405 research outputs found

    Time indeterminacy and spatio-temporal building transformations: an approach for architectural heritage understanding

    Get PDF
    Nowadays most digital reconstructions in architecture and archeology describe buildings heritage as awhole of static and unchangeable entities. However, historical sites can have a rich and complex history, sometimes full of evolutions, sometimes only partially known by means of documentary sources. Various aspects condition the analysis and the interpretation of cultural heritage. First of all, buildings are not inexorably constant in time: creation, destruction, union, division, annexation, partial demolition and change of function are the transformations that buildings can undergo over time. Moreover, other factors sometimes contradictory can condition the knowledge about an historical site, such as historical sources and uncertainty. On one hand, historical documentation concerning past states can be heterogeneous, dubious, incomplete and even contradictory. On the other hand, uncertainty is prevalent in cultural heritage in various forms: sometimes it is impossible to define the dating period, sometimes the building original shape or yet its spatial position. This paper proposes amodeling approach of the geometrical representation of buildings, taking into account the kind of transformations and the notion of temporal indetermination

    A context-sensitive conceptual framework for activity modeling

    Get PDF
    Human motion trajectories, however captured, provide a rich spatiotemporal data source for human activity recognition, and the rich literature in motion trajectory analysis provides the tools to bridge the gap between this data and its semantic interpretation. But activity is an ambiguous term across research communities. For example, in urban transport research activities are generally characterized around certain locations assuming the opportunities and resources are present in that location, and traveling happens between these locations for activity participation, i.e., travel is not an activity, rather a mean to overcome spatial constraints. In contrast, in human-computer interaction (HCI) research and in computer vision research activities taking place along the way, such as reading on the bus, are significant for contextualized service provision. Similarly activities at coarser spatial and temporal granularity, e.g., holidaying in a country, could be recognized in some context or domain. Thus the context prevalent in the literature does not provide a precise and consistent definition of activity, in particular in differentiation to travel when it comes to motion trajectory analysis. Hence in this paper, a thorough literature review studies activity from different perspectives, and develop a common framework to model and reason human behavior flexibly across contexts. This spatio-temporal framework is conceptualized with a focus on modeling activities hierarchically. Three case studies will illustrate how the semantics of the term activity changes based on scale and context. They provide evidence that the framework holds over different domains. In turn, the framework will help developing various applications and services that are aware of the broad spectrum of the term activity across contexts

    Time indeterminacy and spatio-temporal building transformations: an approach for architectural heritage understanding

    Get PDF
    Nowadays most digital reconstructions in architecture and archeology describe buildings heritage as awhole of static and unchangeable entities. However, historical sites can have a rich and complex history, sometimes full of evolutions, sometimes only partially known by means of documentary sources. Various aspects condition the analysis and the interpretation of cultural heritage. First of all, buildings are not inexorably constant in time: creation, destruction, union, division, annexation, partial demolition and change of function are the transformations that buildings can undergo over time. Moreover, other factors sometimes contradictory can condition the knowledge about an historical site, such as historical sources and uncertainty. On one hand, historical documentation concerning past states can be heterogeneous, dubious, incomplete and even contradictory. On the other hand, uncertainty is prevalent in cultural heritage in various forms: sometimes it is impossible to define the dating period, sometimes the building original shape or yet its spatial position. This paper proposes amodeling approach of the geometrical representation of buildings, taking into account the kind of transformations and the notion of temporal indetermination

    Modeling and querying spatio-temporal clinical databases with multiple granularities

    Get PDF
    In molti campi di ricerca, i ricercatori hanno la necessit\ue0 di memorizzare, gestire e interrogare dati spazio-temporali. Tali dati sono classici dati alfanumerici arricchiti per\uf2 con una o pi\uf9 componenti temporali, spaziali e spazio-temporali che, con diversi possibili significati, li localizzano nel tempo e/o nello spazio. Ambiti in cui tali dati spazio-temporali devono essere raccolti e gestiti sono, per esempio, la gestione del territorio o delle risorse naturali, l'epidemiologia, l'archeologia e la geografia. Pi\uf9 in dettaglio, per esempio nelle ricerche epidemiologiche, i dati spazio-temporali possono servire a rappresentare diversi aspetti delle malattie e delle loro caratteristiche, quali per esempio la loro origine, espansione ed evoluzione e i fattori di rischio potenzialmente connessi alle malattie e al loro sviluppo. Le componenti spazio-temporali dei dati possono essere considerate come dei "meta-dati" che possono essere sfruttati per introdurre nuovi tipi di analisi sui dati stessi. La gestione di questi "meta-dati" pu\uf2 avvenire all'interno di diversi framework proposti in letteratura. Uno dei concetti proposti a tal fine \ue8 quello delle granularit\ue0. In letteratura c'\ue8 ampio consenso sul concetto di granularit\ue0 temporale, di cui esistono framework basati su diversi approcci. D'altro canto, non esiste invece un consenso generale sulla definizione di un framework completo, come quello delle granularit\ue0 temporali, per le granularit\ue0 spaziali e spazio-temporali. Questa tesi ha lo scopo di riempire questo vuoto proponendo un framework per le granularit\ue0 spaziali e, basandosi su questo e su quello gi\ue0 presente in letteratura per le granularit\ue0 temporali, un framework per le granularit\ue0 spazio-temporali. I framework proposti vogliono essere completi, per questo, oltre alle definizioni dei concetti di granularit\ue0 spaziale e spazio-temporale, includono anche la definizione di diversi concetti legati alle granularit\ue0, quali per esempio le relazioni e le operazioni tra granularit\ue0. Le relazioni permettono di conoscere come granularit\ue0 diverse sono legate tra loro, costruendone anche una gerarchia. Tali informazioni sono poi utili al fine di conoscere se e come \ue8 possibile confrontare dati associati e rappresentati con granularit\ue0 diverse. Le operazioni permettono invece di creare nuove granularit\ue0 a partire da altre granularit\ue0 gi\ue0 definite nel sistema, manipolando o selezionando alcune loro componenti. Basandosi su questi framework, l'obiettivo della tesi si sposta poi sul mostrare come le granularit\ue0 possano essere utilizzate per arricchire basi di dati spazio-temporali gi\ue0 esistenti al fine di una loro migliore e pi\uf9 ricca gestione e interrogazione. A tal fine, proponiamo qui una base di dati per la gestione dei dati riguardanti le granularit\ue0 temporali, spaziali e spazio-temporali. Nella base di dati proposta possono essere rappresentate tutte le componenti di una granularit\ue0 come definito nei framework proposti. La base di dati pu\uf2 poi essere utilizzata per estendere una base di dati spazio-temporale esistente aggiungendo alle tuple di quest'ultima delle referenze alle granularit\ue0 dove quei dati possono essere localizzati nel tempo e/o nel spazio. Per dimostrare come ci\uf2 possa essere fatto, nella tesi introduciamo la base di dati sviluppata ed utilizzata dal Servizio Psichiatrico Territoriale (SPT) di Verona. Tale base di dati memorizza le informazioni su tutti i pazienti venuti in contatto con l'SPT negli ultimi 30 anni e tutte le informazioni sui loro contatti con il servizio stesso (per esempio: chiamate telefoniche, visite a domicilio, ricoveri). Parte di tali informazioni hanno una componente spazio-temporale e possono essere quindi analizzate studiandone trend e pattern nel tempo e nello spazio. Nella tesi quindi estendiamo questa base di dati psichiatrica collegandola a quella proposta per la gestione delle granularit\ue0. A questo punto i dati psichiatrici possono essere interrogati anche sulla base di vincoli spazio-temporali basati su granularit\ue0. L'interrogazione di dati spazio-temporali associati a granularit\ue0 richiede l'utilizzo di un linguaggio d'interrogazione che includa, oltre a strutture, operatori e funzioni spazio-temporali per la gestione delle componenti spazio-temporali dei dati, anche costrutti per l'utilizzo delle granularit\ue0 nelle interrogazioni. Quindi, partendo da un linguaggio d'interrogazione spazio-temporale gi\ue0 presente in letteratura, in questa tesi proponiamo anche un linguaggio d'interrogazione che permetta ad un utente di recuperare dati da una base di dati spazio-temporale anche sulla base di vincoli basati su granularit\ue0. Il linguaggio viene introdotto fornendone la sintassi e la semantica. Inoltre per mostrare l'effettivo ruolo delle granularit\ue0 nell'interrogazione di una base di dati clinica, mostreremo diversi esempi di interrogazioni, scritte con il linguaggio d'interrogazione proposto, sulla base di dati psichiatrica dell'SPT di Verona. Tali interrogazioni spazio-temporali basate su granularit\ue0 possono essere utili ai ricercatori ai fini di analisi epidemiologiche dei dati psichiatrici.In several research fields, temporal, spatial, and spatio-temporal data have to be managed and queried with several purposes. These data are usually composed by classical data enriched with a temporal and/or a spatial qualification. For instance, in epidemiology spatio-temporal data may represent surveillance data, origins of disease and outbreaks, and risk factors. In order to better exploit the time and spatial dimensions, spatio-temporal data could be managed considering their spatio-temporal dimensions as meta-data useful to retrieve information. One way to manage spatio-temporal dimensions is by using spatio-temporal granularities. This dissertation aims to show how this is possible, in particular for epidemiological spatio-temporal data. For this purpose, in this thesis we propose a framework for the definition of spatio-temporal granularities (i.e., partitions of a spatio-temporal dimension) with the aim to improve the management and querying of spatio-temporal data. The framework includes the theoretical definitions of spatial and spatio-temporal granularities (while for temporal granularities we refer to the framework proposed by Bettini et al.) and all related notions useful for their management, e.g., relationships and operations over granularities. Relationships are useful for relating granularities and then knowing how data associated with different granularities can be compared. Operations allow one to create new granularities from already defined ones, manipulating or selecting their components. We show how granularities can be represented in a database and can be used to enrich an existing spatio-temporal database. For this purpose, we conceptually and logically design a relational database for temporal, spatial, and spatio-temporal granularities. The database stores all data about granularities and their related information we defined in the theoretical framework. This database can be used for enriching other spatio-temporal databases with spatio-temporal granularities. We introduce the spatio-temporal psychiatric case register, developed by the Verona Community-based Psychiatric Service (CPS), for storing and managing information about psychiatric patient, their personal information, and their contacts with the CPS occurred in last 30 years. The case register includes both clinical and statistical information about contacts, that are also temporally and spatially qualified. We show how the case register database can be enriched with spatio-temporal granularities both extending its structure and introducing a spatio-temporal query language dealing with spatio-temporal data and spatio-temporal granularities. Thus, we propose a new spatio-temporal query language, by defining its syntax and semantics, that includes ad-hoc features and constructs for dealing with spatio-temporal granularities. Finally, using the proposed query language, we report several examples of spatio-temporal queries on the psychiatric case register showing the ``usage'' of granularities and their role in spatio-temporal queries useful for epidemiological studies

    Ontology-Based Consistent Specification of Sensor Data Acquisition Plans in Cross-Domain IoT Platforms

    Get PDF
    Nowadays there is an high number of IoT applications that seldom can interact with each other because developed within different Vertical IoT Platforms that adopt different standards. Several efforts are devoted to the construction of cross-layered frameworks that facilitate the interoperability among cross-domain IoT platforms for the development of horizontal applications. Even if their realization poses different challenges across all layers of the network stack, in this paper we focus on the interoperability issues that arise at the data management layer. Specifically, starting from a flexible multi-granular Spatio-Temporal-Thematic data model according to which events generated by different kinds of sensors can be represented, we propose a Semantic Virtualization approach according to which the sensors belonging to different IoT platforms and the schema of the produced event streams are described in a Domain Ontology, obtained through the extension of the well-known Semantic Sensor Network ontology. Then, these sensors can be exploited for the creation of Data Acquisition Plans by means of which the streams of events can be filtered, merged, and aggregated in a meaningful way. A notion of consistency is introduced to bind the output streams of the services contained in the Data Acquisition Plan with the Domain Ontology in order to provide a semantic description of its final output. When these plans meet the consistency constraints, it means that the data they handle are well described at the Ontological level and thus the data acquisition process over passed the interoperability barriers occurring in the original sources. The facilities of the StreamLoader prototype are finally presented for supporting the user in the Semantic Virtualization process and for the construction of meaningful Data Acquisition Plans

    Enhancing Exploratory Analysis across Multiple Levels of Detail of Spatiotemporal Events

    Get PDF
    Crimes, forest fires, accidents, infectious diseases, human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its spatial location, time and related attributes are known with high levels of detail (LoDs). The LoD of analysis plays a crucial role in the user’s perception of phenomena. From one LoD to another, some patterns can be easily perceived or different patterns may be detected, thus requiring modeling phenomena at different LoDs as there is no exclusive LoD to study them. Granular computing emerged as a paradigm of knowledge representation and processing, where granules are basic ingredients of information. These can be arranged in a hierarchical alike structure, allowing the same phenomenon to be perceived at different LoDs. This PhD Thesis introduces a formal Theory of Granularities (ToG) in order to have granules defined over any domain and reason over them. This approach is more general than the related literature because these appear as particular cases of the proposed ToG. Based on this theory we propose a granular computing approach to model spatiotemporal phenomena at multiple LoDs, and called it a granularities-based model. This approach stands out from the related literature because it models a phenomenon through statements rather than just using granules to model abstract real-world entities. Furthermore, it formalizes the concept of LoD and follows an automated approach to generalize a phenomenon from one LoD to a coarser one. Present-day practices work on a single LoD driven by the users despite the fact that the identification of the suitable LoDs is a key issue for them. This PhD Thesis presents a framework for SUmmarizIng spatioTemporal Events (SUITE) across multiple LoDs. The SUITE framework makes no assumptions about the phenomenon and the analytical task. A Visual Analytics approach implementing the SUITE framework is presented, which allow users to inspect a phenomenon across multiple LoDs, simultaneously, thus helping to understand in what LoDs the phenomenon perception is different or in what LoDs patterns emerge

    Modeling Multiple Granularities of Spatial Objects

    Get PDF
    People conceptualize objects in an information space over different levels of details or granularities and shift among these granularities as necessary for the task at hand. Shifting among granularities is fundamental for understanding and reasoning about an information space. In general, shifting to a coarser granularity can improve one\u27s understanding of a complex information space, whereas shifting to a more detailed granularity reveals information that is otherwise unknown. To arrive at a coarser granularity. objects must be generalized. There are multiple ways to perform generalization. Several generalization methods have been adopted from the abstraction processes that are intuitively carried out by people. Although, people seem to be able to carry out abstractions and generalize objects with ease. formalizing these generalization and shifts between them in an information system, such as geographic information system, still offers many challenges. A set of rules capturing multiple granularities of objects and the use of these granularities for enhanced reasoning and browsing is yet to be well researched. This thesis pursues an approach for arriving at multiple granularities of spatial objects based on the concept of coarsening. Coarsening refers to the process of transforming a representation of objects into a less detailed representation. The focus of this thesis is to develop a set of coarsening operators that are based on the objects\u27 attributes, attribute values and relations with other objects, such as containment, connectivity, and nearness. for arriving at coarser or amalgamated objects. As a result. a set of four coarsening operators—group, group, compose, coexist, and filter are defined. A framework, called a granularity graph. is presented for modeling the application of coarsening operators iteratively to form amalgamated objects. A granularity graph can be used to browse through objects at different granularities, to retrieve objects that are at different granularities, and to examine how the granularities are related to each other. There can occur long sequences of operators between objects in the graph, which need to be simplified. Compositions of coarsening operators are derived to collapse or simplify the chain of operators. The semantics associated with objects amalgamations enable to determine correct results of the compositions of coarsening operators. The composition of operators enables to determine all the possible ways for arriving at a coarser granularity of objects from a set of objects. Capturing these different ways facilitates enhanced reasoning of how objects at multiple granularities are related to each other

    A Conceptual View on Trajectories

    Get PDF
    Analysis of trajectory data is the key to a growing number of applications aiming at global understanding and management of complex phenomena that involve moving objects (e.g. worldwide courier distribution, city traffic management, bird migration monitoring). Current DBMS support for such data is limited to the ability to store and query raw movement (i.e. the spatio-temporal position of an object). This paper explores how conceptual modeling could provide applications with direct support of trajectories (i.e. movement data that is structured into countable semantic units) as a first class concept. A specific concern is to allow enriching trajectories with semantic annotations allowing users to attach semantic data to specific parts of the trajectory. Building on a preliminary requirement analysis and an application example, the paper proposes two modeling approaches, one based on a design pattern, the other based on dedicated data types, and illustrates their differences in terms of implementation in an extended-relational context

    Dynamic GIS

    Full text link

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work
    • 

    corecore