248 research outputs found

    All functions g:N-->N which have a single-fold Diophantine representation are dominated by a limit-computable function f:N\{0}-->N which is implemented in MuPAD and whose computability is an open problem

    Full text link
    Let E_n={x_k=1, x_i+x_j=x_k, x_i \cdot x_j=x_k: i,j,k \in {1,...,n}}. For any integer n \geq 2214, we define a system T \subseteq E_n which has a unique integer solution (a_1,...,a_n). We prove that the numbers a_1,...,a_n are positive and max(a_1,...,a_n)>2^(2^n). For a positive integer n, let f(n) denote the smallest non-negative integer b such that for each system S \subseteq E_n with a unique solution in non-negative integers x_1,...,x_n, this solution belongs to [0,b]^n. We prove that if a function g:N-->N has a single-fold Diophantine representation, then f dominates g. We present a MuPAD code which takes as input a positive integer n, performs an infinite loop, returns a non-negative integer on each iteration, and returns f(n) on each sufficiently high iteration.Comment: 17 pages, Theorem 3 added. arXiv admin note: substantial text overlap with arXiv:1309.2605. text overlap with arXiv:1404.5975, arXiv:1310.536

    Existential arithmetization of Diophantine equations

    Get PDF
    AbstractA new method of coding Diophantine equations is introduced. This method allows (i) checking that a coded sequence of natural numbers is a solution of a coded equation without decoding; (ii) defining by a purely existential formula, the code of an equation equivalent to a system of indefinitely many copies of an equation represented by its code.The new method leads to a much simpler construction of a universal Diophantine equation and to the existential arithmetization of Turing machines, register machines, and partial recursive functions

    Finding All Solutions of Equations in Free Groups and Monoids with Involution

    Full text link
    The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups as well as the set of all solutions of equations in free monoids with involution in the presence of rational constraints. This became possible due to the recently invented emph{recompression} technique of the second author. He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is general enough to accommodate both extensions. In the end, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7 - 11, 201
    • …
    corecore