5,407 research outputs found

    Formalizing Termination Proofs under Polynomial Quasi-interpretations

    Full text link
    Usual termination proofs for a functional program require to check all the possible reduction paths. Due to an exponential gap between the height and size of such the reduction tree, no naive formalization of termination proofs yields a connection to the polynomial complexity of the given program. We solve this problem employing the notion of minimal function graph, a set of pairs of a term and its normal form, which is defined as the least fixed point of a monotone operator. We show that termination proofs for programs reducing under lexicographic path orders (LPOs for short) and polynomially quasi-interpretable can be optimally performed in a weak fragment of Peano arithmetic. This yields an alternative proof of the fact that every function computed by an LPO-terminating, polynomially quasi-interpretable program is computable in polynomial space. The formalization is indeed optimal since every polynomial-space computable function can be computed by such a program. The crucial observation is that inductive definitions of minimal function graphs under LPO-terminating programs can be approximated with transfinite induction along LPOs.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Synthesis of sup-interpretations: a survey

    Get PDF
    In this paper, we survey the complexity of distinct methods that allow the programmer to synthesize a sup-interpretation, a function providing an upper- bound on the size of the output values computed by a program. It consists in a static space analysis tool without consideration of the time consumption. Although clearly related, sup-interpretation is independent from termination since it only provides an upper bound on the terminating computations. First, we study some undecidable properties of sup-interpretations from a theoretical point of view. Next, we fix term rewriting systems as our computational model and we show that a sup-interpretation can be obtained through the use of a well-known termination technique, the polynomial interpretations. The drawback is that such a method only applies to total functions (strongly normalizing programs). To overcome this problem we also study sup-interpretations through the notion of quasi-interpretation. Quasi-interpretations also suffer from a drawback that lies in the subterm property. This property drastically restricts the shape of the considered functions. Again we overcome this problem by introducing a new notion of interpretations mainly based on the dependency pairs method. We study the decidability and complexity of the sup-interpretation synthesis problem for all these three tools over sets of polynomials. Finally, we take benefit of some previous works on termination and runtime complexity to infer sup-interpretations.Comment: (2012

    Resource Control for Synchronous Cooperative Threads

    Get PDF
    We develop new methods to statically bound the resources needed for the execution of systems of concurrent, interactive threads. Our study is concerned with a \emph{synchronous} model of interaction based on cooperative threads whose execution proceeds in synchronous rounds called instants. Our contribution is a system of compositional static analyses to guarantee that each instant terminates and to bound the size of the values computed by the system as a function of the size of its parameters at the beginning of the instant. Our method generalises an approach designed for first-order functional languages that relies on a combination of standard termination techniques for term rewriting systems and an analysis of the size of the computed values based on the notion of quasi-interpretation. We show that these two methods can be combined to obtain an explicit polynomial bound on the resources needed for the execution of the system during an instant. As a second contribution, we introduce a virtual machine and a related bytecode thus producing a precise description of the resources needed for the execution of a system. In this context, we present a suitable control flow analysis that allows to formulte the static analyses for resource control at byte code level

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    Feasible reactivity in a synchronous pi-calculus

    Get PDF
    Reactivity is an essential property of a synchronous program. Informally, it guarantees that at each instant the program fed with an input will `react' producing an output. In the present work, we consider a refined property that we call ` feasible reactivity'. Beyond reactivity, this property guarantees that at each instant both the size of the program and its reaction time are bounded by a polynomial in the size of the parameters at the beginning of the computation and the size of the largest input. We propose a method to annotate programs and we develop related static analysis techniques that guarantee feasible reactivity for programs expressed in the S-pi-calculus. The latter is a synchronous version of the pi-calculus based on the SL synchronous programming model

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools

    Polynomial Size Analysis of First-Order Shapely Functions

    Get PDF
    We present a size-aware type system for first-order shapely function definitions. Here, a function definition is called shapely when the size of the result is determined exactly by a polynomial in the sizes of the arguments. Examples of shapely function definitions may be implementations of matrix multiplication and the Cartesian product of two lists. The type system is proved to be sound w.r.t. the operational semantics of the language. The type checking problem is shown to be undecidable in general. We define a natural syntactic restriction such that the type checking becomes decidable, even though size polynomials are not necessarily linear or monotonic. Furthermore, we have shown that the type-inference problem is at least semi-decidable (under this restriction). We have implemented a procedure that combines run-time testing and type-checking to automatically obtain size dependencies. It terminates on total typable function definitions.Comment: 35 pages, 1 figur
    corecore