106,223 research outputs found

    Adatbiztonság és adatvédelem a mindent átható számítógépes technológia világában = Security and Privacy Issues in Pervasive Computing

    Get PDF
    (1) Több ugrásos vezeték nélküli hálózatok biztonsága: Ad hoc és szenzorhálózatokban használt útvonalválasztó protokollok biztonágának analízise, új bizonyíthatóan biztonságos protokollok tervezése (enairA, Secure tinyLUNAR). Új támadás-ellenálló adataggregációs algoritmusok tervezése (RANBAR, CORA) és analízise. Spontán kooperáció kialakulása feltételeinek vizsgálata ad hoc és szenzorhálózatokban, kooperáció ösztönzése késleltetéstűrő ad hoc hálózatokban (Barter). (2) Személyes biztonsági tokenek: A nem-megbízható terminál probléma vizsgálata, feltételes aláírásra épülő megoldás tervezése és analízise. (3) RFID biztonsági és adatvédelmi kérdések: Kulcsfa alapú azonosító-rejtő hitelesítés analízise, a privacy szintjének meghatározása. Optimális kulcsfa tervezése. Új azonosító-rejtő hitelesítő protokoll tervezése és összehasonlítása a kulcsfa alapú módszerrel. (4) Formális biztonsági modellek: Szimulációs paradigmára épülő biztonsági modell útvonalválasztó protokollok analízisére. Támadó-modellek és analízis módszer támadás-ellenálló adataggregáció vizsgálatára. Formális modell kidolgozása a korlátozott számítási képességekkel rendelkező humán felhasználó leírására. Privacy metrika kidolgozása azonosító-rejtő hitekesítő protokollok számára. Játékelméleti modellek a spontán koopráció vizsgálatára ad hoc és szenzor hálózatokban, valamint spam és DoS elleni védelmi mechanizmusok analízisére. | (1) Security of multi-hop wireless networks: Security analysis of routing protocols proposed for mobile ad hoc and sensor networks, development of novel routing protocols with provable security (enairA, Secure tinyLUNAR). Development of novel resilient aggregation algorithms for sensor networks (RANBAR, CORA). Analysis of conditions for the emergence of spontaneous cooperation in ad hoc and sensor networks, novel algorithm to foster cooperation in opportunistic ad hoc networks (Barter). (2) Security tokens: Analysis of the untrusted terminal problem, mitigation by using conditional signature based protocols. (3) RFID security and privacy: Analysis of key-tree based private authentication, novel metrics to measure the level of privacy. Design of optimal key-trees, novel private authentication protocols based on group keys. (4) Formal models: Modeling framework for routing protocols based on the simulation paradigm, proof techniques for analyzing the security of routing. Attacker models and analysis techniques for resilient aggregation in sensor networks. Formal model for representing the limited computing capacity of humans. Metrics for determining the level of privacy provided by private authentication protocols. Game theoretic models for studying cooperation in ad hoc and sensor networks, and for analysisng the performance of spam and DoS protection mechanisms

    State-of-the-art authentication and verification schemes in VANETs:A survey

    Get PDF
    Vehicular Ad-Hoc Networks (VANETs), a subset of Mobile Ad-Hoc Networks (MANETs), are wireless networks formed around moving vehicles, enabling communication between vehicles, roadside infrastructure, and servers. With the rise of autonomous and connected vehicles, security concerns surrounding VANETs have grown. VANETs still face challenges related to privacy with full-scale deployment due to a lack of user trust. Critical factors shaping VANETs include their dynamic topology and high mobility characteristics. Authentication protocols emerge as the cornerstone of enabling the secure transmission of entities within a VANET. Despite concerted efforts, there remains a need to incorporate verification approaches for refining authentication protocols. Formal verification constitutes a mathematical approach enabling developers to validate protocols and rectify design errors with precision. Therefore, this review focuses on authentication protocols as a pivotal element for securing entity transmission within VANETs. It presents a comparative analysis of existing protocols, identifies research gaps, and introduces a novel framework that incorporates formal verification and threat modeling. The review considers key factors influencing security, sheds light on ongoing challenges, and emphasises the significance of user trust. The proposed framework not only enhances VANET security but also contributes to the growing field of formal verification in the automotive domain. As the outcomes of this study, several research gaps, challenges, and future research directions are identified. These insights would offer valuable guidance for researchers to establish secure authentication communication within VANETs

    A three round authenticated group key agreement protocol for ad hoc networks

    Get PDF
    International audienceGroup Key Agreement (GKA) protocols enable the participants to derive a key based on each one's contribution over a public network without any central authority. They also provide efficient ways to change the key when the participants change. While some of the proposed GKA protocols are too resource consuming for the constraint devices often present in ad hoc networks, others lack a formal security analysis. In this paper, we propose a simple, efficient and secure GKA protocol well-suited to ad hoc networks and present results of our implementation of the same in a prototype application

    Pairing-based authentication protocol for V2G networks in smart grid

    Full text link
    [EN] Vehicle to Grid (V2G) network is a very important component for Smart Grid (SG), as it offers new services that help the optimization of both supply and demand of energy in the SG network and provide mobile distributed capacity of battery storage for minimizing the dependency of non-renewable energy sources. However, the privacy and anonymity of users¿ identity, confidentiality of the transmitted data and location of the Electric Vehicle (EV) must be guaranteed. This article proposes a pairing-based authentication protocol that guarantees confidentiality of communications, protects the identities of EV users and prevents attackers from tracking the vehicle. Results from computing and communications performance analyses were better in comparison to other protocols, thus overcoming signaling congestion and reducing bandwidth consumption. The protocol protects EVs from various known attacks and its formal security analysis revealed it achieves the security goals.Roman, LFA.; Gondim, PRL.; Lloret, J. (2019). Pairing-based authentication protocol for V2G networks in smart grid. Ad Hoc Networks. 90:1-16. https://doi.org/10.1016/j.adhoc.2018.08.0151169

    Formal Analysis of V2X Revocation Protocols

    Get PDF
    Research on vehicular networking (V2X) security has produced a range of security mechanisms and protocols tailored for this domain, addressing both security and privacy. Typically, the security analysis of these proposals has largely been informal. However, formal analysis can be used to expose flaws and ultimately provide a higher level of assurance in the protocols. This paper focusses on the formal analysis of a particular element of security mechanisms for V2X found in many proposals: the revocation of malicious or misbehaving vehicles from the V2X system by invalidating their credentials. This revocation needs to be performed in an unlinkable way for vehicle privacy even in the context of vehicles regularly changing their pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and RTOKEN aim to solve this challenge by means of cryptographic solutions and trusted hardware. Formal analysis using the TAMARIN prover identifies two flaws with some of the functional correctness and authentication properties in these schemes. We then propose Obscure Token (OTOKEN), an extension of REWIRE to enable revocation in a privacy preserving manner. Our approach addresses the functional and authentication properties by introducing an additional key-pair, which offers a stronger and verifiable guarantee of successful revocation of vehicles without resolving the long-term identity. Moreover OTOKEN is the first V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure

    A New Scheme for Minimizing Malicious Behavior of Mobile Nodes in Mobile Ad Hoc Networks

    Get PDF
    The performance of Mobile Ad hoc networks (MANET) depends on the cooperation of all active nodes. However, supporting a MANET is a cost-intensive activity for a mobile node. From a single mobile node perspective, the detection of routes as well as forwarding packets consume local CPU time, memory, network-bandwidth, and last but not least energy. We believe that this is one of the main factors that strongly motivate a mobile node to deny packet forwarding for others, while at the same time use their services to deliver its own data. This behavior of an independent mobile node is commonly known as misbehaving or selfishness. A vast amount of research has already been done for minimizing malicious behavior of mobile nodes. However, most of them focused on the methods/techniques/algorithms to remove such nodes from the MANET. We believe that the frequent elimination of such miss-behaving nodes never allowed a free and faster growth of MANET. This paper provides a critical analysis of the recent research wok and its impact on the overall performance of a MANET. In this paper, we clarify some of the misconceptions in the understating of selfishness and miss-behavior of nodes. Moreover, we propose a mathematical model that based on the time division technique to minimize the malicious behavior of mobile nodes by avoiding unnecessary elimination of bad nodes. Our proposed approach not only improves the resource sharing but also creates a consistent trust and cooperation (CTC) environment among the mobile nodes. The simulation results demonstrate the success of the proposed approach that significantly minimizes the malicious nodes and consequently maximizes the overall throughput of MANET than other well known schemes.Comment: 10 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS July 2009, ISSN 1947 5500, Impact Factor 0.42

    A Formal Framework for Modeling Trust and Reputation in Collective Adaptive Systems

    Get PDF
    Trust and reputation models for distributed, collaborative systems have been studied and applied in several domains, in order to stimulate cooperation while preventing selfish and malicious behaviors. Nonetheless, such models have received less attention in the process of specifying and analyzing formally the functionalities of the systems mentioned above. The objective of this paper is to define a process algebraic framework for the modeling of systems that use (i) trust and reputation to govern the interactions among nodes, and (ii) communication models characterized by a high level of adaptiveness and flexibility. Hence, we propose a formalism for verifying, through model checking techniques, the robustness of these systems with respect to the typical attacks conducted against webs of trust.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200

    Trust-based security for the OLSR routing protocol

    Get PDF
    International audienceThe trust is always present implicitly in the protocols based on cooperation, in particular, between the entities involved in routing operations in Ad hoc networks. Indeed, as the wireless range of such nodes is limited, the nodes mutually cooperate with their neighbors in order to extend the remote nodes and the entire network. In our work, we are interested by trust as security solution for OLSR protocol. This approach fits particularly with characteristics of ad hoc networks. Moreover, the explicit trust management allows entities to reason with and about trust, and to take decisions regarding other entities. In this paper, we detail the techniques and the contributions in trust-based security in OLSR. We present trust-based analysis of the OLSR protocol using trust specification language, and we show how trust-based reasoning can allow each node to evaluate the behavior of the other nodes. After the detection of misbehaving nodes, we propose solutions of prevention and countermeasures to resolve the situations of inconsistency, and counter the malicious nodes. We demonstrate the effectiveness of our solution taking different simulated attacks scenarios. Our approach brings few modifications and is still compatible with the bare OLSR
    corecore