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A B S T R A C T
Cyber-Physical systems (CPS), combining continuous physical behavior and discrete control
behavior, have been widely utilized in recent years. However, the traditional modeling languages
used to specify discrete systems are no longer applicable to CPS, since CPS subsume the
combination of the cyber and the physical. To address this, a modeling language for CPS with
shared-variable concurrency is proposed. In this paper, we introduce an extension to the classical
configuration of transitions in Structural Operational Semantics (SOS), which adds an auxiliary
variable "now" to the data state. Using this configuration, we present operational semantics for
this language. Then, we propose a translation strategy from this language to hybrid automata to
enable efficient verification for CPS. We give the detailed translation of basic commands and
compound constructs formally, and the correctness of this translation is explored as well. To
demonstrate the effectiveness of our approach, we provide an example of Autonomous Emer-
gency Braking (AEB) and carry out the corresponding verification using SpaceEx. Compared
with the existing work that uses SpaceEx for formal modeling and verification, the translation
strategy from programs to automata not only allows any CPS described in this language to be
modeled and verified based on the proposed strategy, but also indicates the semantic foundation
on which formal verification depends.

1. Introduction
Cyber-Physical systems (CPS) [1] are dynamic systems composed of discrete behaviors of the cyber and continuous

behaviors of the physical. In CPS, computer programs can influence physical behaviors, and vice versa. The
interdependency and integration between the cyber and the physical are useful in many fields, such as aerospace,
automotive, healthcare, manufacturing, and transportation [2].

However, the complexity of this combination can complicate the design of systems. Therefore, it is of primary
importance to propose specification languages for CPS. We proposed and elaborated a shared variable language to
specify CPS formally in our previous work [3, 4]. Further, a series of studies on the formal semantics of this language
were carried out. We explored its denotational semantics and algebraic semantics based on the Unifying Theories of
Programming (UTP) approach [5] in [4], and developed its proof system with Hoare logic [6] in [7].

Our previous works mainly concentrate on theoretical semantics. In this paper, we propose operational semantics
for this language to enrich its formal semantics. On the other hand, from the practical level, we also implement
formal verification based on the operational semantics by translating our language to hybrid automata in SpaceEx.
Consequently, for a given CPS scenario, it can be described using our language. Then, formalization and verification
can be conducted through our translation.

This paper extends our work published at SETTA 2022 [8]. In our previous work, we mainly focused on the
transformation from our modeling language to hybrid automata in SpaceEx [9], and gave partial examples to illustrate
this conversion. Now, compared with our previous work, the main contributions of this paper are illustrated in Fig. 1.

• From Theoretical View: We propose operational semantics for our language with the aid of Structural
Operational Semantics (SOS). In contrast to the classical configuration of a transition in SOS, we add an auxiliary
variable 𝑛𝑜𝑤 to the data state to capture the real-time feature of CPS. Then, we apply transitions to present
operational semantics based on the new form of the configuration.

∗Corresponding author: hbzhu@sei.ecnu.edu.cn
ORCID(s): 0000-0002-3492-1591 (R. Li)
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Figure 1: Technology Roadmap

• From Practical View: We elaborate the translation from our language to hybrid automata formally, and more
examples are appended to this paper as well. Through this transformation, we can build a bridge between our
language and hybrid automata in SpaceEx, so that CPS specified by our language can be verified in SpaceEx.
Moreover, to illustrate our language and the transformation, we present a case study of Autonomous Emergency
Braking (AEB) and verify some properties of AEB.

The remainder of this paper is as follows. In Section 2, we introduce hybrid automata and the model checker
SpaceEx, recall the syntax of our modeling language, and discuss the related work. In Section 3, we formalize the
operational semantics of this language based on the introduction of transitions. In Section 4, the translation from the
language to hybrid automata in SpaceEx is given. Section 5 is dedicated to the case study of AEB. Finally, we conclude
our work and discuss some future work in Section 6.

2. Background
In this section, we first briefly introduce hybrid automata and the model checker SpaceEx. Moreover, we recall the

syntax of our modeling language to describe CPS.
2.1. Hybrid Automata

We first give the formal definitions of hybrid automata based on [10]. A hybrid automaton can be expressed as a
tuple of 𝐴 = (𝐿𝑜𝑐,𝐿𝑎𝑏,𝐸𝑑𝑔,𝐹 𝑙𝑜𝑤, 𝐼𝑛𝑣).

• 𝐿𝑜𝑐 stands for a finite set of vertices called locations. A location is associated with an invariant and a flow.
• 𝐿𝑎𝑏 is a finite set of synchronization labels.
• 𝐸𝑑𝑔 is a finite set of edges called transitions. By defining transitions, the system can jump between locations. It

can be denoted by 𝑒 = (𝑙, 𝑠𝑦𝑛, 𝑔, 𝑎𝑠𝑔, 𝑙′). 𝑙 and 𝑙′ represent the source location and the target location respectively.
𝑠𝑦𝑛 is a synchronization label. If 𝑠𝑦𝑛 = 𝜏, it implies that it is an internal transition. 𝑔 is a guard and 𝑎𝑠𝑔 is an
assignment. If the guard of this transition is satisfied, the related assignment can take effect and change the values
of variables instantaneously. The synchronization label is used to implement synchronization between different
automata.

• 𝐹 𝑙𝑜𝑤 contains a set of differential equations that describe the evolution of continuous variables in this location.
• 𝐼𝑛𝑣 is a function that assigns to each location an invariant. The automaton remains in the current location while

the invariant is satisfied.
Then, based on the above introduction, the parallel composition of hybrid automata can be constructed in the

following way. Let 𝐴1 = (𝐿𝑜𝑐1,𝐿𝑎𝑏1,𝐸𝑑𝑔1,𝐹 𝑙𝑜𝑤1, 𝐼𝑛𝑣1) and 𝐴2 = (𝐿𝑜𝑐2,𝐿𝑎𝑏2,𝐸𝑑𝑔2,𝐹 𝑙𝑜𝑤2, 𝐼𝑛𝑣2) be two hybrid
automata over the same variable set. The two automata synchronize on the set 𝐿𝑎𝑏1 ∩𝐿𝑎𝑏2, so that once 𝐴1 performs
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a discrete transition with the synchronization label 𝑠𝑦𝑛 ∈ (𝐿𝑎𝑏1 ∩ 𝐿𝑎𝑏2), 𝐴2 executes the transition with the same
synchronization label 𝑠𝑦𝑛. We give the formal definition of the parallel composition of 𝐴1 × 𝐴2 as below.

𝐴1 × 𝐴2 is the form of (𝐿𝑜𝑐1 × 𝐿𝑜𝑐2,𝐿𝑎𝑏1 ∪ 𝐿𝑎𝑏2,𝐸𝑑𝑔,𝐹 𝑙𝑜𝑤, 𝐼𝑛𝑣), where
• ((𝑙1, 𝑙2), 𝑠𝑦𝑛, 𝑔, 𝑎𝑠𝑔, (𝑙′1, 𝑙

′
2)) ∈ 𝐸𝑑𝑔 iff

(1) (𝑙1, 𝑠𝑦𝑛1, 𝑔1, 𝑎𝑠𝑔1, 𝑙′1) ∈ 𝐸𝑑𝑔1 and (𝑙2, 𝑠𝑦𝑛2, 𝑔2, 𝑎𝑠𝑔2, 𝑙′2) ∈ 𝐸𝑑𝑔2,
(2) 𝑠𝑦𝑛1 = 𝑠𝑦𝑛2 = 𝑠𝑦𝑛, or (𝑠𝑦𝑛1 = 𝑠𝑦𝑛 ∉ (𝐿𝑎𝑏1 ∩ 𝐿𝑎𝑏2)) ∧ 𝑠𝑦𝑛2 = 𝜏, or (𝑠𝑦𝑛2 = 𝑠𝑦𝑛 ∉

(𝐿𝑎𝑏1 ∩ 𝐿𝑎𝑏2)) ∧ 𝑠𝑦𝑛1 = 𝜏
(3) 𝑔 = 𝑔1 ∩ 𝑔2
(4) 𝑎𝑠𝑔 = 𝑎𝑠𝑔1 ∩ 𝑎𝑠𝑔2

• 𝐹 𝑙𝑜𝑤(𝑙1, 𝑙2) = 𝐹 𝑙𝑜𝑤1(𝑙1) ∩ 𝐹 𝑙𝑜𝑤2(𝑙2)

• 𝐼𝑛𝑣(𝑙1, 𝑙2) = 𝐼𝑛𝑣1(𝑙1) ∩ 𝐼𝑛𝑣2(𝑙2)

The operational semantics of hybrid automata is presented below.
• If (𝑙, 𝑠𝑦𝑛, 𝑔, 𝑎𝑠𝑔, 𝑙′) ∈ 𝐸𝑑𝑔, 𝑣 ∈ 𝑔, (𝑣, 𝑣′) ∈ 𝑎𝑠𝑔, 𝑣 ∈ 𝐼𝑛𝑣(𝑙), 𝑣′ ∈ 𝐼𝑛𝑣(𝑙′), then ⟨𝑙, 𝑣⟩ 𝑠𝑦𝑛

←←←←←←←←←←←←←→ ⟨𝑙′, 𝑣′⟩.
• If 𝑓 ∈ 𝐹 𝑙𝑜𝑤(𝑙), 𝑓 (0) = 𝑣, ∀ 0 ⩽ 𝑡 ⩽ 𝐷 ⋅ 𝑓 (𝑡) ∈ 𝐼𝑛𝑣(𝑙), then ⟨𝑙, 𝑣⟩ 𝐷⩾0

←←←←←←←←←←←←←←←←←←→ ⟨𝑙, 𝑓 (𝑡)⟩.
2.2. SpaceEx

SpaceEx is a verification platform for hybrid systems. For a given mathematical model of a hybrid system, it can
check whether this model satisfies the desired properties [9, 11]. SpaceEx models are similar to hybrid automata.
Moreover, SpaceEx supports hierarchy, templates and instantiations.

A model in SpaceEx contains one or several components. There are two kinds of components:
• Base Component: This is a single hybrid automaton, and it consists of locations and transitions between locations.
• Network Component: This represents a parallel composition of several hybrid automata, and it is comprised of

one or more instantiations of other components. By connecting base components via their variables and labels,
a network component constructs a parallel composition of base components.

After loading the formalized model into SpaceEx, we can set the initial states, forbidden states, verification
scenarios and other options to verify the model. SpaceEx supports three verification scenarios, including Polyhedral
Hybrid Automaton Verifier (PHAVer) [12], Le Guernic-Girard (LGG) [9], and Space-Time with Clustering (STC) [13].
In this paper, we adopt the PHAVer scenario to verify our models. PHAVer is applied to Linear Hybrid Automata [14]
which are hybrid systems with piecewise constant bounds on the derivatives.
2.3. Syntax of Our Modeling Language

The syntax of our language is summarized in Table 1. This language was proposed in [3] and we elaborated it
by detailing the guard conditions of the continuous behaviors in [4]. Here, 𝑥 is a discrete variable, 𝑒 is a discrete or
continuous expression, and 𝑣 is a continuous variable. 𝑏 stands for a Boolean condition, and it contains discrete and
continuous variables. A process in our language contains discrete behaviors 𝐷𝑏, continuous behaviors 𝐶𝑏, and several
compositions and constructs of 𝐷𝑏 and 𝐶𝑏.
2.3.1. Discrete Behavior

This language contains two kinds of discrete behaviors, i.e., discrete assignment 𝑥 ∶= 𝑒 and discrete event guard
@𝑔𝑑.

• 𝑥 ∶= 𝑒 is a discrete assignment, which is an atomic action. It evaluates the expression 𝑒 and assigns the value to
the discrete variable 𝑥.

• @𝑔𝑑 is a discrete event guard. It can be triggered when the discrete guard 𝑔𝑑 is satisfied. Otherwise, it waits
until 𝑔𝑑 is triggered by the environment. Note that the environment consists of other processes in the parallel
composition.

R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 4 of 23
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Table 1
Syntax of Our Modeling Language

Process 𝑃 ,𝑄 ∶∶= 𝐷𝑏 (Discrete Behavior)
| 𝐶𝑏 (Continuous Behavior)
| 𝑃 ;𝑄 (Sequential Composition)
| if 𝑏 then 𝑃 else 𝑄 (Conditional Construct)
| while 𝑏 do 𝑃 (Iteration Construct)
| 𝑃 ∥ 𝑄 (Parallel Composition)

Discrete Behavior 𝐷𝑏 ∶∶= 𝑥 ∶= 𝑒 | @𝑔𝑑
Continuous Behavior 𝐶𝑏 ∶∶= 𝑅(𝑣, 𝑣̇) until 𝑔
Guard Condition 𝑔 ∶∶= 𝑔𝑑 | 𝑔𝑐 | 𝑔𝑑 ∨ 𝑔𝑐 | 𝑔𝑑 ∧ 𝑔𝑐
Discrete Guard 𝑔𝑑 ∶∶= 𝑡𝑟𝑢𝑒 | 𝑥 = 𝑒 | 𝑥 < 𝑒 | 𝑥 > 𝑒 | 𝑔𝑑 ∨ 𝑔𝑑 | 𝑔𝑑 ∧ 𝑔𝑑 | ¬𝑔𝑑
Continuous Guard 𝑔𝑐 ∶∶= 𝑡𝑟𝑢𝑒 | 𝑣 = 𝑒 | 𝑣 < 𝑒 | 𝑣 > 𝑒 | 𝑔𝑐 ∨ 𝑔𝑐 | 𝑔𝑐 ∧ 𝑔𝑐 | ¬𝑔𝑐

2.3.2. Continuous Behavior
We employ differential relations to describe continuous behaviors in our language.
• 𝑅(𝑣, 𝑣̇) until 𝑔 defines continuous behaviors. It denotes that the continuous variable 𝑣 evolves as the differential

relation 𝑅(𝑣, 𝑣̇) specifies until the guard condition 𝑔 is met. Four kinds of guard condition 𝑔 are allowed in our
language, including the discrete guard 𝑔𝑑, continuous guard 𝑔𝑐, mixed guards 𝑔𝑑 ∧ 𝑔𝑐 and 𝑔𝑑 ∨ 𝑔𝑐. Here, in our
language, the discrete variables can influence the continuous behaviors through the guard condition 𝑔.

2.3.3. Composition
Further, a process can be comprised of the above commands in the following way.
• 𝑃 ;𝑄 is sequential composition. The processes 𝑃 and 𝑄 execute sequentially.
• if 𝑏 then 𝑃 else 𝑄 is a conditional construct. If the Boolean condition 𝑏 is true, then the process 𝑃 will be

performed. Otherwise, 𝑄 is executed.
• while 𝑏 do 𝑃 is an iteration construct. The process 𝑃 is executed repeatedly each time the Boolean condition 𝑏

is true.
• 𝑃 ∥ 𝑄 is parallel composition. It represents that the processes 𝑃 and 𝑄 run in parallel. The parallel mechanism

in our language is based on shared variables. In our language, shared writable variables only focus on discrete
variables.

2.4. Related Work
Due to the massive proliferation in computer systems that combine with real world, Cyber-Physical systems have

been applied in many fields. Therefore, it is tempting to investigate the modeling languages for CPS. A number
of languages and calculus have been proposed for specifying CPS. Hybrid CSP (HCSP) [15] is an extension of
Communicating Sequential Processes (CSP) by introducing differential equations to model continuous behaviors and
communication interruptions in hybrid systems. It supports parallel composition via the communication mechanism.
Since HCSP was proposed, lots of research have been conducted on various aspects of HCSP, such as formal
semantics [16, 17], formal verification [18, 19], and code generation [20]. He et al. presented a hybrid relational
modeling language (HRML) in [21], where a signal-based interaction mechanism is adopted to synchronize activities
of hybrid systems. For describing and analysing hybrid systems, Hybrid process algebra (HyPA) which is an extension
of the process algebra ACP was proposed in [22]. Additionally, Platzer et al. models hybrid systems with hybrid
programs [23, 24] and proposed differential dynamic logic to carry out logical proofs [25, 26], case validation and
tool implementation [27, 28] for hybrid systems. We also proposed a language whose parallel mechanism in CPS is
based on shared variables in [3], and we simplified its syntax in [4]. Slightly different from [26, 23], our language
subdivides the types of variables (i.e., discrete or continuous) for a more realistic description of CPS. In this paper, we
conduct research around our shared variable language for CPS.
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Moreover, formal semantics can precisely define and interpret the semantics of programming languages with
symbols and formulas from a mathematical view. Therefore, a primary concern of a given modeling language is its
formal semantics. Unifying Theories of Programming (UTP) approach was developed by Hoare and He in [5], and it
has been applied in defining semantics for many languages [29, 30, 31]. It contains three different mathematical models
to represent a theory of programming, namely, operational semantics [32], denotational semantics [33] and algebraic
semantics [34]. In our previous work [4], based on UTP approach, we explore the denotational semantic and algebraic
semantics for our modeling language. In this paper, we propose operational semantics for the shared variable language
of CPS to enrich its formal semantics.

Meanwhile, there are many research works on the formalization and verification of CPS. Bu et al. explored
online verification of CPS and modeling-verification-fixing framework of event-driven IoT system from bounded
reachability analysis of linear hybrid automata [2, 35]. Banach et al. extended Event-B [36] to Hybrid Event-B that
includes continuous behavior and discrete transitions for modeling and verifying hybrid systems [37, 38]. Platzer et
al. developed a hybrid theorem prover called KeYmaera X to verify hybrid systems [39, 40]. James et al. carried out
a series of verification for the European Rail Traffic Management System using Real-Time Maude [41, 42]. In this
paper, we employ SpaceEx to realize transformation. SpaceEx [9] has been applied in formalization and verification
in many fields [43, 44, 11]. Aman et al. established a relationship between rTIMO networks and a class of timed safety
automata in [45]. Inspired by this, in this paper, we translate our modeling language of CPS to the hybrid automata in
SpaceEx. Consequently, any CPS specified by our language can be formalized and verified in SpaceEx according to
our transformation method.

3. Operational Semantics of Our Language
In this section, we introduce transitions used in our operational semantics, and then we present the detailed transition

rules.
3.1. Transition

A classical configuration in a transition is formalized as ⟨𝑃 , 𝜎⟩, where 𝑃 and 𝜎 stand for the process and the data
state of only the discrete variables in 𝑃 .

For example, if 𝑃 =df 𝑥 ∶= 1; 𝑦 ∶= 𝑦 + 2 and 𝜎 =df {𝑥 ↦ 0, 𝑦 ↦ 0}, the configuration ⟨𝑃 , 𝜎⟩ represents that
the current data state is 𝑥 = 0 ∧ 𝑦 = 0, and the program to be executed in the current state is a sequential composition
𝑥 ∶= 1; 𝑦 ∶= 𝑦 + 2.

Based on the definition of configuration, a transition describes how the process moves from one configuration to
the next configuration. A transition is in the form of ⟨𝑃 , 𝜎⟩ → ⟨𝑃 ′, 𝜎′⟩. It indicates that executing the program 𝑃 one
step in the current state 𝜎 can lead to a new state 𝜎′ and 𝑃 ′ is the remainder of 𝑃 .

Therefore, for the above example, we have:
⟨𝑥 ∶= 1; 𝑦 ∶= 𝑦 + 2, 𝜎⟩ → ⟨𝑦 ∶= 1, 𝜎1⟩ → ⟨𝜖, 𝜎2⟩, where 𝜎1 =df {𝑥 ↦ 1, 𝑦 ↦ 0}, 𝜎2 =df {𝑥 ↦ 1, 𝑦 ↦ 2} and 𝜖

stands for an empty process.
Slightly different from the classical structures, in addition to discrete variables of the process involved in 𝜎, we

also introduce a new continuous variable called 𝑛𝑜𝑤 to represent the global clock. The configuration in our transitions
is the form of ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩. Moreover, if execution reaches a configuration ⟨𝜖, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡′⟩, it indicates that the
process terminates in the state 𝜎′ at the time 𝑡′.

Besides, for continuous variables in the process 𝑃 , since their values are from dense types, there is no need to
record their values in 𝜎. In this paper, for simplicity, we assume that the differential relation 𝑅(𝑣, 𝑣̇) can be transformed
into a function of the continuous variable 𝑣 with respect to the time 𝑡. Then, we can obtain their values by reference to
the time (i.e., 𝑣(𝑡) means 𝑣’s value at the time 𝑡).

A transition rule for our language has the form of ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷⩾0
←←←←←←←←←←←←←←←←←←→ ⟨𝑃 ′, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩. Here, 𝐷 is a real

number (equal to or greater than 0) which stands for the duration of the transition.
• If 𝐷 = 0, it stands for an instantaneous transition. It means that the process 𝑃 executes one step in the current

state 𝜎, and then the process changes to 𝑃 ′ which stands for the remainder of 𝑃 and the state is now updated to
𝜎′. This transition is instantaneous and costs no time, so 𝑛𝑜𝑤 keeps unchanged.

• If 𝐷 > 0, it is an evolution transition and it can portray the evolution of continuous behaviors. After this evolution,
𝑛𝑜𝑤 is updated to 𝑡 +𝐷.

R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 6 of 23
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Table 2
Operational Semantics

Discrete Assignment: ⟨𝑥 ∶= 𝑒, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝜖, 𝜎[𝑒∕𝑥] ⋅ 𝑛𝑜𝑤 = 𝑡⟩

Discrete Event Guard: If 𝜎 ⊨ 𝑔𝑑, then ⟨@𝑔𝑑, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝜖, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩.

Continuous Evolution:
(CE-Evolve) If ∀𝑡𝑖𝑚𝑒 ∈ [𝑡, 𝑡 +𝐷) ∙ ( 𝑣(𝑡𝑖𝑚𝑒), 𝜎 ⊨ ¬𝑔),

then ⟨𝑅(𝑣, 𝑣̇) until 𝑔, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷>0
←←←←←←←←←←←←←←←→ ⟨𝑅(𝑣, 𝑣̇) until 𝑔, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩.

(CE-Term) If 𝑣(𝑡), 𝜎 ⊨ 𝑔, then ⟨𝑅(𝑣, 𝑣̇) until 𝑔, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝜖, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩.

Sequential Composition:

(SC-NTerm) If ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷⩾0
←←←←←←←←←←←←←←←→ ⟨𝑃 ′, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩,

then ⟨𝑃 ;𝑄, 𝜎⟩ 𝐷⩾0
←←←←←←←←←←←←←←←→ ⟨𝑃 ′;𝑄, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩.

(SC-Term) If ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷⩾0
←←←←←←←←←←←←←←←→ ⟨𝜖, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩,

then ⟨𝑃 ;𝑄, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷⩾0
←←←←←←←←←←←←←←←→ ⟨𝑄, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩.

Conditional Construct:

(CC-If) If 𝑣(𝑡), 𝜎 ⊨ 𝑏, then ⟨if 𝑏 then 𝑃 else 𝑄, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩.

(CC-Else) If 𝑣(𝑡), 𝜎 ⊨ ¬𝑏, then ⟨if 𝑏 then 𝑃 else 𝑄, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝑄, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩.

Iteration Construct:

(IC-Loop) If 𝑣(𝑡), 𝜎 ⊨ 𝑏, then ⟨while 𝑏 do 𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝑃 ;while 𝑏 do 𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩.

(IC-Term) If 𝑣(𝑡), 𝜎 ⊨ ¬𝑏, then ⟨while 𝑏 do 𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝜖, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩.

Parallel Composition:

(PC-Dist) If ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝑃 ′, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡⟩,

then ⟨𝑃 ∥ 𝑄, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝑃 ′ ∥ 𝑄, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡⟩,

⟨𝑄 ∥ 𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0
←←←←←←←←←←←←←←←→ ⟨𝑄 ∥ 𝑃 ′, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡⟩.

(PC-Cont) If ⟨𝑅1, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷>0
←←←←←←←←←←←←←←←→ ⟨𝑅1, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩,

⟨𝑅2, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷>0
←←←←←←←←←←←←←←←→ ⟨𝑅2, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩,

then ⟨𝑅1 ∥ 𝑅2, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷>0
←←←←←←←←←←←←←←←→ ⟨𝑅1 ∥ 𝑅2, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩,

⟨𝑅2 ∥ 𝑅1, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷>0
←←←←←←←←←←←←←←←→ ⟨𝑅2 ∥ 𝑅1, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩.

(PC-Term) If ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷⩾0
←←←←←←←←←←←←←←←→ ⟨𝜖, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩,

then ⟨𝑃 ∥ 𝑄, 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷⩾0
←←←←←←←←←←←←←←←→ ⟨𝑄, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩,

⟨𝑄 ∥ 𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷⩾0
←←←←←←←←←←←←←←←→ ⟨𝑄, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡 +𝐷⟩.

3.2. Transition Rules
As enumerated in Table 2, we employ the following transition rules to present the operational semantics of our

language.
3.2.1. Discrete Behavior Semantics

• Discrete Assignment: This rule portrays that if the assignment terminates, then the expression 𝑒 is evaluated and
the value gained is assigned to the variable 𝑥. Here, 𝜎[𝑒∕𝑥] is the same as 𝜎 except that the value of 𝑥 is now
associated with the value of 𝑒.

• Discrete Event Guard: This rule illustrates that @𝑔𝑑 terminates, if 𝑔𝑑 is satisfied at the initial state 𝜎. Otherwise,
the rule does not allow us to derive any transition.

3.2.2. Continuous Behavior Semantics
• Continuous Evolution: CE-Evolve explains that the continuous behavior evolves for 𝐷 time units according to

𝑅(𝑣, 𝑣̇) if 𝑔 is not triggered within this period. After this transition, 𝑛𝑜𝑤 is updated with 𝑡+𝐷. Here, 𝑣(𝑡), 𝜎 ⊨ ¬𝑔
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means that the current values of continuous variables (recorded as 𝑣(𝑡)) and discrete variables (recorded in 𝜎)
invalidate 𝑔. CE-Term describes the termination of the continuous behavior and we treat it as instantaneous.

3.2.3. Composition Semantics
Based on the operational semantics of the above discrete and continuous behaviors, we give the semantics for the

composition of basic commands.
• Sequential Composition: These rules depict that the process first activates 𝑃 , and when 𝑃 terminates then 𝑄 is

executed.
• Conditional Construct: These rules represent that the process performs 𝑃 if 𝑏 is true. Otherwise, 𝑄 is selected

instead.
• Iteration Construct: Analogously, if 𝑏 is 𝑡𝑟𝑢𝑒, the process executes the loop body process 𝑃 and then determines

whether the Boolean condition 𝑏 is satisfied again. The iteration construct ends when 𝑏 is false.
• Parallel Composition: For parallel composition, 𝜎 and 𝜎′ are global states.

– PC-Dist means that if one of the parallel components performs an instantaneous transition, the whole
parallel process also makes this transition while leaving its partner unchanged. More specifically, if the
parallel components are both discrete behaviors, they perform as interleaving. If one is discrete and the
other is continuous, then the discrete one is assumed to be scheduled first.

– PC-Cont describes the parallel composition of two continuous behavior. When both 𝑅1 and 𝑅2 evolve for
𝐷 time units, 𝑅1 ∥ 𝑅2 evolves for 𝐷 time units as well.

– PC-Term indicates if one of the parallel components terminates (i.e., reaches an empty process 𝜖), then
the whole parallel composition is left with its partner.

4. Translation in SpaceEx
In this section, for a given process 𝑃 of our language, we translate it to the form of a hybrid automaton 𝐴 =

(𝐿𝑜𝑐,𝐿𝑎𝑏,𝐸𝑑𝑔,𝐹 𝑙𝑜𝑤, 𝐼𝑛𝑣). The components in the automaton are updated depending on the detailed structure of the
process 𝑃 , and we present the detailed transformation of basic commands and compound constructs in turn.
4.1. Variables

As the foundation of the transformation, we first describe how to define variables in SpaceEx and introduce some
vital variables that we used in our transformation.
4.1.1. Discrete Variables and Continuous Variables

In our language, there are discrete variables and continuous variables. There are only continuous variables (local
or global) and constants in SpaceEx. Thus, to define discrete variables in SpaceEx, we can consider them as a special
kind of continuous variables whose derivative is always 0.
4.1.2. Crucial Variables

In our transformation, a global clock variable needs to be defined, so that it captures the real-time feature of CPS.
Therefore, we define a continuous variable 𝑡 whose meaning is quite similar to 𝑛𝑜𝑤 in the above semantics. 𝑡 is
controlled by a 𝐶𝑙𝑜𝑐𝑘 automaton that simulates the real time clock. The detailed formalization of 𝐶𝑙𝑜𝑐𝑘 is shown
in Section 5.2.2.

Additionally, we define 𝑡𝑒𝑟𝑡 as a local variable controlled by the respective independent automaton. We treat 𝑡𝑒𝑟𝑡 as
a discrete variable, so we set 𝑡𝑒𝑟𝑡′ == 0 in all locations. 𝑡𝑒𝑟𝑡 is used to realize the instantaneous jump in the automata,
thereby ensuring the correctness of the simulation results returned by SpaceEx.
4.2. Discrete Behavior

For discrete behaviors, there are two statements in our language, including discrete assignment 𝑥 ∶= 𝑒 and discrete
event guard @𝑔𝑑.
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4.2.1. Discrete Assignment
As introduced in Section 2.2, the edges of the graph can allow the system to jump between locations [9]. It can

change the values of variables with the assignment. Hence, we can simply realize the discrete assignment by adding
the corresponding assignment statement to the edge. If 𝑃 = 𝑥 ∶= 𝑒, we have:

• 𝐿𝑜𝑐 = 𝐿𝑜𝑐 ∪ {𝑡𝑒𝑟𝑚}

• 𝐸𝑑𝑔 = 𝐸𝑑𝑔 ∪ {(𝑖𝑛𝑖𝑡, 𝑐ℎ𝑎𝑛𝑔𝑒 ∨ 𝜏, , 𝑥 ∶= 𝑒, 𝑡𝑒𝑟𝑚)}

• 𝐹 𝑙𝑜𝑤(𝑖𝑛𝑖𝑡) = 𝐹 𝑙𝑜𝑤(𝑡𝑒𝑟𝑚) = {𝑥′ == 0&𝑡𝑒𝑟𝑡′ == 0}

• 𝐼𝑛𝑣(𝑖𝑛𝑖𝑡) = {𝑡𝑒𝑟𝑡 == 𝑡}

As for the locations, the 𝑖𝑛𝑖𝑡 location is the source location of this assignment, and it represents the location where
the existing automaton (i.e., automaton converted from the previous process) runs. If there is no existing automaton,
we start the translation with a bare initial location 𝑖𝑛𝑖𝑡. We add a new location called term to represent the terminal
location after this assignment.

The newly added edge is applied to realize the assignment. For its synchronization label, if 𝑥 is a shared variable,
we set the label as 𝑐ℎ𝑎𝑛𝑔𝑒 to synchronize this assignment with other processes. Otherwise, the label is 𝜏, indicating
this transition is an internal transition. In SpaceEx, a transition without a label name is an internal transition.

Since 𝑥 and 𝑡𝑒𝑟𝑡 are both discrete variables, their derivatives are 0 in all locations. We assume 𝑖𝑛𝑖𝑡 is an instantaneous
location, so we set 𝐼𝑛𝑣(𝑖𝑛𝑖𝑡) as 𝑡𝑒𝑟𝑡 == 𝑡.
4.2.2. Discrete Event Guard

For discrete event guard, it can be triggered by the process itself or by the environment. In this formalization, we
apply a synchronization label 𝑐ℎ𝑎𝑛𝑔𝑒 to let the process observe the environment’s action. Note that the observation
through the label 𝑐ℎ𝑎𝑛𝑔𝑒 means that the process can perceive all changes on shared variables, no matter whether this
change can really trigger 𝑔𝑑. To formalize the behavior of @𝑔𝑑, we have:

• 𝐿𝑜𝑐 = 𝐿𝑜𝑐 ∪ {𝑤𝑎𝑖𝑡, 𝑖𝑚, 𝑡𝑒𝑟𝑚}

• 𝐸𝑑𝑔 = 𝐸𝑑𝑔 ∪ {(𝑖𝑛𝑖𝑡, 𝜏, 𝑔𝑑, , 𝑡𝑒𝑟𝑚)} ∪ {(𝑖𝑛𝑖𝑡, 𝜏,¬𝑔𝑑, ,𝑤𝑎𝑖𝑡)} ∪ {(𝑤𝑎𝑖𝑡, 𝑐ℎ𝑎𝑛𝑔𝑒, , 𝑡𝑒𝑟𝑡 ∶= 𝑡, 𝑖𝑚)}
∪ {(𝑖𝑚, 𝜏,¬𝑔𝑑, ,𝑤𝑎𝑖𝑡)} ∪ {(𝑖𝑚, 𝜏, 𝑔𝑑, , 𝑡𝑒𝑟𝑚)}

• For all 𝑙 ∈ 𝐿𝑜𝑐, 𝐹 𝑙𝑜𝑤(𝑙) = {𝑡𝑒𝑟𝑡′ == 0}

• 𝐼𝑛𝑣(𝑖𝑛𝑖𝑡) = 𝐼𝑛𝑣(𝑖𝑚) = {𝑡𝑒𝑟𝑡 == 𝑡}, 𝐼𝑛𝑣(𝑤𝑎𝑖𝑡) = {¬𝑔𝑑}

Here, 𝑖𝑛𝑖𝑡 and 𝑡𝑒𝑟𝑚 are the initial and terminal locations of @𝑔𝑑. The 𝑤𝑎𝑖𝑡 location represents that 𝑔𝑑 has not
been triggered and the process is waiting for the environment. We introduce the intermediate location 𝑖𝑚 to determine
whether the newly changed value by the environment can trigger 𝑔𝑑.

For the edges, according to the initial data state, the automaton of @𝑔𝑑 moves from the 𝑖𝑛𝑖𝑡 location to the 𝑡𝑒𝑟𝑚
location or the 𝑤𝑎𝑖𝑡 location. As mentioned before, the trigger action can be done by the process itself (i.e., 𝑔𝑑 is
satisfied at the 𝑖𝑛𝑖𝑡 location) or by the environment (i.e., the environment changes the corresponding variables and thus
triggers 𝑔𝑑). If the initial state cannot activate 𝑔𝑑, the automaton jumps from the 𝑖𝑛𝑖𝑡 location to the 𝑤𝑎𝑖𝑡 location.
The automaton stays stuck in this location until the environment changes the variables in 𝑔𝑑, and then reaches the 𝑖𝑚
location. If 𝑔𝑑 is satisfied at the 𝑖𝑚 location, the process moves to the 𝑡𝑒𝑟𝑚 location. Otherwise, it returns to the 𝑤𝑎𝑖𝑡
location and waits for the environment again.

Similarly, we set 𝑡𝑒𝑟𝑡’s derivative as 0 in all locations. Moreover, since 𝑥 cannot be changed during the execution
of @𝑔𝑑, no restrictions of 𝑥 are necessary to add to the flow of locations in the automaton of @𝑔𝑑. Same as the 𝑖𝑛𝑖𝑡
location, the 𝑖𝑚 location is instantaneous and we set 𝐼𝑛𝑣(𝑖𝑚) as 𝑡𝑒𝑟𝑡 == 𝑡. When the automaton stays at the 𝑤𝑎𝑖𝑡
location where 𝑔𝑑 is not satisfied, thus 𝐼𝑛𝑣(𝑤𝑎𝑖𝑡) = {¬𝑔𝑑}.
Example 1. We take @𝑥 > 1 as an example to illustrate the detailed formalization of @𝑔𝑑, and Fig. 2 presents its
automaton in SpaceEx.

Here, 𝑥 is the shared variable controlled by the environment. It can be changed by the environment and these
changes can be perceived by @𝑔𝑑.
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Figure 2: @(𝑥 > 1)

For @𝑔𝑑, it moves from the 𝑖𝑛𝑖𝑡 location to the 𝑡𝑒𝑟𝑚 location, if 𝑔𝑑 is satisfied (i.e., 𝑥 > 1) at the beginning. If the
current data state cannot meet 𝑔𝑑 (i.e., 𝑥 ⩽ 1), the process jumps to the 𝑤𝑎𝑖𝑡 location where the process waits for the
environment to change 𝑥. Once the environment changes 𝑥, the environment automaton synchronizes with the @𝑥 > 1
automaton through the 𝑐ℎ𝑎𝑛𝑔𝑒 label. Consequently, the automaton reaches the 𝑖𝑚 location. Further, it moves to the
𝑡𝑒𝑟𝑚 location if the current value of 𝑥 meets 𝑥 > 1. Otherwise, the automaton returns to the 𝑤𝑎𝑖𝑡 location.

□

4.3. Continuous Behavior
For the continuous behavior𝑅(𝑣, 𝑣̇) until 𝑔, we formalize the models according to the types of the guard 𝑔, including

𝑔𝑐, 𝑔𝑑, 𝑔𝑑 ∨ 𝑔𝑐 and 𝑔𝑑 ∧ 𝑔𝑐.
4.3.1. 𝑔 ≡ 𝑔𝑐

If the guard condition is purely determined by continuous variables, the evolution of the continuous variable 𝑣
follows the differential relation until 𝑔𝑐 is satisfied. Thus, the process is not concerned with the discrete behaviors of
the environment. For 𝑃 = 𝑅(𝑣, 𝑣̇) until 𝑔𝑐, we have:

• 𝐿𝑜𝑐 = 𝐿𝑜𝑐 ∪ {𝑒𝑣𝑜𝑙𝑣𝑒, 𝑡𝑒𝑟𝑚}

• 𝐸𝑑𝑔 = 𝐸𝑑𝑔 ∪ {(𝑖𝑛𝑖𝑡, 𝜏, 𝑔𝑐, , 𝑡𝑒𝑟𝑚)} ∪ {(𝑖𝑛𝑖𝑡, 𝜏,¬𝑔𝑐, , 𝑒𝑣𝑜𝑙𝑣𝑒)} ∪ {(𝑒𝑣𝑜𝑙𝑣𝑒, 𝜏, 𝑔𝑐, 𝑡𝑒𝑟𝑡 ∶= 𝑡, 𝑡𝑒𝑟𝑚)}

• 𝐹 𝑙𝑜𝑤(𝑖𝑛𝑖𝑡) = 𝐹 𝑙𝑜𝑤(𝑡𝑒𝑟𝑚) = {𝑡𝑒𝑟𝑡′ == 0&𝑣′ == 0},𝐹 𝑙𝑜𝑤(𝑒𝑣𝑜𝑙𝑣𝑒) = {𝑡𝑒𝑟𝑡′ == 0&𝑅(𝑣, 𝑣̇)}

• 𝐼𝑛𝑣(𝑖𝑛𝑖𝑡) = {𝑡𝑒𝑟𝑡 == 𝑡}, 𝐼𝑛𝑣(𝑒𝑣𝑜𝑙𝑣𝑒) = {¬𝑔𝑐}

Similar to the 𝑤𝑎𝑖𝑡 location in the @𝑔𝑑 automaton, the 𝑒𝑣𝑜𝑙𝑣𝑒 location implies that 𝑔𝑐 has not been triggered. The
difference between the 𝑤𝑎𝑖𝑡 location and the 𝑒𝑣𝑜𝑙𝑣𝑒 location is that differential relation 𝑅(𝑣, 𝑣̇) is added in the flow
of the 𝑒𝑣𝑜𝑙𝑣𝑒 location, i.e., 𝐹 𝑙𝑜𝑤(𝑒𝑣𝑜𝑙𝑣𝑒) = {𝑡𝑒𝑟𝑡′ == 0&𝑅(𝑣, 𝑣̇)}. When the automaton is in the 𝑒𝑣𝑜𝑙𝑣𝑒 location, it
means that the continuous behavior is evolving as the differential relation specifies. Once 𝑔𝑐 is satisfied, the automaton
moves to the 𝑡𝑒𝑟𝑚 location which indicates the continuous behavior terminates. Due to the termination, it requires that
𝐹 𝑙𝑜𝑤(𝑡𝑒𝑟𝑚) = {𝑡𝑒𝑟𝑡′ == 0&𝑣′ == 0}.
Example 2. As presented in Fig. 3, we take 𝑣̇ = 1 until 𝑣 ⩾ 10 as an instance to show this transformation in SpaceEx.

Here, 𝑣 is a continuous variable controlled by the automaton of 𝑣̇ = 1 until 𝑣 ⩾ 10. If the initial state meets 𝑣 ⩾ 10,
the automaton reaches the 𝑡𝑒𝑟𝑚 location at once. If not, it moves to the 𝑒𝑣𝑜𝑙𝑣𝑒 location where the differential relation
𝑣̇ == 1 is accompanied. During this evolution, once 𝑣 ⩾ 10 is satisfied, the process terminates and the automaton
jumps to the 𝑡𝑒𝑟𝑚 location.

Besides, it is worth noting that we set 𝐼𝑛𝑣(𝑒𝑣𝑜𝑙𝑣𝑒) = {𝑣 ⩾ 10} rather than {𝑣 < 10} (i.e., {¬𝑔𝑐} in the above formal
definition) in this automaton. This is because of the feature of hybrid automata. If we set the invariant as {𝑣 < 10}, it
can never jump to the 𝑡𝑒𝑟𝑚 location. For simplicity, in this paper, we express the invariant as {¬𝑔𝑐} in formal definition,
but the real automaton incorporates the boundary value into the invariant.

□
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Figure 3: 𝑣̇ = 1 until 𝑣 ⩾ 10

4.3.2. 𝑔 ≡ 𝑔𝑑
When the guard condition involves merely discrete variables, the process is evolving until 𝑔𝑑 is triggered. Since 𝑔𝑑

can be triggered by the environment, changes of 𝑔𝑑 by the environment should be noticed. For 𝑃 = 𝑅(𝑣, 𝑣̇) until 𝑔𝑑,
we have:

• 𝐿𝑜𝑐 = 𝐿𝑜𝑐 ∪ {𝑒𝑣𝑜𝑙𝑣𝑒, 𝑖𝑚, 𝑡𝑒𝑟𝑚}

• 𝐸𝑑𝑔 = 𝐸𝑑𝑔 ∪ {(𝑖𝑛𝑖𝑡, 𝜏, 𝑔𝑑, , 𝑡𝑒𝑟𝑚)} ∪ {(𝑖𝑛𝑖𝑡, 𝜏,¬𝑔𝑑, , 𝑒𝑣𝑜𝑙𝑣𝑒)} ∪ {(𝑒𝑣𝑜𝑙𝑣𝑒, 𝑐ℎ𝑎𝑛𝑔𝑒, , 𝑡𝑒𝑟𝑡 ∶= 𝑡, 𝑖𝑚)}
∪ {(𝑖𝑚, 𝜏,¬𝑔𝑑, , 𝑒𝑣𝑜𝑙𝑣𝑒)} ∪ {(𝑖𝑚, 𝜏, 𝑔𝑑, , 𝑡𝑒𝑟𝑚)}

• 𝐹 𝑙𝑜𝑤(𝑖𝑛𝑖𝑡) = 𝐹 𝑙𝑜𝑤(𝑖𝑚) = 𝐹 𝑙𝑜𝑤(𝑡𝑒𝑟𝑚) = {𝑡𝑒𝑟𝑡′ == 0&𝑣′ == 0}, 𝐹 𝑙𝑜𝑤(𝑒𝑣𝑜𝑙𝑣𝑒) = {𝑡𝑒𝑟𝑡′ == 0&𝑅(𝑣, 𝑣̇)}

• 𝐼𝑛𝑣(𝑖𝑛𝑖𝑡) = 𝐼𝑛𝑣(𝑖𝑚) = {𝑡𝑒𝑟𝑡 == 𝑡}, 𝐼𝑛𝑣(𝑒𝑣𝑜𝑙𝑣𝑒) = {¬𝑔𝑑}

The construction of 𝑅(𝑣, 𝑣̇) until 𝑔𝑑 is quite similar to the way @𝑔𝑑 is formalized. The 𝑤𝑎𝑖𝑡 location in the @𝑔𝑑
automaton is replaced by the 𝑒𝑣𝑜𝑙𝑣𝑒 location here in the 𝑅(𝑣, 𝑣̇) until 𝑔𝑑 automaton. The 𝑒𝑣𝑜𝑙𝑣𝑒 location indicates
that 𝑔𝑑 has not been activated and the continuous behavior is performing.
Example 3. Fig. 4 describes the automaton of 𝑣̇ = 1 until 𝑥 > 1 in SpaceEx.

Figure 4: 𝑣̇ = 1 until 𝑥 > 1

The meanings of these locations and transitions among them are the same as those in the @𝑥 > 1 automaton
(shown in Fig. 2), except that 𝑣̇ == 1 is appended in the flow of the 𝑒𝑣𝑜𝑙𝑣𝑒 location.

□

4.3.3. 𝑔 ≡ 𝑔𝑑 ∨ 𝑔𝑐
If the guard condition is a hybrid one with the form of 𝑔𝑑 ∨ 𝑔𝑐, the process evolves until 𝑔𝑑 or 𝑔𝑐 is satisfied. As

a result, we need to pay attention not only to when the evolution of the process makes 𝑔𝑐 hold, but also to when the
behaviors of the environment make 𝑔𝑑 hold. For 𝑃 = 𝑅(𝑣, 𝑣̇) until 𝑔𝑑 ∨ 𝑔𝑐, we have:
R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 11 of 23
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• 𝐿𝑜𝑐 = 𝐿𝑜𝑐 ∪ {𝑒𝑣𝑜𝑙𝑣𝑒, 𝑖𝑚, 𝑡𝑒𝑟𝑚}

• 𝐸𝑑𝑔 = 𝐸𝑑𝑔 ∪ {(𝑖𝑛𝑖𝑡, 𝜏, 𝑔𝑑, , 𝑡𝑒𝑟𝑚)} ∪ {(𝑖𝑛𝑖𝑡, 𝜏, 𝑔𝑐, , 𝑡𝑒𝑟𝑚)} ∪ {(𝑖𝑛𝑖𝑡, 𝜏,¬𝑔𝑑&¬𝑔𝑐, , 𝑒𝑣𝑜𝑙𝑣𝑒)}
∪ {(𝑒𝑣𝑜𝑙𝑣𝑒, 𝜏, 𝑔𝑐, 𝑡𝑒𝑟𝑡 ∶= 𝑡, 𝑡𝑒𝑟𝑚)} ∪ {(𝑒𝑣𝑜𝑙𝑣𝑒, 𝑐ℎ𝑎𝑛𝑔𝑒, , 𝑡𝑒𝑟𝑡 ∶= 𝑡, 𝑖𝑚)} ∪ {(𝑖𝑚, 𝜏,¬𝑔𝑑, , 𝑒𝑣𝑜𝑙𝑣𝑒)}
∪ {(𝑖𝑚, 𝜏, 𝑔𝑑, , 𝑡𝑒𝑟𝑚)}

• 𝐹 𝑙𝑜𝑤(𝑖𝑛𝑖𝑡) = 𝐹 𝑙𝑜𝑤(𝑖𝑚) = 𝐹 𝑙𝑜𝑤(𝑡𝑒𝑟𝑚) = {𝑡𝑒𝑟𝑡′ == 0&𝑣′ == 0}, 𝐹 𝑙𝑜𝑤(𝑒𝑣𝑜𝑙𝑣𝑒) = {𝑡𝑒𝑟𝑡′ == 0&𝑅(𝑣, 𝑣̇)}

• 𝐼𝑛𝑣(𝑖𝑛𝑖𝑡) = 𝐼𝑛𝑣(𝑖𝑚) = {𝑡𝑒𝑟𝑡 == 𝑡}, 𝐼𝑛𝑣(𝑒𝑣𝑜𝑙𝑣𝑒) = {¬𝑔𝑑&¬𝑔𝑐}

The added locations and transitions have similar meanings as those introduced before, so we omit the detailed
explanation here. When the automaton is at the 𝑒𝑣𝑜𝑙𝑣𝑒 location, it means that neither 𝑔𝑑 nor 𝑔𝑐 is satisfied.
Example 4. 𝑣̇ = 1 until 𝑥 > 1 ∨ 𝑣 ⩾ 10 is employed as an example and the corresponding model is given in Fig. 5.

If the initial state meets 𝑥 > 1 or 𝑣 ⩾ 10, the process terminates and the automaton jumps from the 𝑖𝑛𝑖𝑡 location
to the 𝑡𝑒𝑟𝑚 location. Otherwise, it implies neither 𝑔𝑑 nor 𝑔𝑐 can be triggered. Then, the automaton reaches the 𝑒𝑣𝑜𝑙𝑣𝑒
location where the continuous variable 𝑣 evolves as 𝑣̇ == 1.

During this evolution, as soon as 𝑣 ⩾ 10 is satisfied, the automaton reaches the 𝑡𝑒𝑟𝑚 location. Also, during this
period, once the environment changes the value of 𝑥, the automaton runs into the 𝑖𝑚 location and checks whether
the newly updated value of 𝑥 caters to 𝑥 > 1. The flow of waiting and triggering 𝑔𝑑 is consistent with the previous
description of @𝑔𝑑.

□

Figure 5: 𝑣̇ = 1 until 𝑥 > 1 ∨ 𝑣 ⩾ 10

4.3.4. 𝑔 ≡ 𝑔𝑑 ∧ 𝑔𝑐
In this situation, only when 𝑔𝑑 and 𝑔𝑐 are both satisfied, the relevant continuous behavior terminates. Thus, in

this condition, we also need to focus on the process itself and the environment as well. We construct the model of
𝑅(𝑣, 𝑣̇) until 𝑔𝑑 ∧ 𝑔𝑐 as below.

• 𝐿𝑜𝑐 = 𝐿𝑜𝑐 ∪ {𝑒𝑣𝑜𝑙𝑣𝑒1, 𝑒𝑣𝑜𝑙𝑣𝑒2, 𝑖𝑚, 𝑡𝑒𝑟𝑚}

• 𝐸𝑑𝑔 = 𝐸𝑑𝑔 ∪ {(𝑖𝑛𝑖𝑡, 𝜏, 𝑔𝑑&𝑔𝑐, , 𝑡𝑒𝑟𝑚)} ∪ {(𝑖𝑛𝑖𝑡, 𝜏,¬𝑔𝑑&𝑔𝑐, , 𝑒𝑣𝑜𝑙𝑣𝑒1)} ∪ {(𝑖𝑛𝑖𝑡, 𝜏,¬𝑔𝑐, , 𝑒𝑣𝑜𝑙𝑣𝑒2)}
∪ {(𝑒𝑣𝑜𝑙𝑣𝑒1, 𝑐ℎ𝑎𝑛𝑔𝑒, , 𝑡𝑒𝑟𝑡 ∶= 𝑡, 𝑖𝑚)} ∪ {(𝑒𝑣𝑜𝑙𝑣𝑒1, 𝜏,¬𝑔𝑐, , 𝑒𝑣𝑜𝑙𝑣𝑒2)} ∪ {(𝑒𝑣𝑜𝑙𝑣𝑒2, 𝜏,¬𝑔𝑑&𝑔𝑐, , 𝑒𝑣𝑜𝑙𝑣𝑒1)}
∪ {(𝑒𝑣𝑜𝑙𝑣𝑒2, 𝜏, 𝑔𝑑&𝑔𝑐, 𝑡𝑒𝑟𝑡 ∶= 𝑡, 𝑡𝑒𝑟𝑚)}∪ {(𝑒𝑣𝑜𝑙𝑣𝑒2, 𝑐ℎ𝑎𝑛𝑔𝑒, , 𝑡𝑒𝑟𝑡 ∶= 𝑡, 𝑖𝑚)}∪ {(𝑖𝑚, 𝜏,¬𝑔𝑑&𝑔𝑐, , 𝑒𝑣𝑜𝑙𝑣𝑒1)}
∪ {(𝑖𝑚, 𝜏,¬𝑔𝑐, , 𝑒𝑣𝑜𝑙𝑣𝑒2)} ∪ {(𝑖𝑚, 𝜏, 𝑔𝑑&𝑔𝑐, , 𝑡𝑒𝑟𝑚)}

• 𝐹 𝑙𝑜𝑤(𝑖𝑛𝑖𝑡) = 𝐹 𝑙𝑜𝑤(𝑖𝑚) = 𝐹 𝑙𝑜𝑤(𝑡𝑒𝑟𝑚) = {𝑡𝑒𝑟𝑡′ == 0&𝑣′ == 0}, 𝐹 𝑙𝑜𝑤(𝑒𝑣𝑜𝑙𝑣𝑒1) = 𝐹 𝑙𝑜𝑤(𝑒𝑣𝑜𝑙𝑣𝑒2) =
{𝑡𝑒𝑟𝑡′ == 0&𝑅(𝑣, 𝑣̇)}

• 𝐼𝑛𝑣(𝑖𝑛𝑖𝑡) = 𝐼𝑛𝑣(𝑖𝑚) = {𝑡𝑒𝑟𝑡 == 𝑡}, 𝐼𝑛𝑣(𝑒𝑣𝑜𝑙𝑣𝑒1) = {¬𝑔𝑑&𝑔𝑐}, 𝐼𝑛𝑣(𝑒𝑣𝑜𝑙𝑣𝑒2) = {¬𝑔𝑐}
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Since SpaceEx cannot support∨, just one evolving location fails to depict¬𝑔𝑑∨¬𝑔𝑐. Therefore, we set two evolving
locations. In these two locations, the process is evolving according to the differential relation. The difference between
these two locations is that the process enters the 𝑒𝑣𝑜𝑙𝑣𝑒1 location when 𝑔𝑐 holds but 𝑔𝑑 is not satisfied, and moves to
the 𝑒𝑣𝑜𝑙𝑣𝑒2 location if 𝑔𝑐 does not hold. Here, when the automaton arrives at the 𝑒𝑣𝑜𝑙𝑣𝑒2 location, whether 𝑔𝑑 holds
is not our concern. That is, the 𝑒𝑣𝑜𝑙𝑣𝑒2 location contains two situations, i.e., neither 𝑔𝑑 nor 𝑔𝑐 is satisfied, and 𝑔𝑑
holds but 𝑔𝑐 is unsatisfied. Considering that changes on 𝑔𝑑 from the environment need to be noticed, we introduce this
intermediate location in a similar way as before.
Example 5. More specifically, we take the process of 𝑣̇ = 1 until 𝑥 > 1 ∧ 𝑣 ⩾ 10 as an example to explain this
formalization in detail. Fig. 6 is its automaton.

Figure 6: 𝑣̇ = 1 until 𝑥 > 1 ∧ 𝑣 ⩾ 10

If the data state meets 𝑥 > 1∧𝑣 ⩾ 10 at the beginning, the automaton enters the 𝑡𝑒𝑟𝑚 location which indicates that
the evolution ends. Otherwise, the process is evolving as the differential relation specifies. We abstract the evolution
state into two locations.

If 𝑣 ⩾ 10 is satisfied at the beginning, the process moves to the 𝑒𝑣𝑜𝑙𝑣𝑒1 location where the process only needs
to wait for triggering 𝑥 > 1. During this evolution, the environment can change the value of 𝑥 and synchronize this
change via the label 𝑐ℎ𝑎𝑛𝑔𝑒. Further, the automation reaches the 𝑖𝑚 location. If 𝑣 ⩾ 10 ∧ 𝑥 > 1, the automaton jumps
to the 𝑡𝑒𝑟𝑚 location. If 𝑣 ⩾ 10 ∧ 𝑥 ⩽ 1, the automaton returns the 𝑒𝑣𝑜𝑙𝑣𝑒1 location. If 𝑣 ⩽ 10, the automaton goes
from the 𝑖𝑚 location to the 𝑒𝑣𝑜𝑙𝑣𝑒2 location.

On the other hand, if 𝑣 ⩾ 10 is unsatisfied at the beginning, the automaton moves to the 𝑒𝑣𝑜𝑙𝑣𝑒2 location. In this
location, 𝑥 > 1 can or cannot be triggered. Similarly, once the environment changes 𝑥, the automaton can move to the
𝑖𝑚 location during the period in the 𝑒𝑣𝑜𝑙𝑣𝑒2 location. Depending on the value of 𝑣, there is a shift between the 𝑒𝑣𝑜𝑙𝑣𝑒1
location and the 𝑒𝑣𝑜𝑙𝑣𝑒2 location.

□

4.4. Composition
Based on the models of discrete behaviors and continuous behaviors, we now translate the composition of the above

commands into models in SpaceEx.
4.4.1. Sequential Composition

For the sequential composition 𝑃 ;𝑄, as shown in Fig. 7(a), we can simply connect the two automata 𝑃 and 𝑄 with
a transition (𝑡𝑒𝑟𝑚𝑃 , 𝜏, , 𝑡𝑒𝑟𝑡𝑄 ∶= 𝑡, 𝑖𝑛𝑖𝑡𝑄). This transition is from 𝑃 ’s terminal location to 𝑄’s initial location, and it
assigns the current time (i.e., 𝑃 ’s terminal time) to the initial value of 𝑡𝑒𝑟𝑡𝑄 (i.e., 𝑄’s initial time). Further, we can also
combine them into one location for reduction.
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4.4.2. Conditional Construct
As for conditional construct if 𝑏 then 𝑃 else 𝑄, we need to determine whether to execute 𝑃 or 𝑄. As illustrated in

Fig. 7(b), if the Boolean condition 𝑏 is true in the current state (i.e., in the 𝑖𝑛𝑖𝑡 location), then 𝑃 is selected to execute.
Otherwise, 𝑄 is executed. We connect the 𝑖𝑛𝑖𝑡 location to the initial location of the corresponding process to be executed
(i.e., 𝑖𝑛𝑖𝑡𝑃 or 𝑖𝑛𝑖𝑡𝑄) with a transition whose guard is 𝑏 or ¬𝑏. Formally, to construct the model of conditional construct,
transitions (𝑖𝑛𝑖𝑡, 𝜏, 𝑏, , 𝑖𝑛𝑖𝑡𝑃 ) and (𝑖𝑛𝑖𝑡, 𝜏,¬𝑏, , 𝑖𝑛𝑖𝑡𝑄) are added.
4.4.3. Iteration Construct

For iteration construct while 𝑏 do 𝑃 , we present its construction in Fig. 7(c). If the Boolean condition 𝑏 is false
at the very beginning (i.e., in the 𝑖𝑛𝑖𝑡 location), the process terminates at once without executing 𝑃 . Consequently,
the automaton moves from the 𝑖𝑛𝑖𝑡 location to the 𝑡𝑒𝑟𝑚 location through the transition (𝑖𝑛𝑖𝑡, 𝜏,¬𝑏, , 𝑡𝑒𝑟𝑚). If 𝑏 is true,
with the transition (𝑖𝑛𝑖𝑡, 𝜏, 𝑏, , 𝑖𝑛𝑖𝑡𝑃 ), 𝑃 will be executed repeatedly. We accomplish the loop by adding a transition
(𝑡𝑒𝑟𝑚𝑃 , 𝜏, 𝑏, , 𝑖𝑛𝑖𝑡𝑃 ) from the 𝑡𝑒𝑟𝑚𝑃 location to the 𝑖𝑛𝑖𝑡𝑃 location. After executing 𝑃 several times, if 𝑏 is false, the
automaton can jump out of the loop and enter the 𝑡𝑒𝑟𝑚 location through the transition (𝑡𝑒𝑟𝑚𝑝, 𝜏,¬𝑏, , 𝑡𝑒𝑟𝑚).

(a) Sequential Composition (b) Conditional Construct

(c) Iteration Construct

Figure 7: Models of Compositions in SpaceEx

4.4.4. Parallel Composition
SpaceEx provides convenience for us to construct the automaton of parallel composition. As we introduced before,

network components in SpaceEx support the connection of base components in parallel. Thus, instead of formalizing
the automaton manually, we can first construct automata for parallel components (in their respective base components),
and then just connect them as a whole parallel process (in the network component) by binding the variables (i.e., shared
variables) and labels of these parallel components.
4.5. Correctness of the Translation

To explore the correctness of the translation from the processes of our language to the hybrid automata, a simulation
relation ↬ is defined, based on their operational semantics.
R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 14 of 23
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Definition 1. Simulation Relation
A simulation relation ↬ over processes of our language and the hybrid automata is a weak unidirectional simulation,
if whenever ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ ↬ (𝐴𝑃 , ⟨𝑙𝑃 , 𝑣𝑃 ⟩):

If ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷≥0
←←←←←←←←←←←←←←←←←←→ ⟨𝑃 ′, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡′⟩, then ⟨𝑙𝑃 , 𝑣𝑃 ⟩ →∗ ⟨𝑙′𝑃 , 𝑣′𝑃 ⟩ and ⟨𝑃 ′, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡′⟩ ↬ (𝐴𝑃 , ⟨𝑙′𝑃 , 𝑣′𝑃 ⟩).For data states of the process and its converted automaton, there is equivalence between them, that is, (𝜎 ⋅ 𝑛𝑜𝑤 =

𝑡) = 𝑣𝑃 and (𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡′) = 𝑣′𝑃 .
□

Here, →∗ stands for several steps of transition rules defined in the operational semantics of hybrid automata in
Section 2. Then, the definition of simulation relation can be lifted to 𝑃 ↬ 𝐴𝑃 , iff for all states 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡 in 𝑃 and
⟨𝑙𝑃 , 𝑣𝑃 ⟩ in 𝐴𝑃 , ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ ↬ (𝐴𝑃 , ⟨𝑙𝑃 , 𝑣𝑃 ⟩) is satisfied. Having defined this simulation relation, we can state
our theorem as follows.
Theorem 1. For a given process of our language 𝑃 , we have: 𝑃 ↬ 𝐴𝑃 .

PROOF. We use the structural induction to prove the above theorem, and we take the parallel composition as an
example. If 𝑃 ↬ 𝐴𝑃 and 𝑄 ↬ 𝐴𝑄, then their parallel composition 𝑃 ∥ 𝑄 and its corresponding automaton 𝐴𝑃∥𝑄should also satisfy simulation relation, i.e., 𝑃 ∥ 𝑄 ↬ 𝐴𝑃∥𝑄. For simplicity, we assume that 𝑃 is going to perform
an assignment 𝑥 ∶= 𝑒, where 𝑥 is a shared variable of 𝑃 and 𝑄. Then, we analyze the subsequent changes after this
assignment.

• For the process 𝑃 , it performs an assignment 𝑥 ∶= 𝑒:
From its operational semantics, we have: ⟨𝑃 , 𝜎 ⋅ 𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0

←←←←←←←←←←←←←←←←←←→ ⟨𝑃 ′, 𝜎′ ⋅ 𝑛𝑜𝑤 = 𝑡⟩, where 𝜎′ = 𝜎[𝑒∕𝑥].
From the translation and the operational semantics of hybrid automaton, we have: ⟨𝑙𝑃 , 𝑣⟩

𝑐ℎ𝑎𝑛𝑔𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟨𝑙′𝑃 , 𝑣′⟩, where

𝑣′ = 𝑣[𝑒∕𝑥].

• For the process 𝑄, nothing is done:
From its operational semantics, since we assume that the result of the parallel composition is done by interleaving,
so 𝑄 does nothing and the configuration keeps unchanged.
From its corresponding hybrid automaton, we have: ⟨𝑙𝑄, 𝑣⟩

𝑐ℎ𝑎𝑛𝑔𝑒 ∨ 𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟨𝑙′𝑄, 𝑣⟩. Here, if 𝑄 needs to synchronize

with 𝑃 at the current location 𝑙𝑄, the automaton will jump to the next location 𝑙′𝑄 through a transition labeled as
𝑐ℎ𝑎𝑛𝑔𝑒. Otherwise, it stays at the current location (i.e., 𝑙′𝑄 = 𝑙𝑄) with a 𝜏 transition.

• For the parallel composition 𝑃 ∥ 𝑄, it appears as doing an assignment 𝑥 ∶= 𝑒:
From its operational semantics, we have: ⟨𝑃 ∥ 𝑄, 𝜎 ⋅𝑛𝑜𝑤 = 𝑡⟩ 𝐷=0

←←←←←←←←←←←←←←←←←←→ ⟨𝑃 ′ ∥ 𝑄, 𝜎′ ⋅𝑛𝑜𝑤 = 𝑡⟩, where 𝜎′ = 𝜎[𝑒∕𝑥].
From the translation and the operational semantics of hybrid automaton, we have: ⟨(𝑙𝑃 , 𝑙𝑄), 𝑣⟩

𝑐ℎ𝑎𝑛𝑔𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←→

⟨(𝑙′𝑃 , 𝑙′𝑄), 𝑣′⟩, where 𝑣′ = 𝑣[𝑒∕𝑥].
Therefore, we have: 𝑃 ∥ 𝑄 ↬ 𝐴𝑃∥𝑄.

This theorem indicates the correctness of the translation from the processes of our language to the hybrid automata.

5. Case Study
The work closest to this paper is the work of Aman and Ciobanu, they established a relationship between rTIMO

networks and a class of timed safety automata in [45]. They provided the corresponding automata translation strategy
based on the structure of the program, and adapted the TravelShop example to perform verification in Uppaal. Their
work focuses on mobile systems that communicate through channels, while we conduct transformation and verification
for CPS with shared-variable concurrency. Based on our proposed translation strategy in Section 4, we take the process
of Autonomous Emergency Braking (AEB) as a case study to showcase the usage of our language and the proposed
translation strategy.
R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 15 of 23
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In this section, we first give an overview of the process of AEB. Then, with the guidance of the above formalization,
we construct its model in the form of automata and verify some related properties in SpaceEx. AEB is abstracted from
the real-world problem and it is easy to understand, and other programs can be transformed in the same way. In this
section, we only use AEB as an example to illustrate the applicability of our proposed approach.
5.1. Overview

Nowadays, many vehicles are equipped with AEB. AEB is used to improve vehicle safety by allowing the vehicle
to warn or apply braking directly when an emergency happens.

As illustrated in Fig. 8, we only focus on the process of braking for simplicity. We assume that the car is waiting
for the warning of 𝐴𝐸𝐵. Then, on the condition that the driver notices the warning and responds with the brake, the
car decelerates uniformly with the acceleration of −4 until the velocity 𝑣 equals to 0. Otherwise, AEB begins to brake
the car sightly and the car decelerates with the acceleration of −2. This phase of deceleration evolves until the velocity
equals to 0 or AEB increases the braking force. After two seconds of the warning, if the driver ignores the warning
message, AEB increases the braking force and brakes the car with the acceleration of −5.

Figure 8: Illustration of AEB

We describe the above simplified example using our language as below. Here, the whole system 𝑆𝑦𝑠 is the parallel
composition of 𝐶𝑙𝑜𝑐𝑘, 𝐴𝐸𝐵 and 𝐶𝑎𝑟.

𝑆𝑦𝑠 =𝑑𝑓 𝐶𝑙𝑜𝑐𝑘 ∥ 𝐴𝐸𝐵 ∥ 𝐶𝑎𝑟;
𝐶𝑙𝑜𝑐𝑘 =𝑑𝑓 𝑡̇ = 1 until 𝑓𝑎𝑙𝑠𝑒;
𝐴𝐸𝐵 =𝑑𝑓 𝑎𝑙𝑎𝑟𝑚1 ∶= 1; 𝑎𝑡 ∶= 𝑡; 𝑤̇𝑡 = 1 until 𝑡 ⩾ 𝑎𝑡 + 2;

if (𝑑𝑟𝑖𝑣𝑒𝑟 == 0) then{
𝑎𝑙𝑎𝑟𝑚2 ∶= 1;

}

𝐶𝑎𝑟 =𝑑𝑓 @(𝑎𝑙𝑎𝑟𝑚1 = 1);
if (𝑑𝑟𝑖𝑣𝑒𝑟 == 1) then{

𝑣′ == −4 until 𝑣 = 0;
}

else
�

𝑣′ = −2 until (𝑎𝑙𝑎𝑟𝑚2 = 1 ∨ 𝑣 = 0);
𝑣′ = −5 until 𝑣 = 0;

�

• 𝐶𝑙𝑜𝑐𝑘 is defined to simulate the global clock. The continuous variable 𝑡 stands for the global clock in this system.
• 𝐶𝑎𝑟 defines the behaviors of the vehicle. In this process, the continuous variable 𝑣 is the current velocity of

the car. 𝑎𝑙𝑎𝑟𝑚1 and 𝑎𝑙𝑎𝑟𝑚2 are discrete variables and represent warnings from the 𝐴𝐸𝐵. The discrete variable
𝑑𝑟𝑖𝑣𝑒𝑟 denotes whether the driver responds to the warning of 𝑎𝑙𝑎𝑟𝑚1. If 𝑑𝑟𝑖𝑣𝑒𝑟 = 1, it means that the driver is
conscious and reacts to the warning. Otherwise, it implies that the driver ignores the warning and therefore the
car will wait for the control from 𝐴𝐸𝐵.

R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 16 of 23
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• 𝐴𝐸𝐵 represents the control of autonomous braking. In this process, 𝑤𝑡 is an auxiliary variable which is used to
realize the delay operation. 𝑎𝑡 is a discrete variable defined to record when 𝐴𝐸𝐵 sounds 𝑎𝑙𝑎𝑟𝑚1. If 𝐴𝐸𝐵 makes
the warning, the corresponding alarm (i.e., 𝑎𝑙𝑎𝑟𝑚1 and 𝑎𝑙𝑎𝑟𝑚2) equals 1. Otherwise, the values of 𝑎𝑙𝑎𝑟𝑚1 and
𝑎𝑙𝑎𝑟𝑚2 are assigned to 0.

5.2. Formalization
In this subsection, we employ the above program to show how a Cyber-Physical system expressed using our

language can be transformed into automata in SpaceEx with the translation approach described previously.
5.2.1. Outline of Formalization

The overall approach to the transformation of this example in SpaceEx is from bottom to up. More concretely,
since the whole system 𝑆𝑦𝑠 is comprised of three parallel components (i.e, 𝐶𝑙𝑜𝑐𝑘, 𝐴𝐸𝐵 and 𝐶𝑎𝑟), we first formalize
these parallel components as three base components in SpaceEx and then connect them into a network component
𝑆𝑦𝑠. Furthermore, for these parallel components, we convert them to the models in SpaceEx step by step. According
to the previous introduction of formalization for basic commands, we translate these individual basic commands. Then,
under the guidance of composition in Section 4.4, we link them and form a complete model.
5.2.2. Base Component of Clock

Actually, we have mentioned the 𝐶𝑙𝑜𝑐𝑘 automaton in Section 4.1. As presented in Fig. 9, the base component
𝐶𝑙𝑜𝑐𝑘 has only one continuous variable 𝑡. 𝑡 is controlled by the 𝐶𝑙𝑜𝑐𝑘 automaton and it cannot be changed by any
other automata. 𝑡 is evolving as the flow 𝑡′ == 1 defined and we regard it as a global clock.

Figure 9: Base Component of 𝐶𝑙𝑜𝑐𝑘

5.2.3. Base Component of AEB
Fig. 10 shows the automaton of 𝐴𝐸𝐵. In this model, we set 𝑤𝑡 and 𝑎𝑡 as local variables. 𝑡, 𝑑𝑟𝑖𝑣𝑒𝑟, 𝑎𝑙𝑎𝑟𝑚1 and

𝑎𝑙𝑎𝑟𝑚2 are global variables. In addition, a local discrete variable 𝑡𝑒𝑟𝑡 is considered as an auxiliary variable (mentioned
in Section 4.1). Among these variables, 𝑤𝑡, 𝑎𝑡, 𝑎𝑙𝑎𝑟𝑚1, 𝑎𝑙𝑎𝑟𝑚2 and 𝑡𝑒𝑟𝑡 are controlled by 𝐴𝐸𝐵.

Now, we translate the process into automata in SpaceEx. The beginning of 𝐴𝐸𝐵 is two assignments, we use the 𝑖𝑛𝑖𝑡
location and the 𝑠𝑒𝑡𝐴𝑙𝑎𝑟𝑚1 location to formalize it. The transition labeled with 𝑐ℎ𝑎𝑛𝑔𝑒1 realizes the two assignments.
Here, 𝑐ℎ𝑎𝑛𝑔𝑒1 is used to synchronize 𝐴𝐸𝐵 and 𝐶𝑎𝑟, so that the change on the shared variable 𝑎𝑙𝑎𝑟𝑚1 can be observed
by the 𝐶𝑎𝑟 immediately. Next, the 𝑠𝑒𝑡𝐴𝑙𝑎𝑟𝑚1 location, the 𝑤𝑎𝑖𝑡2𝑠𝑒𝑐 location and the 𝑡𝑒𝑟𝑚𝐴𝑙𝑎𝑟𝑚1 location are modeled
to construct 𝑤̇𝑡 = 1 until 𝑡 ⩾ 𝑎𝑡+2 in a similar way as before. The process of 𝐴𝐸𝐵 ends with a conditional construct,
so two transitions (i.e., one represents the explicit 𝑖𝑓 branch and the other stands for the omitted 𝑒𝑙𝑠𝑒 branch) are added
from the 𝑡𝑒𝑟𝑚𝐴𝑙𝑎𝑟𝑚1 location to the 𝑡𝑒𝑟𝑚 location.
5.2.4. Base Component of Car

The automaton of 𝐶𝑎𝑟 is illustrated in Fig. 11. In this model, 𝑣, 𝑑𝑟𝑖𝑣𝑒𝑟, 𝑡, 𝑎𝑙𝑎𝑟𝑚1 and 𝑎𝑙𝑎𝑟𝑚2 are global variables,
and the first three are controlled variables. Similarly, 𝑡𝑒𝑟𝑡 is a local auxiliary variable and is controlled by 𝐶𝑎𝑟.

The beginning of the process 𝐶𝑎𝑟 is a discrete event guard. The 𝑖𝑛𝑖𝑡 location, the 𝑤𝑎𝑖𝑡𝐴𝑙𝑎𝑟𝑚1 location, the
𝑖𝑚𝐴𝑙𝑎𝑟𝑚1 location and the 𝑟𝑒𝑐𝐴𝑙𝑎𝑟𝑚1 location are defined to formalize this command. As introduced before, the
synchronization label 𝑐ℎ𝑎𝑛𝑔𝑒1 can inform 𝐶𝑎𝑟 of the change on the variable 𝑎𝑙𝑎𝑟𝑚1. With the label, if the environment
(i.e., 𝐴𝐸𝐵) changes the value of 𝑎𝑙𝑎𝑟𝑚1, the automaton switches from the 𝑤𝑎𝑖𝑡𝐴𝑙𝑎𝑟𝑚1 location to the 𝑖𝑚𝐴𝑙𝑎𝑟𝑚1
location.
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Figure 10: Base Component of 𝐴𝐸𝐵

Figure 11: Base Component of 𝐶𝑎𝑟

Afterwards, it is a conditional construct. Depending on whether the Boolean condition 𝑑𝑟𝑖𝑣𝑒𝑟 == 1 holds, we
define two transitions. Thus, if 𝑑𝑟𝑖𝑣𝑒𝑟 == 1, the automaton reaches the 𝑖𝑛𝑖𝑡𝐷𝑟𝑖𝑣𝑒𝑟 location. Otherwise, it enters the
𝑖𝑛𝑖𝑡𝐴𝐸𝐵 location.

If 𝑑𝑟𝑖𝑣𝑒𝑟 == 1, it indicates that the driver responds to the alarm and then the car brakes with an acceleration of
−4 until its velocity drops to 0. It is a statement with the form of 𝑅(𝑣, 𝑣̇) until 𝑔𝑐, so we use the 𝑖𝑛𝑖𝑡𝐷𝑟𝑖𝑣𝑒𝑟 location,
the 𝑒𝑣𝑜𝑙𝑣𝑒𝐵𝑟𝑎𝑘𝑖𝑛𝑔1 location and the 𝑡𝑒𝑟𝑚 location to depict this behavior.

On the contrary, if 𝑑𝑟𝑖𝑣𝑒𝑟 == 0, the AEB will adopt measures. The car moves with an acceleration of −2 until
its velocity becomes 0 or the 𝐴𝐸𝐵 sounds 𝑎𝑙𝑎𝑟𝑚2. Four locations are applied to portray this behavior, including the
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𝑖𝑛𝑖𝑡𝐴𝐸𝐵 location, the 𝑒𝑣𝑜𝑙𝑣𝑒𝐵𝑟𝑎𝑘𝑖𝑛𝑔2 location, the 𝑖𝑚𝐴𝑙𝑎𝑟𝑚2 location and the 𝑡𝑒𝑟𝑚𝐵𝑟𝑎𝑘𝑖𝑛𝑔2 location. Here, 𝐶𝑎𝑟
synchronizes with 𝐴𝐸𝐵 through the synchronization label 𝑐ℎ𝑎𝑛𝑔𝑒2. After reaching the 𝑡𝑒𝑟𝑚𝐵𝑟𝑎𝑘𝑖𝑛𝑔2 location, the
acceleration of the car becomes −5 until its velocity equals 0. In addition to this location, the 𝑒𝑣𝑜𝑙𝑣𝑒𝐵𝑟𝑎𝑘𝑖𝑛𝑔3 location
and the 𝑡𝑒𝑟𝑚 location are used to formalize this behavior.
5.2.5. Network Component of Sys

After constructing the above parallel components (i.e., 𝐶𝑙𝑜𝑐𝑘, 𝐴𝐸𝐵 and 𝐶𝑎𝑟), we give the parallel composition
of them. Fig. 12 is a network component for the system. It contains three base components and we connect them via
their variables and labels.

Figure 12: Network Component of 𝑆𝑦𝑠

5.3. Verification
In this subsection, we employ the model checker of SpaceEx to verify several properties of the model constructed

above.
5.3.1. Setting

We now perform verification using SpaceEx. We simulate two scenarios (i.e., 𝑑𝑟𝑖𝑣𝑒𝑟 = 1 and 𝑑𝑟𝑖𝑣𝑒𝑟 = 0) to check
three properties (i.e., Termination, VelocityLimit and Evolve). In this paper, we adopt PHAVer [12] as the verification
scenario and we need to manually set the initial states and forbidden states.

Scenario 1 depicts that the driver pays attention to the warning, and Scenario 2 stands for the condition where 𝐴𝐸𝐵
starts automatic braking when the driver ignores the warning. We set the initial states of the two scenarios as below.

• Scenario 1:
𝑡 == 0 & 𝑤𝑡 == 0 & 𝑎𝑡 == 0 & 𝐴𝐸𝐵_1.𝑡𝑒𝑟𝑡 == 0 & 𝑎𝑙𝑎𝑟𝑚1 == 0 & 𝑎𝑙𝑎𝑟𝑚2 == 0 & 𝑑𝑟𝑖𝑣𝑒𝑟 == 1
& 𝐶𝑎𝑟_1.𝑡𝑒𝑟𝑡 == 0 & 𝑣 == 20 & 𝑙𝑜𝑐(𝐴𝐸𝐵_1) == 𝑖𝑛𝑖𝑡 & 𝑙𝑜𝑐(𝐶𝑎𝑟_1) == 𝑖𝑛𝑖𝑡

• Scenario 2:
𝑡 == 0 & 𝑤𝑡 == 0 & 𝑎𝑡 == 0 & 𝐴𝐸𝐵_1.𝑡𝑒𝑟𝑡 == 0 & 𝑎𝑙𝑎𝑟𝑚1 == 0 & 𝑎𝑙𝑎𝑟𝑚2 == 0 & 𝑑𝑟𝑖𝑣𝑒𝑟 == 0
& 𝐶𝑎𝑟_1.𝑡𝑒𝑟𝑡 == 0 & 𝑣 == 20 & 𝑙𝑜𝑐(𝐴𝐸𝐵_1) == 𝑖𝑛𝑖𝑡 & 𝑙𝑜𝑐(𝐶𝑎𝑟_1) == 𝑖𝑛𝑖𝑡

We perform verification for two safety properties (i.e., Property 1 and Property 2) and one reachability property
(i.e., Property 3) using SpaceEx.

• Property 1 is Termination; when the car reaches the 𝑡𝑒𝑟𝑚 location, its velocity must be 0. We set the forbidden
states as 𝑙𝑜𝑐(𝐶𝑎𝑟1) == 𝑡𝑒𝑟𝑚 & 𝑣 > 0.

• Property 2 is VelocityLimit; the velocity must always be in the range 0 to 20. The forbidden states of this property
are defined as 𝑣 < 0 | 𝑣 > 20.

• Property 3 is Evolve; we define this property to show the evolution of velocity.
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Table 3
Verification Results

Property Format Results in Scenario1 Results in Scenario2

1:Termination Text(txt) { } { }

2:VelocityLimit Text(txt) { } { }

3:Evolve 2D(gen)

5.3.2. Verification Results
The conducted verification has yielded several positive outcomes, which are detailed in Table 3.
• Property 1 and Property 2 return the verification result {}. It indicates that the system meets the properties of

Termination and VelocityLimit, as forbidden states are not reachable.
• Verification results of Property 3 are 2D graph outputs of SpaceEx. The returned two figures display the evolution

of the velocity 𝑣 over time 𝑡 and they meet our expectations.
This case study showcases the use of our language and the practicality of our transformation. The proposed

transformation strategy allows the utilization of SpaceEx’s model checking abilities to verify the properties of CPS
described in our language. Meanwhile, the verification carried out on the case study of AEB also validates our proposed
operational semantics.

6. Conclusion and Future Work
In [4], we elaborated the language suitable for modeling Cyber-Physical systems, based on the previous work [3].

In this paper, we presented its operational semantics by extending the classical configuration of transitions. Then, we
established a bridge between our language and hybrid automata through a translation, enabling the verification of CPS
specified with our language using SpaceEx. Finally, we demonstrated the practicality of our approach by showcasing its
use in modeling and verifying Autonomous Emergency Braking (AEB) which is abstracted from a real-world scenario.

From the theoretical view, since we proposed the algebraic and denotational semantics of this language in our
previous work [4], we will apply the Unifying Theories of Programming (UTP) approach [5] to investigate the link
among operational semantics, denotational semantics and algebraic semantics of this language. From the practical
view, the automatic translation of our language to models in SpaceEx will be explored, so that more complex CPS can
be transformed and verified in a more convenient and automated way. In addition, we also plan to extend our language
to support more features relevant to CPS, such as probabilistic behavior.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Data availability

R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 20 of 23



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Translating and Verifying CPS with Shared-Variable Concurrency in SpaceEx

Not applicable.
Acknowledgments

This work was partially supported by the National Key Research and Development Program of China (No. 2022
YFB3305102), the National Natural Science Foundation of China (Grant No. 62032024), the "Digital Silk Road"
Shanghai International Joint Lab of Trustworthy Intelligent Software (No. 22510750100), Shanghai Trusted Industry
Internet Software Collaborative Innovation Center, and the Dean’s Fund of Shanghai Key Laboratory of Trustworthy
Computing (East China Normal University).

References
[1] Ruggero Lanotte, Massimo Merro, and Simone Tini. A probabilistic calculus of cyber-physical systems. Inf.

Comput., 279:104618, 2021.
[2] Lei Bu, Jiawan Wang, Yuming Wu, and Xuandong Li. From bounded reachability analysis of linear hybrid

automata to verification of industrial CPS and IoT. In SETSS, volume 12154 of Lecture Notes in Computer
Science, pages 10–43. Springer, 2019.

[3] Richard Banach and Huibiao Zhu. Language evolution and healthiness for critical cyber-physical systems. J.
Softw. Evol. Process., 33(9), 2021.

[4] Ran Li, Huibiao Zhu, and Richard Banach. Denotational and algebraic semantics for cyber-physical systems. In
ICECCS, pages 123–132. IEEE, 2022.

[5] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice Hall, Englewood Cliffs, 1998.
[6] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580, 1969.
[7] Ran Li, Huibiao Zhu, and Richard Banach. A proof system for cyber-physical systems with shared-variable

concurrency. In ICFEM, volume 13478 of Lecture Notes in Computer Science, pages 244–262. Springer, 2022.
[8] Ran Li, Huibiao Zhu, and Richard Banach. Translating CPS with shared-variable concurrency in spaceex. In

SETTA, volume 13649 of Lecture Notes in Computer Science, pages 127–133. Springer, 2022.
[9] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado,

Antoine Girard, Thao Dang, and Oded Maler. Spaceex: Scalable verification of hybrid systems. In CAV, volume
6806 of Lecture Notes in Computer Science, pages 379–395. Springer, 2011.

[10] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin Ho, Xavier Nicollin,
Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic analysis of hybrid systems. Theor. Comput.
Sci., 138(1):3–34, 1995.

[11] Sanghyun Yoon and Junbeom Yoo. Formal verification of ECML hybrid models with spaceex. Inf. Softw.
Technol., 92:121–144, 2017.

[12] Goran Frehse. Phaver: algorithmic verification of hybrid systems past hytech. Int. J. Softw. Tools Technol. Transf.,
10(3):263–279, 2008.

[13] Goran Frehse, Rajat Kateja, and Colas Le Guernic. Flowpipe approximation and clustering in space-time. In
HSCC, pages 203–212. ACM, 2013.

[14] Thomas A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292. IEEE Computer Society, 1996.
[15] Chaochen Zhou, Ji Wang, and Anders P. Ravn. A formal description of hybrid systems. In Hybrid Systems,

volume 1066 of Lecture Notes in Computer Science, pages 511–530. Springer, 1995.
[16] Dimitar P. Guelev, Shuling Wang, and Naijun Zhan. Compositional hoare-style reasoning about hybrid CSP in

the duration calculus. In SETTA, volume 10606 of Lecture Notes in Computer Science, pages 110–127. Springer,
2017.

R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 21 of 23



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Translating and Verifying CPS with Shared-Variable Concurrency in SpaceEx

[17] Xiong Xu, Jean-Pierre Talpin, Shuling Wang, Bohua Zhan, and Naijun Zhan. Semantics foundation for cyber-
physical systems using higher-order UTP. ACM Trans. Softw. Eng. Methodol., 32(1):9:1–9:48, 2023.

[18] Shuling Wang, Flemming Nielson, Hanne Riis Nielson, and Naijun Zhan. Modelling and verifying communica-
tion failure of hybrid systems in HCSP. Comput. J., 60(8):1111–1130, 2017.

[19] Xiong Xu, Shuling Wang, Bohua Zhan, Xiangyu Jin, Jean-Pierre Talpin, and Naijun Zhan. Unified graphical
co-modeling, analysis and verification of cyber-physical systems by combining AADL and simulink/stateflow.
Theor. Comput. Sci., 903:1–25, 2022.

[20] Gaogao Yan, Li Jiao, Shuling Wang, Lingtai Wang, and Naijun Zhan. Automatically generating SystemC code
from HCSP formal models. ACM Trans. Softw. Eng. Methodol., 29(1):4:1–4:39, 2020.

[21] Jifeng He and Qin Li. A hybrid relational modelling language. In Concurrency, Security, and Puzzles, volume
10160 of Lecture Notes in Computer Science, pages 124–143. Springer, 2017.

[22] Pieter J. L. Cuijpers and Michel A. Reniers. Hybrid process algebra. J. Log. Algebraic Methods Program.,
62(2):191–245, 2005.

[23] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reason., 41(2):143–189, 2008.
[24] André Platzer. Correction to: Differential dynamic logic for hybrid systems. J. Autom. Reason., 66(1):173, 2022.
[25] André Platzer. Differential logic for reasoning about hybrid systems. In HSCC, volume 4416 of Lecture Notes in

Computer Science, pages 746–749. Springer, 2007.
[26] Simon Lunel, Stefan Mitsch, Benoît Boyer, and Jean-Pierre Talpin. Parallel composition and modular verification

of computer controlled systems in differential dynamic logic. In FM, volume 11800 of Lecture Notes in Computer
Science, pages 354–370. Springer, 2019.

[27] Timm Liebrenz, Paula Herber, and Sabine Glesner. Deductive verification of hybrid control systems modeled
in simulink with keymaera X. In ICFEM, volume 11232 of Lecture Notes in Computer Science, pages 89–105.
Springer, 2018.

[28] Jan-David Quesel, Stefan Mitsch, Sarah M. Loos, Nikos Aréchiga, and André Platzer. Correction to: How
to model and prove hybrid systems with keymaera: a tutorial on safety. Int. J. Softw. Tools Technol. Transf.,
23(5):827, 2021.

[29] Ana Cavalcanti, Andy J. Wellings, and Jim Woodcock. The safety-critical java memory model formalised. Formal
Aspects Comput., 25(1):37–57, 2013.

[30] Ling Shi, Yongxin Zhao, Yang Liu, Jun Sun, Jin Song Dong, and Shengchao Qin. A UTP semantics for
communicating processes with shared variables and its formal encoding in PVS. Formal Aspects Comput.,
30(3-4):351–380, 2018.

[31] Feng Sheng, Huibiao Zhu, Jifeng He, Zongyuan Yang, and Jonathan P. Bowen. Theoretical and practical aspects
of linking operational and algebraic semantics for MDESL. ACM Trans. Softw. Eng. Methodol., 28(3):14:1–14:46,
2019.

[32] Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebraic Methods Program., 60-
61:17–139, 2004.

[33] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT
Press, 1977.

[34] C. A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W. Sanders, Ib Holm Sørensen,
J. Michael Spivey, and Bernard Sufrin. Laws of programming. Commun. ACM, 30(8):672–686, 1987.

R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 22 of 23



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Translating and Verifying CPS with Shared-Variable Concurrency in SpaceEx

[35] Yuming Wu, Lei Bu, Jiawan Wang, Xinyue Ren, Wen Xiong, and Xuandong Li. Mixed semantics guided layered
bounded reachability analysis of compositional linear hybrid automata. In VMCAI, volume 13182 of Lecture
Notes in Computer Science, pages 473–495. Springer, 2022.

[36] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge University Press,
2010.

[37] Richard Banach, Michael J. Butler, Shengchao Qin, Nitika Verma, and Huibiao Zhu. Core hybrid event-b I: single
hybrid event-b machines. Sci. Comput. Program., 105:92–123, 2015.

[38] Richard Banach, Michael J. Butler, Shengchao Qin, and Huibiao Zhu. Core hybrid event-b II: multiple
cooperating hybrid event-b machines. Sci. Comput. Program., 139:1–35, 2017.

[39] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. Keymaera X: an axiomatic
tactical theorem prover for hybrid systems. In CADE, volume 9195 of Lecture Notes in Computer Science, pages
527–538. Springer, 2015.

[40] Jan-David Quesel, Stefan Mitsch, Sarah M. Loos, Nikos Aréchiga, and André Platzer. How to model and prove
hybrid systems with keymaera: a tutorial on safety. Int. J. Softw. Tools Technol. Transf., 18(1):67–91, 2016.

[41] Phillip James, Andrew Lawrence, Markus Roggenbach, and Monika Seisenberger. Towards safety analysis
of ERTMS/ETCS level 2 in real-time maude. In FTSCS, volume 596 of Communications in Computer and
Information Science, pages 103–120. Springer, 2015.

[42] Ulrich Berger, Phillip James, Andrew Lawrence, Markus Roggenbach, and Monika Seisenberger. Verification of
the european rail traffic management system in real-time maude. Sci. Comput. Program., 154:61–88, 2018.

[43] Huixing Fang, Jianqi Shi, Huibiao Zhu, Jian Guo, Kim Guldstrand Larsen, and Alexandre David. Formal
verification and simulation for platform screen doors and collision avoidance in subway control systems. Int.
J. Softw. Tools Technol. Transf., 16(4):339–361, 2014.

[44] Stefano Minopoli and Goran Frehse. SL2SX translator: From simulink to spaceex models. In HSCC, pages
93–98. ACM, 2016.

[45] Bogdan Aman and Gabriel Ciobanu. Real-time migration properties of rtimo verified in uppaal. In SEFM,
volume 8137 of Lecture Notes in Computer Science, pages 31–45. Springer, 2013.

R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 23 of 23


