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Abstract

Analysis of trajectory data is the key to a growing number of applications aiming at
global understanding and management of complex phenomena that involve moving
objects (e.g. worldwide courier distribution, city traffic management, bird migration
monitoring). Current DBMS support for such data is limited to the ability to store
and query raw movement (i.e. the spatio-temporal position of an object). This paper
explores how conceptual modeling could provide applications with direct support of
trajectories (i.e. movement data that is structured into countable semantic units)
as a first class concept. A specific concern is to allow enriching trajectories with
semantic annotations allowing users to attach semantic data to specific parts of the
trajectory. Building on a preliminary requirement analysis and an application ex-
ample, the paper proposes two modeling approaches, one based on a design pattern,
the other based on dedicated data types, and illustrates their differences in terms
of implementation in an extended-relational context.
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1 Introduction

Thanks to current sensors and GPS technologies, large scale capture of the
evolving position of individual mobile objects has become technically and eco-
nomically feasible. This opens new perspectives for a large number of appli-
cations (from e.g. transportation and logistics to ecology and anthropology)
built on the knowledge of movements of objects. Typical examples of mov-
ing objects include cars, persons and planes equipped with a GPS device,
animals bearing a transmitter whose signals are captured by satellites, and
parcels tagged with RFIDs. Extending the limited capabilities of commercial
data management system, some research prototype systems [1] [27] do provide
nowadays support for storing and querying the position of a moving object
(i.e. an object whose location changes over time) all along the lifespan of
the object. Güting’s approach [15] also supports moving regions, which allows
for example recording the changing geometry of pollution clouds and flood-
ing waters. Generically speaking, the geometry of a moving object can be of
any spatial type and is defined by a function from a temporal domain to a
range of spatial values. For simplicity, but without loss of generality, we focus
hereinafter on moving objects with point geometry (moving points, in short).

While the ability to record continuous movement is the foundation of man-
aging movement, satisfying application requirements requires more than that.
Namely many applications need a more structured recording of movement, i.e.
as a temporal sequence of journeys, each one occupying a time interval in the
object’s lifespan and taking the object from a departure point to a destina-
tion point. Daily trips of employees going from home to work and back, weekly
journeys of trucks delivering goods to customers distributed within a given re-
gion, annual migrations of birds in search of longer daylight, are examples
where movement of objects is clearly perceived by the monitoring application
as countable traveling units. We refer to these countable journeys as trajecto-
ries, and denote the involved object as the traveling object. In all the above
examples, a traveling object ”produces” many trajectories during its lifespan.
Applications collect these trajectories and analyze them, for example to de-
rive mobility patterns to be used as input to some decision making process
(e.g. collecting urban trajectories to derive useful knowledge for optimizing
traffic management), to acquire more knowledge about the traveling objects
(e.g. analyzing bird trajectories to better understand their behavior), or to
control the proper implementation of transportation logistics (e.g. monitoring
worldwide delivery of parcels in a courier company).

From the application viewpoint, knowledge on trajectories usually includes
a multiplicity of semantic data complementing the recording of the moving
position. For example, for daily trips of employees applications may wish to
know which transportation means have been used during the trip and whether
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the trip used carpool facilities. For bird migrations an important information
is which weather conditions the birds faced during their flight, and where,
why and how long birds stopped on their way. Constraints are also part of
the modeling game, for example to rule that birds of certain species never fly
during the night.

To fill the gap between the moving objects provided by advanced prototypes
and the semantic trajectories needed by applications, a novel approach has to
be developed to enable applications to state whatever semantics they want to
associate to trajectories. In other words, a conceptual model for trajectories is
needed. The conceptual model must allow handling simple trajectories (direct
travels from origin to destination) as well as complex ones (where the travel
semantically consists of separate sub-travel periods), and associating any kind
of semantic annotations to trajectories, be it as attributes of the trajectory or
via links between the trajectory and any other object in the database (we call
these objects application objects). This mandates that trajectories be seen
as a first-class concept in the data model, which is beyond the capability of
current spatio-temporal prototypes.

Elaborating a conceptual support is not an obvious task. Trajectories seen
as an object of interest hold a complex information structure, showing a mix
of generic, application independent, features and many application dependent
features. The proposed solution therefore needs to include both standard con-
structs enriching the underlying spatio-temporal data model and customizable
constructs with maximum flexibility that can be easily tailored to the specific
semantics of trajectories in a given application context.

This paper proposes two alternative approaches for trajectory modeling, one
based on data types and one based on design patterns. The former is inspired
by previous work we have done to extend a traditional conceptual model
to cover space and time modeling dimensions, thus defining a new spatio-
temporal conceptual model [24][25]. The latter resumes an old idea that the
conceptual modeling community may have somehow neglected but which we
use here as it offers the flexibility we are looking for to cope with the potential
complexity of trajectory semantics. The two approaches may be used together
if the application requirements suggest that both are useful in a specific design
task.

The paper is organized as follows. The next section offers an insight into re-
lated work. Section 3 outlines an application scenario we use to enrich the
presentation with examples. Section 4 discusses definitions for the basic com-
ponents of a trajectory approach, while Section 5 explores the application
requirements related to the description of these components. Section 6 shows
how the two approaches we propose take the requirements into account. Sec-
tion 7 briefly compares the two approaches, sketching their implementation in
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an extended-relational context. Finally, Section 8 concludes pointing to further
future work.

2 Related Work

Several research communities have a definite interest in analyzing spatio-
temporal phenomena. Trajectory data have been used in e.g. social sciences,
biology, medicine, geographical information science, data mining. In social sci-
ence, for example, the study of human activities and movements in space and
time has since long been an important research area, addressing topics such
as migration, residential mobility, shopping, travel, and commuting behavior
[19][30]. Time-geography [31] is a general framework for the description of
human activities in space-time at daily or lifetime scale of observation.

In GIS research, properties of paths describing movement, called geospatial
lifelines, have been discussed [21] with a special focus on multi-granularity [17],
with the intent to provide their formal characterization. Analyses of groups of
geospatial lifelines is used to extract knowledge about movement patterns [20].
In the database community, a landmark contribution is the work by Ralph
Güting and his group [15][16], who developed both an in-depth and formal
theory for moving objects (points and regions) and a full implementation (in
particular using a proprietary extensible DBMS [14]) of their proposal. The
core result is the rich set of data types they have defined, covering spatial
types, temporal types and moving types. This work provides a solid and well-
thought foundation to any further work building on moving objects. Güting’s
work includes a twofold view of spatio-temporal paths. An abstract view where
path description is based on curves defined by infinite sets, and a discrete view
where a finite representation approximates the trajectory as a polyline. The
discrete model presented is a possible implementation of the abstract model.
Recently, Güting et al. have extended their work to modeling and manipulating
network-constrained movement, i.e. cases where movement follows a specific
network such as a railway or a road network [13]. Most works on network-
constrained movement describe, on one side, the network with its geometry
and, on another side, the moving object with its coordinates. Then, they
constrain the location of the object to be within the geometry of the network.
An important advance of [13] is describing the position of the object via linear
referencing within the routes described in the network, e.g., on interstate I-55
at 10.3 km after Chicago heading south. Therefore, the moving objects are
”naturally” inside the network, and spatial constraints are no longer needed.

An alternative approach to moving objects has been pursued by Wolfson et al.
[32]. Their concern about efficiency (in terms of minimizing the update load)
led to storing motion vectors rather than spatio-temporal positions. This has
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also the advantage to allow predicting future movement according to the cur-
rent motion vector. The current vector remains active till a difference between
the prediction and the sampled position is higher than a given threshold. At
that point a new vector is computed and stored. The work only considers
moving points, not moving regions. The authors also addressed movement
constrained by a network (movement of cars on a road network). More on
road-constrained movement can be found in [29].

Building on Güting’s and Wolfson’s approaches, Pelekis et al. [27] implemented
a framework, named HERMES, for moving objects. HERMES is a new data
cartridge that exploits Oracle’s static spatial data types [23] and temporal
literal types (provided by the TAU-TLL temporal data cartridge [28]). HER-
MES uses Güting’s sliced representation of moving values to support different
kinds of interpolation functions such as linear and arc sub-motions.

Other issues related to management of moving points have been addressed.
For example, how movement of two moving elements (points or regions) may
be correlated through various distance measures and how movement of one
element may be analyzed in terms of its position relative to the other element
[22]. System performance concerns generated further work, including several
indexing schemes for moving objects [8] [26].

An interesting complement to nowadays traditional moving points is recent
work on periodicity of movement. Movement may indeed be repeated regularly,
like the movement of planets, trains, or migrating animals. In [4] the authors
define a formal model for representing periodic movements that may contain
nested repetitions, as, for instance, the movement of an underground train that
covers the same trajectory every weekday. Following the data types approach
of Güting’s earlier work [15], the authors have defined and implemented on
SECONDO [14] a set of data types for periodic movements, in particular the
pmpoint type (periodic moving point).

While developing a rich body of work for managing moving objects, the data-
base research community has shown very little interest in the application view-
point on moving objects, i.e. providing support for the concept of trajectories
at the conceptual level. State of the art conceptual models for spatio-temporal
databases do include the moving point construct e.g. [18][24]. But they haven’t
taken it any further. The only work we are aware of is a 2004 contribution
[5] that aims at enriching the semantics of a moving object model. However,
what the authors call trajectory is the polyline connecting the sample points
that define the discrete representation of movement, i.e. a sequence of spatio-
temporal segments, rather than a sequence of semantic steps. Similarly, the
proposed properties of trajectories are those derivable from the raw data (e.g.
speed, covered area), not the properties that an application may wish to main-
tain about trajectories (e.g. their underlying goal).
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The work we propose in this paper addresses trajectories as movements that
correspond to semantically meaningful travels (of humans, animals, objects,
and phenomena). The underlying spatio-temporal path is but one component
of a trajectory. Other components include the definition of when a trajectory
starts, when it ends, and when it pauses. These components are fixed by the
application, based on the semantics given to the trajectories. Therefore these
components have to be supported by a conceptual model for trajectories.

Like for other spatio-temporal constructs, applications need the capability to
define trajectories at multiple spatial and temporal granularities. Few works
addressed multiple representations of spatial on moving objects [11][7]. We
rely on our own previous work [3][25] to handle multiple representations of
trajectories in the same way we did for other data. This aspect will not be
discussed in this paper.

3 Application Scenario

This section sketches an application scenario using trajectory data. The sce-
nario observes migrating birds and collects data sent by transmitters or by
capturing the birds and making direct measures.

Several research groups 1 collect data on annual migrations of white storks
(Ciconia ciconia). Like other species, white storks migrate in search of better
food availability. Each autumn they leave the north hemisphere (e.g. Europe)
and migrate south (e.g. Africa) where there is an all year round food supply.
In spring, they migrate back north to breed, because they need the longer
days of the northern summer to feed their young. Analyzing bird migrations
is the key to improve human knowledge about many open questions on animal
behavior: Is migration innate and somehow genetically programmed, how do
birds orientate, how do they manage to fly such long distances, do they fly
in groups, where and why do they make stopovers during their migration,
which environmental factors influence their migration (topography, weather
conditions, predators, food availability), which hazards do they encounter,
why some birds die during the migration ...

For this application, a number of white storks have been equipped with a tiny
transmitter whose signals are captured by satellites. White storks fly only dur-
ing the day as they use thermal currents, and stop at night for resting and
feeding. They can travel several hundreds of kilometers every day depending
of weather condition. They migrate in flocks, whose composition may change
at stops. To detect flocks (i.e. storks flying together) the spatio-temporal po-

1 http://www.storchenhof-loburg.info, http://www.fr.ch/mhn/
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sitions of the storks are analyzed. However, only a small percentage of storks
are equipped with transmitters, hence the flock to which a stork belongs for
a given move may be unknown.

In order to analyze the behavior of white storks during their migration, re-
searchers need to record two types of information:

(1) Information about animal trajectories.

While the storks are flying their spatio-temporal position and altitude are
recorded at regular intervals. At stops, the following information may be
recorded:

- The kind of stop: nightly stop or longer stop (usually a few days or weeks)
for resting and eating.

- Whenever observable, the activities of the bird during the stop: feeding,
resting...

- If the stork was temporarily caught during this stop, its weight, percentage
of fat, body temperature, and global health condition.

During the moves, the following information may be recorded:

- The altitude at which the stork is flying. This information, as well as weather
conditions, natural and artificial objects, varies along the trajectory.

- The flock the stork is part of.

(2) Information about the environmental conditions related to a trajectory.
These mainly record:

- Weather conditions: wind (direction, strength), temperature (minimal, max-
imal), pressure, sky condition (sun, rain, clouds, fog, clear sky).

- Natural objects (e.g. mountains, water extents, deserts), and artificial ob-
jects, (e.g. electric lines, antennas, tall buildings, wind turbines) that may
be obstacles for the birds and influence their flight behavior (particularly
the direction). The threat they pose to birds may cause their death.

4 Basic Definitions for Trajectories

Before we articulate the view of trajectories we adopt to fulfill the require-
ments above, this section provides the basic definitions on which we build our
work. The goal in developing a conceptual model for trajectories is to provide
constructs and rules that enable the designer of a database that uses movement
data to think about these data as sets of identifiable trajectories traveled by
application objects. From users’ viewpoint, the concept of trajectory is rooted
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in the evolving position of some object traveling in some space during a given
time interval. Thus, trajectory is by definition a spatio-temporal concept. But
while moving may be seen as a characteristic of some objects that differen-
tiates them from non-moving objects (e.g. buildings, roads), the concept of
traveling object implies that its movement is intended to fulfill a meaningful
goal that requires traveling from one place to another. Traveling for achieving
a goal takes a finite amount of time (and covers some distance in space), there-
fore trajectories are inherently defined by a time interval. This time interval is
delimited by the instant when the object starts a travel (called tbegin) and the
instant when the travel terminates (tend) . Identifying tbegin and tend within the
whole time-frame where the object is moving is an application decision, i.e.
a user-driven specification. The following definition formally defines a moving
point trajectory in a database perspective.

Definition 1 (Trajectory) A trajectory is the user defined record of the evo-
lution of the position (perceived as a point) of an object that is moving in space
during a given time interval in order to achieve a given goal.

trajectory : [tbegin, tend] → space

This definition settles trajectories as semantic objects. The time space function
is defined by the user and is not necessarily the one provided by the data
acquisition mechanism. The latter is the raw data, whose form usually is as
a sequence of (sample point, time) pairs. Raw data often needs to undergo
a cleaning process to correct errors and approximations in data acquisition.
In addition, the application may be interested in only a subset of the cleaned
sample points, e.g. skipping points acquired during the night to only retain
daylight movement or replacing a sequence of irrelevant (from the application
perspective) points with a single representative point (e.g. for representing
stops as a single point in the sense we define hereinafter).

Another important difference between an object with trajectories and a mov-
ing object [15] (also called object with a time-varying geometry in [24]) is that,
for a moving object, the time space function that describes its position is de-
fined over the whole lifespan of the object. Instead, a trajectory is given by
restricting the function to a specific time interval, [tbegin, tend], included in the
lifespan of the object. A trajectory is a segment of the spatio-temporal path
covered by a moving object (cf. Figure 1). Consequently, during its lifespan
an object can travel a number of trajectories, one after the other. For example,
a bird has a migration trajectory in spring 2006 from Africa to Europe, fol-
lowed by another trajectory in autumn 2006 from Europe to Africa, followed
by other trajectories in 2007, etc.

As stated, at the conceptual level the segmentation of the path into trajec-
tories is driven by the semantics the application attaches to trajectories. For
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Fig. 1. A spatio-temporal path for an ongoing moving object and its many tra-
jectories defined by a semantic segmentation of the path. In this example parts of
the path do not belong to any trajectory: They correspond to movement that is
irrelevant to the application.

example, in the bird monitoring application it is up to the ornithologists to
define if they see an annual return flight as a single trajectory, or each an-
nual one-way flight as a different trajectory. In some application domains, e.g.
goods delivery, trajectories may be easily identified and separated, for example
as the daily route of a truck. In other application domains, e.g. when moni-
toring apes, it is not obvious to determine if the ape starts a new trajectory
or just continues the previous one. The segmentation may just be driven by
the observation period (e.g. assuming one daily trajectory for each ape, cor-
responding to the observation period from 8am to 5pm when the observer is
at work). However, whatever the application criterion is, each trajectory has
a defining time interval [tbegin, tend] that is necessarily included in the lifespan
of its traveling object and is necessarily disjoint from (or meeting) the time
intervals of the other trajectories of the same object .

An open question related to the segmentation of a spatio-temporal path into
trajectories is whether the trajectories cover the whole path or not. In the first
case, the time intervals of two successive trajectories always meet each other.
The answer to this question depends upon the application.

Traveling objects do not necessarily continuously move during a trajectory
(this is the case in our example applications). Consequently, trajectories may
themselves be semantically segmented by defining a temporal sequence of time
sub-intervals where alternatively the object position changes and stays fixed.
We call the former the moves and the latter the stops. We can then see a
trajectory as a sequence of moves going from one stop to the next one (or
as a sequence of stops separating the moves). For example, a bird that has
departed for migration will make a stop somewhere for some time for feeding,
another stop for resting, and so on till it reaches the end of its trajectory.
Salespersons on a business trip will stop at all locations where they planned
meeting a customer.
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As already stated, identifying stops (and moves) within a trajectory is the
responsibility of the application. Physical stops (i.e. the fact that the position
of the object is the same during two or more consecutive instants) do not
account for conceptual stops, as they may be due to events that are irrelevant
to the application. For example, the stop made by salesperson to drink a coffee
is irrelevant for the company’s tracking application. Instead, the stop made
for meeting a customer is significant. The application may be interested in
counting the number of stops per trajectory, and obviously the stops to be
counted are only the significant stops. Hereinafter we assume that moves and
stops fully cover the trajectory (i.e. there is no instant within [tbegin, tend] that
belongs neither to a move nor to a stop) .

We semantically define stops and moves as follows.

Definition 2 (Stop) A stop is a part of a trajectory, such that:

- The user has explicitly defined this part of the trajectory ([tbeginstopx, tendstopx])
to represent a stop.

- The temporal extent [tbeginstopx, tendstopx] is a non empty time interval, and
- The traveling object does not move (as far as the application view of this tra-

jectory is concerned), i.e. the spatial range of the trajectory for the [tbeginstopx, tendstopx]
interval is a single point. All stops are temporally disjoint, i.e. the temporal
extents of two stops are always disjoint.

Definition 3 (Move) A move is a part of a trajectory, such that:

- The part is delimited by two extremities that represent either two consecutive
stops, or tbegin and the first stop, or the last stop and tend, or [tbegin, tend].

- The temporal extent [tbeginmovex, tendmovex] is a non empty time interval, and
- The spatial range of the trajectory for the [tbeginmovex, tendmovex] interval is the

spatio-temporal line (not a point) defined by the trajectory function (in fact,
it is the polyline built upon the sample points in the [tbeginmovex, tendmovex]
interval).

From a database design point of view, a move is a time-varying point defined
on the time interval [tbeginmovex, tendmovex].

We do not consider begin and end of a trajectory to be stops: Their temporal
extent is a single chronon.

5 Requirements for Trajectory Modeling

The previous definitions hold for any kind of trajectory. But modeling re-
quirements may vary according to which kind of trajectories is considered.
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We differentiate between three kinds: metaphorical, geographic, and spatio-
temporal.

5.1 Metaphorical Trajectories

The term trajectory is sometimes used in a metaphorical sense to describe an
evolution, although the evolution at hand is not related to physical movement.
For example, it is not uncommon to talk about the career trajectory of a person
to describe something like ”I went from academia to industry to a large service
corporation and finally back to academia”. This metaphorical use relies on the
idea of an object (e.g. the person) moving in an abstract space whose points
are the different values of a ”jobSector” attribute.

From the data modeling perspective, this type of trajectories can be described
by defining a time-varying attribute (e.g. jobSector) for the traveling object
type. Conversely, any time-varying attribute in an object type can be seen as
defining a metaphorical trajectory for objects of the type. State-of-the-art data
models for spatio-temporal databases support time-varying attributes [18][24].
Variability may be discrete (values exist at some instants only), stepwise (value
changes are instantaneous and each value holds for a time interval) and con-
tinuous (value changes continuously). Metaphorical trajectories may be of any
of these three kinds, depending on the value domain for the time-varying at-
tribute. Continuous variability is obviously only possible if the value domain
is continuous. Stepwise and discrete variability apply to enumerated domains
and more generically to domains where the semantics of a value change is an
update semantics (a new value replaces the current value), not an evolution
semantics (a new value results from some ”evolution” from the current value).
For example, the career trajectory is a stepwise trajectory. Trajectories are
discrete if only value change events are relevant, not the state of the value
at any point in time. The trajectory of the price for a stock is an example of
continuous variation.

As long as the evolution only records the changing values of the evolving at-
tributes, this kind of trajectories does not call for new modeling constructs.
However, if the description of a metaphorical trajectory involves links be-
tween the trajectory and other application objects, the trajectory has to be
modeled as an object, not as an attribute. Consequently, for these seman-
tically richer trajectories the metaphor should be extended to model them
alike spatio-temporal trajectories (as discussed below). Obviously, topological
and synchronization relationships used to model spatio-temporal trajectories
would need to be redefined to apply to metaphorical trajectories.
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5.2 Näıve Geographical Trajectories

People most frequently describe their travels as going from place to place, for
example from city to city: ”I went to Paris, then to Brussels, then moved to
Amsterdam and Berlin before coming back to Lausanne”. Stops here have a
strong geographical connotation (hence we qualify these trajectories as geo-
graphical), but they are not defined in terms of spatial coordinates (hence the
reference to näıve geography [9]). Similarly, moves may be defined in terms
of train names, e.g. using TGV from Lausanne to Paris, then Thalys from
Paris to Brussels, etc. In fact, geographical trajectories are just a special case
of metaphorical trajectories. As the latter, geographical trajectories may be
described using time-varying attributes (e.g. visitedCity, boardedTrain) or in
a way similar to spatio-temporal trajectories.

5.3 Spatio-Temporal Trajectories

The original sense of the term trajectory denotes the changing position of an
object in geographical space, be it a 3D space (e.g. the trajectory of a plane)
or a 2D space (e.g. the trajectory of a rolling ball in a bowling game). We
say a trajectory is spatio-temporal if spatial coordinates are used to express
the position of the traveling object. Most frequently, the traveling object is
geometrically represented as a point (e.g., a person, an animal, a car, a truck,
a plane, a ship, a train). Yet the traveling object may have a surface or volume
geometry (e.g. clouds, floods, air pollutions, oil spills, avalanches), in which
case both change in position and change in shape may concur to define the tra-
jectory. In this paper we only consider modeling spatio-temporal trajectories
generated by objects represented as points.

A trajectory has two facets:

• A geometric facet : This is the spatio-temporal recording of the position of
the traveling point. It is a delimited segment (i.e., a single continuous sub-
set) of the spatio-temporal path covered by the object’s position during the
whole lifespan of the object. From the conceptual modeling perspective, we
can basically rely on Definition 1 and represent the geometric facet as a
continuous function from a given time interval into a geographical space
(the range of the function): trajectory : [tbegin, tend] → space. However, the
modeling structure should also include the sample points (and the interpo-
lation functions) that are used to discretely capture the trajectory function.
The geometric facet could be modeled using the moving point data type.
We will not do this, as we want to complement the strict geometrical aspect
with the definition of stops and moves that are inherent to the semantics of
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a trajectory.
• A semantic facet : This is the information that conveys the application-

oriented meaning of the trajectory and its related characteristics. The se-
mantic facet is analyzed next.

5.4 On Semantics of Trajectories

Which semantic characteristics of trajectories are relevant to the conceptual
view in a specific application depends on the application requirements. How-
ever, a generic characterization can be outlined. A very basic semantic concern
is supporting the definition of the stops, if any, which decompose the trajectory
into a sequence of moves. Stop definition may undergo a number of application
dependent constraints, e.g. a limited number of stops are allowed, or stops may
have to conform to a minimal/maximal duration or distance between stops.

Another standard semantic concern is giving a meaning to trajectory compo-
nents, i.e. defining their semantic interpretation in terms of the application
objects they represent. This holds for the different components:

• Stops. For example, if trajectories are seen by the application as moves
between cities, the database must be able to store and return in which city a
stop is located. The same trajectories may be seen by another application as
moves between countries, thus calling for a link between stops and countries.
For migrating birds, stops may be in geographical regions of interest to the
birds or to the ornithologist.

• Moves. For example, an application monitoring people’ use of a train net-
work may need to record which train has been used for which move, e.g. a
trajectory of a traveling person may consist of a first move using train 324
on March 13, 2007 from Lausanne to Geneva and a second move using train
278 on March 13, 2007 from Geneva to Lyon.

• Begin and end of the trajectory. For example, a company that monitors
business trips done by its salespersons to meet company’s customers may
restrict trajectories to originate and end in the company’s premises.

Very frequently human trajectories are constrained to follow a specific net-
work, e.g. cars and trucks can only move on roads, traveling by train/bus
can only use trajectories consistent with the underlying train/bus network,
planes normally fly within specific corridors, and buses can only stop at bus
stops. Network constrained trajectories are characterized by the fact that the
whole trajectory geometry has to conform to the geometry of the support-
ing network, i.e. obey topological inclusion constraints. A detailed analysis of
how to describe a road network and trajectories inside the network has been
developed by Güting et al. [13].
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Applications may wish to maintain various characteristics related to move-
ment, e.g. direction, speed, acceleration (instantaneous or average). Informa-
tion of this kind is computable from the spatio-temporal function that defines
the trajectory, and is usually provided by methods attached to the moving
data types.

Finally, trajectory characterization may include any number of semantic prop-
erties and integrity constraints (on trajectories as a whole and on its com-
ponents) that are useful for the application at hand. Defining properties on
trajectories is usually referred to as a semantic annotation process. Examples
include the type of activity of the traveling object during moves and/or stops,
the name of the current location, the name of the street or road on which a
move is performed, the persons met during a stop, the altitude of the bird
and the weather during the moves in birds’ migrations. Spatial and thematic
integrity constraints may also be attached to trajectories. For instance, a car
trajectory is always inside the road network that is described in the database,
a plane cannot be in flight if there is not a team of pilots and stewards as-
sociated to it, storks do not fly during the night, salespersons stops have to
include at least one meeting with a customer.

Annotation properties may hold the same value for the whole trajectory (e.g.
the goal of the trajectory, the total duration of the moves) or a value for each
component they characterize (e.g. average speed per move, activity during
each stop). Moreover, their value may be time-varying over the time interval
of the trajectory or over the time interval of the moves or stops (e.g. the vary-
ing altitude of the stork during the moves). Whenever several time-varying
annotations are specified for a trajectory and rely on monitored data acquisi-
tion, the application has to specify whether the same sample points are used
to capture values for all annotations, or each annotation has its own sampling
rules.

Last but not least, trajectory applications (alike all applications dealing with
geographic data) have to have the possibility to specify multiple represen-
tations of all the above data according to different views, resolutions, and
targeted uses.

In summary, a conceptual model for trajectories must support the character-
ization of trajectories and their components with attributes, semantic con-
straints, topological constraints, and links to application objects. All trajec-
tory components are spatio-temporal data, with begin, end and stops hav-
ing a point geometry, while moves have a time-varying point geometry. From
the temporal perspective, begin and end are of type Instant, while stops and
moves (as trajectories) are of type TimeInterval and can thus be annotated
with non-varying and varying properties.
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6 Conceptual Modeling for Trajectories

We now investigate solutions to support the application requirements we have
identified. As mentioned in the previous section, some of the requirements
are already covered when using a state-of-art conceptual spatio-temporal data
model, of which MADS [24] is a good example. MADS supports spatial and
temporal objects and relationships (i.e. objects and relationships that have a
geometry attribute describing their spatial extent and have a lifecycle at-
tribute describing their temporal extent (the lifespan), and their activity
status, active-suspended-disabled), spatial attributes (whose value domain
is a spatial data type), time-varying attributes (recording their values over
time), topological and synchronization relationships (spatially and tempo-
rally constraining the linked objects), derived attributes, and allows multi-
representation at both the schema level and at the instance level. Relying on
MADS minimizes the effort needed to extend the data model for support of
trajectories.

We have devised two solutions that are driven by different modeling goals.
The first solution aims at explicit representation of trajectories and their com-
ponents (stops, moves, begin and end) in the database schema. Because the
requirements call for the possibility to link any of these components to applica-
tion objects, and because usual conceptual models only support links between
object types (not between relationship types and not between an attribute and
something else), trajectories and their components are necessarily described
by object types. The advantage of this solution is improved readability and
understandability of the schema, easiness for the designer to add the seman-
tic information specific to the application, and higher evolvability in terms of
future modifications of the initial schema. In this solution the model supports
the designer by providing a design pattern, i.e. a predefined sub-schema that
provides the basic data structures for trajectory modeling.

The modeling goal that led us to define the alternative solution is to hide as
much trajectory data as possible into a dedicated TrajectoryType data type,
equipped with methods providing access to trajectory components (stops,
moves, begin and end). The definition of dedicated data types is a well-known
technique to extend a data model to take into account new types of data. It
is the technique we have used for example to embed support of spatial and
temporal features into MADS. The case for trajectories, however, cannot be
fully solved with data types only, as much of the information on trajectories
is application-dependent. In this solution, the data type handles the geomet-
ric facet of the trajectory and the definition of its components (stops, moves,
begin and end). The semantic information that complements trajectories for
a given application (attributes describing the trajectory, begin, end, stops,
moves, or parts of them, and the relationships linking the trajectory, begin,
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end, stops, moves or parts of them) is described as attributes and relationships
of the traveling object.

The following sub-sections describe in detail the two solutions.

6.1 Trajectory Design Pattern

The use of design patterns is a well-known technique to simplify the task of
the schema designer by providing predefined half-baked schemas to handle
recurring situations [12]. A design pattern is a predefined generic schema that
may be imported into the schema of the application database and then con-
nected to the rest of the database schema by the designer, who has also the
ability to modify and adjust the pattern to the requirements specific to the
application at hand. We qualify the pattern as a half-baked schema because
of the need to adjust it and connect it to the rest of the schema.
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0:N list

1:1

2:N list

1:1

1:1
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1:1
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Fig. 2. The proposed pattern for trajectories.

As stated above, a trajectory design pattern holds object types for representing
trajectories and their begin, end, stops and moves. In the pattern we propose
(one of many possible variants), illustrated in Figure 2, an object type B.E.S
groups begin, end, and stop objects as instances of the same type, because
of their similar features. Each B.E.S object has a lifecycle, which is a simple
time interval, and a geometry, which is a point. A relationship type TrajComp
relates trajectories to their components. Its cardinalities enforce that each
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component belongs to a single trajectory, and each trajectory has at least two
components (begin and end). The object type Move has a lifecycle, which is
a simple time interval, and a geometry, which is a time-varying point. The
two object types B.E.S and Move are related by two relationship types, From
and To, materializing the fact that each move starts and ends in a stop. Both
From and To bear a topological (adjacency) and a synchronization (meet)
constraint enforcing that each move is linked to stops that are adjacent to it
in both space and time . The lifecycle of Trajectory objects is a time interval
which is inferred from the lifecycles of the first and last instances of B.E.S to
which they are linked (i.e. the instants of its begin and end).

In addition to expressing the internal structure of a trajectory, the pattern
includes the hooks used for its connection to application objects. In Figure 2,
the names of the hooks are written in italics. Trajectories are linked to a hook
object type TravelingOT that represents the traveling objects covering the
trajectories. Begin, end and stops (B.E.S ) may be linked to a hook spatial
object type SpatialOT1 that represents the corresponding location in terms
of application objects. The IsIn relationship bears a topological inside con-
straint. As this hook is optional, it is drawn with dotted lines in Figure 2.
Similarly, moves may be related to a hook object type SpatialOT2 by an-
other topological inside relationship, called IsOn, that may be used to model
network-constrained trajectories.

When the pattern is imported, the designers have to adapt it to their appli-
cation. They may delete the elements the application is not interested in, add
more elements to fulfill additional semantic requirements, and modify the pat-
tern structure to make it fully compliant to the requirements. For instance,
they may add Begin, End, and Stop object types as subtypes of the B.E.S
object type. They have to replace by application object types the hook object
types that have been kept.

As an example, Figure 3 shows a possible use of the trajectory pattern for
the schema of the stork application. Here, personalization of the pattern in-
cludes matching the TravelingOT object type with the WhiteStork object
type, matching the SpatialOT1 object type with the Country object type. In
addition to matching a hook, the designer deleted the IsOn relationship type
and added application-specific links to B.E.S (to record links to bird zones
in addition to links to countries), and Move (to record proximity of moves to
natural and artificial hazards and record which moves the bird made within
which flocks).

Finally, application attributes have been defined for the pattern object types.
For example, the direction (North/South) and the year of the trajectory, the
weather during the trajectory have been added to Trajectory, altitude is pro-
vided all along moves, and stops carry information on the kind of stop, activ-
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Fig. 3. The pattern personalized for the Stork schema.

ities of the bird, its weight and fat% at the stop 2 . Both attributes, weather
and altitude, are time-varying, i.e. the history of the weather is recorded during
the whole trajectory 3 and the varying altitude of the bird is recorded dur-
ing each move. Practically, the function specifying a time-varying attribute
is defined by a list of couples (value, instant), called sample values (or sam-
ple points in the case of a time-varying point) and interpolation functions
between the sample points. When an object bears several time-varying at-
tributes, a priori their functions are independent, i.e. their sample values are
defined for different instants. If the application requires several attributes to
be defined on the same list of instants, the designers have to explicitly state
it through an integrity constraint or by grouping the attributes into a com-
plex time-varying attribute. For instance, in Figure 3, weather is a complex

2 It is a design choice to attach the attributes activities, weight and fat% to the
object type whose lifespan corresponds to their period of validity. An alternative
choice is to attach these attributes to the traveling object type (WhiteStork). In
this last solution, the attributes are time-varying in order to define for which stop
or move each value is valid. This solution is the one developed for the schema of
Figure 4.
3 At each instant of the lifespan of the trajectory, the weather is recorded at a
unique point, the point where the stork is at this instant. Therefore, weather is a
time-varying attribute, but not a space and time-varying attribute.
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time-varying attribute, whose sample values have the following format:

(instant, wind, temperature, pressure, sky).

On the other hand, the Move object type has two time-varying attributes,
geometry 4 and altitude that could not be grouped into a complex attribute
because geometry is a system defined attribute. An integrity constraint is
needed to express: ”The lists of sample values of geometry and altitude share
the same list of instants”.

Lastly, in order to provide users with an easy access to information, the de-
signers chose to record some redundancy, that they explicited through in-
tegrity constraints. For instance, the birth.year attribute of WhiteStork is
defined as derived from the beginning instant of the object’s lifecycle, and the
North/South attribute of Trajectory as derived from the spatial positions of
the beginning and end of the trajectory (i.e. the positions of the first and last
linked B.E.S objects).

6.2 Trajectory Data Types

Addressing trajectory-modeling requirements through the use of dedicated
data types is the second solution we propose. Following on the discussion
above, a generic model of trajectories shall include concepts for describing
their begin, end, moves, stops, as well as their sample points and interpolation
functions. This is the minimal information that is common to all trajectories,
whatever their semantics, and consequently it is the information that can be
encapsulated into a generic data type. More semantic information on trajec-
tories is expected to be required, but this information is application specific
and cannot be encapsulated into the data type. It has to be explicitly de-
fined by the database designer. Consequently, a data type approach has to be
articulated into two complementary facets:

• Relying on generic data types to hold the geometric component of trajec-
tories (i.e. the definition of the sample points and the corresponding inter-
polation functions) and the definition of the begin, end, stops, and moves.

• Explicitly modeling the application-dependent features through attributes
of the object type that represents the traveling object or its trajectories,
and relationships linking this object type to application objects.

This twofold approach materializes as follow. We first precisely define the data
types.

4 In the MADS data model, geometry is the system defined name of the attribute
that contains the spatial extent of a spatial object (or relationship) type.
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6.2.1 Data type TrajectoryType

Each element of TrajectoryType describes a single trajectory and consists of:

• A time-varying point representing the spatio-temporal trajectory;
• A list of sample points (of type Tuple(Point, Instant)) that implement the

function of the time-varying point ;
• A list of stops, such that each stop is a restriction of the function of the

time-varying point to a true (i.e. not empty) interval and its spatial range
is a point. All time intervals associated with stops must be disjoint;

• A list of moves, such that each move is a restriction of the function of the
time-varying point to the time interval that lies between two consecutive
stops (or between the beginning of the trajectory and the first stop, or
between the last stop and the end of the trajectory).

As TrajectoryType is a rather complex type, the definition of its set of methods
relies on several choices. Methods returning an element at a time are more
useful when writing programs, while methods returning a set of elements are
more useful when writing SQL queries. Moreover, a method that returns a
set of elements with associated valid times may present its result either as a
mere table (element, valid time) or as a time-varying type. With the latter
presentation, users may benefit from all the methods of the varying data type.
In the sequel, we present a few examples of these different kinds of methods.
First, two data acquisition methods:

• defineSamplePoints(s Table(p Point, t Instant)) - to define the set
s of sample points of the trajectory (including the begin and end points).
s is a relational table. Precondition: There is no couple of tuples with the
same t value.

• defineStops(s Table(t1 Instant, t2 Instant) - to define the list of
stops of the trajectory - and consequently the list of moves. s is a relational
table. Each tuple of s specifies the restriction of the time-varying function
to the time interval [t1, t2]. Precondition: For each tuple, the attributes t1
and t2 must define a non-empty time interval. All time intervals [t1, t2]
must be disjoint. The spatial extent of each restriction of the function of
the time-varying point to [t1, t2] must be a single point (non moving).

Examples of data retrieval methods follow, showing two versions of the same
functionality, once with a time-varying result and once with a table result.

• begin() → Tuple(p Point, t Instant) - returns the begin of the tra-
jectory.

• end() → Tuple(p Point, t Instant) - returns the end of the trajectory.
• samplePointsVarying() → Varying(Time, Point) - returns the list of

sample points as a discrete time-varying point.
• samplePointsTable() → Table(p Point, t Instant) - returns the list
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of sample points as a relational table.
• stopsVarying() → Varying(Time, Point) - returns the list of stops as

a stepwise time-varying Tuple(n Integer, p Point) . The attribute n contains
the sequence number of the stop.

• stopsTable() → Table(n Integer, p Point, t1 Instant, t2 Instant)

- returns the list of stops as a relational table. The attribute n contains the
sequence number of the stop.

• stopAt(t Instant) → Tuple(n Integer, p Point, t1 Instant, t2 Instant)

- returns the stop that is ongoing at the t instant (if it exists).
• stop(n Integer) → Tuple(p Point, t1 Instant, t2 Instant) - returns

the nth stop (if it exists).

Similar methods may be defined for moves. Lastly, a few examples of compu-
tational methods retrieving derived data follow.

• averageSpeed() → Real - returns the average speed of the traveling ob-
ject along the whole trajectory.

• numberOfStops() → Integer - returns the number of stops (excluding
begin and end) in the trajectory.

• orientation(n Integer) → Real - returns the average orientation (in
degrees) of the nth move. It is the orientation of the segment defined by the
spatial positions of the n− 1th and nth stops.

When the result of a method is a time-varying point, users may then use the
methods of this latter data type. For instance, if a user wants to know the
duration of the trajectory of an object, o, (s)he can write:

o.samplePointsVarying().defTime().duration()

where defTime() is the method that returns the temporal extent of a time
varying element, and duration() is a method that computes the duration of
any temporal element. If a user wants the collection of points corresponding
to the stops (the spatial locations of the stops) of the trajectory of o, (s)he
can write: o.stopsVarying().rangeValues() where rangeValues() is the
method that returns the range of a time varying element. This expression
returns the bag of points corresponding to the stops.

6.2.2 Data type TrajectoryListType

Each element of TrajectoryListType describes a list of trajectories (ordered by
time) and consists of a list of elements of type TrajectoryType, such that their
temporal domains are disjoint or adjacent. The methods of TrajectoryListType
are those of the generic List data type. Alternatively, methods of the LIST
data type can be reformulated for trajectories, as in the following example:
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trajectory(n Integer) → TrajectoryType - returns the nth trajectory of
the list.

Two examples of methods specific to the TrajectoryListType are:

• trajectoryAtInstant(t Instant) → TrajectoryType - returns the tra-
jectory that exists at instant t.

• durationBetween(n Integer) → Real - returns the time duration be-
tween the nth and the n + 1th trajectories.

6.2.3 Relationships linking a traveling object type and its trajectories

For applications that only require geometric data on trajectories, defining the
traveling object type as having a geometry of type TrajectoryType or Trajecto-
ryTypeList is all what is needed. In the other cases, the semantic information
on the trajectory has to be added by the designer either as properties of the
traveling or trajectory object types or via relationships on these object types.

For example, the white stork application needs to record many trajectories for
each bird, and to know for each trajectory its direction and weather data, as
well as the activity, altitude, weight and fat% of the bird during the travel.
For readability of the schema, the designers have chosen to define two object
types, WhiteStork and Trajectory, linked by the Migrates relationship type
(cf. Figure 4). Instances of Trajectory represent single travels. Information di-
rectly related to a trajectory is then defined as attributes of Trajectory and
Trajectory is a spatial object type with a geometry of type TrajectoryType. At-
tributes whose value changes during the trajectory are defined as time-varying.
Their temporal domains are either equal to the whole lifespan of the trajec-
tory or parts of it, depending on whether they are valued during the whole
trajectory or during some parts only. For instance, the time-varying weather
attribute is defined for the whole lifespan of the trajectory. On the other hand
altitude is defined during the moves only, while activity and health are defined
during stops only. Therefore, altitude is defined on the set of time intervals
that correspond to the moves, activity and health on the set of time inter-
vals that correspond to the stops. The health attribute groups two component
attributes, weight and fat%, whose values are measured simultaneously, each
time the bird is caught at a stop.

The semantic interpretation of trajectory components (i.e. what do begin,
end, stops and moves represent) is available via the IsIN relationship types.
As in the pattern-based schema, these relationship types bear a topological
inside constraint. As trajectories have a time-varying geometry, the topological
predicate is satisfied if and only if it is true at any instant of the temporal
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extent of the trajectory 5 . If the relationship IsIN linking Country were not
temporal, its topological constraint would read:

An instance, s, of Trajectory may be linked by IsIn to an instance, c, of Country
only if at each instant of the s trajectory, the location of s is inside the geometry
of c; i.e. the s trajectory is always inside c.

Using this construction is appropriate if trajectories travel over a single coun-
try. In reality, stork migrations traverse several countries. Therefore the schema
for our application, shown Figure 4, defines IsIn as a relationship type with
lifecycle (in addition to the topological constraint). This entails that an in-
stance of IsIn has a limited lifespan which is defined as denoting the temporal
interval the stork has been flying over (or stopping in) the linked country. A
trajectory may then be linked by several IsIn instances to different countries at
different times. The topological constraint only applies when the relationship
instance is active. It now reads:

An instance, s, of Trajectory may be linked by IsIn to an instance, c, of Country
only if at each instant belonging to the intersection of the temporal extent of
the s trajectory and the activespan of the IsIn instance, the location of s is inside
the geometry of c; i.e. during the lifespan of the relationship the trajectory is
always inside c.

The same solution, a relationship type with lifecycle, has been used to state
when the trajectory passed close to a natural or artificial hazard and, if known,
with which flock the stork was flying during the move. In general, attaching
lifecycle information to a link between the trajectory and application objects
(in this example to IsIn, CloseTo, BelongsTo) allows recording the fact that
a trajectory is successively linked to different objects of the same type for
different periods of time. This is represented by creating as many instances of
the relationship type, each instance having a different validity lifespan. The
goal is to define a sort of time-varying role in the link between one instance on
one side (e.g. a given trajectory) and a collection of instances on the other side
(e.g. the list of countries the trajectory traverses), with the lifecycle expressing
which is the linked application object for each time interval. Obviously, the
lifespan in the relationship instances is constrained to be within the temporal
extent of the trajectory. And, as for attributes, if the link holds only for some
parts of the trajectory (e.g. only for stops or only for moves) the lifespan has to
be correspondingly restricted. For instance, the lifecycle of BelongsTo is equal
to the set of time intervals of the moves. Moreover, if the semantics of the link
to objects of some type is that a trajectory has to be linked to only one object

5 There are in fact two variants of this topological predicate for time-varying geome-
tries. The one used here is the variant that requires the predicate to be true for all
instants in the considered time interval. The other variant defines the predicate as
satisfied if it is true for at least one instant in the considered time interval.
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Fig. 4. A data type-based schema for the White Stork database.

at a time, instant cardinalities may be specified. For example, during a move
a stork belongs to exactly one flock (which may be unknown). Therefore, the
temporal cardinality that counts all present and past instances of relationship
instances is, for the role Trajectory-BelongsTo, equal to (0,N): A stork may
fly during a move with some flock and the next one with another flock. But
the instant cardinality is (0,1) as at each instant a flying stork belongs to at
most a flock. In order not to overload the figures, only temporal cardinalities
are shown.

7 Evaluation of the Approaches

We are currently collecting descriptions of various applications and their tra-
jectory data in order to experiment designing the corresponding databases
with the two approaches we have outlined. The goal is to have users assess
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their preferences through comparison of the two versions of the schema. Our
guess is that the data type approach is preferable when dealing with trajecto-
ries without stop or trajectories that only need basic semantics, such as stops
are in some kind of surface object and moves are on some kind of network,
and not much else. A correct assessment should also cover data manipulation
aspects. From this viewpoint, a few observations can be readily stated.

A data type supports a set of methods (see examples in previous section)
that help users manipulating the elements of the data type. This kind of ma-
nipulation interface can be very powerful, in particular if application-specific
methods are added to the basic methods of the data types.

The design pattern-based approach requires a specific training for the data-
base designer, but once the schema is designed, it looks like a normal spatio-
temporal schema. Users do not need to be trained in the use of new data types
for trajectories and their methods. Their queries are standard SQL-like queries
for spatio-temporal databases. While this is a clear advantage, its drawback
is that the functionality associated to methods in the data type approach has
to be coded either by the application developers or by the users writing more
complex queries.

Let us illustrate the difference in manipulation expressions. We assume an im-
plementation of both White Storks schemas on an extended relational DBMS
equipped with a set of spatio-temporal data types, including time-varying data
types. Fig. 5 shows an excerpt of the relational schema corresponding to the
conceptual design-pattern based schema of Fig. 3.

In this schema, the domains of values of the attributes wind, temperature,
pressure, sky, and altitude are time-varying domains, e.g. wind is of type time-
varying Real. The domain of the attribute PtLocB of BES is Point, and the
one of PtLocM of Move is Time-Varying Point. In order to enforce the spatial
semantics of the relation CloseToAH, each time a tuple is inserted in Close-
ToAH, a trigger checks if the time-varying point, PtLocM, of the referenced
move effectively passes close to (i.e. at a distance smaller than a fixed thresh-
old) the geometry of the referenced artificial hazard during this move. In the
same way, triggers enforce the synchronization and topological constraints of
the moves with respect to the stops. For instance a trigger checks that for
each tuple of Move, tBeginM is the next instant after the tEndB of the tuple
of BES referenced by FromBES. Another trigger checks that the time-varying
point PtLocM of Move effectively starts at the point, PtLocB, of the BES
tuple referenced by FromBES.

The query ”How many times did the white stork Max stop during each of her
trajectories?” can be expressed as follows:
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Fig. 5. Excerpt of the relational schema corresponding to Figure 3.

SELECT t.TrajId, t.tBeginT, count(b.BES#)
FROM Trajectory AS t, BES AS b
WHERE t.TrajId=b.TrajId AND t.Wsname="Max"
GROUP BY t.trajId, t.tBeginT

On the other hand, Fig. 6 partially shows the relational schema that imple-
ments the conceptual data type-based schema of Fig. 4.
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Fig. 6. Excerpt of the relational schema corresponding to Figure 4.

In this schema, the domain of values of geometry of Trajectory is the data
type TrajectoryType. The domains of the attributes wind, temperature, pres-
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sure, sky, activity, altitude, weight, and fat% are time-varying domains. The
topological and synchronization constraints between stops and moves that
had to be specified through triggers in the previous schema are here no longer
needed. They are encapsulated in the TrajectoryType data type. As in the
previous schema, constraints should be enforced for each redundancy. For in-
stance, a CHECK clause in Trajectory could enforce that, for each tuple, the
beginning (resp. end) of the lifecycle, tBeginT (resp. tEndT ), is equal to the
beginning (resp. last) instant of the geometry, geometry.begin().t (resp.
geometry.end().t). On this schema, the same query as above ”How many
times did the white stork Max stop during each of her trajectories?” can be
expressed as follows:

SELECT TrajId, tBeginT, count(geometry.stopsTable())
FROM Trajectory
WHERE Wsname="Max"

In this query, geometry is a spatio-temporal trajectory and stopsTable() is the
method that returns the set of stops of the trajectory. The expression of the
query on the second schema is much simpler: no join, no group by. But users
have to know the set of methods associated to the TrajectoryType data type.

Let us turn to another query: ”Which activities did the stork have during each
stop of trajectory 133?” On the schema of Fig. 5 (corresponding to the pattern
approach), the query is very simple:

SELECT BES#, activity
FROM BESactivities
WHERE TrajId=133

While on the schema of Fig. 6, it can be written as follows:

SELECT s.n, a.value
FROM Trajectory AS t, t.geometry.stopsTable()AS s,
t.activity.sampleValuesTable() AS a
WHERE t.TrajId=133 AND a.tBegin>=s.t1 AND a.tEnd<=s.t2

This last query accesses the table containing the stops and the one contain-
ing the sample values of the stepwise time-varying activity attribute. This
latter table is obtained by the method sampleValuesTable() of the time-
varying data type. This method returns the set of sample values of as a table
of format (value String, tBegin Instant, tEnd Instant). This example
shows that the TrajectoryType solution forces users to express temporal joins
when stops (or moves) are accessed with some of their varying attributes.
These temporal joins are needed to associate each stop (or move) with the
right subset of the attribute values. On the other hand in the pattern solu-
tion, attributes that are varying during stops (resp. moves) can be stored as
attributes of stops (resp. moves), and temporal joins are not needed.
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8 Conclusion

From the application viewpoint, spatio-temporal trajectories of moving objects
are complex artifacts that combine raw movement features (where and when
the object is) with a variety of semantic annotations that capture the specific
knowledge required by each application. These semantic annotations support
a meaningful interpretation of the trajectory as a goal-oriented journey of the
traveling object. We have sketched two example applications, one on migrating
birds, whose goal is search for food, and the other one on business travels of
company employees, whose goal is to do business with distant customers.

The contribution of this paper has been: 1) to analyze and emphasize the
requirements (from the application viewpoint and in terms of data modeling
constructs) for a semantically rich representation of objects’ travels, and 2) to
consequently propose two conceptual modeling approaches for direct support
of trajectory semantics. Eventually, an implementation of the approaches is
shown. The work reported is, to the best of our knowledge, the first one to
propose a fully conceptual approach for modeling the semantics of moving
objects, adding a semantic layer to the usual modeling of trajectories as raw
movement of moving objects.

Work is still needed to further explore the interaction between our trajectory
modeling strategies and the multiple network models that have been proposed
in the literature, in view of enriching, if applicable, the modeling of network-
constrained trajectories.

Most of future work will be devoted to similarly defining a modeling strategy
for trajectory warehousing. Building a trajectory data warehouse is the prelim-
inary step towards data mining (the core focus of the GeoPKDD project we are
involved in). In this context we are highly interested in investigating the inter-
play between trajectory conceptual modeling and spatio-temporal data min-
ing. Data mining techniques are instrumental in extracting spatio-temporal
and semantic patterns [10][2]. These patterns represent abstract trajectories,
i.e. they express stereotypes rather than actual trajectories. Conceptual rep-
resentation of extracted patterns may therefore call for an adjustment of our
approach.

A related line of investigation concerns the specification of operators for the
aggregation of trajectories. The aggregation concept generically denotes any
process somehow collecting a set of data items to produce some global data
item that materializes a synthetic view of the collected data items. Different
kinds of aggregation are possible and they can be performed at different lev-
els, distinguishing for example among operators applied to the components
of a trajectory and operators applied to trajectories as a unit. An example
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operation on components is an aggregation replacing a set of stops in a region
with a unique stop accounting for the whole time spent in the region. An
example operation on trajectories as a unit is an aggregation replacing a set
of trajectories with the average trajectory (somehow) computed from the set.
Exploring aggregation functionality [6] is a well-known research direction in
spatio-temporal warehousing and we intend to extend current techniques to
cope with our new concept of semantically enriched trajectories.
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