202 research outputs found

    Developing an evaluation framework for screen doors on railway platforms

    Get PDF
    Platform Screen Doors (PSDs) are physical barriers installed at the edges of platforms in train stations. Such doors are widely used in modern metro stations and some heavy rail stations despite the installation cost being high. The decisions for installing these doors are made for different reasons in different systems, often without a full consideration of the relevant factors. In this thesis, there is a brief discussion around safety decision making in railway and other industries, but the main feature of this research is around the breadth of factors that can be taken into account in a conventional CostBenefit Analysis (CBA). The author compiles a comprehensive list of factors associated with PSDs and develops a model to support issue identification and decision-making by project sponsors. He highlights the state-of-the-art deployment situation of PSDs and draws evidence from prominent railway systems. This thesis identifies 85 railway operations and technical factors which are affected by PSDs; compiled from sources including relevant literature, consultation with industry experts and through adoption of systems thinking. The factors are brought together to produce a system dynamics model identifying causality between the factors and succeeding variables. The factors are then quantified in their respective units using mathematical equations developed through this research, and converted into a common unit of currency. These values are incorporated into an executable spreadsheet model developed for the purpose of carrying out an economic analysis to reveal the overall gain or loss (in terms of benefits and disbenefits) associated with PSD deployment. The model, which serves as a decision-making support tool, can be used on different rail networks to help decision makers make informed decisions when considering the deployment of PSDs. The methodology of this thesis can serve as a framework for systems engineers and can be used for other elements of a system, whereas the iimodels produced provide consultants, contractors and suppliers of PSDs with a comprehensive checklist that would be useful for any PSD case irrespective of the network characteristics. To test the executable model, a case study was developed using a hypothetical station formed from a combination of real data secured from different rail systems in different continents. The data was aggregated in such a manner that stakeholder confidentiality of data is preserved. The blended real data is used to form default values in the model that can be used in cases where local data is unavailable, for example in the case of new-build platforms. Variations in local factors, e.g., the value of avoiding a fatality, cost of equipment etc., mean that it will always be recommended that the model is used to undertake a specific local evaluation both for new-build and retrofit cases. The results obtained using default values for a specimen station yielded an overall benefit of nearly £11.5 million, overall disbenefit of £11.8 million, Net Present Value (NPV) of -£271,461 and Benefit–Cost Ratio (BCR) of 0.98. This is calculated over a 35-year lifetime for the PSDs. Even though different organisations may have different BCR requirements or rules of thumb, the 0.98 BCR means that the benefits derived are just less than the disbenefits/costs involved. However, sensitivity analysis shows that small changes in input variables can change the BCR significantly, either up or down. From this generic analysis the we can reach two preliminary findings – that benefits and costs can be broadly in balance, and that it is essential that local parameters are used to support any decisions to implement or not to implement PSDs. The high-level factors influencing the results include the value of a fatality avoided, safety (including suicides) having the greatest impact and amounting to nearly £7 million over the PSD lifetime. This is followed by energy consumption, for which a benefit of £4.3 million was determined. On the negative side, the effect on capacity leads, with a loss of £5.6 million, followed by the cost of PSD equipment that ranges from £13,000 to £18,000 per linear metre. Application of the Pareto principle when evaluating the economics for one platform to a station, line or network suggests a strategic analysis and selecting only those platforms/stations with critical requirements to be fitted with PSDs. This makes the calculation much more feasible for PSD installation on those critical platforms. The thesis therefore presents a comprehensive approach to evaluating situations, identifying relevant factors, quantifying them and coming up with evidence-based information that serves as a decision-making support mechanism which helps decision makers to make informed, scientifically based, decisions. Even though the case study presented in the thesis is around the deployment of PSDs, the framework developed can be customised to suit other scenarios for which scientifically based decision-making is required

    Behavior-based Control for Service Robots inspired by Human Motion Patterns : a Robotic Shopping Assistant

    Get PDF
    Es wurde, unter Verwendung menschenähnlicher Bewegungsmuster und eines verhaltensbasierten Ansatzes, eine Steuerung für mobile Serviceroboter entwickelt, die Aufgabenplanung, globale und lokale Navigation in dynamischen Umgebungen, sowie die gemeinsame Aufgabenausführung mit einem Benutzer umfasst. Das Verhaltensnetzwerk besteht aus Modulen mit voneinander unabhängigen Aufgaben. Das komplexe Gesamtverhalten des Systems ergibt sich durch die Vereinigung der Einzelverhalten (\u27Emergenz\u27)

    MARTE/pCCSL: Modeling and Refining Stochastic Behaviors of CPSs with Probabilistic Logical Clocks

    Get PDF
    Best Paper AwardInternational audienceCyber-Physical Systems (CPSs) are networks of heterogeneous embedded systems immersed within a physical environment. Several ad-hoc frameworks and mathematical models have been studied to deal with challenging issues raised by CPSs. In this paper, we explore a more standard-based approach that relies on SysML/MARTE to capture different aspects of CPSs, including structure, behaviors, clock constraints, and non-functional properties. The novelty of our work lies in the use of logical clocks and MARTE/CCSL to drive and coordinate different models. Meanwhile, to capture stochastic behaviors of CPSs, we propose an extension of CCSL, called pCCSL, where logical clocks are adorned with stochastic properties. Possible variants are explored using Statistical Model Checking (SMC) via a transformation from the MARTE/pCCSL models into Stochastic Hybrid Automata. The whole process is illustrated through a case study of energy-aware building, in which the system is modeled by SysML/MARTE/pCCSL and different variants are explored through SMC to help expose the best alternative solutions

    Multimodal interface for an intelligent wheelchair

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Universidade do Porto. Faculdade de Engenharia. 201

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Systematic Parameter Optimization and Application of Automated Tracking in Pedestrian-Dominant Situations

    Get PDF
    RÉSUMÉ Les mouvements des piétons et leur modélisation constituent un domaine de recherche de plus en plus actif. Bien qu’encore souvent appliqué à la sécurité par l’élaboration de plans d’évacuation en cas d’urgence, comprendre le mouvement des piétons est un enjeu économique de plus en plus important, notamment pour améliorer l’efficacité des aménagements de transport et des grands centres commerciaux. Cependant, les données existantes — particulièrement au niveau individuel, ou microscopique —sont majoritairement collectées dans des situations expérimentales contrôlées. Elles ne sont donc pas nécessairement représentatives du comportement des piétons dans des situations réelles, particulièrement en tenant compte de la susceptibilité de leur comportement aux facteurs démographiques, psychologiques et nvironnementaux. Cette lacune est due principalement à l’absence de méthodes prouvées pour la détection et le suivi de piétons dans des cas réels, absence qui résulte de la complexité des mouvements piétons et qui persiste malgré l’avancement continu des méthodes automatique d’analyse.----------ABSTRACT Though a wealth of data exists for the characterization of pedestrian movement, a majority of it originates from experimental settings owing to the current state of trackers for real-world scenarios. While these trackers are steadily improving, they remain insufficiently reliable for the accurate, microscopic tracking of individuals, particularly in cases of occlusion or higher density, complex scenes. In this work, the use of evolution algorithms is proposed for the systematic calibration of the parameters of existing trackers in order to further optimize their performance – evaluated by tracking accuracy and precision metrics – in complex cases, with an initial focus on two tracking methods designed for multimodal analysis. This calibration is further aided by the inclusion of additional parameters regulating homography, or specifically the plane to which tracker detections are projected. Three real test cases were used: a) a confined corridor in a public building, b) a subway station entrance during morning rush hour and c) a crosswalk in downtown New York. Results demonstrate a halving of tracking errors over both default and manually-calibrated parameters, as well as a strong correlation in performance between similar cases. These results were consistent over multiple trials and regardless of the starting parameters, strongly implying that the obtained solutions are indeed the global maxima for each scene. For application and validation of the resultant tracks, flow characterization and directional counting are demonstrated, utilizing tools included in the optimization framework

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    OPTIMIZATION OF TERMINAL LAYOUTS: AN ANALYTICAL AND SIMULATIVE APPROACH BASED ON GENETIC ALGORITHMS

    Get PDF
    2012/2013Every day millions of pedestrian move with different needs and objectives through spaces each of them with its functional specifications. An accurate design or revisiting of transport terminals, as for example railway stations, underway stations, airports, as well as complex buildings, open spaces and a deep analysis of public events with relevant pedestrian flows, would improve its usability at users benefit. To reach this goal is necessary a careful integration among architecture, engineering needs and transport disciplines, that, starting from the study of users behavior and pedestrian dynamics, provides the fundamental elements to be considered during design stage to ensure a major level of service. In literature nothing much is known about the optimal dimension of pedestrian transportation terminals. The aim of this study is to develop a methodology to size the functional terminal layouts, by the integration of analytical and simulative models submitted to generic algorithms, taking into account the dynamics and flows generated inside the terminals. In order to obviate the lack of requisite data for models calibration, validation and verification, as well as testing the process developed, an algorithm for data acquisition has been elaborated. It has a dedicated graphic interface, which allows to reveal the pedestrian dynamics and consequently to generate database; with these data is possible to obtain statistical and behavioral indicators about pedestrians detected. The use of analytical models, both to define the sizing of facilities inside the terminals and to model the user behavior during their paths, allows to define an objective function able to represent the performances of the terminal functional layout. Defined the dimensional ranges of each functional element inside the layout according a specific Level of Service, performed a design of experiments methodology and applied genetic algorithms to minimize the objective function, it is possible to obtain a set of optimal solutions for the terminal configuration sizing, in coherence with flows and dynamics generated inside the terminals itself. A further simulative approach, based on the application of the social force algorithm, allows, through quantitative and qualitative parameters, to identify the best solution(s) inside the domain previously identified with genetic algorithm application. Starting from the motivation that inspired this work, analyzed the existing literature and the main methods for data acquisition, it will be introduced the algorithm for the automatic acquisition of data and pedestrian database generation. The application of this tool will be illustrated in order to manifest the potentiality of the instrument same. Subsequently introduced the tool developed for the definition of the characteristic elements sizing and the model chosen for the correct estimation of pedestrian travel times, it will be explored the structure of the objective function aimed to identify the right trade-off between infrastructure and pedestrian costs. Finally, the application of genetic algorithms, resulting in the identification of Pareto front, generates the domain of optimal solutions to sift through the simulation approach. The developed methodology reveals a flexible and simple instruments, but, at the same time, accurate in the resolution of the problems for which has been structured. The potential of the developed methodology is highlighted in the course of the work thanks to a case of study.Ogni giorno milioni di pedoni si muovono con esigenze ed obbiettivi diversi in contesti differenti, ognuno dei quali con le sue caratteristiche tecniche funzionali. Un’attenta progettazione o rivisitazione dei terminali di trasporto, quali stazioni ferroviarie, metropolitane, aeroporti, così come degli edifici complessi, degli spazi aperti ed una corretta disamina degli eventi pubblici con flussi pedonali rilevanti, consentirebbe di migliorarne la fruibilità a beneficio dell’utenza. Per raggiungere tale obiettivo risulta necessaria un’attenta integrazione tra esigenze architettoniche, ingegneristiche e le discipline trasportistiche, le quali, partendo dallo studio comportamentale degli utenti e dalle dinamiche pedonali, forniscano gli elementi fondamentali da tenersi in considerazione nella fase di progettazione per garantire un maggiore livello di servizio. Riscontrata in letteratura una carenza di approcci finalizzata alla determinazione del miglior layout funzionale dei terminali, attraverso l’integrazione di modelli analitici e simulativi sottoposti ad algoritmi genetici, è stata sviluppata una metodologia che, coerentemente con le dinamiche e i flussi che all’interno dei terminali stessi si generano, mirasse al dimensionamento ottimo dei terminali di trasporto pedonale. Per ovviare alla mancanza di dati necessari per i processi di calibrazione, validazione e verifica dei modelli così come per testare il metodo sviluppato è stato innanzitutto elaborato un algoritmo per l’acquisizione di dati, con interfaccia grafica dedicata, che consente di rilevare le dinamiche pedonali, generare database e conseguentemente ricavare dati statistici e comportamentali dei pedoni. L’utilizzo di modelli analitici, sia per l’identificazione dei range dimensionali degli elementi caratteristici presenti all’interno dei terminali che per la modellizzazione del comportamento degli utenti, permette di definire una funzione obbiettivo che rappresenti le performances dei layout funzionali dei terminali. Attraverso design of experiments calibrati sui range dimensionali dei singoli elementi funzionali presenti all’interno dei terminali e la successiva applicazione degli algoritmi genetici finalizzati alla minimizzazione della funzione obiettivo, è possibile definire un insieme di soluzioni ottime per il dimensionamento dei terminali, in coerenza con i flussi e le dinamiche che in esso si generano. Un’ulteriore approccio simulativo, basato sull’applicazione dell’algoritmo delle forze sociali, consente, attraverso la valutazione di parametri quantitativi e qualitativi, di identificare la/e miglior soluzione/i all’interno del dominio di soluzioni precedentemente identificate con l’applicazione degli algoritmi genetici. A partire dall’esplicitazione delle motivazioni che hanno alimentato questo lavoro, analizzata la letteratura esistente e le principali metodologie per l’acquisizione dati, verrà introdotto l’algoritmo per l’acquisizione automatica dei dati pedonali e la generazione di database contenenti i profili degli utenti rilevati. A seguire troverà spazio l’applicazione di questo strumento per manifestarne le potenzialità. Successivamente, introdotto il tool sviluppato per la definizione dei range dimensionali degli elementi caratteristici e il modello scelto per la corretta stima dei tempi di percorrenza pedonali, verrà esplorata la strutturazione della funzione obiettivo finalizzata alla ricerca del giusto trade off tra costi infrastrutturali e pedonali. Infine, l’applicazione degli algoritmi genetici, risultanti nell’identificazione del fronte paretiano, genererà il dominio di soluzioni ottime da vagliare attraverso l’approccio simulativo. La metodologia sviluppata si è rivelata uno strumento flessibile ed agevole, ma, allo stesso tempo, puntuale nel risolvere i problemi per cui è stata ideata. Le potenzialità della metodologia sviluppata vengono messe in risalto nel corso dell’elaborato grazie ad un caso di studio condotto.XXVI Ciclo198
    • …
    corecore