sels in

relation to

OD position

OD, F 65 Acc.: 90.4%,

92.5%

NA (Local, 345,

[1024×1152])
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Niemeijer

[147]

Cost func-

tion and a

point dis-

tribution

model

OD,F 50 Acc.: 98.4%,

94.4%

10

min.

(Local, 500,

[768×576])

50 Acc.: 94% ,

92%

10

min.

(Local, 100,

[2048×1536])

Aliaa

Youssif

[7]

2D Gaussian

matched fil-

ter

OD 60 Acc.:

98.77%

3.5

min.

(STARE, 81,

[605×700])

NA Acc.: 100% 3.5

min.

(DRIVE [153],

40, [565×584])

Niemeijer

[3]

k-NN regres-

sor

OD, F 50 Acc.: 99.4%,

96.8%

7.6s Local, 500,

768×576

50 Acc.: 93%,

89%

7.6s Local, 100,

2048×1536

Zhu [141] Sobel oper-

ator, Hough

transform

OD 40 Acc.: 90% NA (DRIVE, 40,

[565×584])

Lu [142] Circular

transforma-

tion

OD 60 Acc.:

99.75%

5s (STARE, 81,

[605×700])

60 Acc.: 97.5% 5s (ARIA [154],

120, [576×768])

NA Acc.:

98.77%

5s (MESSIDOR,

1200,[1440×960,

2240×1488,

2304×1536])

Welfer [148] Selection

of ROI and

morphology

F 34 Acc.: 100% NA (DRIVE, 40,

[565×584])
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34 Acc.:

92.13%

NA (DIARETDB1

[155], 89,

[640×480])

Yu [143] Template

matching

technique

OD 70,

100,

110

Acc.: 99% 4.7s (MESSIDOR,

1200,

[1440×960,

2240×1488,

2304×1536])

Qureshi

[149]

Combining

the pre-

diction of

multiple

algorithms

OD, F NA Acc.:

97.64%

96.79%

NA (DIARETDB0

[156], 130,

[1500×1152])

NA Acc.:

97.79%,

98.74%

NA (DIARETDB1,

89,

[1500×1152])

NA Acc.: 100%,

91.73%

NA (DRIVE, 40,

[565×584])

Dehghani

[144]

Template

implemented

from three

histograms

OD NA Acc.: 100% 27.6s (DRIVE, 40,

[565×584])

NA Acc.:

91.36%

27.6s (STARE, 81,

[605×700])

NA Acc.: 98.9% 27.6s (Local, 273,

[720×576])

Giachetti

[150]

Fast radial

symmetry

transform

OD, F 70,

100,

110

Acc.:

99.66%,

99.1%

5s (MESSIDOR,

1200,

[1440×960,

2240×1488,

2304×1536])
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Gegundez-

Arias [151]

Priori known

anatomical

features and

thresholding

F 68,

103,

109

Acc.:

96.92%

0.94s (MESSIDOR,

1200,

[1440×960,

2240×1488,

2304×1536])

Aquino [8] Visual and

anatomi-

cal macula

and OD

feature-

based

method

F 68,

103,

109

Acc.:

98.24%

10.88s (MESSIDOR,

1136,

[1440×960,

2240×1488,

2304×1536])

82 Acc.:

94.38%

10.88s (DIARETDB1,

89,

[1500×1152])

Harangi

[145]

Ensemble-

based frame-

work (com-

bining

probability

models)

OD NA Precision:

98.46%

0.25s (DIARETDB0,

130,

1500×1152)

NA Precision:

98.88%

0.25s (DIARETDB1,

130,

1500×1152)

NA Precision:

100%

0.25s (DRIVE, 40,

[565×584])

NA Precision:

98.33%

0.25s (MESSIDOR,

1200,

[1440×960,

2240×1488,

2304×1536])

From the above review, it can be noticed that most of the previous studies have

exploited the visual appearance or anatomical features for the detection of the OD
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and fovea in order to identify their positions [137], [139], [140], [142], [148], [150]

and [8]. These methods will suffer when these features are very weak or invisible

due to pathologies. Some other methods rely on machine learning algorithms and

feature extraction to localise and detect anatomical structures [3], [145], and [149],

but the accuracy of these methods largely depends on the type and quality of the

feature sets which are hand-crafted. Inspired by our observations, it is proposed

to introduce new deep learning techniques to address this.

3.3 Novelty

In this chapter, a multiscale sequential deep learning technique is proposed which

is aimed at detecting the centres of the OD and the fovea. The main contributions

and advantages of this work are summarised as follows:

1. The application of deep convolutional neural networks to the detection of

retinal landmarks is novel and promising. A suitable convolutional neural

network developed to detect specifically the optic disc and fovea centres.

(a) Speed and automation: This results in a fast method requiring no

user input.

(b) Independence: The method is independent on other techniques suc-

ceeding such as segmentation or detecting other landmarks.

(c) No hand-crafted features: Since features do not need to be manually

defined, it has been avoided the difficulty encountered by conventional

machine learning algorithms in identifying the best feature set that

represents the data. This also removes the requirement of a skilled

technician to identify such features manually which takes a considerable

amount of time and can produce subjective results, particularly with a

large dataset.
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(d) Accurate simultaneous detection: It has been detected more than

one position simultaneously, retaining high accuracy for each.

(e) Robustness: The method is robust in the sense that it continues to

work well even on poor quality images.

2. A multiscale approach to convolutional neural networks is developed to focus

on the region of interest.

(a) Improved Accuracy: This approach allows the method to focus on

the region of interest, removing redundant background data from con-

sideration and facilitating refinement of the localisation. This results in

significantly increased accuracy in the cases of the fovea and the optic

disc.

3. Inter-dataset training and evaluation using multiple datasets.

(a) Generalisation: This demonstrates generalisation of the method to

new data, from separate datasets and graders, and captured from dif-

ferent devices.

4. Variable optic disc radius (R) is incorporated into evaluation criteria.

(a) Evaluation accuracy: Incorporating this variable measure into our

testing allows more accurate evaluation while others use fixed R value

for evaluation.

3.4 Materials and Methods

3.4.1 Materials

The MESSIDOR [157] and Kaggle [158] datasets have been used in this work.

The MESSIDOR database comprises 1200 images captured using a colour 3CCD

camera on a Topcon TRC NW6 with 45 degree field of view. The MESSIDOR
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images were captured using 8 bits per colour plane at a size of 1440× 960, 2240×

1488 or 2304× 1536 pixels. Moreover, 10,000 image from Kaggle dataset are used

for training and testing. Kaggle [158] was provided by EyePACS, a free platform

for retinopathy screening. The images of Kaggle dataset used in Kaggle diabetic

retinopathy detection competition come from different models, resolutions and

types of cameras and feature very mixed quality. Clinician have rated the presence

of diabetic retinopathy in each image on a scale of 0 to 4, according to International

Clinical Diabetic Retinopathy severity scale (ICDR): 0 (No DR), 1 (Mild DR), 2

(Moderate DR), 3 (Severe DR) and 4 (Proliferative DR).

The optic disc and foveal centre point coordinates were not provided in the

original dataset for both datasets, for this work they were obtained from annota-

tions from a combination of two expert graders from the Liverpool Reading Centre.

An in-house program developed in Matlab (version 2016a, Mathworks Inc, Natick,

MA) was used by the grader. This software program was developed to support

annotations of anatomical or pathological features required by clinical trials, and

allows the grader to visualise the image, selecting the location by mouse click

and make correction on the selection. These annotated locations together with

the images were used to train and evaluate the performance of the implemented

networks.

3.4.2 Pre-processing

It is worth noting that detecting the centres of the fovea and OD is a regression

task. It seems unnecessary to use colour information because the colours may just

add extra complexity. For this reason, all of the images were converted to grey

scale for use. For the purpose of this study, the images were resized to 256× 256

pixels and the annotated centre point coordinates of both the OD and fovea were

scaled accordingly. The contrast of the resized images was enhanced by applying

the contrast-limited adaptive histogram equalisation technique [43] so as to reduce
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uneven illumination in the images as shown in Figure 3.1. The pixel values of the

enhanced images were scaled between [0, 1] and the coordinates of the centre points

were scaled between [−1, 1].

Figure 3.1: Image pre-processing stages. From left to right: Original image,
Grayscale image, and Enhanced image.

3.4.3 Landmarks Detection by CNN

The proposed system consists of two stages, in the first stage the whole resized

images along with the scaled centres are fed to the implemented CNN. The output

of the first stage is the centres of both the OD and fovea (F).

In the second stage, the detected centres from the first CNN are used to obtain

the refined regions of interest of both the OD and F by cropping the region around

these centres by 2R radius value (R represents the OD radius). These resized ROI

for both the F and OD along with the scaled ground truth centres are used to

train the CNNs in the second stage.

Therefore, the first stage is used to obtain the ROIs for both F and OD while

the second stage is aimed to detect the centres by classifying the features extracted

automatically by the convolutional filters. As we go deeper through the convolu-

tional neural network, the convolutional layers are able to describe more and more

complex features. The block diagram of the proposed deep multiscale sequential

convolutional neural network is presented in Figure 3.2.

Different network architectures and data augmentation strategies were eval-

uated in comparison to conventional (standard) neural networks. To train the
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Figure 3.2: Block diagram of the proposed system.

networks by updating the weights, SGD with a momentum optimisation algo-

rithm having an adaptive learning rate (start=0.03, stop=0.0001) and adaptive

momentum parameter (start=0.9, stop=0.999) is used.

The weights of the kernels for the implemented convolutional layers are ini-

tialised from a uniform distribution within chosen intervals. These intervals are

configured depending on the weight initialisation technique proposed in [85]. Fur-

thermore, the objective function to be minimised is mean squared error (MSE)

since we are dealing with a regression problem:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (3.1)

Where n is the number of training examples, yi is the real value and ŷi is the

predicted value given by the proposed system. In order to reduce the overfitting

problem, the size of the training data is increased artificially by applying data

augmentation. More specifically, the training data is augmented by flipping images

left to right while the annotated OD and foveal centres were flipped accordingly.

As a result of this, the size of the training data has been doubled.
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The deep network was trained with 1000 epochs. An early stop strategy is used

so the training will stop when there is no improvement in learning or performance

on the validation set starts to worsen. The early stop value was set to 100 epochs

where the learning stops after 100 epochs and the best weighting values are retained

if the validation error stops improving early. The architecture of CNN with the best

performance is described and shown in Table 3.2 and Figure 3.3 where the CNNs

in the first and second stage of the proposed system have the same architecture.

In Table 3.2 the last column shows the size of the filters, the window size used

for max-pooling, and the probability of dropping a node (Bernoulli (p)) in each

layer. No zero padding and a stride of 1 pixel were used for each convolutional layer

while non-overlapped pooling (stride= pool size) was used in each max-pooling

layer. The probability of dropping are 0.1, 0.3, and 0.5 in the first, second, last

dropout layer, respectively.

Table 3.2: Architecture of deep neural network with the best detection per-
formance

Layer Name Size outputs filters Size of filter, max pooling, pro.

‘inputimage’ 1× 256× 256 65536 - -
‘conv1’ 8× 254× 254 516128 8 filter size = (3,3)
‘conv2’ 8× 252× 252 508032 8 filter size = (3,3)
‘conv3’ 8× 250× 250 500000 8 filter size = (3,3)
‘conv4’ 8× 248× 248 492032 8 filter size = (3,3)

‘dropout1’ - - - dropout1-p=0.1
‘conv5’ 16× 246× 246 968256 16 filter size = (3,3)
‘conv6’ 16× 244× 244 952576 16 filter size = (3,3)
‘conv7’ 16× 242× 242 937024 16 filter size = (3,3)
‘pool1’ 16× 121× 121 234256 - maxpool1 size = (2,2)

‘dropout2’ - - - dropout2-p=0.3
‘conv8’ 32× 120× 120 460800 32 filter size = (2,2)
‘conv9’ 32× 119× 119 453152 32 filter size = (2,2)
‘conv10’ 16× 118× 118 445568 32 filter size = (2,2)
‘pool2’ 16× 59× 59 111392 - maxpool2 size = (2,2)
‘FC’ 350 350 - -

‘dropout3’ - - - dropout3-p=0.5
‘FC’ 350 350 - -

‘output’ 4 4 - -
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Figure 3.3: Block diagram of convolutional neural network.

3.4.4 Performance Evaluation

In the literature, the 1R criterion (where R refers to the OD radius) is the most

common criterion used to evaluate the performance of retinal landmark detection

methodologies. The distance between the ground truth and the obtained location

of the structure of interest (i.e. the OD or foveal centre for this application) is

compared with the R value in each image to determine the validity of the location

determined by the automated detection methods. In this work, both the optic disc

and foveal centre positions were known from expert annotations. Moreover, the

location of the fovea centre is about 2.5D from the OD centre. The patient specific

optic disc diameter (Di) and consequently the OD radius (Ri) can be calculated

for each eye i using Equation 3.2 .

Di =

√
(XOD(i) −XF (i))2 + (YOD(i) − YF (i))2

2.5
(3.2)

Then, Ri = 0.5Di where XOD, YOD, XF , YF are the horizontal and vertical coor-

dinates of the OD and fovea centres respectively marked by expert graders.
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3.5 Results

For the sake of comparison, a conventional neural network with three layers (input,

hidden, output) is implemented to evaluate the effect of deep learning method.

This network is trained with 250 epochs and 200 neurons are used in the hidden

layer. The size of the input layer is equal to the size of the input image and the

size of the output layer is four neurons (x and y coordinates of the OD and fovea

centres respectively).

Learning performance of the implemented networks is monitored during the

training by plotting the learning curves for both training and validation sets by

determining the root mean squared error (RMSE). Figure 3.4 and Figure 3.5 show

the difference in terms of performance between the conventional neural network

(ANN) model and the deep model during the training stage. Clearly, it can be

observed that the deep neural network has improved performance with much lower

error than the conventional neural network model.

Figure 3.4: Performance of the conventional neural network (ANN) during
training. It shows that simple model suffers from an under-fitting problem
where the complexity of the network is not sufficient to capture the import

features of the landmarks.
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Figure 3.5: Performance of the deep neural network during training. It shows
that the RMSE for both training and validation data is lower than the con-
ventional neural network with slightly overfitting and thus better landmark

detection performance.

For the purpose of performance analysis of the proposed system for detecting

the OD and fovea, the detection accuracy was computed as the ratio between the

number of testing images with detected centres satisfying the 1R, 0.5R and 0.25R

conditions (Figure 3.6 explains these criteria) and the total number of testing

images.

In additional to the accuracy measure, the mean error (also called normalised

localisation error) and standard deviation are also calculated. The normalised

localisation error is calculated by dividing the Euclidean distance between the

actual and computed OD (or foveal) centres with the D in each testing image.

The detection performance of the neural network and deep neural network is

shown in Table 3.3. The effect of image enhancement is also reported in Table 3.3

for information. In this table, the MESSIDOR dataset has been randomly divided

into 70% for training and validation and the remaining 30% for testing.

In Table 3.4 and Table 3.5, the proposed system was evaluated using the MES-

SIDOR and Kaggle datasets, where 7000 Kaggle images were used for training
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Figure 3.6: Example shows 1R, 0.5R, and 0.25R of OD.

Table 3.3: Performance of different networks: The networks are trained and
tested on Messidor dataset (1R criterion). These reported results are obtained

from the first stage of the proposed system.

Model Name
Optic Disc Fovea

Acc µ α Acc µ α
Simple model (NN) 59.5 0.568 0.568 86.2 0.276 0.218
Deep model without
enhancement

96.0 0.169 0.253 96.0 0.132 0.133

Deep model with
enhancement

96.89 0.160 0.237 97.78 0.133 0.127

µ: Mean Error, α: Standard Deviation.

and validation (20%) of training data is used as validation data and the remain-

ing 3000 Kaggle images and 1200 MESSIDOR images are used for testing in the

first stage of the proposed system. In the second stage, the test Kaggle images

from the first stage are used to train and test the second CNN where these images

are divided randomly again into 80% for training and validation and 20% testing

before feeding them into second stage.

Table 3.4 shows the performance of the MESSIDOR dataset in terms of the

1R, 0.5R and 0.25R criteria for the two stages of the proposed system where on
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row one, the results of CCN1 for the test set of 1200 images (TS1M) is presented.

Row two shows the results of CCN1 restricted to the images that are correctly

detected within the 1R criterion (TS2M). Row three shows the TS2M set which

is tested with CNN2 for comparison with row two. It can be seen that the results

for these images are considerably improved by CNN2. Finally, on row four, this

test set is expanded to include incoy rrectly detected images (TS3M) from CCN1

demonstrating that, including these, the results remain strong and improved over

the original idea of using CNN1 alone.

Moreover, Table 3.5 presents the accuracy of the Kaggle dataset using the

same criteria where on row one, the results of CCN1 for the test set of 3000

images (TS1M) is presented. Row two shows the results of CCN1 restricted to

the images that are correctly detected within the 1R criterion (TS2M). Row three

shows the TS2M set tested on CNN2 for comparison with row two. It can be seen

that the results for these images are considerably improved by CNN2. Finally, on

row four, this test set is expanded to include incorrectly detected images (TS3M)

from CCN1.

Table 3.4: Performance (in terms of accuracy) of the network trained on
Kaggle and tested on Messidor. CNN1 refers to the first stage and CNN2 refers

to the second stage.

Model Name Optic Disc Fovea
1R 0.5R 0.25R 1R 0.5R 0.25R

CNN1+TS1M 97 86.3 47.5 96.6 76 35.3
CNN1+TS2M 100 88.9 49 100 78.8 36.5
CNN2+TS2M 100 97.9 86.2 100 94.6 69.2
CNN2+TS3M 97 95 83.6 96.6 91.4 66.8

The experimental results in Table 3.4 and Table 3.5 demonstrate that the

proposed method can achieve accuracies in terms of the 1R criterion of 97% and

96.6% for detection of the OD and foveal centres respectively in MESSIDOR and

96.7% and 95.6% for the detection of the OD and foveal centres respectively in

the Kaggle test set.
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Table 3.5: Performance (in terms of accuracy) of the network trained and
tested on kaggle. CNN1 refers to the first stage and CNN2 refers to the second

stage.

Model Name Optic Disc Fovea
1R 0.5R 0.25R 1R 0.5R 0.25R

CNN1+TS1K 96.7 87.4 51.9 95.6 83.4 51
CNN1+TS2K 100 90.1 55.6 100 87.9 54.3
CNN2+TS2K 100 99.1 93.4 100 94.9 73.3
CNN2+TS3K 96.7 95.8 90.3 95.6 90.7 70.1

On average, it only takes approximately 0.007 seconds to process a test image

with two stages which is the fastest among all of the methods. Furthermore,

the results show good performance when considering the 0.5R and 0.25R criteria.

On the Kaggle test set, the obtained accuracies were 95.8% and 90.3% for OD

detection for 0.5R and 0.25R respectively, while 90.7% and 70.1% were achieved

for fovea detection in terms of these two criteria. On MESSIDOR, the detection

accuracies were 95% and 83.6% for 0.5R and 0.25R for localising the OD while the

obtained accuracy results for the foveal centre detection were 91.4% and 66.8% for

the 0.5R and 0.25R criteria.

Figures 3.7 and 3.8 and Figure 3.9 show some example detection results on

the testing dataset. In Figures 3.7 and 3.8 , examples with accurate detections

of the OD and fovea centres are presented while Figure 3.9 shows images with

incorrect detections. Figure 3.10 shows how the second stage CNN improves the

detection performance over the first stage CNN.

3.6 Discussion

A new deep neural network approach has been proposed for the detection of the OD

and foveal centres in colour fundus images. Our proposed approach has produced

promising results.

It is worth mentioning that many different criteria were used by others in the

literature to evaluate performance in detecting the OD and foveal centres when
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Figure 3.7: Examples of correct joint OD-Fovea detection results from MESSI-
DOR. The green plus signs refer to the locations annotated by ophthalmologists

while the blue ones indicate the results of our proposed method.

compared with the ground truth. The Euclidean distance between the obtained

OD and fovea centre locations and their actual locations were often used as the

evaluation measure. For example, many studies [143], [150]- [8] have established

that the obtained detection of the OD (or foveal) centre is correct if their Euclidean

distances to the actual centres is within half the OD diameter (or one OD radius).

This is the widely accepted 1R rule.

There is a problem in using the 1R rule for evaluation when the OD radius is

not available. In order to alleviate this problem, Yu et al. [143] estimated the OD

radius based on the field of view (FOV) of the retina and the image size. Three

radii of 70, 100 and 110 pixels were used in correspondence to the three different
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Figure 3.8: Examples of correct joint OD-Fovea detection results from Kaggle.
The green plus signs refer to the locations annotated by ophthalmologists while

the blue ones indicate the results of our proposed method.

sizes of the MESSIDOR images. Using this criterion, the authors detected the

location of the OD correctly in 1189 out of the 1200 images in the MESSIDOR

dataset. Following Yu ’s approach to estimate the OD radius, Giachetti et al. [150]

reported an accuracy of 99.66% for OD detection and 99.1% for fovea detection

and used the fast radial symmetry transform to achieve that. However, for the

same MESSIDOR dataset Gegundez-Arias et al. [151] and Aquino et al. [8] used

different OD radii in their study where the OD radii were fixed to 68, 103 and 109

pixels. Aquino et al. [8] reported an accuracy of 98.24% for the detection of the

fovea.

For this study, the 1R rule has been followed but the OD radius was defined



Chapter 3. Detection of Optic Disc and Fovea 76

Figure 3.9: Examples of incorrect OD and fovea detection results. From left
to right (1) Incorrect detection from MESSIDOR; (2) Incorrect detection from
Kaggle. The green plus signs refer to the locations annotated by ophthalmolo-

gists while the blue ones indicate the results of our proposed method

Figure 3.10: Examples of fundus images show the original centers (green plus),
centres obtained from CNN1 (white plus), and centres from CNN2 (blue plus).

It is clear that CNN2 improves the location accuracy.

by annotation results from experienced graders. As such, our rule should be more

accurate. This has highlighted the issue that it is difficult to accurately compare

detection performance between different methods as the criterion may be different.

The other issue for comparing results from different studies is that the number

of images used were different. Even when studies used the same dataset, the way

in which they used the dataset was not entirely clear. For instance, although Yu

et al. [143] reported results on 1200 MESSIDOR images, they may have used

the whole dataset in tailoring their detection method. This implies they have
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used the data to train their method and tested on the same dataset, which means

their method may have overfit the data. Our study has split the Kaggle dataset

into training and testing portions. Testing images of Kaggle have not been used

until the network was trained using the separate training set. This suggests that

our method should have better generalisation ability. Furthermore, a completely

unseen test set (MESSIDOR) is used to prove this generalisation ability.

Moreover, unlike most of the previous methods in the literature where only the

1R value has been reported, the accuracy based on the 0.5R and 0.25R criteria

is reported in addition to the 1R criterion. From the 0.5R and 0.25R reported

accuracies, it can be noticed that the performance has significantly improved by

exploiting and analysing the ROI for both OD and F in the second stage of the

proposed system.

Although our network has provided competitive results, the network architec-

ture may not be the optimal one as training the CNNs involve many hyperparam-

eter settings such as regularisation strength, the initial learning rate, and schedule

of learning rate decay. Performing hyperparameter searches is considered a tricky

and critical task [159]. Also, the number of convolution and pooling layers and

the number and size of filters in each layer in CNNs are usually chosen empiri-

cally. As a result, the optimal network architecture and proper settings of these

hyperparameters in the training stage are decided from experience and they are

hard to find by non-expert humans [160].

In spite of these hyperparameter setting challenges in the training stage, once

the network is trained, no expert is required to detect the landmarks in the test

stage. Although data augmentation is considered to be useful in improving the

performance of the CNNs, it is not clear what the best strategy is to achieve the

best results. From our work, it is noted flipping horizontally is beneficial.
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3.7 Summary

In this chapter, it has been demonstrated that our proposed method is capable of

achieving excellent results in the detection of the optic disc and fovea in fundus

images. One of the most important advantages of the proposed method is that

it is less sensitive to preprocessing. It can be noticed that applying contrast

enhancement as a preprocessing step improves the performance of the network,

but not by very much. The current results were achieved without optimising

the parameters of the contrast enhancement method. Another advantage of our

approach is that it does not necessitate the need of vessel segmentation or border

localisation in order to detect the OD and foveal centres. This will be useful when

processing images of poor quality demonstrating the robustness of the proposed

method. It has been proved that the ability to learn hierarchies of concepts,

implementing multiple layers of abstraction in deep learning can be used for the

detection landmarks in challenging medical applications. Likewise, the results of

the proposed method suggest that deep learning can be used to address similar

problems in other clinical applications such as screening and the diagnosis of DR,

AMD, and glaucoma.



Chapter 4

Choroid and Optic Disc/Cup

Segmentation

Image segmentation is one of the most important parts of medical image process-

ing and analysis. Two segmentation approaches for medical image are presented

in this chapter. In §4.1, a framework for choroid segmentation in enhanced depth

imaging optic coherence tomography images (EDI-OCT) is presented. This frame-

work comprises three main stages including patch generation by clustering, patch

labelling, and then refinement where each stage is exploited to achieve a part of

the final segmentation goal defined by choroid boundaries. In §4.2, another medi-

cal image segmentation task is considered for the optic disc and cup segmentation

from fundus images. The details of the proposed method which is based on fully

convolutional DenseNet is explained in this section along with the experimental

results and discussion. Finally, the work presented in this chapter including both

segmentation methods are summarised in §4.3.

79
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4.1 Choroid Segmentation in OCT Images

4.1.1 Introduction

The choroid is a vascularised layer located between the retina and the sclera.

Its inner boundary is formed by the retinal pigment epithelium layer and with

sclera as the outer boundary. The choroid has many futionnctions within the eye

including providing metabolic support to the retinal pigment epithelium (RPE)

of the retina. It is also involved in conditions which affect the retina and optic

nerve, playing a significant role in the pathophysiology of various diseases which

can result in vision loss.

Since the thickness of choroid has a strong relation to eye pathologies such

as age-related choroidal atrophy, the age-related macular degeneration, and the

central serous retinopathy, many scientists and clinicians have been interested in

measuring it. These studies have been limited since the pigment in the RPE and

choroid impedes visualisation by ophthalmoscopy, fundus photography, fluores-

cein angiography and optical coherence tomography (OCT), making it difficult to

resolve. Scattering by dense vascular structure and absorption by the RPE are

the main factors to restricting the ability of standard OCT to image the choroid

clearly. Recently, enhanced depth imaging EDI-OCT [161] has emerged as a tech-

nique capable of imaging the choroid by placing the zero delay line on the choroid

to obtain high resolution images and provide better information of the choroid so

that it might be visualised and thus investigated. An example of a retina imaged

by EDI-OCT and conventional OCT is shown in Figure 4.1 for comparison.

In order to measure the choroidal structure and thickness, manual segmenta-

tion may be undertaken but this can be subjective, particularly at the choroidal-

sclera interface which remains challenging to resolve and comes at a considerable

time cost, particularly for three dimensional data. Automatic segmentation of the

choroidal boundaries is therefore a significant task.
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Figure 4.1: Example of conventional OCT image shown in the first row is
compared with EDI-OCT image shown in the second row. It shows how EDI-

OCT provides better information and visualisation for the choroid region.

4.1.2 Related Work

In the literature, there has been a significant amount of research in developing

automated techniques for the choroid layer segmentation. Zhang et al. [162] pre-

sented a 3D approach capable of segmenting of the choroidal vessels and measuring

choroidal vasculature thickness where their method was evaluated on 24 3D SD-

OCT from normal subjects. A texture and shape based method was proposed in

[163] by implementing a two stage statistical model to segment the choroid region

in OCT images. However, their model needs extensive training and half minute

to analyse each image with a mean error of 13%. In [164] and [165], the authors

proposed algorithms based on the phase information extracted from polarisation

sensitive optical coherence tomography (PS-OCT) to detect the edge between the

choroid and sclera. The imaging modality used in their work is not available to

clinicians commercially.

The authors of [166] developed a graph-search based method to detect the

choroid boundaries on 45 EDI-OCT test images by searching the pixel with the
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biggest gradient value above RPE and delineating the choroidal-scleral interface by

finding the shortest path of the graph formed by valley pixels. In [167], a technique

based on a two-stage fast active contour to segment the choroid boundary was

applied on 30 EDI-OCT images. Also, EDI-OCT images were used for evaluation

in [168] where a graph-searching method was proposed to automatically segment

the inner and outer choroid boundaries by applying two different techniques to

determine the graph weight maps in order to calculate the choroid thickness.

Moreover, a texture and wavelet-based features were extracted and Gaussian

Mixture Model (GMM) was designed in [169] to segment the choroidal boundary.

Inspiring by foreground/background detection in video processing and proposing

a noise-estimation assisted compensating algorithm, Liu et al. [170] presented a

method to segment choroidal stroma on EDI-OCT images. In [171], a machine

learning based approach was presented where the low-level texture features are

extracted and then passed to a SVM classifier to classify these features in order

to segment the choroid region in EDI-OCT images. In another work, Zhang et

al. [172] proposed fully automated three-dimensional (3D) method capable of

segmenting the choroid surface from swept-source OCT (SS-OCT) and spectral-

domain OCT (SD-OCT) images by utilising a combined graph-cut-graph-search

method.

Furthermore, based on generating a gradual intensity distance in High Defini-

tion HD-OCT images to analyse the characteristics of the choroid-sclera interface

and using an improved graph search method with curve smooth constraints, an ap-

proach was proposed to obtain the boundary of the choroid-sclera interface [173].

In another paper, the author of generating a gradual intensity distance in HD-OCT

images [173] also implemented the choroid-sclera junction cost based on generated

choroidal vessel image then used a graph-search method to detect the choroid-

sclera interface boundary [174]. Furthermore, a 3D graph-based approach was

developed, in [175], to segment the choroid boundary by exploiting the optic disc

prior information in 20 spectral-domain optical coherence tomography (SD-OCT)
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images of optic nerve head (ONH). In [176], a 4D graph-based method was pre-

sented for choroid surface segmentation by considering multiple 3D scans over time

where 3219 OCT images from 149 patient were used for the validation. Another

automated method based on graph theory, dynamic programming, and wavelet-

based texture analysis was given by the authors in [177] to segment the choroid in

SD-OCT images for 30 subjects. Moreover, segmenting the choroid region from 1

µ 32 wide-view swept source SS-OCT image volumes was presented in [178]. The

authors suggested a 3-D multiresolution graph search with gradient-based cost to

initially segmenting Bruch’s membrane (BM) and CSI. Then, refining CSI contour

was achieved by adding a regional cost, calculated from the wavelet-based gradual

intensity distance.

More recently, a level set and Markov Random Field-based framework to seg-

ment the choroid on 30 3D OCT was proposed in [179] where the edge constraint

and distance regularisation terms are embedded into the level set method and the

region term is modelled into the framework by Markov Random Field method.

Besides, an open source algorithm was developed for segmenting and quantifying

the choroidal layer from 3-D OCT reconstructions [180].

Although convolutional neural networks (CNNs) was developed largely for clas-

sification, approaches for medical image segmentation using it have recently been

reported. Ciresan et al. presented a sliding window approach for segmenting elec-

tron microscopy images [124]. Each pixel was classified as either membrane or

non-membrane using a CNN trained on square windows centred on pixels in the

raw input data. While this method shows promising results, a significant drawback

is that it requires the processing of a great number of overlapping windows. This

increases processing time and can be computationally redundant. More recent

approaches, such as those proposed by Long et al. for computer vision applica-

tions [107] and Ronneberger et al. for microscopy image analysis [108], depend on

implementing fully convolutional neural networks. These networks consider input

of arbitrary size and are capable of producing correspondingly-sized results with
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efficient learning and inference. However, the fully convolutional network proposed

in [107] can give rather coarse resolution deeper in the network [107]. In [108],

the authors developed U-net CNN architecture which extended the fully connected

convolutional network by considering contracting and symmetric expanding paths,

the first of which is used to capture context while the second enables precise lo-

calisation. In that paper [108], it has been reported a good performance when

trained end-to-end from only a few images in three different datasets.

Most recently, CNN has been exploited (merged with other methods or in-

dividually) to segment the choroid region in [181] and [182]. In [181], a graph

search based model was proposed to detect the choroid boundary where the op-

timal graph-edge weight values are learned from raw pixels by CNNs instead of

hand-designing. While in [182], a convolution neural network was trained to di-

rectly identify the boundaries of the choroid in 62 EDI-OCT images from patients

with AMD.

However, the segmentation of the choroid boundaries remains a challenge and

the aforementioned methods still have some limitations for the following reasons (i)

the boundary between the sclera and choroid is weak or even sometimes invisible

(ii) the histogram of sclera and choroid are not distinguished or separable (iii) the

inhomogeneity of choroid texture due to the presence of the vascular structure.

In this work, a new framework for image segmentation which is targeted to-

wards EDI-OCT images of the choroid has been developed. The RPE-Choroid

boundary is first segmented and image information above this contour is removed,

allowing more focus on the region of interest and acceleration by reducing the

amount of required computation. Then, a new energy function for partitioning

the image into unlabelled clusters which should not cross the boundaries of the

choroid is designed, achieving improved performance over previous work. In or-

der to label the clusters and thus obtain the segmentation, a CNN is developed

using not only image intensities but also automatically enhanced intensity informa-

tion. Spatial information is further incorporated using the distance from Bruch’s
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membrane which can be calculated automatically given the found RPE-Choroid

boundary. It has been demonstrated that this results in more accurate classifi-

cation than using image intensity information alone. The segmentation result is

then refined with a post-processing step which encourages connectedness of the

choroid region and produces the boundary contour.

4.1.3 Materials and Method

Figure 4.2: Block diagram shows the main stages of the proposed framework.

For all images, the inner choroidal boundary with Bruch’s membrane which is

located under RPE is first segmented and the image at the uppermost point of the

found contour is cropped leaving primarily the sclera and then choroid. The pixels

are then grouped into clusters with a super-pixel method using intensity, region

and enhanced intensity information. Patches are then formed around the centres

of the superpixels and those of the training data is used to train a convolutional

neural network to identify choroidal and non-choroidal regions. This network is

then used to classify the patches from the test set and provide the provisional

segmentation. Refinement on this is achieved by encouraging connectedness and a
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smooth contour in a post-processing step, producing the final segmentation result.

The stages of framework are shown in Figures 4.2 and 4.3.

Figure 4.3: An EDI-OCT image of the choroid (first row) is segmented to
extract the sub-RPE region which is partitioned with a superpixel technique
(second row). Distance information and enhanced intensities are then calculated
and combined with the image (third row) for the CNN classification of each
superpixel. The CNN result is refined (forth row) [green contour] and smoothed
to give the final result [red contour] which is close to the annoted segmentation

[blue contour].

Dataset

Two datasets were used to evaluate the proposed framework. First dataset com-

prises 169 single B-scan EDI-OCT images; one image per patient; from 25 healthy
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subjects and 144 patients at various stages of retinopathy and maculopathy. The-

ses images were acquired with appropriate approval at St Paul’s Eye Unit, Royal

Liverpool University Hospital using Heidelberg Spectralis (Heidelberg Engineer-

ing, Heidelberg, Germany). The size of images are 1024×596 pixels where the pixel

size is 5.71×3.85 µm. To compare the performance of the proposed system to the

manual segmentation and validate its performance, the inter and intra-observer

agreements were determined. The manual annotations of the inner boundary

(RPE-choroid) and the outer choroidal-sclera junction were provided by two ex-

pert clinical graders. The first grader provided two annotations and the second

provided one annotation to serve as the ground truth in our experiments. The

second dataset contains 20 EDI-OCT volumes (3D images) where each volume

has 25 B-scans. This dataset was not provided with ground truth so that it has

been used only for visualising the predicted boundaries. First dataset is split into

training (75%) and testing (25%) sets. The CNN is trained on 75% of set one

(selected randomly) and tested (without further training or modification) on the

remaining 25% of set one and the whole set two.

ROI Extraction

In order to decrease the computation time, the region of interest (the sclera and

choroid) in each OCT image is extracted by segmenting the inner choroidal bound-

ary with Bruch’s membrane, cropping the image out at the uppermost point of

the inner boundary and removing it by using the technique introduced in [183].

In this algorithm, the pixels of an image are represented as a graph where each

pixel corresponds to a node connected to neighbouring pixels by a link (edge) with

certain numerical values (weights). The energy function that can be minimised

by graph cuts is defined to determine the cost of travelling from one node to the

other in the constructed graph.
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Superpixel Segmentation

Superpixel clustering is a method of grouping image pixels based on intensity sim-

ilarity and spatial difference from the superpixel centre, also known as the com-

pactness of the superpixels. A technique similar to k-means clustering is adapted

but with a reduced search space which reduces the number of calculations consid-

erably [184]. The method is initialised with a set of κ1 initial clusters Ci ⊂ Ω, with

centres c ∈ C spaced approximately equally apart at distances of hx = bm/√κ1c

and hy = bn/√κ1c in the lateral and depth directions respectively and then shifted

to the lowest local gradient. It has been then attempt to minimise an energy func-

tion F(x) across all superpixels by iteratively considering shifts of each superpixel

centre within a 2hx × 2hy region until the residual error is sufficiently low. Previ-

ously, the Euclidean distance of pixel centres has been used along with intensity

difference and a trade-off parameter α to define the energy function.

J (x, c) =

√√√√ ∑
i∈{l,a,b}

(zi(x)− zi(c))2 + α
2∑

i=1

(xi − ci)2 (4.1)

where zl, za and zb denote the lightness and colour components of the image z,

x = (x1, x2)> ∈ Ω and c = (c1, c2)> ∈ C denote the superpixel centres.

In the case of EDI-OCT choroid images, there is single-channel intensity data

without colour information which allows us to simplify the energy function. How-

ever, the choroidal-sclera interface is difficult to distinguish which makes the in-

tensity difference function less effective. This can be improved by increasing the

contrast in this region, multiplying the intensity values given closer to the sclera

with the cumulative sum. Building this idea into our energy function along with

a non-linear intensity transform to further improve contrast, the image function

z(x) in the energy function is replaced with

s(x) =
s1 +Hε1(s1(x)− ε2)(ε2 − s1(x))

ε2 max(s1(x))
, (4.2)
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where

s1(x) =
z2(x)

2
∑m

j=x1
z2(j, x2)

,

and Hε1(x) denotes the approximation (1 + exp(−2x/ε1))−1 to the Heaviside func-

tion which may be tweaked by the parameter ε1 which trades-off similarity to the

Heaviside and smoothness, and ε2 controls the degree of enhancement.

Furthermore, given the layered presentation of the choroid in the image and the

presence of Poisson noise which is typical of OCT images, the Euclidean distance

used in the energy function is replaced with the L1-norm of the difference and

consider different weights for the lateral and depth directions. Our energy function

is thus presented as

F(x, c) =
√
|β(x− c)|2L1(Ω) + β3 (s(x)− s(c))2, (4.3)

where

β = (β1, β2)> ∈ R2
>0,

|β(x− c)|2L1(Ω) =
2∑

i=1

|βi(xi − ci)|,

β1, β2, β3 ∈ R2
>0 are non-negative trade-off parameters. This allows for an

improved initial superpixel clustering whose boundaries better follow the choroidal-

scelera boundary and gives a fast initial segmentation of the image. It remains to

label the superpixels as belonging to the choroid or not. To do this, patches of

the image which are centred on the superpixel centres are extracted and a CNN

to label the superpixels is trained.
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CNN for Patch Labelling

As mentioned, the choroid layer lies bounded between the inner boundary (retinal

pigment epithelium (RPE)) and the outer boundary (sclera). So while the dis-

tance increases from RPE by going away from it towards sclera interface and, the

probability of classification as being choroid region decreases. In order to obtain

improved detection results for the choroid region, additional information is added

to the CNN. As the inner choroidal boundary was obtained by applying graph

search algorithm to segmenting it, distance information is incorporated into the

network using the distance function from the inner choroidal boundary S1 given

by graph search segmentation defined as follows.

D(x) = γ
∥∥x− C1

∥∥
L2 (4.4)

where γ is a trade-off parameter measuring the influence of the distance func-

tion in the network, C1 = (x1, x2)> and x2 = S1(x1). The enhanced image infor-

mation s(x) defined in equation (4.2) is also incorporated. Using this, a trichannel

image is built as shown in third row in Figure 4.3.

An eight-layer CNN (Conv1 − 32, MaxP1, Conv2 − 64, MaxP2, Drop1(0.5),

Dense1(512), Drop2(0.5), Dense2(2)) is designed and implemented for our exper-

iment consisting of two convolutional layers with filter size (3,3) each followed by

a non-overlapped down-sampling layer with maxpooling size (2,2) and rectified

linear unit as activation function, two fully connected layers where the final dense

layer with softmax activation function, and two dropout layers with dropping prob-

ability 0.5. The size of input data is 33 × 33 × 3. Augmentation was introduced

by randomly flipping the patches during the training to reduce the likelihood of

overfitting issue. The output layer consists of two neurons to classify the patches

as choroid or non-choroid.

The network was trained with 300 epochs by updating the weights that were ini-

tialised using Glorot (He) weight initialisation [86].The cross-entropy loss function
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Table 4.1: CNN Architecture

Layer Name Parameters

’inputlayer’ 33× 33× 3 input image
’conv1’ 32 31× 31× 3 with filter size: (3,3)

’maxpool1’ 32 16× 16× 3 with maxpool size: (2,2)
’conv2’ 64 14× 14× 3 with filter size: (3,3)

’maxpool2’ 64 7× 7× 3 with maxpool size: (2,2)
’dropout1’ p=0.5

’dense’ 512
’dropout2’ p=0.5
’output’ 2

was minimised by stochastic gradient descent (SGD) algorithm with a constant

learning rate 0.001. Once the network is trained, it can be used to label the test

patches without further tweaking to the parameters.

Refining

After the CNN step, the segmented image regions resulted from the proposed

framework is enhanced to produce smooth and accurate segmentation results.

These results from the final classification layer in CNN is refined by penalising

contour length and disconnected patches. Occasionally, the results of region-based

segmentation approaches can be further refined using boundary-based algorithms

[185] like snake active contour model [186], Chan Vese model [187], and intel-

ligent scissors-based approach [188]. For intuitively and efficiently revising and

smoothing the segmentation on the test images by modifying curved contour in

less number of iterations, the following refining scheme is considered.

Let L(x) denotes the piecewise constant labelling function determined by the

superpixel technique whose values are determined by the superpixel index and

let φ(0)(x) denotes a function corresponding to the segmentation achieved in the

previous section. That is φ(0)(x) = 1 if x is contained in a superpixel which is

classified as the choroid and φ(0)(x) = 0 otherwise. Then the patches are relabelled
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Figure 4.4: CNN Architecture

iteratively as

φ(i)(x) = φ(i−1)(x)+

H

(∫
Ω

(H([κ ∗ L](x)− ε)− L(x))φ(i−1)(x) dx∫
Ω
H([κ ∗ L](x)− ε)− L(x) dx

− 1

2

)
, (4.5)

where ∗ denotes the operation of convolution, H denotes the Heaviside step

function, κ(x) is a small circular filter of diameter three and ε is a very small

positive parameter, set to 10−15 for this work. After ni iterations, the final contour

is given by ∇H
(
φ(ni)(x)− ε

)
. The iterative procedure is carried out until there is

no further change which typically occurred after only one or two iterations. As a

final step, the outer choroidal boundary contour is smoothed by a linear average
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one dimensional filter.

4.1.4 Results and Discussion

It has been demonstrated that the superpixel segmentation technique is improved

using the new energy function. The suitability of the superpixel segmentation

technique is checked as follows. After clustering, each superpixel is assigned a label

depending on the value of the manual annotation at the superpixel’s calculated

centre. In this way, a parameter search was carried out to find those which give

the best result for each energy function. A parameter search is performed to

determine the appropriate parameters (α, β1, β2, β3) = (10, 5.17, 48.57, 0.96). The

super-pixel parameters were optimised only on the training images, which were

then fixed for all testing and not tweaked for individual images. It demonstrates

that with these parameters, the proposed model produces consistently accurate

results for the previously unseen, randomly selected testing images.

To evaluate the performance of the proposed system; four different measure-

ments including accuracy (Acc), Dice’s Coefficient (DC), Tannimoto Coefficient

and f1 score have been calculated. These metrics are defined as follows:

Acc(%) =
tp+ tn

tp+ tn+ fp+ fn
× 100 (4.6)

Specificity(%) =
tn

tn+ fp
× 100 (4.7)

Sensitivity(%) =
tp

tp+ fn
× 100 (4.8)

f1(%) =
2(Precision×Recall)
Precision+Recall

(4.9)

where Precision = tp
tp+fp

, Recall = Sensitivity, tp: True Positive, tn: True

Negative, fp: False Positive, fn: False Negative
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DC =
2|A.B|
|A|+ |B|

(4.10)

TC =
A.B

|A|2 + |B|2 − A.B
(4.11)

where A is the ground truth map of segmentation and B is the resulted seg-

mentation map from the proposed system.

For choosing the deep learning input data, distance information and image

enhancement are combined into a tri-channel image. Each 65×65 patch is resized

to 33× 33 by downsampling for training and testing. Using only image intensities

in a single-channel image using super-pixel clustering method proposed in [184],

it is achieve a mean accuracy of 0.9429 across a test set of 15698 patches of

37 images which is encouraging. It is shown from Table 4.2 that incorporating

the distance measure (SLIC+In+D) with a scaling parameter of 1.3 chosen by

a parameter selection scheme achieves accuracy of 0.9613 and extending this to

include the enhanced image (SLIC+In+D+Enh) further improves the results to

give an accuracy 0.9662 and precision and recall of 0.97 and 0.97 respectively

corresponding to an F1 score of 0.97. While it may be simpler to exclude the

intensity image and rely on the enhanced image only (SLIC+D+Enh), it was

found that this reduces accuracy to 0.9629. Also, from Table 4.2 it can be noticed

that resizing the patch not only provides acceleration for training and testing, but

it demonstrates that there is no or only slightly decrease in resulted accuracy and

other metrics.

Table 4.3 presents the results of our baseline method using only image infor-

mation for CNN and the superpixel energy function reported in [184] but with

post-processing (refining stage after patches construction). Our baseline achieves

improved results over many comparable techniques as shown in Table 4.3. Our

overall method considering enhanced, distance information, and refining presented

in Table 4.3 and Figure 4.5, obtains improved results. It has been evaluated U-net
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Table 4.2: The performance of patch classification in the CNN considering the
patches size, the type and number of channels used in the image passed to CNN.

Method Image Size Acc Precision Recall F1

SLIC+In+D
33 95.53 96 96 96
65 96.17 96 96 96

65to33 96.13 96 96 96

SLIC+In+D+Enh
33 95.62 96 96 96
65 96.31 96 96 96

65to33 96.62 97 97 97

SLIC+D+Enh
33 95.25 95 95 95
65 95.83 96 96 96

65to33 96.29 96 96 96

Acc: accuracy, SLIC+IN+D: SLIC algorithm with image intensities and distance
information, SLIC+IN+D+Enh: SLIC algorithm with image intensities, distance
information, and enhanced intensities. SLIC+D+Enh: SLIC algorithm with dis-
tance information and enhanced image intensities.

proposed in [108] on our test set and obtained accuracy, DC, TC, F1 of 97.2, 88.1,

79.2, 88.1, respectively, which are less than our obtained results. Our proposed

method achieves the best results comparing to other existing methods and very

close results to Shi et al. [178] although they assessed their system on a different

dataset. Alonso-Caneiro et al. [168] proposed a graph-search based approach and

evaluated their method on two datasets, achieving DC of 97.3 and 96.7. They

reported DC better than the DC obtained by the proposed system but their al-

gorithm takes 45 seconds per B-scan for segmentation while ours achieves that in

only 2 seconds as well as the data used to evaluate their system differs from the

one used for evaluating our proposed system.

Moreover, Table 4.4 presents the inter and intra-observer agreements. It shows

that the proposed system is capable to get results are very close to human anno-

tations achieving accuracies of 98.58%, 98.21%, and 98.21% versus the references:

the first grader with annotation one, the first grader with annotation two, and the

second grader, respectively. Furthermore, some examples of the results obtained

by the proposed method versus the first grader with both two annotations and

the second grader’s annotations on some test images are presented in Figure 4.6
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Figure 4.5: Results of our model for four test images comparing our result
(red curve) with the expert grading (Grader1Round1)(blue curve).
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Table 4.3: Results of our method and competing methods

Method Acc DC TC F1 Data

Zhang et al. [162] - 78 - - 24 3D SD-OCT
Tian et al. [166] - 90.5 - - 45 EDI-OCT
Lu et al. [167] - 92.7 - - 30 EDI-OCT

Alonso-Caneiro et al. [168] - 97.3, 96.7 - - 1083, 90 OCT
González-López et al. [171] 96.88 - - - 63 EDI-OCT

Chen et al. [173] - 85.04 - - 212 HD-OCT
Chen et al. [174] - 86.29 - - 319 EDI-OCT
Shi et al. [178] - 93.17 - - 32 3-D OCT

Wang et al. [179] - 90 - - 30 3-D OCT
Min Chen et al. [182] - 83 - - 62 EDI-OCT

U-net [108] 97.22 88.14 79.20 88.14 Our test set
Our Baseline 95.89 92.59 86.44 90.20 Our test set

Our Method 98.63 92.90 86.92 91.64 Our test set

Acc: Accuracy, DC: Dice coefficient, TC: Tannimoto coefficient.

and Table 4.5. Table 4.5 shows that in 14 cases (41.2%), our results are closer to

G1A1 than either G1A2 or G2, in three of those (8.8%), our results are closer than

both. In 4 (11.8%) cases, our results are closer to G1A2 than G1A1 or G2, being

closer than both in one of those (2.9%). In 6 cases (17.6%), our results are closer

to G2 than G1A1 or G1A2, again being closer than both in one case (2.9%). To

demonstrate the performance of the framework on 3D data, Figure 4.7 shows an

example of segmentation of a three dimensional EDI-OCT image.

Table 4.4: Mean accuracy of our results compared to two different annotations
from one expert grader (Grad 1) and an annotation from a second expert grader
(Grad 2). From the calculations, each of the graders gave similar annotations

and our results are very close.

Our Method Grad 1 Ann 1 Grad 1 Ann 2

Grad 1 Ann 1 98.58 - -
Grad 1 Ann 2 98.21 99.05 -

Grad 2 98.21 99.11 99.00
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Table 4.5: Accuracies of our results (OM) compared to two different anno-
tations from one expert grader (G1A1 and G1A2) and an annotation from a
second expert grader (G2). The entries in bold indicate our results achieving

closer segmentation than an expert grading.

Example OM-G1A1 OM-G1A2 OM-G2 G1A1-G1A2 G1A1-G2 G1A2-G2

1 98.71 97.68 98.00 98.80 98.44 98.76
2 98.60 97.69 98.31 99.07 99.45 99.01
3 98.86 98.80 98.66 99.45 99.47 99.70
4 98.70 98.74 98.44 99.25 98.82 99.22
5 99.29 98.73 98.80 99.36 99.28 99.37
6 99.00 98.67 99.09 98.88 99.21 99.23
7 98.68 98.14 98.92 99.13 99.23 98.82
8 98.95 97.43 98.37 98.35 99.25 98.78
9 98.91 98.75 98.81 99.39 99.57 99.56
10 99.57 99.40 99.28 99.66 99.54 99.45
11 99.19 98.69 98.29 98.79 98.67 99.05
12 99.03 98.69 98.31 99.22 98.96 98.98
13 97.89 97.49 97.40 99.41 99.09 99.27
14 98.98 98.52 99.02 99.33 99.58 99.41
15 98.75 98.94 99.04 98.73 99.30 99.25
16 98.44 98.21 97.92 98.69 98.43 98.70
17 98.51 98.51 97.29 99.18 98.78 98.43
18 95.55 95.87 94.83 99.36 99.00 98.66
19 97.17 96.41 96.40 99.04 99.21 99.13
20 97.17 97.32 97.23 99.57 99.59 99.66
21 98.74 98.40 98.59 99.37 99.48 99.38
22 98.79 98.40 98.71 99.35 99.27 99.34
23 97.67 97.49 95.30 96.03 97.63 93.95
24 98.45 98.69 98.60 99.22 98.60 98.51
25 98.82 98.06 98.12 98.99 99.14 99.34
26 99.08 98.42 98.47 99.12 99.06 99.72
27 99.34 98.57 99.37 99.05 99.70 99.15
28 98.75 98.86 99.17 99.09 98.96 99.24
29 97.97 98.26 97.20 99.36 99.00 98.66
30 99.34 98.69 99.23 99.08 99.57 98.98
31 98.25 97.99 98.26 99.31 99.53 99.38
32 99.15 97.85 98.22 98.09 98.37 99.26
33 98.96 98.73 99.10 99.77 99.35 99.33
34 98.37 98.18 98.53 99.06 99.16 99.32
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Figure 4.6: Examples of our results (red contour) with grader one’s first
annotation (green), grader one’s second annotation (blue) and grader two’s an-

notation (cyan).
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Figure 4.7: Example of segmentation of a three dimensional EDI-OCT choroid
dataset.

4.1.5 Conclusion

An automated method for segmenting the choroid region in EDI-OCT images by

combining super-pixel clustering with convolutional neural networks has been pre-

sented. It has been shown that the proposed system based on CNN and clustering

has a promising ability for the automatic segmentation of the choroid boundries.

It has been obtained further improvements by defining a new super-pixel energy

function involving image intensity, region and enhanced image information. The

CNN classification is improved by building enhanced information as well as a dis-

tance function which produces excellent agreement with human expert’s manual
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segmentation. A refinement technique for obtaining an improved segmentation is

later defined. It has been demonstrated that the proposed technique outperforms

competing methods in terms of accuracy and overlapping given by the Tannimoto

Coefficient.
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4.2 Optic Disc/Cup Segmentation in Fundus Im-

ages

4.2.1 Introduction

Glaucoma is the collective name of a group of eye conditions that results in damage

to the optic nerves at the back of the eye, which can cause vision loss. Glaucoma

is one of the commonest causes of blindness and is estimated to affect around 80

million people worldwide by 2020 [21]. Glaucoma is known as the silent thief of

vision since, in the early phases of the disease, patients do not have any noticeable

pain or symptoms of vision loss. It is only when the disease progresses to a

significant loss of peripheral vision that the symptoms potentially leading to total

blindness may be noticed. Early detection and timely management of glaucoma

is key to helping prevent patients from suffering vision loss. There are many risk

factors associated with glaucoma amongst which hypertensive intra ocular pressure

(IOP) is the most accepted. It is believed that IOP can cause irreversible damage

to the optic nerve head, or optic disc (OD). Since the cornea is transparent, the

optic disc can be imaged by several optical imaging techniques, including colour

fundus photography. In two dimensional (2D) colour fundus images, the OD can

be divided into two regions as shown in Figure 4.8: a peripheral zone called the

neuroretinal rim and a central white region called the optic cup (OC). The ratio

of the size (e.g. vertical height) of the OC to the OD, known as CDR, is often

used as an indicator for the diagnosis of glaucoma [23]. Accurate segmentation

of the OD and OC is essential for useful CDR measurement. However, manual

delineation of the OD and OC boundaries in fundus images by human experts is a

highly subjective and time consuming process, which is impractical for use in busy

clinics. On the other hand, automated segmentation approaches using computers

are attractive as they can be more objective and much faster than a human grader.
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4.2.2 Related Work

Many approaches to segmenting of the OD and/or OC in fundus images have

been proposed in the literature. The existing methods for automated OD and OC

segmentation in fundus images can be broadly classified into three main categories:

shape-based template matching [189–195], active contours and deformable based

models [24, 143, 196–202], and more recently, machine and deep learning methods

[128, 203–218]. A brief overview of the existing methods is given below.

Figure 4.8: An example fundus image showing the optic disc and cup with
their boundary contours shown in blue.

a) Shape-based and template matching models: These methods model

the OD as a circular or elliptical object and try to fit a circle using the Hough

transform [190, 191, 194, 195], an ellipse [189, 192] or a rounded curve using a slid-

ing band filter [193]. These approaches typically feature in the earlier work in optic

disc and cup segmentation. In general, these shape-based modelling approaches to

OD and OC segmentation are not robust enough due to intensity inhomogeneity,

varying image colour, changes in disc shape by lesions such as exudates present

in abnormal images, and the presence of blood vessels inside and around the OD

region.
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b) Active contours and deformable based models: These methods have

been widely applied for the segmentation of the OD and OC [24, 143, 196–202].

Active contours approaches are deformable models which convert the segmenta-

tion problem into an energy minimisation problem where different energies are

derived to reflect features in the image such as intensity, texture and boundary

smoothness. Lowell et al. detected the location of the OD by applying a template

matching approach and then segmenting the OD region with a constrained de-

formable contour model [196]. Xu et al. defined a model combining smoothness,

gradient, and depth information for segmenting both the OD and OC [197]. Hus-

sain et al. presented an approach combining active contour models with genetic

algorithms (GAs) for OD segmentation [198]. In [199], Joshi et al. proposed a

region-based active contour approach by integrating the local image information

around each point of interest and anatomical evidence such as vessel bends at the

cup boundary to segment the OD and OC. Furthermore, Yu et al. [143] presented

an OD boundary segmentation technique relying on directional matched filtering

and combining region and local gradient information in a level set model. More-

over, Zheng et al. [200] introduced an energy function incorporating a shape prior,

the location of the disc and cup, the geometric interaction of the optic disc and

cup, and the rim thickness for the OD and OC segmentation. Mary et al. [201] de-

signed an OD segmentation approach to compare the performance of the gradient

vector flow (GVF) model with nine active contour model algorithms by supplying

them with the initial OD contour provided by the circular Hough transform and

demonstrated that the GVF model outclassed the rest. A method based on the

implicit region active contour model was presented by Mittapalli et al. [24] to

segment the OD by incorporating image information from multiple image chan-

nels. They also exploited the structural and gray level properties of the cup to

segment the OC region. Recently, a model-based method that uses Ant Colony

Optimization (ACO) meta-heuristic scheme was presented by Arnay et al. [202].

Their proposed method used the heuristic information which merges the intensity
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gradient in the OD area and the curvature associated with the vessels to obtain the

OC segmentation in fundus images. Active contour models are often formulated

as non-linear non-convex minimisation problems, thus may not achieve the global

minima due to the presence of noise and anomalies. In order to achieve good re-

sults in a short time, they require a good initialisation of the OD and OC contour

provided either manually or automatically, which suggests their performance is

dependent on the initialisation.

c) Machine- and deep-learning methods: Machine learning, and in par-

ticular more recent deep learning, based methods have shown promising results

for OD and OC segmentation [128, 203–218]. Abramoff et al. [203] proposed a

pixel feature classification algorithm to segment the OD into cup, rim, and back-

ground in colour stereo images by extracting and classifying twelve features using

k-nearest neighbour (kNN) classifier. Wong et al. proposed to use support vector

machine (SVM) classifier for the OD segmentation [204]. Unlike methods [203] and

[204], which are pixel classification based methods, Chen et al. [205] introduced a

super-pixel classification based approach to segmenting both the OD and OC in

retinal fundus images. They used histograms and centre surround statistics, the

location information from the OD and OC to classify each super-pixel using sup-

port vector machine (SVM) classifier. In [206], another super-pixel classification

based method but with an unsupervised labelling approach was proposed by Xu

et al. to segment the OC in retinal fundus images. They formulated the super-

pixel classification task as a low-rank representation (LRR) problem for clustering,

which can be efficiently solved in closed form. To locate the boundary of the OC,

Tan et al. [207] used the existing super-pixel based approach with addressing

the problems related to the classification performance variations by integrating

and unifying multiple super-pixel resolutions for better cup boundary adherence.

Roychowdhury et al. [208] designed a supervised method that uses six region-

based features with a Gaussian mixture model classifier to provide the OD region

segmentation. Moreover, Akyol et al. [209] presented an approach comprised of
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five main steps which are image processing, key-point extraction, texture analysis,

visual dictionary, and the random forest classifier to detect the OD contour. Fur-

thermore, Girard et al. [210] proposed local K-means clustering combined with

a regularisation step to segment the OD. In addition to that, Sedai et al. [211]

presented a coupled shape regression (CSR) framework which consists of a param-

eter regressor to estimate the CDR and an ensemble shape regressor to predict the

OD-OC boundary using the estimated CDR for OD and OC segmentation. The

aforementioned machine learning based approaches highly depend on the type of

extracted features which might be representative to a particular dataset but not

to others. Also, extracting the features manually by hand is a tedious task and

takes a considerable amount of time.

Nowadays, deep learning approaches represented by convolutional neural net-

works (CNNs) are an active research topic [128, 212–218]. Lim et al. [212] applied

CNNs to feature-exaggerated inputs emphasizing disc pallor without blood vessel

hindering to segment both the OD and OC. In [213], Maninis et al. used fully-

convolutional neural network [107] based on VGG-16 net [103] for the optic disc

segmentation task. For optic cup segmentation, Guo et al. [214] used large pixel

patch based CNNs where the segmentation was achieved by classification of each

pixel patch and post-processing. In [215], a modified version of the U-Net convolu-

tional network [108] was presented by Sevastopolsky for automatic optic disc and

cup segmentation. Furthermore, Shankaranarayana et al. [216] proposed a joint

optic disc and cup segmentation scheme using fully convolutional and adversarial

networks. Moreover, a framework consisting of ensemble learning based CNNs as

well as entropy sampling was presented in [128] by Zilly et al. for optic cup and

disc segmentation. In addition to that, Hong Tan et al. [217] proposed a single

CNN with seven layers to segment the OD by classifying every pixel in the image.

Most recently, Fu et al. [218] used a polar transformation with the multi-label

deep learning concept by proposing a deep learning architecture, named M-Net,

to segment the OD and OC simultaneously. In general, these recent deep learning
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methods performed well on the basis that they were trained and tested on the same

dataset. They might be incapable of achieving robustness and accuracy enough

for evaluating the optic disc and cup in clinical practice as there are different type

of variations such as population, camera, operators, disease, and image. These

concerns of their generalisation ability should be studied thoroughly.

Given the inherent and unsolved challenges encountered in the segmentation of

the OD and OC in the aforementioned methods, a new deep learning based method

is proposed to segment the OD and OC. The proposed method utilises DenseNet

incorporated with fully convolutional network (FCN). The FC-DenseNet, which

was originally developed for semantic segmentation [219], is adapted and used for

the automatic segmentation of the OD and OC. The significance of the work is

two-fold: First, the proposed segmentation method has outperformed the previous

methods for the simultaneous segmentation of the OD and OC; Second, general-

isation performance of the proposed method is assessed on five different sets of

images captured from different imaging devices and settings.

4.2.3 Materials and Methods

Image Datasets

In our experiments, five publicly available datasets of colour retinal fundus images:

ORIGA [220], DRIONS-DB [221], Drishti-GS [222], ONHSD [196], and RIM-ONE

[223] are used. The ORIGA dataset [220] comprises 650 fundus images with reso-

lution of 3072×2048 pixels including 482 normal eyes and 168 glaucomatous eyes.

The DRIONS-DB dataset [221] consists of 110 fundus images with resolution of

600×400 pixels. The Drishti-GS dataset [222] contains 101 fundus images centred

on the OD with a Field-Of-View (FOV) of 30-degrees and resolution of 2896×1944

pixels. The ONHSD dataset [196] comprises of 99 fundus images captured using

a Canon CR6 45MNf fundus camera from 50 patients. The images have a FOV

of 45-degrees and resolution of 640 × 480 pixels. The RIM-ONE dataset [223]
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comprises 169 fundus images taken using a Nidek AFC-210 fundus camera with a

body of a Canon EOS 5D Mark II of 21.1 megapixels with resolution of 2144×1424

pixels. The ORIGA, Drishti-GS, and RIM-ONE datasets are provided with the

OD and OC ground truth while DRIONS-DB and ONHSD are only provided with

the OD ground truth.

Methods

For the OD and OC segmentation task, the proposed deep learning based ap-

proach shown in Figure 4.9 comprises three main steps: (i) Pre-processing: the

image data are prepared for training with different pre-processing schemes consid-

ering the green channel only from colour (red-green-blue [RGB]) images as well as

extracting and cropping the region of interest (ROI) represented by the OD re-

gion, (ii) Designing and learning: FC-DenseNet architecture [219] is adapted and

used to fulfil the pixel-wise classification of images, and finally (iii) Refinement: to

obtain the final segmentations by correcting the misclassified pixels located outise

the OD and OC areas.

1. Pre-processing: first, RGB images without considering any pre-processing

scheme (referred to as ’Without’ through the text) are used. Pre-processing

is applied on Origa data so that the network will generalise better to other

datasets which are not used for training and never seen by the network during

the learning. One of the consideration for colour information is achieved by

training and testing the network using only green channel (’G’). Further, the

region of interest represented by the OD area within 2 optic disc diameter

(2ODD), has been cropped from green channel (’G+C’) and used for the

network training.

2. Designing and Learning: a FC-DenseNet network adapts the classifica-

tion network DenseNet [111] to a fully-convolutional neural network (FCN)
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Figure 4.9: Block diagram of the proposed optic disc and cup segmentation
system. (a) Methodology and fully convolutional DenseNet architecture, (b)
Dense Blocks (DB), (c) One layer in DB, (d) Transition Down block (TD), (e)
Transition Up block (TU). The circle (C) refers to concatenation process. Note,
red and blue represent the cropped rim and OC respectively in the segmentation.
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[107] for segmentation. A fully convolutional network is an end-to-end learn-

able network where the decision-making layers of the network are convolu-

tional filters instead of fully connected layers. This adaptation on the top

layers reduces the loss of spatial information caused by fully connected layers

as a result of the connectivity of the output neurons of the fully connected

layers to all input neurons. The key feature of DenseNet is its ability to fur-

ther exploit the extracted features reuse and strengthening feature propaga-

tion by making a direct connection between each layer to every other layer.

In the original paper of DenseNet [111], the authors have demonstrated that

CNNs can be substantially deeper, more accurate, and efficient to train if

they contain shorter connections between layers close to the input and those

close to the output. This makes DenseNet the best choice over other CNN

architectures proving its ability to alleviating the vanishing-gradient prob-

lem and substantially reducing the number of required parameters. The

FC-DenseNet network is composed of three main blocks: dense, transition

down, and transition up. Dense block (DB) consists of a batch normalisa-

tion layer, followed by rectified linear unit as an activation function, a 3× 3

convolution layer, and dropout layer with a dropping rate of 0.2. A tran-

sition down (TD) block is composed of batch normalisation layer, followed

by rectified linear unit as an activation function, 3 × 3 convolution layer,

dropout layer with a dropping rate of 0.2, and 2 × 2 Max pooling layer. A

transition Up (TU) block contains 3× 3 transposed convolution layer.

The architecture of the network used in our experiments (shown in Fig-

ure 4.9) is built from one 3 × 3 convolution layer on the input, followed by

five dense blocks each consisting of 4, 5, 7, 10, and 12 layers respectively

where each dense block followed by transition down block, one dense block

with 15 layers in the last layer of the down-sampling path (bottleneck), five

transition up blocks each followed by dense block consisting of 12, 10, 7,
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5, and 4 layers respectively, and a 1 × 1 convolution followed by a non-

linearity represented by Softmax function. RMSprop [92], an optimisation

algorithm based on stochastic gradient descent, is used for network training

with a learning rate of 10−3 within 120 epochs with early-stop condition of

30 epochs. To increase the number of images artificially, the images are aug-

mented with vertical flips and random crops. The weights of the network

have been initialised using HeUniform [86] and cross-entropy is used as a loss

function. Once the network is trained, test stage can be achieved using the

trained model to segment the images in the test set

3. Refinement: To convert the real values resulted from the final layers of

fully convolutional DenseNet into a vector of probabilities (i.e generating

the probability maps for the image pixels), the Softmax function is used

by squashing the outputs to be between 0 and 1. Here, the OD and OC

segmentation problem are formulated as a three class classification task: class

0 as background, class 1 as OC, and class 2 as OD. Thus, the predicted class

label of image pixels can be further refined by correcting the misclassified

pixels in the background. This can be achieved by finding the area of all

connected objects in the predicted images. The object of maximum area is

retained by considering it as the OD/OC region and classifying any other

small objects as background class label (’G+C+PP’).

4.2.4 Results and Discussion

Origa dataset is split into 70% for training (10% of training data is randomly

utilised for validation) and 30% for independent test set. The resolution of images

is resized into 256 × 256. The performance of the proposed method for segment-

ing the OD and OC when compared with the ground truth was evaluated using
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many evaluation metrics such as Dice coefficient (F-Measurement), Jaccard (over-

lapping), accuracy (Acc), sensitivity (SEN), and specificity (SPC). Dice’s and

Jaccard’s coefficients can be defined in terms of tp, fp, tn and fn as follows:

Dice(DC) =
2× tp

2× tp+ fp+ fn
(4.12)

Jaccard(Jc) =
tp

tp+ fp+ fn
(4.13)

Most comprehensive study involving five publically available datasets are car-

ried out. This allows for evaluation with images from many different devices and

conditions, and from patients of different ethnicities in comparison with previ-

ous work demonstrating the robustness of the proposed method. To assess the

performance of proposed system, two evaluation scenarios are considered. First,

study the performance of the system by training and testing the model on the

same dataset (Origa). Second, study the performance of the system by training

the model on a dataset (Origa) and testing it on other four independent datasets

including DRIONS-DB, Drishti-GS, ONHSD, and RIM-ONE. Tables 4.6, 4.7,

4.8, and 4.9 show the performance of the model trained and tested on the Origa

for the OD, OC, joint OD-OC segmentation, respectively. It achieves Dice score

(F-measurement), Jaccard score (overlap), accuracy, sensitivity, and specificity of

0.8723, 0.7788, 0.9986, 0.8768, and 0.9994, respectively for the OC segmentation

and 0.964, 0.9311, 0.9989, 0.9696, and 0.9994 for the OD segmentation. The per-

formance of segmenting rim area located between the OD and OC contours is

also calculated. It achieves Dice score (F-measurement), Jaccard score (overlap),

accuracy, sensitivity, and specificity of 0.8764, 0.7849, 0.9975, 0.9028, and 0.9985

on the Origa.

Table 4.6: Comparison with the existing methods in the literature for only
OD segmentation on different datasets.
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Author Method
Optic Disc

Dataset
DC(F) JC(O) Acc SEN SPC

Wong et al.

[204]

Support vector ma-

chine based classifi-

cation mechanism

- 0.9398 0.99 - - SiMES

Yu et al. [143] Directional

matched filter-

ing and level sets

- 0.844 - - - Messidor

Mookiah et al.

[224]

Attanassov intu-

itionistic fuzzy

histon (A-IFSH)

based method

0.92 - 0.934 0.91 - Private

Giachetti et

al. [192]

Iteratively refined

model based on

contour search con-

strained by vessel

density

- 0.861 - - - MESSIDOR

Dashtbozorg

et al. [193]

Sliding band filter - 0.8900,

0.8500

- - - MESSIDOR,

INSPIRE-AVR

Basit and

Fraz [225]

Morphological op-

erations, smooth-

ing filters, and

the marker con-

trolled watershed

transform

- 0.7096,

0.4561,

0.5469,

0.6188

- - - Shifa, CHASE-

DB1, DI-

ARETDB1,

DRIVE

Wang et al.

[226]

Level set method - 0.8817,

0.8816,

0.8906

- 0.9258,

0.9324,

0.9465

0.9926,

0.9894,

0.9889

DRIVE, DI-

ARETDB1,

DIARETDB0

Hamednejad

et al. [227]

DBSCAN cluster-

ing algorithm

- - 0.7818 0.74 0.84 DRIVE
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Roychowdhury

et al. [208]

Region-based

features and super-

vised classification

- 0.8067,

0.8022,

0.7761,

0.8082,

0.8373,

0.7286

0.991,

0.9963,

0.9956,

0.9914,

0.9956,

0.9854

0.878,

0.8815,

0.8660,

0.8962,

0.9043,

0.8380

- DRIVE, DI-

ARETDB1,

DIARETDB0,

CHASE-DB1,

MESSIDOR,

STARE

Girard et al.

[210]

Local K-means

clustering

- 0.9 - - - MESSIDOR

Akyol et al.

[209]

Keypoint de-

tection, texture

analysis, and visual

dictionary

- - 0.9438,

0.9500,

0.9000

- - DIARETDB1,

DRIVE, ROC

Abdullah et

al. [228]

Circular Hough

transform and

grow-cut algorithm

- 0.7860,

0.8512,

0.8323,

0.8793,

0.8610

- - - DRIVE, DI-

ARETDB1,

CHASE-DB1,

MESSIDOR,

Private

Hong Tan et

al. [217]

7-Layer CNN - - - 0.8790 0.9927 DRIVE

Zahoor et al.

[229]

Polar transform - 0.8740,

0.8440,

0.7560

- - - DIARETDB1,

MESSIDOR,

DRIVE

Sigut et al.

[195]

Contrast based

circular approxima-

tion

- 0.8900 - - - MESSIDOR

Proposed Fully convolu-

tional DenseNet

0.9653 0.9334 0.9989 0.9609 0.9995 ORIGA

Tables 4.10 and 4.12 present the results of proposed system which is trained

on the Origa dataset and assessed on the DRIONS-DB and ONHSD datasets, re-

spectively. In these two datasets, only the optic disc segmentation performance

are reported because the ground truth of the OC is not provided. The best results
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Table 4.7: Comparison with the existing methods in the literature for only OC segmentation
on different datasets.

Author Method
Optic Cup

Dataset
DC(F) JC(O) Acc SEN SPC

Hatanaka
et al. [230]

Detection of blood
vessel bends and
features deter-
mined from the
density gradient

- - - 0.6250 1 Private

Almazroa
et al. [194]

Thresholding us-
ing type-II Fuzzy
method

- - 0.7610,
0.7240,
0.8150

- - Bin Rushed,
Magrabi, MES-
SIDOR

Proposed Fully convolu-
tional DenseNet

0.8659 0.7688 0.9985 0.9195 0.9991 ORIGA

DC: Dice coefficient, F: F score, JC: Jaccard coefficient, O: Overlapping, Acc; Accuracy, SEN:
Sensitivity, SPC: Specificity .

Table 4.8: Comparison with the existing methods in the literature for joint
OC and OD segmentation on different datasets.

Author Method
Optic Cup Optic Disc

Dataset
DC(F) JC(O) Acc SEN SPC DC(F) JC(O) Acc SEN SPC

Noor
et al.
[231]

Colour
multi-
thresholding
segmen-
tation

0.51 - 0.6725 0.3455 0.9995 0.59 - 0.7090 0.4200 1 DRIVE

Khalid
et al.
[232]

Fuzzy
c-Means
(FCM)
and
morpho-
logical
opera-
tions

- - 0.9026 0.8063 0.9989 - - 0.937 0.8764 0.9975 DRIVE

Pro-
posed

Fully
convo-
lutional
DenseNet

0.8659 0.7688 0.9985 0.9195 0.9991 0.9653 0.9334 0.9989 0.9609 0.9995 ORIGA

have been obtained by considering the cropped green channel along with refine-

ment (’G+C+PP’) achieving Dice score (F-measurement), Jaccard score (overlap),

accuracy, sensitivity, and specificity of 0.9415, 0.8912, 0.9966, 0.9232, and 0.999,

respectively, on the DRIONS-DB dataset and 0.9556, 0.9155, 0.999, 0.9376, and,

0.9997 respectively on the ONHSD dataset. Further, the network trained on the

Origa is tested on the Drishti-GS and RIM-ONE datasets achieved the results
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Table 4.9: Results of the proposed method for OD and OC segmentation on
Origa dataset compared with the existing methods in the literature.

Method
Optic Cup Optic Disc

DC(F) JC(O) DC(F) JC(O)
Yin et al. [233] 0.83 - - -
Yin et al. [234] 0.81 - - 0.92
Xu et al. [206] - 0.744 - -
Tan et al. [207] - 0.752 - -
Fu et al. [218] - 0.77 - 0.929

Proposed 0.8659 0.7688 0.9653 0.9334

reported in Tables 4.11 and 4.13, respectively. Also, the best obtained results on

these datasets are achieved using the cropped green channel images (’G+C+PP’).

Figure 4.10 shows examples of the OD and OC segmentation results on fundus

image from the five datasets.

Table 4.10: The optic disc segmentation performance on the DRIONS-DB
dataset considering different data processing schemes. The network is trained

on Origa dataset only.

Model
Optic Disc

DC(F) JC(O) Acc SEN SPC
Without 0.62855 0.47715 0.98415 0.4843 0.99955

G 0.8131 0.69825 0.99055 0.73355 0.99845
G+C 0.9091 0.8403 0.99425 0.9232 0.9965

G+C+PP 0.9415 0.8912 0.9966 0.9232 0.999

For Glaucoma diagnosis, CDR is typically calculated along the vertical line

passing through the optic cup centre (superior-inferior) and then a suitable ratio

threshold may be defined. Varying the thresholds and comparing with the expert’s

glaucoma diagnosis, it has been achieved an area under the receiving operator

curve (AUROC) of 0.7443 based on our segmentations which is very close to the

0.786 achieved using the ground truth segmentations. Since this limits us to

considering only a few points on the optic disc, this is extended to incorporate

the horizontal CDR (nasal-temporal). That is, it has been taken the average

CDR vertically and horizontally and considerd thresholds. It is thus achieved an

AUROC of 0.7776 which is considerably higher than using only the vertical CDR
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OR

DD
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Figure 4.10: Examples of joint OD-OC segmentation results. From the first
row to the fifth row, the examples are from the Origa (OR), DRIONS-DB (DD),
Drishti-GS (DG), ONHSD (ON), and RIM-ONE (RO) respectively. The green
contour refers to the ground truth provided with the images while the blue one
indicates the results of our proposed method. The DRIONS-DB and ONHSD
show the contour of OD only because the ground truth for OC is not provided.
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Table 4.11: The optic disc, cup, and rim segmentation performance on the
Drishti-GS dataset considering different data processing schemes. The network

is trained on the Origa dataset only.

Model
Optic Cup

DC(F) JC(O) Acc SEN SPC
Without 0.6765 0.5338 0.991 0.5887 0.9989

G 0.7646 0.6259 0.9933 0.6676 0.9994
G+C 0.8045 0.6793 0.9939 0.7413 0.9986

G+C+PP 0.8282 0.7113 0.9948 0.7413 0.9995
Optic disc

Without 0.719 0.577 0.986 0.5818 0.9997
G 0.851 0.7487 0.9916 0.7695 0.999

G+C 0.9291 0.871 0.9954 0.9268 0.9976
G+C+PP 0.949 0.9042 0.9969 0.9268 0.9992

Rim
Without 0.3583 0.2309 0.9864 0.2841 0.9965

G 0.509 0.3557 0.987 0.5095 0.9939
G+C 0.7033 0.5601 0.9912 0.7996 0.9938

G+C+PP 0.7156 0.5743 0.9918 0.7996 0.9945

Table 4.12: The optic disc segmentation performance on the ONHSD dataset
considering different data processing schemes. The network is trained on the

Origa dataset only.

Model
Optic Disc

DC(F) JC(O) Acc SEN SPC
Without 0.6671 0.5204 0.9935 0.5646 0.9988

G 0.878 0.7924 0.9969 0.9428 0.9975
G+C 0.9392 0.8877 0.9986 0.9376 0.9993

G+C+PP 0.9556 0.9155 0.999 0.9376 0.9997

and closer to the AUROC of 0.7717 achieved by using the experts annotation.

Figure 4.11 shows ROC curves of both the expert’s glaucoma diagnosis and our

proposed system detection, respectively.

In terms of comparing our proposed method to the existing methods in the

literature, Tables 4.6, 4.7, 4.8, 4.9, 4.14, 4.15, 4.16, and 4.17 and present

the comparison in terms of Dice score (F-measurement), Jaccard score (overlap),

accuracy, sensitivity, and specificity measurements. Table 4.6 presents the com-

parison of the model trained and tested on the Origa with the existing methods

proposed for the OD segmentation. The comparison with 15 methods shows that

our method outperforms almost all of them. Wong et al. [204] reported segmenta-

tion overlap of 0.9398 which is slightly better than 0.9334 obtained by our proposed
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Table 4.13: The optic disc, cup, and rim segmentation performance on the
RIM-ONE dataset considering different data processing schemes. The network

is trained on the Origa dataset only.

Model
Optic Cup

DC(F) JC(O) Acc SEN SPC
Without 0.2584 0.1657 0.98 0.2688 0.9886

G 0.5011 0.3627 0.9872 0.6635 0.9911
G+C 0.6096 0.4709 0.9888 0.9052 0.9904

G+C+PP 0.6903 0.5567 0.9928 0.9052 0.9944
Optic Disc

Without 0.4204 0.2833 0.9629 0.2984 0.9924
G 0.6799 0.5364 0.978 0.5979 0.9946

G+C 0.8455 0.7423 0.9864 0.874 0.9915
G+C+PP 0.9036 0.8289 0.9922 0.8737 0.9976

Rim
Without 0.1869 0.1088 0.9715 0.1166 0.9983

G 0.3969 0.2578 0.9741 0.3041 0.9951
G+C 0.7108 0.5666 0.9844 0.6591 0.9946

G+C+PP 0.7341 0.5942 0.9863 0.6585 0.9966

Figure 4.11: From left to right: ROC curves of the expert’s glaucoma diagnosis
and the proposed system.

system. However, their method only segments the OD region and they used fea-

tures extracted manually which might be applicable to the dataset they have used

but not to other datasets. For the OC region, our proposed method achieves the

best results comparing to other existing methods as shown in Table 4.7. For joint

OD and OC segmentation results shown in Table 4.8, our method also outperforms

the proposed methods in the literature.

Tables 4.14 and 4.15 present the comparison of our system trained on Origa and

tested on the Drishti-GS and RIM-ONE datasets respectively with the methods
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were trained and tested on those datasets. The results of our method on Drishti-GS

outperform the results reported by Nawaldgi [235] and Oktoeberza et al. [236].

Sedai et al. [211] and Zilly et al. [128] report Dice and overlap scores slightly

better than ours in segmenting the OC and OD regions. However, they used the

same dataset (Drishti-GS) for training and testing their system while our system

is trained on the Origa images only and tested on the Drishti-GS which make

it more generalisable. Furthermore, Guo et al. [214] and Sevastopolsky [215]

used the same dataset (Drishti-GS) for training and testing, and segmented the

OD region only. For the RIM-ONE dataset, our method is compared with three

methods as shown in Tables 4.15. Similarly, these methods were tested on the

same dataset used in the learning process which makes the efficacy of their system

performance doubtful on other datasets. Tables 4.9, 4.16, and 4.17 show that our

system trained only on Origa gives the best results compared to others on Origa,

DRIONS-DB, and ONHSD datasets, respectively.

For the rim region segmentation, our system achieved an overlap of 0.7708 and

balanced accuracy; which can be obtained by calculating the mean of achieved

sensitivity and specificity; of 0.93 on Origa dataset. The most recent published

paper for the OD and OC segmentation [218] reported rim segmentation overlap

of 0.767 and balanced accuracy of 0.941 on the Origa. Their reported results are

very close to ours although they have used a different scheme of data splitting for

training and testing. Other existing methods in the literature have not reported

rim region segmentation performance.

Furthermore, AUROC curve performance shows excellent agreement between

grading done by ophthalmologist and the proposed system for glaucoma diagnosis.

Combining the vertical cup to disc ratio with horizontal cup to disc ratio signifi-

cantly improves the automated grading results and suggests that these diagnosis

results could be further improved by using complete profile of the OD.
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Table 4.14: Results of the proposed method for OD and OC segmentation on
Drishti-GS dataset compared with the existing methods in the literature.

Method
Optic Cup Optic Disc

DC(F) JC(O) Acc DC(F) JC(O) Acc
Sedai et al. [211] 0.86 - - 0.95 - -

Sevastopolsky [215] 0.85 0.75 - - - -
Guo et al. [214] 0.9373 0.8775 - - - -

Nawaldgi et al. [235] - - 0.97 - - 0.99
Zilly et al. [128] 0.871 0.85 - 0.973 0.914 -

Oktoeberza et al. [236] - - - - - 0.9454
Proposed 0.8282 0.7113 0.9948 0.949 0.9042 0.9969

Table 4.15: Results of the proposed method for OD and OC segmentation on
RIM-ONE dataset compared with the existing methods in the literature.

Method
Optic Cup Optic Disc

DC(F) JC(O) DC(F) JC(O)
Sevastopolsky [215] 0.82 0.69 0.94 0.89

Shankaranarayana et al. [216] 0.94 0.768 0.977 0.897
Arnay et al. [202] - 0.757 - -

Proposed 0.6903 0.5567 0.9036 0.8289

Table 4.16: Results of the proposed method for OD segmentation on
DRIONS-DB dataset compared with the existing methods in the literature.

Method
Optic Disc

DC(F) JC(O)
Sevastopolsky [215] 0.94 0.89

Abdullah et al. [228] - 0.851
Zahoor et al. [229] - 0.886

Proposed 0.9415 0.8912

Table 4.17: Results of the proposed method for OD segmentation on ONHSD
dataset compared with the existing methods in the literature.

Method
Optic Disc

DC(F) JC(O) Acc
Dashtbozorg et al. [193] 0.9173 0.8341 0.9968

Girard et al. [210] - 0.84 -
Abdullah et al. [228] - 0.801 -

Sigut et al. [195] - 0.865 -
Proposed 0.9556 0.9155 0.999
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4.2.5 Conclusion

A novel approach based on a fully convolutional Dense network has been proposed

for the joint simultaneous segmentation of the OD and OC in colour fundus im-

ages. The proposed method achieves the segmentation by extracting complex data

representations from retinal images without the need of human intervention. It

has been demonstrated that the performance of the proposed generalised system

can outperform or achieve comparable results with competing approaches. These

findings also reflect the efficiency and usefulness of FC-DenseNet for the OD and

OC segmentation.

4.3 Summary

This chapter has presented two segmentation methodologies to segment the bound-

aries of the choroid and OD/OC in EDI-OCT and fundus images, respectively. The

segmentation of the aforementioned anatomical structures is greatly required to

extract certain features that help in diagnosis and subsequently treatment of the

diseases affecting the retina and the choroid. Thus, the developed automated seg-

mentation approaches has a promising potential to be an effective step towards

implementing an accurate and reliable computer aided-diagnosis system. However,

carrying out of an extensive validation to the choroid segmentation method would

allow evaluating with images from many different devices and coexisting condi-

tions (such as PED and SRF fluids), and from patients of different ages, genders

and ethnicities. Moreover, further investigation supported by wide clinical studies

would help validating the obtained findings in the clinical setting.



Chapter 5

Retinal Disease and Lesion

Classification

Disease and lesion classification is very important in the development of precise

computer-aided diagnosis systems (CADs). In this chapter, retinal diseases clas-

sification and lesions (fluids) identification based on deep CNN are considered in

two types of images: digital colour fundus and OCT. Glaucoma detection using

fundus images is considered in §5.1 based on features extracted by a CNN to train

a support vector machine (SVM) classifier. Next, a deep learning multi-stage CNN

model is presented to diagnosis the disease of diabetic maculapathy in §5.2. In

§5.3, the concepts of fine-tuning a pre-trained CNN and ensemble learning are

exploited to classify retinal fluids into three types IRF, SRF, and PED in OCT

volumes. Finally, §5.4 summarises the work in this chapter.

5.1 Automated Glaucoma Grading

5.1.1 Introduction

In Section 4.2, a method of segmenting the OD and OC regions and subsequently

obtaining glaucoma diagnosis based on CDR value were presented. The main aim

123
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of the work presented in the previous chapter was to design an accurate system for

OD and OC segmentation that could lead to better glaucoma diagnosis. However,

in clinical settings, more features than the thinning of neuroretinal rim (NRR)

measured by CDR are considered for glaucoma diagnosis. Signs and features used

for glaucoma referral divisions include the presence of disc haemorrhages, NRR

thickness not following the ISNT (Inferior-Superior-Nasal-Temporal) rule, alpha

and beta peripapillary atrophy, and notches in the NRR [220]. In this section,

the problem of glaucoma detection is considered where a small data size with

pre-defined OD region are provided. Based on the transfer learning concept, it

has been aimed to achieve diagnosis by extracting the features that characterise

glaucoma from the region of interest.

5.1.2 Related Work

To detect glaucoma in retinal fundus images, the existing methods in the literature

relied on different handcrafted features extracted from images manually. In [237],

a method based on an artificial neural network (ANN) classifier and morphological

features of the optic nerve was proposed to detect glaucoma. Furthermore, the

authors in [238] presented a glaucoma Risk Index (GRI) approach to detect glau-

coma by extracting features then feeding them to a principle component analysis

(PCA) algorithm for dimensionality reduction and a SVM model to classify the

images into either normal or pathological.

A method based on texture and higher order spectral (HOS) features with a

random forest classifier was proposed in [4] to diagnose glaucoma in fundus images.

Moreover, in [239], wavelet features with a feature selection technique were applied

to detect glaucoma in the images using a sequential minimal optimisation (SMO)

classifier. Recently, an approach based on Gabor features along with SVM was

proposed to detect glaucoma in the images [5]. More recently, a method based on

capturing the discriminative features using contextualising deep learning from the
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OD after applying segmentation on the region of interest to detect glaucoma was

proposed in [240].

In this work and based on a fixed feature extractor concept originating from

transfer learning, an automated system to detect glaucoma in retinal fundus images

is proposed. Unlike aforementioned methods, the features that discriminate the

OD region from optic cup region are extracted automatically without the need for

human intervention. These features are used to train a SVM model in order to

detect the presence of glaucoma in a given image.

5.1.3 Material and Method

Data

A publicly available database called RIM-ONE [223], which comprises 455 high-

resolution glaucoma and non-glaucoma images along with their OD and OC seg-

mentations, is used to evaluate and test the proposed method. The images in this

dataset are classified into 255 normal and 200 glaucomatous images.

Pre-processing

The images are resized to 227×227 pixels. The images are applied to the network

without any enhancement or further pre-processing step except image resizing to

decrease the computational time. The data is randomly divided into 70% for

training and 30% for validation and evaluation of the implemented system.

Feature Extraction using CNN

Figure 5.1 shows the stages of glaucoma grading for the proposed system. In

the first stage, a CNN is formed using linked layers of neurons like other neural

networks with more complexity in the hidden layers. A pre-trained CNN model

(AlexNet) which comprises 23 layers including convolution layers, max pooling

layers, fully connected layers, softmax layer and output layer is used in the training
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Figure 5.1: Proposed system stages of glaucoma grading.

stage as a feature extractor as shown in Table 5.1. Training the entire network

from scratch should be avoided since the size of dataset is small. Similarly, fine-

tuning the entire CNN can also be avoided due to overfitting problems. Instead,

the learned AlexNet’s weights which are trained on more than a million images on

the ImageNet database [241] to classify images into 1000 classes are transferred.

Thus, the full AlexNet (after removing the fully connected layers) is treated as

a fixed-feature extractor for dataset under study. The training data is passed

through the CNN model to extract the features where the images’ higher-level

features are available in the deeper layers of the CNN. These training features

are extracted from the layer right before the classification layer (fully connected

layer) ’fc7’ and then fed into the SVM classifier to train it. A GPU is used in

this stage rather than CPU to speed up the computation as CNNs are highly

computationally intensive.

Training SVM using CNN Features and Predication

Support vector machines (SVM) are among the most widely used supervised clas-

sification methods in the field of machine learning. Hard margin classifier are

considered the simplest kind of SVM, which solve an optimisation problem to find

the linear classification rule with maximal geometric margin. Thus, in the linearly

separable case, the hard margin SVM builds the hyperplane that classifies all data

correctly and maximises the distance to the nearest training data points.
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Table 5.1: Architecture of AlexNet.

Layer Name Parameters Description

‘inputimage’ 227× 227× 3 images with normalisation
‘conv1’ 96 11× 11× 3 convolutions with stride: [4 4] and padding: [0 0]
‘relu1’ ReLU

‘norm1’ Channel normalisation
‘pool1’ 3× 3 max-pooling with stride: [2 2] and padding: [0 0]
‘conv2’ 256 5× 5× 48 convolutions with stride: [1 1] and padding: [2 2]
‘relu2’ ReLU

‘norm2’ Channel normalisation
‘pool2’ 3× 3 max-pooling with stride: [2 2] and padding: [0 0]
‘conv3’ 384 3× 3× 256 convolutions with stride: [1 1] and padding: [1 1]
‘relu3’ ReLU
‘conv4’ 384 3× 3× 192 convolutions with stride: [1 1] and padding: [1 1]
‘relu4’ ReLU
‘conv5’ 256 3× 3× 192 convolutions with stride: [1 1] and padding: [1 1]
‘relu5’ ReLU
‘pool5’ 3× 3 max-pooling with stride: [2 2] and padding: [0 0]

‘fc6’ 4096 fully connected layer
‘relu6’ ReLU
‘fc7’ 4096 fully connected layer

‘relu7’ ReLU
‘fc8’ 2 fully connected layer

‘prob’ softmax
‘classificationLayer’ cross-entropy

In practice, datasets are usually not linearly separable, and therefore, the SVM

optimisation problem must be modified. This modification is necessary in order

to achieve a trade-off between minimising classification error on the training data

points and maximising geometric margin by applying the soft margin idea. Soft

margin builds a hyperplane that allows misclassification of difficult or noisy exam-

ples while maximising the distance to the nearest cleanly separated data examples

[242, 243].

In this stage, the features extracted from the previous step are fed to SVM

classifier for training. The parameters of SVM are tuned and set to C = 10 (cost

parameter defines the weight of how much samples inside the margin contribute
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to the overall error) and polynomial kernel with degree of 3 to achieve best per-

formance results. Once the SVM model is learned, the test images are used to

evaluate the performance of the proposed system by classifying the test data into

either normal or pathological. A SVM training algorithm with a binary class pre-

dicts the labels of points in a test dataset by building a model for the training

dataset. Given a set of binary-labelled training vectors, SVMs learn a decision

boundary to discriminate between the two classes. The resulting classification

rule can be used to classify new test examples.

5.1.4 Results and Discussion

The confusion matrix that shows the prediction performance is shown in Figure

5.2. The proposed system was evaluated on 30% of 455 images in terms of accuracy,

sensitivity and specificity.

Figure 5.2: Confusion matrix shows prediction performance evaluation (0:
normal; 1: glaucomas).

The network achieved 88.2%, 85%, 90.8% accuracy, sensitivity and specificity,

respectively. The obtained results seem very promising where the proposed system
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is implemented without applying any data augmentation or oversampling. Fur-

thermore, the proposed method does not require prior knowledge of retinal image

features like blood vessel structure.

For the sake of comparison and to study the effect of adopting pre-trained

weights for a small dataset, the CNN is trained from scratch. This network achieves

accuracy of 76.64%, sensitivity of 72.73%, and specificity of 81.67% which are less

than the results obtained from the pre-trained network. Therefore, there is a strong

motivation to learn transferable feature representations for biomedical images.

this method is also computationally simple such that it does not require seg-

mentation of the optic disc in order to get the features for the region of interest.

Moreover, all the features that represent the region of interest are extracted au-

tomatically from the data itself by the CNN without the need of manual feature

extraction.

5.1.5 Conclusion

In this section, an automated approach to detect glaucoma in retinal fundus images

has been presented. The proposed method based on CNN, demonstrated promising

performance in diagnosing glaucoma with considerably lower computational cost

compared to existing equivalent methods. The raw images were directly applied

to the CNN without any enhancement or pre-processing except for image resizing

to reduce the computation cost. Key features of the disease are automatically

extracted from stack layers of the filters convolved along the raw image and passed

to the SVM model for classification. The transfer learning used in this section has

proved to be an effective strategy in situations where insufficient training data

prevents a deep learning model use.
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5.2 Automated Diabetic Macular Oedema Grad-

ing

5.2.1 Introduction

Diabetic Macular Oedema (DMO) or Diabetic Maculopathy (DM) is a condition

characterised by the appearance of exudate close to the macula. Consequently, the

central vision of the patient is affected. DMO usually develops at any time during

the progression of Diabetic Retinopathy (DR). DR is associated with high blood

glucose levels that cause damage to the vessels supplying blood to the retina.

According to the Early Treatment Diabetic Retinopathy Study (ETDRS) [25],

the severity of DMO is mainly divided into two categories: non-clinically significant

macular oedema (non-CSMO) and clinically significant macular oedema (CSMO).

It is believed that the early detection and treatment of DMO may improve visual

acuity. Different imaging techniques have been used for the diagnosis of DMO

such as retinal thickness analyser (RTA), colour fundus photographs, fluorescein

angiography (FA) and optical coherence tomography (OCT).

5.2.2 Related Work

Recently, many automated and computerised systems for DMO grading have been

introduced along with associated image processing techniques for exudate, fovea

detection and segmentation using retinal fundus images [15], [244]. In order to

detect and grade the severity of DMO, existing methods in the literature have

relied on either detection of the location and segmentation of exudate and the

macula [244],[245] or the extraction of texture and image based features [246].

In [247], Tariq et al. proposed a method based on extracting morphological

features and the location of exudate after segmenting the exudate using a Gabor

filter bank and mathematical morphology. Finally, the distance between the exu-

date and the centre of the macula was calculated in order to grade the severity of
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DMO in each image. Furthermore, Zaidi et al. [245] developed a grading method

using Gabor filtering, mathematical morphology and Otsu thresholding with a

Bayesian classifier to detect the location of exudate and positional constraints to

grade the severity of DMO.

Moreover, Giancardo et al. [6] proposed an automated grading system based

on an exudate probability map and wavelet decomposition. They used the Kirsch

edge operator and a region growing algorithm to locate the hard exudate and

the fovea region. After that, the features were extracted using wavelet analysis

and fed into a SVM model for classification. In [246], the authors developed a

method based on motion pattern analysis and the Radon transform to extract the

features. The features were then fed into two classifiers to detect the presence of

DMO in the images. Baby et al. [248] used Gaussian data description (GDD)

to extract features from the wavelet sub-bands that are obtained by a dual tree

complex wavelet transform (DT-CWT). Furthermore, a method based on higher

order spectra features was proposed by Mookiah et al. [15].

Based on the aforementioned proposed methods, the performance of the grad-

ing systems relies on the exudate segmentation, anatomical structure localisation

and feature extraction strategies. However, the detection of anatomical structures

(i.e. fovea and macula) and exudate segmentation are challenging. Furthermore,

the features are extracted manually and depend highly on the dataset used to

evaluate the proposed methodology. Moreover, finding and engineering a feature

set that is appropriate for different datasets is still a challenge since features that

are representative of or descriptive for one dataset are often not representative of

or descriptive for other datasets.

Automated feature learning algorithms depending on deep learning have re-

cently emerged as a feasible approach and have proven to be effective in some

computer vision applications. However, its effectiveness in DMO grading is not

yet thoroughly explored in the literature. Also, as one of the transfer learning

strategies was used in the previous section to detect the presence of glaucoma
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in fundus images, in this section a deep learning multi-stage CNN approach is

introduced to diagnose DMO. The proposed approach addresses the problem of

relying on hand-crafted features as well as the time consumed in the segmentation

of retinal landmarks such as the fovea and optic disc and lesions.

In traditional automated grading systems [15], [244]-[248], in order to grade

DMO, the contrast of images is enhanced as a pre-processing stage and then the

blood vessels are removed using matched filtering or mathematical morphology.

Further to this, the location of the macula is detected and exudate segmentation

is applied. After that, different texture, morphological, and image-based features

are extracted from the segmented exudates. In the last stage, the DMO grading

is calculated depending either on the distance of exudate from the macula or

using machine-learning algorithms. The bottom diagram in Figure 5.3 shows a

simplified block diagram for traditional DMO grading systems [15].

As the performance of the automated grading system is highly dependent on

the extracted features, the performance of the existing methods may vary from one

dataset to another because the extracted features are not always representative of

different datasets. Also, these features are hand-crafted which incurs a time cost

and considerable effort. So, the need to adopt a generalised and automatic fea-

ture extraction method is the best solution to counter these issues. Furthermore,

traditional approaches have relied on the position of exudate around and near the

macula to grade the severity of DMO. The extraction of exudate mainly depends

on the efficiency of the segmentation algorithm while detection of the location of

the macula and fovea highly depends on the accuracy of data mining and texture

imaging techniques. Therefore, implementing a method of grading DMO which is

independent of the segmentation algorithms is a crucial task.
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Figure 5.3: A block diagram showing the comparison between the traditional
systems and our proposed system. The first row shows the proposed system
and the second row is the traditional system. The proposed system does not
depend on any kind of segmentation, hand-crafted feature and sums up many
stages of the traditional system in only two automatic stages. CSMO: Clinically

Significant Macular Oedema.

5.2.3 Material and Method

Data

An existing dataset (called MESSIDOR) [157] is used in this study for training

and evaluation purposes because it is a fairly large dataset and it is labelled.

It comprises 1200 images classified as either normal (no DMO), Non-CSMO or

CSMO. These images were captured by using a color 3CCD camera on a Topcon

TRC NW6 with 45-degree field of view (FOV) with resolutions of either 1440×960,

2240× 1488 or 2304× 1536 pixels.

Pre-processing

The proposed feature learning and grading approach comprises three main stages:

pre-processing, network design and training, and an evaluation stage. In this

stage, the smallest rectangular region containing the entire FOV is automatically

determined and used to crop each image. After that, the cropped images are

resized into three different sizes 128 × 128, 256 × 256, and 512 × 512 pixels to
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obtain acceleration while keeping the images sufficiently large to identify features

such as exudates. Finally, the red, green and blue (RGB) channels in the image

are scaled to have zero mean and unit variance.

Network Design and Training

The top diagram in Figure 5.3 shows a diagram of the proposed DMO grading

system. In the feature extraction stage, the features are automatically learnt by

multi-stage CNN and fed into a classifier for classification. The proposed system

represents a promising solution to address the aforementioned concerns of tradi-

tional systems: the proposed system is automatic and does not depend on any

kind of segmentation or hand-crafted feature.

The structure of the proposed CNN is shown in Figure 5.4. Three CNN

architectures are implemented and trained with each of three different image sizes

128 × 128, 256 × 256 and 512 × 512 pixels. The main objective of training three

different networks is to obtain fast computation time. The weights of the networks

trained on the smaller images are used to initialise the networks trained on the

larger images. This helps to speed up the process of training without resorting

to resizing images below a level where key features may not be detectable for the

final classification.

The structure of the first network includes the layers in the first block along

with the fully connected layers (shown in Figure 5.4). This network is trained

from scratch using images of size 128× 128 pixels. The architecture of the second

network comprises the first and second blocks along with the fully connected layers.

The weights are initialised from the first network and trained by using images

with 256 × 256 pixels. Finally, the third network comprises the first, second and

third block along with the fully connected layers and are trained on images with

512× 512 pixels with the weights being initialised from the second network. The

final network architecture comprises 13 convolution layers with filter of sizes 5× 5

and 3 × 3. Each convolutional layer is followed by a Leaky (0.01) rectified linear
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Figure 5.4: Proposed multi-stage convolutional neural network architecture.
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unit (ReLU) step. Four max-pooling layers with window size of 3 × 3, 2 fully

connected layers with 1024 neurons each and two dropout layers between the fully

connected layers are used.

The dataset is randomly divided into 70% for training and validation (10% of

this data is used for validation), and the remaining 30% for testing. To increase

the size of data artificially in order to decrease the possible overfitting problem,

the data are augmented. In every epoch during training, each image is randomly

augmented with: random rotation between 0-360 degrees, random horizontal and

vertical flipping, random translations of between -40 and 40 pixels, random zoom-

ing and random shearing. Furthermore, to counter the impact of unevenly dis-

tributed data, oversampling is applied on the imbalanced training set in order to

get more uniform distribution of classes and increase detection performance on the

rare classes.

To train the networks, stochastic gradient descent SGD with the Nesterov mo-

mentum optimisation algorithm [89] is used with adaptive learning rate (start=0.003,

stop=0.00003) and momentum parameter 0.9. The orthogonal weight initialisa-

tion method proposed in [84] is considered to initialise the weights of filters in the

first implemented network. The first and second networks are trained with 200

epochs while the third network is trained with 250 epochs. The loss function used

for optimisation is the mean squared error (MSE) with a thresholding value in

order to predict and obtain the three classes (Normal (0), non-CSMO (1), CSMO

(2)). Moreover, L2 regularisation with weight decay factor 0.005 is used in the

convolutional layers and a dropout rate of 0.5 is used between fully connected

layers. These are implemented as regularisation approaches to decrease overfitting

in the network during training.

Testing

Once the network is trained, the test images are used to evaluate the performance

of the implemented network by predicting the classification of previously unseen
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data. The performance of the implemented system are evaluated using three mea-

surements; sensitivity, specificity and accuracy. In this study, sensitivity is defined

as the percentage of images which are correctly classified as having DMO out of

the true total number of images with DMO. Specificity is defined as the percent-

age of images that are correctly classified as not having DMO out of the true

total number of images without DMO. Accuracy is the percentage of images that

classified correctly.

5.2.4 Results and Discussion

The confusion matrix shown in Figure 5.5 gives the prediction ratio per class. The

proposed system was evaluated on 30% of 1200 images (360 images) where the

trained CNN achieved 88.8%, 74.7% and 96.5% in terms of accuracy, sensitivity

and specificity, respectively.

Figure 5.5: Prediction ratio per class in confusion matrix, (0) refers to normal
images, (1) non-CSMO and (2) CSMO. It shows good prediction results despite

the rarity of classes 1 and 2.
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From the confusion matrix in Figure 5.5, it can be noticed that the prediction

ratios for each of the classes are very encouraging. An important consideration is

the imbalanced distribution of the images in the dataset, 154 images (13%) are

grade 2 (CSMO), 75 images (6%) are grade 1 (non-CSMO) while 971 images (81%)

are grade 0 (Normal). Consequently, the non-CSMO and CSMO classes constitute

only 19% of the data while the majority of the images are class 0 (normal). This

imbalanced distribution may cause the CNN to overfit to the majority classes and

result in the differences observed in prediction ratios between classes.

An oversampling strategy has been used in order to balance the distribution in

the case of rare or less common classes. The oversampling can be done by adding

copies of images from the under-represented classes (CSMO and non-CSMO). Our

proposed system demonstrates comparable results with other methods in the lit-

erature; higher accuracy than [249] who achieved 85.2% is obtained and accuracy

close to machine learning methods such as [245] and [15] which had 94.1% and

95.56% respectively. Although our accuracy is close to these two models, this

achieved without the need of prior feature extraction, exudate and macula seg-

mentation or the removal of retinal blood vessels. The sensitivity obtained by

the proposed system is promising and comparable to the sensitivities achieved by

automated grading methods in the literature. However, the performance needs for

more improvements to be applied and used in a clinical diagnostic setting.

5.2.5 Conclusion

To conclude this section, an automated method for grading the severity of DMO

has been presented. It has been shown that the proposed system based on multi-

stage CNN has convincing ability for automated feature extraction from retinal

fundus images and grading of DMO. This technique will be valuable for future

automated DR grading system.
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5.3 Retinal Lesion Classification

5.3.1 Introduction

Age-related macular degeneration (AMD) is known as the main cause of the degra-

dation or loss visual acuity in developed countries [250]. The main signs of AMD

are the presence of the retinal fluids/lesions (sub-retinal fluid (SRF) and intra-

retinal fluid (IRF)) and sub-retinal pigment epithelium (sub-RPE) fluid (pigment

epithelium detachment (PED)). These lesions/fluids act as a biomarker for the

early diagnosis of AMD and are thus helpful in analysing progress of the disease

and advising a treatment.

IRF appears as contiguous fluid-filled spaces containing columns of tissue and

is located between the internal limiting membrane (ILM) and the inner/outer

segment (IS/OS) junction. SRF is associated with the existence of exudate in

the subretinal space that is located between the IS/OS junction and retinal pig-

ment epithelium. PED appears as three types: serous, fibrovascular, or drusenoid

in which the retinal pigment epithelium (RPE) is separated from the underly-

ing Bruch’s membrane (BM) as a result of fluid accumulation [251]. These are

illustrated in Figure 2.6 in Chapter 2.

Antivascular endothelial growth factor (anti-VEGF) therapy is an effective

treatment for AMD. It demands a regular examination to check the changes of

the retinal fluids during the anti-VEGF medication [252], [253]. A well-known

monitoring and non-invasive cross sectional imaging approach is optical coherence

tomography (OCT) that can help to visualise anatomic changes and various type

of fluids in the retina.

As the number of acquired SD-OCT volumes and their resolutions increase,

manual identification of the retinal fluids becomes challenging task. Hence, there

has been a crucial need for automated techniques which give accurate identification

of the abnormalities.
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5.3.2 Related Work

In the literature, a few machine learning based approaches to detect and segment

the retinal fluids in OCT images have been proposed. In [254], an automated

method for detection of the subretinal and subretinal pigment epithelium fluids

was proposed. They used a graph cut and Split Bregman-based segmentation

method to detect the dark regions located between the layers. Then, potential

fluids in that regions are considered to extract their features and classify them

using random forest. Furthermore, a method to segment the intraretinal and

subretinal fluids in 3D OCT images was proposed by combining a machine learning

approach represented by an artificial neural network with segmentation method

based on geodesic graph cut [255]. Moreover, a graph search and machine learning

based approach to segment pigment epithelium detachment fluid (PED) in SD-

OCT volumes was presented in [256].

The authors of [257] implemented a framework consisting of four stages; fea-

ture extraction, pre-segmentation, dimension reduction and supervised learning

approach; to segment subretinal and intraretinal fluids. In [258], a fully auto-

mated approach to segment subretinal and intraretinal fluids in 3D OCT images

was presented. The fluid segmentation was achieved by exploiting a machine learn-

ing method that combines unsupervised feature representation and heterogeneous

spatial context with a graph theory segmentation approach. A non-machine learn-

ing approach was introduced by considering fuzzy level set method to detect IRF

and SRF on 3D OCT images [259] in which the boundaries of detected fluids were

combined to create a comprehensive volumetric segmentation.

The aforementioned approaches towards fluid identification are not end-to-end

paradigms. Often, hand-crafting and heuristics are employed in choosing the graph

weights. Furthermore, the testing phase of these approaches are relatively slow

due to graph optimisation which is often computationally intensive. Moreover,

machine learning algorithms used in these approaches are traditional methods in



Chapter 5. Retinal Disease and Lesion Classification 141

which features are extracted manually which cost time and effort. To address

the issue of hand-crafted features, much research has been carried out relying on

deep CNN to identify the three fluid types IRF, SRF, and PED in OCT volumes

[260–268].

In [260], a deep learning based approach where U-net convolutional neural net-

work architecture was applied on OCT images to detect intraretinal fluid (IRF).

Yadav et al. [261] proposed Generalised Motion Pattern (GMP) based segmen-

tation approach using a cascade of fully convolutional networks for detection and

segmentation of retinal fluids (IRF, SRF, PED) from OCT scans. Moreover, Kang

et al. [262] proposed a two stage deep neural network; the first network was im-

plemented to detect and segment fluids, while the second network was designed

to enhance the robustness of the first network. In addition to that, a method

based on faster R-CNN and 3D region growing was suggested in [263] to segment

the fluids. In [264], the authors proposed a fully-convolutional neural network

(FCNN) which merges dilated residual blocks in an asymmetric U-shape config-

uration to classify and segment the fluids. Tennakoon et al. [265] proposed an

approach to identify and segment the fluid based on an adapted version of U-

Net trained using a combined loss function including an adversarial loss term. A

method based on graph-cut and fully convolutional networks was suggested by Lu

et al. [266] to label the fluid pixels using random forest classification to detect

the fluid regions. Morley et al. [267] proposed a framework using both ResNet

and Encoder-Decoder neural network architectures for fluid identification and seg-

mentation. Furthermore, Rashno et al. [268] presented a method based on graph

shortest path algorithms and CNN for fluid detection and segmentation.

However, despite the recent efforts, retinal fluid identification in OCT images

remains a challenging problem due to the strong presence of speckle noise in OCT

images, the shape and location of fluids, and fluid variability size.

In this work, detecting the presence of fluids has been handled as a multi-

label classification problem where all classes (fluids) coexist in a given image. A
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framework has been developed to calculate the probability that IRF, SRF and

PED are present in OCT volumes. The novel framework comprises three main

stages: (i) preprocessing; to improve the quality of the data and make the model

more effective for various devices, (ii) a deep and multi-label CNN is adapted to

do the classification, and (iii) the integration of weighted ensemble learning and

parameter selection is explored.

5.3.3 Materials and Methods

Data

The Retinal OCT Fluid challenge (Retouch) dataset (used in the context of the

MICCAI’17 Challenge) [19] has been used in the training and evaluation of the

proposed system. The dataset includes 70 volumes (4752 B-scans) accompany-

ing reference annotations. There are 24 volumes acquired with each of the two

OCT imaging devices: Cirrus (Zeiss) and Spectralis (Heidelberg, Germany), and

22 volumes acquired with T-1000 and T-2000 (Topcon). For each volume from

these three imaging devices, the numbers of B-scans were 128, 49 and 128, with

resolution 1024 × 512, 496 × 512, and 885 × 512, respectively. Fluids, which are

IRF, SRF and/or PED, accumulate in some B-scans due to AMD. Although not

all B-scans contain fluid, there is at least one type of fluid in each volume.

Pre-processing

OCT volumes contains a lot of speckle noise because OCT imaging modalities

use coherent beam reflection to capture images. This noise often degrades the

quality of the image and causes problems in functioning and effectiveness of im-

age processing algorithms. Classical denoising techniques like adaptive filtering

and median filtering based approaches cannot preserve boundary information. To

decrease the amount of the noise, improve the quality and enhance the images,

images are pre-processed before training stage as follows:
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1. Denoising: to reduce the effect of the noise that degrades the quality of

the OCT scans, the fractional total variation based approach presented in

[47, 48] was used. This method relies on the principle that signals with

excessive details have high total variation (i.e the integral of the absolute

gradient of the signal is high). The method proposed in [47] reduces un-

wanted details (the noise) while preserving important details such as edges

producing smooth and piecewise constant images.

2. Enhancement: as the images were captured from three different imaging

devices and in order to find an appropriate representation for the histogram

of these images by standardising them, exact histogram specification algo-

rithm [269] was used. Exact histogram specification converts the intensity

image values so that the resulting image has a particular histogram which

has a desired shape. In this work, the idea of image histogram which can

be arbitrarily specified was applied by using three different histograms de-

pending on the device utilised to acquire the images (Cirrus, Spectralis,

Topcon). Furthermore, the contrast of images were enhanced by applying

the contrast-limited adaptive histogram equalisation technique [43].

Figures 5.6, 5.7, and 5.8 present OCT images showing the three fluids IRF,

SRF, and PED before and after processing in Cirrus, Spectralis, and Topocon,

respectively.

Multi-label Classification with CNN

In this work, GoogleNet (Inception v3) CNN architecture [270] is adopted and

adapted to detect the presence of three fluids. Training this network from scratch

may takes several weeks where its training is a computationally intensive task.

To overcome this problem, the transfer learning strategy which is proven to be

effective in several cases is considered. The Inception model, which is pre-trained

on ImageNet [113], is exploited by considering the pre-trained weights and then
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Figure 5.6: OCT images with IRF fluid. The images on the first row are
the original images while the images on the second row are the denoised and
enhanced images. The desired histogram of the enhanced images is specified
by the histogram of Spectralis for the devices Cirrus, Spectralis, and Topocon,

respectively.

Figure 5.7: OCT images with SRF fluid. The images on the first row are
the original images while the images on the second row are the denoised and
enhanced images. The desired histogram of the enhanced images is specified
by the histogram of Spectralis for the devices Cirrus, Spectralis, and Topocon,

respectively.
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Figure 5.8: OCT images with PED fluid. The images on the first row are
the original images while the images on the second row are the denoised and
enhanced images. The desired histogram of the enhanced images is specified
by the histogram of Spectralis for the devices Cirrus, Spectralis, and Topocon,

respectively.

fine-tuning them. As Inception was originally trained on 1000 class (i.e 1000

output neurons), the last layer (fully connected layer) is truncated and replaced

with a fully connected layer with 3 output neurons (three types of fluids).

The Inception model comprises five convolutional layers alternated with max-

pooling operations, successive stacks of 11 Inception modules which are basically

mini-models inside the bigger model, and softmax ouput layer and auxiliary soft-

max as an intermediate output as shown in Figure 5.9. Stacking several Inception

modules makes the network architecture complicated and deep. In addition to

the depth of the network, Inception modules are also wide which are designed to

detect features at multiple length scales. The size of convolutional filters in each

block are either 1× 1, 3× 3, 5× 5 , 1× 7 or 7× 1.

The idea of using 1× 1 convolutional filters is to reduce the computation cost

by stacking 1× 1 convolutional filters in front of the 3× 3, 5× 5 filters. Also, the

filter size of 1× 7 and 7× 1 are used based on the idea of factorising convolutions
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with large filter size. It is noticed that n× n convolutional filter can be replaced

by a 1× n convolution followed by a n× 1 convolution which results in increasing

of the computational cost saving as n grows [270]. The output of these filters are

then stacked before being fed into the next layer in the network. The size of max-

pooling and average-pooling windows are 3 × 3, except the last average pooling

window (the top of Figure 5.9) is 8× 8.

The fluid identification problem we deal with is a multi-label classification task.

In multi-label classification, multiple target labels can be assigned to each image

instead of only one. So that, more than one type of fluid can exist in one OCT im-

age. Inception is originally designed and used for a single-label image classification

task. Therefore, modifications are made on inception CNN architecture to make

it works and trains on the multi-label classification problem. These changes in-

clude replacing the cross-entropy loss function with the sigmoid cross-entropy loss

function and the softmax function into logistic sigmoid function which is defined

by:

f(x) =
1

1 + exp−x
(5.1)

In the machine learning context, sigmoid function refers to a class of functions

with S-shaped curves where their gradients are simple to calculate. These adap-

tations for inception CNN architecture are necessary to calculate the confidence

score of each fluid in the images rather than calculating the overall probability of

classes (fluids). Softmax function squashes all values into a range of [0, 1] summing

together to 1 which is only suitable for a single-label classification problem. With

our multi-label classification problem, logistic sigmoid function is attached to each

neuron in the final layer which is fully connected layer with three nodes (one for

each fluid).

Initially, 58 volumes (80% of the data) are randomly chosen for training and the

remaining 12 volumes (20%) were used for independent testing. Five convolutional
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neural networks which have the same architecture (Inception v3) are trained with

4000 epochs on enhanced and resized into 299× 299 pixels B-scan images. During

the network learning, Root Mean Square Propagation (RMSPROP) SGD with

momentum of value 0.9 [92] is used as an optimisation algorithm which can be

given as follows:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t (5.2)

Where gt is the gradient, γ is decay term with value of 0.9, and E[g2] is the

RMSprop running average of the past squared gradients. Thus, the network pa-

rameters are updated as:

Wt+1 = Wt −
η√

E[g2]t + ε
gt (5.3)

Where η is the learning rate with value 0.1 and ε is a small positive number used

to prevent division by 0 which has value 1 in this experiment. RMSPROP works

by dividing the learning rate for a weight by a running average of the magnitudes

of recent gradients for that weight. Moreover, rectified linear unit (ReLU) is used

as activation function in the network and the size of training batches is 32.

Each CNN is trained on training data which is preprocessed in a certain way.

Three different strategies for the preprocessing of training image data are con-

sidered: images without any preprocessing (WithoutPre), images preprocessed by

denoising (Den), images preprocessed by denoising and followed by enhancement

using histogram specification algorithm where the target histograms are either

Spectralis (DenH1), Cirrus (DenH2), or Topcon (DenH3).

Once the training of the networks is finished, the test images can be tested

and the confidence score of each fluid (class) in each B-scan is determined. As

the resulting confidence score of each fluid from the sigmoid function is a value

in the range of [0, 1], a threshold value is considered to convert this value into

0s and 1s for evaluation. The performance of the trained network on the test
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data can be evaluated by comparing the predicted confidence score of the classes

resulting from the classifier and converted into 0’s and 1’s against the real values.

Threshold value of 0.5 is considered in our experiment and the evaluation of the

network performance in this stage is done by considering B-scan OCT images

regardless of the volume that the images belong to.

TABLE 5.2 shows the accuracy detection for each fluid in five networks where

the name network refers to the type of preprocessing method applied on the train-

ing data. Although histogram specification does not help to improve the perfor-

mance in IRF and SRF, it helps in PED. To overcome this issue, ensemble learning

is considered by allocating a specific weight for each network.

Table 5.2: Accuracy detection in terms of B-scans of three fluids in each net-
work. DenH1: Denoising and Spectralis image histogram, DenH2: Denoising
and Cirrus image histogram, DenH3: Denoising and Topcon image histogram,
IRF: Intraretinal fluid, SRF: Subretinal fluid, PED, Pigment epithelium detach-

ment.

Network IRF SRF PED

DenH1 0.8147 0.9107 0.9264
DenH2 0.7742 0.9152 0.9325
DenH3 0.7877 0.9137 0.9415

Den 0.8335 0.9152 0.9264
WithoutPre 0.8282 0.8912 0.9325

Ensemble Learning and Parameter Selection

From the results shown in TABLE 5.2, it can be noticed that is no single network

which can give the best accuracy for all fluids. In order to optimise the results

and inspired by the ensemble learning concept in machine learning, the output of

these five networks is combined by taking into consideration a specific weight for

each network.

To choose the best weight for each network to each fluid type, brute force

parameter selection method has been used to tune the five weight parameters in

order to choose the best values that can be used for test data. The range of



Chapter 5. Retinal Disease and Lesion Classification 150

Figure 5.10: Ensemble of CNN combined by weighted sum. DenH1: Denoising
and Spectralis image histogram, DenH2: Denoising and Cirrus image histogram,

DenH3: Denoising and Topcon image histogram, W: Weight.

weight values in each network is [0, 1] with a step 0.1 where a mesh grid of size

(11, 11, 11, 11, 11) is constructed for this parameter selection problem. 110 values

for the threshold have been considered ranging in [0, 1] with a step of 0.01.

5.3.4 Results and Discussion

In order to evaluate the performance of the combined weighted networks, Area

Under Curve of Receiver Operating Curve (ROC) for each fluid is calculated as

shown in TABLE 5.3 and Figure 5.11 .

The first row in TABLE 5.3 shows the AUR for the three fluids in terms of

OCT B-Scan. To consider the volume to which each B-Scan belongs in the AUR

calculations, three different approaches are suggested; mean, maximum, and the

maximum mean of 3 consecutive B-scans in a volume. In the mean method, the

mean of the probabilities of fluid presence in all B-Scans that belong to the same
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Table 5.3: Area under curve of each fluid in each method considering the
volumes. B-scan scheme represents the AUC calculation without taking the

volumes into consideration

Method Fluid W1 W2 W3 W4 W5 AUC

B-Scan
IRF 0 0 0 0.3 1 0.8660
SRF 0.9 0.1 0 0 0 0.9522
PED 0 0 0.8 0.2 0.9 0.9794

Mean
IRF 0.5 0 0 0 0.2 0.7708
SRF 0.1 0 0 0 0 0.9271
PED 0.1 0 0 0 0 1

Max
IRF 0 0 0.1 0 0 0.8333
SRF 0.1 0 0 0 0 0.8750
PED 0.1 0 0 0 0 1

Max the mean of 3
IRF 0 0 0 0.1 0.2 0.8542
SRF 0.1 0 0 0 0 0.8750

consecutive B scans PED 0.1 0 0 0 0 1

Figure 5.11: Area under curve for retinal fluid detection.

volume is calculated to represent the probability of the fluid detection in that

volume. In the maximum method, the maximum of the probabilities of a fluid

presence in all B-Scans that belongs to a certain volume is found to represent the

probability of the fluid detection in that volume. Moreover, the maximum mean

of 3 consecutive B-scans in a volume works by calculating the mean probability of

each 3 consecutive B-scans that belong to a certain volume and then finding the
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maximum mean probability value of each B-Scan that belongs to that volume.

Overall, the best results of fluid identification considering the volume can be

achieved by using maximum the mean of 3 consecutive B-scans scheme. In this

scheme, the AUC of fluids detection are 0.8542, 0.875, and 1 for IRF, SRF, and

PED, respectively. For the sake of comparison and using the same dataset, Yadav

et al. [261] achieved AUC 0.85, 0.84, and 0.87 for IRF, SRF, and PED identi-

fication, respectively which are less than our obtained results. Although Lu et

al. [266] reported results higher than ours, they used a Random forest classifier

with hand-crafted features to identify the fluids. Unlike our method, the manually

extracted features are not necessary to have a good generalisation ability on other

datasets. Furthermore, the promising fluid identification results were obtained by

evaluating the proposed method on OCT volume images captured by three differ-

ent devices with high presence of noise and pathologies which demonstrates the

robustness of the fluids’ identification framework.

5.3.5 Conclusion

This section proposed a deep learning method for fluids classification from OCT

volumes. Both concept of the transfer learning and ensemble learning have been

exploited to identify the fluids IRF, SRF, and PED in 3D OCT images. The

pre-trained Inception CNN has been modified to fit the multi-label classification

problem. The ensemble learning concept has been used to combine many CNNs

with a specific weight for each one, where the weight has been chosen depending

on a parameter selection scheme. The obtained results appear promising where

the proposed framework has been successful in identifying the presence of retinal

fluids with a good prediction ability.
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5.4 Summary

Exploiting CNNs is still facing numerous challenges; of these, the size of training

datasets can be considered the most challenging. CNNs typically demand a huge

data size in order to be trained. Although data augmentation is considered a

valuable option to increase the size of the dataset artificially, transfer learning

has also proven to be effective when there is no adequate data to train the CNN.

This chapter aimed to exploit the transfer learning idea into building deep CNNs

to learn invariant and more transferable feature representations from fundus and

OCT images. It has been demonstrated that transferable learned features are used

effectively in glaucoma, DMO and retinal fluid identification by designing models

which are more stable and accurate.



Chapter 6

Conclusions and Future Work

In this thesis, efficient and accurate deep learning-based methodologies have been

developed in order to produce effective automated techniques for the interpretation

of retinal images and the diagnosis of retinal diseases. In this final chapter, we

conclude this work and present some ideas for future research arising from the

work carried out in this thesis.

6.1 Summary

Various retinal image analysis tasks including localisation, segmentation and classi-

fication have been investigated and explored through the designing and developing

of several automated analysis methods. These presented methods have examined

the development of deep learning approaches based on Convolutional Neural Net-

works (CNNs) alongside with the use of colour fundus and OCT images and image

processing techniques.

Automated detection of the optic disc and fovea centres has the potential for

great impact in the automated diagnosis of glaucoma and diabetic maculopathy.

The developed optic disc and fovea detection approach based on multiscale CNNs

allows to focus on the region of interest, removing redundant background data

from consideration and facilitating refinement of the localisation. This results in

154
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significantly increased accuracy in the cases of simultaneous fovea and optic disc

detection in fundus images.

Important components of the eye’s anatomical structure, including the choroid,

and the optic disc and cup were segmented by developing new segmentation ap-

proaches. Our choroid segmentation framework achieved high quality automatic

segmentation of the choroids boundaries in Enhanced Depth Imaging (EDI)-OCT

images by making use of deep learning and clustering techniques. Improvements

have been obtained by proposing a new super-pixel energy function combining im-

age intensity, region and enhanced image information. It has been demonstrated

that this allows us to obtain significantly improved results over alternative methods

in the literature. Furthermore, by leveraging the combination of a fully convolu-

tional network and DenseNet, high quality simultaneous OD and OC segmentation

in retinal fundus images has been achieved. This proposed deep network allows

improved segmentation, particularly of the OC. The calculation of the optic disc

diameter (ODD) is used to crop the images to 2ODD and rescale, reducing the

image to the region of interest, which reduces computation time without requiring

excessive reduction of the image resolution.

In another set of experiments and by exploiting the transfer learning concept in

different ways, three automated grading disease/lesion identification systems were

proposed and implemented successfully. The adoption of the fixed feature extrac-

tor concept originating from transfer learning to automatically detect the presence

of glaucoma in retinal fundus images demonstrated that the use of transfer learn-

ing is an effective strategy to detect glaucoma in situations where the data size

is small for training. The automated method for grading the severity of DMO in

fundus images based on developing multi-stage CNNs achieved promising results

without the need of prior feature extraction, exudate and macula segmentation

or the removal of retinal blood vessels. The developed retinal fluid identification

framework including SRF, IRF and PED fluid identification from OCT volumes
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exploited the concepts of transfer learning and ensemble learning and achieved

promising identification results with an acceptable prediction ability.

6.2 Discussion

One of the most important advantages of the proposed OD and fovea detection

method is that it is less sensitive to preprocessing. This is particularly useful in

processing images of poor quality. Another important advantages of this proposed

approach is that it does not require vessel segmentation or border localisation

in order to detect the OD and foveal centres. Moreover, in proposed choroid

segmentation method, incorporating distance information and enhanced intensity

information with image intensities improved the CNN classification which pro-

duced excellent agreement with manual segmentation. Furthermore, the OD and

cup segmentation approach achieved state-of-the-art results on a large dataset,

outperforming the previous methods and we demonstrated the effectiveness of the

method on other datasets without the need of re-training the model using images

from those datasets. These findings also suggest feasible implementation of the

two developed segmentation approaches in a wide range of medical image process-

ing applications. The developed automated disease grading / lesion identification

methods achieved promising results; however, they require further refinement and

verification to be implemented in a clinical setting.

The solutions provided in the developed methods address the main weaknesses

of traditional computer-aided systems where handcrafted features are considered

key requirements. In contrast to conventional machine learning classifiers (shallow

architectures) including neural networks and support vector machines, for which a

feature extraction step is essential, hierarchies of significant features are learnt by

deep CNNs directly from the raw input data. The obtained results demonstrated

that the proposed feature learning methods by implementing multiple layers of



Chapter 6. Conclusions and Future Work 157

learning filters are superior to current approaches in extracting the features au-

tomatically from the data, and thus solved issues related to the workload in ex-

tracting the features manually from various types of datasets. Furthermore, the

proposed methods have proven to be more robust, less time consuming, more gen-

eralisable, and most often more accurate. The significance of the obtained findings

was therefore achieved by exploiting hierarchical feature representations learned

solely from data, instead of potentially subjective hand-crafted features mostly

designed based on domain-specific knowledge.

Although deep learning algorithms -especially CNNs- have dominated com-

puter vision over the last few years, achieving top scores on many image analysis

tasks, these algorithms still face many challenges. These algorithms are trained

to learn progressively using data. Large datasets are needed to make sure that

the machine delivers the desired results. Providing large sets of annotated and la-

belled medical data by human expert graders is a challenging task. Deep learning

algorithms are also a quite resource-demanding approaches. They require more

powerful GPUs, high-performance graphics processing units, and a large amount

of storage to train the models. Furthermore, they need more time to train in

comparison with traditional machine learning methods.

6.3 Future Work

There are many different directions that can be arising from the work presented

in this thesis as future work.

1. Further development of proposed systems: The proposed fovea and

optic disc detection methodology involves hyper-parameter settings such as

regularisation strength, the initial learning rate, and schedule of learning rate

decay which are set manually for training. Therefore, the proposed method

could be further developed by introducing an automated hyper-parameter

search method. Furthermore, a possible future direction for the proposed
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fluid identification method is segmenting the identified fluids. The aim of

segmentation after identification is to visualise these regions of fluid and ob-

tain quantitative measurements of size. This can improve the understanding,

diagnosis and prediction of retinal diseases.

2. Evaluation/Validation: Conducting an extensive validation to the pro-

posed methods which would allow evaluating with images from many differ-

ent devices and conditions, and from patients of different ethnicities, genders

and ages. This would help to explore whether camera type and patients

age, gender, and ethnicity influence the developed automated retinal image

analysis systems output and performance. Furthermore, perform a clinical

evaluation of the developed approaches would assess its feasibility in clinical

ophthalmology.

3. Extension the developed methods to other conditions/diseases: It

has been demonstrated that neuroretinal alterations are early in diabetes,

preceding microvascular damage and it has been shown that a reduction

of the ganglion cell-inner plexiform layer (GC-IPL) and retinal nerve fiber

layer (RNFL) may occur in diabetic patients without any signs of DR. A

possible future direction from this thesis is to extend choroid segmentation

method to segment these layers automatically and subsequently measuring

their thickness from OCT images acquired from different imaging equipment

manufacturers.

4. Development of new deep learning algorithms to identify other dis-

eases: The advent of SD-OCT has provided an understanding and recogni-

tion of the anatomical abnormalities seen in acute macular neuroretinopathy

(AMNR). SD-OCT shows that the condition affects the outer retina and is

associated with disruption of the inner/outer segment (IS-OS) junction. An-

other possible direction for future work can be taken into consideration by
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designing an automated system based on deep learning to extract the dis-

ease’s features from the SD-OCT images in order to detect the presence of

the disease automatically.

5. Deep learning development: Addressing the limitations of deep learn-

ing algorithms including the need for larger labelled training data size and

powerful computation/storage resources (GPUs/Memory). This will help

to further improve the performance of the developed systems in terms of

accuracy of detection/identification and reduce the execution time.

6.4 Conclusion

All in all, this work has successfully combined skills and expertise from different

disciplines including ophthalmology, artificial intelligence and image processing to

developing retinal image analysis and disease diagnosis methods. The developed

retinal image analysis methods have great potential to not only provide less sub-

jective diagnosis but also speed up the diagnosis process for a variety of retinal

diseases including age-related macular degeneration, diabetic maculopathy and

glaucoma and consequently for implementation in a clinical setting. This will

hopefully help reduce the required number of primary care appointments, unnec-

essary referrals and patient waiting time, thus improving the patients quality of life

and reducing cost in clinical ophthalmology. The presented deep learning-based

approaches will also be valuable tools to be used for other challenging medical

problems.
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