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Abstract

We develop new methods to statically bound the resources needed for the exe-
cution of systems of concurrent, interactive threads. Our study is concerned with
a synchronous model of interaction based on cooperative threads whose execution
proceeds in synchronous rounds called instants. Our contribution is a system of com-
positional static analyses to guarantee that each instant terminates and to bound the
size of the values computed by the system as a function of the size of its parameters
at the beginning of the instant.
Our method generalises an approach designed for first-order functional languages
that relies on a combination of standard termination techniques for term rewriting
systems and an analysis of the size of the computed values based on the notion of
quasi-interpretation. We show that these two methods can be combined to obtain an
explicit polynomial bound on the resources needed for the execution of the system
during an instant.
As a second contribution, we introduce a virtual machine and a related bytecode thus
producing a precise description of the resources needed for the execution of a system.
In this context, we present a suitable control flow analysis that allows to formulate
the static analyses for resource control at byte code level.

1 Introduction

The problem of bounding the usage made by programs of their resources has already
attracted considerable attention. Automatic extraction of resource bounds has mainly fo-
cused on (first-order) functional languages starting from Cobham’s characterisation [18]
of polynomial time functions by bounded recursion on notation. Following work, see e.g.
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[8, 19, 21, 23], has developed various inference techniques that allow for efficient analyses
while capturing a sufficiently large range of practical algorithms.
Previous work [10, 24] has shown that polynomial time or space bounds can be obtained by
combining traditional termination techniques for term rewriting systems with an analysis
of the size of computed values based on the notion of quasi-interpretation. Thus, in a
nutshell, resource control relies on termination and bounds on data size.
This approach to resource control should be contrasted with traditional worst case exe-
cution time technology (see, e.g., [30]): the bounds are less precise but they apply to a
larger class of algorithms and are functional in the size of the input, which seems more
appropriate in the context of the applications we have in mind (see below). In another
direction, one may compare the approach with the one based on linear logic (see, e.g., [7]):
while in principle the linear logic approach supports higher-order functions, it does not
offer yet a user-friendly programming language.
In [3, 4], we have considered the problem of automatically inferring quasi-interpretations
in the space of multi-variate max-plus polynomials. In [1], we have presented a virtual
machine and a corresponding bytecode for a first-order functional language and shown
how size and termination annotations can be formulated and verified at the level of the
bytecode. In particular, we can derive from the verification an explicit polynomial bound
on the space required to execute a given bytecode.
In this work, we aim at extending and adapting these results to a concurrent framework.
As a starting point, we choose a basic model of parallel threads interacting on shared
variables. The kind of concurrency we consider is a cooperative one. This means that by
default a running thread cannot be preempted unless it explicitly decides to return the con-
trol to the scheduler. In preemptive threads, the opposite hypothesis is made: by default
a running thread can be preempted at any point unless it explicitly requires that a series
of actions is atomic. We refer to, e.g., [28] for an extended comparison of the cooperative
and preemptive models. Our viewpoint is pragmatic: the cooperative model is closer to
the sequential one and many applications are easier to program in the cooperative model
than in the preemptive one. Thus, as a first step, it makes sense to develop a resource
control analysis for the cooperative model.
The second major design choice is to assume that the computation is regulated by a notion
of instant. An instant lasts as long as a thread can make some progress in the current
instant. In other terms, an instant ends when the scheduler realizes that all threads are
either stopped, or waiting for the next instant, or waiting for a value that no thread can
produce in the current instant. Because of this notion of instant, we regard our model
as synchronous. Because the model includes a logical notion of time, it is possible for a
thread to react to the absence of an event.
The reaction to the absence of an event is typical of synchronous languages such as Es-

terel [9]. Boussinot et al. have proposed a weaker version of this feature where the
reaction to the absence happens in the following instant [13] and they have implemented
it in various programming environments based on C, Java, and Scheme [31]. Applica-
tions suited to this programming style include: event-driven applications, graphical user
interfaces, simulations (e.g. N -bodies problem, cellular automata, ad hoc networks), web
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services, multiplayer online games, . . . Boussinot et al. have also advocated the relevance
of this concept for the programming of mobile code and demonstrated that the possibility
for a ‘synchronous’ mobile agent to react to the absence of an event is an added factor
of flexibility for programs designed for open distributed systems, whose behaviours are
inherently difficult to predict. These applications rely on data structure such as lists and
trees whose size needs to be controlled.
Recently, Boudol [12] has proposed a formalisation of this programming model. Our anal-
ysis will essentially focus on a small fragment of this model without higher-order functions,
and where the creation of fresh memory cells (registers) and the spawning of new threads
is only allowed at the very beginning of an instant. We believe that what is left is still ex-
pressive and challenging enough as far as resource control is concerned. Our analysis goes
in three main steps. A first step is to guarantee that each instant terminates (Section 3.1).
A second step is to bound the size of the computed values as a function of the size of the
parameters at the beginning of the instant (Section 3.2). A third step, is to combine the
termination and size analyses. Here we show how to obtain polynomial bounds on the
space and time needed for the execution of the system during an instant as a function of
the size of the parameters at the beginning of the instant (Section 3.3).
A characteristic of our static analyses is that to a great extent they make abstraction of
the memory and the scheduler. This means that each thread can be analysed separately,
that the complexity of the analyses grows linearly in the number of threads, and that an
incremental analysis of a dynamically changing system of threads is possible. Preliminary
to these analyses, is a control flow analysis (Section 2.1) that guarantees that each thread
performs each read instruction (in its body code) at most once in an instant. This con-
dition is instrumental to resource control. In particular, it allows to regard behaviours as
functions of their initial parameters and the registers they may read in the instant. Taking
this functional viewpoint, we are able to adapt the main techniques developed for proving
termination and size bounds in the first-order functional setting.
We point out that our static size analyses are not intended to predict the size of the sys-
tem after arbitrarily many instants. This is a harder problem which in general requires
an understanding of the global behaviour of the system and/or stronger restrictions on the
programs we can write. For the language studied in this paper, we advocate a combination
of our static analyses with a dynamic controller that at the end of each instant checks the
size of the parameters of the system and may decide to stop some threads taking too much
space.
Along the way and in appendix A, we provide a number of programming examples il-
lustrating how certain synchronous and/or concurrent programming paradigms can be
represented in our model. These examples suggest that the constraints imposed by the
static analyses are not too severe and that their verification can be automated.
As a second contribution, we describe a virtual machine and the related bytecode for our
programming model (Section 4). This provides a more precise description of the resources
needed for the execution of the systems we consider and opens the way to the verification
of resource bounds at the bytecode level, following the ‘typed assembly language’ approach
adopted in [1] for the purely functional fragment of the language. More precisely, we de-
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scribe a control flow analysis that allows to recover the conditions for termination and size
bounds at bytecode level and we show that the control flow analysis is sufficiently liberal
to accept the code generated by a rather standard compilation function.
Proofs are available in appendix B.

2 A Model of Synchronous Cooperative Threads

A system of synchronous cooperative threads is described by (1) a list of mutually recursive
type and constructor definitions and (2) a list of mutually recursive function and behaviour
definitions relying on pattern matching. In this respect, the resulting programming lan-
guage is reminiscent of Erlang [5], which is a practical language to develop concurrent
applications. The set of instructions a behaviour can execute is rather minimal. Indeed,
our language can be regarded as an intermediate code where, for instance, general pattern-
matching has been compiled into a nesting of if then else constructs and complex control
structures have been compiled into a simple tail-recursive form.

Types We denote type names with t, t′, . . . and constructors with c, c′, . . . We will also
denote with r, r′, . . . constructors of arity 0 and of ‘reference’ type (see equation of kind (2)
below) and we will refer to them as registers (thus registers are constructors). The values
v, v′, . . . computed by programs are first order terms built out of constructors. Types and
constructors are declared via recursive equations that may be of two kinds:

(1) t = . . . | c of t1, . . . , tn | . . .
(2) t = Ref (t′) with . . . | r = v | . . .

In (1) we declare a type t with a constructor c of functional type (t1, . . . , tn) → t. In (2)
we declare a type t of registers referencing values of type t′ and a register r with initial
value v. As usual, type definitions can be mutually recursive (functional and reference
types can be intermingled) and it is assumed that all types and constructors are declared
exactly once. This means that we can associate a unique type with every constructor
and that with respect to this association we can say when a value is well-typed. For
instance, we may define the type nat of natural numbers in unary format by the equation
nat = z || s of nat and the type llist of linked lists of natural numbers by the equations
nlist = nil || consof (nat , llist) and llist = Ref (nlist)with r = cons(z, r). The last definition
declares a register r of type llist with initial value the infinite (cyclic) list containing only
z’s.
Finally, we have a special behaviour type, beh. Elements of type beh do not return a value
but produce side effects. We denote with β either a regular type or beh.

Expressions We let x, y, . . . denote variables ranging over values. The size |v| of a value
v is defined by |c| = 0 and |c(v1, . . . , vn)| = 1 + |v1| + · · · + |vn|. In the following, we
will use the vectorial notation a to denote either a vector a1, . . . , an or a sequence a1 · · ·an
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of elements. We use σ, σ′, . . . to denote a substitution [v/x], where v and x have the
same length. A pattern p is a well-typed term built out of constructors and variables. In
particular, a shallow linear pattern p is a pattern c(x1, . . . , xn), where c is a constructor of
arity n and the variables x1, . . . , xn are all distinct. Expressions, e, and expression bodies,
eb, are defined as:

e ::= x || c(e1, . . . , ek) || f(e1, . . . , en)
eb ::= e || match xwith p then eb else eb

where f is a functional symbol of type (t1, . . . , tn) → t, specified by an equation of the
kind f(x1, . . . , xn) = eb, and where p is a shallow linear pattern.
A closed expression body eb evaluates to a value v according to the following standard
rules:

(e1)
r ⇓ r

(e2)
e ⇓ v

c(e) ⇓ c(v)
(e3)

e ⇓ v, f(x) = eb, [v/x]eb ⇓ v

f(e) ⇓ v

(e4)

[v/x]eb1 ⇓ v
(

match c(v) with c(x)
then eb1 else eb2

)

⇓ v
(e5)

eb2 ⇓ v c 6= d
(

match c(v) with d(x)
then eb1 else eb2

)

⇓ v

Since registers are constructors, rule (e1) is a special case of rule (e2); we keep the rule for
clarity.

Behaviours Some function symbols may return a thread behaviour b, b′, . . . rather than
a value. In contrast to ‘pure’ expressions, a behaviour does not return a result but produces
side-effects by reading and writing registers. A behaviour may also affect the scheduling
status of the thread executing it. We denote with b, b′, . . . behaviours defined as follows:

b ::= stop || f(e) || yield .b || next .f(e) || ̺ := e.b ||
read ̺ with p1 ⇒ b1 | · · · | pn ⇒ bn | [ ] ⇒ f(e) ||
match xwith c(x) then b1 else b2

where: (i) f is a functional symbol of type t1, . . . , tn → beh, defined by an equation
f(x) = b, (ii) ̺, ̺′, . . . range over variables and registers, and (iii) p1, . . . , pn are either
shallow linear patterns or variables. We also denote with [ ] a special symbol that will be
used in the default case of read expressions (see the paragraph Scheduler below). Note
that if the pattern pi is a variable then the following branches including the default one
can never be executed.

The effect of the various instructions is informally described as follows: stop, terminates
the executing thread for ever; yield .b, halts the execution and hands over the control to
the scheduler — the control should return to the thread later in the same instant and
execution resumes with b; f(e) and next .f(e) switch to another behaviour immediately
or at the beginning of the following instant; r := e.b, evaluates the expression e, assigns
its value to r and proceeds with the evaluation of b; read r with p1 ⇒ b1 | · · · | pn ⇒ bn |
[ ] ⇒ b, waits until the value of r matches one of the patterns p1, . . . , pn (there could be no
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delay) and yields the control otherwise; if at the end of the instant the thread is always
stuck waiting for a matching value then it starts the behaviour b in the following instant;
match v with p then b1 else b2 filters the value v according to the pattern p, it never blocks
the execution. Note that if p is a pattern and v is a value there is at most one matching
substitution σ such that v = σp.

Behaviour reduction is described by the 9 rules below. A reduction (b, s)
X
→(b′, s′) means

that the behaviour b with store s runs an atomic sequence of actions till b′, producing a
store s′, and returning the control to the scheduler with status X. A status is a value in
{N, R, S, W} that represents one of the four possible state of a thread — N stands for next
(the thread will resume at the beginning of the next instant), R for run, S for stopped,
and W for wait (the thread is blocked on a read statement).

(b1)
(stop, s)

S
→ (stop, s)

(b2)
(yield .b, s)

R
→ (b, s)

(b3)
(next .f(e), s)

N
→ (f(e), s)

(b4)

([v/x]b1, s)
X
→ (b′, s′)





match c(v)
with c(x)

then b1 else b2

, s





X
→ (b′, s′)

(b5)

(b2, s)
X
→ (b′, s′), c 6= d





match c(v)
with d(x)

then b1 else b2

, s





X
→ (b′, s′)

(b6)
no pattern matches s(r)

(read r . . . , s)
W
→ (read r . . . , s)

(b7)
s(r) = σp, (σb, s)

X
→ (b′, s′)

(read r with · · · | p ⇒ b | . . . , s)
X
→ (b′, s′)

(b8)
e ⇓ v, f(x) = b, ([v/x]b, s)

X
→ (b′, s′)

(f(e), s)
X
→ (b′, s′)

(b9)
e ⇓ v, (b, s[v/r])

X
→ (b′, s′)

(r := e.b, s)
X
→ (b′, s′)

We denote with be either an expression body or a behaviour. All expressions and be-
haviours are supposed to be well-typed. As usual, all formal parameters are supposed to be
distinct. In the match xwith c(y) then be1 else be2 instruction, be1 may depend on y but
not on x while be2 may depend on x but not on y.

Systems We suppose that the execution environment consists of n threads and we asso-
ciate with every thread a distinct identity that is an index in Zn = {0, 1, . . . , n − 1}. We
let B, B′, . . . denote systems of synchronous threads, that is finite mappings from thread
indexes to pairs (behaviour, status). Each register has a type and a default value — its
value at the beginning of an instant — and we use s, s′, . . . to denote a store, an association
between registers and their values. We suppose that at the beginning of each instant the
store is so, such that each register is assigned its default value. If B is a system and i ∈ Zn

is a valid thread index then we denote with B1(i) the behaviour executed by the thread i
and with B2(i) its current status. Initially, all threads have status R, the current thread
index is 0, and B1(i) is a behaviour expression of the shape f(v) for all i ∈ Zn. System
reduction is described by a relation (B, s, i) → (B′, s′, i′): the system B with store s and
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current thread (index) i runs an atomic sequence of actions and becomes (B′, s′, i′).

(s1)
(B1(i), s)

X
→ (b′, s′), B2(i) = R, B′ = B[(b′,X)/i], N (B′, s′, i) = k

(B, s, i) → (B′[(B′
1(k), R)/k], s′, k)

(s2)
(B1(i), s)

X
→ (b′, s′), B2(i) = R, B′ = B[(b′,X)/i], N (B′, s′, i) ↑,

B′′ = U(B′, s′), N (B′′, so, 0) = k

(B, s, i) → (B′′, so, k)

Scheduler The scheduler is determined by the functions N and U . To ensure progress
of the scheduling, we assume that if N returns an index then it must be possible to run the
corresponding thread in the current instant and that if N is undefined (denoted N (. . . ) ↑)
then no thread can be run in the current instant.

If N (B, s, i) = k then B2(k) = R or ( B2(k) = W and
B1(k) = read r with · · · | p ⇒ b | . . . and some pattern
matches s(r) i.e., ∃σ σp = s(r) )

If N (B, s, i) ↑ then ∀k ∈ Zn, B2(k) ∈ {N,S} or ( B2(k) = W,
B1(k) = read r with . . . , and no pattern matches s(r) )

When no more thread can run, the instant ends and the function U performs the
following status transitions: N → R, W → R. We assume here that every thread in status
W takes the [ ] ⇒ . . . branch at the beginning of the next instant. Note that the function
N is undefined on the updated system if and only if all threads are stopped.

U(B, s)(i) =







(b, S) if B(i) = (b, S)
(b,R) if B(i) = (b,N)
(f(e), R) if B(i) = (read r with · · · | [ ] ⇒ f(e),W )

Example 1 (channels and signals) The read instruction allows to read a register sub-
ject to certain filter conditions. This is a powerful mechanism which recalls, e.g., Linda
communication [15], and that allows to encode various forms of channel and signal com-
munication.

(1) We want to represent a one place channel c carrying values of type t. We introduce
a new type ch(t) = empty | full of t and a register c of type Ref (ch(t)) with default value
empty. A thread should send a message on c only if c is empty and it should receive a
message only if c is not empty (a received message is discarded). These operations can be
modelled using the following two derived operators:

send(c, e).b =def read c with empty ⇒ c := full(e).b
receive(c, x).b =def read c with full(x) ⇒ c := empty.b

(2) We want to represent a fifo channel c carrying values of type t such that a thread
can always emit a value on c but may receive only if there is at least one message in the
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channel. We introduce a new type fch(t) = nil | cons of t, fch(t) and a register c of type
Ref (fch(t)) with default value nil. Hence a fifo channel is modelled by a register holding a
list of values. We consider two read operations — freceive to fetch the first message on the
channel and freceiveall to fetch the whole queue of messages — and we use the auxiliary
function insert to queue messages at the end of the list:

fsend(c, e).b =def read c with l ⇒ c := insert(e, l).b
freceive(c, x).b =def read c with cons(x, l) ⇒ c := l.b
freceiveall(c, x).b =def read c with cons(y, l) ⇒ c := nil.[cons(y, l)/x]b

insert(x, l) = match l with cons(y, l′) then cons(y, insert(x, l′))
else cons(x, nil)

(3) We want to represent a signal s with the typical associated primitives: emitting a signal
and blocking until a signal is present. We define a type sig = abst | prst and a register s of
type Ref (sig) with default value abst, meaning that a signal is originally absent:

emit(s).b =def s := prst.b wait(s).b =def read s with prst ⇒ b

Example 2 (cooperative fragment) The cooperative fragment of the model with no
synchrony is obtained by removing the next instruction and assuming that for all read
instructions the branch [ ] ⇒ f(e) is such that f(. . . ) = stop. Then all the interesting
computation happens in the first instant; threads still running in the second instant can
only stop. By using the representation of fifo channels presented in Example 1(2) above,
the cooperative fragment is already powerful enough to simulate, e.g., Kahn networks [20].

Next, to make possible a compositional and functional analysis for resource control, we
propose to restrict the admissible behaviours and we define a simple preliminary control
flow analysis that guarantees that this restriction is met. We then rely on this analysis to
define a symbolic representation of the states reachable by a behaviour. Finally, we extract
from this symbolic control points suitable order constraints which are instrumental to our
analyses for termination and value size limitation within an instant.

2.1 Read Once Condition

We require and statically check on the call graph of the program (see below) that threads
can perform any given read instruction at most once in an instant.

1. We assign to every read instruction in a system a distinct fresh label, y, and we
collect all these labels in an ordered sequence, y1, . . . , ym. In the following, we will
sometimes use the notation read 〈y〉 ̺ with . . . in the code of a behaviour to make
visible the label of a read instruction.

2. With every function symbol f defined by an equation f(x) = b we associate the set
L(f) of labels of read instructions occurring in b.
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3. We define a directed call graph G = (N, E) as follows: N is the set of function symbols
in the program defined by an equation f(x) = b and (f, g) ∈ E if g ∈ Call(b) where
Call(b) is the collection of function symbols in N that may be called in the current
instant and which is formally defined as follows:

Call(stop) = Call(next .g(e)) = ∅ Call(f(e)) = {f}
Call(yield .b) = Call(̺ := e.b) = Call(b)

Call(match xwith p then b1 else b2) = Call(b1) ∪ Call(b2)
Call(read ̺ with p1 ⇒ b1 | · · · | pn ⇒ bn | [ ] ⇒ b) =

⋃

i=1,...,n Call(bi)

We write fE∗g if the node g is reachable from the node f in the graph G. We denote
with R(f) the set of labels

⋃

{L(g) | fE∗g} and with yf the ordered sequence of
labels in R(f).

The definition of Call is such that for every sequence of calls in the execution of a
thread within an instant we can find a corresponding path in the call graph.

Definition 3 (read once condition) A system satisfies the read once condition if in the
call graph there are no loops that go through a node f such that L(f) 6= ∅.

Example 4 (alarm) We consider the representation of signals as in Example 1(3). We
assume two signals sig and ring. The behaviour alarm(n, m) will emit a signal on ring if
it detects that no signal is emitted on sig for m consecutive instants. The alarm delay is
reset to n if the signal sig is present.

alarm(x, y) = match y with s(y′)
then read 〈u〉 sigwith prst ⇒ next .alarm(x, x) | [ ] ⇒ alarm(x, y′)

else ring := prst.stop

Hence u is the label associated with the read instruction and L(alarm) = {u}. Since the
call graph has just one node, alarm, and no edges, the read once condition is satisfied.

To summarise, the read once condition is a checkable syntactic condition that safely
approximates the semantic property we are aiming at.

Proposition 5 If a system satisfies the read once condition then in every instant every
thread runs every read instruction at most once (but the same read instruction can be run
by several threads).

The following simple example shows that without the read once restriction, a thread
can use a register as an accumulator and produce an exponential growth of the size of the
data within an instant.
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Example 6 (exponentiation) We recall that nat = z | s of nat is the type of tally nat-
ural numbers. The function dble defined below doubles the value of its parameter so that
|dble(n)| = 2|n|. We assume r is a register of type nat with initial value s(z). Now consider
the following recursive behaviour:

dble(n) = match n with s(n′) then s(s(dble(n′))) else z

exp(n) = match n with s(n′)
then read r with m ⇒ r := dble(m).exp(n′)
else stop

The function exp does not satisfy the read once condition since the call graph has a loop
on the exp node. The evaluation of exp(n) involves |n| reads to the register r and, after
each read operation, the size of the value stored in r doubles. Hence, at end of the instant,
the register contains a value of size 2|n|.

The read once condition does not appear to be a severe limitation on the expressiveness
of a synchronous programming language. Intuitively, in most synchronous algorithms every
thread reads some bounded number of variables before performing some action. Note that
while the number of variables is bounded by a constant, the amount of information that
can be read in each variable is not. Thus, for instance, a ‘server’ thread can just read
one variable in which is stored the list of requests produced so far and then it can go on
scanning the list and replying to all the requests within the same instant.

2.2 Control Points

From a technical point of view, an important consequence of the read once condition is
that a behaviour can be described as a function of its parameters and the registers it may
read during an instant. This fact is used to associate with a system satisfying the read
once condition a finite number of control points.
A control point is a triple (f(p), be, i) where, intuitively, f is the currently called function,
p represents the patterns crossed so far in the function definition plus possibly the labels
of the read instructions that still have to be executed, be is the continuation, and i is an
integer flag in {0, 1, 2} that will be used to associate with the control point various kinds
of conditions.
If the function f returns a value and is defined by the equation f(x) = eb, then we asso-
ciate with f the set C(f,x, eb) defined as follows:

C(f,p, eb) = case eb of

e : {(f(p), eb, 0)}
(

match x with c(y)
then eb1 else eb2

)

: {(f(p), eb, 2)} ∪ C(f, [c(y)/x]p, eb1) ∪ C(f,p, eb2)

On the other hand, suppose the function f is a behaviour defined by the equation f(x) = b.
Then we generate a fresh function symbol f+ whose arity is that of f plus the size of R(f),
thus regarding the labels yf (the ordered sequence of labels in R(f)) as part of the formal
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parameters of f+. The set of control points associated with f+ is the set C(f+, (x · yf ), b)
defined as follows:
C(f+,p, b) = case b of

(C1) stop : {(f+(p), b, 2)}
(C2) g(e) : {(f+(p), b, 0)}
(C3) yield .b′ : {(f+(p), b, 2)} ∪ C(f+,p, b′)
(C4) next .g(e) : {(f+(p), b, 2), (f+(p), g(e), 2)}
(C5) ̺ := e.b′ : {(f+(p), b, 2), (f+(p), e, 1)} ∪ C(f+,p, b′)

(C6)

(

match x with c(y)
then b1 else b2

)

:
{(f+(p), b, 2)} ∪ C(f+, ([c(y)/x]p), b1)
∪ C(f+,p, b2)

(C7)

(

read 〈y〉 ̺with p1 ⇒ b1 | · · · |
pn ⇒ bn | [ ] ⇒ g(e)

)

:
{(f+(p), b, 2), (f+(p), g(e), 2)}
∪ C(f+, ([p1/y]p), b1) ∪ . . .
∪ C(f+, ([pn/y]p), bn)

By inspecting the definitions, we can check that a control point (f(p), be, i) has the
property that Var(be) ⊆ Var(p).

Definition 7 An instance of a control point (f(p), be, i) is an expression body or a be-
haviour be ′ = σ(be), where σ is a substitution mapping the free variables in be to values.

The property of being an instance of a control point is preserved by expression body
evaluation, behaviour reduction and system reduction. Thus the control points associated
with a system do provide a representation of all reachable configurations. Indeed, in
Appendix B we show that it is possible to define the evaluation and the reduction on pairs
of control points and substitutions.

Proposition 8 Suppose (B, s, i) → (B′, s′, i′) and that for all thread indexes j ∈ Zn, B1(j)
is an instance of a control point. Then for all j ∈ Zn, we have that B′

1(j) is an instance
of a control point.

In order to prove the termination of the instant and to obtain a bound on the size of
computed value, we associate order constraints with control points:

Control point Associated constraint

(f(p), e, 0) f(p) ≻0 e
(f+(p), g(e), 0) f+(p) ≻0 g+(e,yg)
(f+(p), e, 1) f+(p) ≻1 e
(f+(p), be , 2) no constraints

A program will be deemed correct if the set of constraints obtained from all the function
definitions can be satisfied in suitable structures. We say that a constraint e ≻i e′ has index
i. We rely on the constraints of index 0 to enforce termination of the instant and on those
of index 0 or 1 to enforce a bound on the size of the computed values. Note that the
constraints are on pure first order terms, a property that allows us to reuse techniques
developed in the standard term rewriting framework (cf. Section 3).
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Example 9 With reference to Example 4, we obtain the following control points:

(alarm+(x, y, u),match . . . , 2) (alarm+(x, y, u), ring := prst.stop, 2)
(alarm+(x, y, u), prst, 1) (alarm+(x, z, u), stop, 2)
(alarm+(x, s(y′), u), read . . . , 2) (alarm+(x, s(y′), u), alarm(x, y′), 2)
(alarm+(x, s(y′), prst),next .alarm(x, x), 2) (alarm+(x, s(y′), prst), alarm(x, x), 2)

The triple (alarm+(x, y, u), prst, 1) is the only control point with a flag different from 2. It
corresponds to the constraint alarm+(x, y, u) ≻1 prst, where u is the label associated with
the only read instruction in the body of alarm. We note that no constraints of index 0 are
generated and so, in this simple case, the control flow analysis can already establish the
termination of the thread and all is left to do is to check that the size of the data is under
control, which is also easily verified.

In Example 2, we have discussed a possible representation of Kahn networks in the
cooperative fragment of our model. In general Kahn networks there is no bound on the
number of messages that can be written in a fifo channel nor on the size of the messages.
Much effort has been put into the static scheduling of Kahn networks (see, e.g., [22, 16,
17]). This analysis can be regarded as a form of resource control since it guarantees that
the number of messages in fifo channels is bounded (but says nothing about their size).
The static scheduling of Kahn network is also motivated by performance issues, since it
eliminates the need to schedule threads at run time. Let us look in some detail at the
programming language Lustre, that can be regarded as a language for programming
Kahn networks that can be executed synchronously.

Example 10 (read once vs. Lustre) A Lustre network is composed of four types of
nodes: the combinatorial node, the delay node, the when node, and the merge node. Each
node may have several input streams and one output stream. The functional behaviour of
each type of node is defined by a set of recursive definitions. For instance, the node When
has one boolean input stream b — with values of type bool = false | true — and one input
stream s of values. A When node is used to output values from s whenever b is true. This
behaviour may be described by the following recursive definitions: When(false · b, x · s) =
When(b, s), When(true · b, x · s) = x ·When(b, s), and When(b, s) = ǫ otherwise. Here is a
possible representation of the When node in our model, where the input streams correspond
to one place channels b, c (cf. Example 1(1)), the output stream to a one place channel c′

and at most one element in each input stream is processed per instant.

When() = read 〈u〉 b with

full(true) ⇒ read 〈v〉 cwith full(x) ⇒ c′ := x.next .When() | [ ] ⇒ When()

| full(false) ⇒ next .When()
| [ ] ⇒ When()

While the function When has no formal parameters, we consider the function When+ with
two parameters u and v in our size and termination analyses.
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3 Resource Control

Our analysis goes in three main steps: first, we guarantee that each instant terminates
(Section 3.1), second we bound the size of the computed values as a function of the size
of the parameters at the beginning of the instant (Section 3.2), and third we combine the
termination and size analyses to obtain polynomial bounds on space and time (Section 3.3).
As we progress in our analysis, we refine the techniques we employ. Termination is reduced
to the general problem of finding a suitable well-founded order over first-order terms.
Bounding the size of the computed values is reduced to the problem of synthesizing a
quasi-interpretation. Finally, the problem of obtaining polynomial bounds is attacked
by combining recursive path ordering termination arguments with quasi-interpretations.
We selected these techniques because they are well established and they can handle a
significant spectrum of the programs we are interested in. It is to be expected that other
characterisations of complexity classes available in the literature may lead to similar results.

3.1 Termination of the Instant

We recall that a reduction order > over first-order terms is a well-founded order that is
closed under context and substitution: t > s implies C[t] > C[s] and σt > σs, where C is
any one hole context and σ is any substitution (see, e.g, [6]).

Definition 11 (termination condition) We say that a system satisfies the termination
condition if there is a reduction order > such that all constraints of index 0 associated with
the system hold in the reduction order.

In this section, we assume that the system satisfies the termination condition. As
expected this entails that the evaluation of closed expressions succeeds.

Proposition 12 Let e be a closed expression. Then there is a value v such that e ⇓ v and
e ≥ v with respect to the reduction order.

Moreover, the following proposition states that a behaviour will always return the
control to the scheduler.

Proposition 13 (progress) Let b be an instance of a control point. Then for all stores
s, there exist X, b′ and s′ such that (b, s)

X
→ (b′, s′).

Finally, we can guarantee that at each instant the system will reach a configuration in
which the scheduler detects the end of the instant and proceeds to the reinitialisation of
the store and the status (as specified by rule (s2)).

Theorem 14 (termination of the instant) All sequences of system reductions involv-
ing only rule (s1) are finite.
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Proposition 13 and Theorem 14 are proven by exhibiting a suitable well-founded mea-
sure which is based both on the reduction order and the fact that the number of reads a
thread may perform in an instant is finite.

Example 15 (monitor max value) We consider a recursive behaviour monitoring the
register i (acting as a fifo channel) and parameterised on a number x representing the
largest value read so far. At each instant, the behaviour reads the list l of natural numbers
received on i and assigns to o the greatest number in x and l.

f(x) = yield .read 〈i〉 iwith l ⇒ f1(maxl (l, x))

f1(x) = o := x.next .f(x)
max (x, y) = match xwith s(x′)

then match y with s(y′) then s(max (x′, y′)) else s(x′)
else y

maxl(l, x) = match l with cons(y, l′) then maxl (l′,max (x, y)) else x

It is easy to prove the termination of the thread by recursive path ordering, where the
function symbols are ordered as f+ > f+

1 > maxl > max, the arguments of maxl are
compared lexicographically from left to right, and the constructor symbols are incomparable
and smaller than any function symbol.

3.2 Quasi-interpretations

Our next task is to control the size of the values computed by the threads. To this end,
we propose a suitable notion of quasi-interpretation (cf. [10, 3, 4]).

Definition 16 (assignment) Given a program, an assignment q associates with construc-
tors and function symbols, functions over the non-negative reals R+ such that:

(1) If c is a constant then qc is the constant 0.

(2) If c is a constructor with arity n ≥ 1 then qc is a function in (R+)n → R+ such that
qc(x1, . . . , xn) = d + Σi∈1..nxi, for some d ≥ 1.

(3) If f is a function (name) with arity n then qf : (R+)n → R+ is monotonic and for all
i ∈ 1..n we have qf(x1, . . . , xn) ≥ xi.

An assignment q is extended to all expressions e as follows, giving a function expression
qe with variables in Var(e):

qx = x , qc(e1,...,en) = qc(qe1
, . . . , qen

) , qf(e1,...,en) = qf (qe1
, . . . , qen

) .

Here qx is the identity function and, e.g., qc(qe1
, . . . , qen

) is the functional composition of
the function qc with the functions qe1

, . . . , qen
. It is easy to check that there exists a constant

δq depending on the assignment q such that for all values v we have |v| ≤ qv ≤ δq · |v|.
Thus the quasi-interpretation of a value is always proportional to its size.
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Definition 17 (quasi-interpretation) An assignment is a quasi-interpretation, if for
all constraints associated with the system of the shape f(p) ≻i e, with i ∈ {0, 1}, the
inequality qf(p) ≥ qe holds over the non-negative reals.

Quasi-interpretations are designed so as to provide a bound on the size of the computed
values as a function of the size of the input data. In the following, we assume given a
suitable quasi-interpretation, q, for the system under investigation.

Example 18 With reference to Examples 6 and 15, the following assignment is a quasi-
interpretation (the parameter i corresponds to the label of the read instruction in the body
of f). We give no quasi-interpretations for the function exp because it fails the read once
condition:

qnil = qz = 0 , qs(x) = x + 1 , qcons(x, l) = x + l + 1 , qdble(x) = 2 · x ,
qf+(x, i) = x + i , qf+

1

(x) = x , qmaxl (x, y) = qmax(x, y) = max (x, y) .

One can show [3, 4] that in the purely functional fragment of our language every value
v computed during the evaluation of an expression f(v1, . . . , vn) satisfies the following
condition:

|v| ≤ qv ≤ qf(v1,...,vn) = qf (qv1
, . . . , qvn

) ≤ qf(δq · |v1|, . . . , δq · |vn|) . (1)

We generalise this result to threads as follows.

Theorem 19 (bound on the size of the values) Given a system of synchronous threads
B, suppose that at the beginning of the instant B1(i) = f(v) for some thread index i. Then
the size of the values computed by the thread i during an instant is bounded by qf+(v,u)

where u are the values contained in the registers at the time they are read by the thread (or
some constant value, if they are not read at all).

Theorem 19 is proven by showing that quasi-interpretations satisfy a suitable invariant.
In the following corollary, we note that it is possible to express a bound on the size of the
computed values which depends only on the size of the parameters at the beginning of the
instant. This is possible because the number of reads a system may perform in an instant
is bounded by a constant.

Corollary 20 Let B be a system with m distinct read instructions and n threads. Suppose
B1(i) = fi(vi) for i ∈ Zn. Let c be a bound of the size of the largest parameter of the
functions fi and the largest default value of the registers. Suppose h is a function bounding
all the quasi-interpretations, that is, for all the functions f+

i we have h(x) ≥ qf+

i
(x, . . . , x)

over the non-negative reals. Then the size of the values computed by the system B during
an instant is bounded by hn·m+1(c).
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Example 21 The n·m iterations of the function h predicted by Corollary 20 correspond to
a tight bound, as shown by the following example. We assume n threads and one register,
r, of type nat with default value z. The control of each thread is described as follows:

f(x0) = read r with x1 ⇒ r := dble(max (x1, x0)).
read r with x2 ⇒ r := dble(x2).

. . . . . .
read r with xm ⇒ r := dble(xm).next .f(dble(xm)) .

For this system we have c ≥ |x0| and h(x) = qdble(x) = 2 · x. It is easy to show that,
at the end of an instant, there have been n · m assignments to the register r (m for every
thread in the system) and that the value stored in r is dblen·m(x0) of size 2n·m · |x0|.

3.3 Combining Termination and Quasi-interpretations

To bound the space needed for the execution of a system during an instant we also need to
bound the number of nested recursive calls, i.e. the number of frames that can be found on
the stack (a precise definition of frame is given in the following Section 4). Unfortunately,
quasi-interpretations provide a bound on the size of the frames but not on their number
(at least not in a direct implementation that does not rely on memoization). One way
to cope with this problem is to combine quasi-interpretations with various families of
reduction orders [24, 10]. In the following, we provide an example of this approach based
on recursive path orders which is a widely used and fully mechanizable technique to prove
termination [6].

Definition 22 We say that a system terminates by LPO, if the reduction order associated
with the system is a recursive path order where: (1) symbols are ordered so that function
symbols are always bigger than constructor symbols and two distinct constructor symbols
are incomparable; (2) the arguments of function symbols are compared with respect to the
lexicographic order and those of constructor symbols with respect to the product order.

Note that because of the hypotheses on constructors, this is actually a special case of
the lexicographic path order. For the sake of brevity, we still refer to it as LPO.

Definition 23 We say that a system admits a polynomial quasi-interpretation if it has a
quasi-interpretation where all functions are bounded by a polynomial.

The following property is a central result of this paper.

Theorem 24 If a system B terminates by LPO and admits a polynomial quasi-interpretation
then the computation of the system in an instant runs in space polynomial in the size of
the parameters of the threads at the beginning of the instant.

The proof of Theorem 24 is based on Corollary 20 that provides a polynomial bound
on the size of the computed values and on an analysis of nested calls in the LPO order
that can be found in [10]. The point is that the depth of such nested calls is polynomial
in the size of the values and that this allows to effectively compute a polynomial bounding
the space necessary for the execution of the system.
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Example 25 We can check that the order used in Example 15 for the functions f+, f+
1 ,max

and maxl is indeed a LPO. Moreover, from the quasi-interpretation given in Example 18,
we can deduce that the function h(x) has the shape a ·x + b (it is affine). In practice,
many useful functions admit quasi-interpretations bound by an affine function such as the
max-plus polynomials considered in [3, 4].

The combination of LPO and polynomial quasi-interpretation actually provides a char-
acterisation of PSPACE. In order to get to PTIME a further restriction has to be imposed.
Among several possibilities, we select one proposed in [11]. We say that the system termi-
nates by linear LPO if it terminates by LPO as in definition 22 and moreover if in all the
constraints f(p) ≻0 e or f+(p) ≻0 g+(e) of index 0 there is at most one function symbol
on the right hand side which has the same priority as the (unique) function symbol on the
left-hand side. For instance, the Example 15 falls in this case. In op. cit., it is shown by a
simple counting argument that the number of calls a function may generate is polynomial
in the size of its arguments. One can then restate theorem 24 by replacing LPO with linear
LPO and PSPACE with PTIME.
We stress that these results are of a constructive nature, thus beyond proving that a system
‘runs in PSPACE (or PTIME)’, we can extract a definite polynomial that bounds the size
needed to run a system during an instant. In general, the bounds are rather rough and
should be regarded as providing a qualitative rather than quantitative information.
In the purely functional framework, M. Hofmann [19] has explored the situation where
a program is non-size increasing which means that the size of all intermediate results is
bounded by the size of the input. Transferring this concept to a system of threads is
attractive because it would allow to predict the behaviour of the system for arbitrarily
many instants. However, this is problematic. For instance, consider again example 25.
By Theorem 24, we can prove that the computation of a system running the behaviour
f(x0) in an instant requires a space polynomial in the size of x0. Note that the parameter
of f is the largest value received so far in the register i. Clearly, bounding the value of
this parameter for arbitrarily many instants requires a global analysis of the system which
goes against our wish to produce a compositional analysis in the sense explained in the
Introduction. An alternative approach which remains to be explored could be to develop
linguistic tools and a programming discipline that allow each thread to control locally the
size of its parameters.

4 A Virtual Machine

We describe a simple virtual machine for our language thus providing a concrete intuition
for the data structures required for the execution of the programs and the scheduler.
Our motivations for introducing a low-level model of execution for synchronous threads are
twofold: (i) it offers a simple formal definition for the space needed for the execution of an
instant (just take the maximal size of a machine configuration), and (ii) it explains some
of the elaborate mechanisms occurring during the execution, like the synchronisation with
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the read instruction and the detection of the end of an instant. A further motivation which
is elaborated in Section 4.5 is the possibility to carry on the static analyses for resource
control at bytecode level. The interest of bytecode verification is now well understood, and
we refer the reader to [25, 26].

4.1 Data Structures

We suppose given the code for all the threads running in a system together with a set
of types and constructor names and a disjoint set of function names. A function name f
will also denote the sequence of instructions of the associated code: f [i] stands for the ith

instruction in the (compiled) code of f and |f | stands for the number of instructions.
The configuration of the machine is composed of a store s, that maps registers to their
current values, a sequence of records describing the state of each thread in the system, and
three local registers owned by the scheduler whose role will become clear in Section 4.3.
A thread identifier, t, is simply an index in Zn. The state of a thread t is a pair (st t, Mt)
where st t is a status and Mt is the memory of the thread. A memory M is a sequence
of frames, and a frame is a triple (f, pc, ℓ) composed of a function name, the value of the
program counter (a natural number in 1..|f |), and a stack of values ℓ = v1 · · · vk. We
denote with |ℓ| the number of values in the stack. The status of a thread is defined as
in the source language, except for the status W which is refined into W (j, n) where: j is
the index where to jump at the next instant if the thread does not resume in the current
instant, and n is the (logical) time at which the thread is suspended (cf. Section 4.3).

4.2 Instructions

The set of instructions of the virtual machine together with their operational meaning is
described in Table 1. All instructions operate on the frame of the current thread t and the
memory Mt — the only instructions that depend on or affect the store are read and write.
For every segment of bytecode, we require that the last instruction is either return, stop
or tcall and that the jump index j in the instructions branch c j and wait j is within
the segment.

4.3 Scheduler

In Table 2 we describe a simple implementation of the scheduler. The scheduler owns three
registers: (1) tid that stores the identity of the current thread, (2) time for the current time,
and (3) wtime for the last time the store was modified. The notion of time here is of a
logical nature: time passes whenever the scheduler transfers control to a new thread. Like
in the source language, so denotes the store at the beginning of each instant.
The scheduler triggers the execution of the current instruction of the current thread, whose
index is stored in tid, with a call to run(tid). The call returns the label X associated with
the instruction in Table 1. By convention, take X = ǫ when no label is displayed. If X 6= ǫ
then the scheduler must take some action. Assume tid stores the thread index t. We denote
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Table 1: Bytecode instructions

f [pc] Current memory Following memory

load k M · (f, pc, ℓ · v · ℓ′) → M · (f, pc + 1, ℓ · v · ℓ′ · v), |ℓ| = k − 1
branch c j M · (f, pc, ℓ · c(v1, . . . , vn)) → M · (f, pc + 1, ℓ · v1 · · · vn)
branch c j M · (f, pc, ℓ · d(. . .)) → M · (f, j, ℓ · d(. . .)) c 6= d

build c n M · (f, pc, ℓ · v1 · · · vn) → M · (f, pc + 1, ℓ · c(v1, . . . , vn))
call g n M · (f, pc, ℓ · v1 · · · vn) → M · (f, pc, ℓ · v1 · · · vn) · (g, 1, v1 · · · vn)
tcall g n M · (f, pc, ℓ · v1 · · · vn) → M · (g, 1, v1 · · · vn)
return M · (g, pc ′, ℓ′ · v′) · (f, pc, ℓ · v) → M · (g, pc ′ + 1, ℓ′ · v), ar (f) = |v′|
read r (M · (f, pc, ℓ), s) → (M · (f, pc + 1, ℓ · s(r)), s)
read k (M · (f, pc, ℓ · r · ℓ′), s) → (M · (f, pc + 1, ℓ · r · ℓ′ · s(r)), s), |ℓ| = k − 1
write r (M · (f, pc, ℓ · v), s) → (M · (f, pc + 1, ℓ), s[v/r])
write k (M · (f, pc, ℓ · r · ℓ′ · v), s) → (M · (f, pc + 1, ℓ · r · ℓ′), s[v/r]), |ℓ| = k − 1

stop M · (f, pc, ℓ)
S
→ ǫ

yield M · (f, pc, ℓ)
R
→ M · (f, pc + 1, ℓ)

next M · (f, pc, ℓ)
N
→ M · (f, pc + 1, ℓ)

wait j M · (f, pc, ℓ · v)
W
→ M · (f, j, ℓ)

pc
tid

the program counter of the top frame (f, pct, ℓ) in Mt, if any, Itid the instruction f [pct]
(the current instruction in the thread) and st tid the state st t of the thread. Let us explain
the role of the status W (j, n) and of the registers time and wtime. We assume that a thread
waiting for a condition to hold can check the condition without modifying the store. Then
a thread waiting since time m may pass the condition only if the store has been modified
at a time n with m < n. Otherwise, there is no point in passing the control to it1. With
this data structure we also have a simple method to detect the end of an instant, it arises
when no thread is in the running status and all waiting threads were interrupted after the
last store modification occurred.
In models based on preemptive threads, it is difficult to foresee the behaviour of the
scheduler which might depend on timing information not available in the model. For
this reason and in spite of the fact that most schedulers are deterministic, the scheduler
is often modelled as a non-deterministic process. In cooperative threads, as illustrated
here, the interrupt points are explicit in the program and it is possible to think of the
scheduler as a deterministic process. Then the resulting model is deterministic and this
fact considerably simplifies its programming, debugging, and analysis.

1Of course, this condition can be refined by recording the register on which the thread is waiting, the
shape of the expected value,. . .
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Table 2: An implementation of the scheduler

for t inZn do { st t := R; } (initialisation)
s := so; tid := time := wtime := 0; (the initial thread is of index 0)
while (tid ∈ Zn) { (loop until all threads are blocked)
if Itid = (write ) then wtime := time; (record store modified)
if Itid = (wait j )
then st tid := W (pctid + 1, time); (save continuation for next instant)
X := run(tid); (run current thread)
if X 6= ǫ then {

if X 6= W then st tid := X; (update thread status)
tid := N (tid, st); (compute index of next active thread)
if tid ∈ Zn (test whether all threads are blocked)
then { st tid := R; time := time + 1; } (if not, prepare next thread to run)
else { s := so; wtime := time; (else, initialisation of the new instant)

tid := N (0, st); (select thread to run, starting from 0)
forall i inZn do {

if st i = W (j, ) then pci := j;
if st i 6= S then st i := R; } } }

Conditions on N :
If N (tid, st) = k ∈ Zn then stk = R or (stk = W (j, n) and n < wtime)
If N (tid, st) /∈ Zn then ∀k ∈ Zn (stk 6= R and

(stk = W (j, n) implies n ≥ wtime))
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Table 3: Compilation of source code to bytecode

Compilation of expression bodies:

C(e, η) = C ′(e, η) · return

C

(

match x with c(y)
then eb1 else eb2

, η

)

=















(branch c j) · C(eb1, η
′ · y) · if η = η′ · x

(j : C(eb2, η))
(load i(x, η)) · (branch c j) · o.w.

C(eb1, η · y) · (j : C(eb2, η · x))
Auxiliary compilation of expressions:

C ′(x, η) = (load i(x, η))
C ′(c(e1, . . . , en), η) = C ′(e1, η) · . . . · C ′(en, η) · (build c n)
C ′(f(e1, . . . , en), η) = C ′(e1, η) · . . . · C ′(en, η) · (call f n)

Compilation of behaviours:

C(stop, η) = stop

C(f(e1, . . . , en), η) = C ′(e1, η) · · ·C ′(en, η) · (tcall f n)
C(yield .b, η) = yield · C(b, η)
C(next .f(e), η) = next · C(f(e), η)
C(̺ := e.b, η) = C ′(e, η) · (write i(̺, η)) · C(b, η)

C

(

match x with c(y)
then b1 else b2

, η

)

=















(branch c j) · C(b1, η
′ · y) · if η = η′ · x

(j : C(b2, η))
(load i(x, η)) · (branch c j) · o.w.

C(b1, η · y) · (j : C(b2, η · x))

C

(

read ̺ with · · · | cℓ(yℓ) ⇒ bℓ |
· · · yk ⇒ bk · · ·

, η

)

=





j0 : (read i(̺, η)) · . . . ·
jℓ : (branch cℓ jℓ+1) · C(bℓ, η · yℓ)·
jℓ+1 : · · · jk : C(bk, η · yk)





C

(

read ̺ with · · · | cℓ(yℓ) ⇒ bℓ |
· · · | [ ] ⇒ g(e)

, η

)

=





j0 : (read i(̺, η)) · . . . ·
jℓ : (branch cℓ jℓ+1) · C(bℓ, η · yℓ)·
jℓ+1 : · · · jn : (wait j0) · C(g(e), η)
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4.4 Compilation

In Table 3, we describe a possible compilation of the intermediate language into bytecode.
We denote with η a sequence of variables. If x is a variable and η a sequence then i(x, η)
is the index of the rightmost occurrence of x in η. For instance, i(x, x · y · x) = 3. By
convention, i(r, η) = r if r is a register constant. We also use the notation j : C(be, η) to
indicate that j is the position of the first instruction of C(be, η). This is just a convenient
notation since, in practice, the position can be computed explicitly. With every function
definition f(x1, . . . , xn) = be we associate the bytecode C(be, x1 · · ·xn).

Example 26 (compiled code) We show below the result of the compilation of the func-
tion alarm in Example 4:

1 : branch s 12 6 : load 1 11 : tcall alarm 2
2 : read sig 7 : tcall alarm 2 12 : build prst 0
3 : branch prst 8 8 : wait 2 13 : write ring

4 : next 9 : load 1 14 : stop
5 : load 1 10 : load 2

4.5 Control Flow Analysis Revisited

As a first step towards control flow analysis, we analyse the flow graph of the bytecode
generated.

Definition 27 (flow graph) The flow graph of a system is a directed graph whose nodes
are pairs (f, i) where f is a function name in the program and i is an instruction index,
1 ≤ i ≤ |f |, and whose edges are classified as follows:

Successor: An edge ((f, i), (f, i+1)) if f [i] is a load, branch, build, call, read, write,
or yield instruction.

Branch: An edge ((f, i), (f, j)) if f [i] = branch c j.

Wait: An edge ((f, i), (f, j)) if f [i] = wait j.

Next: An edge ((f, i), (f, i + 1)) if f [i] is a wait or next instruction.

Call: An edge ((f, i), (g, 1)) if f [i] = call g n or f [i] = tcall g n.

The following is easily checked by inspecting the compilation function. Properties Tree
and Read-Wait entail that the only cycles in the flow graph of a function correspond to
the compilation of a read instruction. Property Next follows from the fact that, in a
behaviour, an instruction next is always followed by a function call f(e). Property Read-
Once is a transposition of the read once condition (Section 2.1) at the level of the bytecode.
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Proposition 28 The flow graph associated with the compilation of a well-formed system
satisfies the following properties:

Tree: Let G′ be the flow graph without wait and call edges. Let G′
f be the full subgraph of

G′ whose nodes have the shape (f, i). Then G′
f is a tree with root (f, 1).

Read-Wait: If f [i] = wait j then f [j] = read r and there is a unique path from (f, j) to
(f, i) and in this path, every node corresponds to a branch instruction.

Next: Let G′ be the flow graph without call edges. If ((f, i), (f, i + 1)) is a next edge then
for all nodes (f, j) accessible from (f, i + 1), f [j] is not a read instruction.

Read-Once: Let G′ be the flow graph without wait edges and next edges. If the source
code satisfies the read once condition then there is no loop in G′ that goes through a
node (f, i) such that f [i] is a read instruction.

In [1], we have presented a method to perform resource control verifications at bytecode
level. This work is just concerned with the functional fragment of our model. Here,
we outline its generalisation to the full model. The main problem is to reconstruct a
symbolic representation of the values allocated on the stack. Once this is done, it is rather
straightforward to formulate the constraints for the resource control. We give first an
informal description of the method.

1. For every segment f of bytecode instructions with, say, formal parameters x1, . . . , xn

and for every instruction i in the segment, we compute a sequence of expressions
e1 · · · em and a substitution σ.

2. The expressions (ei)i∈1..m are related to the formal parameters via the substitution
σ. More precisely, the variables in the expressions are contained in σx1, . . . , σxn and
the latter forms a linear pattern.

3. Next, let us look at the intended usage of the formal expressions. Suppose at run
time the function f is called with actual parameters u1, . . . , un and suppose that
following this call, the control reaches instruction i with a stack ℓ. Then we would
like that:

• The values u1, . . . , un match the pattern σx1, . . . , σxn via some substitution ρ.

• The stack ℓ contains exactly m values v1, . . . , vm whose types are the ones of
e1, . . . , em, respectively.

• Moreover ρ(ei) is an over-approximation (w.r.t. size and/or termination) of
the value vi, for i = 1, . . . , m. In particular, if ei is a pattern, we want that
ρ(ei) = vi.

We now describe precisely the generation of the expressions and the substitutions. This
computation is called shape analysis in [1]. For every function f and index i such that f [i]
is a read instruction we assume a fresh variable xf,i. Given a total order on the function
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symbols, such variables can be totally ordered with respect to the index (f, i). Moreover,
for every index i in the code of f , we assume a countable set xi,j of distinct variables.
We assume that the bytecode comes with annotations assigning a suitable type to every
constructor, register, and function symbol. With every function symbol f of type t → beh,
comes a fresh function symbol f+ of type t, t′ → beh so that |t′| is the number of read
instructions accessible from f within an instant. Then, as in the definition of control points
(Section 2.2), the extra arguments in f+ corresponds to the values read in the registers
within an instant. The order is chosen according to the order of the variables associated
with the read instructions.
In the shape analysis, we will consider well-typed expressions obtained by composition of
such fresh variables with function symbols, constructors, and registers. In order to make
explicit the type of a variable x we will write xt.
For every function f , the shape analysis computes a vector σ = σ1, . . . , σ|f | of substitutions
and a vector E = E1, . . . , E|f | of sequences of well-typed expressions. We let Ei and σi

denote the sequence Ei and the substitution σi respectively (the ith element in the vector),
and Ei[k] the kth element in Ei. We also let hi = |Ei| be the length of the ith sequence.
We assume σ1 = id and E1 = xt1

1,1 · · ·x
tn
1,n, if f : t1, . . . , tn → β is a function of arity n.

The main case is the branch instruction:

f [i] = Conditions

branch c j c : t → t, Ei = E · e, e : t,
and either e = c(e), σi+1 = σi, Ei+1 = E · e
or e = d(e), c 6= d, σj = σi, Ej = Ei

or e = xt, σj = σi, Ej = Ei, σ′ = [c(xt1
i+1,hi

, . . . , xtn
i+1,hi+1

)/x],

σi+1 = σ′ ◦ σi, Ei+1 = σ′(E) · xi+1,hi
· · · xi+1,hi+1

.

The constraints for the remaining instructions are given in Table 4, where it is assumed
that σi+1 = σi except for the instructions tcall and return (that have no direct successors
in the code of the function).

Example 29 We give the shape of the values on the stack (a side result of the shape analy-
sis) for the bytecode obtained from the compilation of the function f defined in Example 15:

Instruction Shape Instruction Shape

1 : yield x 4 : call maxl 2 x · l · x
2 : read i x 5 : call f1 1 x · maxl (l, x)
3 : load 1 x · l 6 : return x · f1(maxl(l, x))

Note that the code has no branch instruction, hence the substitution σ is always the identity.
Once the shapes are generated it is rather straightforward to determine a set of constraints
that entails the termination of the code and a bound on the size of the computed values.
For instance, assuming the reduction order is a simplification order, it is enough to require
that f+(x, l) > f1(maxl(l, x)), i.e. the shape of the returned value, f1(maxl(l, x)), is less
than the shape of the call, f+(x, l).
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Table 4: Shape analysis at bytecode level

f [i] = Conditions

load k k ∈ 1..hi, Ei+1 = Ei ·Ei[k]
build c n c : t → t, Ei = E · e, |e| = n, e : t, Ei+1 = E · c(e)
call g n g : t → t, Ei = E · e, |e| = n, e : t, Ei+1 = E · g(e)
tcall g n g : t → β, Ei = E · e, |e| = n, e : t
return f : t → t, Ei = E · e, e : t
read r r : Ref (t), Ei+1 = Ei · x

t
f,i

read k k ∈ 1..hi, Ei[k] : Ref (t), Ei+1 = Ei · x
t
f,i

write r r : Ref (t), Ei = E · e, e : t, Ei+1 = E
write k k ∈ 1..hi, Ei[k] : Ref (t), Ei = E · e, e : t, Ei+1 = E
yield Ei+1 = Ei

next Ei+1 = Ei

wait j Ei = Ej · x
t
f,j, Ei+1 = Ej, σi = σj

If one can find a reduction order and an assignment satisfying the constraints generated
from the shape analysis then one can show the termination of the instant and provide
bounds on the size of the computed values. We refrain from developing this part which is
essentially an adaptation of Section 3 at bytecode level. Moreover, a detailed treatment
of the functional fragment is available in [1]. Instead, we state that the shape analysis
is always successful on the bytecode generated by the compilation function described in
Table 3 (see Appendix B.8). This should suggest that the control flow analysis is not overly
constraining though it can certainly be enriched in order to take into account some code
optimisations.

Theorem 30 The shape analysis succeeds on the compilation of a well-formed program.

5 Conclusion

The execution of a thread in a cooperative synchronous model can be regarded as a sequence
of instants. One can make each instant simple enough so that it can be described as a
function — our experiments with writing sample programs show that the restrictions we
impose do not hinder the expressivity of the language. Then well-known static analyses
used to bound the resources needed for the execution of first-order functional programs can
be extended to handle systems of synchronous cooperative threads. We believe this provides
some evidence for the relevance of these techniques in concurrent/embedded programming.
We also expect that our approach can be extended to a richer programming model including
more complicated control structures.
The static analyses we have considered do not try to analyse the whole system. On
the contrary, they focus on each thread separately and can be carried out incrementally.
Moreover, it is quite possible to perform them at bytecode level. These characteristics are
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particularly interesting in the framework of ‘mobile code’ where threads can enter or leave
the system at the end of each instant as described in [12].
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A Readers-Writers and Other Synchronisation Pat-

terns

A simple, maybe the simplest, example of synchronisation and resource protection is the
single place buffer. The buffer (initially empty) is implemented by a thread listening to
two signals. The first on the register put to fill the buffer with a value if it is empty, the
second on the register get to emit the value stored in the buffer by writing it in the special
register result and flush the buffer. In this encoding, the register put is a one place channel
and get is a signal as in Example 1. Moreover, owing to the read once condition, we are
not able to react to several put/get requests during the same instant — only if the buffer
is full can we process one get and one put request in the same instant. Note that the value
of the buffer is stored on the function call to full(v), hence we use function parameters as
a kind of private memory (to compare with registers that model shared memory).

empty() = read putwith full(x) ⇒ next .full(x) | [ ] ⇒ empty()
full(x) = read get with prst ⇒ result := x.yield .empty() | [ ] ⇒ full(x)

Another common example of synchronisation pattern is a situation where we need to
protect a resource that may be accessed both by ‘readers’ (which access the resource with-
out modifying it) and ‘writers’ (which can access and modify the resource). This form of
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access control is common in databases and can be implemented using traditional synchro-
nisation mechanisms such as semaphores, but this implementation is far from trivial [27].
In our encoding, a control thread secures the access to the protected resource. The other
threads, which may be distinguished by their identity id (a natural number), may initiate a
request to access / release the resource by sending a special value on the dedicated register
req. The thread regulating the resource may acknowledge at most one request per instant
and allows the sender of a request to proceed by writing its id on the register allow at
the next instant. The synchronisation constraints are as follows: there can be multiple
concurrent readers, there can be only one writer at any one time, pending write requests
have priority over pending read requests (but do not preempt ongoing read operations).
We define a new algebraic datatype for assigning requests:

request = startRead(nat) | startWrite(nat) | endRead | endWrite | none

The value startRead(id) indicates a read request from the thread id , the other construc-
tors correspond to requests for starting to write, ending to read or ending to write — the
value none stands for no requests. A startRead operation requires that there are no pending
writes to proceed. In that case we increment the number of ongoing readers and allow the
caller to proceed. By contrast, a startWrite puts the monitor thread in a state waiting to
process the pending write request (function pwrite), which waits for the number of readers
to be null and then allows the thread that made the pending write request to proceed. An
endRead and endWrite request is always immediately acknowledged.
The thread protecting the resource starts with the behaviour onlyreader(z), defined in Ta-
ble 5, meaning the system has no pending requests for reading or writing. The behaviour
onlyreader(x) encodes the state of the controller when there is no pending write and x
readers. In a state with x pending readers, when a startWrite request from the thread
id is received, the controller thread switches to the behaviour pwrite(id, x), meaning that
the thread id is waiting to write and that we should wait for x endRead requests before
acknowledging the request to write.
A thread willing to read on the protected resource should repeatedly try to send its request
on the register req then poll the register allow, e.g., with the behaviour askRead(id).read allow

with id ⇒ · · · where askRead(id) is a shorthand for read req with none ⇒ req := startRead(id).
The code for a thread willing to end a read session is similar. It is simple to change our
encoding so that multiple requests are stored in a fifo queue instead of a one place buffer.

B Proofs

B.1 Preservation of Control Points Instances

Proposition 31 8 Suppose (B, s, i) → (B′, s′, i′) and that for all thread indexes j ∈ Zn,
B1(j) is an instance of a control point. Then for all j ∈ Zn, we have that B′

1(j) is an
instance of a control point.
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Table 5: Code for the Readers-Writers pattern

onlyreader (x) = match xwith s(x′) then read reqwith

endRead ⇒ next .onlyreader (x′)
| startWrite(y) ⇒ next .pwrite(y, s(x′))
| startRead(y) ⇒ next .allow := y.onlyreader (s(s(x′)))
| [ ] ⇒ onlyreader (s(x′))

else read req with

startWrite(y) ⇒ next .allow := y.pwrite(y, z)
| startRead(y) ⇒ next .allow := y.onlyreader (s(z))
| [ ] ⇒ onlyreader (z)

pwrite(id , x) = match xwith s(x′) then

match x′ with s(x′′) then read req with

endRead ⇒ next .pwrite(id , s(x′′))
| [ ] ⇒ pwrite(id , s(s(x′′)))

else read req with

endRead ⇒ next .allow := id .pwrite(id , z)
| [ ] ⇒ pwrite(id , s(z))

else read req with

endWrite ⇒ next .onlyreader (z)
| [ ] ⇒ pwrite(id , z)

Proof. Let (f(p), be, i) be a control point of an expression body or of a behaviour. In
Table 6, we reformulate the evaluation and the reduction by replacing expression bodies
or behaviours by triples (f(p), be, σ) where (f(p), be, i) is a control point and σ is a sub-
stitution mapping the variables in p to values. By convention, we take σ(r) = r if r is a
register.
We claim that the evaluation and reduction in Table 6 are equivalent to those presented
in Section 2 in the following sense:

1. (f(p), e0, σ) ⇓ v iff σe0 ⇓ v.

2. (f+(p), b0, s, σ)
X
→ (g+(q), b′0, s

′, σ′) iff σb0
X
→ σ′b′0.

In the following proofs we will refer to the rules in Table 6. The revised formulation
makes clear that if b is an instance of a control point and (b, s)

X
→(b′, s′) then b′ is an

instance. It remains to check that being an instance is a property preserved at the level
of system reduction. We proceed by case analysis on the last reduction rule used in the
derivation of (B, s, i) → (B′, s′, i′).

(s1) One of the threads performs one step. The property follows by the analysis on
behaviours.

(s2) One of the threads performs one step. Moreover, the threads in waiting status take the
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Table 6: Expression body evaluation and behaviour reduction revised

(e0) (f(p), x, σ) ⇓ σ(x)
(e1) (f(p), r, σ) ⇓ r

(e2)
(f(p), ei, σ) ⇓ vi i ∈ 1..n

(f(p), c(e), σ) ⇓ c(v)
(e3)

(f(p), ei, σ) ⇓ vi i ∈ 1..n,
g(x) = eb, (g(x), eb, [v/x]) ⇓ v

(f(p), g(e), σ) ⇓ v

(e4)

σ(x) = c(v),
(f([c(x)/x]p), eb1, [v/x] ◦ σ) ⇓ v



f(p),
match x
with c(x)

then eb1 else eb2

, σ



 ⇓ v

(e5)

σ(x) = d(. . .),
(f(p), eb2, σ) ⇓ v



f(p),
match x
with c(x)

then eb1 else eb2

, σ



 ⇓ v

(b1)
(f+(p), stop , σ, s)

S
→ (f+(p), stop, σ, s)

(b2)
(f+(p), yield .b, σ, s)

R
→ (f+(p), b, σ, s)

(b3)
(f+(p),next .g(e), σ, s)

N
→ (f+(p), g(e), σ, s)

(b4)
σ(x) = c(v), (f+([c(x)/x]p), b1, [v/x] ◦ σ, s)

X
→ (f+

1 (p′), b′, σ′, s′)
(

f+(p),
match x with c(x)
then b1 else b2

, σ, s

)

X
→ (f+

1 (p′), b′, σ′, s′)

(b5)
σ(x) = d(. . .), c 6= d, (f+(p), b2, σ, s)

X
→ (f+

1 (p′), b′, σ′, s′)
(

f+(p),
match x with c(x)
then b1 else b2

, s, σ

)

X
→ (f+

1 (p′), b′, σ′, s′)

(b6)
no pattern matches s(σ(̺))

(f+(p), read ̺ with . . . , σ, s)
W
→ (f+(p), read ̺ with . . . , σ, s)

(b7)
σ1(p) = s(σ(̺)), (f+([p/y]p), b, σ1 ◦ σ, s)

X
→ (f+

1 (p′), b′, σ′, s′)

(f+(p), read 〈y〉 ̺with · · · | p ⇒ b | . . . , σ, s)
X
→ (f+

1 (p′), b′, σ′, s′)

(b8)

σe ⇓ v, g(x) = b,

(g+(x,yg), b, [v/x], s)
X
→ (f+

1 (p′), b′, σ′, s′)

(f+(p), g(e), σ, s)
X
→ (f+

1 (p′), b′, σ′, s′)

(b9)
σe ⇓ v, (f+(p), b, σ, s[v/σ(̺)])

X
→ (f+

1 (p′), b′, σ′, s′)

(f+(p), ̺ := e.b, σ, s)
X
→ (f+

1 (p′), b′, σ′, s′)
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[ ] ⇒ g(e) branch of the read instructions that were blocking. A thread read ̺ . . . | [ ] ⇒
g(e) in waiting status is an instance of a control point (f+(p), read ̺ . . . | [ ] ⇒ g(e0), j).
By (C7), (f+(p), g(e0), 2) is a control point, and g(e) is one of its instances. 2

B.2 Evaluation of Closed Expressions

Proposition 32 12 Let e be a closed expression. Then there is a value v such that e ⇓ v
and e ≥ v with respect to the reduction order.

As announced, we refer to the rules in Table 6. We recall that the order > or ≥ refers
to the reduction order that satisfies the constraints of index 0. We start by proving the
following working lemma.

Lemma 33 For all well formed triples, (f(p), eb, σ), there is a value v such that (f(p), eb, σ) ⇓
v. Moreover, if eb is an expression then σ(eb) ≥ v else f(σp) ≥ v.

Proof. We proceed by induction on the pair (f(σp), eb) ordered lexicographically from
left to right. The first argument is ordered according to the reduction order and the second
according to the structure of the expression body.

eb ≡ x. We apply rule (e0) and σ(x) ≥ σ(x).

eb ≡ r. We apply rule (e1) and σ(r) = r ≥ r.

eb ≡ c(e1, . . . , en). We apply rule (e2). By inductive hypothesis, (f(p), ei, σ) ⇓ vi for
i ∈ 1..n and σei ≥ vi. By definition of reduction order, we derive σ(c(e1, . . . , en)) ≥
c(v1, . . . , vn).

eb ≡ f(e1, . . . , en). We apply rule (e3). By inductive hypothesis, (f(p), ei, σ) ⇓ vi for
i ∈ 1..n and σei ≥ vi. By the definition of the generated constraints f(p) > g(e), which
by definition of reduction order implies that f(σp) > g(σe) ≥ g(v) = g([v/x]x). Thus by
inductive hypothesis, g(x, eb, [v/x]) ⇓ v. We conclude by showing by case analysis that
g(σe) ≥ v.

• eb is an expression. By the constraint we have g(x) > eb, and by inductive hypothesis
[v/x]eb ≥ v. So g(σe) ≥ g(v) > [v/x]eb ≥ v.

• eb is not an expression. Then by inductive hypothesis, g(v) ≥ v and we know
g(σe) ≥ g(v).

eb ≡ match x with c(x) . . . . We distinguish two cases.

• σ(x) = c(v). Then rule (e4) applies. Let σ′ = [v/x]◦σ. Note that σ′([c(x)/x]p) = σp.
By inductive hypothesis, we have that (f([c(x)/x]p), eb1, σ

′) ⇓ v. We show by case
analysis that f(σp) ≥ v.
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– eb1 is an expression. By inductive hypothesis, σ′(eb1) ≥ v. By the constraint,
f([c(x)/x]p) > eb1. Hence, f(σp) = f(σ′[c(x)/x]p) > σ′(eb1).

– eb2 is not an expression. By inductive hypothesis, we have that f(σp) equals
f(σ′[c(x)/x]p) ≥ v.

• σ(x) = d(. . .) with c 6= d. Then rule (e5) applies and an argument simpler than the
one above allows to conclude. 2

Relying on Lemma 33 we can now prove Proposition 12, that if e is a closed expression
and e ⇓ v then e ≥ v in the reduction order. Proof. We proceed by induction on the
structure of e.

e is value v. Then v ⇓ v and v ≥ v.

e ≡ c(e1, . . . , en). By inductive hypothesis, ei ⇓ vi and ei ≥ vi for i ∈ 1..n. By definition
of reduction order, c(e) ≥ c(v).

e ≡ f(e1, . . . , en). By inductive hypothesis, ei ⇓ vi and ei ≥ vi for i ∈ 1..n. Suppose
f(x) = eb. By Lemma 33, (f(x), eb, [v/x]) ⇓ v and either f(v) ≥ v or f(x) > eb and
σ(eb) ≥ v. We conclude by a simple case analysis. 2

B.3 Progress

Proposition 34 13 Let b be an instance of a control point. Then for all stores s, there

exists a store s′ and a status X such that (b, s)
X
→ (b′, s′).

Proof. We start by defining a suitable well-founded order. If b is a behaviour, then let
nr(b) be the maximum number of reads that b may perform in an instant. Moreover, let
ln(b) be the length of b inductively defined as follows:

ln(stop) = ln(f(e)) = 0 ln(yield .b) = ln(̺ := e.b) = 1 + ln(b) ln(next .f(e)) = 2
ln(match x with c(x) then b1 else b2) = 1 + max (ln(b1), ln(b2))

ln(read ̺ with . . . | pi ⇒ bi | . . . | [ ] ⇒ f(e)) = 1 + max (. . . , ln(bi), . . .)

If the behaviour b is an instance of the control point γ ≡ (f+(p), b0, i) via a substitution σ
then we associate with the pair (b, γ) a measure:

µ(b, γ) =def (nr(b), f+(σp), ln(b)) .

We assume that measures are lexicographically ordered from left to right, where the
order on the first and third component is the standard order on natural numbers and the
order on the second component is the reduction order considered in study of the termina-
tion conditions. This is a well-founded order. Now we show the assertion by induction on
µ(b, γ). We proceed by case analysis on the structure of b.

b ≡ stop. Rule (b1) applies, with X = S, and the measure stays constant.
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b ≡ yield .b′. Rule (b2) applies, with X = R, and the measure decreases because ln(b)
decreases.

b ≡ next .b′. Rule (b3) applies, with X = N , and the measure decreases because ln(b)
decreases.

b ≡ match . . . . Rules (b4) or (b5) apply and the measure decreases because ln(b) de-
creases.

b ≡ read . . . . If no pattern matches then rule (b6) applies and the measure is left un-
changed. If a pattern matches then rule (b7) applies and the measure decreases because
nr(b) decreases and then the induction hypothesis applies.

b ≡ g(e). Rule (b8) applies to (f+(p), g(e0), σ), assuming e = σe0. By Proposition 12, we
know that e ⇓ v and e ≥ v in the reduction order. Suppose g is associated to the declara-
tion g(x) = b. The constraint associated with the control point requires f+(p) > g+(e0,yg).
Then using the properties of reduction orders we observe:

f+(σp) > g+(σe0,yg) = g+(e,yg) ≥ g+(v,yg)

Thus the measure decreases because f+(σp) > g+(v,yg), and then the induction hypoth-
esis applies.

b ≡ ̺ := e.b′. By Proposition 12, we have e ⇓ v. Hence rule (b9) applies, the measure
decreases because ln(b) decreases, and then the induction hypothesis applies. 2

Remark 35 We point out that in the proof of proposition 13, if X = R then the measure
decreases and if X ∈ {N, S, W} then the measure decreases or stays the same. We use this
observation in the following proof of Theorem 14.

B.4 Termination of the Instant

Theorem 36 14 All sequences of system reductions involving only rule (s1) are finite.

Proof. We order the status of threads as follows: R > N, S, W . With a behaviour B1(i)
coming with a control point γi, we associate the pair µ′(i) = (µ(B1(i), γi), B2(i)) where
µ is the measure defined in the proof of Proposition 13. Thus µ′(i) can be regarded as
a quadruple with a lexicographic order from left to right. With a system B of n threads
we associate the measure µB =def (µ′(0), . . . , µ′(n − 1)) that is a tuple. We compare such
tuples using the product order. We prove that every system reduction sequence involving
only rule (s1) terminates by proving that this measure decreases during reduction. We
recall the rule below:

(B1(i), s)
X
→ (b′, s′), B2(i) = R, B′ = B[(b′,X)/i], N (B′, s′, i) = k

(B, s, i) → (B′[(B′
1(k), R)/k], s′, k)
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Let B′′ = B′[(B′
1(k), R)/k]. We proceed by case analysis on X and B′

2(k).
If B′

2(k) = R then µ′(k) is left unchanged. The only other case is B′
2(k) = W . In this

case the conditions on the scheduler tell us that i 6= k. Indeed, the thread k must be
blocked on a read r instruction and it can only be scheduled if the value stored in r has
been modified, which means than some other thread than k must have modified r. For the
same reason, some pattern in the read r instruction of B1(k) matches s′(r), which means
that the number of reads that B1(k) may perform in the current instant decreases and that
µ′(k) also decreases.

By hypothesis we have (B1(i), s)
X
→ (b′, s′), hence by Remark 35, µ′(i) decreases or stays

the same. By the previous line of reasoning µ′(k) decreases and the other measures µ′(j)
stay the same. Hence the measure µB decreases, as needed. 2

B.5 Bounding the Size of Values for Threads

Theorem 37 19 Given a system of synchronous threads B, suppose that at the beginning
of the instant B1(i) = f(v) for some thread index i. Then the size of the values computed
by the thread i during an instant is bounded by qf+(v,u) where u are the values contained
in the registers at the time they are read by the thread (or some constant value, if they are
not read at all).

In Table 6, we have defined the reduction of behaviours as a big step semantics. In Table 7
we reformulate the operational semantics following a small step approach. First, note that
there are no rules corresponding to (b1), (b3) or (b6) since these rules either terminate
or suspend the computation of the thread in the instant. Second, the reduction makes
abstraction of the memory and the scheduler. Instead, the reduction relation is parame-
terized on an assignment δ associating values with the labels of the read instructions.
The assignment δ is a kind of oracle that provides the thread with the finitely many values
(because of the read once condition) it may read within the current instant. The assign-
ment δ provides a safe abstraction of the store s used in the transition rules of Table 6.
Note that the resulting system represents more reductions than can actually occur in the
original semantics within an instant. Namely, a thread can write a value v in r and then
proceed to read from r a value different from v without yielding the control. This kind
of reduction is impossible in the original semantics. However, since we do not rely on a
precise monitoring of the values written in the store, this loss of precision does not affect
our analysis.
Next we prove that if (f+(p), b, σ) →δ (g+(q), b′, σ′) then qf+(σ′′◦σ(p)) ≥ qg+(σ′(q)) over the
non-negative reals, where σ′′ is either the identity or the restriction of δ to the label of the
read instruction in case (b′

7).
Proof. By case analysis on the small step rules. Cases (b′

2), (b′
5) and (b′

9) are immediate.

(b′
4) The assertion follows by a straightforward computation on substitutions.

(b′
7) Then σ′′(y) = δ(y) = [σ1(p)/y] and recalling that patterns are linear, we note that:

f+((σ′′ ◦ σ)(p)) = f+((σ1 ◦ σ)[p/y](p)).

35



Table 7: Small step reduction within an instant

(b′2) (f+(p), yield .b, σ) →δ (f+(p), b, σ)

(b′4)
(

f+(p),
match x with c(x)
then b1 else b2

, σ
)

→δ (f+([c(x)/x]p), b1 , [v/x] ◦ σ) if (1)

(b′5)
(

f+(p),
match x with c(x)
then b1 else b2

, σ
)

→δ (f+(p), b2, σ) if σ(x) = d(. . .), c 6= d

(b′7) (f+(p), read 〈y〉 ̺with · · · | p ⇒ b | . . . , σ) →δ (f+([p/y]p), b, σ1 ◦ σ) if (2)

(b′8) (f+(p), g(e), σ) →δ (g+(x,yg), b, [v/x]) if σe ⇓ v and g(x) = b
(b′9) (f+(p), ̺ := e.b, σ) →δ (f+(p), b, σ) if σe ⇓ v

where: (1) ≡ σ(x) = c(v) and (2) ≡ σ1(p) = δ(y).

(b′
8) By the properties of quasi-interpretations, we know that qσ(e) ≥ qv. By the con-

straints generated by the control points, we derive that qf+(p) ≥ qg+(e,yg) over the non-
negative reals. By the substitutivity property of quasi-interpretations, this implies that
qf+(σ(p)) ≥ qg+(σ(e,yg)). Thus we derive, as required: qf+(σ(p)) ≥ qg+(σ(e,yg)) ≥ qg+(v,yg). 2

It remains to support our claim that all values computed by the thread i during an
instant have a size bounded by qf(v,u) where u are either the values read by the thread or
some constant value.
Proof. By inspecting the shape of behaviours we see that a thread computes values either
when writing into a register or in recursive calls. We consider in turn the two cases.

Writing Suppose (f+(p,yf), b, σ) →∗
δ (g+(q), ̺ := e.b′, σ′) by performing a series of reads

recorded by the substitution σ′′. Then the invariant we have proved above implies that:
qf+((σ′′◦σ)(p,yf )) ≥ qg+(σ′q) over the non-negative reals. If some of the variables in yf are not
instantiated by the substitution σ′′, then we may replace them by some constant. Next,
we observe that the constraint of index 1 associated with the control point requires that
qg+(q) ≥ qe and that if σ(e) ⇓ v then this implies qg+(σ′(q)) ≥ qσ′(e) ≥ qv ≥ |v|.

Recursive call Suppose (f+(p,yf ), b, σ) →∗
δ (g+(q), h(e), σ′) by performing a series of

reads recorded by the substitution σ′′. Then the invariant we have proved above implies
that: qf+((σ′′◦σ)(p,yf )) ≥ qg+(σ′(q)) over the non-negative reals. Again, if some of the variables
in yf are not instantiated by the substitution σ′′, then we may replace them by some
constant value. Next we observe that the constraint of index 0 associated with the control
point requires that qg+(q) ≥ qh+(e,yh). Moreover, if σ′(e) ⇓ v then qg+(σ′(q)) ≥ qh+(σ′(e,yh)) ≥
qh+(v,yh) ≥ qvi

≥ |vi|, where vi is any of the values in v. The last inequation relies
on the monotonicity property of assignments, see property (3) in Definition 16, that is
qh+(z1, . . . , zn) ≥ zj for all j ∈ 1..n. 2

B.6 Bounding the Size of Values for Systems

Corollary 38 20 Let B be a system with m distinct read instructions and n threads.
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Suppose B1(i) = fi(vi) for i ∈ Zn. Let c be a bound of the size of the largest parameter of the
functions fi and the largest default value of the registers. Suppose h is a function bounding
all the quasi-interpretations, that is, for all the functions f+

i we have h(x) ≥ qf+

i
(x, . . . , x)

over the non-negative reals. Then the size of the values computed by the system B during
an instant is bounded by hn·m+1(c).

Proof. Because of the read once condition, during an instant a system can perform a
(successful) read at most n · m times. We proceed by induction on the number k of reads
the system has performed so far to prove that the size of the values is bounded by hk+1(c).

k = 0 If no read has been performed, then Theorem 19 can be applied to show that all
values have size bound by h(c).

k > 0 Inductively, the size of the values in the parameters and the registers is bounded
by hk(c). Theorem 19 says that all the values that can be computed before performing a
new read have a size bound by h(hk(c)) = hk+1(c). 2

B.7 Combination of LPO and Polynomial Quasi-interpretations

Theorem 39 24 If a system B terminates by LPO and admits a polynomial quasi-interpre-
tation then the computation of the system in an instant runs in space polynomial in the
size of the parameters of the threads at the beginning of the instant.

Proof. We can always choose a polynomial for the function h in corollary 20. Hence,
hnm+1 is also a polynomial. This shows that the size of all the values computed by the
system is bounded by a polynomial. The number of values in a frame depends on the
number of formal parameters and local variables and it can be statically bound. It remains
to bound the number of frames on the stack. Note that behaviours are tail recursive.
This means that the stack of each thread contains a frame that never returns a value plus
possibly a sequence of frames that relate to the evaluation of expressions.
From this point on, one can follow the proof in [10]. The idea is to exploit the characteristics
of the LPO order: a nested sequence of recursive calls f1(v1), . . . , fn(vn) must satisfy
f1(v1) > · · · > fn(vn), where > is the LPO order on terms. Because of the polynomial
bound on the size of the values and the characteristics of the LPO on constructors, one
can provide a polynomial bound on the length of such strictly decreasing sequences and
therefore a polynomial bound on the size of the stack needed to execute the system. 2

B.8 Compiled Code is Well-shaped

Theorem 40 30 The shape analysis succeeds on the compilation of a well-formed program.

Let be be either a behaviour or an expression body, η be a sequence of variables, and
E be a sequence of expressions. We say that the triple (be, η, E) is compatible if for all
variables x free in be, the index i(x, η) is defined and if η[k] = x then E[k] = x. Moreover,
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we say that the triple is strongly compatible if it is compatible and |η| = |E|. In the
following we will neglect typing issues that offer no particular difficulty. First we prove the
following lemma.

Lemma 41 If (e, η, E) is compatible then the shape analysis of C ′(e, η) starting from the
shape E succeeds and produces a shape E · e.

Proof. By induction on the structure of e.

e ≡ x Then C ′(x, η) = load i(x, η). We know that i(x, η) is defined and η[k] = x implies
E[k] = x. So the shape analysis succeeds and produces E · x.

e ≡ c(e1, . . . , en) Then C ′(c(e1, . . . , en), η) = C ′(e1, η) · · ·C ′(en, η)(build c n). We note
that if e′ is a subexpression of e, e′′ is another expression, and (e, η, E) is compatible then
(e′, η, E · e′′) is compatible too. Thus we can apply the inductive hypothesis to e1, . . . , en

and derive that the shape analysis of C ′(e1, η) starting from E succeeds and produces
E · e1,. . . , and the shape analysis of C ′(en, η) starting from E · e1 · · · en−1 succeeds and
produces E · e1 · · · en. Then by the definition of shape analysis of build we can conclude.

e ≡ f(e1, . . . , en) An argument similar to the one above applies. 2

Next we generalise the lemma to behaviours and expression bodies.

Lemma 42 If (be, η, E) is strongly compatible then the shape analysis of C(be, η) starting
from the shape E succeeds.

Proof. be ≡ e We have that C(e, η) = C ′(e, η) ·return and the shape analysis on C ′(e, η)
succeeds, producing at least one expression.

be ≡ match x with c(y) then eb1 else eb2 Following the definition of the compilation
function, we distinguish two cases:

• η ≡ η′ · x: Then C(be, η) = (branch c j) · C(eb1, η
′ · y) · (j : C(eb2, η) ). By the

hypothesis of strong compatibility, E ≡ E ′ · x and by definition of shape analysis on
branch we get on the then branch a shape [c(y)/x]E ′ ·y up to variable renaming. We
observe that (eb1, η

′ ·y, [c(y)/x]E ′ ·y) are strongly compatible (note that here we rely
on the fact that η′ and E ′ have the same length). Hence, by inductive hypothesis,
the shape analysis on C(eb1, η

′ ·y) succeeds. As for the else branch, we have a shape
E ′ · x and since (eb2, η

′ · x, E ′ · x) are strongly compatible we derive by inductive
hypothesis that the shape analysis on C(eb2, η) succeeds.

• η 6≡ η′ ·x: The compiled code starts with (load i(x, η)) which produces a shape E ·x.
Then the analysis proceeds as in the previous case.

be ≡ stop The shape analysis succeeds.

be ≡ f(e1, . . . , en) By lemma 41, we derive that the shape analysis of C ′(e1, η)· . . .·C ′(en, η)
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succeeds and produces E · e1 · · · en. We conclude applying the definition of the shape
analysis for tcall.

be ≡ yield .b The instruction yield does not change the shape and we can apply the
inductive hypothesis on b.

be ≡ next .g(e) The instruction next does not change the shape and we can apply the
inductive hypothesis on g(e).

be ≡ ̺ := e.b By lemma 41, we have the shape E · e. By definition of the shape analysis
on write, we get back to the shape E and then we apply the inductive hypothesis on b.

be ≡ match . . . The same argument as for expression bodies applies.

be ≡ read ̺ with c1(y1) ⇒ b1 | . . . | cn(yn) ⇒ bn | [ ] ⇒ g(e) We recall that the compiled
code is:

j0 : (read i(̺, η)) · (branch c1 j1) · C(b1, η · y1) · · ·
jn−1 : (branch cn jn) · C(bn, η · yn) · jn : (wait j0) · C(g(e), η)

The read instruction produces a shape E · y. Then if a positive branch is selected, we
have a shape E · yk for k ∈ 1..n. We note that the triples (bk, η · yk, E · yk) are strongly
compatible and therefore the inductive hypothesis applies to C(bk, η · yk) for k ∈ 1..n. On
the other hand, if the last default branch [ ] is selected then by definition of the shape
analysis on wait we get back to the shape E and again the inductive hypothesis applies
to C(g(e), η). The case where a pattern can be a variable is similar.

To conclude the proof we notice that for every function definition f(x) = be, taking
η = x = E we have that (be, η, E) are strongly compatible and thus by lemma 42 the
shape analysis succeeds on C(be, η) starting from E. 2
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