13 research outputs found

    Analysis of Security Protocols in Embedded Systems

    Get PDF

    Tolerância a falhas em sistemas de comunicação de tempo-real flexíveis

    Get PDF
    Nas últimas décadas, os sistemas embutidos distribuídos, têm sido usados em variados domínios de aplicação, desde o controlo de processos industriais até ao controlo de aviões e automóveis, sendo expectável que esta tendência se mantenha e até se intensifique durante os próximos anos. Os requisitos de confiabilidade de algumas destas aplicações são extremamente importantes, visto que o não cumprimento de serviços de uma forma previsível e pontual pode causar graves danos económicos ou até pôr em risco vidas humanas. A adopção das melhores práticas de projecto no desenvolvimento destes sistemas não elimina, por si só, a ocorrência de falhas causadas pelo comportamento não determinístico do ambiente onde o sistema embutido distribuído operará. Desta forma, é necessário incluir mecanismos de tolerância a falhas que impeçam que eventuais falhas possam comprometer todo o sistema. Contudo, para serem eficazes, os mecanismos de tolerância a falhas necessitam ter conhecimento a priori do comportamento correcto do sistema de modo a poderem ser capazes de distinguir os modos correctos de funcionamento dos incorrectos. Tradicionalmente, quando se projectam mecanismos de tolerância a falhas, o conhecimento a priori significa que todos os possíveis modos de funcionamento são conhecidos na fase de projecto, não os podendo adaptar nem fazer evoluir durante a operação do sistema. Como consequência, os sistemas projectados de acordo com este princípio ou são completamente estáticos ou permitem apenas um pequeno número de modos de operação. Contudo, é desejável que os sistemas disponham de alguma flexibilidade de modo a suportarem a evolução dos requisitos durante a fase de operação, simplificar a manutenção e reparação, bem como melhorar a eficiência usando apenas os recursos do sistema que são efectivamente necessários em cada instante. Além disto, esta eficiência pode ter um impacto positivo no custo do sistema, em virtude deste poder disponibilizar mais funcionalidades com o mesmo custo ou a mesma funcionalidade a um menor custo. Porém, flexibilidade e confiabilidade têm sido encarados como conceitos conflituais. Isto deve-se ao facto de flexibilidade implicar a capacidade de permitir a evolução dos requisitos que, por sua vez, podem levar a cenários de operação imprevisíveis e possivelmente inseguros. Desta fora, é comummente aceite que apenas um sistema completamente estático pode ser tornado confiável, o que significa que todos os aspectos operacionais têm de ser completamente definidos durante a fase de projecto. Num sentido lato, esta constatação é verdadeira. Contudo, se os modos como o sistema se adapta a requisitos evolutivos puderem ser restringidos e controlados, então talvez seja possível garantir a confiabilidade permanente apesar das alterações aos requisitos durante a fase de operação. A tese suportada por esta dissertação defende que é possível flexibilizar um sistema, dentro de limites bem definidos, sem comprometer a sua confiabilidade e propõe alguns mecanismos que permitem a construção de sistemas de segurança crítica baseados no protocolo Controller Area Network (CAN). Mais concretamente, o foco principal deste trabalho incide sobre o protocolo Flexible Time-Triggered CAN (FTT-CAN), que foi especialmente desenvolvido para disponibilizar um grande nível de flexibilidade operacional combinando, não só as vantagens dos paradigmas de transmissão de mensagens baseados em eventos e em tempo, mas também a flexibilidade associada ao escalonamento dinâmico do tráfego cuja transmissão é despoletada apenas pela evolução do tempo. Este facto condiciona e torna mais complexo o desenvolvimento de mecanismos de tolerância a falhas para FTT-CAN do que para outros protocolos como por exemplo, TTCAN ou FlexRay, nos quais existe um conhecimento estático, antecipado e comum a todos os nodos, do escalonamento de mensagens cuja transmissão é despoletada pela evolução do tempo. Contudo, e apesar desta complexidade adicional, este trabalho demonstra que é possível construir mecanismos de tolerância a falhas para FTT-CAN preservando a sua flexibilidade operacional. É também defendido nesta dissertação que um sistema baseado no protocolo FTT-CAN e equipado com os mecanismos de tolerância a falhas propostos é passível de ser usado em aplicações de segurança crítica. Esta afirmação é suportada, no âmbito do protocolo FTT-CAN, através da definição de uma arquitectura tolerante a falhas integrando nodos com modos de falha tipo falha-silêncio e nodos mestre replicados. Os vários problemas resultantes da replicação dos nodos mestre são, também eles, analisados e várias soluções são propostas para os obviar. Concretamente, é proposto um protocolo que garante a consistência das estruturas de dados replicadas a quando da sua actualização e um outro protocolo que permite a transferência dessas estruturas de dados para um nodo mestre que se encontre não sincronizado com os restantes depois de inicializado ou reinicializado de modo assíncrono. Além disto, esta dissertação também discute o projecto de nodos FTT-CAN que exibam um modo de falha do tipo falha-silêncio e propõe duas soluções baseadas em componentes de hardware localizados no interface de rede de cada nodo, para resolver este problema. Uma das soluções propostas baseiase em bus guardians que permitem a imposição de comportamento falhasilêncio nos nodos escravos e suportam o escalonamento dinâmico de tráfego na rede. A outra solução baseia-se num interface de rede que arbitra o acesso de dois microprocessadores ao barramento. Este interface permite que a replicação interna de um nodo seja efectuada de forma transparente e assegura um comportamento falha-silêncio quer no domínio temporal quer no domínio do valor ao permitir transmissões do nodo apenas quando ambas as réplicas coincidam no conteúdo das mensagens e nos instantes de transmissão. Esta última solução está mais adaptada para ser usada nos nodos mestre, contudo também poderá ser usada nos nodos escravo, sempre que tal se revele fundamental.Distributed embedded systems (DES) have been widely used in the last few decades in several application fields, ranging from industrial process control to avionics and automotive systems. In fact, it is expectable that this trend will continue over the years to come. In some of these application domains the dependability requirements are of utmost importance since failing to provide services in a timely and predictable manner may cause important economic losses or even put human life in risk. The adoption of the best practices in the design of distributed embedded systems does not fully avoid the occurrence of faults, arising from the nondeterministic behavior of the environment where each particular DES operates. Thus, fault-tolerance mechanisms need to be included in the DES to prevent possible faults leading to system failure. To be effective, fault-tolerance mechanisms require an a priori knowledge of the correct system behavior to be capable of distinguishing them from the erroneous ones. Traditionally, when designing fault-tolerance mechanisms, the a priori knowledge means that all possible operational modes are known at system design time and cannot adapt nor evolve during runtime. As a consequence, systems designed according to this principle are either fully static or allow a small number of operational modes only. Flexibility, however, is a desired property in a system in order to support evolving requirements, simplify maintenance and repair, and improve the efficiency in using system resources by using only the resources that are effectively required at each instant. This efficiency might impact positively on the system cost because with the same resources one can add more functionality or one can offer the same functionality with fewer resources. However, flexibility and dependability are often regarded as conflicting concepts. This is so because flexibility implies the ability to deal with evolving requirements that, in turn, can lead to unpredictable and possibly unsafe operating scenarios. Therefore, it is commonly accepted that only a fully static system can be made dependable, meaning that all operating conditions are completely defined at pre-runtime. In the broad sense and assuming unbounded flexibility this assessment is true, but if one restricts and controls the ways the system could adapt to evolving requirements, then it might be possible to enforce continuous dependability. This thesis claims that it is possible to provide a bounded degree of flexibility without compromising dependability and proposes some mechanisms to build safety-critical systems based on the Controller Area Network (CAN). In particular, the main focus of this work is the Flexible Time-Triggered CAN protocol (FTT-CAN), which was specifically developed to provide such high level of operational flexibility, not only combining the advantages of time- and event-triggered paradigms but also providing flexibility to the time-triggered traffic. This fact makes the development of fault-tolerant mechanisms more complex in FTT-CAN than in other protocols, such as TTCAN or FlexRay, in which there is a priori static common knowledge of the time-triggered message schedule shared by all nodes. Nevertheless, as it is demonstrated in this work, it is possible to build fault-tolerant mechanisms for FTT-CAN that preserve its high level of operational flexibility, particularly concerning the time-triggered traffic. With such mechanisms it is argued that FTT-CAN is suitable for safetycritical applications, too. This claim was validated in the scope of the FTT-CAN protocol by presenting a fault-tolerant system architecture with replicated masters and fail-silent nodes. The specific problems and mechanisms related with master replication, particularly a protocol to enforce consistency during updates of replicated data structures and another protocol to transfer these data structures to an unsynchronized node upon asynchronous startup or restart, are also addressed. Moreover, this thesis also discusses the implementations of fail-silence in FTTCAN nodes and proposes two solutions, both based on hardware components that are attached to the node network interface. One solution relies on bus guardians that allow enforcing fail-silence in the time domain. These bus guardians are adapted to support dynamic traffic scheduling and are fit for use in FTT-CAN slave nodes, only. The other solution relies on a special network interface, with duplicated microprocessor interface, that supports internal replication of the node, transparently. In this case, fail-silence can be assured both in the time and value domain since transmissions are carried out only if both internal nodes agree on the transmission instant and message contents. This solution is well adapted for use in the masters but it can also be used, if desired, in slave nodes

    Conception Assistée des Logiciels Sécurisés pour les Systèmes Embarqués

    Get PDF
    A vast majority of distributed embedded systems is concerned by security risks. The fact that applications may result poorly protected is partially due to methodological lacks in the engineering development process. More specifically, methodologies targeting formal verification may lack support to certain phases of the development process. Particularly, system modeling frameworks may be complex-to-use or not address security at all. Along with that, testing is not usually addressed by verification methodologies since formal verification and testing are considered as exclusive stages. Nevertheless, we believe that platform testing can be applied to ensure that properties formally verified in a model are truly endowed to the real system. Our contribution is made in the scope of a model-driven based methodology that, in particular, targets secure-by-design embedded systems. The methodology is an iterative process that pursues coverage of several engineering development phases and that relies upon existing security analysis techniques. Still in evolution, the methodology is mainly defined via a high level SysML profile named Avatar. The contribution specifically consists on extending Avatar so as to model security concerns and in formally defining a model transformation towards a verification framework. This contribution allows to conduct proofs on authenticity and confidentiality. We illustrate how a cryptographic protocol is partially secured by applying several methodology stages. In addition, it is described how Security Testing was conducted on an embedded prototype platform within the scope of an automotive project.Une vaste majorité de systèmes embarqués distribués sont concernés par des risques de sécurité. Le fait que les applications peuvent être mal protégées est partiellement à cause des manques méthodologiques dans le processus d’ingénierie de développement. Particulièrement, les méthodologies qui ciblent la vérification formelle peuvent manquer de support pour certaines étapes du processus de développement SW. Notamment, les cadres de modélisation peuvent être complexes à utiliser ou ne pas adresser la sécurité du tout. Avec cela, l’étape de tests n’est pas normalement abordée par les méthodologies de vérification formelle. Néanmoins, nous croyons que faire des tests sur la plateforme peut aider à assurer que les propriétés vérifiées dans le modèle sont véritablement préservées par le système embarqué. Notre contribution est faite dans le cadre d’une méthodologie nommée Avatar qui est basée sur les modèles et vise la sécurité dès la conception du système. La méthodologie est un processus itératif qui poursuit la couverture de plusieurs étapes du développement SW et qui s’appuie sur plusieurs techniques d’analyse de sécurité. La méthodologie compte avec un cadre de modélisation SysML. Notre contribution consiste notamment à étendre le cadre de modélisation Avatar afin d’aborder les aspects de sécurité et aussi à définir une transformation du modèle Avatar vers un cadre de vérification formel. Cette contribution permet d’effectuer preuves d’authenticité et confidentialité. Nous montrons comment un protocole cryptographique est partiellement sécurisé. Aussi, il est décrit comment les tests de sécurité ont été menés sur un prototype dans le cadre d’un projet véhiculaire

    Development and certification of mixed-criticality embedded systems based on probabilistic timing analysis

    Get PDF
    An increasing variety of emerging systems relentlessly replaces or augments the functionality of mechanical subsystems with embedded electronics. For quantity, complexity, and use, the safety of such subsystems is an increasingly important matter. Accordingly, those systems are subject to safety certification to demonstrate system's safety by rigorous development processes and hardware/software constraints. The massive augment in embedded processors' complexity renders the arduous certification task significantly harder to achieve. The focus of this thesis is to address the certification challenges in multicore architectures: despite their potential to integrate several applications on a single platform, their inherent complexity imperils their timing predictability and certification. Recently, the Measurement-Based Probabilistic Timing Analysis (MBPTA) technique emerged as an alternative to deal with hardware/software complexity. The innovation that MBPTA brings about is, however, a major step from current certification procedures and standards. The particular contributions of this Thesis include: (i) the definition of certification arguments for mixed-criticality integration upon multicore processors. In particular we propose a set of safety mechanisms and procedures as required to comply with functional safety standards. For timing predictability, (ii) we present a quantitative approach to assess the likelihood of execution-time exceedance events with respect to the risk reduction requirements on safety standards. To this end, we build upon the MBPTA approach and we present the design of a safety-related source of randomization (SoR), that plays a key role in the platform-level randomization needed by MBPTA. And (iii) we evaluate current certification guidance with respect to emerging high performance design trends like caches. Overall, this Thesis pushes the certification limits in the use of multicore and MBPTA technology in Critical Real-Time Embedded Systems (CRTES) and paves the way towards their adoption in industry.Una creciente variedad de sistemas emergentes reemplazan o aumentan la funcionalidad de subsistemas mecánicos con componentes electrónicos embebidos. El aumento en la cantidad y complejidad de dichos subsistemas electrónicos así como su cometido, hacen de su seguridad una cuestión de creciente importancia. Tanto es así que la comercialización de estos sistemas críticos está sujeta a rigurosos procesos de certificación donde se garantiza la seguridad del sistema mediante estrictas restricciones en el proceso de desarrollo y diseño de su hardware y software. Esta tesis trata de abordar los nuevos retos y dificultades dadas por la introducción de procesadores multi-núcleo en dichos sistemas críticos: aunque su mayor rendimiento despierta el interés de la industria para integrar múltiples aplicaciones en una sola plataforma, suponen una mayor complejidad. Su arquitectura desafía su análisis temporal mediante los métodos tradicionales y, asimismo, su certificación es cada vez más compleja y costosa. Con el fin de lidiar con estas limitaciones, recientemente se ha desarrollado una novedosa técnica de análisis temporal probabilístico basado en medidas (MBPTA). La innovación de esta técnica, sin embargo, supone un gran cambio cultural respecto a los estándares y procedimientos tradicionales de certificación. En esta línea, las contribuciones de esta tesis están agrupadas en tres ejes principales: (i) definición de argumentos de seguridad para la certificación de aplicaciones de criticidad-mixta sobre plataformas multi-núcleo. Se definen, en particular, mecanismos de seguridad, técnicas de diagnóstico y reacción de faltas acorde con el estándar IEC 61508 sobre una arquitectura multi-núcleo de referencia. Respecto al análisis temporal, (ii) presentamos la cuantificación de la probabilidad de exceder un límite temporal y su relación con los requisitos de reducción de riesgos derivados de los estándares de seguridad funcional. Con este fin, nos basamos en la técnica MBPTA y presentamos el diseño de una fuente de números aleatorios segura; un componente clave para conseguir las propiedades aleatorias requeridas por MBPTA a nivel de plataforma. Por último, (iii) extrapolamos las guías actuales para la certificación de arquitecturas multi-núcleo a una solución comercial de 8 núcleos y las evaluamos con respecto a las tendencias emergentes de diseño de alto rendimiento (caches). Con estas contribuciones, esta tesis trata de abordar los retos que el uso de procesadores multi-núcleo y MBPTA implican en el proceso de certificación de sistemas críticos de tiempo real y facilita, de esta forma, su adopción por la industria.Postprint (published version

    Actes de l'Ecole d'Eté Temps Réel 2005 - ETR'2005

    Get PDF
    Pdf des actes disponible à l'URL http://etr05.loria.fr/Le programme de l'Ecole d'été Temps Réel 2005 est construit autour d'exposés de synthèse donnés par des spécialistes du monde industriel et universitaire qui permettront aux participants de l'ETR, et notamment aux doctorants, de se forger une culture scientifique dans le domaine. Cette quatrième édition est centrée autour des grands thèmes d'importance dans la conception des systèmes temps réel : Langages et techniques de description d'architectures, Validation, test et preuve par des approches déterministes et stochastiques, Ordonnancement et systèmes d'exploitation temps réel, Répartition, réseaux temps réel et qualité de service

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    University of Windsor Undergraduate Calendar 2023 Winter

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorundergraduatecalendars/1020/thumbnail.jp

    University of Windsor Undergraduate Calendar 2023 Spring

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorundergraduatecalendars/1023/thumbnail.jp

    University of Windsor Undergraduate Calendar 2021 Fall

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorundergraduatecalendars/1016/thumbnail.jp

    University of Windsor Undergraduate Calendar 2022 Fall

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorundergraduatecalendars/1019/thumbnail.jp
    corecore