
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/76008

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/76008

Logical Methods in Computer Science
Vol. 5 (2 :10) 2009, pp. 1-35
www.lmcs-online.org

Submitted Jan. 4 ,2006
Published May 25, 2009

P O L Y N O M IA L S IZ E A N A L Y S IS
O F F IR S T -O R D E R S H A P E L Y F U N C T IO N S *

OLHA SHKARAVSKA “, MARKO VAN EEKELEN b, AND RON VAN KESTEREN c

“ Institute for Computing and Information Sciences, Radboud University Nijmegen
e-mail address : shkarav@cs.ru.nl

b Institute for Computing and Information Sciences, Radboud University Nijmegen and Faculty of
Information Science, Open University of the Netherlands
e-mail address : marko@cs.ru.nl and marko.vaneekelen@ou.nl

c Alten Nederland, Consulting and Engineering in Advanced Technology
e-mail address : ronvankesteren@gmail.com

A b s t r a c t . We present a size-aware type system for first-order shapely function defini
tions. Here, a function definition is called shapely when the size of the result is determined
exactly by a polynomial in the sizes of the arguments. Examples of shapely function defi
nitions may be implementations of matrix multiplication and the Cartesian product of two
lists.

The type system is proved to be sound w.r.t. the operational semantics of the language.
The type checking problem is shown to be undecidable in general. We define a natural
syntactic restriction such that the type checking becomes decidable, even though size
polynomials are not necessarily linear or monotonic.

Furthermore, we have shown that the type-inference problem is at least semi-decidable
(under this restriction). We have implemented a procedure that combines run-time testing
and type-checking to automatically obtain size dependencies. It terminates on total typable
function definitions.

1998 ACM Subject Classification: F.4.1[Mathematical logic and formal languages]: Mathematical logic -
Lambda calculus and related systems, Logic and constraint programming; F.2.2 [Analysis of algorithms and
problem complexity]: Non-numerical algorithms and problems; D.1.1 [Programming techniques]: Applicative
(functional) programming. General Terms: Algorithms, Verification.

Key words and phrases: Shapely Functions, Size Analysis, Type Checking, Type Inference, Diophantine
equations, Polynomial Interpolation.

* This paper is an extended version of the paper [ShvKvE07b], presented at the TLCA conference in 2007.
The paper is extended by the full soundness proof and the full presentation of the type-inference procedure
from [vKShvE07]. Moreover, in the presented version we consider rational size polynomials instead of integer
ones.

a This research is sponsored by the Netherlands Organisation for Scientific Research (NWO), project
Amortised Heap Space Usage Analysis (AHA), grantnr. 612.063.511.

o n
I I— C l LOGICAL METHODS
b a i IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (2:10) 2009

© O. Shkaravska, M. v. Eekelen, and R. v. Kesteren
© Creative Commons

http://www.lmcs-online.org
mailto:shkarav@cs.ru.nl
mailto:marko@cs.ru.nl
mailto:marko.vaneekelen@ou.nl
mailto:ronvankesteren@gmail.com
http://creativecommons.org/about/licenses

2 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

1. I n tr o d u ctio n

We explore typing support for checking size dependencies for shapely first-order function
definitions (functions for short). The shapeliness of these functions lies in the fact th a t the
size of the result is a polynomial in term s of the argum ents’ sizes.

1.1. V a r ie ty o f re s o u rc e a n a ly s is te c h n iq u e s . This research is a part of the Amortised
Heap Space Usage Analysis (AHA) project [vEShvK07]. E stim ating heap consum ption is an
active research area as it becomes more and more of an issue in many applications, including
program ming for small devices, e.g. sm art cards, mobile phones, embedded systems and
d istributed computing.

Am ortization is a promising technique to obtain accurate bounds of resource consump
tion and gain. An amortised estim ate of a resource does not target a single operation but a
sequence of operations. One assigns some amortised cost to an operation. This amortised
cost may be higher or lower than the operation’s actual cost. For the sequence considered,
it is im portant th a t its overall amortised cost covers its overall actual cost. An amortised
cost of the sequence lies between its actual cost and the simple m ultiplication of the worst-
case of one operation by the length of the sequence. An amortised cost of the sequence is
in many cases easier to com pute than its actual cost and it is obviously better th an the
worst-case estim ate.

Combining am ortization with type theory allows to infer linear heap-consum ption
bounds for functional programs with explicit memory deallocation [HofJost03]. The A H A
project aims to adapt this m ethod for non-linear bounds w ithin (lazy) functional programs
and transfer the results to the object-oriented programming. Contrary to linear amortised
bounds, to obtain non-linear heap estim ates one does need to know sizes of structures th a t
takes part in com putation, see, for instance [vEShvK07].

The AHA project seems to be part of an emerging trend since a growing num ber of
works are addressing resource analysis. Here we m ention some of them.

In [AmZil] the authors develop new m ethod to statically (polynomially) bound the
resources needed for the execution of systems of concurrent threads. The m ethod gener
alises an approach designed for first-order functional languages th a t relies on a combination
of standard term ination techniques for term rewriting systems and an analysis of the size
of the com puted values based on the notion of a polynomial quasi-interpretation. Quasi
interpretations were applied to size analysis firstly in [BonMarMoy05b]. In [AvMoSch08]
the authors describe a fully autom ated tool th a t implements a few techniques th a t directly
classify run-tim e complexity (i.e. techniques th a t use the num ber of rewrite steps as com
plexity measure), including polynomial quasi-interpretations.

Several groups have studied program ming languages with im plic it com putational com
plexity (ICC) properties. This line of research is m otivated both by the perspective of
autom ated complexity analysis, and by foundational goals, in particular to give natural
characterisations of complexity classes, like PTIM E or PSPACE. In [Gir92] characterisa
tion of PTIM E is given in term s of bounded linear logic. In [GabMarRon08] one proposes
a characterization of PSPACE by means of an extension of (soft affine) typed lam bda cal
culus. For this extension, the authors design a call-by-name evaluation machine in order
to com pute programs in polynomial space. In [AtBailTer07] one addresses the problem of
typing lam bda-term s in a variant of second-order light linear logic. The authors give a
procedure which, starting w ith a term typed in system F, determines whether it is typable

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 3

in the logic. It is shown th a t the procedure can be run in tim e polynomial in the size of the
original Church typed system F term .

Resource analysis may be performed w ithin a Proof C arrying Code framework. In
[AsMcK06] one introduces the notion of a resource policy for mobile code to be run on
sm art devices. Such a resource policy is integrated in a proof-carrying code architecture.
Two forms of policy are used: guaranteed policies which come with proofs and target policies
which describe limits of the device.

In [AlArGenPuebZan07] one describes resource consum ption for Java bytecode by
means of Cost Equation Systems (CESs), which are similar to, bu t more general than
recurrence equations. CESs express the cost of a program in term s of the size of its in
put data. In a further step, a closed form (i.e., non-recursive) solution or upper bound can
sometimes be found by using existing Com puter Algebra Systems, such as Maple and M ath
ematica. This work is continued by the authors in [AlArGenPueb08], where mechanisms
of constructing solutions of CESs and upper bounds are studied closely. They consider
monotonic cost expressions only.

In [Ben01] the au thor describes the A utom ated Complexity Analysis P ro to type (ACAp)
system for autom ated tim e analysis of functional programs. Symbolic evaluation of recursive
programs generates systems of multi-variable difference equations, which are solved using
M athem atica.

In [GuMeCh09] the authors describe a technique for com puting symbolic bounds on
the num ber of statem ents a procedure executes in term s of its inputs and user defined
size functions. The technique is based on m ultiple counter instrum entation th a t allows to
com pute linear bounds individually for each counter. The bounds on these counters are
then composed to generate to ta l bounds th a t are non-linear and disjunctive.

1.2. E x p lo r in g size d e p e n d e n c ie s . In this paper we restrict our attention to a language
w ith polymorphic lists as the only data-type. For such a language, this paper develops a
size-aware type system for which we define a fully autom atic type checking and inference
procedure.

A typical example of a shapely function in this language is cprod th a t computes the
Cartesian product of two sets, stored as lists. It is given below. The auxiliary function
pairs creates pairs of a single value and the elements of a list. To get a Cartesian product
the function cprod does this for all elements from the first list separately and appends the
resulting interm ediate lists. Furtherm ore, the function definition of append is assumed:

cprod(1i , 12) = match li with | nil ^ nil
| cons(hd, t l) ^ append(pairs(hd,12), cprod(tl,12))

where

pairs(x, l) = match I with | nil ^ nil
| cons(hd, t l) ^ let l' = cons(x, cons(hd, nil))

in cons(1', pairs(x, t l))
Given two lists, for instance [1, 2, 3] and [4, 5], it returns the list w ith all pairs

created by taking one element from the first list and one element from the second list:
[[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]. Hence, given two lists of length n and m, it always
returns a list of length nm containing pairs. This is expressed by the type Ln (a) x Lm (a) ^
Ln*m(L2(a)).

4 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

Shapeliness is restrictive, bu t it is an im portant foundational step. It makes type
checking decidable in the non-linear case and it allows to infer types “out-of-the-box” , since
experim ental points are positioned exactly on the graph of the polynomial. Exact sizes
will be used in future work to derive low er/upper bounds on the ou tpu t sizes. We need
such bounds for investigating amortised resource bounds in the AHA project. Nonlinear
amortised resource consum ption relies on the size of input data, and its gain is calculated
based on the size of output.

In this paper our only concern is in sizes of input and ou tput. For instance, the tim e
and space complexity of a function definition with a polynomial input-output size depen
dency may exceed polynomial space and tim e consum ption due to internal structures and
com putations.

1.3. R e la te d w o rk o n size a n a ly s is . Inform ation about input-output size dependencies
is applied to tim e and space analysis and optim ization, because run tim e and heap-space
consum ption obviously depend on the sizes of the d a ta structures involved in the compu
tations. Knowledge of the exact size of d a ta structures can be used to improve heap space
analysis for expressions w ith destructive pa tte rn matching. Amortised heap space analysis
has been developed for linear bounds by Hofmann and Jost [HofJost03]. Precise knowl
edge of sizes is required to extend this approach to non-linear bounds. Another application
of exact size information is load d istribution for parallel com putation. For instance, size
information helps to d istribu te a storage effectively and to safely store vector fragments
[Chat90].

The analysis of (exact) input-output size dependencies of functions itself has been ex
plored in a series of works. Some interesting work on shape analysis has been done by Jay
and Sekanina [JaySek97]. In this work, a shapely program expression is translated into a
corresponding abstract program expression over sizes. Thus, the dependency of the result
size on the argum ent sizes has the form of a program expression. However, deriving an
arithm etic function from it is beyond the scope of their work.

Functional dependencies of sizes in a recurrent fo rm may be derived via program anal
ysis and transform ation, as in the work of H errm ann and Lengauer [HerLen01], or through
a type inference procedure, as presented by Vasconcelos and Hammond [VasHam03]. Both
results can be applied to non-shapely functions, higher-order functions and non-linear size
expressions. However, solving the recurrence equations to obtain a closed-form solution is
left as an open problem for external solvers. In the second paper monotonic bounds are
studied.

To our knowledge, the only work yielding closed-form solutions for size dependencies
is limited to monotonic dependencies. For instance, in the well-known work of Pareto
[Par98], where no n -stric t sized types are used to prove term ination, monotonic linear upper
bounds are inferred. There linearity is a sufficient condition for the type checking procedure
to be decidable. In the series of works on polynomial quasi- [BonMarMoy05b] and sup-
interpretations [MarPech] one studies max-polynomial upper bounds. The checking and
inference rely on real arithm etic. In general, (inference) synthesis procedures are exponential
w .r.t. the size of a program. For m ultilinear polynomials in m ax-p lus-algebra it is shown
to be of polynomial complexity [Am05].

Our approach differs two-fold. Firstly, quasi-interpretations give monotonic bounds.
W ith non-monotonic size dependencies polynomial quasi-interpretations may lead to signif
icant over-estimations. Secondly, to get exact bounds we use rational arithm etic instead of

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 5

real arithm etic. Our m otivation for this choice lies in the fact th a t one should use decidabil
ity procedures in reals w ith care, if one applies them to integers or naturals. For instance,
x 2 < x 3 holds in naturals, bu t not in reals, since it does not hold on 0 < x < 1 .

The approaches summarized in the previous paragraphs either leave the (possibly un-
decidable) solving of recurrences as a problem external to their approach, or are limited to
monotonic dependencies.

1.4. C o n te n t o f th e p a p e r . In this work, we go beyond monotonicity and linearity and
consider a type checking procedure for a first-order functional program ming language (sec
tion 2) w ith polynomial size dependencies (section 3).

In subsection 3.1 we define zero-order types and their set-theoretic semantics. In sub
sections 3.2 and 3.3 we define first-order types and give typing rules respectively. The
soundness of type system w .r.t. the operational semantics of the language is studied in
subsection 3.4. The type system is not complete in the class of all shapely functions, and
no such complete system exists (subsection 3.5).

In section 4 we show th a t type checking is reduced to the entailm ent checking over
D iophantine equations. Type checking is shown to be undecidable in general (subsection
4.2). However, type-checking is decidable under certain syntactic condition for function
bodies (subsection 4.3).

We define in detail a m ethod for type inference in section 5. It term inates on a non
trivial class of shapely functions. It does not term inate when either the function under
consideration does not term inate, or it is not shapely, or its correct size dependency is
rejected by the type-checker due type-system ’s incompleteness.

Finally, in section 6 we overview the results and discuss further work.

2. La nguage

The typing system is designed for a first-order functional language over integers and
(polymorphic) lists.

The syntax of language expressions is defined by the following gram m ar (the example
in the introduction used a sugared version of this syntax):

B asic b ::= c | x binopy | nil | cons(z,1) | ƒ (z i , . . . , zn)
E xpr e ::= b

| let z = b in e1
| if x then e1 else e2
| match l with i ni l ^ ei

i cons(z, l ') ^ e2
| letfun ƒ (z1, . . . , zn) = e1 in e2
| letextern ƒ (z1, . . . , zn) in e1

where c ranges over integer constants, z, x, y, l denote zero-order program variables (x and
y range over integer variables, l possibly decorated with sub- ans superscripts, ranges over
lists and z ranges over program variables when their types are not relevant), binop is one of
the four integer binary operations: + , —, div, mod, and ƒ denotes a function name.

The syntax distinguishes between zero-order let-binding of variables and first-order
letfun-binding of functions. In a function body, the only free program variables th a t may

6 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

occur are its param eters: F V (e1) C {z1, . . . , z n }. The operational semantics is standard,
therefore the definition is postponed until it is used to prove soundness (section 3.4).

We prohibit head-nested let-expressions and restrict sub-expressions in function calls
to variables to make type-checking straightforward. Program expressions of a general form
may be equivalently transform ed to expressions of this form. It is useful to th ink of the
presented language as an interm ediate language.

For practical reasons and in order to support m odularity, we introduce a letextern
declaration , which makes it possible to call functions implemented in other modules th a t
may be defined in other languages.

3. T y p e Sy stem

We consider a type system, constituted from zero- and first-order types, corresponding
typing rules for program constructs and Peano arithm etic extended to rational numbers as
(classes of equivalence of) pairs of integers, rational addition and m ultiplication 1.

3.1. Z e ro -o rd e r ty p e s a n d th e i r s e m a n tic s . Sized types are derived using a type and
effect system in which types are annotated w ith size expressions. Size expressions are
polynomials representing lengths of finite lists and arithm etic operations over these lengths:

SizeE xpr p ::= Q \ n | p + p | p — p | p * p

where Q denotes rational numbers, and n, possibly decorated with sub- and superscripts,
denotes a size variable, which stands for any concrete size (natural num ber). For any natural
num ber k, n k denotes the k-fold product n * . . . * n.

Size expressions are rational polynomials th a t m ap natural numbers into natural num-
n (n + 1)

bers. For instance, the polynomial p (n) = ----------- represents the size dependency of the
function progression:

progression(l) = match l with \ nil ^ nil
\ cons(hd, t l) ^ append(progression(tl), l)

For example, it maps [1, 2, 3] on [3, 2, 3, 1, 2, 3]. The outpu t size dependency is given by
the arithm etic progression 0 + 1 + . . . + (n — 1) + n, where n is the size of an input. This
explains the name of the function [vKShvE07].

Zero-order types are assigned to program values, which are interpreted as integer num
bers and finite lists. A list type is annotated with a size expression th a t represents the
length of the list:

Types t ::= I n t \ a \ Lp (t)
where a is a type variable. This structure entails th a t if the elements of a list are lists
themselves, then all these element-lists m ust be of the same size. Thus, instead of lists
it would be more precise to talk about matrix-like structures. For instance, the type
L6(L2(In t)) is given to a list whose elements are all lists of exactly two integers, such
as [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]].

1 Rational addition is defined as — + — = a<̂ . Rationals with their addition and multiplication formb d bd
a field, more precisely a field of integer fractions.

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 7

It is easy to see th a t for all m the types L0 (Lm(ln t)) are equal, because they represent
the singleton containing []. The same holds for L0 (Lm(a)). This induces a natu ral equiv
alence relation on types. For instance Lq(L0 (Lp(a))) = Lq(L0 (Lp/(a))) . The equivalence
expresses the fact th a t the size of a list is not relevant when such a list does not exist,
because an outer list is empty. Now, we define formally an entailm ent D h t = t ', where D
is a conjunction of equations between polynomials. The definition is inductive on t . The
entailm ent D h t = t ' holds if and only if
• t = t ' = I n t or t = t ' = a for some type variable a;
• t = Lp (t '') and t ' = Lp/ (t ''') have the same underlying type (i.e. the type w ith annotations

om itted) and
(1) D h p = p ', and
(2) D h p = 0 or D h t ' ' = t ' ' ' ,

w ith D h p = q being an arithm etical entailm ent, meaning V n .D (n) ^ p(n) = q(n), where
n is the collection of all size variables taken from D, q and p. For instance,

m = 0 h Ln+m(a) = Ln(a) and
m — 1 = 0 , n = 0 h Ln+m-i(L2 (a)) = Ln(L3(a))

hold, whereas n = 0 h Ln+m -1(L2(a)) = Lm -1(L3(a)) does not.
The sets F V (t) and F V S (t) of the free type and size variables of a type t are defined

inductively in the obvious way. Note, th a t F V S (L0 (Lm(a))) = 0, since the type is equivalent
to L0 (L0 (a)).

Zero-order types w ithout size or type variables are ground types:
GTypes t • ::= t such th a t F V S (t) = 0 A F V (t) = 0

In our semantic model a heap is essentially a collection of locations i th a t can store list
elements. A location is the address of a cons-cell each consisting of a hd-field, which stores
the value of a list element, and a tl-fie ld , which contains the location of the next cons-cell
of the list (or the NULL address). Formally, a program value is either an integer constant, a
location, or the NULL-address. A heap is a finite partial m apping from locations and fields
to program values:

Val v ::= c \ I \ NULL i € Loc c € I n t
Hp h : Loc ^ {hd, t l } ^ Val

We will write h .i.hd and h . i . t l for the results of applications h i hd and h i t l , which
denote the values stored in the heap h at the location i a t fields hd and t l , respectively.
Let h[i.hd := vh, i . t l := vt] denote the heap equal to h everywhere bu t in i , which at the
hd-field of i gets value vh and at the tl-fie ld of i gets value vt .

The semantics w of a program value v is a set-theoretic in terpretation w ith respect to a
specific heap h and a ground type t . It is given via the four-place relation v = w, where
integer constants interprets themselves, and locations are interpreted as non-cyclic lists:

c I Int c
NuLLl=ho(r•) n
i • (T•) whd :: wt l iff n > 1 , i € d o m (h),

h .i.hd |= I•dom(h)\íl> whd,

h . i . t l w tl

8 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

where n is a natural constant and h \ dom(i)\{i} denotes the heap equal to h everywhere
except for i , where it is undefined.

3.2. F i r s t - o r d e r ty p e s . F irst-order types are assigned to shapely functions over values of
a zero-order type. Let t ° denote a zero-order type of which the annotations are all size
variables. F irst-order types are then defined by:

F Types t f ::= t ° x . . . x t °° ^ Tn+1
such th a t F V S (Tn+1) C F V S (t°) U ■ ■ ■ U F V S (t°)

For instance, one expects th a t the following function definitions (in the sugared syntax2)
will be well-typed in the system:

append : Ln(a) x Lm(a) ^ Ln+m(a)
append(11, 12) = match 11 with \ nil ^ 12

\ cons(hd, t l) ^ cons(hd, append(tl, 12))

pairs : a x Ln(a) ^ Ln(L2(a))
pairs(x, 1) = match 1 with \ nil ^ nil

\ cons(hd, t l) ^ let 1' = cons(x, cons(hd, nil))
in cons(1', pairs(x, t l))

cprod : Ln (a) x Lm(a) ^ Ln*m(L2(a))
cprod(11,12)match 11 with \ nil ^ nil

\ cons(hd, t l) ^ append(pairs(hd,12), cprod(tl,12))

sqdiff : Ln (a) x Lm(a) ̂ L(n2+m2-2*n*m) (L2(a))
sqdiff(11, 12) = match 11 with \ nil ^ cprod(12, 12)

\ cons(hd, t l) ^ match 12 with \ nil ^ cprod(11, 11)
\ cons(hd', t l) ^ sqdiff (t l , tl!)

For total functions the following condition is necessary: fo r all instan tia tions * of size
variables w ith them selves or zeros, the inclusion F V S (*Tn+1) C F V S (* t°) U ■ ■ ■ U F V S (* t°)
holds. Consider, for instance, the first-order type Ln (Lm(a)) ^ Lm(Ln (a)), where on nil in
put, i.e. w ith n = 0, the input type degenerates to L0(Lm(a)) = L0(L0(a)) bu t the outer list
of the ou tpu t m ust have length m. This m becomes unknown being “hidden” in L0(Lm(a)).
Thus, this first-order type may be accepted w ithout the condition above, once a function
of this type is partial and undefined on em pty lists. Since the type Ln (Lm(a)) ^ Lm(Ln (a))
may be assigned to an im plem entation of n x m -m atrix transposition, undefinedness on nil
may be interpreted as an exception “cannot transpose an em pty m atrix” .

A context r is a m apping from zero-order variables to zero-order types. A signature
£ is a m apping from function names to first-order types. The definition of F V S (—) is
straightforw ardly extended to contexts.

2In the sugared syntax we use f (g(z)) for “let z' = g(z) in f (z')”

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 9

3.3. T y p in g ru le s . A typing judgem ent is a relation of the form D; r h s e : t , where D is
a conjunction of equations between polynomials. D is used to keep track of size information.
In the current language, the only place where size information is available is in the nil-branch
of the match-rule. The signature £ contains the type assum ptions for the functions th a t
are called in the expression under consideration. The typing judgem ent relation is defined
by the following rules:

ICONST ^ „ ------ — ------ — —;-------n --------- IBlNOPD; r h s c : I n t D; r , x : I n t , y : I n t h s x binop y : I n t

D h p = 0 D \ - t = t ' v

D ; T h s n i l : L p (r) L D ; T , z : t h s z : t '-p\

D h p = p ' + 1
D; r , hd : t , tl : Lp (t) h s cons(hd, t l): Lp (t) C ons

D; r , x : I n t h s et : t
D; r , x : I n t h s e / : t

D; r , x : I n t h s if x then et else e / : t

z | rdom (r)
D; r h s ei : Tz

D] T, h s e2 : r
-D; T h s let z = e \ in e2 : r ^ ET

I f

p = 0 , D; r , l : Lp (t ') h s enil : t
h d , tl ^ d o m (r) D; r , hd : t ' , l : Lp(t ') , tl : Lp -1 (t ') h s econs :t

--------- ^ ^ ,----------- — — — — H------------------------------------- M atchD; I , l : Lp(t ') h s match l with | nil ^ eni| :t

| cons(hd, t l) ^ econs

The rule L e t F un dem ands th a t all letfun-defined functions, including recursive ones,
m ust be in the dom ain of the signature, and the corresponding first-order type m ust pass
type-checking:

£ (ƒ) = T1 X • • • X Tn ^ Tn+ 1
True; z i : t^, . . . , h s ei : t„+ i

D] T b s e2 : t '

D; T h s letfun f (z \ , . . . , z n) = e i in e2 :t ' ^ e t F u n
However, in practice we do not prohibit calls to functions th a t are not defined via

letfun. If a function coming from a tru sty external source together w ith its first-order type
is declared via letextern, one applies the L e t E x te r n rule:

S (f) = Tl x • • • x t ° ^ t „+ 1
D; r h s e : t '

L e t E x ter n
D; r h s letextern ƒ (z 1, . . . , zn) in e : t '

W hen proving soundness we require all functions to be defined via letfun w ithin an expression
under consideration.

0 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

In the FuN App-rule, 0 computes the substitu tion * from its first argum ent (whose
size expressions are always variables since they are taken from the first-order signature of
the function) to its second argum ent, and the set C of equations over size expressions from
^ ' x ■ ■ ■ x Tk. The set C contains p = p ' if and only if the expressions p and p ' are substitu ted
to the same size variable. For instance, if a function dotprod : Lm(ln t) x Lm(ln t) ^ I n t
is called w ith actual param eters of the types Ln+n/+2(In t) and Ln+3(In t) , then C contains
the equation n + n ' + 2 = n + 3.

(*, C) = 0(T° x ■ ■ ■ x T°, T1' x ■ ■ ■ x Tn')
^ (/) = ^ x . . . x r ° ^ r B+i D h r'n+l = *(rn+i) D h C

D] V , Z i \ T i , . . . , Z n \ T n ' h S f (z i , . . . , Z k)\Tn+i UN ?P

In the example w ith the call of dotprod the equation n + n ' + 2 = n + 3 holds if D contains
n ' — 1 = 0 .

As another example of the FunA pp-ru le consider the recursive call append(tl, 12) in the
definition of append:

£(append) = Ln(a) x Lm(a) ^ Ln+m(a)
T =

l 2 : \ - m (a) h s a p p e n d (i / , ¿2) : r F u n A p p

Here 0 (L n (a) x Lm(a), Ln - 1(a) x Lm(a)) = (*, 0) w ith *(n) = n — 1, *(m) = m. Thus,
T = *(Ln+m(a)) = Ln - 1+m(a) .

The type system needs no conditions on non-negativity of size expressions. Size ex
pressions in types of meaningful d a ta structures are always non-negative. The soundness
of the type system ensures th a t this property is preserved throughout (the evaluation of) a
well-typed expression.

See subsection 4.1 for examples of type checking in detail.

3.4. S o u n d n e s s of th e ty p e sy s te m . Informally, soundness of the type system ensures
th a t “well-typed programs will not go wrong” . This means th a t if function argum ents have
meaningful values according to their types then the result will have a meaningful value of
the ou tpu t type. In section 3.1, we formalized the notion of a meaningful value using a
heap-aware semantics of types. Here we give an operational semantics of the language.

We introduce a fram e store as a m apping from program variables to program values.
This m apping is m aintained when a function body is evaluated. Before evaluation of the
function body starts, the store contains only the actual param eters of the function. During
evaluation, the store is extended with the variables introduced by pa tte rn m atching or let-
constructs. These variables are eventually bound to the actual param eters, thus there is
no access beyond the current frame. Formally, a frame store is a finite partial m ap from
variables to values:

Store s : E xpV ar ^ Val
Using heaps and frame stores, and m aintaining a m apping C from function names to

the bodies of the function definitions, and a m apping E of external function names to
the external im plem entations, the operational semantics of expressions is defined by the
following rules:

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 11

s; h; C, E h c w c; h

O S IB in op
s; h; C, E h x binop y w s(x)binop s (y); h

s; h; C, E h nil w NULL; h s; h; C, E h z w s(z); h

s(hd) = vhd s (t l) = vt l i € d o m (h)
s; h, C, E h cons(hd, t l) w i; h[i.hd := vhd, i . t l := vt l]

s(x) = 0 s; h; C, E h e1 w v; h'

O S C ons

, ^ i -r , , 77 O S I f T r u es; h; C, E h if x then e1 else e2 w v; h'

s(x) = 0 s; h; C, E h e2 w v; h'
— — 7T---------- .------------------T7 O S I fF a ls es; h; C, E h if x then e1 else e2 w v; h'

s; h; C, E h e1 w v1; h 1 s[z := v1]; h 1; C, E h e2 w v; h'
-------------------------;--- -—— --- :-------------- :-----------------77--------------------- OSLET

s; h; C, E h let z = e 1 in e2 w v; h '

s(l) = NULL s; h; C, £ h ei ^ v; h'

s; h; C, E h match 1 with \ nil ^ e1 w v; h'
\ cons(hd, t l) ^ e2

O SM a tch-N il

h.s(1).hd = vhd h .s (1) .tl = vtl
s[hd := vhd, tl := vt l]; h, C, E h e2 w v; h'

— -— - —— ---------- — — — -— ---------------------------------— O S M a tc h -C o n s
s; h; C, E h match 1 with \ nil ^ e1 w v; h'

\ cons(hd, t l) ^ e2

s; h; C[f := ((z1, . . . , zn) x e1)], E h e2 w v; h'
^ F (e i) C {zi, zn j

s; h; C, £ h letfun / (z i , . . . , zra) = ei in e2 -w v; h ' ^ S L e tF u n

s(z 1) = v1 . . . s(zn) = vn C(ƒ) = (z ' , . . . , zn) x ef
[z' := v1, . . . , zn := vn]; h; C, E h e / w v; h'

F V (e f) C. {z[, , z'n }
---------------- ,------------- r-----------T7------------- OSFUNAPP

s; h; C, E h ƒ (z1, . . . , zn) w v; h'
The soundness statem ent is defined by means of the following two predicates. One

indicates if a program value is meaningful w ith respect to a certain heap and a ground
type. The other does the same for sets of values and types, taken from a frame store and a
ground context r •, respectively:

Validvai(v,T^,h) = [v w]
Validstore(vars, r ^ , s ,h) = Vz & ars [Validval(s(z), r •(z), h)]

12 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

Let a valuation e map size variables to concrete (natural) sizes and an instantiation n
map type variables to ground types:

Valuation e : S izeV ar ^ Z
In sta n tia tio n n : Type Var ^ t •

W hen applied to a type, context, or size equation, valuations (and instantiations) map
all variables occurring in it to their valuation (or instantiation) images.

Now, stating the soundness theorem is straightforward:

T h e o re m 3.1 (Soundness). L et s; h; [], [] h e w v; h ' and all fu n c tio n s called in e be
defined in it via the let-fun construct. Then fo r any context r , signature £ and type t such
tha t True; r h s e : t is derivable in the type system and fo r any size valuation e and type
in stan tia tion n, it holds tha t i f the store is m eaningful w .r.t. the context n (e(r)) then the
output value is m eaningful w .r .t the type n(e(T)):

Vn,e[Validsto re(F V (e),n (e(r)),s ,h) = ^ Validvai(v,n(e(T)),h ')]

The theorem follows from the following general statem ent:

L e m m a 3.2 (Soundness). For any s, h, C, e, v, h ', a set o f equations D , a context r , a
signature £ , a type t , a size valuation e and a type in sta n tia tio n n such that

• s; h; C, [] h e w v; h ',
• D; r h s e : t is derivable in the type system and all fu n c tio n s called in e are

declared via letfun,
one has

Vn,e[e(D) A Validstore(FV(e) ,n (e (r)) ,s ,h) = ^ Validvai(v,n(e(T)),h')]

The proof is done by induction on the size of the derivation tree for the operational-
semantics judgem ent. For the LET-rule it relies on benign sharing [HofJost03] of da ta
structures. W ith benign sharing, shared heap structures to be used in the let-body are
not changed by the let-binding expression of let. To formalize the notion of benign sharing
we introduce a function fo o tp rin t R : Heap x Val — > P (Loc), which computes the set of
locations accessible in a given heap from a given value:

R (h , c) = 0
R (h , NULL) = 0
R (h i) = ƒ 0 i f i i d o m (h)

) 1 {i} U R (h \dom(h)\{i}, h.i.hd) U R (h \dom(h)\{i}, h . i . t l) , i f i € d o m (h)

where ƒ \X denotes the restriction of a (partial) m ap ƒ to a set X .
We extend R to stores by R (h , s) = (Jzedom(s) R (h , s(z)). So, the operational-

semantics let-rule w ith benign sharing looks as follows:

s; h; C, E h e1 w v1; h 1
s[z := v1]; h 1; C, E h e2 w v; h'

h \R(h> s|FV(e2)) = h 1lR(h> s|FV(e2))
— 7 p c i _ i4------------ :-----------------TJ O S L e ts; h; C, E h let z = e1 in e2 w v; h'

This semantic condition is not statically typable in general, however, there are type
systems th a t approxim ate it, e.g. linear typing and uniqueness typing [BarSm96]. Since in

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 13

our language we have neither destructive pa tte rn m atching nor assignments, benign sharing
is guaranteed.

Proof. Let everywhere below s; h; C h e w v; h ' denote the operational-sem antics
judgem ent s; h; C, [] h e w v; h ' w ith the em pty external closure.

In the proof we will use a few technical lem m ata about heaps and model relations. They
are intuitively clear statem ents like “extending a heap does not change a model relation” ,
so we do not prove them in the main part of the paper. The interested reader may find the
technical proofs in the appendix.

For the sake of convenience we will denote n(e(T)) via Tno n (e(r)) via and e(D) via
D e.

We prove the statem ent by induction on the height of the derivation tree for the
operational-sem antics judgem ent. Given s; h; C h e w v; h ' fix some r , £ , and t ,
such th a t D; r h^ e : t . F ix a valuation e € F V (r) U F V (t) ^ Z , a type instantiation
n € F V (r) U F V (t) ^ t •, such th a t D e and Validstore(FV (e), , s , h) hold. We must
show th a t Validva|(v, Tne,h ') holds.

O S IC o n s t: In this case v = c for some constant c and t = I n t . Then, by the
definition we have c j=hnt c and Validva|(v, I n t ,h ') .

O S N u ll: In this case v = NULL and t = Lo(t ') for some t '. Then, by the definition
we have NULL [].L 0 (e)

O S V ar: From D h t = t ' and D e it follows th a t Tne = r ^ . From this and

Validstore(F V (z), r U (z : t ') ne, h, s)

it follows th a t

Valid vai (s(z) , t ne, h)
O S C o n s: In this case e = cons(hd, t l), t = Lp(t ') , {hd : t ' , t l : Lp/(t ')} C r for some

h d , t l , p ' and t ' . Since Validstore(F V (e) ,r ne,s ,h) there exist whd and wtl such
th a t s(h d) ==h/ whd and s (t l) = , ^ wt l . From the operational semantics(Lp/ (T))ne
judgem ent we have th a t v = i for some location i € d o m (h), and h ' = h[i.hd :=
s(h d), i . t l := s (t l)]. Therefore, h '.i.hd = / whd and h ' . i . t l = , m wt l hold' ne (Lp/ (T))ne
as well. It is easy to see th a t h = h '\dom(h/)\{i}.

Thus,

h '.i.hd |= h//|dom(h/)\ í l} whd
T ne

h ' . i . t l wt l(Lp/ (T))ne
This and D e, which implies pe = (p' + 1)e gives i =1^ (t /)) whd :: wt l and thus
Valid vai(i, t ne, h ').

O S IfT ru e : In this case e = if x then e1 else e2 for some e1, e2, and x. Know
ing th a t D; r h^ e1 : t we apply the induction hypothesis to the derivation of
s; h; C h e1 w v; h', w ith the same n, e to obtain Validstore(F V (e 1), r ne,s ,x) = ^
Validvai(v,Tne,h ') . From F V (e1) C F V (e), Validstore(F V (e) ,r ne,s ,x) , and lemma
6.7 it follows th a t Validvai(v,Tne,h ') .

O S IfF a lse : is similar to the true-branch.

14 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

O S L e tF u n : The result follows from the induction hypothesis for

s; h; C[ƒ := (z x e1)] h e2 w v; h',

w ith D; r h s e2 : t and the same n, e, store s and heap h.
O S L e t: In this case e = let z = e1 in e2 for some z, e1 , and e2 and we have s; h; C h

e1 w v1; h 1 and s[z := v1]; h 1; C h e2 w v; h ' for some v1 and h 1. We know
th a t D; r h s e1 : t ' , z € r and D; r , z : t ' h s e2 : t for some t ' . Applying
the induction hypothesis to the first branch gives Validstore(F V (e1), r n o s ,h) = ^
Validvai(v1, t ^ £,h 1). Since F V (e1) C F V (e1) U (F V (e2) \ {z}) = F V (e) and

Valid store (F V (e), , s, h)

we have from lemma 6.7 th a t Validstore(F V (e 1) , , s , h) holds and hence we have
Valid vai(v1,T ̂ , h 1).

Now apply the induction hypothesis to the second branch to get

Valid store (F V (e2), r ^ e U { z : t ' }, s [z := v1] ,h 1) = ^ Validvai(v, t ^ ,h ') .

Now we will show th a t the l.h.s. of the implication holds. Fix some z' € F V (e2).
If z ' = z, then Validvai(v1, t ^ £, h 1) implies Validvai(s[z := v ^ z) , ^ , h 1). If z ' = z,
then s[z := v1](z') = s(z '). Because we know th a t sharing is benign, h \R(h, s(z/)) =
h 1 \ R(h, s(z/)), applying lemma 6.5 and then 6.7 we have th a t s(z ') = (z/) wz/ im

plies s(z ') (z/) wz/ implies s[z := v1](z') (z/) wz/ and thus Validvai(s[z :=
v1](z'), r ne(z ') ,h 1). Hence, Validstore(F V (e2), r ne U { z : t ^ £},s[z := v1] ,h 1). There
fore, Validvai(v, Tne, h ').

O S M a tc h -N il: In this case e = match l with \ nil ^ e1 \ cons(hd, t l) ^ e2 for some
l, h d , t l , e1, and e2. The typing context has the form r = r ' U { l : Lp(t ')} for some
r ' , t ' , p. The operational-sem antics derivation gives s(l) = NULL, hence validity for
s(l) gives l : Lo(t ') and thus e(p) = 0. From the typing derivation for D; r h s e :t
we then know th a t p = 0, D; r ' h s e1: t . Applying the induction hypothesis, with
p = 0 A D then yields Validstore(F V (e 1) , r ^ e, s , h) = ^ Validvai(v,Tne,h ') . From
F V (e1) C F V (e), Validstore(FV (e), Tn o s,h) , e(p) = 0 A D e and lemma 6.7 it follows
th a t Validvai(v,Tne,h ') .

O S M a tc h -C o n s : In this case e = match l with \ nil ^ e1 \ cons(hd, t l) ^ e2 for some
l, h d , t l , e1, e2. The typing context has the form r = r ' U { l : Lp(t ')} for some r ' ,
t ' , p. From the operational semantics we know th a t h .s(l).hd = vhd and h .s(l).v tl
for some vhd and vt l - th a t is s(l) = NULL - hence, due to validity of s(l), we have
l : Lp(t ') for some t ' and e(p) > 1. From the typing derivation of e we obtain th a t
D; r ' , l : Lp(t ') , hd : t ' , t l : Lp -1 (t ') h s e2 : t Applying the induction hypothesis
yields

r ; eu

V a M ^ F V (e2) ^

U{il : Le(r/)}ne}
Valid vai(v,T ne,h').

hd := vhd,
tl := vtl ,h)

Show th a t the l.h.s. of the implication holds. From Validst0r e (F V (e) , , s , h) ,
(F V (e2) \ {hd, t l}) Ç F V (e), and lemma 6.7 we obtain

Valid store (F V (e2) \ {hd, t l}, , s, h)

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 1 5

Due to h d , tl € d o m (s) we can apply lemma 6.6 and get

Validstore(F V (e2) \ {hd, t l}, r o s[hd := vhd, tl := vt l],h)

From the validity s(l) =_. (t /)) whd :: wt l , and obvious e(p — 1) = e(p) — 1 the

validity of vM and vt l follows: vM whd, vt l h l L ^ ^ /)) ^ w tl.
Now Validstore(F V (e2), U {hd : t ' , tl : Lp - 1(T')}ne, s[hd := vhd, tl := vt l],h)

and, hence,
Validvai(v, Tne, h ').

O S F u n A p p : We want to apply the induction assum ption to

[z' := v 1, . . . ,zn := v„]; h; C h e / w v; h'.

Let £ (ƒ) = t° x . . . x t,° ^ t ' , the types t° of the formal param eters be
Lni1 (. . . Ln .fc. (a*) . . .) respectively, and the types r(z*) of the actual param eters z*
be LPi1 (. . . LPifc. (Tai) . . .) , where 1 < i < n. According to the typing rule D h t =
T [. . . a i := T«i . . .] [. . . := pij . . .].

Since all called in e functions are defined via letfun, there m ust be a node in the
derivation tree with True, z ' : t° , . . . , z^ : t,° h s e / : t ' .

We take n and e , such th a t
• n' (a *) = n (T«i ̂
• e' (n j) = e(pij).

Thus, r(z j)n e = (T °)nv , since

(T°)n'e' = L£'(„i1)(. . . L£'(n,t! }(n/(«i)) •••) = Le(Pii)(--- Le(Pifci }(n(Ta) • • •) = (r (zi))ne

True (“no conditions”) holds trivially on e . From the induction assum ption we
have

Validstore((z ' , • • • ^ (z'l : Tl°n/e/ , • • • , zn : < ^ [z'l := v ̂ • • • , zn := vnh h)
= ^ Validvai(v,Tn'/, h ')

Show th a t the l.h.s. holds. From Validstore(F V (e) ,r ne,s ,h) we have validity of
the values of the actual param eters: v* = , n w* for some w*, where 1 < i < k.r n e (zi)
Since r ne(zi) = (T°)n/e/ , the left-hand side of the implication holds, and one obtains
Valid vai (v, T̂ / e/ , h ').

Now, D e implies Tne = t ' [. . . a* := Tai . . .] [. . . n j := p j .. .]ne. Then from the con
struction for n' and e' it follows t ' [... a* := Tai . . .] [. . . n j := p j .. .]ne = t ' [... a* :=
n (T«i) . . .][. . . n jj :=) • • .] = ^

Thus, we have Validvai(v, Tne, h ').
□

3.5. C o m p le te n e s s o f th e ty p e sy s te m . Recall, th a t the system we consider is con
stitu ted from zero- and first-order types, typing rules, and Peano arithm etic extended to
rationals.

The system is not complete in the class of shapely function definitions: there are shapely
functions for which shapeliness may not be proved by means of the typing rules and the

O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

arithm etic. In other words, their annotated type cannot be checked by the system. For
instance consider the following expression e:

let l = ƒ (z 1, • • •, zfc) in
let x = length(l) in if x then cons(1 , nil) else nil

where length(x) returns the length of list x. Let p / (n 1, . . . , n k) denote the polynomial size
dependency for the shapely function definition ƒ . I f ƒ never ou tputs an em pty list, then the
expression e defines a shapely function, w ith a polynomial size dependency p (n 1, . . . , n k) =
1 . Otherwise p (n 1, . . . , n k) = 0 when ƒ ou tputs nil. Suppose, there exists a procedure,
th a t for any instantiation of the expression with ƒ, produces its shapely type, when it is
shapely, or rejects it otherwise. Then this procedure is capable to solve 10th H ilbert problem :
whether there exists a general procedure th a t given a polynomial w ith integer coefficients
decides if this polynomial has natural roots or n o t .3 Matiyasevich [Mat91] has shown th a t
such a procedure does not exist. A similar problem is connected w ith match-construct.

We study constructions like above in more detail in section 4.2, devoted to decidability
of type-checking. In particular, in lemma 4.1 we show, th a t for any integer polynomial q
there is a shapely function definition ƒ such th a t its size polynomial p / (n 1, . . . , n k) is equal
to q2(n 1, . . . , n k) and thus p / has roots if and only if q has roots.

In fact, th is example shows th a t not only our system, but any system using integer
arithm etic, is not complete in the class of shapely function definitions.

4. T y pe C hecking

Because for every syntactic construction there is only one typing rule th a t is applicable,
type checking is straightforw ard. The procedure parses a given function body and reduces
to proving equations for rational polynomials. Consider some examples.

4.1. E x a m p le s .

4.1.1. Cartesian product. In the introduction, the Cartesian product was implemented using
a “sugared” syntax. Here, we present the cprod function in the language defined in section
2 .

letfun cprod(l 1, l2) = match l 1 with \ nil ^ nil
\ cons(hd, t l) ^ let l' = pairs(hd, l2)

in let l'' = cprod(tl, y)
in append(l', l'')

in . . .
Functions pairs and append are assumed to be defined in the core syntax of the language

as well. Hence, £ contains the following types:
£(append) = L„(a) x Lm(a) ^ Lra+m(a)
£(pairs) = a x Lm(a) ^ Lm(L2(a))
£(cprod) = Ln(a) x Lm(a) ^ Ln*m (L2(a))

To type-check cprod : Ln (a) x Lm(a) ^ Lm m (L2(a)) means to check:

3The original formulation is about integer roots. However, both versions are equivalent and logicians
consider natural roots.

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 17

P r o v e : z1 : l_ra(a) , Z2 : Lm(a) h s ecprod : L«,*m,(L2(a)) i
where ecprod is the function body. This is dem anded by the first branch of the LETFuN-rule.
Applying the MATCH-rule branches the proof:

N il: n = 0; Z2 : Lm(a) h s nil : Ln*m (L2(a))
C ons: hd : a , Z1 : Ln (a), tl : Ln -1 (a), Z2 : Lm(a) h s

let Z' = pairs(hd,12) '|
in let Z'' = cprod(tl, ¿2 ̂ > : Lm m (L2(a))
in append(Z', Z'') J

Applying the NiL-rule to the NiL-branch gives n = 0 h n * m = 0, which is trivially true.
The CONS-branch is proved by applying the LET-rule twice. This results in three proof
obligations:

B in d - l ’: hd : a , Z2 : Lm(a) h s pairs(hd, Z2) :t 1
B in d - l” : tl : Ln- 1(a), Z2 : Lm(a) h s cprod(tl , ¿ 2) : T2
B ody : Z' : r ^Z" : T2 h s append(Z', Z") : L„*m(a)

From the applications of the FuN A pp-rule to B in d - l ’ and B in d - l” it follows th a t t 1 should
be Lm(L2(a)) and t 2 should be L(n-1)*m(L2(a)). Lastly, applying the FuN A pp-rule to B o d y
yields the proof obligation h n * m = m + (n — 1) * m, which is true in the axiomatics.

4.1.2. Exam ple with negative coefficients. In contrast to the system presented by Vasconce
los and Ham mond [VasHam03], where only subtraction of constants are allowed, our system
allows negative coefficients in size expressions. Of course, this is only a valid size expres
sion (yielded by a to ta l function) if the polynomial maps naturals into naturals. Here, we
show an example where this is the case. Given two lists, the function “sub trac ts” elements
from lists simultaneously, till one of the lists is empty. Then, the Cartesian product of the
rem aining list w ith itself is returned:

sqdiff (Z1, Z2) =
match Z1 with | nil ^ cprod(Z2, Z2)

| cons(hd, t l) ^ match Z2 with | nil ^ cprod(Z1; Z1) ‘
| cons(hd;, t l ') ^ sqdiff (t l , t l ')

It can be checked th a t sqdiff has type Ln (a) x Lm(a) ^ L(ra2+m2-2 *ra*m)(L2(a)).

4.2. T y p e ch eck in g in g e n e ra l is u n d e c id a b le (ev en fo r to ta l fu n c t io n d e fin itio n s) .
In the examples above, type checking ends up with a set of entailm ents like n = 0 h n*m = 0
or h n * m = m + m * (n — 1) th a t have to hold. However, we show th a t there is no procedure
to check all possible entailm ents th a t may arise. To make type checking decidable, we
form ulate a syntactical condition on the structure of a program expression th a t ensures
the entailm ents have a trivial form. The condition is as follows: given a fu n c tio n body,
allow pattern-m atch ing only on the fu n c tio n param eters or variables bound to them by other
pattern-m atchings. Thus, we prohibit expressions like

let Z = fo (x 1, . . . ,) in match Z with | nil ^ e1
| cons(hd, t l) ^ e2

Pattern-m atching like

18 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

match l with | nil ^ ei
| cons(hd, t l) ^ match tl with | nil ^ ei

| cons(hd;, t l ') ^ e2
is allowed. Below we explain the reason for this restriction.

We show th a t the existence of a procedure th a t checks all possible entailm ents a t the
end of type checking is reduced to H ilbert’s ten th problem. Type checking is reducible to a
procedure for checking if arb itrary size polynomials of shapely functions have natural roots.
It tu rns out th a t the la tte r is the same as finding natural roots of integer polynomials.

Consider the following expression eH with free variables l1, . . . , lk:
let l = ƒo(11, . . . , lk) in match l with | nil ^ f 1(l1, . . . , lk)

| cons(hd, t l) ^ f 2(l1, . . . , lk)
We check if it has the type Ln i (a 1) x . . . x Lnk(a k) — > Lp(rai)_ rafc)(a), given th a t ƒ :
Ln i (a 1) x . . . x Lnk(a k) — > Lpi(ni;...;rak)(a), w ith i = 0, 1, 2. Then at the end of the type
checking procedure we obtain the entailment:

Po(«1, . . . , n fc) = 0 h p 1(m , . . . , n fc) = p (n 1, . . . , n fc).
Even if p and p 1 are not equal, say p 1 = 0 and p = 1, it does not mean th a t type checking

fails; it might not be possible to enter the “bad” nil-branch. To check if the nil-branch is
entered means to check if p0 = 0 has a solution in natural numbers. Thus, a type-checker
for any size polynomial p0 m ust be able to decide if it has natu ral roots or not.

Checking if any size polynomial has roots in natural numbers, is as difficult as checking
whether an arb itrary polynomial has roots or not. F irst, we prove the following lemma.

L e m m a 4.1. For any polynom ial q there is a total shapely fu n c tio n defin ition ƒ such that
its size dependency p / (n1, . . . , n k) is equal to q2(n1; . . . , n k).

Proof. F irst, note th a t any polynomial q may be presented as the difference q1 — q2 of two
polynomials w ith non-negative coefficients4. So, q2 = (q1—q2) 2 is a size polynomial, obtained
by superposition of sqdiff w ith q1 and q2. Here q1 and q2 are size polynomials w ith positive
coefficients for corresponding compositions of append and copyfirst : Ln (a) x Lm(a) ^
\-n*m{ot) (see subsection 5.1) functions. □

Summing up the constructions above we obtain the following statem ent:

L e m m a 4.2. I f there exists a type-checker tha t fo r any fu n c tio n defin ition and its type an
no ta tion is able to accept or reject the annotated type correctly, then there exists a procedure
tha t fo r any integer polynom ial q (n1, . . . , n k) decides i f it has natural roots or not.

Proof. Suppose th a t such type checker exists. Consider the expression eH above with f 0,
f 1, f 2 defined as follows. Using lemma 4.1, construct a function definition f 0 th a t has a
size dependency q2(n 1; . . . , n k). Now let f 1 be defined by the expression nil and let f 2 be
defined by cons(1 , nil).

The type checker accepts e# w ith the type annotation p = 1 if and only if the nil-branch
is not entered, th a t is if and only if q2(n 1; . . . , n k) has no roots. Trivially, q2(n 1; . . . , n k)
has roots if and only if q(rii, . . . , rik) does. □

4If q = x i1 ...x kk , then qi = >oail ,...,ifc x^ . ..x] k , and
<°lai1,...,ifc |xl1 . . . x k •

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 19

So, existence of a general type-checker reduces to solving H ilbert’s ten th problem.
Hence, type checking is undecidable.

We can show this in a more constructive way using the stronger form of the undecid
ability of H ilbert’s ten th problem: for any type-checking procedure I one can construct
a program expression, for which I fails to give the correct answer. We will use the re
sult of Matiyasevich who has proved the following: there is a one-param eter Diophantine
equation W (a, n 1, . . . , n k) = 0 and an algorithm which for given algorithm A produces a
num ber a a such th a t A fails to give the correct answer for the question w hether equation
W (aA, n 1, . . . , n k) = 0 has a solution in (n1, . . . , n k). So, if in the example above one takes
the function ƒ such th a t its size polynomial po is the square of the W (a j , n 1, . . . , n k) and
p = 1 , p 1 = 0, then the type checker I fails to give the correct answer for eH .

An anonymous reviewer pointed out th a t the construction from lemma 4.1 dem onstrates
a problem with real arithm etic, when it is used to check numerical entailm ents, generated
by the type checker. Suppose we want to omit the syntactic restriction and type check the
expression eH where the size dependency for ƒ is p0(n) = (n2 — 2)2. A real-arithm etic-
based version of the checker rejects eH , since there is a real root for p0 and in this abstract
in terpretation the nil-branch with 1 = 0 m ust be considered. In fact, the expression is
well-typed with annotation p = 1, since there is no natu ral roots for p0 and the nil-branch
is never entered.

For checking a particular expression it is sufficient to solve the corresponding sets of
D iophantine equations. Type checking depends on decidability of D iophantine equations
from D in any entailm ent D h p = p ', where p is not equal to p ' in general (but might be
if the equations from D hold). If we have a solution for D we can substitu te this solution
in p and p '. If a solution over variables n 1, . . . , n m, n m+1, . . . , n k is a set of equations
n = qi(nm+1, . . . , n k) where 1 < i < m, then the expressions for m can be substitu ted into
p = p ' and one trivially checks the equality of the two polynomials over n m+1, . . . , n k in
the axiomatics of the rational field. Recall th a t two polynomials are equal if and only if the
coefficient at monomials with the same degrees of variables are equal.

4.3. S y n ta c t ic a l c o n d it io n fo r d e c id a b il i ty . The simplest way to ensure decidability is
to require th a t all equations in D have the form n = c, where c is a constant. This would
in particular exclude the example e# from above. As we will see below, this requirem ent
can be fulfilled by imposing the syntactical condition for program expressions, prohibiting
pattern m atching on variables other than fu n c tio n param eters and bounded to them by other
pattern m atchings.

It is easy to see th a t any function body th a t satisfies the syntactic condition may be
encoded in the language defined by the refined gram m ar where the let-construct in e is
replaced by let x = b in e„omaicft:

B asic b ::= c \ x binopy \ nil \ cons(z, l) \ ƒ (z1, . . . , zn)
E xpr e ::= b

\ let z = b in enomatch
\ if x then e1 else e2
\ match l with i ni l ^ e1

i cons(hd, t l) ^ e2
\ letfun ƒ (z1, . . . , zn) = e1 in e2
\ letextern ƒ (z1, . . . , zn) in e1

20 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

with
enomatch :— b

\ let z = b in e'nomatch
\ if x then e'nomatch else e™match
\ letfun ƒ (z1, . . . , zn) = e in e'nomatch
\ letextern ƒ (zl , . . . , z„) in e'nomatch

The gram m ar is more restrictive than the syntactic condition. However, any function body
th a t satisfies the condition may be encoded in this gram m ar. For instance, an expression

let l' = ^ (z) in match l with \ nil ^ ^ (l , l ')
\ cons(hd, t l) ^ ƒ2(l, l ')

and the expression
match l with \ nil ^ let l' = ^ (z) in ƒ1(l, l')

\ cons(hd, t l) ^ let l' = ƒ0 (z) in ^ (l , l ')
define the same m ap of lists.

For this reason we call the refined gram m ar the “no-let-before-m atch” gram m ar, and
roughly refer to the syntactic conditions as to the “no-let-before-m atch” condition. The
demo version of the type checker, accessible from w w w . a h a . c s . r u . n l , uses the “no-let-
before-m atch” gram m ar.

T h e o re m 4.3. Let a program expression e sa tisfy the refined gram mar, and let us check
the ju d g em en t True; x 1 : Tf , . . . , x k : t£ h^ e : t . Then, at the end o f the type-checking
procedure one has to check en ta ilm ents o f the fo rm

D h p ' = p,
where D is a set o f equations o f the fo rm n — c = 0 fo r som e n € F V S (t° x . . . x t£) and
constant c and p, p ' are polynom ials in F V S (t° x . . . x Tf).

Sketch o f the proof. Consider a path in the type checking tree which ends up with some
D h p ' = p and let an equation q = 0 belongs to D. It means th a t in the path there is the
nil-branch of the pa tte rn m atching for some l : Lq(t).

By induction on the length of the path , one can show th a t q = n — c for some size
variable n € F V S (t 1 x . . . x Tk) and some constant c. This uses the fact th a t follows from
the syntactic condition: the program variables which are not free in a program expression
and pattern-m atched may be introduced only by another pattern-m atching, bu t not a let-
binding. The technical report [ShvKvE07a] contains the full proof.

Of course, the syntactical condition of the theorem may be relaxed. One may allow
expressions with pattern-m atching in a let-body, assuming th a t functions th a t appear in
let-bindings, like ^ , give rise to solvable D iophantine equations. For instance, when p0 is a
linear function, one of the variables is expressed via the others and constants and substitu ted
into p1 = p. Another case when it is easy to check if there are natu ral roots for p0 = 0 or
not (and find them if “yes”) is when p0 is a 1-variable polynomial. We leave relaxations of
the condition for future work.

5. T y p e In fer e n c e

Here we discuss type inference under the syntactical condition defined in the previous
section. Since we consider shapely functions, there is a way to reduce type inference to type-
checking using the well-known fact th a t a finite polynomial is defined by a finite num ber

http://www.aha.cs.ru.nl

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 21

of points. The procedure presented in this section was sketched by us in [ShvKvE07b] and
given in details and evaluated w ith a series of measurem ents in [vKShvE07].

For each size dependency from the ou tpu t type of a given function definition one assumes
th a t it is a polynomial and one guesses its degree. Then, to obtain the coefficients of the
polynomial of this degree, the function definition is evaluated (preferably in a sand-box)
as many times as the num ber of coefficients the polynomial has. This finite num ber of
input-output size pairs defines a system of linear equations, where the unknowns are the
coefficients of the polynomial. W hen the sizes of the input d a ta satisfy some criteria known
from polynomial interpolation theory [Chui87, Lor92] (see the subsections below for more
detail), the system has a unique solution. Input sizes th a t satisfy these criteria, which are
nontrivial for m ultivariate polynomials, can be determ ined algorithmically.

In this way we find using interpolation theory the interpolating polynomial for the size
dependency. If the size dependency is a polynomial function and the hypothesis about its
degree is correct, then it coincides w ith its interpolating polynomial. To check if this is the
case, the interpolating polynomial is given to the type checking procedure. If it passes, it
is correct. Otherwise, one repeats the procedure for a higher degree of the size dependency.
S tarting with degree zero5, the m ethod iteratively constructs the interpolating polynomials
until the correct polynomial is found. It does not term inate when
(1) the function under consideration does not term inate on test data,
(2) the function is non-shapely,
(3) the function is shapely but the type-checker rejects it due to the type-system ’s incom

pleteness (see section 3.5).
The m ethod infers polynomial size dependencies for a nontrivial class of shapely func

tions. For instance, standard type inference for the underlying type system yields th a t the
function cprod has the underlying type L(a) x L(a) — > L(L(a)). Adding size annotations
with unknown ou tpu t polynomials gives cprod : Ln (a) x Lm(a) — > LP1 (Lp2 (a)). We assume
p 1 is quadratic so we have to com pute the coefficients in its presentation:

p 1(n, m) = a0;0 + a0)1n + a 1)0m + a 1)1nm + a0;2n 2 + a 2;0m 2

R unning the function cprod on six pairs of lists of length 0, 1, 2 yields:

n m h Z2 cprod(Zi,Z2) p i (n ,m) p2(n, m)
0 0 [] [] [] 0 ?
1 0 [0] [] [] 0 ?
0 1 [] [0] [] 0 ?
1 1 [0] [1] [[0, 1]] 1 2
2 1 [0,1] [2] [[0, 2], [1, 2]] 2 2
1 2 [0] [1, 2] [[0,1], [0, 2]] 2 2

The first three rows of the table are examples of incom plete m easurem ents, where the size of
the inner list is unknown, because the outer list is empty. The last three rows are complete
m easurem ents.

5On can also start with a higher degree. If the degree of the solution happens to be lower than the initial
degree, the solution will still be found since the found coefficients will be zero at the right places.

22 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

The test table defines the following linear system for the outer ou tpu t list:

a0,0 = 0
a0,0 + &0,1 + 00,2 = 0
00,0 + a 1,0 + 02,0 = 0

0-0,0 + 0-0,1 + 0-1,0 + 0-0,2 + 01,1 + 02,0 = 1
00,0 + 200,1 + 01,0 + 400,2 + 201,1 + 02,0 = 2
00,0 + 00,1 + 201,0 + 00,2 + 201,1 + 402,0 = 2

The unique solution is 0 1,1 = 1 and the rest of coefficients are zero. To verify whether
the interpolation is indeed the size polynomial, one checks if cprod : Ln (a) x Lm(a) — >
Ln*m(L2(a)). This is the case, as was shown in section 4.1.

As an alternative way of finding the coefficients, one could try to solve directly the
(recurrence) equations defined by entailm ents D h p = p th a t arise during construction of
the type-inference tree for a function definition. As we will see in subsection 5.1, it amounts
to solving systems th a t are nonlinear in general. By combining testing with type checking
we bypass nonlinear systems [vKShvE07].

However, test-based inference has a drawback: it is not fully static. The procedure has
dynamic aspects, since it is done not only in the underlying logic of the type system (i.e.
Peano arithm etic), bu t it involves executing the in terpreter of the program ming language.
A consequence of it may be th a t inference for function definitions with external calls is
based on the semantics of another language. W hen the size dependency of the external
function is known, this can be avoided by
• modifying the in terpreter of our language in such a way, th a t in the case of an external

call it creates a “fake” object of the right size (the size of the result of “th is” external
call), or

• leaving the in terpreter in intact, and creating for any external function from its sized type
a “fake” function body in our language w ith the same size dependency as the external
function.

From an engineering point of view, the advantage of the second approach is th a t a standard
in terpreter can be used directly. We discuss the mechanism of generating “fake” functions
in 5.8.

Ideally, one would like to remove all dynamic aspects from type inference. In our current
research towards fully static inference we consider a modification of the m ethod where
instead of the in terpreter of the program ming language one uses an abstract interpreter in
the form of a term -rew riting system of which the rewriting rules will correspond to equations
in Peano arithm etic. For instance, progression is interpreted as p(n) ^ n + p(n — 1) together
with p(0) ^ 0. We have presented prelim inary results in the technical report [ShvE0T8].

5.1. M o tiv a tio n fo r te s t -b a s e d in fe re n c e . Consider, as an example of the complexity
of systems generated by conventional type inference, the system for a function definition
nonlinear w ith auxiliary functions:

copy: L„(a) ^ L„(a)
copyfirst: Lni (a) x L„2 (a) ^ Lni*„2 (a)
sqdifFauX: Lni (a) x L«2 (a) ̂ Ln1+n2 — 2*ni*n»2 (a)

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 23

where (in the sugared syntax6)

letfun copy(l) = match l with | nil ^ nil
| cons(hd, t l) ^ cons(hd, copy(tl))

in letfun copyfirst^ , 12) = match 12 with | nil ^ nil
| cons(hd, t l) ^ 11 ++ copyfirst(11, t l)

in letfun sqdiffaux(11, 12) = match 11 with | nil ^ copyfirst(12, 12)
| cons(hd, t l) ^

match 12 with | nil ^ copyfirst(11, 11)
| cons(hd;, tl ') ^ sqdiffaux(t l , t l ')

in letfun nonlinear(11, 12) = match 11 with | nil ^ copyfirst(copyfirst(12, 12), [1. . . 4])
| cons(hd, t l) ^

match 12 with | nil ^ copyfirst(copyfirst(11, 11), [1. . . 4])
| cons(hd;, t l ') ^

sqdiffaux(nonlinear(tl, 12) ++11, nonlinear(11, t l ') ++12)
++ copyfirst(copyfirst(11, 12), [1. . . 17])

in . . .

The inference procedure ends up w ith the following recurrence system:

p (0 ,n 2)
p (n i, 0)
p (« i , « 2)

4n2
4nf (1)

= (p(ni - 1 , « 2) + « i - (p(ni, « - 1) + « 2))2 + 17ni«,2
The problem is to fin d p, assuming, say, th a t it is quadratic.

A standard way of solving this problem uses the m ethod of unknown coefficients. A
polynomial to find, p (n i , n 2), is presented in the form ao>o + ao,i n i + a i;on2 + a i;in i n 2 +
ao,2« i + a 2,o«2 and substitu ted into (1). Equating the corresponding coefficients of the
polynomials from the left and right sides of the equations from (1) gives

0, ai,o = 0, a2,o = 4, ao,i = 0, ao,2 = 4ao,o
ao,2
a 2,o
a i,i
ao,i
a i,o
ao,o

(a i,i — 2ao,2 + 1)2
(2a 2,o — a i,i — 1)2
2(ai,i — 2ao,2 + 1)(2a2,o — &i,i — 1) + 17
2 ((a i,o — ao,i) + (ao,2 — a 2,o))(a i,i — 2ao,2 + 1)
2 ((a i,o — ao,i) + (ao,2 — a 2,o))(2a 2,o — a i,i — 1)
((a i,o — a o,i) + (ao,2 — a 2,o))2

Substitu ting the coefficients ao>o = 0, a i>o = 0, a2>o = 4, ao>i = 0, ao>2 = 4 in the
rem aining equations one obtains the non-linear system

0 ! 1 — 1401,1 + 45 — 0
202 1 — 2701,1 + 81 = 0

The solution of this quadratic system can be found easily. It is 0 1,1 = 9.

6Recall, that in the sugared syntax we use f (g(z)) for “let z' = g(z) in f (z')” and, moreover, use [1.. .c]
for c-ary application of cons(-, —) to nil, so that [1... 3] denotes cons(1, cons(2, cons(3, nil))). We also use
the infix ++ for append.

24 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

In general, non-linear systems may be hard to solve. W ith the testing approach we
avoid solving nonlinear systems w.r.t. polynomial coefficients a j . Instead, we com pute the
coefficients solving the linear system th a t is generated after testing.

1 zi ■ zd-1
' z i zd \ a i

1 Z2 ■ zd-1Z2 d
z2 a 2

1 Zd ■ zd-1Zd d
Zd ad

1 Zd +i ■ zd-1
' zd+1 zd+ i / \a d + i)

5.2. I n te r p o la t in g a p o ly n o m ia l. A hypothesis for a type is derived autom atically by
fitting a polynomial to the size data, as it was shown in the example cprod. We are looking
for the polynomial th a t best approaches the data, i.e., the polynomial interpolation. The
polynomial interpolation exists and is unique under some conditions on the data, which are
explored in polynomial interpolation theory [Chui87, Lor92].

For 1-variable interpolation this condition is well-known. A polynomial p(z) of degree
d w ith coefficients 0 1, . . . , 0d+1 can be w ritten as follows:

01 + 02 z + . . . + 0d+1 zd = p(z)

The values of the polynomial function in any pairwise different d + 1 points determ ine a
system of linear equations w .r.t. the polynomial coefficients. More specifically, given the set
(zi,p(zi)) of pairs of numbers, where 1 < i < d + 1 , and coefficients 0 1, . . . , 0d+1, the set of
equations can be represented in the following m atrix form, where only the 0 i are unknown:

(P(z1) \
P(Z2)

P(Zd)
V K z m V

The determ inant of the left m atrix, contains the measurement points, is called a Vander-
m onde determ inant. For pairwise different points z1, . . . , zd+1 it is non-zero. This means
th a t, as long as the ou tpu t size is m easured for d + 1 different input sizes, there exists a
unique solution for the system of equations and, thus, a unique interpolating polynomial.

The condition under which there exists a unique polynomial th a t interpolates m u lti
variate d a ta is not trivial. We form ulate it in the next subsection. Here we introduce the
necessary definitions.

Recall th a t a polynomial of degree d and dimension k (the num ber of variables) has
N f = (d+fc) coefficients. Let a set of values ƒ of a real function ƒ be given. A set W = (wi :
i = 1 , . . . , N k } of points in a real k-dimensional space forms the set of in terpolation nodes if
there is a unique polynomial p(z) = £o<|j|<d0jz j w ith the to ta l degree d w ith the property
p(Wi) = /¿, where 1 < i < N k. In this case one says th a t the polynomial p interpolates the
function ƒ at the nodes

The condition on W, which assures the existence and uniqueness of an interpolating
polynomial, is geometrical: it describes a configuration, called N C A [Chui87], in which
the points from W should be placed in . The m ultivariate Vandermonde determ inant
com puted from such points is non-zero. Thus, the corresponding system of linear equations
w .r.t. the polynom ial’s coefficients has a unique solution. In the following subsections we
show how to generate a collection of natural-valued nodes Wi in an N C A configuration. A
Vandermonde determ inant is com puted by the same formula in reals and naturals, so the
system of linear equations based on natu ral nodes will have a unique (rational) solution.

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 25

5 5 5 X
4 s24 s24 O ---------- X • s‘

O

o o
o o o

o --------
o - o — -
o-o-o-

x
--------x O o •
X X X X X X

x O O O •

X

X

X

x O --------------•
x O O ------------
X X X X X X

S, Si Si
(a) (b) (c) (d)

Figure 1: (a) A node configuration th a t has a unique two-dimensional polynomial interpola
tion (b) A more system atic node configuration th a t has a unique two-dimensional
polynomial interpolation (c) Incomplete measurem ents complicate finding a node
configuration (d) Incomplete measurem ents for the pairs in the ou tpu t of cprod.

5.3. M e a s u r in g b iv a r ia te p o ly n o m ia ls . For a two-dimensional polynomial of degree d,
the condition on the nodes th a t guarantees a unique polynomial interpolation is as follows
[Chui87]:

D e f in itio n 5.1. N j nodes forming a set W C R 2 lie in a 2-dim ensional N C A configuration
if there exist lines 71 , . . . , Yd+ 1 in the space R 2, such th a t d + 1 nodes of W lie on Yd+ 1 and
d nodes of W lie on Yd \ Yd+1, ..., and finally 1 node of W lies on y 1 \ (y2 U . . . U Yd+1).

An example of such a configuration for integers is given in figure 1a.
Nodes satisfying this condition can be found autom atically: if the ou tpu t type of a

given function definition is LP1 (. . . LPs (a) . . .) , then for the outerm ost-list size p 1 choose a
triangle of nodes on parallel lines, like in figure 1b .

An example of the two dimensional case is the cprod function above. As we have seen,
the procedure of reconstructing the size polynomial p 1 for the outer list is straightforward.
However, there is a problem for p2. There are cases in which nodes have no correspond
ing ou tpu t size (the question-m arks in the table th a t refer to incomplete measurements).
M easurements for p 2 may be incomplete, because the size of the inner lists can only be
determ ined when there is at least one such a list. Thus, the outer list may not be em pty for
complete measurem ents. As can be seen in figure 1d , for cprod o u tp u t’s outer list is empty
when one of the two input lists is empty. In the next section, we show th a t, despite this, it
is always possible to find enough measurem ents and give an upper bound on the num ber of
natural nodes th a t have to be searched.

5.4. H a n d lin g in c o m p le te m e a s u re m e n ts . In general, for Lp1 (. . . LPs(a) . . .) we will not
find a value for pj a t a node if one of the outer polynomials, p 1 to pj - 1 , is zero at th a t node.
Thus, the nodes where p 1 to pj - 1 are zero should be excluded from the testing process.
Here, we show th a t, despite this, it is always possible to find enough nodes using finite
search.

First, nested outpu t lists of which the size of the outer list is the constant zero, e.g.
Lo(LP2 (a ')), need special treatm ent. If a type-checker rejects annotations for p 1 = 0 and
arbitrary p 2 then the outer polynomial p 1 is not a constant zero. (Recall the definition of
D h T = t '.)

Now, let the outer polynomial p 1(x,y) be not a constant zero. Then there is a finite
num ber of lines y = i, which we will call root lines, where p 1(x, i) = 0 .

26 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

L e m m a 5.2. A polynom ial p 1(x, y) o f degree d that is n o t constant 0 has at m ost d root
lines y = i, such tha t p 1(x, i) = 0 fo r all x .

Proof. Suppose there are more th an d root lines. Then, it is easy to pick 1 , . . . , d + 1 nodes
on d + 1 root lines. They trivially are in N C A configuration. W ith these nodes, a t which
p 1(x,y) = 0 , the system of linear equations for the coefficients of p 1 will have the zero
solution, th a t is, all the coefficients of p 1 will be zeros. This contradicts the assum ption
th a t p \ is not constant 0 . □

Using the lemma, we can bound the num ber of parallel lines y = i and nodes on them
th a t have to be searched. Essentially, we are to find a triangle configuration of nodes, like
on figure 1b , skipping all crosses, see 1c .

L e m m a 5.3. W hen looking fo r nodes fo r a polynom ial p 2(x,y) tha t determ ine a unique
polynom ial interpolation at places where another polynom ial p 1(x,y) = 0 , it is su ffic ien t to
search the lines y = 0 , . . . , y = d 1 + d2 in the square [0 , . . . , d 1 + d2] x [0 , . . . , d 1 + d2].

Proof. For the configuration it is sufficient to have d2 + 1 lines y = i w ith a t least d2 + 1
points where p 1(x,y) = 0. Due to lemma 5.2 there are a t most d1 lines y = i such th a t
p 1(x, i) = 0, so a t least d2 + 1 are not root lines for p 1. The polynomial p 1 (x, j), with
y = j not a root line, has a t most degree d1, thus y = j contains a t most d1 nodes (x, j),
such th a t p 1(x, j) = 0. Otherwise, it would have been constant zero, and thus a root line.
Hence, this leaves a t least d2 + 1 points on these lines for which p \ is not zero. □

This straightforw ardly generalizes to all nested types LP1 (. . . LPs (a) . . .) w ith polynomi
als in two variables. If we want to derive the coefficients of p^, searching the square of input
values [0 , . . . , Xj= 1dj] x [0 , . . . , Xj= 1d j] suffices, where dj is the degree of p j . Each pj has
at most dj root lines, so there are at most E j-^ d j root lines for p 1, . . . ,p i-1 . Also, each of
the p j can have at most dj zeros on a non root line. Hence, since the length of the search
interval for p ̂ is S j= 1dj + 1 , there are always d̂ + 1 values known.

Eventually, it is enough to search in [0 , . . . , S s= 1dj] x [0 , . . . , S s= 1d j].
For cprod there are two size expressions to derive, p 1 for the outer list and p 2 for the

inner lists. Deriving th a t p 1(n 1, n 2) = n 1 * n 2 is no problem. Because p 1 has roots for n 1 = 0
and for n 2 = 0 , these nodes should be skipped when measuring p 2 (see figure 1d).

5.5. G e n e ra liz in g to k -d im e n s io n a l p o ly n o m ia ls . The generalization of the condition
on nodes for a unique polynomial interpolation to polynomials in k variables, is a straight
forward inductive generalization of the two-dimensional case. In a hyperspace there have to
be hyperplanes, on each of which nodes lie th a t satisfy the condition in the k — 1 dimensional
case. A hyperplane Kk may be viewed as a set in which test points for a polynomial of
k — 1 variables of the degree j lie. There m ust be N ^-1 = N j — N j- 1 such points. The
condition on the nodes is defined by:

D e f in itio n 5.4. The N C A configuration fo r k variables (k -d im ensiona l space) is defined
inductively on k [Chui87]. Let | z 1, . . . , zNk} be a set of d istinct points in R k such th a td
there exist d + 1 hyperplanes K j , 0 < j < d with

zNdk_1+ 1, . . . , ^N^ € K l
ZN k 1 + ^ . . . , ZN k € \ {K j+1 U . . . U K | } for 0 < j < d — 1

J — 1 1 3 j j \

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 27

and each of set of points zNk + 1, . . . , zNk, 0 < j < d, considered as points in R k 1 satisfies

N C A in R k-1 .

For instance, given d = 2 and k = 3 (i.e. interpolating by polynomials of 3 variables of
degree 2), the following collection of N | = (2+3) = 10 nodes, placed on parallel planes in
R 3, satisfies an N C A configuration:
(1) on the plane x = 0 take the “triangle” of N f = 6 points (0 , 0 , 0), (0 , 0 , 1), (0 , 0 , 2),

(0 , 1, 0), (0 , 1 , 1), (0 , 2 , 0),
(2) on the plane x = 1 take the “triangle” of N 2 = 3 points (1, 1, 0), (1, 0, 1), (1, 1, 1),
(3) on the plane x = 2 take the point (2, 0, 0).
Here the nodes on each of the planes lie in the 2-dimensional N C A configurations con
structed for degrees 2 , 1 and 0 respectively.

Similarly to lines in a square in the two-dimensional case, parallel hyperplanes in R k
have to be searched while generating hypothesis for a nested type. Using a reasoning similar
to the two-dimensional case one can show th a t it is always sufficient to search a hypercube
with sides [0 , . . . , S s= 1d j].

5.6. A u to m a tic a l ly in fe r r in g s iz e -aw a re ty p e s : th e p ro c e d u re . The type checking
procedure and the size hypothesis generation can be combined to create an inference pro
cedure. The procedure starts w ith assuming a fixed degree. The assum ptions is th a t this
degree is the maximum degree of all polynomials in the type. If checking rejects the hypoth
esis generated for this degree, the degree is increased and the test-check cycle is repeated.
The procedure is semi-algorithmic: it term inates only when the function is well-typable.

Recently, we have developed a dem onstrator for the inference procedure described in
[vKShvE07]. It is accessible on w w w . a h a . c s . r u . n l .

For any shapely program, the underlying type (the type w ithout size annotations)
can be derived by a standard type inference algorithm [Mil78]. After straightforwardly
annotating input sizes w ith size variables and ou tpu t sizes w ith size expression variables,
we have for example

cprod : Lm (a) x Ln,2 (a) * Lp1(n1 ,«.2) (LP2(«1 ,n2)(a))
To derive the size expressions on the right hand side we use the following procedure.

F irst, the maximum degree of the occurring size expressions is assumed, starting w ith zero.
Then, a hypothesis is generated for each size expression, from p 1 to p s. After hypotheses
have been obtained for all size expressions they are added to the type and this hypothesis
type is checked using the type checking algorithm . If it is accepted, the type is returned. If
not, the procedure is repeated for a higher degree d.

The schema below shows the procedure in pseudo-code. The TryIncreasingDegrees
function generates (by G etSizeA w areType) and checks (by C heckSizeAw areType) hypothe
ses. A size expression is derived by selecting a node configuration (G e tN o d eC o n f), running
the tests for these nodes (R u n T es ts), and deriving the size polynomial from the test results
(D eriveP olynom ia l).

http://www.aha.cs.ru.nl

28 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

Function: T r y I n c r e a s i n g D e g r e e s
Input: a deg ree d, a fu n c tio n d e fin itio n f
Output: th e size-aw are ty p e of t h a t fu n c tio n

TRYlNCREASINGDEGREES(d, f) =
let type = I n f e r U n d e r l y i n g T y p e ^)

atype = ANNOTATEW lTHSlZEVARIABLES(iype)
VS = GETOUTPUTSlZEVARIABLES(aiype)
stype = G e tS iz e A w a re T y p e (c Z , f , atype, vs, [])

in if (CHECKSiZEAwARETYPE(si?/pe, f)) th e n stype
else T r y I n c r e a s i n g D e g r e e s ^ + I , f)

Function: G e t S i z e A w a r e T y p e
Input: a deg ree d,

a fu n c tio n d e fin itio n f ,
i ts a n n o ta te d ty p e ,
a lis t o f u n k n o w n size a n n o ta tio n s ,
a n d th e p o ly n o m ia ls a lre a d y d eriv ed

Output: th e size-aw are ty p e
o f t h a t fu n c tio n if th e deg ree is h igh en o u g h

G e t S i z e A w a r e T y p e ^ , f , atype, [], ps) =
ANNOTATEW iTHSiZEExPRESSiONs(aiype, ps) / / T h e E n d

G e t S i z e A w a r e T y p e ^ , f , atype, v .vs, ps) =
le t nodes = G e tN o d e C o n f (c Z , atype, p s)

results = R u N T E S T s(f , nodes)
p = D e r iv e P o ly n o m ia l (c Z , v, atype, nodes, results)

in G e t S i z e A w a r e T y p e ^ , f , atype, vs, p:ps)

If a type is rejected, this can mean two things. F irst, the assumed degree was too low and
one of the size expressions has a higher degree. T ha t is why the procedure continues for a
higher degree. Another possibility is th a t one of the size expressions is not a polynomial (the
function definition is not shapely) or th a t the type cannot be checked due to incompleteness
of the type system. In th a t case the procedure will not term inate. If the function is well-
typable, the procedure will eventually find the correct size-aware type and term inate.

A collection of examples - function definitions together with size m easurem ents - is
presented in [vKShvE07].

5.7. C o m p le x ity o f h y p o th e s e s -g e n e ra t in g p h a se . Given a function definition, its un
derlying first-order type and a m aximal degree of hypothetical polynomials, the complexity
of its hypothesis-generating phase depends on three param eters:
• the nestedness s > 0 of the ou tpu t type which may be either LP1 (. . . LPs (I n t) . . .) or

LP1 (. . . LPs (a) . . .),
• the fixed maximal degree d of the polynomials p 1, . . . , ps ,
• the num ber of size variables k defined by the input type of the function.

To generate hypothesis for p 1(n 1, . . . , n k) one

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 29

(1) generates N^ = (k+d) natural-valued nodes inductively on k; it is done by the definition
5.4 of N C A configuration for the k-variable case (note th a t for k = 1 it is ju st the 1
dimensional nodes 0, . . . , d).

(2) generates a collection of N ^ concrete inputs w ith the sizes, defined by the nodes,
(3) evaluates the function body N^ = (k+d) times on these inputs,
(4) solves the system of N^ linear equations to obtain N^ coefficients for p 1.

Generating hypotheses for a p j , j > 1, is similar. However, generating the collection
Nk = (k+d) nodes is more complicated, since nodes sending some p j/ , j ' < j , to zero are
excluded. In the worst case, to find correct nodes, one needs to evaluate a k dimensional
cube w ith side [0, . . . , jd], th a t is to evaluate (to check if it has a zero value) j — 1 polynomials
in a t most (jd + 1)k nodes.

Thus, for each 1 < j < s the complexity is bounded by cevaiP1,...,Pj _ 1 + cevaiPj + cgauss,
where
• cevaiP1,...,Pj _ 1 = (j — 1) ■ (jd + 1)k evaluations of polynomials,
• cevalPj = Nk = (k+d) evaluations of the function definition,
• cgauss — o (N k 2) is the complexity of Gaussian elimination.

If the results of evaluations of polynomials on the j - th step are memoised, then alto
gether for j = 1 , . . . s one needs at most (s — 1) ■ (sd + 1)k evaluations of polynomials.
Thus, the complexity of the hypotheses-generating phase for all j = 1, . . . s together is
(s — 1) ■ (sd + 1) k + s ■ (*+ *)+ s ■ O ((k' i d) 2).

5.8. I n h a b i ta n ts fo r th e ty p e s o f e x te r n a l fu n c tio n s . Let fext be an external function.
Since the function is external, its code is not present in our language. However, its first-order
type may be available. We have to tru s t this type since we cannot check it.

For inference of types of other functions th a t somewhere call fext, our testing procedure
requires the possibility to evaluate w ithin our language the code of the external function.
Such code can be made available in our language by constructing an inhabitant of the type
of fext .

For our dem onstrator, an alternative solution would be to create an actual external call
for each occurrence of an external function. This may require more im plem entation effort
w ithin the dem onstrator. The type inference procedure might take more tim e because the
external function may require more tim e to execute than the generated inhabitants of the
type. Therefore, we prefer to work w ith inhabitants (which yields the same size dependencies
as using external functions directly). For reasons of m odularity it might even be worthwhile
to also create inhabitants of internal functions (e.g. in the case of using an interface to a
huge, tim e intensive library).

Below, we show how to construct in our language a function f which is an inhabitant of
a given type of an external function. It is not necessary to dem and th a t f and the external
function are equal as set-theoretic maps. They m ust have the same size dependency, i.e.
the same type.

Let fext have the type L«(a) ^ LP(«)(a). We define the body of f by the following
program expression:

match l with | nil ^ nil

| cons(hd, t l) ^ gem h d , p(p)(length(l))]

30 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

Now we explain the subexpressions in the nil- and cons-branches. In the nil-branch the
expression returns the em pty list. This is the only choice, due to the following “folklore”
property (which to our knowledge was not published earlier).

L e m m a 5.5. A n y total polym orphic fu n c tio n g : L(a) ^ L(a) m aps the em pty list to the
em pty list.

Proof. We prove this property using the “free” theorem map(a) o ga = ga / o map(a) from
[Wad05], which holds for all a : a ^ a '. Here map : (a ^ a ') ^ L(a) ^ L (a ') lifts
a to lists, and ga denotes the instantiation of g w ith type a . Suppose the opposite: ga
sends nil to [hd . . . stop], and ga/ sends nil to [hd' . . . stop ']. Then map(a) o ga sends nil to
[a(hd) . . . a(stop)] and ga/ o map(a) sends nil to [hd' . . . stop ']. It is not the case th a t for all
a one has a (hd) = hd '. □

It is a routine exercise to extend this “property for free” to nested lists.
In the cons-branch we use a straightforw ardly defined function gen(z, x) : a x I n t ^

L(a) th a t ou tputs a list of z-s of length x if x is non-negative and does not term inate
otherwise. We also use a function generator p, th a t given a polynomial p, generate a
function definition p(p) : I n t ^ I n t such th a t p(p)(n) = p(n). It is easy to see th a t for
any non-em pty list l of length n the composition gen(hd, p(p)(length(l))) term inates if fext
term inates. It follows from the fact th a t if fext term inates on l then p(n) > 0, since p(n) is
the length of the corresponding output.

6 . C o n c lu s io n a n d F u r t h e r W o rk

We have presented a natural syntactic restriction such th a t type checking of a size-aware
type system for first-order shapely functions is decidable for polynomial size expressions
w ithout any lim itations on the degree of the polynomials.

A non-standard, practical m ethod to infer types is introduced. It uses run-tim e results
to generate a set of equations. These equations are linear and hence autom atically solvable.
The m ethod term inates on a non-trivial class of shapely functions.

6.1. F u r th e r w o rk . The system is defined for polymorphic lists. Recently, it has been
shown [TaShvE08] how to extend the system to ordinary inductive types (no nested induc
tive definitions).

An obvious lim itation of our approach is th a t we consider only shapely functions. In
practice, one is often interested to obtain upper bounds on space complexity for non-shapely
functions. A simple example, where for a non-shapely function an upper bound would be
useful, is the function to insert an element in a list, provided the list does not contain
the element. At present we have been studying checking and inference of size annotations
in the form of collections of piecewise polynomials th a t represent a t least all possible size
dependencies. For instance, insert is annotated w ith {p(n) = n + ¿}0<i<1, and delete is
annotated w ith {p(n) = n — i}0<i< 1. Such collections may be potentially infinite, like in the
case of recursive application of insert w ith {p(n, m) = n + i } 0<i<m. Here, involvement of real
arithm etic is inevitable in type checking. As for inference, when one is interested in strict
(“principal type”) and polynomial lower and upper bounds, pmin and pmax respectively, it is
possible to extend our testing procedure to obtain them . Then, one checks the hypothesis
in the form {pmin + i}0<i<(Pmax Pmin).

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 31

We plan to allow both unsized integers and adding non-trivial sizes to integers. The size
of a non-negative sized integer is taken to be its value. This allows to type such functions
as init : I n t n ^ Ln (In t) , which on the integer n ou tputs the list of 1 of length n. W ith
sized integers one can type such function definitions w ithout introducing dependent types.
Hence, the decision how to add sizes to integers is connected to the problem of using sized
and non-sized types w ithin the same system. We leave it for fu ture work based e.g. on
[VasHam03] and [JaySek97].

Addition of o ther d a ta structures and extension to non-shapely functions will open the
possibility to use the system for an actual program ming language.

Application of the methodology to estim ate stack and tim e complexity is considered as
a topic for fu ture projects.

A ck n o w led g m en ts

The authors would like to thank Alejandro Tam alet and the anonymous reviewers
for their observations and valuable suggestions for improvement. We thank the students
of Radboud University Nijmegen, - Willem Peters, Bob Klaase, Elroy Jum pertz, Jeroen
Claassens, M artin van de Goor and Ruben M uijrers - w ithout whom im plem entation of the
on-line dem onstrator would have been impossible.

R efer e n c e s

[AlArGenPuebZan07] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, Damiano Zanardini. Cost
Analysis of Java Bytecode. 16th European Symposium on Programming, ESOP’07,
Lecture Notes in Computer Science 4421:157-172, 2007.
Elvira Albert, Puri Arenas, Samir Genaim, German Puebla. Automatic Inference
of Upper Bounds for Recurrence Relations in Cost Analysis. Static Analysis, 15th
International Symposium, Lecture Notes in Computer Science, 5079: 221-237, 2008.
Roberto Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta Informat-
icae, 65(1-2):29-60, 2005.
Roberto Amadio, Silvano Dal Zilio. Resource Control for Synchronous Cooperative
Threads. Theoretical Computer Science, 358:229-254, 2006.
David Aspinall, Kenneth MacKenzie. Mobile Resource Guarantees and Policies. Proc.
Intl. Workshop on Construction and Analysis of Safe, Secure and Interoperable Smart
Devices (CASSIS 2005, LNCS, 3956:16-36, 2006.
Vincent Atassi, Patrick Baillot, Kazushige Terui. Verification of Ptime Reducibility
for system F Terms: Type Inference in Dual Light Affine Logic. Logical Methods in
Computer Science, 32, to appear, 2007.
Martin Avanzini, Georg Moser, Andreas Schnabl. Automated Implicit Computational
Complexity Analysis (System Description). Lecture Notes In Artificial Intelligence.
Proceedings of the 4th international joint conference on Automated Reasoning, 5195:
132-138, 2008.
Ralph Benzinger. Automated complexity analysis of Nuprl extracted programs. Jour
nal of Functional Programming, 11, Issue 1: 3-31, 2001.
Guillaume Bonfante, Jean-Yves Marion, Jean-Yves Moyen. Quasi-interpretations, a
way to control resources. Theoretical Computer Science, to appear.
Erik Barendsen, Sjaak Smetsers. Uniqueness typing for functional languages with
graph rewriting semantics. Mathematical Structures in Computer Science, 6:579-612,
1996.
Siddhartha Chatterjee, Guy E. Blelloch, Allan L. Fisher. Size and access inference
for data-parallel programs. PLDI ’91: Proceedings of the ACM SIGPLAN 1991 con
ference on Programming language design and implementation, 130-144, 1991.

[AlArGenPueb08]

[Am05]

[AmZil]

[AsMcK06]

[AtBailTer07]

[AvMoSch08]

[Ben01]

[BonMarMoy05b]

[BarSm96]

[Chat90]

32 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

[vEShvK07]

[GabMarRon08]

[Gir92]

[GuMeCh09]

[HerLen01]

[HofJost03]

[JaySek97]

[vKShvE07]

[Lor92]

[MarPech]

[Mat91]

[Mil78]

[Par98]

[ShvE0T8]

[ShvKvE07a]

[ShvKvE07b]

[TaShvE08]

[Chui87]

[VasHam03]

C. Chui, H.C. Lai. Vandermonde determinant and Lagrange interpolation in R s.
Nonlinear and convex analysis, 23-35, 1987.
Marko van Eekelen, Olha Shkaravska, Ron van Kesteren, Bart Jacobs, Erik Poll, Sjaak
Smetsers. Amortised Heap Space Usage analysis. Trends In Functional Programming,
ed. by Marco T. Morazan, 8:36-53, 2007.
Marco Gaboardi, Jean-Yves Marion, Simona Ronchi Della Rocca. A Logical Account
of PSPACE. 35th ACM SIGPLAN-SIGACT Symposium on Principles of Program
ming Languages POPL 2008, San Francisco, January 10-12, 2008, Proceedings, to
appear, 2008.
Jean-Yves Girard, Andre Scedrov, Phillip Scott. Bounded linear logic: a modular
approach to polynomial-time computability. Theoretical Computer Science, 97(1):1-
66, 1992.
Sumit Gulwani, Krishna K. Mehra, Trishul M. Chilimbi. SPEED: precise and efficient
static estimation of program computational complexity. ACM Conference Principles
of Programming Languages, P 0P L ’09: 127-139, 2009.
Christoph A. Herrmann, Christian Lengauer. A transformational approach which
combines size inference and program optimization. Walid Taha, editor, Semantics,
Applications, and Implementation of Program Generation (SAIG’01), Lecture Notes
in Computer Science, 2196:199-218, 2001.
Martin Hofmann, Steffen Jost. Static prediction of heap space usage for first-order
functional programs. SIGPLAN Not., 38(1):185-197, 2003.
C. Barry Jay, Milan Sekanina. Shape checking of array programs. Computing: the
Australasian Theory Seminar, Proceedings, Australian Computer Science Communi
cations, 19:113-121, 1997.
Ron van Kesteren, Olha Shkaravska, Marko van Eekelen. Inferring static non-
monotonically sized types through testing. In Proceedings of 16th International Work
shop on Functional and (Constraint) Logic Programming, Paris, WFLP’07, 2007.
Rudolf A. Lorenz. Multivariate Birkhoff Interpolation. Lecture Notes in Math., 1516,
1992.
Jean-Yves Marion, Romain Pechoux. Resource analysis by sup-interpretations. Func
tional and LOgic Programming 8th international Symposium (FLOPS 2006), Lecture
notes in Computer Science, 3945, 2006.
Yuri Matiyasevich, James P. Jones. Proof of recursive unsolvability of Hilbert’s tenth
problem. American Mathematical Monthly, 98(10):689-709, 1991.
Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348-375, 1978.
Lars Pareto. Sized Types. Dissertation for the Licentiate Degree in Computing Sci
ence. Chalmers University of Technology, 1998.
Olha Shkaravska, Marko van Eekelen, Alejandro Tamalet. Collected Size Semantics
for Functional Programs. Technical report: ICIS-R08021, Radboud University Ni
jmegen, November 2008.
Olha Shkaravska, Ron van Kesteren, Marko van Eekelen. Polynomial size analysis of
first-order functions. Technical Report ICIS-R07004, Radboud University Nijmegen,
January 2007.
Olha Shkaravska, Ron van Kesteren, Marko van Eekelen. Polynomial size analysis
of first-order functions. Typed Lambda Calculi end Applications, TLCA ’07, Lecture
Notes in Computer Science, 4583:351-365, 2007.
Alejandro Tamalet, Olha Shkaravska, Marko van Eekelen. Size Analysis of Algebraic
Data Types. Selected Papers of the 9th International Symposium on Trends in Func
tional Programming (TFP’08). (Ed). Marco Morazan, Intellect Publishers, 2008, to
appear.
Pedro Baltazar Vasconcelos, Kevin Hammond. Inferring cost equations for recursive,
polymorphic and higher-order functional programs. P. Trinder, G. Michaelson, and

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 33

R. Pena, editors, Implementation of Functional Languages: 15th International Work
shop, IFL 2003, Edinburgh, UK, September 8-11, 2003, Revised Papers, Lecture Notes
in Computer Science, 3145:86-101, 2004.

[Wad05] Philip Wadler. Theorems for Free! (1989). Proceedings 4th Int. Conf.on Funct.
Prog.Languages and Computer Arch., FPCA’89, London, UK, 11-13 Sept, 1989.

A p p e n d ix : auxiliary lemmata fo r soundness pr o o f

L e m m a 6.1 (A program value’s footprint is in the heap). R (h , v) C d o m (h).

Proof. The lemma is proved by induction on the size of the (domain of the) heap h.
d o m (h) = 0: Then no l € d o m (h) exists and R (h , v) = 0.
d o m (h) = 0: v = c o r v = NULL: Then R (h , v) = 0, which is trivially a subset of

dom (h).
v = l a n d d o m (h) = (d o m (h) \ {l}) U {l}: From the definition of R we get R (h , l) =

{l} U R (h |dom(h)\{i}, h.l.hd) U R (h |dom(h)\{i}, h . l . t l) . Applying the induc
tion hypotheses we derive th a t R (h |dom(h)\{i}, h.l.hd) C d o m (h |dom(h)\{i}) and
R (h |dom(h)\{i}, h . l . t l) C d o m (h|dom(h)\{i}). Hence, R (h , l) C d o m (h).

□
L e m m a 6.2 (Extending a heap does not change the footprints of program values). I f
l / d o m (h) and h ' = h[l.hd := vhd, l . t l := vt i] fo r som e vhd, vt i then fo r any v = l one
has R (h , v) = R (h ', v).

Proof. The lemma is proved by induction on the size of the (domain of the) heap h.
d o m (h) = 0: Since h ' = [l.hd = vhd, l . t l := vt l] and v = l we have v € {l} = d o m (h ').

Therefore, R (h , v) = 0 = R (h ', v).
d o m (h) = 0: We proceed by case distinction on v.

v = c o r v = NULL: Then, R (h , v) = 0 = R (h ', v).
v = l ' : If l ' / d o m (h), then due to l ' = l we have l ' / d o m (h) as well and

R (h , v) = 0 = R (h ', v).
Let l ' € d o m (h). From the definition of R we get

R (h , l ') = { l' } U R (h | dom(h)\{l'}> h .l '.hd) U R (h |dom(h)\{l'}> h *l '. t l) .

Due to h '(l ') = h (l ') and

h |dom(h')\{l'} ^d o m (h)\{l'}[l-hd : vhd, l -t l : vt l],
and the induction assum ption one has

R (h |dom(h)\{l'}, h ‘l -hd) R (h |dom(h')\{l'}, h -l -hd)
R (h |dom(h)\{l'}, h ‘l •t l) R (h |dom(h')\{l'}, h -l •t l)

So,

R (h ', l ') =
{l } U R (h |dom(h')\{l'}, h -l .hd) U R (h |dom(h/)\{l/}, h .l .t l)
{l } U R (h |dom(h)\{l/}, h •l -hd) U R (h |dom(h)\{l/}, h •l .t l)

= R (h , l ').

□

34 O. SHKARAVSKA, M. V. EEKELEN, AND R. V. KESTEREN

L e m m a 6.3 (Extending heaps preserves model relations).
For all heaps h and h!, i f h! | dom(h) = h then v |=h. w im plies v |=h. w.

Proof.
The lemma is proved by induction on the structure of t •.

t • = I n t : In this case, v is a constant c and w = c, hence v |=h. w by the definition.
t • = Ln. (t v/): We proceed by induction on n V.

n V = 0: In this case, v = NULL and w = [], hence v |=h. w by the definition.
n V = m V + 1: By the definition v is a location I and I |=h (_ t/) whd :: wt i forLm*+1(')

some whd and wtl such th a t
I € dom (h),

h .l.hd |=hidom(h)\ {£} whd,

h . l . t l |=hm.7r . ' \ {£} w tl

We want to apply the induction assum ption, with heaps h | dom(h)\{i}, h | dom(h/)\{l }
(as “h” and “h ” respectively). The condition of the lemma is satisfied because

h 1 dom (h/)\ {l} 1 dom (h|dom(h)\{£})
h 1 dom (h/)\{l} 1 dom (h)\{l}
h 1 dom (h)\{l} h| dom (h)\{l}

Thus, we apply the induction assum ption and with h .l = hM obtain

I € dom (h),

hM .hd |= ; > m(h/)\ {l} whd,
7 / o . -i I h |dom(h/)\{l}
h -l -t l K „ ,.(/ . .) wti

Then, I |=h/ (_t/) whd :: wt l by the definition.Lm*+1(')
□

L e m m a 6 .4 (The model relation for v depends only on values in the footprint of v).

For v, h, w , and t •, the relation v |= ^ w im plies v |=hR(h’ v) w.

Proof. The lemma is proved by induction on t •.

t • = I n t : By the definition, v is a constant c and thus w = c. Then v |=hR(h’ v) w.
t • = Ln. (t •): We proceed by induction on nV

t • = L0 (t • '): By the definition v = NULL and w = []. Then v |=hR(h’ v) w.
t^ = Lm.+ i (t ^ '): By the definition v = l . Then l |=h (_ /̂) w means th a t

w = whd :: wt l for some whd and wt l , and

l € dom (h),

h .l.hd |=h^dom(h)\ {£} whd,

h . l . t l |=im.°7r^//){£} w tl

We apply the induction assum ption, w ith the heap h | dom(h)\{i}:

POLYNOMIAL SIZE ANALYSIS OF FIRST-ORDER SHAPELY FUNCTIONS 35

l € d o m (h),
i f f , , I h|dom(h)\ {£}|R(h|dom(h)\{£}’ h-£-hd)h .l.hd | t ./ whd,
h - . h|dom(h)\ {l}|R(h|dom(h)\{£}> h-l-tl)
h .l .t l = Lm. (t•/) w tl

Due to R (h |dom(h)\{i}, h.l.hd) C d o m (h) \ {l} (lemma 6.1) we have

h|dom(h)\ {l}|R(h|dom(h)\{£}, h-l -hd) =
= h | R(h| dom(h)\{£}> h-l -hd) =
= h|R(h|dom(h)\{l}> h-l -hd)\ {l}.

Similarly h|dom (h)\ {l} |R(h|dom(h)\{l}> h-l -tl) = h|R(h|dom(h)\{l}> h-l -t l) \ {l}.
Due to l € R (h , l) , and lemma 6.3 - w ith R (h |dom(h)\{i}, h.l.hd) \ {l} C
R (h , h.l.hd) \ {l}, we have

l € dom (hR(h, i)),
h| I h|R(h h.i.hd)\{i} wh |R(h, l).l .hd I— t •/ whd,
h |R (h ,i) . l . t l = (T./h)£.hd)\ {£} w tl

Thus, l = hlR(h’(l)./) whd :: w tl.Lm. + 1(')
□

L e m m a 6.5 (Equality of footprints implies equivalence of model relations).
I f h|R(h, v) = h'|R(h, v) then v = w im plies v = w.

Proof. Assume v j = w . Lemma 6.4 states th a t this implies v j=hiR(h’ v) w. Assuming

h|R(h, v) = h'|R(h, v) we get v = hJ R(h’ v) w. Since d o m (h'|R(h, v)) = d o m (h|R(h, v)) =
R (h , v) we have h '|dom(h/|R(h v)) = h '|R(h, v) and we may apply lemma 6.3, which gives
v \= y. w. □

L e m m a 6 .6 (Extending a store preserves the validity of the store).
Given a ground context store s, heap h, value v, a set o f variables vars and a variable

x € vars, s.t. x € d o m (s), one has

Validstore(va rs , T^,s[x := v],h) Validst0re(vars, T^, s ,h)

Proof. The lemma follows from the definition of Validstore- □

L e m m a 6 .7 (Weakening for valid stores).
G iven a set o f variables vars 1, ground context r% stack s, and heap h, fo r any set o f
variables vars2 such that such tha t vars2 C vars 1 one has

Validstore(vars 1, T^, s ,h) = ^ Validstore(va rs2, T^, s ,h)

P ro o f The lemma follows from the definition of Validstore- □

L e m m a 6 .8 (Validity for the disjoint union of sets of variables). For any store s and a
ground context r one has

Validstore(vars 1 U vars2, T^, s, h) Validstore(vars 1, r^ , s, h) A Validstore(vars2, r , s, h)

Proof. The lemma follows immediately from the definition of a valid store. □

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

