
Citation: Aljawarneh, Shadi, Laing, Christopher and Vickers, Paul (2008) Design and

experimental evaluation of Web Content Verification and Recovery (WCVR) system : a

survivable security system. In: Proceedings ACSF 2008: the 3rd Conference on Advances in

Computer Security and Forensics, 10-11 July 2008, Liverpool John Moores University,

Liverpool, United Kingdom.

URL:

This version was downloaded from Northumbria Research Link:

http://nrl.northumbria.ac.uk/2293/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to

access the University’s research output. Copyright © and moral rights for items on NRL are

retained by the individual author(s) and/or other copyright owners. Single copies of full items

can be reproduced, displayed or performed, and given to third parties in any format or

medium for personal research or study, educational, or not-for-profit purposes without prior

permission or charge, provided the authors, title and full bibliographic details are given, as

well as a hyperlink and/or URL to the original metadata page. The content must not be

changed in any way. Full items must not be sold commercially in any format or medium

without formal permission of the copyright holder. The full policy is available online:

http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been

made available online in accordance with publisher policies. To read and/or cite from the

published version of the research, please visit the publisher’s website (a subscription may be

required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/9985260?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html

Design and experimental evaluation of Web Content Verification and Recovery

(WCVR) system: A survivable security system

Shadi Aljawarneh, Christopher Laing, and Paul Vickers

School of Computing, Engineering and Information Sciences

Northumbria University, Newcastle upon Tyne, NE2 1XE, UK

{shadi.aljawarneh, christopher.laing, paul.vickers}@northumbria.ac.uk

Abstract

We have designed a novel security system, called Web

Content Verification and Recovery (WCVR) system to solve

unauthorised tampering on server-side web content. Our

solution is implemented as a prototype. This prototype con-

sists of three mechanisms: web register, HTTP interface,

and response hashing. In this paper, we have conducted

a set of experiential studies to meet the security and per-

formance objectives. The results of an experimental study

have shown that the proposed system (WCVR) provides a

high coverage of detection and protection, and a low level

of overhead times.

Keywords

Tampering, integrity of data, confidentiality of data,

availability of data

1. Introduction

Although current security mechanisms could provide a

protection against unauthorised access to system resources,

several security incident reports from emergency response

teams such as The Computer Emergency Response Team

(CERT) clearly demonstrate that the available security

mechanisms have not made system break-ins impossible

[3]. Note that, the three basic objectives of web security

include confidentially, integrity, and availability of data.

Data integrity has received little attention in information

security research and technical security groups and com-

munities. Furthermore, there is little published research in

methods for testing web content integrity [7]. The published

research and technical communities in web security area are

generally more concerned with cryptographic rules, and al-

gorithms. In an attempt to address this, our paper focuses

on the integrity of data and does not delve into other is-

sues of data. If the integrity of data is violated, its confi-

dentiality and availability can be compromised. It should

be noted that data integrity refers to the trustworthiness of

information resources, thereby ensuring that only an autho-

rised client can alter the data – unauthorised tampering may

result in incorrect or malicious web application behaviour

behind installed firewalls [4, 5, 11].

Server-side static and dynamic web content can be tam-

pered with by modifying the style classes, referenced ob-

jects (images, audio, video, and other objects), the source

code of the web page itself, and also by running malicious

code on the server to intercept a requested page before the

client receives it [4, 5, 6, 8, 11]. The attackers are inter-

ested on targeting the referenced objects and page code on

the fly. For example, it is possible to replace an original

image by another image containing malicious code. A vic-

tim requests the altered image and then it can disrupt the

contents of a web server or client machine. In addition, the

Cascading Style Sheet (CSS) object is threatened through a

visualization spoofing attack. The strategy of this attack is

to change any important information that is identified by a

particular colour to another colour the objective is to ma-

nipulate the user into making a decision that is based on

incorrect information.

The Secure Sockets Layer (SSL) protocol was developed

to support the integrity of data transit [4, 5, 11], and as such,

it does not provide an absolute solution. SSL is not capable

of verifying the integrity of web content before a request

or response enters the secure communication channel [11].

As a result of the transparency of code at the web browser

level, the following approaches can cause loss of data in-

tegrity: hidden fields and script manipulation, and analysis

of validation code through reverse engineering techniques

[6, 10].

Dynamic data is also a critical issue [6, 9]. The gener-

ation of dynamic web content depends on user interaction.

Different user information leads to different generated web

content. Therefore, it is very difficult (even impossible) to

analyse the requested page of dynamic code before process-

ing on a web server. The dynamic code of server program-

ming languages needs to be processed on a web server be-

fore returning the response to a web browser. As a result, we

cannot guarantee that dynamic code is not tampered with

even if the static code is verified; therefore the generated

web content should also be verified.

Indeed, the verification of web server content integrity

is becoming more important, because many web applica-

tions generate units of web content on the fly. It is there-

fore important to develop systems for integrity verification

that are able to provide web content protection, detection of

malicious manipulation of web content, protection against

tampering, and authentication of content [1, 2].

This paper is organized as follows: Section 2 gives an

overview of the existing integrity verification approaches

and systems. Section 3 outlines a proposed integrity verifi-

cation system. Section 4 describes the prototype of WCVR

implementation and its mechanisms. In Section 5, we

present an experimental study to measure the performance

through the proposed system on IIS and Apache Tomcat

web servers. Finally, Section 6 draws conclusions.

2. Existing Integrity verification approaches

We now discuss the three recent approaches that attempt

to address the tampering problems on the server-side web

content. First, Hassinen and Mussalo [5] propose a client-

side encryption system to protect data integrity and user

trust. The client encryption key is located on a client smart

card or can be stored on the server and transferred over an

HTTP connection.

However, integrity of data could be lost if this approach

is adopted because Java applets can access the client’s lo-

cal file system. Thus, a criminal can replace the original

signed applet with a faked applet to access the client’s web

content. Another potential weakness is the loss of the client

smart card with its Personal Identification Number (PIN).

Consequently, the whole web-based system can be compro-

mised. Furthermore, applet and JavaScript methods can be

bypassed. If this happens, the submitted values will be in

plain text. Finally, existing web applications would require

modification to implement this technique.

Sedaghat, Pieprzyk, and Vossough [11] proposed a Dy-

namic Security Surveillance Agent (DSSA) tool on the

server that automatically intercepts a request to verify the

integrity of the requested page before the web server re-

sponds to the client. The verification uses the timestamp

signature technique. However, tampering is still a poten-

tial problem because DSSA does not verify dynamic web

content on the server.

Third, the Adaptive Intrusion-Tolerant Server system

[12] consists of redundant servers, proxies that are posi-

tioned between web servers and client machines to verify

the behaviour of servers. When a client request arrives a

proxy “leader” intercepts the request, analyzes it, and for-

wards it to a number of application servers, depending on

the enforced policy. Furthermore, a leader intercepts the re-

sponses to find a hash value for them. If they match, the

leader sends a response to the user, otherwise, a report is

sent to a monitoring component to take the correct action.

However, it does not verify the integrity of referenced ob-

jects that are generated dynamically.

3. Web Content Verification and Recovery

(WCVR) System

As discussed above, the problem to be addressed is that

the integrity of the dynamic and static web content on a

server can be compromised even though the communication

channel between the client and server-sides is secured. We

have proposed a survivable system to identify tampering at-

tacks, and therefore, we have developed a Web Content Ver-

ification and Recovery (WCVR) system to investigate into

a server-side static and dynamic web content survivability

before the client receives the requested page.

In this paper, the survivability is the capability of a web

content to continue its mission over the HTTP request-

response model even in the presence of illegitimate modi-

fications (modifications caused by tampering attacks) to a

web content. The question then arises, what happens when

a altered web content has been detected? Our survivability

strategy in the proposed WCVR system can be set up in two

steps:

1. Detection and response by integrity verification pro-

cess.

2. Recovering from tampering attacks by recovery pro-

cess.

3.1. Architecture of web security framework

The proposed framework consists of a number of com-

ponents as shown in Figure 1 [1]:

• DBMS tables: we create two DBMS tables: offline-

transaction table for mapping the hash values of static

web contents to their specific repositories of web

servers, and online-transaction table for mapping the

hash value of current dynamic web content to its server

scripting web page.

• Web register component: calculates the hash values of

static web contents that have developed for use in a

secure web environment.

• Integrity verifier (manager): is positioned between the

client machines and the target web server. This com-

ponent manages the HTTP requests and responses via

a state protocol that enforces a number of web poli-

cies (such as request availability policy, integrity fail-

ure policy, integrity passing policy, and recovery pol-

icy) that apply to the elements of the web system.

• Response hashing calculator: aims to do hashing cal-

culations, and backup for the generated dynamic web

content before response sends it back to the manager.

• Recovery component: recovers the tampered web con-

tent.

It should be noted that the proposed framework is sepa-

rate from the web server. In addition, the components of the

framework do not need to run on a dedicated machine, they

can be run as separate processes on the server. The WCVR

system has a number of advantages over other approaches:

1. It does not require modifications to existing web appli-

cation architectures,

2. It does not require any additional changes on the client

and server, and

3. It is compatible with all major web browsers.

DatabaseDatabase

DBMSDBMS

Figure 1. Schematic view of WCVR architecture

3.2. Functional Overview

We propose the functionality steps of the suggested solu-

tion. When a client request arrives, the following steps are

performed [1]:

1. The integrity verifier (manager) component intercepts

the HTTP request (such as web page, audio, video,

images, and others), checks it, analyses it, extracts

the hash value of the original copy of the static

web content from DBMS offline-transaction table, re-

calculates the hash value of the web content, and com-

pares the two hash values for integrity verification pro-

cess. If they match, then the integrity of the requested

web content is valid; otherwise, the the requested web

content has been tampered with. The integrity verifier

(manager) forwards the request to a web server if the

enforced web policy is satisfied. If it is not satisfied,

the integrity verifier sends the request to the recovery

component to identify the tampering problem and re-

ports this attack to web administrator.

2. Once a web server application has processed the re-

quest, the response hashing calculator component cal-

culates the hash value of output response and makes a

backup for the output response. The hash value of the

response (dynamic web content) is appended to DBMS

online-transaction table.

3. The response is intercepted by the integrity verifier

component. The manager analyses the response, ex-

tracts its original hash value (this value is appended to

the secured online-transaction table), re-calculates it,

and compares the two hash values for integrity veri-

fication process. If they match, then the integrity of

the response is valid; otherwise, the response has been

tampered with. Therefore, if it is not valid, the man-

ager sends the response to the recovery component to

identify the tampering problem and reports this to the

web administrator.

4. The integrity verifier component forwards the correct

response to the target client.

4. Implementation of WCVR system

The WCVR system is implemented in Java, Servlets,

and Filters. The DBMS Microsoft Access 2007 Database

is selected as the repository for storing and retrieving de-

tails about static and dynamic web contents. In order to

demonstrate that our WCVR system is able to ensure the

survivability of server-side web content against tampering,

we have undertaken some experimental testing (see Section

5).

4.1. Architecture Design of the Prototype

The WCVR prototype consists of three mechanisms:

Web register, HTTP interface, and response hashing mech-

anism.

4.1.1. Web Register Mechanism

The functionalities of the web register mechanism are sum-

marized into the following:

• Reading in binary format for every static web content

in the secure repositories.

• Calculating the hash value for every static web content

using SHA1 function.

• Requesting Microsoft Access DBMS to store details

for every static web content.

• Checking the modification status for every static web

content, if modified, recalculate the hash value with

taking into account the new assembly of a private key

which is used in SHA1 hashing function.

4.1.2. Response Hashing Mechanism

This mechanism aims to calculate the hash value of the out-

put response (dynamic web content) which is generated by a

server scripting language such as JSP, ASP, PERL, and oth-

ers, and to make online backup for the output response (the

produced dynamic web content) in a secure server reposi-

tories. The hash value of dynamic content is stored in the

DBMS online-transaction table for integrity check before

the client receives the requested page.

4.1.3. HTTP Interface Mechanism

The HTTP interface mechanism is the manager of the

WCVR system, and is based on the integrity verifier compo-

nent. This component launches a state protocol to enforce

the target web policy. The value of the web policy deter-

mines the action(s) should be taken by the HTTP interface

mechanism. All the web policies have been implemented in

this mechanism. The goals of HTTP interface mechanisms

are:

• Online verification of integrity of server-side static

web content.

• Online verification of integrity of server-side dynamic

web content.

• Online recovery of server-side static web content if the

static web content has been tampered with.

• Online recovery of server-side dynamic web content if

the dynamic web content has been tampered with.

In this paper, we have developed multi-threaded java ap-

plication for handling concurrent connections (requests in

parallel) using multiple threads that increase the power and

flexibility of a web server and client programs significantly.

5. Evaluation

We tested our system in environment which is composed

of two web servers: Apache 1.3.29 with Tomcat container

5.01 on MS Windows Server 2003, and IIS 6.0 on MS Win-

dows Server 2003. The two web servers contain a copy of

target web site and shopping cart application. The choice

of two web servers are dictated by the fact that they contain

many tampering vulnerabilities such as visualisation spoof-

ing attacks that can be easily exploited. Over 45 attacks

have been performed against the server-side generated static

and dynamic web content security properties. We have ex-

ploited different type of vulnerabilities that allows for the

modification of files in the designated directories of a web

server (attack against integrity). During the testing, all the

attacks launched against the web servers were detected and

recovered by the WCVR system.

5.1. Case Study for Micro-benchmarking Perfor-
mance

We measured the runtime performance of the web regis-

ter mechanism with a set of micro-benchmarks. We mea-

sured the latencies of web register mechanism in two differ-

ent cases, namely, SHA1 (10 digits), and SHA1-extended

(16 digits). In the SHA1 case, we calculated the hash value

of a web content by SHA1 function where number of digits

was 10. SHA1-extended represented the case when we cal-

culated the hash value of a web content by SHA1 function

where number of digits was 16. Since the goal is to measure

the latency, we ran the web register mechanism 15 times on

over 200 entries of different sizes for every case (SHA1 and

SHA1-extended) under MS Windows XP Professional.

An illustration of results is presented in Table 1. It is

clear from the table that the overhead of web register in the

case of SHA1 (10 digits) is low – the average running time

was 1.4274 seconds to run (the average of time taken to run

15 trails), less time than the case of SHA1-extended which

it was 2.2176 seconds to run. Note that these cases did not

only measure the overhead of the hash value itself, it also

measured all functions in a web register mechanism for both

cases, so that this difference of overhead results from using

two different cases of SHA1.

We have concluded that the SHA1-extended case is

clearly the most costly in performance terms to execute.

This is reasonable, because the SHA1-extended contains 16

digits instead of using 10 digits.

We have also presented the registry performance of a

web content as a function of file sizes. We measured the

web register mechanism running time for the both cases:

SHA1 and SHA1-extended, varying the input file sizes. The

results are shown in Table 2. When the file size is large,

the hashing overhead can be significant for both cases. For

example, measuring a 64 Kilobytes file had taken about

12.47 milliseconds in case of SHA1-extended, where it had

taken about 3.2 milliseconds in case of SHA1. Another

interesting result, measuring a 13 Megabytes file recorded

about 1531 milliseconds in case of SHA1-extended, where

it recorded about 620.067 milliseconds in case of SHA1.

The running time increased close to a linear state as the size

of file increased. Moreover, the hashing overhead of case

SHA1-extended takes more running time than case SHA1

and this increases as the size of file increases.

Table 1. Overhead of a web register mechanism

Web Register Call Overhead (ms)

SHA1-extended (16 digits) 2217.6 (2.2176s)

SHA1 (10 digits) 1427.4 (1.4274s)

Table 2. Registry Performance for both SHA1-extended

and SHA1 as compared with File Sizes.

File Size Overhead (ms) Overhead (ms)

(Byte) with SHA1-extended with SHA1

1KB 0.64 0.627

16KB 5.13 2.13

64KB 12.47 3.2

2MB 163.73 118.73

5MB 348 251.97

13MB 1531 620.067

The impact of hashing and encryption are issues that in-

crease the overhead and they are rarely considered in the

area of web engineering and design. When using the en-

cryption and hashing, some users have observed that the

CPU overhead of sending and receiving encrypted requests,

and the hashing verification to be as high as 100 to 200 mil-

liseconds per request, easily overwhelming any other pro-

cessing [13]. This overhead varies widely by implementa-

tion, key length and other factors, but it is always costly in

performance terms. Therefore, we have benched the data

for two cases: SHA1 (10 digits), ad SHA1-extended (16

digits).

We use the second case of hashing function (case of

SHA1-extended) in the WCVR prototype. Although this

case is more costly in performance terms (see Table 1 and

Table 2) because by design, longer keys take much more

computing resource to decrypt, making them less vulnera-

ble to attack by repetitive means. Unfortunately, this also

means that legitimate users pay a substantial cost for secu-

rity.

5.2. End-to-End Performance Evaluation

A load test can be used to test an application’s robust-

ness and performance, as well as its hardware and band-

width capacities. Therefore, we used the Neoload1 applica-

tion which is a stress and load testing tool to (i) test a web

site’s vulnerability to crashing under load and (ii) check re-

sponse times under the predicted load.

As the verification and recovery processes are performed

online in real-time, it should induce a time overhead in the

service. The results presented in this section have been ob-

tained on the same set of requests, using the same architec-

ture of web servers.

Note that, the duration of the test was almost exactly

30 minutes where the run-time policy was ramping up (i.e.

Generating a number of virtual users that increases through-

out the test) from 2 users adding 2 users every 2 minutes.

The virtual users were connecting at 100Mbps through a

local network.

All these measurements were performed from the client

point of view. Each row in the table displays the average

response time (request), maximum response time (request),

and minimum response time (request) in seconds, of all re-

quests during the test and average page response time for all

pages where each page may contain a number of requests.

Note that the average response time is the mean-time neces-

sary to process a request by each web server when the proxy,

browser, and the WCVR system are active. Activating the

WCVR implies the creation of lots of communications, the

activation of the verification process, and activation of re-

covery component if the server-side static and/or dynamic

web content has been compromised and tampered with. The

communications (network response time) are parts of the

measured durations. The WCVR tested is a prototype, and

thus is not really optimised.

5.2.1. Experimental Case Study

This experimental study has been conducted by undergrad-

uate computing student at Northumbria University and has

consisted of two parts: case study for static web content,

and case study for dynamic web content. Case study for

static web content is represented by experiments one and

two, whereas case study for dynamic web content is repre-

sented by experiment three. We have summarised the re-

sults in a specific table for each part.

Case Study - Static web content

Experiment one and two are individually carried out on

MS Windows environment, IIS and Tomcat web servers.

Experiment one is designed to show end-to-end perfor-

mance measurement through the proposed WCVR system

1http://www.neotys.com/

and the DSSA existing system on IIS web server over lo-

cal network for verification of server-side static web con-

tent integrity, whereas experiment two is designed to show

end-to-end performance measurement through the proposed

WCVR system and the DSSA existing system on Tomcat

web server.

We obtain a statistics summary after running each sys-

tem individually, as shown in Table 3. In this study - ex-

periment one, 9130 hits were created, 6096 web resources

were requested out, 57.22MB (total throughput) were re-

ceived, and number of virtual users were launched in this

test was between 114 and 207. In experiment two, 11041

hits were created, 6116 web resources were requested out,

89.84MB (total throughput) were received, and number of

virtual users was between 88 and 89.

Table 3. Static web content: Comparison between the re-

sponse times through DSSA or WCVR systems, in sec-

onds, of all requests during the test on IIS and Tomcat

web servers.

System Web
Server

Graph Min
(request)

Average
Response Time

(request)

Graph Max
(request)

Average 90%
(request)

Average Page
Response Time

DSSA IIS 0.165 4.03 4.48 4.06 3.84

WCVR IIS 0.073 1.06 4.12 0.951 1.63

DSSA Tomcat 0.117 3.86 4.71 4.04 3.96

WCVR Tomcat 0.07 1.93 90.3 0.834 3.46

As a result, the end-to-end performance of WCVR sys-

tem is clearly very effective. This is because the overhead of

WCVR system on the both web servers (IIS, and Tomcat)

are minimal and very low in comparison with the DSSA

mechanism (see Table 3). The average response time (re-

quest) of WCVR on IIS was 1.06 seconds and on Tomcat

was 1.93 seconds where the average response time (request)

of DSSA on IIS was 4.03 seconds and on Tomcat was 3.86

seconds. The results indicate that the WCVR is less costly

in performance terms to verify the server-side static web

content against tampering attacks on IIS and Tomcat web

servers.

Case Study - Dynamic Web Content

Experiment three is designed to show end-to-end perfor-

mance measurement through the proposed WCVR system

over wired network on Tomcat web server for verification

of server-side dynamic web content integrity. In this exper-

iment three, the response times for Scenario A (No mecha-

nisms or systems for tamper protection, and recovery) and

Scenario B (With WCVR system) were collected.

In this part of study, 5421 hits were created, 5397 re-

sources were requested out, and 1.55MB (total throughput)

were received. Number of virtual users were launched in

this test was between 198 and 204.

As is shown in Table 4, the end-to-end performance of

Table 4. Dynamic Web Content: Comparison between the

response times through without verification system or

WCVR systems, in seconds, of all requests during the

test on Tomcat web server.

System Web Server Graph Min
(request)

Average
Response Time

(request)

Graph Max
(request)

Average Page
Response Time

Without verific-

ation system
Tomcat 0.029 3.14 4.86 3.24

WCVR Tomcat 0.219 3.95 6.01 3.97

WCVR system is nearly effective and acceptable because

the overhead of WCVR system on Tomcat web server is

minimal in comparison with response times for Scenario A.

The average response time (request) of WCVR on Tomcat

was 3.95 seconds, whereas the average response time (re-

quest) through without verification system on Tomcat was

3.14 seconds. It is suggested that the results indicate the

WCVR is nearly similar response time to execute and ver-

ify the server-side static web content against tampering at-

tacks on Tomcat web server compared without verification

system. Therefore, the WCVR satisfies the performance ob-

jective for integrity verification of server-side web content.

6. Conclusions

Data integrity can be violated on the server even though

the communication channel between the server and client

is secure. We have presented a novel WCVR system.

The framework architecture of WCVR system consists of

a number of components: web register, response hashing

calculator, integrity verifier, and recovery.

To conclude, the performance of WCVR system is nearly

effective on Tomcat and IIS web servers. Therefore, the

WCVR has satisfied the performance objective and accept-

able.

References

[1] S. Aljawarneh, C. Laing, and P. Vickers. Security policy

framework and algorithms for web server content protection.

In ACSF ’07, Liverpool, UK, 12–13 July 2007. Liverpool

John Moores University.

[2] S. Aljawarneh, C. Laing, and P. Vickers. Verification of

web content integrity: A new approach to protecting servers

against tampering. In M. Merabti, editor, PGNET 2007 The

8th Annual Postgraduate Symposium on The Convergence of

Telecommunications, Networking and Broadcasting, Liver-

pool, UK, 28–29 June 2007. Liverpool John Moores Univer-

sity.

[3] CERT. CERT statistics 1988–2006.

http://www.cert.org/stats, 2006.

[4] B. Gehling and D. Stankard. eCommerce security. In Pro-

ceedings of Information Security Curriculum Development

(InfoSecCD) Conference 0́5, pages 32–37, Kennesaw, GA,

USA, Sep 23–24 2005.

[5] M. Hassinen and P. Mussalo. Client controlled security for

web applications. In B. Wener, editor, The IEEE Conference

on Local Computer Networks 30th Anniversary, pages 810–

816, Australia, 2005. IEEE Computer Society Press.

[6] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass testing of

web applications. In ISSRE 2004 15th International Sympo-

sium on Software Reliability Engineering, pages 187–197.

IEEE Computer Society, Los Alamitos, CA, 2004.

[7] R. Probert, B. Stepien, and P. Xiong. Formal testing of web

content using TTCN-3. In TTCN-3 User Conference 2005,

2005.

[8] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Es-

mair. Browsershield: Vulnerability-driven filtering of dy-

namic HTML. In Proceedings OSDI 06 7th USENIX Sym-

posium on Operating Systems Design and Implementation,

pages 61–74. USENIX Association, Nov 6–8 2006.

[9] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design

and implementation of a TCG-based integrity measurement

architecture. In USENIX Security Symposium, pages 223–

238, 2004.

[10] D. Scott and R. Sharp. Specifying and Enforcing

Application-Level Web Security Policies. IEEE. Knowl.

Data Eng, 15(4):771–783, 2003.

[11] S. Sedaghat, J. Pieprzyk, and E. Vossough. On-the-fly web

content integrity check boosts users’ confidence. Commun.

ACM, 45(11):33–37, 2002.

[12] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte,

B. Dutertre, J. Levy, H. Saı̈di, V. Stavridou, and E. Uribe.

An architecture for an adaptive intrusion-tolerant server. In

B. Christianson, J. A. Malcolm, and M. Roe, editors, Se-

curity Protocols Workshop, volume 2845 of LNCS, pages

158–178. Springer Verlag, 2002.

[13] B. Wong. Sizing up Your Web Server. Sun World Online,

Oct 1997. http://sunsite.uakom.sk/sunworldonline/swol-10-

1997/swol-10-sizeserver.html.

