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Abstract

Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural
assemblies. In the initial steps of this process, an object’s features are thought to be coded very rapidly in distinct neural
assemblies. These features play different functional roles in the recognition process - while colour facilitates recognition,
additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level
categorization paradigm and related them to the electrical activity of the human brain. We found that early
synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting
their qualitative contribution to the recognition process. Later activity (approx. 200–400 ms) was modulated by the
representational role of object features. These findings demonstrate that although early synchronizations may be sufficient
for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was
subserved by later processes of object model selection, which utilized the representational value of object features such as
colour or edges to select the appropriate model and achieve identification.
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Introduction

In the initial steps of the recognition process, an object’s features

are thought to be coded very rapidly in distinct but coordinated

neural assemblies. The significance of the detail in the depiction of

these features depends on the level of specificity at which object

representation occurs: while superordinate classification (e.g., iden-

tifying an image of a bird as ‘an animal’) can be performed based on

very few image qualities that roughly define shape, basic level (e.g.,

identifying it as ‘a bird’) or subordinate level (e.g., identifying it as ‘a

penguin’) classification will rely on other features too. In everyday life,

objects are recognised at the entry-level of recognition, which

combines basic and subordinate levels. This means that while more

typical exemplars will be recognised at basic-level (e.g., sparrow

classed as a ‘bird’), exemplars with distinct attributes will be

recognised at a subordinate level (e.g., ‘an ostrich’ or ‘a peacock’).

Surface detail (texture, shading and colour) and visual complexity

(intricacy of lines and detail) represent the two most obvious forms of

object-image properties that can impact on entry-level recognition

processes. Their functional roles differ - while colour facilitates

recognition [1], additional amount of contours and edges delays it [2].

Theories of object recognition differ in the significance they

attribute to various kinds of object’s features. Some consider

representations to rely mainly on shape [3,4], while others also

acknowledge the contribution of surface detail, such as colour [5].

Recent evidence supports the latter ‘shape and surface’ models

that posit a genuine role of surface detail: colour, in particular,

showing an advantage in recognition of objects [1], faces [6] and

natural scenes [7]. Facilitative effects of colour on behavioural

performance were recently confirmed in children [8] and illiterate

adults [9], although it is often necessary to use presentation at

threshold levels (i.e., masked brief images) in order to obtain

behavioural effects of colour in normal adults. Colour is

considered to be an aid in picture decoding or discrimination

through improving access to stored object knowledge. Similarly,

visual complexity is assumed to determine the ease of picture

decoding, or the ease of processing before or at the structural stage

of object recognition. However, opposite to colour, it has a

detrimental effect on recognition performance [2].

Object features such as shape, colour or texture are coded very

rapidly. Therefore, many researchers agree that an early stream of

feature-coding neural processes must drive the speed of object

recognition. Indeed, in cases when observers are looking for the

presence of a particular object in natural scenes recognition can be

ultra-rapid. For example, Thorpe, Fize and Marlot [10] have shown

that approximately 150 ms is needed to identify the presence of an

animal in a natural scene. The initial feedforward stream of up to

100–150 ms is thus sufficient for coarse object categorisation [11,12].

It has been argued that this is due to an early activation of high-level

units in the ventral visual stream – these units are assumed to select

high-level feature conjunctions diagnostic for target-category stimuli

[13]. In the aforementioned Thorpe et al.’s studies, recognition

occurred at the superordinate level of specificity. But can the

processing of features and feature-conjunctions also lead to such

early identification-related activations when objects need to be

classified at a more specific entry-level?

Electroencephalography (EEG) provides a measure of fast

temporal processes that lead to object recognition and is an ideal
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tool for assessing the temporal locus of representational processing.

In EEG studies, first object-related effects are reported to occur at

approx. 80 ms [12], which is in the time range of the first positive

component P1 of the event-related potential (ERP). It is

considered that early object-related effects in the P1 range are

task-independent: a product of low-level perceptual processing of

image properties, highly sensitive to changes in luminance,

contrast or spatial frequencies [14]. While P1 reflects the earliest

evoked component carried by the lower frequency bands of the

EEG signal (usually ERPs are filtered at 25 Hz), it partially

temporally overlaps with the evoked gamma-band activity (GBA).

Evoked GBA is time and phase-locked to stimulus onset; it is

evident around 50–150 ms in the lower gamma-band frequency

ranges (30–40 Hz). Modulations of its amplitude reflect differences

in the perceptual processing of features [15,16] and it is highly

sensitive to changes in low-level properties of images [17,18].

Using an object/non-object discrimination task, a few studies have

obtained object-related modulations of evoked GBA [19,20],

paralleling the early evoked effects seen by the Thorpe group.

Induced GBA is non time or phase-locked to stimulus onset. It

usually occurs around 200–400 ms and its frequency (30–90 Hz)

tends to vary between participants. Significant levels of induced

GBA are elicited in studies that require identification of foveally

presented familiar objects [21,22] and it is thought to reflect

synchronisation in distributed neural assemblies which is a marker

of cortical object representation [23]. A frontal ERP component

with a latency of around 200–400 ms known as the N350 is a

marker of another late representational process – object model

selection, which matches the visual percept to stored object

knowledge and is affected by image attributes [24,25].

To determine the temporal locus of identification-specific

modulations in entry-level recognition, we selectively varied the

amount and representational role of object features and related them

to the electrical activity in the human brain (P1, N350, evoked and

induced GBA). In a series of EEG experiments, participants had to

successfully identify images of objects that contained different types

or different degrees of visual object features (see Figure 1). We

examined the representation of surface detail (i.e., shading-defined

texture and colour; Experiment 1), visual complexity (i.e., amount of

contours; Experiment 2) and colour typicality (i.e., typical or atypical

colour of colour diagnostic objects; Experiment 3).

These features play different representational roles: colour

facilitates identification (with a particular role for colour diagnostic

objects) while additional contours deter it. In the EEG, we focused

on modulations of two early markers: the P1 and the evoked GBA.

We also assessed the N350 and induced GBA, as markers of late

representational activity. Object identification was assessed

through a grammatical gender decision task, which required the

participants to make a syntactic judgment on the object’s name

(for trial outlook, see Figure 2). This task was experimentally

validated in a previous study [26] and due to it being an implicit

naming task, it ensured that object identification was performed at

the entry-level of specificity.

Results

Experiment 1: Surface detail
Design. This experiment relied on the Rossion and Pourtois

[1] stimulus set of objects presented at different levels of surface

detail, based on the well-known and widely used Snodgrass and

Vanderwart [27] set. The set is large, containing objects from

many different categories. For each object, three versions of the

image are represented: a line, a grey-shaded and a coloured

drawing. A line drawing is a specific form of a 2D object-image,

because it contains pre-processed edges. Also, the image of a line

drawing solely consists of high spatial frequencies. Meanwhile, in

addition to those same predefined edges, textured or coloured line

drawings also contain information about the surface of the object,

given in low spatial frequencies. Therefore, the images in the

stimulus set differ both in their low-level visual properties, and in

the sources of information that can be used to access the object

representation (shape, or shape and colour).

Stimuli consisted of 210 images of familiar objects for each of

the three levels of surface detail (line, texture and colour; thus, 630

total images; see Figure 1a); out of these, 67 were colour diagnostic

and 143 were non colour diagnostic objects. Each participant was

shown a randomly pre-selected subset of stimuli for each of the

Figure 1. Examples of stimuli. a) Experiment 1: line drawings, gray-
shaded and coloured images of objects (taken from Rossion and
Pourtois, 2004); b) Experiment 2: low and high visual complexity images
of objects (taken from Bates et al., 2003); c) Experiment 3: typically and
atypically coloured images of colour-diagnostic objects (taken from
Naor-Raz et al., 2003).
doi:10.1371/journal.pone.0003781.g001

Figure 2. Trial outlook (same for all experiments).
doi:10.1371/journal.pone.0003781.g002

Object Features

PLoS ONE | www.plosone.org 2 November 2008 | Volume 3 | Issue 11 | e3781



three conditions – a total of 210 stimuli. By not presenting images

of the same object with different level of surface detail to the same

participant, previously reported repetition suppression effects in

the induced GBA were avoided [21,28]. Stimulus presentation was

balanced across the sample to control for item-specific effects.

Thus, across the sample, each object was seen equally often at

each level of surface detail (line, texture, colour).

Findings. Repeated measures ANOVA revealed no effect on

reaction times (F (2, 16) = 0.84, n.s.) or accuracies (F (2, 16) = 0.61,

n.s.) in an across participant analysis (see Figure 3). When colour

diagnostic objects were analysed in isolation across items, a

significant reduction in response times was found (F (2, 65) = 4.28;

p,0.05) for coloured images (means: line drawing 1096618 ms;

shaded 1117620 ms; coloured 1062618 ms). This demonstrates

that colour was indeed processed as a unique attribute of the

object image and facilitated object recognition.

In the EEG, we found a highly significant increase of amplitude

for both P1 (F (2, 16) = 9.29, p,0.001) and evoked GBA (F (2,

16) = 3.50, p,0.05) when the amount of object features was

increased by adding surface detail (see Figure 4). A shift in the

latency of N350 was also found (F (2, 16) = 6.06, p,0.05), driven

by shorter latencies for coloured pictures as opposed to both line

drawings (t (17) = 3.59, p,0.01) and textured drawings (t

(17) = 2.21, p,0.05). There was no modulation of N350’s

amplitude (F (2, 16) = 0.66, n.s.). Induced GBA’s amplitude was

not modulated (F (2, 16) = 1.63, n.s.).

Conclusion. Surface detail increased the amplitude of early

evoked activity elicited in our object identification paradigm. A

selective latency shift of the N350 for coloured objects was also

found, reflecting a facilitatory effect of colour on object recognition.

Is the increase in the amplitude of early components also related to

this facilitation, or is it an outcome of an increase in the amount of

Figure 3. Accuracies and response times for Experiment 1. Data is depicted by box plots, with midlines indicating medians, ends of boxes
indicating 25th and 75th percentiles, ends of lines indicating 10th and 90th percentiles, and dots indicating observations falling in the outlying 10
percentiles.
doi:10.1371/journal.pone.0003781.g003

Figure 4. EEG findings from Experiment 1 (surface detail): ERPs and evoked GBA. a) ERPs: Grand mean baseline corrected ERP time courses
at regional mean sites with time windows of P1 and N350 components indicated by grey boxes (black: line drawings; dotted: textured; magenta:
coloured). To the right, scalp topographies of P1 and N350, averaged across all conditions. b) Evoked GBA: Grand mean baseline-corrected TF-plots
averaged across 128 electrodes. Black box indicates the time-window of maximal activity. To the right, grand mean 3D spherical spline amplitude-
map representing an average across conditions, based on the 62.5 Hz frequency band centred on the 35 Hz wavelet during the time-window of
maximal activity. Black box indicates the electrode sites of interest. All plots represent the average across the sample. Electrode names are given for
channels taken into regional means. Bar plots of grand mean evoked GBA are also given, with a one standard error bar.
doi:10.1371/journal.pone.0003781.g004
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object features to be processed? In the next experiment, we

manipulated the amount of visual complexity in the image. The

two effects should now dissociate: as high visual complexity has a

detrimental effect on recognition, an early mnemonic input would

imply that it should evoke less activity than low visual complexity.

However, if there is no early mnemonic input so that evoked activity

rather reflects low-level feature processing, it should increase with

additional contours in high complexity items.

Experiment 2: Visual Complexity
Design. Visual complexity usually denotes the amount of

different object-features contained in an image. Here, we define it

as the amount of contour-given detail, qualifying the content in the

image that needs to be processed in order to recognise the image

as that of a familiar object (as per [2]). Visual complexity can be

measured either through mean subjective ratings of images’ detail,

or objectively through jpeg file size. According to Bates et al. [29],

it is more accurate to use objective measures of image complexity

that are based on digitised file size. This is due to the fact that,

unlike subjective visual complexity ratings, objective measures are

independent of culture-specific expectations about the ‘‘best’’ way

to represent a given concept.

Objects from the International Picture Naming Project (IPNP)

stimulus set [29] were selected into groups of low and high visual

complexity based on jpeg file size. Stimuli consisted of 172 images of

objects: one half was of low and the other half of high visual

complexity (for examples, see Figure 1b). IPNP contains 520 pictures

with listed German language naming norms for many relevant

naming factors. Items were carefully selected into matched and

controlled groups of low and high complexity stimuli based on their

visual complexity rank. Initially, images showing objects with natural

gender (e.g., a rooster or a hen) were removed, as natural gender

could selectively facilitate grammatical gender decisions for these

items. Subsequently, all items with neutral gender were removed, in

order to reduce the number of possible responses to two equally

frequent types of response (masculine and feminine). The remaining

items were then ranked based on their visual complexity, with 25%

of the items at the lower and upper end of the distribution taken into

the final stimulus set. Thus, each condition contained 86 images,

with 43 objects being of masculine gender and the other 43 of

feminine gender. In order to ascertain the differences between

conditions in factors relevant for naming, important variables from

the IPNP norms were assessed (see Table 1). Across item one-way

ANOVA revealed that the two groups did not differ significantly in

normative naming times (F (1,170) = 2.41; n.s.) or other important

naming-related factors, apart from visual complexity. However,

differences were found between objects of low and high conceptual

complexity (i.e., the amount of object-elements necessary to depict

the represented concept), with slower naming times for more

complex items (F (1, 170) = 6.02, p,0.05).

Findings. Across participants, we found no differences in

response times (t (17) = 21.52, n.s.) or accuracies (t (17) = 20.27,

n.s.) between low and high visual complexity stimuli (Figure 5).

Significantly higher response times for more complex objects were

found in an across item comparison of objects differing in conceptual

complexity (F (1, 169) = 10.64, p,0.001), confirming that

decoding of such images was adversely affected by increased

complexity. An across item analysis verified that our response

times related to German-language normative naming times by

revealing a highly significant correlation (r = 0.74, p,0.001).

In the EEG it was observed that P1 amplitudes (t (17) = 23.83,

p,0.001) and evoked GBA amplitudes (t (17) = 24.19, p,0.001)

were increased for visually highly complex items (see Figure 6).

Additionally, there was a shift in the latency of the P1 (t

(17) = 7.06, p,0.001), with earlier peaks for highly complex

objects. N350 amplitude was also more negative for highly

complex items (t (17) = 3.88, p,0.001). Induced GBA remained

unmodulated (t (17) = 20.10, n.s.).

Conclusion. It seems that early evoked activity reflects low-

level feature processing since it was again increased with additional

object features, despite their detrimental role for object

identification. But what would happen if the number of features

remained the same and their role for object recognition differed,

being either facilitatory or detrimental for the speed of processing?

Table 1. Picture-naming norms and average naming RTs across conditions for Experiment 2 (Means6SEs) (** p,0.001).

Visual Complexity
(JPEG file size, kb)

Word Length (in
phonological
syllables)

Word Complexity
(complex or not)

Name agreement
(H statistic)

Frequency (Log natural
transformation of fre-
quency counts, CELEX)

Average naming
RT for German
[ms]

Low complexity (n = 86) 76586161** 2.1360.09 0.3460.05 0.6760.07 2.0560.13 1090631

High complexity (n = 86) 27 9846867** 2.2760.10 0.3160.05 0.8260.08 1.9060.16 1155629

doi:10.1371/journal.pone.0003781.t001

Figure 5. Accuracies and response times for Experiment 2. Data is depicted by box plots, with midlines indicating medians, ends of boxes
indicating 25th and 75th percentiles, ends of lines indicating 10th and 90th percentiles, and dots indicating observations falling in the outlying 10
percentiles.
doi:10.1371/journal.pone.0003781.g005
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To answer this question, we conducted our final experiment,

contrasting identification of colour diagnostic objects which were

presented either in their typical colour or in an atypical colour.

Experiment 3: The typicality of object’s colour
Design. Colour-shape associations in object recognition are

intrinsic: Naor-raz et al. [30] have demonstrated that colour

diagnostic objects are recognized faster if presented in their typical

colours, while their processing is slowed if the colours are changed to

an atypical hue (see Figure 1c). Such a role of visual colour

knowledge implies that a yellow banana gives rise to a qualitatively

different type of processing than a purple banana – even when the

shape in the image is same. In this experiment, we utilized the Naor-

raz et al. [30] stimulus set with images of colour diagnostic objects

either in their typical colour or in an atypical colour. The stimulus set

contained 138 images: each object could be presented either in its

typical or in an atypical colour. Typically and atypically coloured

objects were counterbalanced across participants, so that each

stimulus was shown in each condition an equal number of times

across the sample.

Findings. An across participants analysis revealed that RTs

were faster for typically coloured objects (typical colour

1150623 ms, atypical colour 1202631 ms, t (25) = 22.94,

p,0.01). Participants were also more accurate in responses to

typically coloured objects (typical colour 84.661.2%, atypical colour

80.761.0%, t (25) = 3.04, p,0.01; see Figure 7).

ERP and evoked GBA results are shown in Figure 8. There

were no changes in P1 amplitudes (t (25) = 1.28, n.s.) or evoked

GBA amplitudes (t (25) = 0.75, n.s.). However, the modulation in

N350 amplitude was significant (t (25) = 2.15, p,0.05), with more

Figure 6. EEG findings from Experiment 2 (visual complexity): ERPs and evoked GBA. a) ERPs: Grand mean baseline corrected ERP time
courses at regional mean sites with time windows of P1 and N350 components indicated by grey boxes (black: low visual complexity; magenta: high
visual complexity). To the right, scalp topographies of P1 and N350, averaged across conditions. b) Evoked GBA: Grand mean baseline-corrected TF-
plots averaged across 128 electrodes. Black box indicates the time-window of maximal activity. To the right, grand mean 3D spherical spline
amplitude-map representing an average across conditions, based on the 62.5 Hz frequency band centred on the 35 Hz wavelet during the time-
window of maximal activity. Black box indicates the electrode sites of interest. All plots represent the average across the sample. Electrode names are
given for channels taken into regional means. Bar plots of grand mean evoked GBA are also given, with a one standard error bar.
doi:10.1371/journal.pone.0003781.g006

Figure 7. Accuracies and response times for Experiment 3. Data is depicted by box plots, with midlines indicating medians, ends of boxes
indicating 25th and 75th percentiles, ends of lines indicating 10th and 90th percentiles, and dots indicating observations falling in the outlying 10
percentiles.
doi:10.1371/journal.pone.0003781.g007
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negativity for atypically coloured objects. Induced GBA remained

unmodulated (t (25) = 20.74, n.s.; see Figure 9).

Conclusion. In this experiment, with the overall amount of

features constant across conditions, the early evoked components

remained unmodulated. The shift in N350 again reflected the

negative impact of atypical colours on the representational

process, in line with the observed behavioural effects. Therefore,

we conclude that early evoked components reflect low-level feature

processing. Task-relevant mnemonically influenced processing of

object features has its earliest effects on the N350 component, a

marker of object model selection.

Discussion

We selectively varied the amount and representational role of

object features and related them to the electrical activity of the

human brain. The novelty of our study is in the fact that the

contribution of object features to representation was ensured by a

task that demanded entry-level identification, which is used in

everyday perception of real-life objects (trees, houses, dogs, cars,

etc.). Therefore, for the first time it was possible to assess if the

feature’s representational relevance would have a differential

impact on the earliest measures of object processing.

The role of features for object representation was confirmed

through RT costs or benefits. P1 component of the ERP and

evoked GBA’s amplitude increased when more image features had

to be coded, without reflecting the specific feature’s qualitative

contribution to the recognition process. The similarity of the

effects of surface detail on both the P1 and the evoked GBA

indicates that these two components may reflect complementary

and co-occurring sensory processing of stimuli. On the contrary,

modulations at the level of the ERP component N350 reflected the

Figure 8. EEG findings from Experiment 3 (colour typicality): ERPs and evoked GBA. a) ERPs: Grand mean baseline corrected ERP time
courses at regional mean sites with time windows of P1 and N350 components indicated by grey boxes (black: typical colour; magenta: atypical
colour). To the right, scalp topographies of P1 and N350, averaged across conditions. b) Evoked GBA: Grand mean baseline-corrected TF-plots
averaged across 128 electrodes. Black box indicates the time-window of maximal activity. To the right, grand mean 3D spherical spline amplitude-
map representing an average across conditions, based on the 62.5 Hz frequency band centred on the 35 Hz wavelet during the time-window of
maximal activity. Black box indicates the electrode sites of interest. All plots represent the average across the sample. Electrode names are given for
channels taken into regional means. Bar plots of grand mean evoked GBA are also given, with a one standard error bar.
doi:10.1371/journal.pone.0003781.g008

Figure 9. Time-by-Frequency plots for induced GBA (all experiments). a) Experiment 1 - surface detail. b) Experiment 2 - visual complexity; c)
Experiment 3 - colour typicality. All plots represent a baseline-corrected grand mean at the sites of maximal activity. Black boxes indicate the time-
window of induced GBA response for each condition.
doi:10.1371/journal.pone.0003781.g009
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representational significance of object features. N350 is a

component sensitive to image quality and reflects integrative

activity that follows the initial processing stream in the visual

system. The temporal locus of the feature-specific mnemonic effect

was thus at the N350 component, around approx. 200–350 ms.

Induced GBA, which co-occurs with the N350, remained

unmodulated in its amplitude. Thus, induced GBA reflects stages

of processing that do not directly relate to picture decoding

processes and may be more conceptual in nature.

Our findings on early evoked effects due to changes in object

features extend the findings of the Thorpe group [12] who studied

superordinate object identification. They found earliest object-

related EEG effects at 80 ms. While these effects were task-

independent, there were also task-related but category-indepen-

dent modulations at approximately 150 ms. Such findings are

likely to stem from top-down driven segmentation of the image

wherein high-level feature conjunctions are selected on the basis of

their diagnosticity for target-category stimuli (vehicles or animals

[13]). In our task, participants had to implicitly name images of

objects from a large and varied set: there was no segmentation

from background involved and specific identity of each object had

to be accessed. In such conditions, identification-specific effects

cannot emerge as early – they are divergent from both sensory

feature-related effects at 80 ms, as well as from category-

independent but task-related effects of feature-conjunctions at

150 ms. In our study, identification-specific effects started at

approximately 200 ms and were observable at the level of the

N350 component of the ERP. Convergent are the findings of

Johnson and Olshausen [31] who attributed object-related

changes in ERP waveforms prior to 137 ms to early processing

of featural differences and late changes post 150 ms to the

recognition process itself.

We found that N350 modulations matched the effects obtained in

the behavioural data: benefits for coloured objects (earlier latency in

Experiment 1), as well as costs for more contours (higher amplitude

in Experiment 2) or atypical colour of colour-diagnostic items (higher

amplitude in Experiment 3). N350 is known to reflect object-

matching processes and responds with higher amplitudes to images

that are not as straightforwardly identifiable [24,25]. N350 and its

posterior complement Ncl are thought to be generated in the

posterior ventral cortex – in particular, the lateral-occipital complex,

a significant part of the ventral recognition stream [32,33]. Schendan

and Kutas [25] propose that N350 reflects a reactivation of occipito-

temporal cortex in order to integrate information across a wide range

of representational regions, from early visual areas to the

ventrolateral prefrontal cortex [34,35]. Unlike earlier evoked

components, it was modulated by the features representational role,

indicating that it is the earliest evoked locus of feature-driven

mnemonic effects in entry-level object recognition.

Although induced GBA is generally considered to be the earliest

marker of cortical object representation, it remained unmodulated

in our study. Induced GBA’s amplitude has thus been shown to be

less sensitive to image attributes that drive perceptual processing of

objects. It may be that induced GBA’s amplitude is more

dependent on the conceptual processing of the object’s identity.

Such conceptual processing is necessarily intertwined with

perceptual processes, as semantic and perceptual levels of

representation are known to be coupled [36]. The conceptual

nature of induced GBA is supported by the fact that it can also be

elicited in word/pseudoword discrimination paradigms with

highly similar attributes to peaks elicited with object/non-object

tasks. Both with words and visual objects, induced GBA peaks

spanned the 200–350 ms period and exhibited repetition suppres-

sion effects for familiar words and objects ([21,22,37]). The

importance of semantic associations for induced GBA elicited by

familiar objects is also demonstrated in the fact that even after 10

repetitions, unfamiliar objects (i.e., nonsensical images created by

scrambling of familiar objects) do not start exhibiting the

sharpening effect associated with repetition suppression [38]. In

our experiments, induced GBA was always associated with

successful recognition of familiar objects. Thus, no variability in

conceptual processes between conditions would be expected and is

likely to be reflected in the steady amplitude of the induced GBA

across conditions.

An explanation of scalp-recorded induced GBA as a manifestation

of miniature or microsaccadic eye movements has recently been put

forward [39]. Microsaccades are rapid small-amplitude eye

movements spontaneously occurring about once per second with

the main purpose of countering perceptual fading, whose role for

visual perception and attention is only starting to be explored [40].

Yuval-Greenberg et al. [39] observed that miniature eye movement’s

saccadic spike potentials and induced GBA are both modulated by

object coherence and object type in a highly correlated fashion. In

our study, lack of modulation of induced GBA’s amplitude by object

features in the presence of multiple modulations of other more

feature-sensitive components (evoked GBA, ERPs) would indicate

that the induced GBA we have observed is different in nature to the

‘miniature saccade’ related activity reported by Yuval-Greenberg et

al. [39]. Indeed, an ongoing discussion supports the possibility of

accurate scalp-recordings of induced GBA if proper study design

(foveal presentation with instruction to suppress eye movements) and

artifact removal procedures are used (see comments at Neuron

online: http://www.neuron.org/content/article/comments?uid =

PIIS0896627308003012#top). Thus, we conclude that the commu-

nality of object-related conceptual processes between conditions was

reflected in the steady amplitude of the induced GBA, irrespective of

the changes in lower-level features.

In summary, it is now generally accepted that visual object

identification is achieved through a functional cooperation of

distributed brain regions, integrating diverse information in a

remarkably fast and efficient fashion. In spite of great variability of

viewpoints, sizes or possible occlusions in everyday visual scenes,

objects are identified within approx. 300 ms of processing time.

Models of visual object recognition attempt to explain the rapid

and concurrent processes that lead to successful object identifica-

tion, with an initial feed forward processing stream followed by a

series of feedback loops. While the earliest processing, lasting up to

100–150 ms, deals with the analysis of low-level object features

and their conjunctions, later stream of processing lasting up to

300 ms is thought to reflect the mnemonic continuation of

representational activity [12,41]. Neurophysiological measures can

directly reflect the time course of cognitive processes, making EEG

an essential tool in studying differential processing of objects in the

human brain during the crucial period of representational

processing (i.e., up to 300–400 ms). Our series of EEG

experiments systematically explored stimulus space according to

object feature’s relevance to representational processing at entry-

level of specificity, at which object’s identity is accessed in everyday

life. It demonstrated that in these circumstances, feature-driven

mnemonic effects can only appear in a time window that allows

recurrent and feedback interactions between representational

brain areas [25]. Any earlier effects (i.e. prior to 200 ms) are

related to the amount of features in the image and their

conjunctions which can be highly diagnostic of object identity

under specific tasks and stimulus sets (explaining the findings of

[13,19]). In everyday vision categorical representational processing

of objects is not ultra-rapid and seems to require the full 300 ms of

neural processing. This has significant implications on models of
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visual object representation. Recently, pictorial models of object

representation which emphasise the differential contribution of

image features at several hierarchically organised stages of

classification have emerged [42]. The body of EEG findings in

object recognition support such feature-based models. Thus,

depending on the level of specificity of classification, the

contribution of features can be either early -subserving ultra-rapid

but coarse categorisation as in the studies of Thorpe and

Herrmann research groups- or late -subserving entry-level

categorisation that was examined in this study.

Materials and Methods

Participants
Healthy university students received class credit or a small

honorarium for participating in the study (Experiment 1: 18

participants aged 19–39 years, mean age = 23 years; Experiment

2: 18 participants aged 18–26 years, mean age = 22 years;

Experiment 3: 25 participants aged 19–33, mean age 33 years).

Participants had been removed from the sample when technical

problems had occurred during the recording or if they exhibited

excessive EEG artifacts (less than 60% artifact free trials)

(Experiment 1: two participants; Experiment 2: three participants;

Experiment 3: four participants). Participants reported normal or

corrected-to-normal vision and all were native speakers of

German. None had participated in object recognition studies in

preceding six months. Individual written informed consent was

obtained and the study conformed to the Code of Ethics of the

World Medical Association.

Stimulus presentation and task
Stimulus presentation occurred in a random order, which was

different for each of the participants. Participants performed an

implicit naming task requiring them to press a different button

depending on the grammatical gender of object’s name (in

Experiments 1 and 3 masculine, feminine or neutral; in

Experiment 2 masculine or feminine). For a detailed description

of the task, see Martinovic et al. [26]. Participants first performed a

practice block (in Experiment 1, 32 trials; in Experiment 2, 40

trials; in Experiment 3, 30 trials) – the practice contained a subset

of stimuli that were not used in the experiment itself. Experiment 1

consisted of two blocks, each one lasting approximately seven

minutes and containing 105 trials. Experiment 2 had four blocks

with 43 stimuli, each lasting approx. three minutes. Experiment 3

consisted of two blocks with 69 trials, each lasting approx. four and

a half minutes. Each trial consisted of a variable 500–800 ms

baseline period, during which a black fixation cross (0.6u60.6u)
was presented. The fixation cross was then removed and a

stimulus picture was displayed for 650 ms. The picture was then

replaced by the fixation cross, which remained on the screen for

another period of 1650 ms. This was followed by the display of an

‘X’ for 900 ms, during which participants were allowed to blink.

Stimuli were presented centrally on a 19-inch computer screen,

with a 70 Hz refresh rate. The monitor was positioned outside of

the dimly lit soundproof testing chamber and the participants

viewed it through a window from a 1 m distance. The objects

presented on the images subtended a visual angle ranging from

around 1.5u to around 4.6u. All stimuli were shown on a white

background. Stimulus onset was synchronised to the vertical

retrace of the monitor. The presentation and the timing of the

experiment were controlled using a Matlab Toolbox, allowing

visual presentation and response-recording with precise timing

(Cogent, www.vislab.ucl.ac.uk/Cogent/; The Mathworks, Inc,

Natick, Massachusetts). Halfway through the experiment partic-

ipants were asked to change the responding hand. Participants

were instructed to minimise eye movements and blinking during

the display of a stimulus or the fixation cross.

EEG recording
EEG was recorded continuously from 128 locations using active

Ag-AgCl electrodes (BioSemi Active-Two amplifier system; Biosemi,

Amsterdam, The Netherlands) placed in an elastic cap. In this system

the typically-used ‘‘ground’’ electrodes in other EEG amplifiers are

replaced through the use of two additional active electrodes,

positioned in close proximity to the electrode Cz of the international

10–20 system [43]: Common Mode Sense (CMS) acts as a recording

reference and Driven Right Leg (DRL) serves as ground [44,45].

Horizontal and vertical electrooculograms were recorded in order to

exclude trials with blinks and significant eye movements. EEG signal

was sampled at a rate of 512 Hz and was segmented into epochs

starting 500 ms prior and lasting 1500 ms following picture onset.

EEG data processing was performed using the EEGlab toolbox [46]

combined with in-house procedures running under the Matlab (The

Mathworks, Inc, Natick, Massachusetts) environment. Artefact

correction was performed by means of ‘‘statistical correction of

artefacts in dense array studies’’ (SCADS; [47]). It is widely accepted

in the field and has been applied and described in several

publications [48,49]. All incorrectly answered trials were excluded

prior to data analysis. In Experiment 1, the average rejection rate

was 29.3%, resulting in approx. 44 remaining trials per condition. In

Experiment 2, the average rejection rate was 29.6%, resulting in

approx. 53 remaining trials per condition. In Experiment 3, the

average rejection rate was 26.5%, resulting in approx. 42 remaining

trials per condition. Further analyses were performed using the

average reference.

Behavioural data analysis
RTs between 400 and 2300 ms, the maximum time allowed for

responses, for trials with correct responses were taken into further

analysis. Accuracy rates were analysed across participants while

RTs on correctly answered trials were analysed both across

participants and across items. Median RTs for correct items were

computed for each participant. Means across participants were

then computed to obtain a measure of central tendency known as

a mean of median RT. This was done due to the skewness of RT

distributions and is a common procedure when working with RTs

(e.g., see [26]). Across participant differences were analysed with

repeated measures ANOVAs or paired t-tests; across item

differences were analysed with one-way ANOVAs.

Event related potentials (ERPs) analysis
A 25 Hz low-pass filter was applied to the data before all ERP

analyses. Two ERP components were assessed: P1 and N350.

Figures 3–5 (see Results) list the analysis windows and electrode

sites taken into the regional mean for each component. Mean

amplitude within the respective time window was calculated for

each component and mean amplitude during the period 100 ms

prior to stimulus onset (baseline) was subtracted. Each component

was subject to repeated measures ANOVAs or paired t-tests. Post-

hoc tests were performed using paired t-tests.

Analysis of evoked and induced spectral changes
High frequency oscillatory activity was analysed according to

the standard procedure employed in many previous studies (e.g.,

[21,22,26,50]). In brief, spectral changes in oscillatory activity

were analysed by means of Morlet wavelet analysis [51], which

offers a good compromise between time and frequency resolution
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[23]. This method provides a time-varying magnitude of the signal

in each frequency band leading to a time-by-frequency (TF)

representation of the signal and, together with suggested

parameter definitions that allow for a good time and frequency

resolution in the gamma frequency range, is detailed in previous

studies (e.g. [22]). In order to achieve good time and frequency

resolution in the gamma frequency range, the wavelet family in

this study was defined by a constant m = f0 /sf = 7, with f0

ranging from 2.5 to 100 Hz in 0.5 Hz steps. This data was

subsequently reduced to form 2.5 Hz-wide wavelets. Time-varying

energy in a given frequency band was calculated for each epoch by

taking the absolute value of the convolution of the signal with the

wavelet.

Preliminary electrode sites used for time-by-frequency plots

were selected on the basis of previous findings of maximal local

gamma power elicited by object identification paradigms; parietal

for induced GBA ([21,22,52]) and occipital for evoked GBA

([52,53,54,55]). These sites were further readjusted in order to

envelop the area of maximal amplitude for data collapsed across

conditions in case the observed grand mean topography happened

to differ from previous findings.

In order to identify the time window and frequency range of the

GBA peaks mean baseline-corrected spectral amplitude (baseline:

between 200 and 100 ms prior to stimulus onset) was collapsed

together for all conditions and represented in TF-plots in the 30–

90 Hz range. The length of the time window of maximal gamma

band amplitude was defined based on the observed grand-mean

GBA, a common approach in previous studies (e.g., [17,22]).

Maps of oscillatory responses in the 65 Hz frequency band

centred upon the 35 Hz wavelet (for evoked GBA) or maximal

activity wavelet for each participant (for induced GBA) during the

time window of maximal activity were calculated by means of

spherical spline interpolations [56]. Regional means of interest

were determined on the basis of grand mean topographies.

Evoked oscillatory activity is by definition time-and phase-

locked to stimulus onset and was analysed through a transforma-

tion of the unfiltered ERP into the frequency domain. Evoked

GBA has low inter-individual variability and in object categorisa-

tion studies that use line-drawings it is usually observed at

frequencies between 30 and 40 Hz, with maximal activity usually

occurring in a narrow time interval around 50–150 ms post

stimulus-onset (e.g., [21,22,50]). Therefore a 65 Hz range was

taken around a central wavelet of 35 Hz within a time window of

50–150 ms. Due to inter-individual differences in the induced

gamma peak in the frequency domain a specific wavelet for each

participant was chosen based on the frequency of his/her maximal

amplitude in an average across all three conditions. Centred upon

this wavelet a frequency band of 65 Hz was subsequently formed

for the purpose of statistical analyses.

Differences between conditions at the regional mean sites in the

amplitude after baseline subtraction were analysed by means of

repeated measurement ANOVAs or paired t-tests.
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