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tions. Here, a function definition is called shapely when the size of the result is determined 
exactly by a polynomial in the sizes of the arguments. Examples of shapely function defi
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lists.

The type system is proved to be sound w.r.t. the operational semantics of the language. 
The type checking problem is shown to be undecidable in general. We define a natural 
syntactic restriction such that the type checking becomes decidable, even though size 
polynomials are not necessarily linear or monotonic.

Furthermore, we have shown that the type-inference problem is at least semi-decidable 
(under this restriction). We have implemented a procedure that combines run-time testing 
and type-checking to automatically obtain size dependencies. It terminates on total typable 
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1. I n tr o d u ctio n

We explore typing support for checking size dependencies for shapely first-order function 
definitions (functions for short). The shapeliness of these functions lies in the fact th a t the 
size of the result is a polynomial in term s of the argum ents’ sizes.

1.1. V a r ie ty  o f  re s o u rc e  a n a ly s is  te c h n iq u e s . This research is a part of the Amortised 
Heap Space Usage Analysis (AHA) project [vEShvK07]. E stim ating heap consum ption is an 
active research area as it becomes more and more of an issue in many applications, including 
program ming for small devices, e.g. sm art cards, mobile phones, embedded systems and 
d istributed computing.

Am ortization is a promising technique to  obtain accurate bounds of resource consump
tion and gain. An amortised estim ate of a resource does not target a single operation but a 
sequence of operations. One assigns some amortised cost to  an operation. This amortised 
cost may be higher or lower than  the operation’s actual cost. For the sequence considered, 
it is im portant th a t its overall amortised cost covers its overall actual cost. An amortised 
cost of the sequence lies between its actual cost and the simple m ultiplication of the worst- 
case of one operation by the length of the sequence. An amortised cost of the sequence is 
in many cases easier to  com pute than  its actual cost and it is obviously better th an  the 
worst-case estim ate.

Combining am ortization with type theory allows to  infer linear heap-consum ption 
bounds for functional programs with explicit memory deallocation [HofJost03]. The A H A  
project aims to  adapt this m ethod for non-linear  bounds w ithin (lazy) functional programs 
and transfer the results to  the object-oriented programming. Contrary to  linear amortised 
bounds, to  obtain non-linear heap estim ates one does need to  know sizes of structures th a t 
takes part in com putation, see, for instance [vEShvK07].

The AHA project seems to  be part of an emerging trend since a growing num ber of 
works are addressing resource analysis. Here we m ention some of them.

In [AmZil] the authors develop new m ethod to  statically (polynomially) bound the 
resources needed for the  execution of systems of concurrent threads. The m ethod gener
alises an approach designed for first-order functional languages th a t relies on a combination 
of standard  term ination techniques for term  rewriting systems and an analysis of the size 
of the com puted values based on the notion of a polynomial quasi-interpretation. Quasi
interpretations were applied to  size analysis firstly in [BonMarMoy05b]. In [AvMoSch08] 
the authors describe a fully autom ated tool th a t implements a few techniques th a t directly 
classify run-tim e complexity (i.e. techniques th a t use the num ber of rewrite steps as com
plexity measure), including polynomial quasi-interpretations.

Several groups have studied program ming languages with im plic it com putational com
plexity  (ICC) properties. This line of research is m otivated both  by the perspective of 
autom ated complexity analysis, and by foundational goals, in particular to  give natural 
characterisations of complexity classes, like PTIM E or PSPACE. In [Gir92] characterisa
tion of PTIM E is given in term s of bounded linear logic. In [GabMarRon08] one proposes 
a characterization of PSPACE by means of an extension of (soft affine) typed lam bda cal
culus. For this extension, the authors design a call-by-name evaluation machine in order 
to  com pute programs in polynomial space. In [AtBailTer07] one addresses the problem of 
typing lam bda-term s in a variant of second-order light linear logic. The authors give a 
procedure which, starting  w ith a term  typed in system F, determines whether it is typable
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in the logic. It is shown th a t the procedure can be run in tim e polynomial in the size of the 
original Church typed system F  term .

Resource analysis may be performed w ithin a Proof C arrying Code framework. In 
[AsMcK06] one introduces the notion of a resource policy for mobile code to  be run on 
sm art devices. Such a resource policy is integrated in a proof-carrying code architecture. 
Two forms of policy are used: guaranteed policies which come with proofs and target policies 
which describe limits of the device.

In [AlArGenPuebZan07] one describes resource consum ption for Java bytecode by 
means of Cost Equation Systems (CESs), which are similar to, bu t more general than  
recurrence equations. CESs express the cost of a program  in term s of the size of its in
put data. In a further step, a closed form (i.e., non-recursive) solution or upper bound can 
sometimes be found by using existing Com puter Algebra Systems, such as Maple and M ath
ematica. This work is continued by the authors in [AlArGenPueb08], where mechanisms 
of constructing solutions of CESs and upper bounds are studied closely. They consider 
monotonic cost expressions only.

In [Ben01] the au thor describes the A utom ated Complexity Analysis P ro to type (ACAp) 
system for autom ated tim e analysis of functional programs. Symbolic evaluation of recursive 
programs generates systems of multi-variable difference equations, which are solved using 
M athem atica.

In [GuMeCh09] the authors describe a technique for com puting symbolic bounds on 
the num ber of statem ents a procedure executes in term s of its inputs and user defined 
size functions. The technique is based on m ultiple counter instrum entation th a t allows to 
com pute linear bounds individually for each counter. The bounds on these counters are 
then composed to  generate to ta l bounds th a t are non-linear and disjunctive.

1.2. E x p lo r in g  size d e p e n d e n c ie s . In this paper we restrict our attention to  a language 
w ith polymorphic lists as the only data-type. For such a language, this paper develops a 
size-aware type system for which we define a fully autom atic type checking and inference 
procedure.

A typical example of a shapely function in this language is cprod th a t computes the 
Cartesian product of two sets, stored as lists. It is given below. The auxiliary function 
pairs creates pairs of a single value and the elements of a list. To get a Cartesian product 
the function cprod does this for all elements from the first list separately and appends the 
resulting interm ediate lists. Furtherm ore, the function definition of append is assumed:

cprod(1i , 12) =  match li with | nil ^  nil
| cons(hd, t l) ^  append(pairs(hd,12), cprod(tl,12))

where

pairs(x, l) =  match I with | nil ^  nil
| cons(hd, t l) ^  let l' =  cons(x, cons(hd, nil)) 

in cons(1', pairs(x, t l))
Given two lists, for instance [1, 2, 3] and [4, 5], it returns the list w ith all pairs 

created by taking one element from the first list and one element from the second list: 
[[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]. Hence, given two lists of length n  and m, it always 
returns a list of length nm  containing pairs. This is expressed by the type Ln (a) x Lm (a) ^
Ln*m(L2(a)).
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Shapeliness is restrictive, bu t it is an im portant foundational step. It makes type 
checking decidable in the non-linear case and it allows to  infer types “out-of-the-box” , since 
experim ental points are positioned exactly on the graph of the polynomial. Exact sizes 
will be used in future work to  derive low er/upper bounds on the ou tpu t sizes. We need 
such bounds for investigating amortised resource bounds in the AHA project. Nonlinear 
amortised resource consum ption relies on the size of input data, and its gain is calculated 
based on the size of output.

In this paper our only concern is in sizes of input and ou tput. For instance, the tim e 
and space complexity of a function definition with a polynomial input-output size depen
dency may exceed polynomial space and tim e consum ption due to  internal structures and 
com putations.

1.3. R e la te d  w o rk  o n  size a n a ly s is . Inform ation about input-output size dependencies 
is applied to  tim e and space analysis and optim ization, because run tim e and heap-space 
consum ption obviously depend on the sizes of the d a ta  structures involved in the compu
tations. Knowledge of the exact size of d a ta  structures can be used to  improve heap space 
analysis for expressions w ith destructive pa tte rn  matching. Amortised heap space analysis 
has been developed for linear bounds by Hofmann and Jost [HofJost03]. Precise knowl
edge of sizes is required to  extend this approach to  non-linear bounds. Another application 
of exact size information is load d istribution  for parallel com putation. For instance, size 
information helps to  d istribu te  a storage effectively and to  safely store vector fragments 
[Chat90].

The analysis of (exact) input-output size dependencies of functions itself has been ex
plored in a series of works. Some interesting work on shape analysis has been done by Jay 
and Sekanina [JaySek97]. In this work, a shapely program  expression is translated  into a 
corresponding abstract program  expression over sizes. Thus, the dependency of the result 
size on the argum ent sizes has the form of a program  expression. However, deriving an 
arithm etic function from it is beyond the scope of their work.

Functional dependencies of sizes in a recurrent fo rm  may be derived via program  anal
ysis and transform ation, as in the work of H errm ann and Lengauer [HerLen01], or through 
a type inference procedure, as presented by Vasconcelos and Hammond [VasHam03]. Both 
results can be applied to  non-shapely functions, higher-order functions and non-linear size 
expressions. However, solving the recurrence equations to  obtain a closed-form solution is 
left as an open problem for external solvers. In the second paper monotonic bounds are 
studied.

To our knowledge, the only work yielding closed-form solutions for size dependencies 
is limited to  monotonic dependencies. For instance, in the well-known work of Pareto  
[Par98], where no n -stric t sized types are used to  prove term ination, monotonic linear upper 
bounds are inferred. There linearity is a sufficient condition for the type checking procedure 
to  be decidable. In the series of works on polynomial quasi- [BonMarMoy05b] and sup- 
interpretations [MarPech] one studies max-polynomial upper bounds. The checking and 
inference rely on real arithm etic. In general, (inference) synthesis procedures are exponential 
w .r.t. the size of a program. For m ultilinear  polynomials in m ax-p lus-algebra it is shown 
to  be of polynomial complexity [Am05].

Our approach differs two-fold. Firstly, quasi-interpretations give monotonic bounds. 
W ith  non-monotonic size dependencies polynomial quasi-interpretations may lead to  signif
icant over-estimations. Secondly, to  get exact bounds we use rational arithm etic instead of
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real arithm etic. Our m otivation for this choice lies in the fact th a t one should use decidabil
ity procedures in reals w ith care, if one applies them  to  integers or naturals. For instance, 
x 2 <  x 3 holds in naturals, bu t not in reals, since it does not hold on 0 <  x <  1 .

The approaches summarized in the previous paragraphs either leave the  (possibly un- 
decidable) solving of recurrences as a problem external to  their approach, or are limited to 
monotonic dependencies.

1.4. C o n te n t  o f  th e  p a p e r .  In this work, we go beyond monotonicity and linearity and 
consider a type checking procedure for a first-order functional program ming language (sec
tion 2) w ith polynomial size dependencies (section 3 ).

In subsection 3.1 we define zero-order types and their set-theoretic semantics. In sub
sections 3.2 and 3.3 we define first-order types and give typing rules respectively. The 
soundness of type system w .r.t. the operational semantics of the language is studied in 
subsection 3.4. The type system is not complete in the class of all shapely functions, and 
no such complete system exists (subsection 3.5).

In section 4 we show th a t type checking is reduced to  the entailm ent checking over 
D iophantine equations. Type checking is shown to  be undecidable in general (subsection 
4.2). However, type-checking is decidable under certain syntactic condition for function 
bodies (subsection 4.3).

We define in detail a m ethod for type inference in section 5. It term inates on a non
trivial class of shapely functions. It does not term inate when either the function under 
consideration does not term inate, or it is not shapely, or its correct size dependency is 
rejected by the type-checker due type-system ’s incompleteness.

Finally, in section 6 we overview the results and discuss further work.

2. La nguage

The typing system is designed for a first-order functional language over integers and 
(polymorphic) lists.

The syntax of language expressions is defined by the following gram m ar (the example 
in the introduction used a sugared version of this syntax):

B asic  b ::= c | x binopy | nil | cons(z,1) | ƒ (z i , . . . ,  zn )
E xpr  e ::= b

| let z =  b in e1 
| if x  then e1 else e2 
| match l with i ni l ^  ei

i cons(z, l ') ^  e2 
| letfun ƒ (z1, . . . ,  zn ) =  e1 in e2 
| letextern ƒ (z1, . . . ,  zn ) in e1

where c ranges over integer constants, z, x, y, l denote zero-order program  variables (x and 
y range over integer variables, l possibly decorated with sub- ans superscripts, ranges over 
lists and z ranges over program  variables when their types are not relevant), binop is one of 
the four integer binary operations: + , —, div, mod, and ƒ denotes a function name.

The syntax distinguishes between zero-order let-binding of variables and first-order 
letfun-binding of functions. In a function body, the only free program  variables th a t may
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occur are its param eters: F V (e1) C {z1, . . . , z n }. The operational semantics is standard, 
therefore the definition is postponed until it is used to  prove soundness (section 3.4).

We prohibit head-nested let-expressions and restrict sub-expressions in function calls 
to  variables to  make type-checking straightforward. Program  expressions of a general form 
may be equivalently transform ed to  expressions of this form. It is useful to  th ink of the 
presented language as an interm ediate language.

For practical reasons and in order to  support m odularity, we introduce a letextern 
declaration , which makes it possible to  call functions implemented in other modules th a t 
may be defined in other languages.

3. T y p e  Sy stem

We consider a type system, constituted from zero- and first-order types, corresponding 
typing rules for program  constructs and Peano arithm etic extended to  rational numbers as 
(classes of equivalence of) pairs of integers, rational addition and m ultiplication 1.

3.1. Z e ro -o rd e r  ty p e s  a n d  th e i r  s e m a n tic s . Sized types are derived using a type and 
effect system in which types are annotated  w ith size expressions. Size expressions are 
polynomials representing lengths of finite lists and arithm etic operations over these lengths:

SizeE xpr p  ::=  Q \ n  | p +  p | p — p | p * p 

where Q denotes rational numbers, and n, possibly decorated with sub- and superscripts, 
denotes a size variable, which stands for any concrete size (natural num ber). For any natural 
num ber k, n k denotes the  k-fold product n  * . . .  * n.

Size expressions are rational polynomials th a t m ap natural numbers into natural num-
n (n  +  1)

bers. For instance, the polynomial p (n ) = -----------  represents the  size dependency of the
function progression:

progression(l) =  match l with \ nil ^  nil
\ cons(hd, t l) ^  append(progression(tl), l)

For example, it maps [1, 2, 3] on [3, 2, 3, 1, 2, 3]. The outpu t size dependency is given by 
the arithm etic progression 0 +  1 +  . . .  +  (n — 1) +  n, where n  is the  size of an input. This 
explains the name of the function [vKShvE07].

Zero-order types are assigned to  program  values, which are interpreted as integer num 
bers and finite lists. A list type is annotated with a size expression th a t represents the 
length of the list:

Types t  ::=  I n t  \ a  \ Lp ( t )
where a  is a type variable. This structure  entails th a t if the elements of a list are lists 
themselves, then all these element-lists m ust be of the same size. Thus, instead of lists 
it would be more precise to  talk  about matrix-like structures. For instance, the type 
L6(L2( In t) )  is given to  a list whose elements are all lists of exactly two integers, such 
as [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]].

1 Rational addition is defined as — + — = a<̂ . Rationals with their addition and multiplication formb d bd 
a field, more precisely a field of integer fractions.
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It is easy to  see th a t for all m the types L0 (Lm( ln t ) )  are equal, because they  represent 
the singleton containing []. The same holds for L0 (Lm(a)). This induces a natu ral equiv
alence relation on types. For instance Lq(L0 (Lp(a))) =  Lq(L0 (Lp/(a ))) . The equivalence 
expresses the fact th a t the size of a list is not relevant when such a list does not exist, 
because an outer list is empty. Now, we define formally an entailm ent D  h t  =  t ', where D  
is a conjunction of equations between polynomials. The definition is inductive on t . The 
entailm ent D  h t  =  t ' holds if and only if
•  t =  t ' =  I n t  or t =  t ' =  a  for some type variable a;
•  t =  Lp (t '') and t ' =  Lp/ (t ''') have the same underlying type (i.e. the type w ith annotations 

om itted) and
(1) D  h p =  p ', and
(2 ) D  h p =  0 or D  h t ' '  =  t ' ' ' ,

w ith D  h p =  q being an arithm etical entailm ent, meaning V n .D (n ) ^  p(n) =  q(n), where 
n  is the collection of all size variables taken from D, q and p. For instance,

m =  0 h Ln+m(a) =  Ln(a) and 
m — 1 =  0 , n  =  0 h Ln+m-i(L2 (a)) =  Ln(L3(a)) 

hold, whereas n  =  0 h Ln+m -1(L2(a)) =  Lm -1(L3(a)) does not.
The sets F V ( t ) and F V S ( t ) of the free type and size variables of a type t  are defined 

inductively in the obvious way. Note, th a t F V S (L0 (Lm(a))) =  0, since the  type is equivalent 
to  L0 (L0 (a)).

Zero-order types w ithout size or type variables are ground types:
GTypes t • ::=  t  such th a t F V S ( t ) =  0 A F V ( t ) =  0

In our semantic model a heap is essentially a collection of locations i  th a t can store list 
elements. A location is the address of a cons-cell each consisting of a hd-field, which stores 
the value of a list element, and a tl-fie ld , which contains the location of the next cons-cell 
of the list (or the NULL address). Formally, a program  value is either an integer constant, a 
location, or the NULL-address. A heap is a finite partial m apping from locations and fields 
to  program  values:

Val v ::=  c \ I  \ NULL i  € Loc c € I n t  
Hp h : Loc ^  {hd, t l }  ^  Val

We will write h .i.hd  and h . i . t l  for the results of applications h i  hd and h i  t l ,  which 
denote the values stored in the heap h at the location i  a t fields hd and t l ,  respectively. 
Let h[i.hd :=  vh, i . t l  :=  vt] denote the heap equal to  h everywhere bu t in i ,  which at the 
hd-field of i  gets value vh and at the tl-fie ld  of i  gets value vt .

The semantics w of a program  value v is a set-theoretic in terpretation w ith respect to  a 
specific heap h and a ground type t . It is given via the four-place relation v =  w, where 
integer constants interprets themselves, and locations are interpreted as non-cyclic lists:

c I Int c
NuLLl=ho(r•) n
i  • (T•) whd :: wt l  iff n  >  1 , i  € d o m (h),

h .i.hd  |= I•dom(h)\íl> whd, 

h . i . t l  w tl
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where n  is a natural constant and h \ dom(i)\{i} denotes the  heap equal to  h everywhere 
except for i ,  where it is undefined.

3.2. F i r s t - o r d e r  ty p e s . F irst-order types are assigned to  shapely functions over values of 
a zero-order type. Let t ° denote a zero-order type of which the annotations are all size 
variables. F irst-order types are then  defined by:

F Types  t f  ::=  t °  x . . .  x t °° ^  Tn+1
such th a t F V S (Tn+1) C F V S ( t° )  U ■ ■ ■ U F V S (t° )

For instance, one expects th a t the following function definitions (in the sugared syntax2) 
will be well-typed in the system:

append : Ln(a) x Lm(a) ^  Ln+m(a) 
append(11, 12) =  match 11 with \ nil ^  12

\ cons(hd, t l) ^  cons(hd, append(tl, 12))

pairs : a  x Ln(a) ^  Ln(L2(a)) 
pairs(x, 1) =  match 1 with \ nil ^  nil

\ cons(hd, t l) ^  let 1' =  cons(x, cons(hd, nil)) 
in cons(1', pairs(x, t l))

cprod : Ln (a) x Lm(a) ^ Ln*m(L2(a))
cprod(11,12)match 11 with \ nil ^  nil

\ cons(hd, t l) ^  append(pairs(hd,12), cprod(tl,12))

sqdiff : Ln (a) x Lm(a)  ̂ L(n2+m2-2*n*m) (L2(a)) 
sqdiff(11, 12) =  match 11 with \ nil ^  cprod(12, 12)

\ cons(hd, t l) ^  match 12 with \ nil ^  cprod(11, 11)
\ cons(hd', t l ) ^  sqdiff ( t l , tl!)

For total functions the following condition is necessary: fo r  all instan tia tions *  of size 
variables w ith them selves or zeros, the inclusion F V S (*Tn+1) C F V S (* t° ) U ■ ■ ■ U F V S (* t° ) 
holds. Consider, for instance, the first-order type Ln (Lm(a)) ^  Lm(Ln (a)), where on nil in
put, i.e. w ith n  =  0, the input type degenerates to  L0(Lm(a)) =  L0(L0(a)) bu t the outer list 
of the ou tpu t m ust have length m. This m becomes unknown being “hidden” in L0(Lm(a)). 
Thus, this first-order type may be accepted w ithout the condition above, once a function 
of this type is partial and undefined on em pty lists. Since the type Ln (Lm(a)) ^  Lm(Ln (a)) 
may be assigned to  an im plem entation of n  x m -m atrix  transposition, undefinedness on nil 
may be interpreted as an exception “cannot transpose an em pty m atrix” .

A context r  is a m apping from zero-order variables to  zero-order types. A signature 
£  is a m apping from function names to  first-order types. The definition of F V S (—) is 
straightforw ardly extended to  contexts.

2In the sugared syntax we use f  (g(z)) for “let z' = g(z) in f  (z' )”
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3.3. T y p in g  ru le s . A typing judgem ent is a relation of the form D; r  h s  e : t , where D  is 
a conjunction of equations between polynomials. D  is used to  keep track of size information. 
In the current language, the only place where size information is available is in the nil-branch 
of the match-rule. The signature £  contains the type assum ptions for the functions th a t 
are called in the expression under consideration. The typing judgem ent relation is defined 
by the following rules:

ICONST ^  „ ------ — ------ — —;-------n --------- IBlNOPD; r  h s  c : I n t  D; r ,  x : I n t ,  y : I n t  h s  x  binop y : I n t

D  h p  =  0 D  \ -  t  =  t '  v

D ; T  h s n i l : L p ( r )  L  D ; T ,  z : t  h s  z : t '-p\

D  h p =  p ' +  1
D; r ,  hd  : t ,  tl : Lp ( t ) h s  cons(hd, t l): Lp ( t ) C ons

D; r ,  x : I n t  h s  et : t 
D; r ,  x : I n t  h s  e /  : t

D; r ,  x : I n t  h s  if x then et else e / : t

z |  rdom ( r )
D; r  h s  ei : Tz 

D] T, h s  e2 : r
-D; T h s  let z  = e \ in e2 : r  ^ ET

I f

p = 0 ,  D; r ,  l : Lp ( t ')  h s  enil : t  
h d , tl ^  d o m ( r )  D; r ,  hd : t ' ,  l : Lp( t ') ,  tl : Lp -1 ( t ')  h s  econs :t

--------- ^  ^  ,----------- — — — — H------------------------------------- M atchD; I , l : Lp(t ') h s  match l with | nil ^  eni| :t

| cons(hd, t l) ^  econs

The rule L e t F un dem ands th a t all letfun-defined functions, including recursive ones, 
m ust be in the dom ain of the signature, and the corresponding first-order type m ust pass 
type-checking:

£ ( ƒ ) =  T1 X • • • X Tn ^  Tn+ 1 
True; z i : t^, . . . ,  h s  ei : t„+  i

D] T  b s  e2 : t '

D; T  h s  letfun f ( z \ , . . .  , z n ) = e i in e2 :t ' ^ e t F u n
However, in practice we do not prohibit calls to  functions th a t are not defined via 

letfun. If a function coming from a tru sty  external source together w ith its first-order type 
is declared via letextern, one applies the L e t E x te r n  rule:

S ( f  ) =  Tl x • • • x t ° ^  t „+ 1 
D; r  h s  e : t '

L e t E x ter n
D; r  h s  letextern ƒ (z 1, . . . ,  zn ) in e : t '

W hen proving soundness we require all functions to  be defined via letfun w ithin an expression 
under consideration.
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In the FuN App-rule, 0  computes the substitu tion * from its first argum ent (whose 
size expressions are always variables since they are taken from the first-order signature of 
the function) to  its second argum ent, and the set C  of equations over size expressions from 
^ ' x ■ ■ ■ x Tk. The set C  contains p =  p ' if and only if the expressions p and p ' are substitu ted  
to  the same size variable. For instance, if a function dotprod : Lm( ln t )  x Lm( ln t )  ^  I n t  
is called w ith actual param eters of the types Ln+n/+2( In t)  and Ln+3( In t) ,  then  C  contains 
the equation n  +  n ' +  2 =  n  +  3.

(*, C ) =  0(T° x ■ ■ ■ x T°, T1' x ■ ■ ■ x Tn')
^ ( / ) = ^ x . . . x r ° ^ r B+i D h r'n+l = *(rn+i) D  h C

D] V , Z i \ T i ,  . . . , Z n \ T n '  h S  f ( z i , . . . , Z k)\Tn+i UN ?P

In the example w ith the call of dotprod the equation n  +  n ' +  2 =  n  +  3 holds if D  contains 
n ' — 1 =  0 .

As another example of the FunA pp-ru le  consider the recursive call append(tl, 12) in the 
definition of append:

£(append) =  Ln(a) x Lm(a) ^  Ln+m(a)
T  =

l 2 : \ - m ( a )  h s  a p p e n d ( i / ,  ¿2 ) : r  F u n A p p  

Here 0 (L n (a) x Lm(a), Ln -  1(a) x Lm(a)) =  (*, 0) w ith *(n) =  n  — 1, *(m) =  m. Thus,
T =  *(Ln+m(a)) =  Ln -  1+m( a ) .

The type system needs no conditions on non-negativity of size expressions. Size ex
pressions in types of meaningful d a ta  structures are always non-negative. The soundness 
of the type system ensures th a t this property is preserved throughout (the evaluation of) a 
well-typed expression.

See subsection 4.1 for examples of type checking in detail.

3.4. S o u n d n e s s  of th e  ty p e  sy s te m . Informally, soundness of the type system ensures 
th a t “well-typed programs will not go wrong” . This means th a t if function argum ents have 
meaningful values according to  their types then the result will have a meaningful value of 
the ou tpu t type. In section 3.1, we formalized the notion of a meaningful value using a 
heap-aware semantics of types. Here we give an operational semantics of the language.

We introduce a fram e store as a m apping from program  variables to  program  values. 
This m apping is m aintained when a function body is evaluated. Before evaluation of the 
function body starts, the store contains only the actual param eters of the function. During 
evaluation, the store is extended with the variables introduced by pa tte rn  m atching or let- 
constructs. These variables are eventually bound to  the actual param eters, thus there is 
no access beyond the current frame. Formally, a frame store is a finite partial m ap from 
variables to  values:

Store s : E xpV ar  ^  Val
Using heaps and frame stores, and m aintaining a m apping C from function names to 

the bodies of the function definitions, and a m apping E of external function names to 
the external im plem entations, the operational semantics of expressions is defined by the 
following rules:
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s; h; C, E h  c w  c; h

O S IB in op
s; h; C, E h  x  binop y w  s(x  )binop s (y ); h

s; h; C, E h  nil w  NULL; h s; h; C, E h  z w  s(z); h

s(hd ) =  vhd s ( t l ) =  vt l  i  € d o m (h)
s; h, C, E h  cons(hd, t l) w  i; h[i.hd :=  vhd, i . t l  :=  vt l ] 

s(x) =  0 s; h; C, E h  e1 w  v; h'

O S C ons

, ^ i -r , , 77 O S I f T r u es; h; C, E h  if x then e1 else e2 w  v; h'

s(x) = 0  s; h; C, E h  e2 w  v; h'
—  — 7T---------- .------------------T7 O S I fF a ls es; h; C, E h  if x then e1 else e2 w  v; h'

s; h; C, E h  e1 w  v1; h 1 s[z :=  v1]; h 1; C, E h  e2 w  v; h'
-------------------------;--- -—— --- :-------------- :-----------------77---------------------  OSLET

s; h; C, E h let z =  e 1 in e2 w  v; h '

s(l) =  NULL s; h; C, £  h  ei ^  v; h' 

s; h; C, E h  match 1 with \ nil ^  e1 w  v; h'
\ cons(hd, t l) ^  e2

O SM a tch-N il

h.s(1).hd =  vhd h .s (1 ) .tl  =  vtl
s[hd :=  vhd, tl :=  vt l ]; h, C, E h  e2 w  v; h'

— -— - —— ---------- — — — -— ---------------------------------— O S M a tc h -C o n s
s; h; C, E h  match 1 with \ nil ^  e1 w  v; h'

\ cons(hd, t l) ^  e2

s; h; C[f :=  ((z1, . . . ,  zn) x e1)], E h  e2 w  v; h'
^ F ( e i )  C {zi, zn j  

s; h; C, £  h letfun / ( z i , . . . ,  zra) =  ei in e2 -w v; h ' ^ S L e tF u n

s(z 1) =  v1 . . .  s(zn) =  vn C(ƒ) =  ( z ' , . . . , zn) x ef 
[z' :=  v1, . . . ,  zn :=  vn]; h; C, E h  e / w  v; h'

F V (e f )  C. {z[, , z'n }
----------------  ,------------- r-----------T7------------- OSFUNAPP

s; h; C, E h  ƒ (z1, . . . ,  zn) w  v; h'
The soundness statem ent is defined by means of the following two predicates. One 

indicates if a program  value is meaningful w ith respect to  a certain heap and a ground 
type. The other does the same for sets of values and types, taken from a frame store and a 
ground context r  •, respectively:

Validvai(v,T^,h) =  [ v w ]
Validstore(vars, r  ^ , s ,h)  =  Vz & ars [ Validval(s(z), r  •(z), h) ]
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Let a valuation e map size variables to  concrete (natural) sizes and an instantiation n 
map type variables to  ground types:

Valuation  e : S izeV ar  ^  Z  
In sta n tia tio n  n : Type Var ^  t •

W hen applied to  a type, context, or size equation, valuations (and instantiations) map 
all variables occurring in it to  their valuation (or instantiation) images.

Now, stating  the soundness theorem  is straightforward:

T h e o re m  3.1 (Soundness). L et s; h; [ ], [ ] h e w  v; h ' and all fu n c tio n s  called in  e be 
defined in  it via the let-fun  construct. Then fo r  any context r ,  signature £  and type t  such 
tha t True; r  h s  e : t  is derivable in  the type system  and fo r  any size valuation  e and type 
in stan tia tion  n, it holds tha t i f  the store is m eaningful w .r.t. the context n (e(r)) then  the 
output value is m eaningful w .r .t the type n(e(T)):

Vn,e[ Validsto re(F V (e),n (e(r)),s ,h ) = ^  Validvai(v,n(e(T)),h ') ]

The theorem  follows from the following general statem ent:

L e m m a  3.2 (Soundness). For any s, h, C, e, v, h ', a set o f equations D , a context r ,  a 
signature £ , a type t , a size valuation  e and a type in sta n tia tio n  n such that

•  s; h; C, [] h e w  v; h ',
•  D; r  h s  e : t  is derivable in  the type system  and all fu n c tio n s  called in  e are 

declared via letfun,
one has

Vn,e[ e(D) A Validstore(FV(e ) ,n (e ( r ) ) ,s ,h )  = ^  Validvai(v,n(e(T)),h') ]

The proof is done by induction on the size of the derivation tree for the  operational- 
semantics judgem ent. For the LET-rule it relies on benign sharing  [HofJost03] of da ta  
structures. W ith  benign sharing, shared heap structures to  be used in the let-body are 
not changed by the let-binding expression of let. To formalize the notion of benign sharing 
we introduce a function fo o tp rin t  R  : Heap x Val — > P (Loc), which computes the set of 
locations accessible in a given heap from a given value:

R (h , c) =  0 
R (h , NULL) =  0
R (h  i) =  ƒ 0  i f  i  i d o m (h)

) 1 {i} U R (h \dom(h)\{i}, h.i.hd) U R (h \dom(h)\{i}, h . i . t l ) ,  i f  i €  d o m (h)

where ƒ \X denotes the  restriction of a (partial) m ap ƒ to  a set X .
We extend R  to  stores by R (h , s) =  (Jzedom(s) R (h , s(z)). So, the operational- 

semantics let-rule w ith benign sharing looks as follows:

s; h; C, E h  e1 w  v1; h 1
s[z :=  v1]; h 1; C, E h  e2 w  v; h'

h \R(h> s|FV(e2)) =  h 1lR(h> s|FV(e2))
— 7 p c i _ i4------------ :-----------------TJ O S L e ts; h; C, E h let z =  e1 in e2 w  v; h'

This semantic condition is not statically typable in general, however, there are type 
systems th a t approxim ate it, e.g. linear typing and uniqueness typing [BarSm96]. Since in
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our language we have neither destructive pa tte rn  m atching nor assignments, benign sharing 
is guaranteed.

Proof. Let everywhere below s; h; C h e w  v; h ' denote the operational-sem antics 
judgem ent s; h; C, [] h e w  v; h ' w ith the em pty external closure.

In the proof we will use a few technical lem m ata about heaps and model relations. They 
are intuitively clear statem ents like “extending a heap does not change a model relation” , 
so we do not prove them  in the main part of the paper. The interested reader may find the 
technical proofs in the appendix.

For the sake of convenience we will denote n(e(T)) via Tno n (e(r)) via and e(D) via
D e.

We prove the statem ent by induction on the height of the derivation tree for the 
operational-sem antics judgem ent. Given s; h; C h e w  v; h ' fix some r ,  £ , and t , 
such th a t D; r  h^ e : t . F ix a valuation e € F V ( r )  U F V ( t ) ^  Z , a type instantiation 
n € F V ( r )  U F V ( t ) ^  t •, such th a t D e and Validstore(FV (e), , s , h )  hold. We must 
show th a t Validva|(v, Tne,h ') holds.

O S IC o n s t:  In this case v =  c for some constant c and t =  I n t .  Then, by the 
definition we have c j=hnt c and Validva|(v, I n t ,h ') .

O S N u ll: In this case v =  NULL and t =  Lo(t ') for some t '. Then, by the definition 
we have NULL [].L 0 ( e )

O S V ar: From D  h t =  t ' and D e it follows th a t Tne =  r ^ .  From this and

Validstore(F V (z), r  U (z : t ' ) ne, h, s)

it follows th a t

Valid vai (s(z ) , t  ne, h)
O S C o n s: In this case e =  cons(hd, t l), t  =  Lp( t ') ,  {hd : t ' ,  t l : Lp/( t ')}  C r  for some 

h d , t l , p ' and t ' . Since Validstore( F V ( e ) ,r ne,s ,h )  there exist whd and wtl  such 
th a t s(h d ) ==h/ whd and s ( t l ) =  , ^  wt l . From the operational semantics(Lp/ (T ))ne
judgem ent we have th a t v =  i  for some location i  € d o m (h), and h ' =  h[i.hd :=  
s(h d ), i . t l  :=  s ( t l)]. Therefore, h '.i.hd  = /  whd and h ' . i . t l  =  , m wt l  hold' ne (Lp/ (T ))ne
as well. It is easy to  see th a t h =  h '\dom(h/)\{i}.

Thus,

h '.i.hd  |= h//|dom(h/)\ í l} whd
T ne

h ' . i . t l  wt l(Lp/ (T ))ne
This and D e, which implies pe =  (p' +  1)e gives i  =1^ (t / )) whd :: wt l  and thus 
Valid vai(i, t  ne, h ').

O S IfT ru e : In this case e =  if x then e1 else e2 for some e1, e2, and x. Know
ing th a t D; r  h^  e1 : t  we apply the induction hypothesis to  the derivation of 
s; h; C h e1 w  v; h', w ith the same n, e to  obtain Validstore(F V (e 1), r ne,s ,x )  = ^  
Validvai(v,Tne,h ') . From F V (e1) C F V (e), Validstore( F V ( e ) ,r ne,s ,x ) ,  and lemma 
6.7 it follows th a t Validvai(v,Tne,h ') .

O S IfF a lse : is similar to  the true-branch.
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O S L e tF u n : The result follows from the induction hypothesis for 

s; h; C[ƒ :=  (z x e1)] h e2 w  v; h',

w ith D; r  h s  e2 : t  and the same n, e, store s and heap h.
O S L e t: In this case e =  let z =  e1 in e2 for some z, e1 , and e2 and we have s; h; C h 

e1 w  v1; h 1 and s[z :=  v1]; h 1; C h e2 w  v; h ' for some v1 and h 1. We know 
th a t D; r  h s  e1 : t ' ,  z €  r  and D; r ,  z : t '  h s  e2 : t  for some t ' .  Applying 
the  induction hypothesis to  the first branch gives Validstore( F V (e1), r n o s ,h)  = ^  
Validvai(v1, t ^ £,h 1). Since F V (e1) C F V (e1) U (F V (e2) \  {z}) =  F V (e) and

Valid store (F V  (e), , s, h)

we have from lemma 6.7 th a t Validstore(F V (e 1) , , s , h )  holds and hence we have 
Valid vai(v1,T  ̂  , h 1).

Now apply the induction hypothesis to  the second branch to  get

Valid store (F V  (e2), r ^ e U { z : t '  }, s [z :=  v1] ,h 1) = ^  Validvai(v, t ^  ,h ') .

Now we will show th a t the l.h.s. of the implication holds. Fix some z' € F V (e2). 
If z ' =  z, then Validvai(v1, t ^ £, h 1) implies Validvai(s[z :=  v ^ z ) , ^ , h 1). If z ' =  z, 
then s[z :=  v1](z') =  s(z '). Because we know th a t sharing is benign, h \R(h, s(z/)) =  
h 1 \ R(h, s(z/)), applying lemma 6.5 and then  6.7 we have th a t s(z ') =  (z/) wz/ im

plies s(z ') (z/) wz/ implies s[z :=  v1](z') (z/) wz/ and thus Validvai(s[z := 
v1](z'), r ne( z ') ,h 1). Hence, Validstore( F V (e2), r ne U { z : t ^ £},s[z :=  v1] ,h 1). There
fore, Validvai(v, Tne, h ').

O S M a tc h -N il:  In this case e =  match l with \ nil ^  e1 \ cons(hd, t l ) ^  e2 for some 
l, h d , t l , e1, and e2. The typing context has the form r  =  r '  U { l : Lp( t ')}  for some 
r ' ,  t ' ,  p. The operational-sem antics derivation gives s(l) =  NULL, hence validity for 
s(l) gives l : Lo( t ')  and thus e(p) =  0. From the typing derivation for D; r  h s  e :t  
we then  know th a t p =  0, D; r '  h s  e1: t . Applying the induction hypothesis, with 
p =  0 A D  then  yields Validstore(F V (e 1) , r ^ e, s , h )  = ^  Validvai(v,Tne,h ') . From 
F V (e1) C F V (e), Validstore(FV (e), Tn o s,h) ,  e(p) =  0 A D e and lemma 6.7 it follows 
th a t Validvai(v,Tne,h ') .

O S M a tc h -C o n s : In this case e =  match l with \ nil ^  e1 \ cons(hd, t l ) ^  e2 for some
l, h d , t l , e1, e2. The typing context has the form r  =  r '  U { l : Lp( t ')}  for some r ' ,  
t ' ,  p. From the operational semantics we know th a t h .s(l).hd  =  vhd and h .s(l).v tl  
for some vhd and vt l  -  th a t is s(l) =  NULL -  hence, due to  validity of s(l), we have 
l : Lp( t ') for some t ' and e(p) >  1. From the  typing derivation of e we obtain th a t 
D; r ' ,  l : Lp( t ') ,  hd  : t ' ,  t l : Lp -1 ( t ')  h s  e2 : t  Applying the induction hypothesis
yields

r ; eu

V a M ^ F V (e2) ^

U{il : Le(r/)}ne}
Valid vai(v,T ne,h').

hd :=  vhd, 
tl :=  vtl ,h)

Show th a t the l.h.s. of the implication holds. From Validst0r e ( F V ( e ) , , s , h ) ,  
(F V (e2) \  {hd, t l}) Ç F V (e), and lemma 6.7 we obtain

Valid store (F V  (e2) \  {hd, t l}, , s, h)
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Due to  h d , tl €  d o m (s) we can apply lemma 6.6 and get

Validstore(F V (e2) \  {hd, t l}, r o s[hd :=  vhd, tl :=  vt l ],h)

From the validity s(l) =_. (t / )) whd :: wt l , and obvious e(p — 1) =  e(p) — 1 the 

validity of vM and vt l follows: vM whd, vt l h l L ^ ^ / ) ) ^  w tl.
Now Validstore( F V (e2), U {hd  : t ' ,  tl : Lp - 1(T')}ne, s[hd :=  vhd, tl :=  vt l ],h) 

and, hence,
Validvai(v, Tne, h ').

O S F u n A p p : We want to  apply the induction assum ption to  

[z' :=  v 1, . . .  ,zn :=  v„]; h; C h e / w  v; h'.

Let £ (ƒ )  =  t° x . . .  x t,° ^  t ' , the types t° of the formal param eters be 
Lni1 ( . . .  Ln .fc. ( a*) . . . )  respectively, and the types r(z*) of the actual param eters z* 
be LPi1 ( . . .  LPifc. (Tai ) . . . ) ,  where 1 <  i <  n. According to  the typing rule D  h t =
T [. . . a i :=  T«i . . .] [. . . :=  pij . . .].

Since all called in e functions are defined via letfun, there m ust be a node in the 
derivation tree with True, z '  : t° , . . . ,  z^ : t,° h s  e /  : t ' .

We take n and e , such th a t
•  n' (a *) =  n (T«i ̂
•  e' (n j ) =  e(pij).

Thus, r(z j)n e =  (T °)nv , since

(T°)n'e' =  L£'(„i1)(. . .  L£'(n,t! }(n/(«i)) •••) =  Le(Pii)(--- Le(Pifci }(n(Ta  ) • • •) =  (r (zi))ne

True ( “no conditions”) holds trivially on e . From the induction assum ption we 
have

Validstore((z ' , • • • ^  (z'l : Tl°n/e/ , • • • , zn : <  ^  [z'l :=  v ̂  • • • , zn :=  vnh h)
= ^  Validvai(v,Tn'/, h ')

Show th a t the l.h.s. holds. From Validstore( F V ( e ) ,r ne,s ,h )  we have validity of 
the  values of the actual param eters: v* =  , n w* for some w*, where 1 <  i <  k.r n e (zi )
Since r ne(zi ) =  (T°)n/e/ , the left-hand side of the implication holds, and one obtains 
Valid vai (v, T̂ / e/ , h ').

Now, D e implies Tne =  t ' [. . .  a* := Tai . . . ] [ . . .  n j  :=  p j  .. .]ne. Then from the con
struction for n' and e' it follows t ' [...  a* := Tai . . . ] [ . . .  n j  :=  p j  .. .]ne =  t ' [... a* := 
n (T«i) . . .][. . . n jj :=  ) • • .] =  ^

Thus, we have Validvai(v, Tne, h ').
□

3.5. C o m p le te n e s s  o f  th e  ty p e  sy s te m . Recall, th a t the system we consider is con
stitu ted  from zero- and first-order types, typing rules, and Peano arithm etic extended to 
rationals.

The system is not complete in the class of shapely function definitions: there are shapely 
functions for which shapeliness may not be proved by means of the typing rules and the
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arithm etic. In other words, their annotated  type cannot be checked by the system. For 
instance consider the following expression e:

let l =  ƒ (z 1, • • •, zfc) in
let x =  length(l) in if x  then cons(1 , nil) else nil 

where length(x) returns the length of list x. Let p / (n  1, . . . ,  n k) denote the polynomial size 
dependency for the shapely function definition ƒ . I f  ƒ never ou tputs an em pty list, then the 
expression e defines a shapely function, w ith a polynomial size dependency p (n  1, . . . ,  n k) =
1 . Otherwise p (n  1, . . . ,  n k) =  0 when ƒ ou tputs nil. Suppose, there exists a procedure, 
th a t for any instantiation of the expression with ƒ, produces its shapely type, when it is 
shapely, or rejects it otherwise. Then this procedure is capable to  solve 10th H ilbert problem : 
whether there exists a general procedure th a t given a polynomial w ith integer coefficients 
decides if this polynomial has natural roots or n o t .3 Matiyasevich [Mat91] has shown th a t 
such a procedure does not exist. A similar problem is connected w ith match-construct.

We study constructions like above in more detail in section 4.2, devoted to  decidability 
of type-checking. In particular, in lemma 4.1 we show, th a t for any integer polynomial q 
there is a shapely function definition ƒ such th a t its size polynomial p / (n  1, . . . ,  n k) is equal 
to  q2(n 1, . . . ,  n k) and thus p /  has roots if and only if q has roots.

In fact, th is example shows th a t not only our system, but any system using integer 
arithm etic, is not complete in the class of shapely function definitions.

4. T y pe  C hecking

Because for every syntactic construction there is only one typing rule th a t is applicable, 
type checking is straightforw ard. The procedure parses a given function body and reduces 
to  proving equations for rational polynomials. Consider some examples.

4.1. E x a m p le s .

4.1.1. Cartesian product. In the introduction, the Cartesian product was implemented using 
a “sugared” syntax. Here, we present the cprod function in the language defined in section
2 .

letfun cprod(l 1, l2) =  match l 1 with \ nil ^  nil
\ cons(hd, t l) ^  let l' =  pairs(hd, l2) 

in let l'' =  cprod(tl, y) 
in append(l', l'')

in . . .
Functions pairs and append are assumed to  be defined in the core syntax of the language 

as well. Hence, £  contains the following types:
£(append) =  L„(a) x Lm(a) ^  Lra+m(a)
£(pairs) =  a  x Lm(a) ^  Lm(L2(a))
£(cprod) =  Ln(a) x Lm(a) ^ Ln*m (L2(a))

To type-check cprod : Ln (a) x Lm(a) ^  Lm m (L2(a)) means to  check:

3The original formulation is about integer roots. However, both versions are equivalent and logicians 
consider natural roots.
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P r o v e :  z1 : l_ra( a ) , Z2 : Lm(a) h s  ecprod : L«,*m,(L2(a ) ) i 
where ecprod is the function body. This is dem anded by the first branch of the LETFuN-rule. 
Applying the MATCH-rule branches the proof:

N il: n  =  0; Z2 : Lm(a) h s  nil : Ln*m (L2(a))
C ons: hd  : a , Z1 : Ln (a), tl : Ln -1 (a), Z2 : Lm(a) h s

let Z' =  pairs(hd,12) '| 
in let Z'' =  cprod(tl, ¿2  ̂ > : Lm m (L2(a)) 
in append(Z', Z'') J 

Applying the NiL-rule to  the NiL-branch gives n  =  0 h n  * m =  0, which is trivially true. 
The CONS-branch is proved by applying the LET-rule twice. This results in three proof 
obligations:

B in d - l ’: hd  : a , Z2 : Lm(a) h s  pairs(hd, Z2) :t 1 
B in d - l” : tl : Ln- 1(a), Z2 : Lm(a) h s  cprod(tl , ¿ 2) : T2 
B ody : Z' : r ^Z" : T2 h s  append(Z', Z") : L„*m(a)

From the applications of the FuN A pp-rule to  B in d - l ’ and B in d - l” it follows th a t t 1 should 
be Lm(L2(a)) and t 2 should be L(n-1)*m(L2(a)). Lastly, applying the FuN A pp-rule to  B o d y  
yields the proof obligation h n  * m =  m +  (n — 1) * m, which is true  in the axiomatics.

4.1.2. Exam ple with negative coefficients. In contrast to  the system presented by Vasconce
los and Ham mond [VasHam03], where only subtraction of constants are allowed, our system 
allows negative coefficients in size expressions. Of course, this is only a valid size expres
sion (yielded by a to ta l function) if the polynomial maps naturals into naturals. Here, we 
show an example where this is the case. Given two lists, the function “sub trac ts” elements 
from lists simultaneously, till one of the lists is empty. Then, the Cartesian product of the 
rem aining list w ith itself is returned:

sqdiff (Z1, Z2) =
match Z1 with | nil ^  cprod(Z2, Z2)

| cons(hd, t l ) ^  match Z2 with | nil ^  cprod(Z1; Z1) ‘
| cons(hd;, t l ') ^  sqdiff ( t l , t l ')

It can be checked th a t sqdiff has type Ln (a) x Lm(a) ^  L(ra2+m2-2 *ra*m)(L2(a)).

4.2. T y p e  ch eck in g  in  g e n e ra l  is u n d e c id a b le  (ev en  fo r to ta l  fu n c t io n  d e fin itio n s) .
In the examples above, type checking ends up with a set of entailm ents like n  =  0 h n*m  =  0 
or h n  * m =  m +  m * (n — 1) th a t have to  hold. However, we show th a t there is no procedure 
to  check all possible entailm ents th a t may arise. To make type checking decidable, we 
form ulate a syntactical condition on the structure  of a program  expression th a t ensures 
the entailm ents have a trivial form. The condition is as follows: given  a fu n c tio n  body, 
allow pattern-m atch ing  only on the fu n c tio n  param eters or variables bound to them  by other 
pattern-m atchings. Thus, we prohibit expressions like 

let Z =  fo (x 1, . . . ,  ) in match Z with | nil ^  e1
| cons(hd, t l) ^  e2

Pattern-m atching like
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match l with | nil ^  ei
| cons(hd, t l) ^  match tl with | nil ^  ei

| cons(hd;, t l ') ^  e2 
is allowed. Below we explain the reason for this restriction.

We show th a t the existence of a procedure th a t checks all possible entailm ents a t the 
end of type checking is reduced to  H ilbert’s ten th  problem. Type checking is reducible to  a 
procedure for checking if arb itrary  size polynomials of shapely functions have natural roots. 
It tu rns out th a t the la tte r is the same as finding natural roots of integer polynomials.

Consider the following expression eH with free variables l1, . . . ,  lk:
let l =  ƒo(11, . . . ,  lk) in match l with | nil ^  f 1(l1, . . . ,  lk)

| cons(hd, t l) ^  f 2(l1, . . . ,  lk)
We check if it has the type Ln i ( a 1) x . . .  x Lnk(a k) — > Lp(rai)_ rafc)(a),  given th a t ƒ  : 
Ln i ( a 1) x . . .  x Lnk( a k) — > Lpi(ni;...;rak)(a ), w ith i =  0, 1, 2. Then at the end of the type 
checking procedure we obtain the entailment:

Po(«1, . . . ,  n fc) =  0 h p 1( m , . . . ,  n fc) =  p ( n 1, . . . ,  n fc).
Even if p and p 1 are not equal, say p 1 =  0 and p  =  1, it does not mean th a t type checking 

fails; it might not be possible to  enter the “bad” nil-branch. To check if the nil-branch is 
entered means to  check if p0 =  0 has a solution in natural numbers. Thus, a type-checker 
for any size polynomial p0 m ust be able to  decide if it has natu ral roots or not.

Checking if any size polynomial has roots in natural numbers, is as difficult as checking 
whether an arb itrary  polynomial has roots or not. F irst, we prove the  following lemma.

L e m m a  4.1. For any polynom ial q there is a total shapely fu n c tio n  defin ition  ƒ such that 
its size dependency p /  ( n1, . . . ,  n k) is equal to q2( n1; . . . ,  n k).

Proof. F irst, note th a t any polynomial q may be presented as the difference q1 — q2 of two 
polynomials w ith non-negative coefficients4. So, q2 =  (q1—q2) 2 is a size polynomial, obtained 
by superposition of sqdiff w ith q1 and q2. Here q1 and q2 are size polynomials w ith positive 
coefficients for corresponding compositions of append and copyfirst : Ln (a) x Lm(a) ^  
\-n*m{ot) (see subsection 5.1) functions. □

Summing up the constructions above we obtain the following statem ent:

L e m m a  4.2. I f  there exists a type-checker tha t fo r  any fu n c tio n  defin ition  and its type an
no ta tion  is able to accept or reject the annotated type correctly, then  there exists a procedure 
tha t fo r  any integer polynom ial q (n1, . . . ,  n k) decides i f  it has natural roots or not.

Proof. Suppose th a t such type checker exists. Consider the expression eH above with f 0, 
f 1, f 2 defined as follows. Using lemma 4.1, construct a function definition f 0 th a t has a 
size dependency q2(n 1; . . . ,  n k). Now let f 1 be defined by the expression nil and let f 2 be 
defined by cons(1 , nil).

The type checker accepts e#  w ith the type annotation p =  1 if and only if the nil-branch 
is not entered, th a t is if and only if q2(n 1; . . . ,  n k) has no roots. Trivially, q2(n 1; . . . ,  n k) 
has roots if and only if q(rii, . . . ,  rik) does. □

4If q = x i1 ...x kk , then qi = >oail ,...,ifc x^  . ..x ] k , and
<°lai1,...,ifc |xl1 . . . x k •
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So, existence of a general type-checker reduces to  solving H ilbert’s ten th  problem. 
Hence, type checking is undecidable.

We can show this in a more constructive way using the stronger form of the undecid
ability of H ilbert’s ten th  problem: for any type-checking procedure I  one can construct 
a program  expression, for which I  fails to  give the correct answer. We will use the  re
sult of Matiyasevich who has proved the following: there is a one-param eter Diophantine 
equation W (a, n 1, . . . ,  n k) =  0 and an algorithm  which for given algorithm  A  produces a 
num ber a a  such th a t A  fails to  give the correct answer for the question w hether equation 
W (aA, n 1, . . . ,  n k) =  0 has a solution in (n1, . . . ,  n k). So, if in the example above one takes 
the function ƒ  such th a t its size polynomial po is the square of the W ( a j , n 1, . . . ,  n k) and 
p = 1 ,  p 1 =  0, then  the type checker I  fails to  give the correct answer for eH .

An anonymous reviewer pointed out th a t the construction from lemma 4.1 dem onstrates 
a problem with real arithm etic, when it is used to  check numerical entailm ents, generated 
by the type checker. Suppose we want to  omit the syntactic restriction and type check the 
expression eH where the  size dependency for ƒ  is p0(n) =  (n2 — 2)2. A real-arithm etic- 
based version of the checker rejects eH , since there is a real root for p0 and in this abstract 
in terpretation the nil-branch with 1 =  0 m ust be considered. In fact, the expression is 
well-typed with annotation p =  1, since there is no natu ral roots for p0 and the nil-branch 
is never entered.

For checking a particular expression it is sufficient to  solve the corresponding sets of 
D iophantine equations. Type checking depends on decidability of D iophantine equations 
from D  in any entailm ent D  h p =  p ', where p is not equal to  p ' in general (but might be 
if the equations from D  hold). If we have a solution for D  we can substitu te  this solution 
in p and p '. If a solution over variables n 1, . . . , n m, n m+1, . . . , n k is a set of equations 
n  =  qi(nm+1, . . . ,  n k) where 1 <  i <  m, then the expressions for m  can be substitu ted  into 
p =  p ' and one trivially checks the equality of the two polynomials over n m+1, . . . ,  n k in 
the axiomatics of the rational field. Recall th a t two polynomials are equal if and only if the 
coefficient at monomials with the same degrees of variables are equal.

4.3. S y n ta c t ic a l  c o n d it io n  fo r d e c id a b il i ty . The simplest way to  ensure decidability is 
to  require th a t all equations in D  have the form n  =  c, where c is a constant. This would 
in particular exclude the example e#  from above. As we will see below, this requirem ent 
can be fulfilled by imposing the syntactical condition for program  expressions, prohibiting  
pattern  m atching on variables other than fu n c tio n  param eters and bounded to them  by other 
pattern  m atchings.

It is easy to  see th a t any function body th a t satisfies the syntactic condition may be 
encoded in the language defined by the refined gram m ar  where the  let-construct in e is 
replaced by let x  =  b in e„omaicft:

B asic  b ::= c \ x binopy \ nil \ cons(z, l) \ ƒ (z1, . . . ,  zn )
E xpr  e ::= b

\ let z =  b in enomatch
\ if x  then e1 else e2 
\ match l with i ni l ^  e1

i cons(hd, t l) ^  e2 
\ letfun ƒ (z1, . . . ,  zn ) =  e1 in e2 
\ letextern ƒ (z1, . . . ,  zn ) in e1
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with
enomatch :— b

\ let z =  b in e'nomatch 
\ if x then e'nomatch else e™match 
\ letfun ƒ (z1, . . . , zn ) =  e in e'nomatch 
\ letextern ƒ (zl , . . . , z„ ) in e'nomatch

The gram m ar is more restrictive than  the syntactic condition. However, any function body 
th a t satisfies the condition may be encoded in this gram m ar. For instance, an expression 

let l' =  ^ ( z )  in match l with \ nil ^  ^ ( l ,  l ')
\ cons(hd, t l) ^  ƒ2(l, l ')

and the expression
match l with \ nil ^  let l' =  ^ ( z )  in ƒ1(l, l')

\ cons(hd, t l) ^  let l' =  ƒ0 (z) in ^ ( l ,  l ') 
define the same m ap of lists.

For this reason we call the refined gram m ar the “no-let-before-m atch” gram m ar, and 
roughly refer to  the syntactic conditions as to  the “no-let-before-m atch” condition. The 
demo version of the type checker, accessible from w w w . a h a . c s . r u . n l , uses the “no-let- 
before-m atch” gram m ar.

T h e o re m  4.3. Let a program expression  e sa tisfy the refined gram mar, and let us check 
the ju d g em en t True; x 1 : Tf , . . . ,  x k : t£  h^  e : t . Then, at the end o f the type-checking  
procedure one has to check en ta ilm ents o f the fo rm  

D  h p ' =  p,
where D  is a set o f equations o f the fo rm  n  — c =  0 fo r  som e n  € F V S ( t°  x . . .  x t£ ) and  
constant c and p, p ' are polynom ials in  F V S ( t°  x . . .  x Tf).

Sketch  o f the proof. Consider a path  in the type checking tree which ends up with some 
D  h p ' =  p and let an equation q =  0 belongs to  D. It means th a t in the path  there is the 
nil-branch of the pa tte rn  m atching for some l : Lq( t ).

By induction on the length of the path , one can show th a t q =  n  — c for some size 
variable n  € F V S  ( t 1 x . . .  x Tk) and some constant c. This uses the fact th a t follows from 
the syntactic condition: the program  variables which are not free in a program  expression 
and pattern-m atched may be introduced only by another pattern-m atching, bu t not a let- 
binding. The technical report [ShvKvE07a] contains the full proof.

Of course, the syntactical condition of the theorem  may be relaxed. One may allow 
expressions with pattern-m atching in a let-body, assuming th a t functions th a t appear in 
let-bindings, like ^ ,  give rise to  solvable D iophantine equations. For instance, when p0 is a 
linear function, one of the variables is expressed via the others and constants and substitu ted  
into p1 =  p. Another case when it is easy to  check if there are natu ral roots for p0 =  0 or 
not (and find them  if “yes”) is when p0 is a 1-variable polynomial. We leave relaxations of 
the condition for future work.

5. T y p e  In fer e n c e

Here we discuss type inference under the  syntactical condition defined in the previous 
section. Since we consider shapely functions, there is a way to  reduce type inference to  type- 
checking using the well-known fact th a t a finite polynomial is defined by a finite num ber

http://www.aha.cs.ru.nl
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of points. The procedure presented in this section was sketched by us in [ShvKvE07b] and 
given in details and evaluated w ith a series of measurem ents in [vKShvE07].

For each size dependency from the ou tpu t type of a given function definition one assumes 
th a t it is a polynomial and one guesses its degree. Then, to  obtain the coefficients of the 
polynomial of this degree, the function definition is evaluated (preferably in a sand-box) 
as many times as the num ber of coefficients the polynomial has. This finite num ber of 
input-output size pairs defines a system of linear equations, where the  unknowns are the 
coefficients of the polynomial. W hen the sizes of the input d a ta  satisfy some criteria known 
from polynomial interpolation theory [Chui87, Lor92] (see the  subsections below for more 
detail), the system has a unique solution. Input sizes th a t satisfy these criteria, which are 
nontrivial for m ultivariate polynomials, can be determ ined algorithmically.

In this way we find using interpolation theory the interpolating polynomial for the size 
dependency. If the size dependency is a polynomial function and the hypothesis about its 
degree is correct, then  it coincides w ith its interpolating polynomial. To check if this is the 
case, the interpolating polynomial is given to  the type checking procedure. If it passes, it 
is correct. Otherwise, one repeats the procedure for a higher degree of the size dependency. 
S tarting with degree zero5, the m ethod iteratively constructs the interpolating polynomials 
until the correct polynomial is found. It does not term inate when
(1) the function under consideration does not term inate on test data,
(2) the function is non-shapely,
(3) the function is shapely but the type-checker rejects it due to  the type-system ’s incom

pleteness (see section 3.5).
The m ethod infers polynomial size dependencies for a nontrivial class of shapely func

tions. For instance, standard  type inference for the underlying type system yields th a t the 
function cprod has the underlying type L(a) x L(a) — > L(L(a)).  Adding size annotations 
with unknown ou tpu t polynomials gives cprod : Ln (a) x Lm(a) — > LP1 (Lp2 (a)). We assume 
p 1 is quadratic so we have to  com pute the coefficients in its presentation:

p 1(n, m) =  a0;0 +  a0)1n  +  a 1)0m +  a 1)1nm  +  a0;2n 2 +  a 2;0m 2 

R unning the function cprod on six pairs of lists of length 0, 1, 2 yields: 

n  m  h  Z2 cprod(Zi,Z2) p i ( n ,m )  p2(n, m )
0 0 [] [] [] 0 ?
1 0 [0] [] [] 0 ?
0 1 [] [0] [] 0 ?
1 1 [0] [1] [[0, 1]] 1 2
2 1 [0,1] [2] [[0, 2], [1, 2]] 2 2
1 2 [0] [1, 2] [[0,1], [0, 2]] 2 2

The first three rows of the table are examples of incom plete m easurem ents, where the  size of 
the inner list is unknown, because the outer list is empty. The last three rows are complete 
m easurem ents.

5On can also start with a higher degree. If the degree of the solution happens to be lower than the initial 
degree, the solution will still be found since the found coefficients will be zero at the right places.
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The test table defines the following linear system for the outer ou tpu t list:

a0,0 =  0 
a0,0 +  &0,1 +  00,2 =  0 
00,0 +  a 1,0 +  02,0 =  0 

0-0,0 +  0-0,1 +  0-1,0 +  0-0,2 +  01,1 +  02,0 =  1 
00,0 +  200,1 +  01,0 +  400,2 +  201,1 +  02,0 =  2 
00,0 +  00,1 +  201,0 +  00,2 +  201,1 +  402,0 =  2

The unique solution is 0 1,1 =  1 and the rest of coefficients are zero. To verify whether 
the interpolation is indeed the size polynomial, one checks if cprod : Ln (a) x Lm(a) — > 
Ln*m(L2(a)). This is the case, as was shown in section 4.1.

As an alternative way of finding the coefficients, one could try  to  solve directly the 
(recurrence) equations defined by entailm ents D  h p =  p th a t arise during construction of 
the type-inference tree for a function definition. As we will see in subsection 5.1, it amounts 
to  solving systems th a t are nonlinear in general. By combining testing with type checking 
we bypass nonlinear systems [vKShvE07].

However, test-based inference has a drawback: it is not fully static. The procedure has 
dynamic aspects, since it is done not only in the underlying logic of the type system (i.e. 
Peano arithm etic), bu t it involves executing the in terpreter of the program ming language. 
A consequence of it may be th a t inference for function definitions with external calls is 
based on the semantics of another language. W hen the size dependency of the external 
function is known, this can be avoided by
•  modifying the in terpreter of our language in such a way, th a t in the case of an external 

call it creates a “fake” object of the  right size (the size of the result of “th is” external 
call), or

•  leaving the in terpreter in intact, and creating for any external function from its sized type 
a “fake” function body in our language w ith the same size dependency as the external 
function.

From an engineering point of view, the advantage of the second approach is th a t a standard 
in terpreter can be used directly. We discuss the mechanism of generating “fake” functions 
in 5.8.

Ideally, one would like to  remove all dynamic aspects from type inference. In our current 
research towards fully static inference we consider a modification of the m ethod where 
instead of the in terpreter of the program ming language one uses an abstract interpreter in 
the form of a term -rew riting system of which the rewriting rules will correspond to  equations 
in Peano arithm etic. For instance, progression is interpreted as p(n) ^  n + p(n — 1) together 
with p(0) ^  0. We have presented prelim inary results in the technical report [ShvE0T8].

5.1. M o tiv a tio n  fo r te s t -b a s e d  in fe re n c e . Consider, as an example of the complexity 
of systems generated by conventional type inference, the system for a function definition 
nonlinear w ith auxiliary functions:

copy: L„(a) ^  L„(a)
copyfirst: Lni (a) x  L„2 (a) ^  Lni*„2 (a)
sqdifFauX: Lni (a ) x  L«2 (a )  ̂ Ln1+n2 — 2*ni*n»2 (a )
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where (in the sugared syntax6)

letfun copy(l) =  match l with | nil ^  nil
| cons(hd, t l ) ^  cons(hd, copy(tl)) 

in letfun copyfirst^ , 12) =  match 12 with | nil ^  nil
| cons(hd, t l) ^  11 ++ copyfirst(11, t l) 

in letfun sqdiffaux(11, 12) =  match 11 with | nil ^  copyfirst(12, 12)
| cons(hd, t l ) ^  

match 12 with | nil ^  copyfirst(11, 11)
| cons(hd;, tl ' ) ^  sqdiffaux(t l , t l ' ) 

in letfun nonlinear(11, 12) =  match 11 with | nil ^  copyfirst(copyfirst(12, 12), [1. . .  4])
| cons(hd, t l) ^  

match 12 with | nil ^  copyfirst(copyfirst(11, 11), [1. . .  4]) 
| cons(hd;, t l ') ^  

sqdiffaux(nonlinear(tl, 12) ++11, nonlinear(11, t l ') ++12) 
++ copyfirst(copyfirst(11, 12), [1. . .  17])

in . . .

The inference procedure ends up w ith the following recurrence system:

p (0 ,n 2)
p (n i, 0 ) 
p ( « i , « 2)

4n2
4nf (1)

=  (p(ni -  1 , « 2) +  « i  -  (p(ni, «  -  1) +  « 2 ))2 +  17ni«,2
The problem is to fin d  p, assuming, say, th a t it is quadratic.

A standard  way of solving this problem uses the m ethod of unknown coefficients. A 
polynomial to  find, p ( n i , n 2), is presented in the form ao>o +  ao,i n i +  a i;on2 +  a i;in i n 2 +  
ao,2« i +  a 2,o«2 and substitu ted  into (1). Equating the corresponding coefficients of the 
polynomials from the left and right sides of the equations from (1) gives

0, ai,o =  0, a2,o =  4, ao,i =  0, ao,2 =  4ao,o
ao,2
a 2,o
a i,i
ao,i
a i,o
ao,o

(a i,i — 2ao,2 +  1)2 
(2a 2,o — a i,i — 1)2
2(ai,i — 2ao,2 +  1)(2a2,o — &i,i — 1) +  17 
2 ((a i,o — ao,i) +  (ao,2 — a 2,o))(a i,i — 2ao,2 +  1) 
2 ((a i,o — ao,i) +  (ao,2 — a 2,o))(2a 2,o — a i,i — 1) 
((a i,o — a o,i) +  (ao,2 — a 2,o))2

Substitu ting the coefficients ao>o =  0, a i>o =  0, a2>o =  4, ao>i =  0, ao>2 =  4 in the 
rem aining equations one obtains the non-linear system

0 ! 1 — 1401,1 +  45 — 0 
202 1 — 2701,1 +  81 =  0 

The solution of this quadratic system can be found easily. It is 0 1,1 =  9.

6Recall, that in the sugared syntax we use f  (g(z)) for “let z' = g(z) in f  (z')” and, moreover, use [1.. .c] 
for c-ary application of cons(-, —) to nil, so that [1... 3] denotes cons(1, cons(2, cons(3, nil))). We also use 
the infix ++ for append.
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In general, non-linear systems may be hard to  solve. W ith the testing approach we 
avoid solving nonlinear systems w.r.t. polynomial coefficients a j . Instead, we com pute the 
coefficients solving the linear system th a t is generated after testing.

1 zi ■ zd-1  
' z i zd \ a i

1 Z2 ■ zd-1Z2 d
z2 a 2

1 Zd ■ zd-1Zd d
Zd ad

1 Zd +i ■ zd-1  
' zd+1 zd+ i / \a d + i )

5.2. I n te r p o la t in g  a  p o ly n o m ia l. A hypothesis for a type is derived autom atically by 
fitting a polynomial to  the size data, as it was shown in the example cprod. We are looking 
for the polynomial th a t best approaches the data, i.e., the polynomial interpolation. The 
polynomial interpolation exists and is unique under some conditions on the data, which are 
explored in polynomial interpolation theory [Chui87, Lor92].

For 1-variable interpolation this condition is well-known. A polynomial p(z) of degree 
d w ith coefficients 0 1, . . . ,  0d+1 can be w ritten  as follows:

01 +  02 z +  . . .  +  0d+1 zd =  p(z)

The values of the polynomial function in any pairwise different d +  1 points determ ine a 
system of linear equations w .r.t. the polynomial coefficients. More specifically, given the set 
(zi,p(zi)) of pairs of numbers, where 1 <  i <  d + 1 , and coefficients 0 1, . . .  , 0d+1, the set of 
equations can be represented in the following m atrix  form, where only the 0 i are unknown:

(  P(z1) \
P(Z2)

P(Zd)
V K z m V

The determ inant of the left m atrix, contains the measurement points, is called a Vander- 
m onde  determ inant. For pairwise different points z1, . . . ,  zd+1 it is non-zero. This means 
th a t, as long as the ou tpu t size is m easured for d +  1 different input sizes, there exists a 
unique solution for the system of equations and, thus, a unique interpolating polynomial.

The condition under which there exists a unique polynomial th a t interpolates m u lti
variate  d a ta  is not trivial. We form ulate it in the next subsection. Here we introduce the 
necessary definitions.

Recall th a t a polynomial of degree d and dimension k (the num ber of variables) has 
N f  =  (d+fc) coefficients. Let a set of values ƒ  of a real function ƒ be given. A set W  =  (wi : 
i =  1 , . . . ,  N k } of points in a real k-dimensional space forms the  set of in terpolation nodes if 
there is a unique polynomial p(z) =  £o<|j|<d0jz j w ith the to ta l degree d w ith the property 
p(Wi) =  /¿, where 1 <  i <  N k. In this case one says th a t the  polynomial p  interpolates the 
function ƒ at the nodes

The condition on W, which assures the  existence and uniqueness of an interpolating 
polynomial, is geometrical: it describes a configuration, called N C A  [Chui87], in which 
the points from W  should be placed in . The m ultivariate Vandermonde determ inant 
com puted from such points is non-zero. Thus, the corresponding system of linear equations 
w .r.t. the polynom ial’s coefficients has a unique solution. In the following subsections we 
show how to  generate a collection of natural-valued  nodes Wi in an N C A  configuration. A 
Vandermonde determ inant is com puted by the same formula in reals and naturals, so the 
system of linear equations based on natu ral nodes will have a unique (rational) solution.
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Figure 1: (a) A node configuration th a t has a unique two-dimensional polynomial interpola
tion (b) A more system atic node configuration th a t has a unique two-dimensional 
polynomial interpolation (c) Incomplete measurem ents complicate finding a node 
configuration (d) Incomplete measurem ents for the pairs in the ou tpu t of cprod.

5.3. M e a s u r in g  b iv a r ia te  p o ly n o m ia ls . For a two-dimensional polynomial of degree d, 
the condition on the nodes th a t guarantees a unique polynomial interpolation is as follows 
[Chui87]:

D e f in itio n  5.1. N j  nodes forming a set W  C R 2 lie in a 2-dim ensional N C A  configuration  
if there exist lines 71 , . . . ,  Yd+ 1 in the space R 2, such th a t d +  1 nodes of W  lie on Yd+ 1 and 
d nodes of W  lie on Yd \  Yd+1, ..., and finally 1 node of W  lies on y 1 \  (y2 U . . .  U Yd+1).

An example of such a configuration for integers is given in figure 1a.
Nodes satisfying this condition can be found autom atically: if the ou tpu t type of a 

given function definition is LP1 ( . . .  LPs ( a ) . . . ) ,  then for the outerm ost-list size p 1 choose a 
triangle of nodes on parallel lines, like in figure 1b .

An example of the two dimensional case is the  cprod function above. As we have seen, 
the procedure of reconstructing the size polynomial p 1 for the outer list is straightforward. 
However, there is a problem for p2. There are cases in which nodes have no correspond
ing ou tpu t size (the question-m arks in the table th a t refer to  incomplete measurements). 
M easurements for p 2 may be incomplete, because the size of the inner lists can only be 
determ ined when there is at least one such a list. Thus, the outer list may not be em pty for 
complete measurem ents. As can be seen in figure 1d , for cprod o u tp u t’s outer list is empty 
when one of the two input lists is empty. In the next section, we show th a t, despite this, it 
is always possible to  find enough measurem ents and give an upper bound on the num ber of 
natural nodes th a t have to  be searched.

5.4. H a n d lin g  in c o m p le te  m e a s u re m e n ts . In general, for Lp1 ( . . .  LPs( a ) . . . )  we will not 
find a value for pj a t a node if one of the outer polynomials, p 1 to  pj - 1 , is zero at th a t node. 
Thus, the nodes where p 1 to  pj - 1  are zero should be excluded from the testing process. 
Here, we show th a t, despite this, it is always possible to  find enough nodes using finite 
search.

First, nested outpu t lists of which the size of the outer list is the constant zero, e.g. 
Lo(LP2 ( a ')), need special treatm ent. If a type-checker rejects annotations for p 1 =  0 and 
arbitrary p 2 then  the outer polynomial p 1 is not a constant zero. (Recall the definition of 
D  h T =  t '. )

Now, let the outer polynomial p 1(x,y) be not a constant zero. Then there is a finite 
num ber of lines y =  i, which we will call root lines, where p 1(x, i) =  0 .
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L e m m a  5.2. A  polynom ial p 1(x, y) o f degree d that is n o t constant 0 has at m ost d root 
lines y =  i, such tha t p 1(x, i) =  0 fo r  all x .

Proof. Suppose there are more th an  d root lines. Then, it is easy to  pick 1 , . . . ,  d +  1 nodes 
on d +  1 root lines. They trivially are in N C A  configuration. W ith  these nodes, a t which 
p 1(x,y)  =  0 , the system of linear equations for the coefficients of p 1 will have the zero
solution, th a t is, all the coefficients of p 1 will be zeros. This contradicts the assum ption 
th a t p \  is not constant 0 . □

Using the lemma, we can bound the num ber of parallel lines y =  i and nodes on them  
th a t have to  be searched. Essentially, we are to  find a triangle configuration of nodes, like 
on figure 1b , skipping all crosses, see 1c .

L e m m a  5.3. W hen looking fo r  nodes fo r  a polynom ial p 2(x,y) tha t determ ine a unique  
polynom ial interpolation at places where another polynom ial p 1(x,y) =  0 , it is su ffic ien t to 
search the lines y =  0 , . . . ,  y =  d 1 +  d2 in  the square [0 , . . . ,  d 1 +  d2] x [0 , . . . ,  d 1 +  d2].

Proof. For the configuration it is sufficient to  have d2 +  1 lines y =  i w ith a t least d2 +  1 
points where p 1(x,y) =  0. Due to  lemma 5.2 there are a t most d1 lines y =  i such th a t 
p 1(x, i) =  0, so a t least d2 +  1 are not root lines for p 1. The polynomial p 1 (x, j ), with 
y =  j  not a root line, has a t most degree d1, thus y =  j  contains a t most d1 nodes (x, j ), 
such th a t p 1(x, j ) =  0. Otherwise, it would have been constant zero, and thus a root line. 
Hence, this leaves a t least d2 +  1 points on these lines for which p \  is not zero. □

This straightforw ardly generalizes to  all nested types LP1 ( . . .  LPs ( a ) . . . )  w ith polynomi
als in two variables. If we want to  derive the coefficients of p^, searching the square of input 
values [0 , . . . ,  Xj= 1dj ] x [0 , . . . ,  Xj= 1d j] suffices, where dj is the degree of p j . Each pj has 
at most dj root lines, so there are at most E j-^ d j root lines for p 1, . . .  ,p i-1 . Also, each of 
the p j can have at most dj zeros on a non root line. Hence, since the length of the search 
interval for p  ̂ is S j= 1dj +  1 , there are always d̂  +  1 values known.

Eventually, it is enough to  search in [ 0 , . . . ,  S s= 1dj ] x [0 , . . . ,  S s= 1d j].
For cprod there are two size expressions to  derive, p 1 for the outer list and p 2 for the 

inner lists. Deriving th a t p 1(n 1, n 2) =  n 1 * n 2 is no problem. Because p 1 has roots for n 1 =  0 
and for n 2 =  0 , these nodes should be skipped when measuring p 2 (see figure 1d ).

5.5. G e n e ra liz in g  to  k -d im e n s io n a l p o ly n o m ia ls . The generalization of the condition 
on nodes for a unique polynomial interpolation to  polynomials in k  variables, is a straight
forward inductive generalization of the two-dimensional case. In a hyperspace there have to 
be hyperplanes, on each of which nodes lie th a t satisfy the condition in the k — 1 dimensional 
case. A hyperplane Kk may be viewed as a set in which test points for a polynomial of
k — 1 variables of the degree j  lie. There m ust be N ^-1  =  N j  — N j- 1 such points. The 
condition on the nodes is defined by:

D e f in itio n  5.4. The N C A  configuration fo r  k variables (k -d im ensiona l space) is defined
inductively on k [Chui87]. Let | z 1, . . . ,  zNk} be a set of d istinct points in R k such th a td
there exist d +  1 hyperplanes K j , 0 <  j  <  d with

zNdk_1+ 1, . . . , ^N^ € K l
ZN k 1 + ^  . . . , ZN k € \  {K j+1 U . . .  U K | }  for 0 <  j  <  d — 1

J  — 1  1 3  j  j  \
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and each of set of points zNk + 1, . . . ,  zNk, 0 <  j  <  d, considered as points in R k 1 satisfies 

N C A  in R k-1 .

For instance, given d =  2 and k =  3 (i.e. interpolating by polynomials of 3 variables of 
degree 2 ), the following collection of N |  =  (2+3) =  10 nodes, placed on parallel planes in 
R 3, satisfies an N C A  configuration:
(1) on the plane x =  0 take the “triangle” of N f =  6 points (0 , 0 , 0 ), (0 , 0 , 1), (0 , 0 , 2), 

(0 , 1, 0 ), (0 , 1 , 1), (0 , 2 , 0 ),
(2) on the plane x =  1 take the  “triangle” of N 2 =  3 points (1, 1, 0), (1, 0, 1), (1, 1, 1),
(3) on the plane x =  2 take the point (2, 0, 0).
Here the nodes on each of the planes lie in the 2-dimensional N C A  configurations con
structed for degrees 2 , 1 and 0 respectively.

Similarly to  lines in a square in the two-dimensional case, parallel hyperplanes in R k 
have to  be searched while generating hypothesis for a nested type. Using a reasoning similar 
to  the two-dimensional case one can show th a t it is always sufficient to  search a hypercube 
with sides [0 , . . . ,  S s= 1d j].

5.6. A u to m a tic a l ly  in fe r r in g  s iz e -aw a re  ty p e s :  th e  p ro c e d u re . The type checking 
procedure and the size hypothesis generation can be combined to  create an inference pro
cedure. The procedure starts  w ith assuming a fixed degree. The assum ptions is th a t this 
degree is the maximum degree of all polynomials in the type. If checking rejects the  hypoth
esis generated for this degree, the degree is increased and the test-check cycle is repeated. 
The procedure is semi-algorithmic: it term inates only when the function is well-typable.

Recently, we have developed a dem onstrator for the inference procedure described in 
[vKShvE07]. It is accessible on w w w . a h a . c s . r u . n l .

For any shapely program, the underlying type (the type w ithout size annotations) 
can be derived by a standard  type inference algorithm  [Mil78]. After straightforwardly 
annotating input sizes w ith size variables and ou tpu t sizes w ith size expression variables, 
we have for example

cprod : Lm (a) x Ln,2 (a) * Lp1(n1 ,«.2) (LP2(«1 ,n2)(a))
To derive the size expressions on the right hand side we use the following procedure. 

F irst, the maximum degree of the occurring size expressions is assumed, starting  w ith zero. 
Then, a hypothesis is generated for each size expression, from p 1 to  p s. After hypotheses 
have been obtained for all size expressions they are added to  the type and this hypothesis 
type is checked using the type checking algorithm . If it is accepted, the type is returned. If 
not, the procedure is repeated for a higher degree d.

The schema below shows the procedure in pseudo-code. The TryIncreasingDegrees 
function generates (by G etSizeA w areType) and checks (by C heckSizeAw areType) hypothe
ses. A size expression is derived by selecting a node configuration (G e tN o d eC o n f), running 
the tests for these nodes (R u n T es ts ), and deriving the size polynomial from the test results 
(D eriveP olynom ia l).

http://www.aha.cs.ru.nl
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Function: T r y I n c r e a s i n g D e g r e e s  
Input: a  deg ree  d, a  fu n c tio n  d e fin itio n  f  
Output: th e  size-aw are ty p e  of t h a t  fu n c tio n

TRYlNCREASINGDEGREES(d, f )  =
let type  = I n f e r U n d e r l y i n g T y p e ^ )

atype  = ANNOTATEW lTHSlZEVARIABLES(iype)
VS  =  GETOUTPUTSlZEVARIABLES(aiype)
stype  = G e tS iz e A w a re T y p e (c Z , f , atype, vs, [ ]) 

in  if (CHECKSiZEAwARETYPE(si?/pe, f ) )  th e n  stype  
else T r y I n c r e a s i n g D e g r e e s ^ + I ,  f )

Function: G e t S i z e A w a r e T y p e  
Input: a  deg ree  d,

a  fu n c tio n  d e fin itio n  f , 
i ts  a n n o ta te d  ty p e , 
a  lis t o f u n k n o w n  size a n n o ta tio n s , 
a n d  th e  p o ly n o m ia ls  a lre a d y  d eriv ed  

Output: th e  size-aw are ty p e
o f t h a t  fu n c tio n  if th e  deg ree  is h igh  en o u g h  

G e t S i z e A w a r e T y p e ^ ,  f ,  atype, [ ], ps)  =
ANNOTATEW iTHSiZEExPRESSiONs(aiype, ps)  / /  T h e  E n d  

G e t S i z e A w a r e T y p e ^ ,  f ,  atype, v .vs, ps)  =  
le t nodes =  G e tN o d e C o n f ( c Z ,  atype, p s )  

results  =  R u N T E S T s(f , nodes)
p  =  D e r iv e P o ly n o m ia l ( c Z ,  v, atype, nodes, results)  

in  G e t S i z e A w a r e T y p e ^ ,  f ,  atype, vs, p:ps)

If a type is rejected, this can mean two things. F irst, the assumed degree was too low and 
one of the size expressions has a higher degree. T ha t is why the procedure continues for a 
higher degree. Another possibility is th a t one of the size expressions is not a polynomial (the 
function definition is not shapely) or th a t the type cannot be checked due to  incompleteness 
of the type system. In th a t case the  procedure will not term inate. If the function is well- 
typable, the procedure will eventually find the correct size-aware type and term inate.

A collection of examples -  function definitions together with size m easurem ents -  is 
presented in [vKShvE07].

5.7. C o m p le x ity  o f  h y p o th e s e s -g e n e ra t in g  p h a se . Given a function definition, its un
derlying first-order type and a m aximal degree of hypothetical polynomials, the complexity 
of its hypothesis-generating phase depends on three param eters:
•  the  nestedness s >  0 of the ou tpu t type which may be either LP1 ( . . .  LPs ( I n t ) . . . )  or

LP1 (. . . LPs (a) . . .),
•  the  fixed maximal degree d of the polynomials p 1, . . . ,  ps ,
•  the  num ber of size variables k defined by the input type of the function.

To generate hypothesis for p 1(n 1, . . . ,  n k) one
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(1) generates N^ =  (k+d) natural-valued nodes inductively on k; it is done by the definition 
5.4 of N C A  configuration for the k-variable case (note th a t for k =  1 it is ju st the 1
dimensional nodes 0, . . . , d).

(2) generates a collection of N ^ concrete inputs w ith the sizes, defined by the nodes,
(3) evaluates the function body N^ =  (k+d) times on these inputs,
(4) solves the system of N^ linear equations to  obtain N^ coefficients for p 1.

Generating hypotheses for a p j , j  >  1, is similar. However, generating the collection
Nk =  (k+d) nodes is more complicated, since nodes sending some p j/ , j '  <  j ,  to  zero are 
excluded. In the worst case, to  find correct nodes, one needs to  evaluate a k dimensional 
cube w ith side [0, . . . ,  jd], th a t is to  evaluate (to check if it has a zero value) j  — 1 polynomials 
in a t most ( jd  +  1)k nodes.

Thus, for each 1 <  j  <  s the  complexity is bounded by cevaiP1,...,Pj _ 1 +  cevaiPj +  cgauss, 
where
•  cevaiP1,...,Pj _ 1 =  (j — 1) ■ ( jd  +  1)k evaluations of polynomials,
•  cevalPj =  Nk =  (k+d) evaluations of the function definition,
•  cgauss — o ( N k 2) is the complexity of Gaussian elimination.

If the results of evaluations of polynomials on the j - th  step are memoised, then  alto
gether for j  =  1 , . . .  s one needs at most (s — 1) ■ (sd +  1)k evaluations of polynomials. 
Thus, the complexity of the hypotheses-generating phase for all j  =  1, . . . s together is 
(s — 1) ■ (sd + 1 ) k +  s ■ (*+ * )+  s ■ O (( k' i d ) 2).

5.8. I n h a b i ta n ts  fo r th e  ty p e s  o f  e x te r n a l  fu n c tio n s . Let fext be an external function. 
Since the  function is external, its code is not present in our language. However, its first-order 
type may be available. We have to  tru s t this type since we cannot check it.

For inference of types of other functions th a t somewhere call fext, our testing procedure 
requires the possibility to  evaluate w ithin our language the code of the external function. 
Such code can be made available in our language by constructing an inhabitant of the type
of fext .

For our dem onstrator, an alternative solution would be to  create an actual external call 
for each occurrence of an external function. This may require more im plem entation effort 
w ithin the dem onstrator. The type inference procedure might take more tim e because the 
external function may require more tim e to  execute than  the generated inhabitants of the 
type. Therefore, we prefer to  work w ith inhabitants (which yields the same size dependencies 
as using external functions directly). For reasons of m odularity it might even be worthwhile 
to  also create inhabitants of internal functions (e.g. in the case of using an interface to  a 
huge, tim e intensive library).

Below, we show how to  construct in our language a function f which is an inhabitant of 
a given type of an external function. It is not necessary to  dem and th a t f and the external 
function are equal as set-theoretic maps. They m ust have the same size dependency, i.e. 
the same type.

Let fext have the type L«(a) ^  LP(«)(a). We define the body of f by the following 
program  expression:

match l with | nil ^  nil

| cons(hd, t l) ^  gem h d , p(p)(length(l)) ]
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Now we explain the subexpressions in the nil- and cons-branches. In the nil-branch the 
expression returns the em pty list. This is the only choice, due to  the following “folklore” 
property (which to  our knowledge was not published earlier).

L e m m a  5.5. A n y  total polym orphic fu n c tio n  g : L(a) ^  L(a) m aps the em pty list to the 
em pty list.

Proof. We prove this property using the “free” theorem  map(a) o ga =  ga / o map(a) from 
[Wad05], which holds for all a : a  ^  a '.  Here map : (a  ^  a ')  ^  L(a) ^  L (a ') lifts 
a to  lists, and ga denotes the instantiation of g w ith type a . Suppose the opposite: ga 
sends nil to  [hd . . .  stop], and ga/ sends nil to  [hd' . . .  stop ']. Then map(a) o ga sends nil to 
[a(hd) . . .  a(stop )] and ga/ o map(a) sends nil to  [hd' . . .  stop ']. It is not the case th a t for all 
a one has a (hd) = hd '. □

It is a routine exercise to  extend this “property for free” to  nested lists.
In the cons-branch we use a straightforw ardly defined function gen(z, x) : a  x I n t  ^  

L(a) th a t ou tputs a list of z-s of length x if x is non-negative and does not term inate 
otherwise. We also use a function generator p, th a t given a polynomial p, generate a 
function definition p(p) : I n t  ^  I n t  such th a t p(p)(n) =  p(n). It is easy to  see th a t for 
any non-em pty list l of length n  the composition gen(hd, p(p)(length(l))) term inates if fext 
term inates. It follows from the fact th a t if fext term inates on l then p(n) >  0, since p(n) is 
the length of the corresponding output.

6 . C o n c lu s io n  a n d  F u r t h e r  W o rk

We have presented a natural syntactic restriction such th a t type checking of a size-aware 
type system for first-order shapely functions is decidable for polynomial size expressions 
w ithout any lim itations on the degree of the polynomials.

A non-standard, practical m ethod to  infer types is introduced. It uses run-tim e results 
to  generate a set of equations. These equations are linear and hence autom atically solvable. 
The m ethod term inates on a non-trivial class of shapely functions.

6.1. F u r th e r  w o rk . The system is defined for polymorphic lists. Recently, it has been 
shown [TaShvE08] how to extend the system to  ordinary inductive types (no nested induc
tive definitions).

An obvious lim itation of our approach is th a t we consider only shapely functions. In 
practice, one is often interested to  obtain upper bounds on space complexity for non-shapely 
functions. A simple example, where for a non-shapely function an upper bound would be 
useful, is the function to  insert an element in a list, provided the list does not contain 
the element. At present we have been studying checking and inference of size annotations 
in the form of collections of piecewise polynomials th a t represent a t least all possible size 
dependencies. For instance, insert is annotated  w ith {p(n) =  n  +  ¿}0<i<1, and delete is 
annotated  w ith {p(n) =  n  — i}0<i< 1. Such collections may be potentially infinite, like in the 
case of recursive application of insert w ith {p(n, m) =  n + i } 0<i<m. Here, involvement of real 
arithm etic is inevitable in type checking. As for inference, when one is interested in strict 
( “principal type”) and polynomial lower and upper bounds, pmin and pmax respectively, it is 
possible to  extend our testing procedure to  obtain them . Then, one checks the hypothesis
in the form {pmin +  i}0<i<(Pmax Pmin).
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We plan to  allow both  unsized integers and adding non-trivial sizes to  integers. The size 
of a non-negative sized integer is taken to  be its value. This allows to  type such functions 
as init : I n t n ^  Ln ( In t) ,  which on the integer n  ou tputs the list of 1 of length n. W ith 
sized integers one can type such function definitions w ithout introducing dependent types. 
Hence, the decision how to  add sizes to  integers is connected to  the problem of using sized 
and non-sized types w ithin the same system. We leave it for fu ture work based e.g. on 
[VasHam03] and [JaySek97].

Addition of o ther d a ta  structures and extension to  non-shapely functions will open the 
possibility to  use the system for an actual program ming language.

Application of the methodology to  estim ate stack and tim e complexity is considered as 
a topic for fu ture projects.
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A p p e n d ix : auxiliary  lemmata  fo r  soundness  pr o o f

L e m m a  6.1 (A program  value’s footprint is in the heap). R (h , v) C d o m (h).

Proof. The lemma is proved by induction on the size of the (domain of the) heap h. 
d o m (h) =  0: Then no l  € d o m (h) exists and R (h , v) =  0.
d o m (h) =  0: v =  c o r  v =  NULL: Then R (h , v) =  0, which is trivially a subset of 

dom  (h).
v =  l  a n d  d o m (h) =  (d o m (h) \  {l}) U {l}: From the definition of R  we get R (h , l)  =  

{l} U R ( h |dom(h)\{i}, h.l.hd) U R ( h |dom(h)\{i}, h . l . t l ) .  Applying the induc
tion hypotheses we derive th a t R ( h |dom(h)\{i}, h.l.hd) C d o m (h |dom(h)\{i}) and 
R ( h |dom(h)\{i}, h . l . t l )  C d o m (h|dom(h)\{i}). Hence, R (h , l) C d o m (h).

□
L e m m a  6.2 (Extending a heap does not change the footprints of program  values). I f  
l  /  d o m (h) and h ' =  h[l.hd :=  vhd, l . t l  :=  vt i] fo r  som e  vhd, vt i then  fo r  any v =  l  one 
has R (h , v) =  R (h ', v).

Proof. The lemma is proved by induction on the size of the (domain of the) heap h.
d o m (h) =  0: Since h ' =  [l.hd =  vhd, l . t l  :=  vt l ] and v =  l  we have v €  {l} =  d o m (h ').

Therefore, R (h , v) =  0 =  R (h ', v). 
d o m (h) =  0: We proceed by case distinction on v.

v =  c o r  v =  NULL: Then, R (h , v) =  0 =  R (h ', v).
v =  l ' : If l '  /  d o m (h), then  due to  l '  =  l  we have l '  /  d o m (h) as well and 

R (h , v) =  0 =  R (h ', v).
Let l '  € d o m (h). From the definition of R  we get

R (h , l ') =  { l' } U R (h | dom(h)\{l'}> h .l '.hd) U R ( h |dom(h)\{l'}> h *l '. t l ) .

Due to  h '( l ') =  h ( l ') and

h |dom(h')\{l'} ^d o m (h)\{l'}[l-hd : vhd, l -t l  : vt l ],
and the induction assum ption one has

R ( h |dom(h)\{l'}, h ‘l  -hd) R (h  |dom(h')\{l'}, h -l  -hd)
R ( h |dom(h)\{l'}, h ‘l  •t l )  R (h  |dom(h')\{l'}, h -l  •t l )

So,

R (h ', l ' ) =
{l } U R (h  |dom(h')\{l'}, h -l  .hd) U R (h  |dom(h/)\{l/}, h .l  .t l )
{l } U R ( h |dom(h)\{l/}, h •l  -hd) U R ( h |dom(h)\{l/}, h •l  .t l )

=  R (h , l ' ).

□



34 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

L e m m a  6.3  (Extending heaps preserves model relations).
For all heaps h  and h!, i f  h! | dom(h) =  h then  v |=h. w im plies  v |=h. w.

Proof.
The lemma is proved by induction on the structure  of t •.

t • =  I n t :  In this case, v is a constant c and w =  c, hence v |=h. w by the definition. 
t • =  Ln. (t v/): We proceed by induction on n V.

n V =  0: In this case, v =  NULL and w =  [], hence v |=h. w by the definition. 
n V =  m V +  1: By the  definition v is a location I  and I  |=h (_ t/) whd :: wt i forLm*+1(' )

some whd and wtl  such th a t
I  € dom  (h),

h .l.hd  |=hidom(h)\ {£} whd, 

h . l . t l  |=hm.7r . ' \ {£} w tl

We want to  apply the induction assum ption, with heaps h | dom(h)\{i}, h |  dom(h/)\{l } 
(as “h” and “h ” respectively). The condition of the lemma is satisfied because

h 1 dom (h/)\ {l} 1 dom (h|dom(h)\{£})
h 1 dom (h/)\{l} 1 dom (h)\{l} 
h 1 dom (h)\{l} h| dom (h)\{l}

Thus, we apply the induction assum ption and with h .l  =  hM  obtain 

I  € dom  ( h ),

hM .hd |= ; > m(h/)\ {l} whd,
7 / o . -i I h |dom(h/)\{l}
h -l -t l  K „ ,.( / . . )  wti

Then, I  |=h/ (_t/) whd :: wt l  by the definition.Lm*+1(' )
□

L e m m a  6 .4  (The model relation for v depends only on values in the footprint of v). 

For v, h, w , and t •, the relation  v |= ^  w im plies  v |=hR(h’ v) w.

Proof. The lemma is proved by induction on t •.

t • =  I n t :  By the definition, v is a constant c and thus w =  c. Then v |=hR(h’ v) w. 
t • =  Ln. ( t •): We proceed by induction on nV

t • =  L0 ( t • '): By the  definition v =  NULL and w =  []. Then v |=hR(h’ v) w. 
t^  =  Lm.+ i ( t ^ '): By the  definition v =  l .  Then l  |=h (_ /̂) w means th a t 

w =  whd :: wt l  for some whd and wt l , and 

l  € dom  (h),

h .l.hd  |=h^dom(h)\ {£} whd,

h . l . t l  |=im.°7r^//){£} w tl

We apply the induction assum ption, w ith the heap h | dom(h)\{i}:
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l  € d o m (h),
i f f , ,  I h|dom(h)\ {£}|R(h|dom(h)\{£}’ h-£-hd)h .l.hd  | t ./ whd,
h - . h|dom(h)\ {l}|R(h|dom(h)\{£}> h-l-tl)
h .l .t l  =  Lm. (t•/) w tl

Due to  R ( h |dom(h)\{i}, h.l.hd) C d o m (h) \  {l} (lemma 6.1) we have

h|dom(h)\ {l}|R(h|dom(h)\{£}, h-l -hd) =
=  h | R(h| dom(h)\{£}> h-l -hd) =
=  h|R(h|dom(h)\{l}> h-l -hd)\ {l}.

Similarly h|dom (h)\ {l} |R(h|dom(h)\{l}> h-l -tl) =  h|R(h|dom(h)\{l}> h-l -t l) \ {l}.
Due to  l  € R (h , l) , and lemma 6.3 -  w ith R ( h |dom(h)\{i}, h.l.hd) \  {l} C 
R (h , h.l.hd) \  {l}, we have

l  € dom  (hR(h, i)),
h| I h|R(h h.i.hd)\{i} wh |R(h, l).l .hd I— t •/ whd,
h |R (h ,i) . l . t l  =  (T./h)£.hd)\ {£} w tl

Thus, l  = hlR(h’(l)./) whd :: w tl.Lm. + 1( ' )
□

L e m m a  6.5  (Equality of footprints implies equivalence of model relations).
I f  h|R(h, v) =  h'|R(h, v) then v = w im plies v = w.

Proof. Assume v j = w .  Lemma 6.4 states th a t this implies v j=hiR(h’ v) w. Assuming

h|R(h, v) =  h'|R(h, v) we get v =  hJ R(h’ v) w. Since d o m (h'|R(h, v)) =  d o m (h|R(h, v)) =  
R (h , v) we have h '|dom(h/|R(h v)) =  h '|R(h, v) and we may apply lemma 6.3, which gives
v \= y. w. □

L e m m a  6 .6  (Extending a store preserves the validity of the store).
Given a ground context store s, heap h, value v, a set o f variables vars and a variable 

x  €  vars, s.t. x  €  d o m (s), one has

Validstore(va rs , T^,s[x := v],h) Validst0re(vars, T^, s ,h)

Proof. The lemma follows from the definition of Validstore- □

L e m m a  6 .7  (Weakening for valid stores).
G iven a set o f variables vars 1, ground context r%  stack s, and heap h, fo r  any set o f 
variables vars2 such that such tha t vars2 C vars 1 one has

Validstore(vars 1, T^, s ,h)  = ^  Validstore(va rs2, T^, s ,h)

P ro o f The lemma follows from the definition of Validstore- □

L e m m a  6 .8  (Validity for the disjoint union of sets of variables). For any store s and a 
ground context r  one has

Validstore(vars 1 U vars2, T^, s, h) Validstore(vars 1, r^ , s, h) A Validstore(vars2, r , s, h) 

Proof. The lemma follows immediately from the definition of a valid store. □
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