6 research outputs found

    Fourier Analysis of MAC Polarization

    Get PDF
    A problem of the polar code construction for multiple access channels (MACs) is that they do not always achieve the whole capacity region. Although polar codes achieve the sum-capacity of symmetric MACs, polarization may induce a loss in the capacity region which prevents polar codes from achieving the whole capacity region. This paper provides a single letter necessary and sufficient condition which characterizes all the MACs that do not lose any part of their capacity region by polarization

    Countably Infinite Multilevel Source Polarization for Non-Stationary Erasure Distributions

    Full text link
    Polar transforms are central operations in the study of polar codes. This paper examines polar transforms for non-stationary memoryless sources on possibly infinite source alphabets. This is the first attempt of source polarization analysis over infinite alphabets. The source alphabet is defined to be a Polish group, and we handle the Ar{\i}kan-style two-by-two polar transform based on the group. Defining erasure distributions based on the normal subgroup structure, we give recursive formulas of the polar transform for our proposed erasure distributions. As a result, the recursive formulas lead to concrete examples of multilevel source polarization with countably infinite levels when the group is locally cyclic. We derive this result via elementary techniques in lattice theory.Comment: 12 pages, 1 figure, a short version has been accepted by the 2019 IEEE International Symposium on Information Theory (ISIT2019

    Polar Codes for Arbitrary Classical-Quantum Channels and Arbitrary cq-MACs

    Full text link
    We prove polarization theorems for arbitrary classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation and an Ar{\i}kan-style transformation is applied using this operation. It is shown that as the number of polarization steps becomes large, the synthetic cq-channels polarize to deterministic homomorphism channels which project their input to a quotient group of the input alphabet. This result is used to construct polar codes for arbitrary cq-channels and arbitrary classical-quantum multiple access channels (cq-MAC). The encoder can be implemented in O(NlogN)O(N\log N) operations, where NN is the blocklength of the code. A quantum successive cancellation decoder for the constructed codes is proposed. It is shown that the probability of error of this decoder decays faster than 2Nβ2^{-N^{\beta}} for any β<12\beta<\frac{1}{2}.Comment: 30 pages. Submitted to IEEE Trans. Inform. Theory and in part to ISIT201

    Polarization and Channel Ordering: Characterizations and Topological Structures

    Get PDF
    Information theory is the field in which we study the fundamental limitations of communication. Shannon proved in 1948 that there exists a maximum rate, called capacity, at which we can reliably communicate information through a given channel. However, Shannon did not provide an explicit construction of a practical coding scheme that achieves the capacity. Polar coding, invented by Arikan, is the first low-complexity coding technique that achieves the capacity of binary-input memoryless symmetric channels. The construction of these codes is based on a phenomenon called polarization. The study of polar codes and their generalization to arbitrary channels is the subject of polarization theory, a subfield of information and coding theories. This thesis consists of two parts. In the first part, we provide solutions to several open problems in polarization theory. The first open problem that we consider is to determine the binary operations that always lead to polarization when they are used in Arikan-style constructions. In order to solve this problem, we develop an ergodic theory for binary operations. This theory is used to provide a necessary and sufficient condition that characterizes the polarizing binary operations, both in the single-user and the multiple-access settings. We prove that the exponent of a polarizing binary operation cannot exceed 1/2. Furthermore, we show that the exponent of an arbitrary quasigroup operation is exactly 1/2. This implies that quasigroup operations are among the best polarizing binary operations. One drawback of polarization in the multiple-access setting is that it sometimes induces a loss in the symmetric capacity region of a given multiple-access channel (MAC). An open problem in MAC polarization theory is to determine all the MACs that do not lose any part of their capacity region by polarization. Using Fourier analysis, we solve this problem by providing a single-letter necessary and sufficient condition that characterizes all these MACs in the general setting where we have an arbitrary number of users, and each user uses an arbitrary Abelian group operation on his input alphabet. We also study the polarization of classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation, and an Arikan-style transformation is applied using this operation. We show that as the number of polarization steps becomes large, the synthetic cq-channels polarize to deterministic homomorphism channels that project their input to a quotient group of the input alphabet. This result is used to construct polar codes for arbitrary cq-channels and arbitrary classical-quantum multiple-access channels (cq-MAC). In the second part of this thesis, we investigate several problems that are related to three orderings of communication channels: degradedness, input-degradedness, and the Shannon ordering. We provide several characterizations for the input-degradedness and the Shannon ordering. Two channels are said to be equivalent if they are degraded from each other. Input-equivalence and Shannon-equivalence between channels are similarly defined. We construct and study several topologies on the quotients of the spaces of discrete memoryless channels (DMC) by the equivalence, the input-equivalence and the Shannon-equivalence relations. Finally, we prove the continuity of several channel parameters and operations under various DMC topologies

    Fourier Analysis of MAC Polarization

    No full text
    corecore