17,719 research outputs found

    Towards a Formal Model of Privacy-Sensitive Dynamic Coalitions

    Full text link
    The concept of dynamic coalitions (also virtual organizations) describes the temporary interconnection of autonomous agents, who share information or resources in order to achieve a common goal. Through modern technologies these coalitions may form across company, organization and system borders. Therefor questions of access control and security are of vital significance for the architectures supporting these coalitions. In this paper, we present our first steps to reach a formal framework for modeling and verifying the design of privacy-sensitive dynamic coalition infrastructures and their processes. In order to do so we extend existing dynamic coalition modeling approaches with an access-control-concept, which manages access to information through policies. Furthermore we regard the processes underlying these coalitions and present first works in formalizing these processes. As a result of the present paper we illustrate the usefulness of the Abstract State Machine (ASM) method for this task. We demonstrate a formal treatment of privacy-sensitive dynamic coalitions by two example ASMs which model certain access control situations. A logical consideration of these ASMs can lead to a better understanding and a verification of the ASMs according to the aspired specification.Comment: In Proceedings FAVO 2011, arXiv:1204.579

    Closing the loop of SIEM analysis to Secure Critical Infrastructures

    Get PDF
    Critical Infrastructure Protection is one of the main challenges of last years. Security Information and Event Management (SIEM) systems are widely used for coping with this challenge. However, they currently present several limitations that have to be overcome. In this paper we propose an enhanced SIEM system in which we have introduced novel components to i) enable multiple layer data analysis; ii) resolve conflicts among security policies, and discover unauthorized data paths in such a way to be able to reconfigure network devices. Furthermore, the system is enriched by a Resilient Event Storage that ensures integrity and unforgeability of events stored.Comment: EDCC-2014, BIG4CIP-2014, Security Information and Event Management, Decision Support System, Hydroelectric Da

    Property specification and static verification of UML models

    Get PDF
    We present a static verification tool (SVT), a system that performs static verification on UML models composed of UML class and state machine diagrams. Additionally, the SVT allows the user to add extra behavior specification in the form of guards and effects by defining a small action language. UML models are checked against properties written in a special-purpose property language that allows the user to specify linear temporal logic formulas that explicitly reason about UML components. Thus, the SVT provides a strong foundation for the design of reliable systems and a step towards model-driven security

    Agent-Based Simulations of Blockchain protocols illustrated via Kadena's Chainweb

    Full text link
    While many distributed consensus protocols provide robust liveness and consistency guarantees under the presence of malicious actors, quantitative estimates of how economic incentives affect security are few and far between. In this paper, we describe a system for simulating how adversarial agents, both economically rational and Byzantine, interact with a blockchain protocol. This system provides statistical estimates for the economic difficulty of an attack and how the presence of certain actors influences protocol-level statistics, such as the expected time to regain liveness. This simulation system is influenced by the design of algorithmic trading and reinforcement learning systems that use explicit modeling of an agent's reward mechanism to evaluate and optimize a fully autonomous agent. We implement and apply this simulation framework to Kadena's Chainweb, a parallelized Proof-of-Work system, that contains complexity in how miner incentive compliance affects security and censorship resistance. We provide the first formal description of Chainweb that is in the literature and use this formal description to motivate our simulation design. Our simulation results include a phase transition in block height growth rate as a function of shard connectivity and empirical evidence that censorship in Chainweb is too costly for rational miners to engage in. We conclude with an outlook on how simulation can guide and optimize protocol development in a variety of contexts, including Proof-of-Stake parameter optimization and peer-to-peer networking design.Comment: 10 pages, 7 figures, accepted to the IEEE S&B 2019 conferenc

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    International conference on software engineering and knowledge engineering: Session chair

    Get PDF
    The Thirtieth International Conference on Software Engineering and Knowledge Engineering (SEKE 2018) will be held at the Hotel Pullman, San Francisco Bay, USA, from July 1 to July 3, 2018. SEKE2018 will also be dedicated in memory of Professor Lofti Zadeh, a great scholar, pioneer and leader in fuzzy sets theory and soft computing. The conference aims at bringing together experts in software engineering and knowledge engineering to discuss on relevant results in either software engineering or knowledge engineering or both. Special emphasis will be put on the transference of methods between both domains. The theme this year is soft computing in software engineering & knowledge engineering. Submission of papers and demos are both welcome

    Verifying and Monitoring IoTs Network Behavior using MUD Profiles

    Full text link
    IoT devices are increasingly being implicated in cyber-attacks, raising community concern about the risks they pose to critical infrastructure, corporations, and citizens. In order to reduce this risk, the IETF is pushing IoT vendors to develop formal specifications of the intended purpose of their IoT devices, in the form of a Manufacturer Usage Description (MUD), so that their network behavior in any operating environment can be locked down and verified rigorously. This paper aims to assist IoT manufacturers in developing and verifying MUD profiles, while also helping adopters of these devices to ensure they are compatible with their organizational policies and track devices network behavior based on their MUD profile. Our first contribution is to develop a tool that takes the traffic trace of an arbitrary IoT device as input and automatically generates the MUD profile for it. We contribute our tool as open source, apply it to 28 consumer IoT devices, and highlight insights and challenges encountered in the process. Our second contribution is to apply a formal semantic framework that not only validates a given MUD profile for consistency, but also checks its compatibility with a given organizational policy. We apply our framework to representative organizations and selected devices, to demonstrate how MUD can reduce the effort needed for IoT acceptance testing. Finally, we show how operators can dynamically identify IoT devices using known MUD profiles and monitor their behavioral changes on their network.Comment: 17 pages, 17 figures. arXiv admin note: text overlap with arXiv:1804.0435
    • …
    corecore