
 Universidade de Aveiro
2005

Departamento de Electrónica e Telecomunicações

Joaquim José de
Castro Ferreira

Tolerância a Falhas em Sistemas de Comunicação
de Tempo-Real Flexíveis

Fault-Tolerance in Flexible Real-Time
Communication Systems

 Universidade de Aveiro
2005

Departamento de Electrónica e Telecomunicações

Joaquim José de
Castro Ferreira

Tolerância a Falhas em Sistemas de Comunicação
de Tempo-Real Flexíveis

Fault-Tolerance in Flexible Real-Time
Communication Systems

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Doutor em Engenharia
Informática, realizada sob a orientação científica de Luís Miguel Pinho de
Almeida, Professor Auxiliar do Departamento de Electrónica e
Telecomunicações da Universidade de Aveiro e co-orientação de José Alberto
Gouveia Fonseca, Professor Associado do Departamento de Electrónica e
Telecomunicações da Universidade de Aveiro.

Dissertation submitted to the University of Aveiro in the fulfilment of the
requirements for the degree of Doutor em Engenharia Informática, under the
supervision of Luís Miguel Pinho de Almeida, Professor Auxiliar at the
Departamento de Electrónica e Telecomunicações of the University of Aveiro
and co-supervision of José Alberto Gouveia Fonseca, Professor Associado at
the Departamento de Electrónica e Telecomunicações of the University of
Aveiro.

O júri / The Jury

Presidente / President Prof. Doutor António Francisco Carrelhas Cachapuz
 Professor Catedrático da Universidade de Aveiro

Vogais / Examiners committee Prof. Doutor Luís Miguel Pinho de Almeida
 Professor Auxiliar da Universidade de Aveiro (orientador)

 Prof. Doutor José Alberto Gouveia Fonseca
 Professor Associado da Universidade de Aveiro (co-orientador)

 Prof. Doutor Paulo Jorge Esteves Veríssimo
 Professor Catedrático da Faculdade de Ciências da Universidade de Lisboa

 Prof. Doutor Juan Ricardo Pimentel-Flores
 Full Professor da Universidade de Kettering, Estados Unidos da América

 Prof. Doutor Francisco Manuel Madureira e Castro Vasques de Carvalho
 Professor Associado da Faculdade de Engenharia da Universidade do Porto

 Prof. Doutor Ernesto Fernando Ventura Martins
 Professor Auxiliar da Universidade de Aveiro

agradecimentos

O trabalho realizado no âmbito desta dissertação contou com a colaboração,
directa e indirecta, de diversas pessoas. Quero aqui e a todas elas expressar o
meu sincero agradecimento. Contudo e devido ao seu especial envolvimento,
gostaria de particularizar os seguintes agradecimentos.

A Luís Miguel Pinho de Almeida, Professor da Universidade de Aveiro e meu
orientador, a quem expresso o mais profundo reconhecimento pelo empenho,
disponibilidade, amizade e estímulo demonstrado na orientação deste trabalho,
numa primeira fase na qualidade de co-orientador e posteriormente como
orientador científico principal.
A José Alberto Fonseca, Professor da Universidade de Aveiro e meu co-
orientador, por me ter incentivado a enfrentar este desafio e, principalmente,
pelo modo empenhado, amigo e disponível, com que assumiu a supervisão
deste trabalho, quer como orientador científico principal numa primeira fase
dos trabalhos, quer mais tarde como co-orientador.
A Paulo Pedreiras, não só pelas enriquecedoras e profícuas discussões
técnicas e científicas, mas principalmente pela amizade demonstrada ao longo
destes anos.
A Ernesto Martins, da Universidade de Aveiro, pelas mais valias, pessoais e
científicas, resultantes da sua colaboração neste trabalho.
A Arnaldo Oliveira, da Universidade de Aveiro, pela amizade, disponibilidade e
valiosa colaboração em algumas etapas deste trabalho.
A Pedro Fonseca, da Universidade de Aveiro, pela amizade demonstrada ao
longo destes anos e pela colaboração em algumas etapas deste trabalho.
A Guillermo Rodríguez-Navas, Julían Proenza, Juan Rigo do Departamento de
Matemática e Informática da Universidade das Ilhas Baleares, pela
amabilidade e amizade com que me receberam na sua instituição e pela
colaboração neste trabalho.
Ao Engenheiro Rui Matos da empresa J. R. Matos, SA, por ter facultado o
acesso à sua empresa para a realização de alguns testes.
A todos os meus colegas e amigos, dentro e fora do Departamento de
Engenharia Informática e de Tecnologias da Informação da ESTCB, do
Laboratório de Sistemas Electrónicos do IEETA no seio do qual desenvolvi
este trabalho e do Departamento de Electrónica e Telecomunicações da UA,
pela amizade, companheirismo e encorajamento manifestado ao longo destes
anos e que assim me ajudaram a desenvolver esta tese. Gostaria
particularmente de agradecer àqueles com quem diariamente convivi:
Francisco Borges, José Vieira, Tullio Facchinetti, Manuel Barranco, Mário
Calha, Valter Silva, Frederico Santos e Ricardo Marau.
E, acima de tudo, à Natália, pelo encorajamento e sacrifícios suportados ao
longo destes anos e à Inês, ao Nuno e ao Miguel por não terem desistido de
perguntar se o livro já estava escrito.

resumo

Nas últimas décadas, os sistemas embutidos distribuídos, têm sido usados em
variados domínios de aplicação, desde o controlo de processos industriais até
ao controlo de aviões e automóveis, sendo expectável que esta tendência se
mantenha e até se intensifique durante os próximos anos.
Os requisitos de confiabilidade de algumas destas aplicações são
extremamente importantes, visto que o não cumprimento de serviços de uma
forma previsível e pontual pode causar graves danos económicos ou até pôr
em risco vidas humanas.
A adopção das melhores práticas de projecto no desenvolvimento destes
sistemas não elimina, por si só, a ocorrência de falhas causadas pelo
comportamento não determinístico do ambiente onde o sistema embutido
distribuído operará. Desta forma, é necessário incluir mecanismos de
tolerância a falhas que impeçam que eventuais falhas possam comprometer
todo o sistema.
Contudo, para serem eficazes, os mecanismos de tolerância a falhas
necessitam ter conhecimento a priori do comportamento correcto do sistema
de modo a poderem ser capazes de distinguir os modos correctos de
funcionamento dos incorrectos.
Tradicionalmente, quando se projectam mecanismos de tolerância a falhas, o
conhecimento a priori significa que todos os possíveis modos de
funcionamento são conhecidos na fase de projecto, não os podendo adaptar
nem fazer evoluir durante a operação do sistema. Como consequência, os
sistemas projectados de acordo com este princípio ou são completamente
estáticos ou permitem apenas um pequeno número de modos de operação.
Contudo, é desejável que os sistemas disponham de alguma flexibilidade de
modo a suportarem a evolução dos requisitos durante a fase de operação,
simplificar a manutenção e reparação, bem como melhorar a eficiência usando
apenas os recursos do sistema que são efectivamente necessários em cada
instante. Além disto, esta eficiência pode ter um impacto positivo no custo do
sistema, em virtude deste poder disponibilizar mais funcionalidades com o
mesmo custo ou a mesma funcionalidade a um menor custo.
Porém, flexibilidade e confiabilidade têm sido encarados como conceitos
conflituais.
Isto deve-se ao facto de flexibilidade implicar a capacidade de permitir a
evolução dos requisitos que, por sua vez, podem levar a cenários de operação
imprevisíveis e possivelmente inseguros. Desta fora, é comummente aceite
que apenas um sistema completamente estático pode ser tornado confiável, o
que significa que todos os aspectos operacionais têm de ser completamente
definidos durante a fase de projecto.
Num sentido lato, esta constatação é verdadeira. Contudo, se os modos como
o sistema se adapta a requisitos evolutivos puderem ser restringidos e
controlados, então talvez seja possível garantir a confiabilidade permanente
apesar das alterações aos requisitos durante a fase de operação.
A tese suportada por esta dissertação defende que é possível flexibilizar um
sistema, dentro de limites bem definidos, sem comprometer a sua
confiabilidade e propõe alguns mecanismos que permitem a construção de
sistemas de segurança crítica baseados no protocolo Controller Area Network
(CAN). Mais concretamente, o foco principal deste trabalho incide sobre o

protocolo Flexible Time-Triggered CAN (FTT-CAN), que foi especialmente
desenvolvido para disponibilizar um grande nível de flexibilidade operacional
combinando, não só as vantagens dos paradigmas de transmissão de
mensagens baseados em eventos e em tempo, mas também a flexibilidade
associada ao escalonamento dinâmico do tráfego cuja transmissão é
despoletada apenas pela evolução do tempo.
Este facto condiciona e torna mais complexo o desenvolvimento de
mecanismos de tolerância a falhas para FTT-CAN do que para outros
protocolos como por exemplo, TTCAN ou FlexRay, nos quais existe um
conhecimento estático, antecipado e comum a todos os nodos, do
escalonamento de mensagens cuja transmissão é despoletada pela evolução
do tempo.
Contudo, e apesar desta complexidade adicional, este trabalho demonstra que
é possível construir mecanismos de tolerância a falhas para FTT-CAN
preservando a sua flexibilidade operacional.
É também defendido nesta dissertação que um sistema baseado no protocolo
FTT-CAN e equipado com os mecanismos de tolerância a falhas propostos é
passível de ser usado em aplicações de segurança crítica.
Esta afirmação é suportada, no âmbito do protocolo FTT-CAN, através da
definição de uma arquitectura tolerante a falhas integrando nodos com modos
de falha tipo falha-silêncio e nodos mestre replicados.
Os vários problemas resultantes da replicação dos nodos mestre são, também
eles, analisados e várias soluções são propostas para os obviar.
Concretamente, é proposto um protocolo que garante a consistência das
estruturas de dados replicadas a quando da sua actualização e um outro
protocolo que permite a transferência dessas estruturas de dados para um
nodo mestre que se encontre não sincronizado com os restantes depois de
inicializado ou reinicializado de modo assíncrono.
Além disto, esta dissertação também discute o projecto de nodos FTT-CAN
que exibam um modo de falha do tipo falha-silêncio e propõe duas soluções
baseadas em componentes de hardware localizados no interface de rede de
cada nodo, para resolver este problema. Uma das soluções propostas baseia-
se em bus guardians que permitem a imposição de comportamento falha-
silêncio nos nodos escravos e suportam o escalonamento dinâmico de tráfego
na rede. A outra solução baseia-se num interface de rede que arbitra o acesso
de dois microprocessadores ao barramento. Este interface permite que a
replicação interna de um nodo seja efectuada de forma transparente e
assegura um comportamento falha-silêncio quer no domínio temporal quer no
domínio do valor ao permitir transmissões do nodo apenas quando ambas as
réplicas coincidam no conteúdo das mensagens e nos instantes de
transmissão. Esta última solução está mais adaptada para ser usada nos
nodos mestre, contudo também poderá ser usada nos nodos escravo, sempre
que tal se revele fundamental.

abstract

Distributed embedded systems (DES) have been widely used in the last few
decades in several application fields, ranging from industrial process control to
avionics and automotive systems. In fact, it is expectable that this trend will
continue over the years to come.
In some of these application domains the dependability requirements are of
utmost importance since failing to provide services in a timely and predictable
manner may cause important economic losses or even put human life in risk.
The adoption of the best practices in the design of distributed embedded
systems does not fully avoid the occurrence of faults, arising from the non-
deterministic behavior of the environment where each particular DES operates.
Thus, fault-tolerance mechanisms need to be included in the DES to prevent
possible faults leading to system failure.
To be effective, fault-tolerance mechanisms require an a priori knowledge of
the correct system behavior to be capable of distinguishing them from the
erroneous ones.
Traditionally, when designing fault-tolerance mechanisms, the a priori
knowledge means that all possible operational modes are known at system
design time and cannot adapt nor evolve during runtime. As a consequence,
systems designed according to this principle are either fully static or allow a
small number of operational modes only. Flexibility, however, is a desired
property in a system in order to support evolving requirements, simplify
maintenance and repair, and improve the efficiency in using system resources
by using only the resources that are effectively required at each instant. This
efficiency might impact positively on the system cost because with the same
resources one can add more functionality or one can offer the same
functionality with fewer resources.
However, flexibility and dependability are often regarded as conflicting
concepts. This is so because flexibility implies the ability to deal with evolving
requirements that, in turn, can lead to unpredictable and possibly unsafe
operating scenarios. Therefore, it is commonly accepted that only a fully static
system can be made dependable, meaning that all operating conditions are
completely defined at pre-runtime.
In the broad sense and assuming unbounded flexibility this assessment is true,
but if one restricts and controls the ways the system could adapt to evolving
requirements, then it might be possible to enforce continuous dependability.
This thesis claims that it is possible to provide a bounded degree of flexibility
without compromising dependability and proposes some mechanisms to build
safety-critical systems based on the Controller Area Network (CAN).
In particular, the main focus of this work is the Flexible Time-Triggered CAN
protocol (FTT-CAN), which was specifically developed to provide such high
level of operational flexibility, not only combining the advantages of time- and
event-triggered paradigms but also providing flexibility to the time-triggered
traffic. This fact makes the development of fault-tolerant mechanisms more
complex in FTT-CAN than in other protocols, such as TTCAN or FlexRay, in
which there is a priori static common knowledge of the time-triggered message
schedule shared by all nodes. Nevertheless, as it is demonstrated in this work,
it is possible to build fault-tolerant mechanisms for FTT-CAN that preserve its

 high level of operational flexibility, particularly concerning the time-triggered
traffic. With such mechanisms it is argued that FTT-CAN is suitable for safety-
critical applications, too.
This claim was validated in the scope of the FTT-CAN protocol by presenting a
fault-tolerant system architecture with replicated masters and fail-silent nodes.
The specific problems and mechanisms related with master replication,
particularly a protocol to enforce consistency during updates of replicated data
structures and another protocol to transfer these data structures to an
unsynchronized node upon asynchronous startup or restart, are also
addressed.
Moreover, this thesis also discusses the implementations of fail-silence in FTT-
CAN nodes and proposes two solutions, both based on hardware components
that are attached to the node network interface. One solution relies on bus
guardians that allow enforcing fail-silence in the time domain. These bus
guardians are adapted to support dynamic traffic scheduling and are fit for use
in FTT-CAN slave nodes, only. The other solution relies on a special network
interface, with duplicated microprocessor interface, that supports internal
replication of the node, transparently. In this case, fail-silence can be assured
both in the time and value domain since transmissions are carried out only if
both internal nodes agree on the transmission instant and message contents.
This solution is well adapted for use in the masters but it can also be used, if
desired, in slave nodes.

apoios

Este trabalho foi apoiado pelas seguintes instituições:

Escola Superior de Tecnologia de Castelo Branco, que me dispensou de
serviço docente durante três anos e que financiou a minha participação em
várias conferências internacionais.

Ministério da Educação e ao FSE no âmbito do III Quadro Comunitário de
Apoio, através do programa PRODEP III, que financiou parcialmente a minha
dispensa de serviço docente, bem como a minha participação em várias
conferências internacionais onde foram apresentados resultados parciais
obtidos no âmbito desta tese.

Unidade de Investigação IEETA da Universidade de Aveiro, que apoiou
financeiramente a minha participação em várias conferências internacionais
para apresentação de resultados parciais obtidos no âmbito desta tese.

 À Natália,
à Inês, ao Nuno e ao Miguel,

aos meus pais e irmão,
a todos os familiares e amigos.

Contents

1 Introduction 1
1.1 The problem . 1
1.2 The thesis . 5
1.3 Contributions . 5

1.3.1 Experimental assessment of CAN bit error rate 5
1.3.2 Architecture to achieve fault-tolerance in FTT-CAN 5
1.3.3 Mechanisms to handle message omissions in FTT-CAN. 6
1.3.4 Master replica synchronization after asynchronous start/restart 6
1.3.5 Protocol for consistent updates of FTT-CAN masters's data structures . 7
1.3.6 Enforcement of fail silence behavior in FTT-CAN nodes 7

1.4 Organization of the dissertation . 8

2 Concepts of dependable real-time communication 11
2.1 Introduction . 11
2.2 Medium access control . 13

2.2.1 Centralized Control: Master-Slave . 14
2.2.2 Distributed Control: Token-Passing . 14
2.2.3 Distributed Control: Virtual Token-Passing 15
2.2.4 Hybrid Control: Centralized Token-Passing 15
2.2.5 Distributed Control: Flexible Time Division Multiple Access or mini-

slotting . 16
2.2.6 Distributed Control: Time Division Multiple Access 16
2.2.7 Uncontrolled Access: Carrier Sense Multiple Access 17
2.2.8 Uncontrolled Access: CSMA-CD . 17
2.2.9 Uncontrolled Access: CSMA-BA . 17
2.2.10 Uncontrolled Access: P-Persistent CSMA-CA 18

2.3 Dependability and Real-time Communication 18
2.3.1 Fault management . 21
2.3.2 Distributed consensus . 22
2.3.3 Fault-tolerant broadcasts . 26

i

2.3.4 Fail-silence failure mode . 34
2.3.5 Replica determinism . 36
2.3.6 Membership . 39
2.3.7 Faults and fault models . 39

2.4 Conclusion . 43

3 Flexibility and safety of some bus protocols 45
3.1 Introduction . 45
3.2 CAN and CAN related protocols . 47

3.2.1 CAN . 48
3.2.2 TTCAN . 53
3.2.3 FTT-CAN . 56
3.2.4 Some emerging CAN based protocols . 60

3.3 Time-Triggered Protocol . 62
3.3.1 Network Topology . 64
3.3.2 Message Transmission . 64
3.3.3 Bus Guardianship . 65
3.3.4 Clock Synchronization . 65
3.3.5 Error Detection . 66
3.3.6 Operational Flexibility . 67

3.4 FlexRay . 67
3.4.1 Network Topology . 68
3.4.2 Message Transmission . 68
3.4.3 Bus Guardianship . 69
3.4.4 Clock Synchronization . 70
3.4.5 Error Detection . 70
3.4.6 Operational Flexibility . 70

3.5 ARINC-629 . 71
3.5.1 Network Topology . 71
3.5.2 Message Transmission . 71
3.5.3 Bus Guardianship . 74
3.5.4 Clock Synchronization . 75
3.5.5 Error Detection . 75

3.6 Brief Comparison and Conclusion . 75

4 Impairments to dependability of CAN and FTT-CAN 77
4.1 Introduction . 77
4.2 Consequences of faults in the channel . 77

4.2.1 CAN Inconsistency Scenarios . 79

ii

4.2.2 FTT-CAN inconsistency scenarios . 81
4.3 Consequences of physical faults of the nodes . 81
4.4 Inconsistent Message Delivery and Bit Error Rate 83

4.4.1 Probability of inconsistencies in CAN, TTCAN and FTT-CAN 84
4.5 Assessing CAN Bit Error Rate . 86

4.5.1 Experiments conducted over a long time interval 90
4.5.2 Experiments conducted over a short time interval 94

4.6 Fault Hypothesis . 98
4.6.1 System properties . 100

4.7 Achieving fault-tolerance in FTT-CAN . 101
4.8 Conclusion . 106

5 Handling Message Omissions 109
5.1 Introduction . 109
5.2 Handling trigger message omissions . 110

5.2.1 Transient trigger message omissions . 110
5.2.2 Master replication and replacement . 112

5.3 Spatial redundancy to handle synchronous and asynchronous message omissions113
5.3.1 Nodes transmitting asynchronous messages only. 114
5.3.2 Nodes transmitting synchronous messages only 115

5.4 Temporal redundancy to handle synchronous message omissions 116
5.4.1 Passive mechanisms . 117
5.4.2 Active mechanisms . 121
5.4.3 Asynchronous message atomicity . 122

5.5 Conclusion . 123

6 Enforcing Master Replica Determinism 125
6.1 Introduction . 125
6.2 Masters synchronization relying on a planning scheduler 127

6.2.1 Computing the worst-case scheduler synchronization latency. 129
6.2.2 Experimental results . 131

6.3 Masters synchronization based on a scheduler co-processor 132
6.3.1 MESSAgE coprocessor . 133
6.3.2 Synchronization protocol . 134
6.3.3 Worst-case synchronization time . 135

6.4 SRT update protocol . 136
6.4.1 Consistency of the request queues . 137
6.4.2 Protocol Description . 138
6.4.3 Protocol behavior in the presence of channel and node faults 140

iii

6.4.4 Automatons of the entities involved in the protocol 141
6.4.5 Protocol veri�cation . 145
6.4.6 Modeling . 146
6.4.7 Property speci�cation and veri�cation 149

6.5 Conclusion . 150

7 Enforcement of Fail Silence Behavior in FTT-CAN nodes 151
7.1 Introduction . 151
7.2 Slave nodes fail silence enforcement . 152

7.2.1 Bus guardians requirements . 154
7.2.2 COTS-based bus guardian . 155
7.2.3 Specialized hardware-based bus guardian. 158

7.3 Internal replication and temporized agreement. 161
7.4 Conclusion . 164

8 Conclusions and Future Work 165
8.1 Thesis validation . 167
8.2 Future research . 168

A Low level details of the SRT update protocol 187

B Table of Abbreviations 191

C List of publications 193

iv

List of Figures

2.1 A taxonomy of MAC protocols (adapted from [Alm04]). 13
2.2 Relationship among the broadcast primitives (adapted from [HT94]). 30
2.3 Application protocol using broadcasts (adapted from [HT94]). 33
2.4 Contamination of correct processes p1 and p2 by a message m4 based on an

inconsistent state (p3 delivered m3 but not m2) (adapted from [DSU03]). . . . 33
2.5 Generic bus guardian. 36

3.1 CAN base frame format. 50
3.2 TTCAN systemmatrix, where several basic cycles build the matrix cycle (adapted

from [FMD+00]). 55
3.3 The Elementary Cycle (EC) in FTT-CAN. 57
3.4 Master/multislave access control. Slaves produce synchronous messages accord-

ing to an elementary-cycle schedule conveyed by the trigger message. If the x
data bit is 1, then message x is produced in this EC; if it is 0, then message x
is not produced. 58

3.5 Typical TCAN message transmission scenario. 60
3.6 Timed synchronization of SafeCAN messages (adapted from [PF04]). 62
3.7 Architecture of a TTP/C node. 63
3.8 De�nition of a communication cycle with static segment (adapted from [Bel02]). 69
3.9 The waiting room protocol adopted in ARINC-629. 73

4.1 Some possible error scenarios in CAN (adapted from [RP03]). 80
4.2 synchronous message inconsistent message omission scenario. Slave nodes 1 and

2 do not receive synchronous message 2 that is correctly received by slave 0. . . 82
4.3 Trigger message inconsistent message omission scenario. Slave nodes 1 and 2

correctly receive the trigger message while slave 0 does not. 82
4.4 Experimental setup. 87
4.5 View of the experimental setup. 87
4.6 View of the metal box containing the MoiCAN board and the ATMEL controller

board (the smaller one). 89
4.7 Experimental setup illustrating the aggressive environment. 90

v

4.8 View of the factory production line illustrating the normal environment. 91
4.9 First experiment, on the left side, and second experiment, on the right side. . . 96
4.10 Third experiment, on the left side and fourth experiment, on the right side. . . 96
4.11 Fifth experiment, on the left side and sixth experiment, on the right side. . . . 97
4.12 Seventh experiment, on the left side and eighth experiment, on the right side. . 97
4.13 FTT-CAN basic architecture. 102
4.14 Fault-tolerant FTT-CAN architecture based on a replicated broadcast bus, mas-

ter replication and bus guardians. 105

5.1 Controlled retry mechanism used to transmit the trigger message. 111
5.2 Master replacement process. 113
5.3 Automaton of slave replica that transmits only asynchronous messages.. 115
5.4 Temporal replication of slave node transmitting only synchronous messages. . . 116
5.5 Error inside a synchronous window; the message where the error occurs is lost. 118
5.6 Error inside a synchronous window; the message where the error occurs is re-

transmitted and one with lower priority is lost. 118
5.7 Error inside a synchronous window causing message retransmission and no mes-

sage loss. 119
5.8 Possible fault-tolerant scheduling technique. 122

6.1 Timeline of the scheduling synchronization process. 128
6.2 Computing the worst case synchronization time for the planning scheduler based

scheme. 130
6.3 FTT-CAN master node architecture, including a scheduling co-processor. . . . 132
6.4 MESSAgE programming model. 133
6.5 Master synchronization protocol timeline. 134
6.6 Queuing of SRT update requests at each master. 136
6.7 An example of unsynchronized masters caused by an inconsistent slave request 137
6.8 Phases of the update protocol. 139
6.9 Delay in the SRT update caused by a burst of errors. 140
6.10 Active master crashes while processing an SRT update request. Master replica

2 does not receive the request and must issue a synchronization request. Notice
that the error burst does not allow the TM retransmission during the TMTW
by a master replica. 141

6.11 Backup masters committing SRT update request at di�erent instants due to
inconsistent TM transmission and an error burst. 142

6.12 Slave's automaton. 142
6.13 Active master's automaton. 143
6.14 Backup master's automaton. 144
6.15 PROMELA model scheme. 147

vi

7.1 Implementing the bus guardian based on an o�-the-shelf CAN controller.. . . . 155
7.2 Fail silence enforcement using a bus guardian based on a standard CAN controller.156
7.3 Bus guardian architecture based in specialized hardware and its integration in

the slave node. 159
7.4 Main building blocks of the bus guardian. 160
7.5 Enforcing fail silence with bus guardians based on specialized hardware. 161
7.6 Interfacing a pair of processors with a CAN controller in a master node to

enforce fail-silent behavior. 162

A.1 Slave's �owchart. 188
A.2 Active (left) and backup (right) master �owcharts. 189
A.3 Trigger message transmission handler (left) and rigger message reception han-

dler (right) �owcharts. 190

vii

viii

List of Tables

3.1 Summary of communication protocols' properties. 76

4.1 Estimated rates of IMO per hour in CAN, TTCAN and FTT-CAN 86
4.2 Experimental results (1 Accounting for error bursts; 2 upper bound, if all last

but one bit errors cause an omission). 92
4.3 Estimated rates of IMO per hour in CAN, TTCAN and FTT-CAN.. 93
4.4 Error bursts size in the aggressive environment experiment and in the factory

�oor experiment. 94
4.5 Distribution of single errors and start of error bursts considering the states of

the MoiCAN state machine. 95
4.6 Sizes of the error bursts, total number of errors and number of interferences. . . 98
4.7 Distribution of single errors and start of error bursts considering the states of

the MoiCAN state machine. 99

5.1 Impact of an error in an FTT-CAN synchronous window (at 1 Mbps), in terms
of bandwidth and the mechanism adopted to handle errors. 120

6.1 Synchronous message set properties. 131

7.1 Maximum number of maximum sized synchronous messages that �t in a given
EC, considering the impact of a node failure and error con�nement latency of
1 message time. 157

ix

x

Chapter 1

Introduction

1.1 The problem

Distributed embedded systems (DES) have been widely used in the last few decades in
several application �elds, ranging from industrial process control to avionics and automotive
systems. In fact, it is expectable that this trend will continue over the years to come. In some
of these application domains the dependability requirements are of utmost importance, since
failing to provide services in a timely and predictable manner may cause important economic
losses or even put human life in risk [Kop97].

The adoption of the best practices in the design of distributed embedded systems does
not fully avoid the occurrence of faults, arising from the non-deterministic behavior of the
environment where each particular DES operates. Thus, fault-tolerance mechanisms need to
be included in the DES to prevent possible faults leading to system failure. To be e�ective,
fault-tolerance mechanisms require ana priori knowledge of the correct system behavior to be
capable of distinguishing them from the erroneous ones. Traditionally, when designing fault-
tolerance mechanisms, the a priori knowledge means that all possible operational modes are
known at system design time and cannot adapt nor evolve during runtime. As a consequence,
systems designed according to this principle are either fully static or allow a small number
of operational modes only. Flexibility, however, is a desired property in a system in order to
support evolving requirements, simplify maintenance and repair, and improve the e�ciency in
using system resources by using only the resources that are e�ectively required at each instant.
This e�ciency might impact positively on the system cost because with the same resources
one can add more functionality or one can o�er the same functionality with fewer resources.

However, �exibility and dependability are often regarded as con�icting concepts [Kop97].
This is so because �exibility implies the ability to deal with evolving requirements that, in turn,
can lead to unpredictable and possibly unsafe operating scenarios. Therefore, it is commonly
accepted that only a fully static system can be made dependable [RTC00], meaning that all
operating conditions are completely de�ned at pre-runtime. In the broad sense and assuming

1

2 Chapter 1. Introduction

unbounded �exibility this assessment is true, but if one restricts and controls the ways the
system could adapt to evolving requirements, then it might be possible to enforce continuous
dependability.

The issue of real-time systems that need to adapt their behavior according to changes in
external or internal factors has been addressed by the real-time community, speci�cally in the
areas of feedback scheduling [LSTS02] and value-based scheduling [BPB+00][PBA03]. Feed-
back scheduling is a technique derived from the control theory that satis�es both transient and
steady state performance speci�cations of real-time systems. Feedback scheduling algorithms
have been used mostly in soft real-time applications working on open and unpredictable en-
vironments [SLST99]. Value-based scheduling is a decision problem involving the choice of
a collection of services to execute so that the best possible outcome is achieved [BPB+00].
This technique is specially attractive for systems operating in unpredictable and unbounded
environments, where some decisions are postponed until after the delivery or deployment of
the system [PBA03]. Leaving some decisions as late as possible allows the behavior of the
system to be better tailored according to the dynamic runtime conditions of the environment.
According to Prasad et al. [PBA03], the motivation for dynamic schedules with run-time
decisions is based on the ine�cient resource usage and non-graceful degradation that are typ-
ical of static schedules. The ine�cient resource usage results from the inherent pessimism of
predicting resource requirements, while the non-graceful degradation is a consequence of the
in�exible behavior of static schedules to failures and overloads.

Allowing run-time decisions involves identifying the extra services that need to be sup-
ported when spare resources are available, or identifying the services that need to be sacri�ced
when resources are scarce. However, postponing these decisions until run-time is worthwhile
only if [PBA03]:

• A less pessimistic resource usage is obtained.

• There is su�cient run-time knowledge that allows better decisions to be made concerning
the services to sacri�ce or support.

• The overhead associated with run-time decisions does not outweighs the potential ben-
e�ts.

Making reliable run-time decisions requires the de�nition of safety boundaries that cannot
be crossed in any circumstances. In this way, run-time decisions may be taken provided they do
not violate the safety boundary. The Simplex architecture [SRG94] supports the dependable
evolution of real-time systems that use Commercial O�-The-Shelf (COTS) components. In
Simplex, upgrades are supported by grouping a set of analytically redundant components (i.e.,
that satisfy the same abstract speci�cation) into a subsystem module. Each module contains a
safety component, a baseline component, and an optional new component. A module manager
monitors the behavior of the new component and, if it behaves correctly, replaces the baseline

1.1 The problem 3

component with the new one. The run-time decisions in the Simplex architecture case are
just switching back and forth from the baseline component to the new component (upgrade)
in case the upgrade component tries to lead the system to an unsafe operating region de�ned
and policed by the safety component.

The alternative functionality inherent to the value-based scheduling is closely related with
graceful degradation [SK04] and focuses on tolerating failures not only with a redundant
backup, but possibly also by relying on another component or subsystem that provides an
alternative function. The system is in a degraded operating mode, but the degradation is
a change in functionality rather than a loss of performance. Eventually, as resources are
lost, system performance will degrade and some system services may be stopped to provide
resources for other services that are mission-critical. Although there are some techniques
[She03] to reduce the number of possible system con�gurations, that grow exponentially with
the number of components (both hardware and software), alternative functionality is still hard
to implement, specially in scarce resource distributed embedded systems.

Also, in the recent years real-time systems are used in more versatile and, often, dynamic
scenarios. For example, some anticipate [SSM+] that future military systems should be self-
adaptive, self-re�ective and network-centric. Given the technological advance that cutting-
edge military systems exhibit when compared with corresponding civil systems, it is expectable
that some of these concepts and technologies will be also adopted in other systems, within a
few years. According to [SSM+], some of the most challenging computing and communication
requirements for new and planned combat systems can be characterized as follows:

• Multiple quality of service (QoS) properties must be satis�ed in real-time.

• Di�erent levels of service are appropriate under di�erent con�gurations, environmental
conditions, and costs.

• The levels of service in one dimension must be coordinated with and/or traded o�
against the levels of service in other dimensions to meet mission needs, e.g., the secu-
rity and dependability of message transmission must be traded o� against latency and
predictability, and

• The need for autonomous and time-critical application behavior necessitates a �exible
distributed system infrastructure that can adapt robustly to dynamic changes in mission
requirements and environmental conditions.

The self-adaptive [LSZ+01] requirement expresses the ability to modify, either statically or
dynamically, the system's functional and QoS-related properties. In a statically way by, e.g.,
minimizing hardware and software infrastructure dependencies or dynamically, by optimiz-
ing system responses to evolving environments or requirements, such as changing component
interconnections, power-levels, CPU/network bandwidth, latency/jitter, and dependability
needs.

4 Chapter 1. Introduction

The self-re�ective [BCC+99] requirement goes a step further in providing the means for
examining system's capabilities while the system is running, enabling automated adjustment
for optimizing those capabilities. In this way, the self-re�ective requirement supports more
advanced adaptive behavior, i.e., the necessary adaptations can be performed autonomously
based on conditions within the system or in the system's environment.

The wormhole metaphor [Ver03] has recently been applied to dependable adaptive real-
time applications [MSCV04] running in wireless unstructured environments. The wormhole
metaphor addresses the issues posed by uncertainty and proposes some guiding principles
to the construction of distributed systems. It assumes that uncertainty is not uniform nor
permanent across all system components, i.e., some parts are more predictable than others. It
also promotes a proactive behavior in achieving predictability by making predictability occur
whenever needed. In this way, the more predictable parts of the systems can be seen as
wormholes since they will execute certain tasks faster or reliably than apparently possible in
the other parts of the system. One of the possible instantiations of the wormhole concept, in
the real-time context, is the timeliness property that takes the form of the Timely Computing
Base (TCB) timeliness wormhole [VC02]. A system equipped with a TCB provides a set of
dependable services (timely execution, duration measurement and timing failure detection)
that are supported by a specialized architecture in which the TCB is a comparably small part
of the whole system.

Systems based in the wormhole metaphor are adaptive in the sense that they handle the
uncertainty of surrounding environment by adapting the QoS in a dependable way. That is,
applications are noti�ed by the low level dependable TCB services of timeliness violations and
react by gracefully degrading the QoS and possibly leading the system to a fail-safe state, as
reported in the cooperating cars demonstrator described by Martinset al. [MSCV04].

Dependable adaptation in distributed embedded real-time systems is usually the responsi-
bility of the middleware [RWS01]. However, the middleware requires the support of the lower
communication infrastructure to deliver �exible, yet dependable services to the application.

Most of the previous solutions, notably the ones arising from the real-time community,
do not address the case of dependable distributed embedded systems. The problem becomes
more complex when one considers �exible distributed embedded systems, where the issue of
inter-node coordination arises. In such systems the real-time communications infrastructure
plays a central role, since it must provide a set of services capable of e�ciently supporting
the distributed system requirements. Traditional real-time communication solutions adopted
in safety-critical systems are fully static and o�ine de�ned in terms of messaging structure
and are, thus, clearly unsuited for online adaptable distributed embedded systems. In this
context, it is necessary to bridge the gap between the existing real-time scheduling techniques
that already provide �exibility and the safety-critical real-time communication protocols that
are mostly in�exible with a reduced ability to support online adaptation.

1.2 The thesis 5

1.2 The thesis
The thesis supported by the present dissertation argues that:

It is possible to provide a high degree of operational �exibility, speci�cally online
adaptation capabilities, in distributed embedded systems without compromising de-
pendability. The FTT-CAN protocol can be used to achieve that purpose in the
speci�c case of CAN based safety-critical systems.

1.3 Contributions
The main contributions presented in this dissertation, including the proposed system ar-

chitecture, mechanisms and components, are targeted to systems built on the Flexible Time-
Triggered (FTT) [Ped03] paradigm and speci�cally the FTT-CAN protocol [APF02]. However,
most of these contributions are equally applicable to dynamic master-slave architectures in
general. The major contributions of this dissertation are summarized next.

1.3.1 Experimental assessment of CAN bit error rate

Most of the work on fault-tolerance in Controller Area Network (CAN) [ISO93] makes use
of the bit error rate (BER) parameter of the CAN bus. However, there was no published data
regarding this important parameter, and so some fault-tolerant mechanisms for CAN systems
were based on quite pessimistic BER assumptions and not on real experimental data. This
was the main drive for designing suitable test equipment capable of measuring CAN bit error
rate in several utilization scenarios, with particular electromagnetic interference patterns.

From experimental data analysis, it was conjectured, for the considered environments, that
in native CAN the occurrence of inconsistent message omissions has a lower probability than
it was previously assumed. In fact it is below the10−9 threshold usually accepted for safety-
critical applications [Kop97]. However, the probability of inconsistent message duplicates
(messages are eventually delivered but they could be out of order) in CAN is still high enough
to be taken into account. This last �nding, shows that one cannot neglect the occurrence of
inconsistent message omissions in FTT-CAN because they are proportional to the number of
inconsistent message duplicates in CAN.

The results obtained in the experiments do not pretend to be universally applicable, since
they largely depend on the considered interference pattern that, in a limit scenario, could
corrupt all legitimate bus tra�c.

1.3.2 Architecture to achieve fault-tolerance in FTT-CAN

FTT-CAN impairments to dependability, namely the single point of failure formed by the
master node and the fail uncontrolled nature of current FTT-CAN nodes, were identi�ed and

6 Chapter 1. Introduction

discussed. Based on this, a general FTT-CAN architecture capable of delivering the desired
level of operational �exibility without compromising safety was proposed. The proposed ar-
chitecture considers the use of replicated components both masters and slaves, and enforces
components to fail in a silent way.

The master replication scheme adds up some new problems, related with consensus and
synchronization, that needed to be considered. When replicating the master, one needs to
assure that all the instances of the data structures are coherent and that all tra�c schedulers
in all masters remain synchronized and coherent in every operational scenarios, i.e. they
generate the same schedules synchronously. It is also important to refer that the proposed
architecture may also include replicated transmission paths in the communication system.

1.3.3 Mechanisms to handle message omissions in FTT-CAN

Possible electromagnetic interference or other source of errors may cause a fault in message
transmission with the correspondent message omission. Depending on the omission location
within the elementary cycle (EC), several schemes capable of recovering from such situations
were proposed. If the omission occurs in the trigger message transmission it is possible to
retransmit it during the trigger message transmission window (typically until the middle of
the EC) in order to remove the omission. If a synchronous message is omitted, this can be
detected by the absence of answer to the trigger message in the respective EC. In this case,
the master may use fault-tolerant scheduling techniques to try to recover the missing mes-
sage, e.g. by accounting with time for possible retransmissions and rescheduling the message
again within the deadline, if possible. The detection of missing synchronous messages can be
also used to implement a membership service for slave nodes. In what concerns masters, a
speci�c membership service is implemented based on a polling mechanism. An omission of an
asynchronous message could be removed by retransmitting the omitted message according to
CAN rules. These schemes are only valid in case of transient interferences that cause sporadic
message omissions. In order to tolerate permanent slave node failure a replication scheme was
also proposed.

1.3.4 Master replica synchronization after asynchronous start/restart

Upon an asynchronous startup or restart of a replicated master, its data structures will
not be consistent nor synchronized with the ones from the active master. A master's synchro-
nization mechanism was proposed to address this issue. It is based on the assumption that
masters are fail-silent. Thus, as long as there is an output, it is correct. This implies that the
current primary master is correct as long as it continues issuing messages to the slaves.

Replicated masters compare their internally generated EC-schedules with the ones trans-
mitted by the primary master and when a di�erence is detected a synchronization request is
issued. This request causes the transmission of the current data structures from the primary

1.3 Contributions 7

to the requesting backup master as well as the synchronization of the schedulers, i.e. the set
of instantaneous relative phasing. This mechanism is also used to support the failure of the
active master and to replace it.

1.3.5 Protocol for consistent updates of FTT-CAN masters's data struc-
tures

Besides the need for a master's synchronization protocol able to transfer the active master
data structures to other backup masters, there is also a need for a protocol able to enforce con-
sensus among masters in case of an asynchronous request to update the master data structures,
e.g., for changing the sampling rate of a given sensor reading of a particular slave node.

A protocol was proposed to handle master data structures update requests. This protocol
takes advantage of some speci�c properties of CAN and FTT-CAN in order to reduce the
protocol complexity as well as the computation and communication overheads. It is a semi-
active protocol in the sense that all requests are processed in parallel by every master replica.
However, in order to eliminate inconsistencies between masters, the active master is prioritized
to the other masters. The active master rules all the process, assuming the role of the protocol
leader, while the backup masters assume the role of followers. Possible local inconsistencies
arising from lack of an atomic broadcast protocol are consistently cleared during the protocol
execution by the active master in a leader-followers approach.

This protocol was also partially validated using a PROMELA model and the SPIN model
checker for the case of a system with four nodes (three masters and one slave).

1.3.6 Enforcement of fail silence behavior in FTT-CAN nodes

A dual-processor CAN controller interface was presented to enforce fail-silence behavior at
the master nodes. This custom interface enables the master node internal replication of the
data structures and tra�c schedulers in two di�erent CPUs and compares both CPU outputs
in terms of value and timing. In this way, master nodes are only allowed to transmit messages
if both CPU outputs are identical and produced within a narrow time window.

Slaves also require fail-silence behavior and although one could adopt the same mechanism
used in master nodes, that would be expensive. Thus, slave nodes fail-silence enforcement
both in time and value domain should only be adopted in special cases where the slave node
information (value and timing) is absolutely essential. In other cases, limiting slave nodes
ability to transmit uncontrollably will su�ce. This corresponds to enforce fail-silence behavior
in the time domain only. An unconventional type of bus guardians was proposed to solve this
problem.

The bus guardians are unconventional in the sense that they preserve FTT-CAN �exibility
with respect to the tra�c scheduling, in contrast with other completely static approaches (e.g.,
bus guardians of TTP/C and FlexRay).

8 Chapter 1. Introduction

From the slave's perspective, a schedule is valid only within the scope of an elementary
cycle, thus the bus guardian policing a node only needs to be aware of the node schedule in
a EC by EC basis. In this way the bus guardian decodes every trigger message contents and
blocks any unscheduled transmission from the node.

1.4 Organization of the dissertation
In order to support the thesis previously stated, this dissertation is organized in the fol-

lowing way:

Chapter 2 � Presents background information concerning real-time communication in shared
media and dependability in distributed systems. Particularly, it focuses on media access
control policies, which have a direct impact on the timeliness of the communications, and
on dependability topics such as distributed consensus, fail-silence failure mode, replica
determinism, membership and fault modes.

Chapter 3 � This Chapter focuses on some relevant topics related with �exible and depend-
able real-time communication, including a discussion of �exibilityversus dependability
in several communication protocols and architectures, namely Controller Area Network
(CAN) and CAN based protocols (TTCAN, FlexCAN, TCAN and FTT-CAN), as well
as TTP/C, FlexRay and ARINC-629.

Chapter 4 � Discusses the impairments to dependability of CAN and FTT-CAN both at
network level and at node level. The probability of transmission faults causing incon-
sistencies is analyzed based on the channel bit error rate. Since the existing values for
CAN bit error rate were high and based in assumptions, it was decided to experimentally
access CAN bit error rate. Experimental results have shown that CAN bit error rate is
much lower than previously assumed. After discussing FTT-CAN impairments to de-
pendability and having experimentally assessed CAN bit error rate, the fault hypothesis
was de�ned. This Chapter concludes by presenting a general architecture able to enforce
fault tolerance in FTT-CAN while delivering the desired level of operational �exibility
under a controlled fashion so that dependability is continuously assured.

Chapter 5 � Discusses the impact of transient interferences that cause sporadic message
omissions and presents several possible schemes to con�ne the impact of errors in the
synchronous FTT-CAN tra�c and to recover from those errors. A slave replication
scheme capable of replacing faulty slave nodes is also presented.

Chapter 6 � This Chapter presents two di�erent approaches to enforce fail silent behavior
both in the master and in the slave nodes. Fail silence in the slave nodes is enforced
using either dynamic bus guardians or internal replication and temporized agreement.

1.4 Organization of the dissertation 9

The latter mechanism enforce fail silent both in the time and in the value domain and
it was designed to be used primarily on the master nodes. Notice however that internal
replication and temporized agreement can also be adopted at the slave nodes whenever
needed. Dynamic bus guardians in their turn are to be used on the slave nodes only,
since they cannot be adopted in the master nodes because of the causal relation between
the master node computed schedule and the bus guardian operation.

Chapter 7 Sets the conclusion of the dissertation and points out several directions for future
work.

10 Chapter 1. Introduction

Chapter 2

Concepts of dependable real-time
communication

2.1 Introduction

As it was referred in the previous Chapter, dependable embedded systems are becoming
pervasive in many domains, e.g. in automotive vehicles, in avionics, in building automation, in
factory automation, etc. These systems are usually distributed and rely on a �eldbus network
to interconnect sensors, actuators and controllers in a reliable and timely way.

Traditionally, most of the distributed systems used in safety-critical applications arefed-
erated [Rus01], i.e. each function has its own fault-tolerant embedded control system with
low connectivity (both in bandwidth and in criticality) to other functions. This facilitates the
implementation of very strict frontiers between systems supporting di�erent functions. In this
way, faults are easily con�ned since the failure of one function has small impact on the con-
tinued operation of others because resources are not shared. However, the federated approach
exhibits obvious drawbacks resulting from its excessive use of resources: each function needs
its own computer system (which is generally replicated for fault tolerance), with all the atten-
dant costs of acquisition, space, power, weight, cooling, installation, and maintenance. This is
why there is a trend in recent applications towards integrated solutions, where some resources
are shared across di�erent functions. In such systems, the danger of fault propagation from
one function to another is higher. One example of such integrated solutions is the Integrated
Modular Avionics (IMA) that has emerged as a design concept to challenge the federated
architecture [ARI91][Rus99]. Either federated or integrated, it is commonly accepted today
that distributed systems outperform, in many ways, centralized systems [Bro03].

In a distributed system architecture the network must provide the communication services
between the distributed components (nodes). This requires the use of an adequate protocol
able to control the information �ow and to provide some guarantees concerning timeliness,
atomicity and dependability.

11

12 Chapter 2. Concepts of dependable real-time communication

Timeliness guarantees are usually provided by real-time computing techniques. There are
many de�nitions for real-time computing [Veg96], but probably the most widely adopted is
the one from Stankovic and Ramamritham [SR89]:

"A real-time system is one in which the correctness of the computations not only
depends upon the logical correctness of the computation but also upon the time at
which the result is produced."

This de�nition, however, does not fully address the distributed nature of some real-time
systems. In fact, in these systems processes may share resources over di�erent interconnected
computing nodes and the system overall performance is in�uenced not only by the data pro-
cessing but also by the communication delays.

There are two main classes of real-time systems: hard and soft real-time. Their distinction
is based on the possible consequences from not meeting the time constraints, expressed as
deadlines, i.e., the latest instants in time at which the results must be produced. Kopetz
[Kop97] presents de�nitions for hard and soft real-time systems based on the types of deadlines
that the system should meet. If a result has utility even after the deadline has passed, the
deadline is classi�ed as soft, otherwise it is �rm. If a catastrophe, either in terms of human
injury or assets loss, could result from missing a �rm deadline then such deadline is classi�ed as
hard. It is important to note that some types of temporal constraints cannot be fully expressed
in the form of a simple deadline. This is the case, for example, of causality relationships.

In real-time communications, the transmission of a message on a bus is equivalent to a
non-preemptive process running in a CPU and both a bus and a CPU may be regarded as
shared resources that need to be scheduled between concurrent messages or processes.

Despite this analogy, there is a fundamental distinction between real-time communications
on a bus and real-time computing on a CPU: knowledge [HM90]. While in a single CPU
computing system the scheduling decisions are made knowing the current state of all processes,
the tasks that a distributed system is required to coordinate are based indistributed knowledge,
i.e. the knowledge is distributed among the nodes of the system and it is not necessarily
common to all nodes. The execution of simultaneous actions by a group of members of a
distributed system requires common knowledge. Agreement, e.g. on a distributed scheduling
decision, is an example of a simultaneous action in a distributed system and it requires speci�c
support from the network.

Achieving common knowledge requires the execution of coordinated actions, but such
actions cannot be guaranteed in many real distributed systems [HM90]. Only weaker variants
of common knowledge that are guaranteed to be performed within a bounded amount of time,
are attainable in practical cases. This problem is harder when coordinated actions need to be
executed in bounded time, as in the case of real-time distributed systems.

Controlling the access to the shared resource (bus) is a pre-requisite to provide consensus
and membership services, that, in turn, contribute for achieving common knowledge. The

2.2 Medium access control 13

rest of this Chapter presents an overview of medium access control policies and a survey of
some relevant topics of dependability in the context of real-time communications, such as
distributed consensus, fail-silence failure mode, replica determinism, membership and fault
models.

2.2 Medium access control
In the speci�c case of bus based real-time communications, the bus is a shared medium

between all nodes and it is the basis for providing low level common knowledge among the
nodes. This must be carried out within a bounded time and thus, it is imperative that the
access to the bus is also bounded in time, which implies that the medium access control (MAC)
protocols must be deterministic. The MAC protocols determine the order of network access
by contending nodes and, in the case of real-time communications, ensure that all nodes have
the right to access the bus within a bounded time window.

According to Thomesse [Tho98], there are two main classes of MAC protocols: controlled
and uncontrolled access (Figure 2.1). In the former there is a distributed knowledge in the
network concerning the access rights to the bus, either based in the time or in explicit com-
mands of a bus master, that prevents the nodes to transmit messages simultaneously. Two
sub categories are normally considered within this group: centralized and distributed control.
In the latter category, uncontrolled access, there is no distributed knowledge concerning the
bus access, so every node may attempt to transmit at any given instant and possible collisions
are detected and handled to prioritize access.

Uncontrolled

access

MAC

protocols

* CSMA/CA

* CSMA/DCR

* CSMA/BA

* CSMA/CD

* SWITCHED
* Master/slave

* TDMA

* Token passing

* Mini-slotting

Controlled

access

Centralized

control

Descentralized

control

Figure 2.1: A taxonomy of MAC protocols (adapted from [Alm04]).

14 Chapter 2. Concepts of dependable real-time communication

2.2.1 Centralized Control: Master-Slave

In a master-slave access scheme, the slave nodes access to the bus is granted by the
master via a control message. Master messages act as synchronization points that slaves can
use to synchronize their operation. A particular case of master-slave system is the master-
multislave access control scheme [APF02] adopted in the FTT protocols, in which a single
master message triggers the transmission of several slave messages reducing thus the overhead
imposed by master control messages.

In a master-slave network, the tra�c is scheduled by the master node only, which enables
the use of any scheduling algorithm, either online or o�ine. This approach allows the use of
quite simple slave nodes since the main processing is concentrated in the master node. These
systems are normally well suited to handle periodic tra�c. Aperiodic tra�c is handled by
some kind of pooling.

From the dependability point of view, the master is a single point of failure and for high
reliability requirements it must be replicated.

There are many examples of master-slave systems such as the MIL-STD1553B [Hav86],
PROFIBUS [IEC00] (between each master and the associated slaves), Ethernet Powerlink
[Gro03b] and Bluetooth [Gro03a] (within each piconet).

The Master-Slave model can be combined with the Producer(s)-Consumer(s) model re-
sulting in the Producer(s)-Distributor-Consumer(s) model proposed by Thomesse [Tho93]
and adopted by WorldFIP [IEC00].

2.2.2 Distributed Control: Token-Passing

In a token-passing network, a token is circulated among the nodes according to a virtual
ring. A given node can only access the bus when holding the token. Broadcast buses using
this access control protocol are known as token-buses. Timely behavior is achieved limiting
the time that a node can hold the token continuously before sending it to the next node.

There are two important parameters that control the timeliness of these networks, the
Target Token Rotation Time and the Real Token Rotation Time. The former is a network
parameter speci�ed at system start-up. The latter is the time taken by the token in its last
rotation. A node will be able to transmit for an interval corresponding to the di�erence
between the �rst parameter minus the second, if positive. In any case, any node can always
transmit at least a certain amount of tra�c while holding the token, to prevent starvation.

Although this type of networks seems adequate to situations where the main processing
resources are distributed over several nodes, it also exhibits some drawbacks. Firstly, varia-
tions in the token rotation time contribute to increased jitter of periodic tra�c. Secondly, the
number of nodes on the virtual ring increases the token rotation time and consequently limits
the highest possible transmission rate for each message stream. Thirdly, the bus bandwidth is,
under high load, equally distributed among all masters regardless of the applications require-

2.2 Medium access control 15

ments and fourthly, the token retention or loss by a node is an impairment to dependability.
PROFIBUS uses a timed-token protocol to control the access of a set of master nodes to

the bus. Notice that PROFIBUS includes nodes of two sorts, masters and slaves, but the
token is circulated among master nodes only. A master can communicate with the remaining
masters while holding the token or with its associated slaves (master-slave).

2.2.3 Distributed Control: Virtual Token-Passing

Another token-based access control protocol is the virtual token-passing where the order
by which nodes access the bus is determined by the respective address. Each node has an
access counter which is always incremented simultaneously in all nodes after each successful
transaction or after a timeout. A node is allowed to access the bus for a single transaction
when its access counter contains a value equal to its own address. When the access counters
pass beyond the number of nodes in the system, which is a network con�guration parameter
speci�ed at start-up, the respective values are reset to one.

This protocol is more robust than real-token passing because it can easily handle the token
loss situation (non-responding nodes).

P-Net [CEN96] protocol and Virtual Token-Passing Ethernet (VTPE) [CFP03] are exam-
ples of this type of protocols. This is sometimes referred to as mini-slotting [PBG99] despite
the absence of a cyclic synchronization message.

2.2.4 Hybrid Control: Centralized Token-Passing

There is, yet, another token-based MAC protocol known as centralized token-passing.
This is used in Foundation Fieldbus [IEC00] and combines centrally scheduled access with
traditional token passing. In Foundation Fieldbus each link1 has several Link Masters, LMs,
one of which performs the role of the Link Active Scheduler, LAS. The LAS has a schedule
describing the communication activity that must be executed at prede�ned instants in time.
This communication activity can be of two types, either simple exchanges that follow the
Producer-Distributor-Consumer model in which the LAS issues aCompel Data token to force
a given producer node (known as publisher) to publish the respective data while the respective
consumer nodes (known as subscribers) simultaneously collect it, or more complex sequences
of exchanges which are carried out by another LM during a given pre-�xed amount of time. In
this case the LAS issues an Execute Sequence token that allows the respective LM to perform
the required sequence of exchanges. At the end, the LM must return the token to the LAS.

During the periods in which there is no scheduled communication activity, the LAS cir-
culates a Pass Token through all the LMs speci�ed in an internal list in a similar way as in

1A link is the logical medium by which Foundation Fieldbus devices are interconnected. It is composed of
one or more physical segments interconnected by bus repeaters or couplers. All of the devices on a link share
a common schedule which is administered by that link's current LAS.

16 Chapter 2. Concepts of dependable real-time communication

traditional token passing. However, the duration of the token holding periods by each LM
is controlled by the LAS in order to guarantee the timeliness of the scheduled tra�c. The
token passing mechanism uses a protocol similar to the one of PROFIBUS that relies on the
di�erence between the real token (Pass Token) rotation time and the target rotation time
parameter to control the amount of exchanges that each LM can perform while holding the
token. The amount of tra�c generated by each mechanism is bounded in order to allocate a
minimum bandwidth to each one.

2.2.5 Distributed Control: Flexible Time Division Multiple Access or mini-
slotting

This type of bus access scheme is very similar to virtual token-passing, but here the nodes
are cyclically synchronized by a master that generates the clock base for all nodes and for
the application software. In between synchronization pulses, all nodes can send messages
according to the ascending identi�er node sequence (an identi�er may only be used by a
single node). Upon receiving the synchronization pulse, all nodes start the slot counters. The
slot counters begin counting at zero and count up to the highest identi�er value for which a
transmission request is present, the corresponding message is then transmitted and all the slot
counters stop at the current value for the duration of the transmission. Once the transmission
is complete, the slot counters begin counting upwards again.

This mechanism is purely time-controlled, and allows the deterministic transmission of a
speci�c number of high-priority messages in every communication cycle even when the bus
capacity is fully used. It also permits the �exible assignment of remaining bandwidth to
low-priority messages.

This type of bus access scheme is adopted in byte�ight [PBG99][M. 00] and in the aperiodic
phase of ARINC-629 [ARI90].

2.2.6 Distributed Control: Time Division Multiple Access

The other form of distributed controlled access is the Time Division Multiple Access
(TDMA). TDMA is based on the partitioning of global system time into exclusive time win-
dows, during which only one node can access the bus.

The use of a TDMA scheme implies using aclock synchronization algorithm to provide
common knowledge about time. Every node knows the instants when it should perform some
actions and it also knows the instants of other nodes actions.

The widths of the time windows for each node to access the bus can be tailored in order
to adequately support periodic tra�c with low jitter.

Examples of TDMA based protocols are the Time-Triggered Protocol - TTP [TTT02][KG94],
TTCAN [ISO00] and the time-triggered part of the FlexRay [Con04b].

2.2 Medium access control 17

2.2.7 Uncontrolled Access: Carrier Sense Multiple Access
Concerning uncontrolled access protocols, there is no external control signal, either explicit

(e.g. token) or implicit (e.g. time) to instruct a node when to transmit. The arbitration is
performed based on the bus status and on local information, only. These are generally known
as Carrier Sense Multiple Access (CSMA) protocols according to which a node wishing to
transmit listens to the bus and starts transmission only upon silence detection (carrier sense
feature). Yet, collisions may occur since it is possible that several nodes detect silence on
the bus at the same time and start transmitting almost simultaneously (multiple access fea-
ture). There are several types of CSMA protocols that di�er on what is done upon a collision
detection or on what is done to prevent collisions at all. In buses based on CSMA the arbitra-
tion required to decide which of the con�icting nodes is going to transmit next is completely
decentralized and independent. This means that there is no centralized information concern-
ing the present system con�guration (e.g. number of nodes and communication relationships
among them) and that the arbitration is carried out the same way whatever the con�guration
is. This fact grants CSMA-based systems a high level of �exibility, for example, making it
possible from a functional point-of-view to connect or disconnect nodes during normal on-line
operation without the need for system-wide knowledge.

2.2.8 Uncontrolled Access: CSMA-CD
The ability of a CSMA protocol to handle time-constrained communication depends on

what is done to resolve collisions. For example, in CSMA-CD (collision detection) the nodes
involved in a collision stop the transmission and try it again later, after a certain random time
interval. This is the case of the well known Ethernet bus protocol (IEEE 802.3) in the original
shared mode. Notice that chained collisions are possible until a node is granted access to the
bus or the message is dropped. This becomes critical during heavy tra�c loads and does not
allow the determination of a practical upper bound to the latency that messages may su�er.
Hence, the original Ethernet is not well suited to real-time communication except possibly for
very low bandwidth utilization levels.

This situation has evolved in the last decade with the introduction of Ethernet switches
that allow preventing collisions and thus open the possibility for deterministic behavior.

2.2.9 Uncontrolled Access: CSMA-BA
A di�erent approach is used in the CAN �eldbus where the physical layer guarantees that

collisions among statically prioritized messages are non-destructive. This is a sort of collision in
which the resulting logic state of the bus is known and it is equal to the content of the message
with highest priority involved in the collision. This scheme performs a bitwise arbitration (BA)
in which the node transmitting the highest priority message gains immediate access to the bus.
Nodes transmitting lower priority messages stop and contend again for the access to the bus as

18 Chapter 2. Concepts of dependable real-time communication

soon as the current transmission terminates and so on until all messages are transmitted. This
is a deterministic MAC protocol that allows, for statically de�ned message sets, to calculatea
priori the maximum latencies that messages can su�er [TBW95]. This access method is also
referred by di�erent authors as CSMA-CA (Collision Avoidance), CSMA-DCR (Deterministic
Collision Resolution) and CSMA-PCR (Priority Collision Resolution) [Alm99].

2.2.10 Uncontrolled Access: P-Persistent CSMA-CA

Another example of a CSMA-based �eldbus is the LONWORKS. This �eldbus uses yet
another variant called p-persistent CSMA-CA (collision avoidance) [Cor99]. According to this
scheme the nodes wanting to access the bus do not attempt to do it immediately after silence
detection, as in normal CSMA-CD. On the contrary, upon silence detection each node wishing
to access the bus waits for a random time, uniformly distributed with probabilityp over a
prede�ned slotted time interval. This randomization of the access delays e�ectively reduces
the probability of a collision resulting in improved performance for medium to high loads when
compared with normal CSMA-CD. Nevertheless,p-persistent CSMA-CA still su�ers from the
unwanted thrashing e�ect, i.e. a reduction in the network throughput after a certain load
level due to excessive number of collisions (chained collisions) and it adds an extra initial
access delay even when the medium is free. This mechanism is also typical in wireless radio
communications such as the IEEE 802.11 protocol.

In the LONWORKS protocol, the bus access control may also use an adaptive version of the
p-persistent CSMA, called predictive p-persistent CSMA, in the course of acknowledgement
transactions. The di�erence is that when collisions happen, the randomization interval is
enlarged thus further reducing the probability of chained collisions. The protocol uses the
positive acknowledgement of message transmissions to decide on whether to enlarge or reduce
the randomization interval. When there are few or no collisions that interval is reduced to a
minimum. On the other hand, under heavy tra�c load, an initial increase in the number of
collisions causes that interval to be enlarged which has an opposing e�ect of reducing those
collisions. This is like a negative feedback control system where an equilibrium is reached that
maintains the level of collisions approximately constant, independently of the tra�c load.
The result is a considerable improvement in the network performance for heavy tra�c loads,
avoiding the undesirable e�ect of thrashing. This only works with acknowledged transmissions.

2.3 Dependability and Real-time Communication

Dependability, safety and reliability and some other related words are often used to repre-
sent several similar concepts. In 1992, Laprie [Lap92] proposed a terminology that is widely
used and will also be adopted in this thesis whenever possible. That terminology was enhanced
in 2001 by Avizienis, Laprie and Randell [AAR01]. According to this enhanced terminology:

2.3 Dependability and Real-time Communication 19

"dependability of a computing system is the ability to deliver service that can
justi�ably be trusted. The service delivered by a system is its behavior as it is
perceived by its user(s); a user is another system (physical, human) that interacts
with the former at the service interface. The function of a system is what the
system is intended for, and is described by the system speci�cation.".

The previous de�nition of dependability is rather subjective and may vary depending on
the speci�c application and the users. Still according to [AAR01], the dependability concept
integrates several attributes:

• Availability � expressing the readiness for correct usage

• Reliability � expressing the continuity of correct service

• Maintainability � ability to undergo repairs and modi�cations

• Safety � expressing the absence of catastrophic consequences on the user(s) and the
environment

• Integrity � absence of improper system state alterations

• Con�dentiality � absence of unauthorized disclosure of information

The Security concept from Laprie's initial taxonomy [Lap92] is represented in the re-
vised classi�cation as the concurrent existence of: availability (for authorized users only),
con�dentiality and integrity (with improper meaning unauthorized).

These attributes may be emphasized to a greater or lesser extent [AAR01] depending on
the speci�c application: availability is always required, although to a varying degree, whereas
reliability, safety, con�dentiality may or may not be required.

In the context of this thesis, the �rst four attributes are the most important. Despite the
fact that attributes related with security are becoming increasingly relevant, the possibility of
malicious interference with embedded wired communications holds little concern since vehicles,
robots and industrial machinery have yet closed networks that are not easy to tamper.

Availability, reliability, maintainability, integrity and safety are attributes of utmost im-
portance in any distributed embedded system and, therefore, these attributes must be present
in the communication sub-system, too.

After de�ning dependability and describing its attributes it is important to quantify de-
pendability in terms of reliability and availability. The �rst remark concerning this issue is
that the extent to which a system possesses the attributes of dependability should be inter-
preted in a probabilistic sense and not in an absolute and deterministic sense. This is due
to the unavoidable presence or occurrence of faults that make systems never totally available,
reliable, safe, or secure. Basically, fault scenarios are not deterministic by nature.

20 Chapter 2. Concepts of dependable real-time communication

Knowing that dependability is based on correct delivery of services, a failure occurs when
a service is not delivered according to the speci�cation. System speci�cation is a rather
di�cult task and the chance of making incorrect speci�cations is high [Lev00]. The use of
formal speci�cation methods that enable an early detection of design errors or incomplete
speci�cation details is a way to attenuate the impact of incorrect speci�cations.

Closely related with formal speci�cation are the formal veri�cation techniques, such as the
model checking, by which [CGP99]:

"a desired behavioral property of a reactive system is veri�ed over a given system
(the model) through exhaustive enumeration of all the states reachable by the system
and the behaviors that traverse through them."

Applying model checking to a design consists of three main tasks. The �rst task is the
modeling of the system in a formalism accepted by a model checking tool. The second task
is the speci�cation of the properties that the system should satisfy. The third task is the
veri�cation of these properties over the model using a model checking tool which automatically
determines if the property holds for the model. The result of the veri�cation is either 'yes',
if the system satis�es the property speci�ed, or a counterexample that shows a trace to the
state where the property is not valid.

Reliability can be described as the probability of failure during a given time interval. Ac-
cording to the United States Federal Aviation Authority this probability is de�ned as [FAA88]:

Extremely improbable failure conditions are those so unlikely that they are not
anticipated to occur during the entire operational life of all airplanes of one type.(p.
14) (...) Extremely improbable failure conditions are those having a probability of
the order of 10−9 or less.(p. 15)

Achieving a probability of failure less than10−9 is the goal of any safety-critical system, not
only in the aviation industry. However it is di�cult to guarantee and even infeasible to measure
this level of reliability in a software based system [BF93] using statistical methods. To achieve
such a low probability of failure, errors must be con�ned and faults have to be tolerated. A
large range of mechanisms/techniques are available to give some reliability guarantees, however
a detailed description of them is out of the scope of this thesis.

There are basically two main approaches to dependable systems design [Lat03]. One
approach is probabilistic, a design is created and analyzed to prove that the probability of
failure is low enough. To reason about these systems, accurate probability estimates are
required. Unfortunately, probabilities are di�cult to estimate with the degree of precision
necessary for safety-critical systems. The second approach is to de�ne a set of guarantees for
the system, and relegate probabilities to the assumptions. Guarantees are proven to hold as
long as a speci�ed set of assumptions hold. While easier to reason about, a designer must

2.3 Dependability and Real-time Communication 21

now examine the probability that the assumptions will hold. Common assumptions include:
limits on the number of faults that can occur within a certain time interval, non-partitionable
network, time limits on when a node may reintegrate, and the assumption that a majority of
non-faulty nodes exists.

Clearly, these assumptions are not expected to hold for every imaginable fault scenario.
The designer must show that the probability of pernicious faults occurring isreasonably low,
and the dependability of the system is still acceptable. Unfortunately, this is the same problem
that the probabilistic approach has, reasonably low as referred before, means a failure rate
in the order of 10−9 failures/hour. A comprehensive fault model for fail-operational safety-
critical systems will never meet all the assumptions. Stated otherwise, the dependability
requirement is so high that odd or rarely occurring faults cannot be ignored. One additional
complication is that safety analysis may depend on criticality. Faults or fault combinations
with severe consequences or low controllability must be tolerated regardless of the probability.
An example is the requirement of no single point of failure, regardless of the probability of
that failure [MIS95].

2.3.1 Fault management
When producing a safety critical system much e�ort must be put into making the faults

a�ect the system as little as possible. There are some techniques for doing this, aiming at
di�erent aspects namely: fault avoidance, fault removal, fault detection and fault tolerance.

Fault avoidance � Fault avoidance techniques aim to prevent faults from entering the system
in the �rst place. This is the primary aim of the entire design process. Techniques as
formal speci�cation and model checking are some of the best practices to avoid design
faults.

Fault removal � Fault removal is a set of techniques where one tries to �nd all faults intro-
duced into the system during the design phase. This is done before the system is taken
into use. Extensive testing of both hardware and software are part of fault removal
methods.

Fault detection � The fault detection methods are applied to systems in use, to try to detect
faults before they cause errors, minimizing their e�ects on the system. A system that
uses fault detection algorithms is more suitable for safety critical systems because they
continuously try to �nd faults in the system. These methods include, among others,
functionality testing that checks whether the hardware still performs according to its
speci�cation. Information redundancy, on the other hand, aims to expose errors in the
data by using CRC, checksums and error correcting codes.

Fault tolerance � Many techniques for fault tolerance are dependant on the existence of
fault detection techniques. Fault tolerance is a property associated with the ability of

22 Chapter 2. Concepts of dependable real-time communication

a system to accommodate possible faults without changing the behavior of the system.
There are many techniques for fault tolerance including both hardware and software
redundancy.

In the speci�c case of real-time communication the mechanisms to achieve fault-tolerance
are not just concentrated in the network nodes to guarantee their dependability via voting
schemes, N-version programming, hardware redundancy, and virtually all other general pur-
pose techniques. The faults originated (or propagated) in the communication channel may
compromise the ability of the distributed system to achieve common knowledge. A faulty
message originated in the bus (e.g., an undetected bit error) or transmitted by a faulty node
may be propagated to all the nodes causing the whole system to collapse. Notable examples
of these latter faults are timing or value failures in a node, non-atomic broadcast, replica
non-determinism and electromagnetic induced errors in the channel.

2.3.2 Distributed consensus

Consensus [PSL80] is having a group of n processes in a distributed system agreeing on a
value. A consensus protocol is an algorithm that produces such an agreement. Each process
in a consensus protocol has, as part of its initial state, an input from some speci�ed range,
and must eventually decide on some output from the same range. Deciding on an output is
irrevocable; though a process that has decided may continue to participate in the protocol, it
cannot change its decision value.

The importance of the consensus problem derives from its omnipresence in the area of
distributed systems. Indeed, consensus is at the basis of solutions to achieve synchroniza-
tion, reliable communication, atomic commitment, consistency control, resource allocation,
replicated �le systems, sensor reading, etc.

In order to solve the consensus problem the protocol has to satisfy the following safety
and progress properties [CT96]:

Termination �Every correct process eventually decides some value.

Uniform integrity � Every process decides at most once.

Agreement � No two correct processes decide di�erently.

Uniform validity � If a process decides v, then v was proposed by some process.

Consensus in the presence of faults is di�cult to attain. Systems with di�erent levels of
synchrony or di�erent kinds of failures require di�erent algorithms. At one extreme, a system
can be totally asynchronous, in that no assumptions can be made about the relative speeds of
the processes or the communication medium. At the other extreme, a system can be totally
synchronous where we can assume upper bounds on processing and communication delays.

2.3 Dependability and Real-time Communication 23

Usually, two kinds of failures are considered. Fail-stop failures cause a process to die at
any time and stop participating in the algorithm. Byzantine failures are those where a process
sends incorrect information, possibly according to a malevolent plan.

Consensus with fail-stop failures

In 1985 Fischer et al. [FLP85] proved the impossibility of achieving a deterministic solution
for the consensus problem in an asynchronous distributed system with just one faulty process
(usually known as the FLP impossibility result).

Considering a completely asynchronous system, with no assumptions about the relative
speeds of the processes or the speed of communication, it is not possible to check if a process
has failed if there is no reference to a clock to implement some kind of time-out mechanism.
Assuming also reliable communication and that at most one process may fail-stop at any time,
there is no algorithm which can guarantee consensus on a binary value in �nite time.

The reason for this inconvenient result is based on the fact that it cannot be decided
whether a process has died or if it is just very slow in sending its message (i.e. it is impossible
to distinguish between a process which is arbitrarily delayed and one which is inde�nitely
delayed).

This result also means that totally asynchronous systems can never have any kind of fault-
tolerance, since they cannot even handle the most benign of faults under the best conditions.
To achieve fault-tolerance in asynchronous systems requires making some assumptions about
the system or about the kinds of faults which can be handled. In real systems, this is usually
done by assuming an upper bound in communication and processor speed, and considering a
process faulty if it does not respond within a bounded time.

There are basically three ways to circumvent the FLP impossibility and achieve fault-
tolerance in asynchronous systems:

Change the de�nition of consensus � Instead of requiring consensus in �nite time, achieve
consensus in �nite time with probability 1. That is, there is a chance that the algorithm
will be inde�nitely delayed, but the probability of this happening is 0 [BT85]. This is
usually know as randomization. An excellent survey on work using randomization can
be found in [Asp03].

Partial synchrony � Relax the de�nition ofasynchronous and allow some level of synchrony.
Three kinds of asynchrony in the system described by Fisheret al. [FLP85] may be iden-
ti�ed: process asynchrony, communication asynchrony and message order asynchrony.
Fisher et al. proved that making the processes synchronous only is not enough. But
making either the communication or message order synchronous is enough alone. The
previous results are valid as long as each processor can perform anatomic step, con-
sisting of receiving a message, performing some computation, and sending messages to

24 Chapter 2. Concepts of dependable real-time communication

other processes. If an arbitrary delay is allowed in the middle of the operation, then no
consensus algorithm is possible with only communication synchrony.

Failure detectors � Since it is impossible, in an asynchronous system, to detect the death
of a process, and to distinguish a dead process from a merely slow one, adding fail-
ure detectors would solve the consensus problem without relaxing either the consensus
de�nition or the assumptions concerning the system synchrony.

A failure detector [CT91] is a module that keeps a list of processes which it thinks have
crashed, and regularly probes each process to update its list. Since the failure detector
cannot be sure of a process death any more than any other process can, it should
be assumed that it will not only make mistakes, but will make an in�nite number of
mistakes. The weakest properties that this module must have are: all fail-stop processes
are eventually detected and any correct process which is on the list of failed processes
should eventually be taken o� the list.

This concept can be implemented in practice by having the failure detector probing each
process regularly. Every unresponsive processP is placed on the list and a broadcast
message is sent to all processes (includingP) announcing its death. IfP has not crashed,
then it will eventually refute its death announcement. Chandra and Toueg [CT91] show
that this weak and unreliable model of failure detectors allows the consensus problem
to be solved.

Consensus with Byzantine failures

Solving consensus in environments where processes can exhibit Byzantine behavior is no-
tably di�cult [BHRT03]. The Byzantine Generals Problem, introduced by Lamport et al.
[LSP82], is a model for the consensus problem in the light of faulty processes which send
false messages. Faults induced by faulty processes sending faulty messages according to some
malevolent plan (also known as asymmetric or arbitrary faults), are the most serious impair-
ment to distributed consensus. Any algorithm able to achieve consensus in the presence of
Byzantine faults will be also able to handle arbitrary faults.

According to the Byzantine Generals Problem, a Byzantine commanding general, who has
surrounded the enemy with his armies each led by a lieutenant general, wishes to organize a
concerted plan of action, i.e., to attack or to retreat. However, the Byzantine corps of general
has been in�ltrated by traitors. Despite this, the loyal Byzantine lieutenant generals must all
reach the same conclusion either to attack or to retreat by sending messages back and forth
among themselves. Moreover, their conclusion must agree with the commanding general's
order. An algorithm which completes this problem successfully is said to reach Byzantine
agreement. The solution to this problem yields a di�erent answer for oral and for written
messages.

2.3 Dependability and Real-time Communication 25

Oral messages � If one-third or more of the generals are traitors, then no consensus is
possible, i.e., 3f + 1 processing elements are needed to tolerate f Byzantine faults.

Written messages � Consensus is always possible since when a general is relaying informa-
tion he cannot change a message, because messages are signed and any change would be
detected by the receiving general.

In a distributed system the Byzantine generals are replaced by processing elements. The
algorithm for solving the Byzantine Generals Problem with n processing elements requires
f + 1 rounds to complete. Fischer and Lynch [FL82] showed that at least f + 1 rounds
are needed for all deterministic solutions to the Byzantine Generals Problem, however, the
message size grows exponentially at each round (O(nf+1)) [PSL80]. Over the years a number of
more e�cient algorithms with respect to the number of messages required to reach agreement,
have been proposed. Barborak et al. [BDM93] presents a good survey of this issue.

The solutions based on "oral messages", assume that the group of processors is completely
connected to allow for private communication between any pair of processors.

Byzantine agreement becomes much simpler if messages are authenticated or signed [PSL80]
[LSP82]. A message is authenticated if:

1. a message signed by a fault-free processing element cannot be forged

2. any corruption of the message is detectable and

3. signature can be authenticated by any other processing element

This, obviously, limits the malevolent plans of a faulty processor. In this situation, there
is no limit on the number of faulty processors that are tolerable, and the network no longer
requires private communication channels between processing elements.

It emerges from the previous results that Byzantine agreement solutions manipulate three
independent resources: processing elements, rounds and message size. Although it is possible
to create procedures that are optimal in some of these respects, no algorithm optimized in all
three categories has been found [BDM93].

A number of possible solutions for solving the consensus problem in environments where
processes can exhibit Byzantine behavior have been presented over the years, however they
are out of the scope of this dissertation. The reader should refer for Malkhi and Reiter
[MR97], Kihlstrom et al. [KMMS97], Doudou and Schiper [DS98], Baldoni et al. [BHRT03]
and Aguilera et al. [ADGFT04] for additional details.

Distributed consensus is one key issue in fault-tolerant distributed systems and there are
several algorithms that can be used to solve this problem. Choosing the right algorithm greatly
depends on the type of distributed system on which the protocol will run and the assumptions
that may be done concerning the expected faults the system is suppose to circumvent (fault
hypothesis).

26 Chapter 2. Concepts of dependable real-time communication

2.3.3 Fault-tolerant broadcasts

As it was explained previously, distributed consensus is a paradigm that simpli�es the task
of designing fault-tolerant distributed applications, since consensus allows processes to reach
a common decision that depends on their initial inputs, despite the occurrence of possible
failures. Theoretical research on fault-tolerant distributed computing has largely focused on
consensus, while applied research has focused on reliable broadcast and its variants [HT94].

Given their wide applicability, fault-tolerant broadcasts and consensus have been exten-
sively studied, resulting in a voluminous literature. However, according to Hadzilacos and
Toueg [HT94] this extensive literature is not distinguished for its coherence and the close
relationship among these problems is often obfuscated. In fact, total order broadcast and
consensus are equivalent problems, i.e., if there exists an algorithm that solves one problem,
then it can be transformed to solve the other problem. Dolevet al [DDS87] have shown that
total order broadcast can be transformed into consensus, and Chandra and Toueg [CT96] have
shown that consensus can be transformed into total order broadcast.

Fault-tolerant broadcasts are communication primitives that facilitate the development of
fault-tolerant applications. The weakest among these is reliable broadcast allowing processes
to broadcast messages such that all processes agree on the set of messages they deliver, despite
failures. Stronger variants of reliable broadcast impose additional requirements on the order
in which messages are delivered (e.g., processes may have to deliver all messages in the same
order).

Reliable broadcast is the weakest type of fault-tolerant broadcast and it guarantees three
properties:

1. All correct processes agree on the set of messages they deliver.

2. All messages broadcast by correct processes are delivered.

3. No spurious messages are ever delivered.

For some applications, these properties may be su�cient however, reliable broadcast im-
poses no restriction concerning the order in which the messages are delivered. However in some
applications message delivery order is important, thus, a collection of stronger types of broad-
casts, di�ering in the guarantees they provide on message delivery order, will be described
based in the de�nitions/taxonomy of Hadzilacos and Toueg [HT94].

FIFO broadcast is a reliable broadcast that guarantees that messages broadcast by the
same sender are delivered in the order they were broadcast. Causal broadcast, requires mes-
sages to be delivered according to the causal precedence relation, i.e., if the broadcast ofm
causally precedes the broadcast ofm' thenm must be delivered beforem'. If two messages are
not causally related, however, di�erent processes can deliver them in di�erent orders.Atomic
broadcast prevents this undesirable behavior by requiring processes to deliver all messages in

2.3 Dependability and Real-time Communication 27

the same order. Finally, FIFO atomic broadcast combines the requirements of FIFO broad-
cast and atomic broadcast, and causal atomic broadcast combines the requirements of causal
broadcast and atomic broadcast.

The subsequent de�nitions of the various types of broadcast assume the occurrence of
benign failures only, in order to simplify the de�nitions and also to strengthen the properties
of broadcasts in ways that are important in practice. After presenting the de�nitions of
the various types of broadcasts, the modi�cations necessary to consider arbitrary failures
(Byzantine) will be presented.

Reliable broadcast

Reliable broadcast [HT94] requires that all correct processes deliver the same set of mes-
sages (Agreement), and that this set includes all the messages broadcast by correct processes
(Validity) but no spurious messages (Integrity).

More formally, reliable broadcast is de�ned in terms of two primitives: broadcast and
deliver. When a process p invokes broadcast with a message m as a parameter, then p
broadcasts m. It is assumed that m is taken from a set M of possible messages. When a
process q returns from the execution of deliver with message m as the returned value, then
q delivers m.

Since every process can broadcast several messages, it is important to univocally identify
the message's sender, and to distinguish between the di�erent messages broadcast by a par-
ticular sender. Thus, every messagem includes the identity of its sender, denoted sender(m),
and a sequence number, denoted seq#(m). If sender(m) = p and seq#(m) = i then m is the
ith message broadcast by p.

Reliable broadcast is a broadcast that satis�es the following three properties:

• Validity: If a correct process broadcasts a messagem, then it eventually deliversm.

• Agreement: If a correct process delivers a messagem, then all correct processes eventu-
ally deliver m.

• Integrity: For any message m, every correct process deliversm at most once, and only
if m was previously broadcast by sender(m).

Validity together with agreement ensures that a message broadcasted by a correct process
is delivered by all correct processes. However, if the sender of a messagem is faulty, the
speci�cation of reliable broadcast allows two possible outcomes: eitherm is delivered by all
correct processes or by none. For example, if a processp crashes immediately after invoking
broadcast(m), correct processes will never be aware of p's intention to broadcast m, and
thus cannot deliver anything. On the other hand, ifp invokes broadcast(m) and fails during
the execution of this primitive after having sent enough information aboutm, then correct
processes may be able to deliverm.

28 Chapter 2. Concepts of dependable real-time communication

FIFO broadcast

FIFO broadcast aims to contextualize each message to avoid message misinterpretation.
In this way, a message should not be delivered by a process that does not know its context. In
some applications, the context of a messagem consists of the messages previously broadcast
by the sender of m. For example [HT94], in an airline reservation system, the context of
a message canceling a reservation consists of the message that previously established that
reservation: the cancelation message should not be delivered at a site that has not yet "seen"
the reservation message. Such applications require the semantics of FIFO broadcast, a reliable
broadcast that satis�es the following requirement on message delivery:

• FIFO order: If a process broadcasts a message m before it broadcasts a message m',
then no correct process deliversm' unless it has previously deliveredm.

Causal broadcast

FIFO order is adequate when the context of a messagem consists only of the messages that
the sender of m broadcast before m. A message m, however, may also depend on messages
that the sender of m e�ectively delivered before broadcasting m. In this case, the message
delivery order guaranteed by FIFO broadcast is not enough. An example of this [HT94] is
a network news application where users distribute their articles with FIFO broadcast. The
following undesirable scenario could occur:

1. User A broadcasts an article;

2. User B, at a di�erent site, delivers that article and broadcasts a response that can only
be understood by a user who has already seen the original article;

3. User C delivers B's response before delivering the original article from A and so misin-
terprets the response.

Causal Broadcast intensi�es FIFO broadcast by preventing the previous problem gener-
alizing the notion of a message depending on another one, and ensuring that a message is
not delivered until all the messages it depends on have been delivered. This more general
notion of dependence is captured with the causal precedence relation on message broadcasts
and deliveries. Given a causal precedence relation, causal broadcast is de�ned as a reliable
broadcast that satis�es:

• Causal order: If the broadcast of a message m causally precedes the broadcast of a
message m', then no correct process deliversm' unless it has previously deliveredm.

2.3 Dependability and Real-time Communication 29

Atomic broadcast

If the broadcasts of two messages are not related by causal precedence, causal broadcast
does not impose any requirement on the order they can be delivered. In particular, two correct
processes may deliver them in di�erent orders. This disagreement on message delivery order is
undesirable and potentially catastrophic in some applications. For example [HT94], consider
a replicated database with two copies of a bank account X residing at di�erent sites. Initially,
X has a value of 100e. A user deposits 20e triggering a broadcast of "add 20e to X" to the
two copies of X. At the same time, at a di�erent site, the bank initiates a broadcast of "add
10% interest to X". Because these two broadcasts are not causally related, causal broadcast
allows the two copies of X to deliver these update messages in di�erent orders. This results
in the two copies of X having di�erent values, creating an inconsistency in the database.

To prevent such problems, atomic broadcast requires that all correct processes deliver all
messages in the same order. This total order on message delivery ensures that all correct
processes have the same view of the system, allowing them to act consistently without any
additional communication. Formally, an atomic broadcast is a reliable broadcast that satis�es
the following requirement:

• Total order: If correct processes p and q both deliver messagesm andm', then p delivers
m before m' if and only if q delivers m before m'.

The agreement and total order requirements of atomic broadcast imply that correct pro-
cesses eventually deliver the same sequence of messages.

FIFO atomic broadcast

Atomic broadcast does not require that messages be delivered in FIFO order. For example,
atomic broadcast allows the following scenario: a process su�ers a transient failure during the
broadcast of a message m, and then broadcasts m', and correct processes only deliver m'.
Thus, atomic broadcast is not stronger than FIFO broadcast. Therefore, there is the need
to de�ne FIFO atomic broadcast which is a reliable broadcast that satis�es both FIFO order
and total order. FIFO atomic broadcast is stronger than both atomic broadcast and FIFO
broadcast.

Causal atomic broadcast

FIFO atomic broadcast does not require messages to be delivered in causal order. Con-
sidering again the earlier network news example, and supposing that FIFO atomic broadcast
is used to disseminate articles. The following undesirable scenario is possible. Faulty user A
broadcasts an article and faulty user B, who is the only one to deliver that message, broadcasts
a response and then immediately crashes (before delivering its own response). Correct user

30 Chapter 2. Concepts of dependable real-time communication

C delivers the response, although it never delivers the original article. Thus, FIFO atomic
broadcast does not necessarily satisfy causal order.

Causal atomic broadcast is, then, a reliable broadcast that satis�es both causal order and
total order. Causal atomic broadcast is stronger than both FIFO atomic Broadcast and causal
broadcast. This type of broadcast is the key mechanism of the State Machine approach to
fault-tolerance [Sch90].

The relations among these six types of broadcasts, in terms of their order properties, is
illustrated in Figure 2.2.

Reliable

broadcast

Atomic

broadcast

FIFO

broadcast

FIFO Atomic

broadcast

Causal

broadcast

Causal Atomic

broadcast

Total order

Total order

Total order

FIFO order

Causal order

FIFO order

Causal order

Figure 2.2: Relationship among the broadcast primitives (adapted from [HT94]).

Timed broadcasts

Real-time applications require that if a message is delivered at all processes, then it is
delivered within a bounded time after it was broadcast. This property is called∆-Timeliness.
As usual, in a distributed system elapsed time can be interpreted in two di�erent ways: real-
time as measured by an external observer, or local time, as measured by the local clocks of
the processes. This originates two di�erent ways of de�ning the∆-Timeliness property. The
one corresponding to real-time is:

• Real-time ∆-Timeliness: There is a known constant ∆ such that if a message m is
broadcast at real-time t, then no correct process deliversm after real-time t + ∆.

On the other hand, the de�nition of ∆-Timeliness in terms of local clocks bounds the
di�erence between the local broadcasting time and the local delivery time. To formally specify
such a bound, it is assumed that each messagem contains a timestamp ts(m) denoting the
local time at which m was broadcast according to the sender's clock. That is, if a processp

2.3 Dependability and Real-time Communication 31

wishes to broadcast a messagem when its local clock shows c, then p tags m with ts(m)=c.
The de�nition of ∆-Timeliness that corresponds to local time is:

• Local-time ∆-Timeliness: There is a known constant ∆ such that no correct process p
delivers a message m after local time ts(m)+ ∆ on p's clock.

A broadcast that satis�es either version of the ∆-Timeliness property is called a timed
broadcast. For example, timed reliable broadcast is a reliable broadcast that satis�es local-
or real-time ∆-Timeliness. When referring to a timed broadcast, one must explicitly state
which of the two timeliness properties is assumed. The parameter∆ is called the latency of
the timed broadcast.

Uniformity

The agreement, integrity, order, and∆-Timeliness properties of the broadcasts de�ned so
far place no restrictions on the messages delivered by faulty processes. Since up until now,
only benign failures have been considered, such restrictions are desirable and achievable. For
example, the agreement property states that if a correct process delivers a messagem, then
all correct processes eventually deliverm. This requirement allows a faulty process to deliver
a message that is never delivered by the correct processes. This behavior is undesirable in
many applications, such as atomic commitment in distributed databases [BHG86][zBT93] and
can be avoided if the failures are benign. For such failures, the agreement property can be
strengthened to:

• Uniform agreement: If a process (whether correct or faulty) delivers a messagem, then
all correct processes eventually deliverm.

Likewise, the other properties of broadcasts can be strengthened to include the case of
messages delivered by faulty processes.

Broadcast speci�cations for arbitrary failures

The broadcast speci�cations presented so far were based in the assumption that only
benign failures could occur. In order to support arbitrary failures, some modi�cations to
these speci�cations are required. As it was previously discussed (beginning of section2.3.3),
processes are allowed to broadcast and deliver any messagem ∈ M and each message must
include some �elds, such as a sender's ID,sender(m), a sequence number, seq#(m) and possibly
a timestamp, ts(m). In a system with arbitrary failures, it cannot be assumed that messages
broadcast by processes that commit arbitrary failures belong toM since they may not have
the appropriate �elds and so it is expectable that correct processes ignore such messages.
With this latter assumption, a correct process can always extract sender(m), seq#(m) and
when appropriate, ts(m) from any message m that it delivers. Notice that a process p that

32 Chapter 2. Concepts of dependable real-time communication

commits arbitrary failures may broadcast a messagem with sender(m) 6= p or with the wrong
sequence number, or with a totally arbitrary timestamp.

Consider the case of reliable broadcast with arbitrary failures. The de�nitions of Validity
and Agreement only refer to messages broadcast and delivered by correct processes, and thus,
are not changed. There are, however, some problems with the de�nition of Integrity, which
needs to be rede�ned for the case of arbitrary failures, as follows:

• Integrity: For any message m, every correct process delivers m at most once, and if
sender(m) is correct then m was previously broadcast by sender(m).

Considering now the case of FIFO broadcast, the benign failure version of FIFO order
imposes an order on the delivery of messages broadcast by a processp that may be faulty.
However, if p commits arbitrary failures, such an order is not meaningful. Thus, in the case
of arbitrary failures, the order requirement is weakened by restricting its application only to
messages broadcast by correct processes:

• FIFO order: If a correct process broadcasts a messagem before it broadcasts a message
m', then no correct process deliversm' unless it has previously deliveredm.

According to [HT94], the de�nition of causal broadcast in the presence of arbitrary failures
is of questionable utility, since the context of a message broadcast by a correct process, i.e.,
its causal past, may include the delivery of a message from a process that committed arbitrary
failures. Thus, causal broadcast with arbitrary failures is usually not considered.

In what concerns atomic broadcast with arbitrary failures, the de�nition of reliable broad-
cast in that case has already been provided and the de�nition of total order refers only to
deliveries by correct processes. Hence the de�nition of atomic broadcast remains unchanged,
for the case of arbitrary failures.

Finally, each version of ∆-Timeliness is considered. The de�nition of Local-time ∆-
Timeliness refers only to actions of correct processes, and remains unchanged. Real-time
∆-Timeliness however, refers to the real-time at which a message is broadcast, which is an
ambiguous de�nition since the sender of that message may be subject to arbitrary failures.
This problem is circumvented by restricting the requirement to messages broadcast by correct
processes only:

• Real-time ∆-Timeliness: There is a known constant ∆ such that if a message m is
broadcast by a correct process at real time t, then no correct process delivers m after
real-time t + ∆.

Inconsistency and contamination

The problem of contamination comes from the observation that, even with the strongest
speci�cation, total order broadcast does not prevent a faulty process p from reaching an

2.3 Dependability and Real-time Communication 33

inconsistent state. This is a serious problem because p can broadcast a message, in total
order, based on this inconsistent state, and thus contaminate correct processes [GT91][HT94].

Considering an application where processes communicate via fault-tolerant broadcasts
(Figure 2.3) and assuming that only benign failures may occur, the current state of every
process (whether correct or faulty) depends on the messages that it has delivered so far. This
state, and the application protocol that the process executes, determines whether it should
broadcast a message, and if so, the contents of that message.

Communication system

p

Application protocol

broadcast
(m)

q

Application protocol

deliver
(m)

Figure 2.3: Application protocol using broadcasts (adapted from [HT94]).

Figure 2.4 illustrates an example where an incorrect process contaminates the correct
processes. Process p3 delivers messages m1 and m3, but not m2. So, its state is inconsistent
when it multicasts m4 to the other processes before crashing. The correct processesp1 and
p2 deliver m4, thus getting contaminated by the inconsistent state ofp3.

If a process executes correctly prior to crashing, it is intuitive to assume that all message
deliveries before the crash are consistent with the rest of the system, however as the previous
example shows, this is not always true.

Inconsistency can be eliminated assuming benign failures, however this calls for a new
class of algorithms to implement reliable broadcast. Intuitively, a process can prevent its
contamination by refusing to deliver messages from processes whose previous deliveries are

m1

m1

m1

p1

p2

p3

m2

m2

m3

m3

m3

m4

m4

CRASH

m4

Figure 2.4: Contamination of correct processes p1 and p2 by a message m4 based on an
inconsistent state (p3 delivered m3 but not m2) (adapted from [DSU03]).

34 Chapter 2. Concepts of dependable real-time communication

not compatible with its own. The amount of information that each message should carry,
so that every process can determine whether it is safe to deliver it, depends on the type of
broadcast considered and on the failure assumptions. Preventing inconsistency is, however,
more di�cult and costly because it requires techniques that allow a faulty process to detect
whether it is about to make a message delivery error, and, if so, to immediately stop (i.e., to
implement a fail-silent failure mode). A precise de�nition of inconsistency and contamination
with respect to broadcasts can be found in [GT91].

It is important to remark that, with arbitrary failures, neither inconsistency nor contam-
ination can be prevented. This is because the state of a faulty process may be inconsistent
even if it delivers all messages correctly. This process may then contaminate the rest of the
system by broadcasting an erroneous message that seems correct to every other process.

2.3.4 Fail-silence failure mode
As it was referred in the previous section, to prevent inconsistencies and contamination, it

is desirable that a faulty process detects whether it is about to make a message delivery error
and, in that case, immediately stop its action, i.e., to implement afail-silent failure mode. The
very same behavior is also desirable in nodes of a distributed system, to avoid inconsistencies
and their propagation to other nodes. With fail-silence behavior, an error inside a node cannot
a�ect other nodes and thus each node becomes a separate fault con�nement region (FCR).

The use of fail silent nodes also reduces the complexity of designing fault-tolerant systems,
since only k+1 replicas are needed to tolerate k failures of a functional unit while, for fail
uncontrolled replicas 3k+1 are required.

According to [Tem98], a node is considered to be fail-silent if it:

• sends correct messages at speci�ed points in time that can be veri�ed as being correct
by all non-faulty receivers;

• sends corrupted messages at speci�ed points in time that can be identi�ed as being
corrupt by all non-faulty receivers. These messages are discarded.

• sends no messages at all;

This de�nition of fail-silence describes the behavior of a node both in the time and in value
domains. However, stronger constraints are made to the temporal behavior of a fail-silent node
than to the behavior in the value domain. This is so because fail-silence in the value domain
is not compromised as long as the messages sent are detectably corrupted, while fail-silence in
the time domain is violated whenever any deviation from the speci�ed instant, at which the
messages can be sent, occurs.

The alternatives to enforce fail silent behavior may be generically divided in two main
groups; the ones that result from adding redundancy to each node and ones that rely on
behavioral error detection techniques [Tem98].

2.3 Dependability and Real-time Communication 35

Using replicated processing within a node with output comparison or voting calls for the
use of mechanisms to keep the replicas perfectly synchronized and to avoid replicas to diverge
due, e.g. to asynchronous events. Synchronization at processor instruction level is the most
obvious way to achieve replica synchronism, driving identical processors with the same clock
source and evaluating their outputs (either comparing or voting) at critical instants, e.g. every
bus access. Special care must be taken with asynchronous events that must be delivered to the
processors so that all perceive the same event at the same point of their instruction streams.

Over the years many systems were designed based in double-processor fail silent nodes such
as Sequoia [Ber88] and Stratus [WB91]. However, these systems do have some drawbacks
[BES+96]. First of all the processors must exhibit the same deterministic behavior every
clock cycle and don't care states are not allowed so that they produce identical outputs.
Secondly, the use of special purpose hardware as comparators or voters, reliable clock sources
and asynchronous event handlers greatly increases the design complexity. Finally, due to their
operation in lock step, a transient fault could a�ect both processors in the same way, making
the node susceptible to common mode failures. An alternative approach to eliminate the
hardware level complexity of the solutions referred above is to transfer the replica synchronism
to a higher level (process or task level) using software protocols over a set of standard processors
operating independently of each other in a node. Task synchronization approaches were used
in SIFT [Wen78] and in Voltan [SES+92].

Behavioral error detection mechanisms, either in software or in hardware, are another
alternative for enforcing fail-silence behavior. Mechanisms such as checksums, watchdog timers
and processor monitoring, are usually implemented using COTS components. Error detection
latency is the major bottleneck of these systems since the error detection mechanisms are only
able to detect errors a relatively long time after they occur.

Bus guardians, which are autonomous devices with respect to the node network controller
and host processor, also implement behavioral error detection mechanisms that contribute
to reduce possible residual fail silent violations resulting from the error detection latency by
enforcing an adequate timing in the node transmissions.

Bus guardians

The purpose of the bus guardians is to increase the probability that nodes in a cluster will
face faults covered by the fault hypothesis only. This is usually accomplished by placing a
guardian at the component's network interface(s) and making it control the appearance of the
respective component at the interface acting, thus, as a failure mode converter [BKS03]. As a
result, the failure modes of the component are, at the interface to other components, replaced
by the failure modes of the guardian.

Figure 2.5 illustrates a generic setup of a guardian protecting a fault containment region.
Basically the guardian mimics the behavior of a component interface that is compliant to
the fault hypothesis. At its output interface the guardian will reproduce the input received

36 Chapter 2. Concepts of dependable real-time communication

Node

(Fault Containment

Region)

Bus

guardian

Output to

network

Input from

network

Figure 2.5: Generic bus guardian.

from the attached unit if this input complies to some speci�ed rules (e.g., the correct timing).
Otherwise the guardian will exhibit a prede�ned behavior, compliant with the fault hypothesis
(e.g., by blocking the network access to its attached unit). In this sense the bus guardian �lters
all transmissions to the network and disables network access from faulty nodes that otherwise
could occupy scheduled time of other nodes. In a limit situation, the babbling idiot failure
mode, in which a faulty interface transmits constantly, all legitimate network tra�c could be
disrupted if the bus guardian was not mediating the node's access to the network.

To be e�ective in the message �ltering, the bus guardian must fail independently with
respect to the interfaces it monitors, i.e. it must belong to a separate FCU (Fault Con�nement
Unit). Thus, it needs to have its own copy of the tra�c schedule and an independent knowledge
of the time [Rus01].

The bus guardian may be physically located as part of the node computer (e.g., by means
of self-checking mechanisms) or external to the node computer. While, in general, the �rst
approach is more cost-e�cient, the fault coverage of the second approach is higher but it is
also more expensive because it requires both a separate oscillator and power supply.

Recently, in some star topology con�gurations of TTP/C [BKS03], and as an option in
FlexRay [Con04b], the bus guardianship functionality can be moved to a central hub. The
obvious advantages of a central bus guardian are the price factor and the possibility to isolate
a faulty branch from the network. The centralized bus guardian is a fully independent fault
containment unit but it is at the same time a single point of failure. The duplication of the
central star hub may overcome this issue, however details about this feature on both TTP/C
and FlexRay are not available yet.

This recent trend towards star topologies is somewhat con�icting with one of the most
important bene�ts of �eldbuses: the reduced wiring harness. However, it favors dependability
because it becomes possible to isolate a defective branch from the network.

2.3.5 Replica determinism

A common approach to building fault-tolerant distributed systems is to replicate subsys-
tems (the servers) that fail independently. The objective is to give other subsystems (the

2.3 Dependability and Real-time Communication 37

clients) the illusion of service that is provided by a single server. There are two main groups
of replication protocols and derivatives to enforce consistency between replicas in distributed
systems: active and passive replication.

In active replication, also called state machine approach [Sch90], every replica, in par-
allel, receives and processes the same sequence of client requests and sends back the reply.
Consistency is enforced because when fed with the same inputs in the same order (usually
using atomic broadcast [WPS+00]), replicas will produce the same output. The requests are
handled independently but must be processed in a deterministic way. This method is simple
and possible node failures are transparent to the clients because other replicas also process
the requests. However the determinism constraint may be di�cult to enforce (e.g. in a multi-
threaded node).

In passive replication, also known as primary backup [BMST93], clients send their requests
to the primary replica that is responsible for processing them and returning the responses back
to the clients. The backup replicas only interact with the primary and apply the respective
updates. No determinism constraint is necessary but special care must be put on the mecha-
nisms that enforce agreement between primary and backups (usually a membership service).
A failure in the primary before sending the reply to the client cannot be masked by passive
replication. In this case the client will time-out and, after having identi�ed the new pri-
mary, re-issue the request. This signi�cantly increases response time, making this protocol
unsuitable for some time sensitive applications.

Two variants of these replication protocols are semi-active and semi-passive replication. In
the former, the replicas do not need to process client requests in a deterministic way. Each
time replicas need to make non-deterministic choices, one of them (leader) makes the decision
and informs the others (followers). In semi-passive replication [DSS98], the client sends its
request to all replicas and every replica sends a response back to the client. Thus, the client
does not need to know the identity of the primary, neither the client needs to have time-outs
to detect the crash of the primary. Therefore the e�ect of failures is completely masked to the
client. Semi-passive replication is fully based on failure detectors and thus it does not require
a membership service.

Replication and real-time

Most of the work on synchronous and asynchronous replication protocols has been mostly
focused on applications for which real-time behavior was not a fundamental requirement.
However, real-time applications operate under strict timing and dependability constraints.
Hence, the problem of server replication poses additional challenges in a real-time environment.

Several experimental projects have addressed the problem of replication in real-time sys-
tems, e.g., the Time-Triggered Protocol (TTP) [KG94], RTCast [ASJS96], the real-time pub-
lisher/subscriber model [RGS95], the Window-Consistent Replication Service [MRJ97] and
the Real-Time Primary-Backup (RTPB) [ZJ98].

38 Chapter 2. Concepts of dependable real-time communication

TTP uses a time-triggered scheme to provide predictable immediate message delivery,
membership service, and redundancy management in fault-tolerant real-time systems. The
design of TTP is simpli�ed by assuming that messages sent are either received by all correct
destinations or no destination at all (which is reasonable for the redundant bus used in TTP).
Also the architecture is based on the assumption that worst-case load is determineda priori at
design time and the system response to external events is cyclic at pre-de�ned time intervals.

RTCast is a lightweight fault-tolerant multicast and membership service for real-time pro-
cess groups which exchange periodic and aperiodic messages. The service supports bounded
time message transport, atomicity and order for multicasts within a group of communicat-
ing processes in the presence of processor crashes and communication failures. It guarantees
agreement on membership among the communicating processes, and ensures that membership
changes resulting from joining or departing processors are atomic and ordered. Both TTP and
RTCast are based on active replication.

The publisher/subscriber model for distributed real-time systems, presented by Rajkumar
et al [RGS95], provides a simple user interface for publishing messages on a logicalchannel and
for subscribing to selected channels as needed by each application. In the absence of faults each
message sent by a publisher on a channel should be received by all subscribers. The abstraction
hides a portable, analyzable, scalable and e�cient mechanism for group communication. It
does not, however, attempt to guarantee atomicity and order in the presence of failures, which
may compromise consistency.

The Window-Consistent Replication Service, presented by Mehraet al [MRJ97], adopts a
passive replication scheme in the scope of process control systems, where upon the primary
backup failure the system switches to the backup node within a few hundred milliseconds. In
that time there can be hundreds of updates to the data repository. This makes it impractical,
and perhaps impossible, to update the backup synchronously each time the primary repository
changes. The proposed alternative exploits the data semantics by allowing the backup to
maintain an older copy of the data that resides on the primary. The application may have
distinct tolerances for the staleness of di�erent data objects. With su�ciently recent data,
the backup can safely supplant a failed primary; the backup can then reconstruct a consistent
system state by extrapolating from previous values and new sensor readings. However, the
system must ensure that the di�erence between the primary and the backup data is bounded
within a prede�ned time window. Data objects may have distinct tolerances in how far
the backup can lag behind before the object state becomes stale. This protocol bounds the
distance between the primary and the backup such that consistency is not compromised, while
minimizing the overhead in exchanging messages between the primary and its backup.

Roughly speaking, this protocol works as follows: a client application registers a data
object declaring the consistency requirements for the data in terms of a time window. The
primary selectively transmits to the backup, as opposed to sending an update every time
an object changes, bounding both resource utilization and data inconsistency. The primary

2.3 Dependability and Real-time Communication 39

ensures that each backup site maintains a version of the object that was valid on the primary
within the preceding time window by scheduling these update messages.

Finally, RTPB replication scheme builds upon the previous Window-Consistent replication
protocol by proposing a more general temporal consistency model and an inter-object temporal
consistency.

2.3.6 Membership

A membership service is a service used in a distributed system to maintain information
about which sites are functioning and which have failed at any given time [HS95]. The mem-
bership problem is a fundamental problem of distributed computing like clock synchronization
and atomic broadcast, in the sense that once solved, it allows easy solutions to other important
problems encountered when designing fault-tolerant distributed applications.

A group membership protocol manages the formation and maintenance of a set of processes
called a group. For example, a group may be a set of processes that are cooperating towards
a common task, e.g., the primary and backup servers of a database. In general, a process
may leave a group because it failed, it voluntarily requested to leave, or it is expelled by other
members of the group. Similarly, a process may join a group; for example, it may have been
selected to replace a process that has recently left the group. A group membership protocol
must manage such dynamic changes in some coherent way.

There are numerous group membership protocols proposed in the literature for synchronous
systems, following the initial work of Cristian [Cri91]. However, this problem cannot be solved
in asynchronous systems with crash failures [CHTCB96].

2.3.7 Faults and fault models

A fault in the channel is one event that a�ects any element of the physical layer of the
network (cable, connectors, transceiver's circuitry, etc.). This fault can have either internal
or external origin with respect to its location in the system.

Internal faults represent the malfunctioning/damaged parts of a system that induce errors.
These faults occur due to physical defects during manufacture or due to component aging.
Most internal faults are likely to be permanent or intermittent because the e�ects of physical
defects (e.g., broken, short, or loose connections) tend to persist or cycle between active and
inactive states.

External faults, on the other hand, result from environmental interferences or disruptions,
such as electromagnetic perturbation, radiation, temperature, or vibration. These external
faults can be transient because disruptive environmental conditions, e.g.,electromagnetic in-
terference (EMI) are temporary and may cause functional error modes without actual com-
ponent damaging.

Techniques to minimize both internal and external induced faults, such as cable screening,

40 Chapter 2. Concepts of dependable real-time communication

di�erential signaling and robust connectors have been widely used. However, these techniques
are not perfect and do not fully prevent faults to occur. The number and the impact of these
faults depends on the cabling harness, the environment and on a range of other possible factors.
The inherently stochastic nature of the sources of EMI, as lightning, radar, mobile phones,
voltage switching and so on, makes it very di�cult to measure or predict the e�ects of EMI.
In fact, EMI induced faults cannot be predicted with any accuracy [IEE00] in an unstructured
environment. Nevertheless, statistics representing the e�ect of the most common sources of
EMI can be collected, helping to better characterize and anticipate the e�ect of EMI (and
other sources) induced faults in the system. The same reasoning can be applied to the sources
of internal faults. However, to be analyzable a bus system requires a model of the expected
faults, otherwise no dependability guarantees could be expected. This calls for the de�nition
of some assumptions concerning the number and type of faults, i.e., the fault model.

There have been several attempts to model faults in bus systems. Tindellet al. [TBW95]
presented a deterministic fault model for the CAN bus that enables calculating an upper
bound for frame response times on CAN in the presence of faults. Tindell's error model is
based in the assumption that the number of errors can be upper bounded during a given
time period and faults were treated as sporadic single-bit faults with a minimum separation
between faults. Tindell's model is simple and it is useful to compute the bandwidth overhead
required to meet the deadlines, however it fails to mimic the nature of real faults. As a result
the frame response time overhead penalty is too high and not necessarily justi�ed in practical
cases [BBRN04].

Some of these shortcomings were removed by Punnekkat et al. [PHN00] by providing a
more general fault model which can deal with interference caused by several speci�c sporadic
sources. The framework considers the most predominant forms of interference in a given
application (as mobile phones and radars) and assumes that speci�c patterns of interference
can be derived by collecting error statistics. The patterns are characterized by an initial burst
of faults and then a sporadic distribution of faults with a known minimum inter-arrival time.
It is a form of bounded model. The main advantage of this approach is the ability to model
speci�c interference patterns. However, as all bounded fault models, it is di�cult to have
absolute con�dence in the accuracy of the model and it can easily lead to a poor bandwidth
utilization.

Ru�no et al. [RVA+98] proposed an alternative way to model faults in CAN, not con-
sidering the faults at the physical layer directly but instead modeling them at a higher level.
This fault model de�nes an omission degree assumption that at mostn retransmissions of
that frame are required to deliver a frame. This model has the following properties:

• Bounded Omission Degree: in a known time interval, omission failures may occur in at
most k transmissions.

• Bounded Inaccessibility: in a known time interval, the network may be inaccessible at

2.3 Dependability and Real-time Communication 41

most i times, with a total duration of at most Tina.

This model is simpler than the previous and also requires error statistics to tune its pa-
rameters.

The three frameworks previously presented use models based on either a minimum inter-
arrival time between faults or on a bounded omission degree. Therefore they assume that the
overhead of faults that can occur isbounded and hence it is possible to compute worst case
response time analysis in a deterministic way.

However, as referred before, faults are random and cannot be reliably characterized by a
bounded model. This leads to two problems [Bro03]:

• In order to have con�dence that the analysis covers the worst case fault conditions, the
worst case overhead due to faults must be set very high (to guarantee all deadlines); this
results in so much spare bandwidth being reserved that there is very little available for
normal messages.

• At run time, there is no guarantee that the faults will actually conform to the assump-
tions used for analysis.

Some authors [KS94][NYQS00][BPSW99a], however, realized that faults are a random
phenomenon and in essence, a random phenomenon tends to better obey probabilistic laws
rather than deterministic ones. In this way, faults are modeled as a random pulse sequence
with an exponential distribution of inter-arrival times, forming a Poisson distribution [KS94].
According to this probabilistic model, there is neither a guarantee on the minimum sepa-
ration between faults, nor on the number of faults within an interval. Faults are assumed to
occur following a Poisson distribution (assuming independent faults), so in any given interval,
there is a non-zero probability of any number of faults occurring. In suchunboundedmodel,
a worst-case response time analysis is not possible if one wants to have absolute con�dence in
the results.

Navet et al. [NYQS00] adopted an unbounded model for CAN, that considers not only
the frequency of faults, but the duration of the faults. Both the frequency and gravity are
considered to follow Poisson distributions, which allows the overhead of the faults to be consid-
ered as a generalized Poisson distribution. The probabilistic response time analysis for CAN,
proposed by Navet et al., considers only the number of faults necessary to cause a failure
independently of how close they must occur. The computation of the response time analysis
is made in two steps:

1. Initial analysis, using the scheduling analysis of Tindell to calculate the maximum num-
ber of faults Ki that can be tolerated for each message before the deadline is reached,
considering that each fault generates a known maximum overhead which extends the
response time.

42 Chapter 2. Concepts of dependable real-time communication

2. Once the maximum number of faults (Ki) and the worst case response time that this
would generate are obtained, they are used in the second stage of the analysis with the
fault model to �nd the probability that a message may miss its deadline.

In this way, the probability of any given frame missing its deadline is known, and it is
called Worst Case Deadline Failure Probability (WCDFP). Since the fault model assumed by
Navet is a generalized Poisson process, the WCDFP can be analytically calculated fromKi.

Navet's model analysis is more complex than the previous, the analysis includes a number
of sources of pessimism in the estimation of the WCDFP [BBRN02] and it also requires
the value of three parameters that depend on the environment in which the system is used.
These parameters should be tuned during the design phase of the system based on real error
statistics. In this way, Navet's model strongly relies on real CAN error statistics which are
seldom available in the literature. In fact, up to our best knowledge, there are no public CAN
error statistics available apart from our recent work [FOFF04], which will be presented later
on.

In his work, Broster et al. [BBRN02] highlighted several sources of pessimism in Navet's
work and presented a new analysis that provides a probability distribution of worst case
response times under a random arrival (Poisson) fault model, to compute the probability of
deadline failures.

The general approach is to produce a probability tree of feasible scenarios starting from
a critical instant and then traversing the tree to calculate a distribution of response times.
Branch pruning, based on a threshold parameter for insigni�cant probabilities, limits the
size of the tree. This approach however, is rather computationally intensive and does not
necessarily cover all the search space. A more e�cient analysis was presented in [BBRN04].

The previously referred fault models and analysis of the probability of deadline failures
are targeted to CAN. One key feature of CAN is that if a fault occurs during transmission
of a frame, then the frame is automatically queued for retransmission. This can generally
be used to provide an assured delivery service but can also be the cause of uncertainty in
delivery timing since the number and distribution of faults determines the time at which a
frame is received. In contrast, other buses based on a time-triggered paradigm (e.g., ARINC-
629, TTP/C and FlexRay) do not respond to corrupted frames other than disregarding them.
These protocols leave all the concerns of absent data to the application. The result of this is
that the timeliness of the bus is preserved, but the number of messages that are lost is directly
proportional to the number and distribution of faults that occur.

Summarizing, with bounded models it is possible to precisely compute response times,
thus guaranteing message delivering timeliness, at the cost of a bandwidth overhead penalty
necessary to cover fault scenarios assumptions. However, this does not guarantee that, at run
time, faults will actually comply with the considered fault model. In contrast, unbounded
fault models do not allow a precise response time analysis computation and the analysis itself

2.4 Conclusion 43

is more complex than in the case of bounded models. However, these models are more realistic
and may lead to a reduced bandwidth overhead.

2.4 Conclusion
This Chapter presented some background information concerning real-time communication

in shared media and dependability in distributed systems. The concepts addressed in this
Chapter are the basis to understand the remainder of this dissertation.

In the case of bus based real-time communications, the bus is a shared medium between
all nodes and inter-node communication must be carried out within a bounded time and, thus,
it is imperative that the access to the bus is also bounded in time, which implies that the
medium access control (MAC) protocols must be deterministic.

A survey of the two main classes of MAC protocols, controlled and uncontrolled access,
was presented. In the former there is a distributed knowledge in the network concerning the
access rights to the bus, either based in the time or in explicit commands of a bus master, that
prevents the nodes to transmit messages simultaneously. Two sub categories are normally con-
sidered within this group: centralized(Master-Slave) and distributed control (Token-Passing,
Virtual Token-Passing, FTDMA, TDMA). In the latter category, uncontrolled access (CSMA,
CSMA-CD, CSMA-BA and P-Persistent CSMA), there is no distributed knowledge concern-
ing the bus access, so every node may attempt to transmit at any given instant and possible
collisions are detected and handled to prioritize access.

This Chapter has also addressed, at an introductory level, the issues of dependability in
the context of real-time communications. Particularly it focused on the basic dependability
and fault management concepts and presented a brief overview of some relevant topics and
results in the area of distributed consensus and fault-tolerant broadcasts. Subsequently, the
fail-silence failure mode was discussed together with the bus guardian concept, and the issues
of replication in the real-time context. Finally this Chapter concluded with a discussion of
several fault models.

44 Chapter 2. Concepts of dependable real-time communication

Chapter 3

Flexibility and safety of some bus
protocols

3.1 Introduction

Generically, the term �exibility is associated with the ability to adapt to new circun-
stances/events. It can, obviously, be applied in many di�erent contexts and thus, when
talking about �exibility, it is important to de�ne exactly to which context one is referring to.
In the context of communication systems one can refer to aspects such as the ability to use
di�erent physical media, topologies, bit encoding, the ability to support live insertion/removal
of nodes, the capacity to support on-line mode changes as well as fast download of new appli-
cation software, and the ability to support dynamic communication requirements. Basically,
the more options the system supports, the more �exible it is. From the previous listing one
can distinguish two main classes of �exibility attributes: pre-run time (e.g., physical media,
topology, bit-encoding and mode-changes) and dynamic (e.g., live insertion/removal of nodes
and dynamic communication requirements). Pre-run time �exibility attributes enlarge the
system designer's solutions space [BA04] and may even contribute to optimized designs in
terms of dependability and timeliness.

This is not the case of dynamic �exibility attributes that deal with evolving requirements,
thus possibly leading to unpredictable and possibly unsafe operating scenarios, if adequate
precautions are not taken. This is the reason why �exibility and safety have been considered
con�icting concepts [Kop97] and, therefore, there is a widespread belief that critical safety
implies a fully static system, meaning that all operating conditions must be completely de�ned
at pre-run time favoring the design of fault tolerance mechanisms and the certi�cation of the
resulting systems. This is emphasized in the aviation industry standard DO-255 [RTC00],
which states the following requirement for airborne computer systems:

"The ACR [Avionics Computer Resource] shall include internal hardware and soft-

45

46 Chapter 3. Flexibility and safety of some bus protocols

ware management methods as necessary to ensure that time, space and I/O allo-
cations are deterministic and static."

The issue of dynamic �exibility attributes becomes even more sensitive when the system
is distributed, with several nodes exchanging messages over a communication network. For
example, failures in message delivery or in remote nodes, even temporary, make it more di�cult
to assure a coherent notion of the global system state. Consequently, if on-line changes are
allowed in the operating parameters of the system, some nodes may not perceive these changes
equally, thus leading to inconsistency errors.

Furthermore, if the operating parameters can change on-line, unboundedly and uncon-
trolled, it is not possible to use a priori knowledge to distinguish correct system states from
incorrect ones. The use of a priori knowledge is of capital importance in safety-critical ap-
plications to distinguish between what is correct and what is wrong. A priori knowledge is
maximized when a system is fully static (or a system that supports a number of pre-de�ned
modes), since once the system is designed it will be always possible to anticipate what will
happen in a response to a given event.

However, it is also commonly accepted that �exibility is a desired property in a system
in order to support evolving requirements, simplify maintenance and repair, and improve the
e�ciency in using system resources. This last aspect is particularly related to operational
�exibility and it basically corresponds to use only the resources that are e�ectively required
at each instant. This e�ciency might impact positively on the system cost because with
the same resources one can add more functionality or one can o�er the same functionality
with fewer resources. This is particularly interesting to cost-sensitive industries, such as
the automotive industry. Also, �exibility can be used to achieve a better behavior under
exceptional circumstances such as faults and overloads [Le 92], favoring dependability.

A system supporting dynamic �exibility attributes requires aquasi-static notion of a priori
knowledge, i.e., a time interval during which system's attributes are �xed. Transitions between
these time intervals, in case of a request to change system's parameters, require �ltering the
requests in order to accept only those that conform to a previously de�ned set of possibilities
so that the continued safe and timely behavior of the system is guaranteed.

Therefore, despite its possible di�culty, it seems worth exploring ways to add operational
�exibility without jeopardizing system safety.

Flexible and dependable real-time communication is the key issue of this thesis. This
Chapter presents an overview of relevant topics in this �eld, including a discussion of �exibility
versus dependability in several communication protocols and architectures, namely Controller
Area Network (CAN) and CAN based protocols, TTP/C, FlexRay and ARINC-629.

3.2 CAN and CAN related protocols 47

3.2 CAN and CAN related protocols

Controller Area Network (CAN) is a popular and very well-known bus system, both in
academia and in industry, initially targeted to automotive applications as a single digital bus
to replace the wiring harnesses that were growing in complexity, weight and cost with the
advent of new electrical and electronic appliances in vehicles.

The widespread and successful use of CAN in the automotive industry, the low cost asso-
ciated with high volume production of controllers and CAN's inherent technical merit, have
driven to CAN adoption in other application domains such as: industrial communications,
medical equipment, machine tool, robotics and in distributed embedded systems in general.

The large installed base of CAN nodes (over 109 according to [iA]) with low failure rates
over almost two decades, led to the use of CAN in some critical applications such as Anti-
locking Brake Systems (ABS) and Electronic Stability Program (ESP) in cars. In parallel
with the wide dissemination of CAN in industry, the academia also devoted a large e�ort to
CAN analysis and research, making CAN one the must studied �eldbuses.

The widespread use of CAN in safety-critical applications is still, however, an open issue
with some arguing that it is not suitable [Kop98] while others argue that it may be adopted in
some applications if some precautions are adopted [Bro03][PF04]. The ones arguing against
the use of CAN come mostly from the dependable systems community where the dogma of
�xed time-triggered communication schedules prevails. It is clear that thea priori knowledge
of the communication schedule favors error detection and simpli�es the fault-tolerance mech-
anisms and the certi�cation process, however the ones in favor of CAN use in safety-critical
applications argue that CAN inherent �exibility can help reacting to transient overloads (e.g.,
due to electromagnetic interference), also that CAN may accommodate some kind of time-
triggered behavior and �nally that CAN has proved, over the years, its merits with low failure
rates.

In an e�ort to adapt CAN to the requirements of safety-critical applications (e.g., X-by-
wire), an ISO task force de�ned a protocol for a time-triggered transmission of CAN messages
(TT-CAN). Because the CAN protocol remains unchanged, it is possible to transmit both
time-triggered and event-triggered messages via the same physical bus system. According to
some authors [BBRN04][RP03][FOFF04], the e�orts to make a CAN extension more suitable
for safety-critical applications, were not fully successful. In fact, according to these authors,
native CAN is more robust than TTCAN.

This thesis argues that it is possible to provide a bounded degree of �exibility without
compromising dependability and proposes some mechanisms to building CAN based safety-
critical systems. The main focus of this work is the Flexible Time-Triggered CAN protocol:
a protocol that combines the predictability of time-triggered systems, favoring the design of
fault-tolerance mechanisms, and the �exibility of CAN, favoring the adaptation to evolving
conditions.

48 Chapter 3. Flexibility and safety of some bus protocols

In this context, a description of some relevant details of CAN is required to give the reader
su�cient knowledge of the protocol to understand subsequent Chapters. However, it is beyond
the objectives of this thesis to present a deep description of the CAN protocol. Speci�cation
documents [ISO93][BOS91] should be referred for a clearer and detailed description.

Over the years, several protocols based in CAN were presented. These protocols take
advantage of some CAN properties and try to improve some known CAN drawbacks. An
overview of CAN and some relevant CAN related protocols (TCAN, FlexCAN, FTT-CAN
and TTCAN) will be present next.

3.2.1 CAN

CAN protocol was introduced in the mid eighties by Robert Bosch GmbH [BOS91] and it
was internationally standardized in 1993 as ISO 11898-1 [ISO93]. CAN provides two layers
of the stack of the Open Systems Interconnection (OSI) reference model: the physical layer
the data link layer and optionally an additional application layer (not standardized). Notice
that CAN physical layer was not de�ned in Bosch original speci�cation, only the data link
layer was de�ned. However, the CAN ISO speci�cation �lled this gap and the physical layer
was then fully speci�ed. This collapsed OSI model is common to most of the �eldbuses,
where application services access the data link layer directly. Some higher-level ISO stack
protocols, e.g. CAN Kingdom [Fre95] and CANOpen [CiA02] are also de�ned and used in
some applications.

CAN is a message-oriented transmission protocol, i.e., it de�nes message contents rather
than nodes and node addresses. Every message has an associated message identi�er, which is
unique within the whole network, de�ning both the content and the priority of the message.

Network topology

CAN network topology is bus based. Replicated busses are not referred in CAN standard,
however it is possible to implement them [RVA99a].

Over the years, some star topologies for CAN have been proposed [Ruc94][IXX05][BRNPA04].
Cena [CDV01] also proposed a passive star for CAN, however it does not comply with CAN
standard and thus it will not be considered further. Solution presented in [IXX05], is based
in passive star network topology and rely on the use of a central element, the star coupler, to
concentrate all the incoming signals. The result of this coupling is then broadcast to the nodes.
The solution presented by Rucks [Ruc94] is based on an active star coupler capable of receiving
the incoming signals from the nodes bit by bit, implements a logical AND, and retransmits
the result to all nodes. None of these solutions is capable of disconnecting a defecting branch
and so, from the dependability point of view they only tolerate spatial proximity faults.

Recently, Barranco et al. [BRNPA04] proposed a promising solution based in an active
hub that is able to isolate defective nodes from the network. This active star is compliant with

3.2 CAN and CAN related protocols 49

CAN standard and allows detecting a variety of faults (stuck-at node fault, shorted medium
fault, medium partition fault and bit-�ipping fault) that will cause the faulty node to be
isolated.

Physical Layer

The CAN ISO standard, incorporates the original Bosch speci�cations [BOS91] as well as
part of the physical layer, the physical signaling, the bit timing and synchronization. There
are a small number of other CAN physical layer speci�cations including:

ISO 11898-2 High Speed � ISO 11898-2 is the most used physical layer standard for CAN
networks. In this standard the data rate is de�ned up to 1 Mbit/s with a theoretically
possible bus length of 40 m at 1 Mbit/s.

ISO 11898-3 Fault-Tolerant � This standard de�nes data rates up to 125 kbit/s with the
maximum bus length depending on the data rate used and the bus load. Up to 32
nodes per network are speci�ed. The fault-tolerant transceivers support the complete
error management including the detection of bus errors and automatic switching to
asymmetrical signal transmission.

SAE J2411 Single Wire � An unshielded single wire is de�ned as the bus medium and the
communication takes place with a nominal data rate of 33,3 kbit/s The standard de�nes
up to 32 nodes per network. The main application area of this standard is in comfort
electronics networks in vehicles.

ISO 11992 Point-to-Point � This standard de�nes a point-to-point connection for use
mainly in vehicles with trailers. The nominal data rate is 125 kbit/s with a maximum
bus line length of 40 m.

The most popular CAN physical layer protocol, available in most of the CAN transceivers,
is the one de�ned in the ISO 11898-2 standard [ISO93]. So, this physical layer protocol will
be the one adopted throughout this thesis.

The CAN physical layer provides a 2-state medium: the dominant and the recessive.
Whenever two nodes simultaneously transmit bits of opposite value, then all nodes should
read dominant. Usually the dominant state is associated with the binary value 0 and recessive
with the binary value 1.

The physical layer has a number of built-in fault-tolerant features. CAN provides resilience
against a variety of physical faults such as one open wire, the short-circuit of the two signal
wires, or even one of the signal wires shorted to ground or power. Notice that not all CAN
controllers are able to implement these features, by switching from di�erential signaling to
single line signalling, at higher bus speeds. The CAN di�erential electrical signaling mode is
very resistant to electromagnetic interference (EMI) since interference will tend to a�ect each

50 Chapter 3. Flexibility and safety of some bus protocols

side of a di�erential signal almost equally. However, the di�erential electrical signalling does
not fully prevent electromagnetic interference to a�ect the signal on the bus in such a way
that one or more nodes on the bus will simultaneously read a di�erent bit value from that
which was transmitted. A node detecting the error (possibly the transmitter) will invalidate
the message by transmitting an error frame. The number and the nature of EMI induced
transmission faults and the ability of the physical layer to prevent them depends on several
factors as the cables type and length, the number of nodes, the transceiver type, the EMI
shielding, etc. Also, as it was referred in the previous Chapter, the intrinsic nature of the EMI
phenomena makes it very hard to predict and model.

Data Link Layer

The data link layer of CAN includes the services and protocols required to assure a correct
transfer of information from one node to another.

There are four types of message on CAN: data frames, error frames, remote transmission
request frames and overload frames. The latter two types of messages are rarely used in real
application and, thus, will not be described further.

The CAN protocol supports two message frame formats, the only essential di�erence being
in the length of the identi�er. The CAN base frame format supports a length of 11 bits for
the identi�er (formerly known as CAN 2.0 A), and the CANextended frame format supports
a length of 29 bits for the identi�er (formerly known as CAN 2.0 B). The CAN base format
is su�cient for most applications and will be the format adopted in this dissertation.

Data on the bus is sent in data frames which consist of up to 8 bytes of data plus a header
and a footer. The frame is structured as a number of �elds, as depicted in Figure3.1.

Start

1 bit

Identifier

 11 bits

RTR

1 bit

IDE

1 bit

r0

1 bit

DLC

4 bits

Data

0..8 bytes

CRC

15 bits

ACK

2 bits

EOF+IFS

10 bits

...

...

Figure 3.1: CAN base frame format.

A CAN base frame message begins with the start bit calledStart Of Frame (SOF). This bit
is followed by the arbitration �eld which consist of the identi�er and theRemote Transmission
Request (RTR) bit used to distinguish between the data frame and the data request frame
called remote frame. The following control �eld contains the IDenti�er Extension (IDE) bit
to distinguish between the CAN base frame and the CAN extended frame, as well as the Data
Length Code (DLC) used to indicate the number of following data bytes in thedata �eld.
If the message is used as a remote frame, the DLC contains the number of requested data
bytes. The data �eld that follows is able to hold up to 8 bytes. The integrity of the frame is

3.2 CAN and CAN related protocols 51

guaranteed by the followingCyclic Redundant Check (CRC) sum. The ACKnowledge (ACK)
�eld comprises the ACK slot and the ACK delimiter. The bit in the ACK slot is sent as a
recessive bit and is overwritten as a dominant bit by those receivers which have at this time
received the data correctly. Correct messages are acknowledged by the receivers regardless
of the result of the acceptance test. The end of the message is indicated byEnd Of Frame
(EOF). The Intermission Frame Space (IFS) is the minimum time in equivalent number of bits
separating consecutive messages. Unless another station starts transmitting, the bus remains
idle after this.

Associated with every CAN message there is a unique message identi�er that de�nes its
content and also the priority of the message. Bus access con�icts are resolved by a non-
destructive bitwise arbitration scheme where the identi�ers of the involved messages are ob-
served bit-by-bit by all nodes, in accordance with the wired-AND mechanism, by which the
dominant state overwrites the recessive state. All those nodes with recessive transmission and
dominant observation lose the competition for bus access. The nodes that lost the arbitration
automatically become receivers of the message with the highest priority and do not re-attempt
transmission until the bus is available again. In this way, transmission requests are handled
in order of their importance for the system as a whole.

Detecting and signalling errors

A CAN node does not acknowledge message reception, instead it signals errors immediately
as they occur. For error detection the CAN protocol implements three mechanisms at the
message level:

Cyclic Redundancy Check � This mechanism accounts for message corruption. The trans-
mitter node computes the CRC and transmits it within the message. The receiver de-
codes the message and recomputes the CRC and if they do not match, there has been a
CRC error.

Frame check � This mechanism detects message format violations, i.e., it checks each �eld
against the �xed format and the frame size.

Acknowledge errors � Since the receivers of a message must issue an acknowledgement bit
in the ACK �eld, if the transmitter does not receive an acknowledgement an ACK error
is indicated, thus allowing a node to detect isolation from the network.

Besides error detection at the message level, the CAN protocol also implements mechanisms
for error detection at the bit level:

Transmission monitoring � Each node transmitting a message also monitors the bus level
to be able to detect di�erences between the bit sent and the bit received. This mechanism
allows distinguishing global errors from errors local to the transmitter only.

52 Chapter 3. Flexibility and safety of some bus protocols

Bit stu�ng � CAN uses a non return to zero codi�cation to prevent nodes from loosing syn-
chronization by receiving long sequences of recessive or dominant bits. A supplementary
bit is inserted by the transmitter into the bitstream after �ve consecutive equal bits.
The stu� bits are removed by the receivers that also detect violations of the bit stu�ng
rule.

If at least one station detects any error, it will start transmitting an error frame in the next
bit aborting the current message transmission. This prevents other stations from accepting
the message and thus ensures the consistency of data throughout the network. After trans-
mission of an erroneous message that has been aborted, the sender automatically re-attempts
transmission (automatic retransmission). During the new arbitration process all nodes com-
pete for bus access and the one with the higher priority message will win arbitration. Thus
the message a�ected by the error could be delayed. There is, however, a special case where
consistency throughout the network is compromised. This issue, will be detailed in Chapter
4.

To prevent a faulty CAN controller to abort all transmissions, including the correct ones,
the CAN protocol provides a mechanism to distinguish sporadic errors from permanent errors
and local failures at the station. This is done by statistical assessment of station error situa-
tions with the aim of recognizing a station's own defects and possibly entering an operation
mode in which the rest of the CAN network is not negatively a�ected. This may go as far as
the station switching itself o� (bus-o� state). This behavior will be described in Chapter4.

Bus guardianship

CAN protocol speci�cation does not mention using bus guardianship functionality to pro-
tect the network against a babbling idiot node. As it will be detailed in Chapter 4, the CAN
built-in fault containment mechanisms, capable of limiting the impact or even isolating from
the network faulty nodes (error passive, bus-o�), do not perform adequately in some scenarios
or when they do, the time to bus-o� could be too high for some applications.

This motivated the development of independent bus guardian for CAN by Tindell and
Hansson [TH95] and by Broster and Burns [BB03]. Tindell and Hansson suggested a special-
ized hardware driver to provide a robust defence against software failures leading tobabbling
idiot failure. Broster and Burns proposed an external bus guardian (a completely indepen-
dent node on the bus) capable of detecting most of babbling failures. Although the proposed
guardian cannot detect all babbling failures, the worst case babbling that cannot be detected
by a guardian is identi�able. Also, the worst case response time for any frame taking into
account the additional overhead from any undetectedbabbling is only slightly larger than the
worst case response time if babbling cannot occur. Broster and Burns bus guardian opera-
tion is based in the minimum message inter transmission time of a message stream. If that
condition is violated the faulty node is isolated from the bus.

3.2 CAN and CAN related protocols 53

Operational �exibility

The content-oriented addressing scheme adopted in CAN makes a CAN based system very
�exible in terms of live insertion/removal of nodes. This can be done without making any
hardware or software modi�cations, as long as the new nodes are purely receivers at the instant
of insertion/removal.

Despite not being so predictable as a time-trigger communication bus, the inherent �ex-
ibility of an event-triggered communication bus such as CAN provides some advantages. It
allows, for example, very e�cient error correction mechanisms to tolerate channel faults such
as electromagnetic interference which causes corruption of bits on the bus. In fact, Brosteret
al. have shown [BBRN02] that the probability of timely delivery of messages in CAN with
faults is higher than in TTCAN.

3.2.2 TTCAN

Time-Triggered Communication on CAN (TTCAN) [ISO01] is an extension of CAN, in-
troducing time-triggered operation based on a high precision network-wide time base. The
time-triggered communication is built on top of the unchanged standard CAN protocol, al-
lowing a software implementation of TTCAN, using existing CAN controllers (level 1 only).

There are two possible levels in TTCAN, level 1 and level 2. Level 1 only provides time trig-
gered operation using local time (Cycle_Time). Level 2 requires a hardware implementation
and provides increased synchronization quality, global time and external clock synchroniza-
tion. As native CAN, TTCAN is limited to a maximum data rate of 1 Mbit/s, with typical
data e�ciency below 50%.

Network Topology

TTCAN network topology is bus based. Replicated busses are not referred in TTCAN
standard, however it is possible to implement them [MFH+02].

Message Transmission

TTCAN adopts a Time-division Multiple Access (TDMA) bus access scheme. The TDMA
bandwidth allocation scheme divides the timeline into time slots, or time windows. Network
nodes are assigned di�erent slots to access the bus. The sequence of time slots allocated to
nodes repeats according to a basic cycle. Several basic cycles are grouped together in a matrix
cycle. All basic cycles have the same length, but can di�er in their structure. When a matrix
cycle �nishes the transmission scheme starts over by repeating the matrix cycle (Figure3.2).
The matrix cycle de�nes a message transmission schedule. However, a TTCAN node does not
need to know the whole system matrix, it only needs information of the messages it will send
and receive.

54 Chapter 3. Flexibility and safety of some bus protocols

Since TTCAN is built on top of native CAN, some time windows may be reserved for several
event messages. In such windows, it is possible that more than one transmitter may compete
for the bus access right. During these slots the arbitration mechanism of the CAN protocol is
used to prioritize the competing messages and to grant access to the higher priority one. In
this sense, the medium access mechanism in TTCAN can be described as TDMA with Carrier
Sense Multiple Access with Bitwise Arbitration (CSMA-BA) in some pre-de�ned time slots.
This feature makes the TTCAN protocol as �exile as CAN during the arbitration windows,
without compromising the overall system timeliness, i.e. the event-triggered messages do not
interfere with the time-triggered ones.

The TDMA cycle starts with the transmission of a reference message from a time master.
The reference messages are regular CAN messages with a special and knowna priori identi�er
and are used to synchronize and calibrate the time bases of all nodes according to the time
master's time base, providing a global time for the network.

TTCAN level 1 guarantees the time triggered operation of CAN based on the reference
message of a time master. Fault-tolerance of that functionality is established by redundant
time masters, the so called potential time masters. Level 2 establishes a globally synchronized
time base and a continuous drift correction among the CAN controllers.

There are three types of time windows (Figure 3.2):

• Exclusive time windows � for periodic messages that are transmitted without com-
petition for the CAN bus. No other message can be scheduled in the same window. The
automatic retransmission, upon error, is not allowed.

• Arbitrating time windows� for event triggered messages, where several event-triggered
messages may share the same time window and bus con�icts are resolved by the native
CAN arbitration. Two or more consecutive arbitrating time windows can be merged.
Message transmission can only be started if there is su�cient time remaining for the
message to �t in. Automatic retransmission of CAN messages is disabled (except for
merged arbitrating windows).

• Free time windows � reserved for future extensions of the network. A transmission
schedule could reserve time windows for future use, either for new nodes or to assign
existing nodes more bandwidth. Notice that a free time window can not be assigned to
a message unless it is previously converted to either an exclusive or an arbitrating time
window.

Bus Guardianship

The TTCAN standard draft claims that each TTCAN controller provides error detection
and fail silent behavior. This assumption seems excessive concerning the fail silent behavior.

3.2 CAN and CAN related protocols 55

���������
�����	�

���������
�����	�

���������
�����	�

���������
�����	�

���
��
�

���
��
�

���
��
�

���
��
�

���
��
�

���
��
�

������
����
������

���
��
�

������
����
������

���
��

������
����
������

���
��

����
������

���
��
�

���
��
�

����
������

���
��

���
��

���
��
�

���
��
�

���
��
�

���
��
�

���
��
�

��
���������
�� !���

"
��#
�$# � %

"
��#
�$# � &

"
��#
�$# � '

"
��#
�$# � (

���
��
�

Figure 3.2: TTCAN system matrix, where several basic cycles build the matrix cycle (adapted
from [FMD+00]).

Firstly, nothing is said about the fail silence nature (temporal domain, value domain or both),
secondly, no bus guardians are used to provide fail silence behavior in the temporal domain.
In fact, the following statement is made at Bosch's TTCAN homepage [Bos04]:

"Dedicated bus guardians are not needed in TTCAN nodes, bus con�icts between
nodes are prevented by CAN's non-destructive bitwise arbitration mechanism and
by CAN's fault con�nement (error-passive, bus-o�)".

It seems clear that, without bus guardians, a TTCAN node may always, due to e.g. an
application error, a corruption of the system matrix memory or to a fault on the local oscillator,
transmit a message in an exclusive time window belonging to another node, violating thus,
the fail silent assumption.

Nevertheless, errors are detected by the failure handling mechanisms of TTCAN and even-
tually all the transmissions from the faulty node will be disabled, leading to a fail silent be-
havior, but only after the occurrence of several errors (exact number depends on the error
nature).

Clock Synchronization

Clock synchronization in a TTCAN network is provided by a time master. The time
master establishes its own local time as global time by transmitting the reference message. To
compensate for slightly di�erent clock drifts in the TTCAN nodes and, to provide a consistent
view of the global time, the nodes perform a drift compensation operation.

A unique time master would be a single point of failure, thus TTCAN provides a mechanism
for time masters redundancy and replacement whenever the current time master fails to send
a reference message. In this case, the CAN bus remains idle and any of the potential time

56 Chapter 3. Flexibility and safety of some bus protocols

masters will try to transmit a reference message after a certain amount of time. In case two
potential time masters try to send a reference message at the same time, the native CAN bit
arbitration mechanism ensures that only the one with the highest priority wins. When a failed
time master reconnects to the system with active time triggered communication, it waits until
it is synchronized to the network before it may try to become time master again.

Error Detection

The strategy adopted, concerning fault con�nement, is very similar to the one followed by
CAN (ISO 11898-1), i.e., error passive and bus-o�.

Since CAN failures are already considered in ISO 11898-1 standard (data link layer),
TTCAN considers mainly scheduling errors (e.g. absence of a message) and each TTCAN
controller only provides error detection. Active fault con�nement is left to a higher layer or
to the application.

Operational Flexibility

TTCAN may work under several operational modes: con�guration mode, CAN commu-
nication, time-triggered communication or event synchronized time-triggered communication.
However, operating modes may only change via con�guration mode. The system matrix con-
�guration may be read and written by the application during initialization, but it is locked
during time-triggered communication, i.e., scheduling tables are locally implemented in every
node and must be con�gured before system start-up. As a result the operation �exibility of
TTCAN is quite limited, since the bus scheduling is static and de�ned at pre run-time.

3.2.3 FTT-CAN

The central proposition supported by this dissertation takes advantage of FTT-CAN to
implement devices and mechanisms capable of providing bounded �exibility without compro-
mising dependability.

The basis for the FTT-CAN protocol (Flexible Time-Triggered communication on CAN)
has been �rst presented in [AFF98]. Basically, the protocol makes use of the dual-phase
elementary cycle concept in order to combine time and event-triggered communication with
temporal isolation. Moreover, the time-triggered tra�c is scheduled on-line and centrally
in a particular node called master. This feature facilitates the on-line admission control of
dynamic requests for periodic communication because the respective requirements are held
centrally in just one local database. With on-line admission control, the protocol supports
the time-triggered tra�c in a �exible way, under guaranteed timeliness. Furthermore, there
is yet another feature that clearly distinguishes this protocol from other proposals concerning
time-triggered communication on CAN [PD95][ISO01] that is the exploitation of its native
distributed arbitration mechanism. In fact, the protocol relies on a relaxed master-slave

3.2 CAN and CAN related protocols 57

medium access control in which the same master message triggers the transmission of messages
in several slaves simultaneously (master/multi-slave). The eventual collisions between slave's
messages are handled by the native distributed arbitration of CAN.

The protocol also takes advantage of the native arbitration to handle event-triggered tra�c
in the same way as the original CAN protocol does. Particularly, there is no need for the
master to poll the slaves for pending event-triggered requests. Slaves with pending requests
may try to transmit immediately, as in normal CAN, but just within the respective phase of
each elementary cycle. This scheme, similar to the arbitration windows in TTCAN, allows
a very e�cient combination of time and event-triggered tra�c, particularly resulting in low
communication overhead and shorter response times.

In FTT-CAN the bus time is slotted in consecutive Elementary Cycles (ECs) with �xed
duration. All nodes are synchronized at the start of each EC by the reception of a particular
message known as EC trigger message, which is sent by the master node.

Within each EC the protocol de�nes two consecutive windows, asynchronous and syn-
chronous, that correspond to two separate phases (see �gure3.3). The former one is used to
convey event-triggered tra�c, herein called asynchronous because the respective transmission
requests can be issued at any instant. The latter one is used to convey time-triggered tra�c,
herein called synchronous because its transmission occurs synchronously with the ECs. The
synchronous window of the nth EC has a duration that is set according to the tra�c that is
scheduled for it. The schedule for each EC is conveyed by the respective EC trigger message
(see �gure 3.4). Since this window is placed at the end of the EC, its starting instant is variable
and it is also encoded in the respective EC trigger message. The protocol allows establishing
a maximum duration for the synchronous windows and correspondingly a maximum band-
width for that type of tra�c. Consequently, a minimum bandwidth can be guaranteed for the
asynchronous tra�c.

����� ��� ��� ��� ��� ��� ��

��	
��
��
��
��

������ ��

�� �������
�������

���

������� � !�
" ��� "

������ � !�
" ��� "

Figure 3.3: The Elementary Cycle (EC) in FTT-CAN.

In order to maintain the temporal properties of the synchronous tra�c, such as com-

58 Chapter 3. Flexibility and safety of some bus protocols

�� ��� ��

������	
��
���� ��
�

�
 �������
����
��

��� ��� ����

� � � � � � � � � � � � � � � �� �

��	 �� ��	 � ��	 � ��	 �

����������� ����
���

���

������� ����
�� �
	
 ����� ��
����������

Figure 3.4: Master/multislave access control. Slaves produce synchronous messages according
to an elementary-cycle schedule conveyed by the trigger message. If the x data bit is 1, then
message x is produced in this EC; if it is 0, then message x is not produced.

posability with respect to the temporal behavior, it must be protected from the potential
interference of asynchronous requests. Thus, a strict temporal isolation between both phases
is enforced by preventing the start of transmissions that could not complete within the respec-
tive window. This is achieved by removing from the network controller transmission bu�er
any pending request that cannot be served up to completion within that interval, keeping it
in the transmission queue. As a consequence, a short amount of idle-time may appear at the
end of the asynchronous window (α in Figure 3.3). At the end of the synchronous window,
another short amount of idle-time may appear. In this case, it is due to variations in the
stu�-bits used in the physical encoding of CAN messages.

The communication requirements are held in a database located in the master node [Ped03],
the System Requirements Database (SRDB). The SRDB holds the properties of each of the
message streams to be conveyed by the system, both real-time and non-real-time, as well as a
set of operational parameters related to system con�guration and status. This information is
stored in a set of three tables.

Synchronous Requirements Table (SRT) � This table contains the description of the
periodic streams of messages. The relevant parameters are an identi�cation, the data
length in bytes, the corresponding maximum transmission time, the period, the deadline,
a value that re�ects the importance of the stream in the application, the attributes that
indicate the operations that are acceptable over this stream and a list, or a range, of
possible values for any speci�ed parameter. The attributes allow limiting the level of
�exibility in a per stream basis. They may specify that no changes are accepted for a
given stream, or that the stream may be removed from the SRT, or that the period may
assume a value in a given range, or one value from a list of possible values. On the other

3.2 CAN and CAN related protocols 59

hand, they may also specify that a stream is unconstrained.

Asynchronous Requirements � The Asynchronous Requirements component is composed
by the reunion of two tables, the Asynchronous Requirements Table (ART) and the
Non-Real-Time Requirements Table (NRT). The ART is used to store the properties of
the asynchronous messages conveyed by the system that, despite being asynchronous,
may or may not have timeliness requirements. For example alarm messages usually
have hard timeliness requirements while messages used to perform remote diagnosis or
con�guration frequently do not have such timeliness constraints. The asynchronous
messages are scheduled according to a best-e�ort policy, based on �xed priorities. The
NRT stores the size of the longest non real-time message produced by each node, as
required to enforce the temporal isolation between synchronous and asynchronous tra�c.

Con�guration and Status Record (SCSR) � This record stores all system con�guration
data, i.e., the bus transmission speed, duration of the elementary cycle, minimum
amount of bandwidth allocated to asynchronous tra�c, etc.

Based on the SRT, an on-line scheduler builds the synchronous schedules for each EC.
These schedules are then inserted in the data area of the respective EC trigger message (see
�gure 3.4) and broadcast with it. Due to the on-line nature of the scheduling function, changes
performed in the SRT at run-time will be re�ected in the bus tra�c within a bounded delay,
resulting in a �exible behavior.

From an operational point of view, two di�erent solutions have been used to implement
the scheduler. One is the planning-scheduler [APF99], a software-based implementation that
allows reducing the processing overhead of on-line scheduling. This technique consists on
building a static schedule table for a given period of time into the future called plan and
rebuilding that table on-line at the end of each plan. The plan duration is not correlated with
the messages periods and thus the memory requirements to hold a plan table are bounded
and known a priori. The planning scheduler is particularly well suited to systems with low
computational capacity nodes (e.g. based on simple 8-bit microcontrollers). A negative feature
of this technique is its lower responsiveness to changes in the communication requirements,
when compared to normal on-line scheduling, arising from the static nature of each plan table.
Notice that changes in the SRT, which holds those requirements, are taken into account from
plan to plan, only. However, when the planning scheduler is used in the scope of FTT-CAN,
the limitation on system responsiveness can be substantially reduced by using asynchronous
messages to enforce the changes in communication requirements, temporarily, until they are
handled by the planning scheduler [PAF00].

The second solution that has been developed to implement the scheduling function in FTT-
CAN makes use of FPGA-based scheduling co-processors. This solution provides, at a higher
hardware cost, the extra computational capacity required to execute both the scheduling policy

60 Chapter 3. Flexibility and safety of some bus protocols

on-line as well as an adequate schedulability analysis. For example, the co-processor described
in [MF01] scans the SRT and creates a new EC schedule every EC. Moreover, it is also capable
of executing several schedulability tests in that interval. The result of this solution is a high
degree of �exibility and responsiveness, plus a residual computational overhead, only, in the
master processor.

3.2.4 Some emerging CAN based protocols
Several CAN based higher layer protocols have emerged over the years. Some of them

are widely used in industry, e.g., CANopen, CAN Kingdom and DeviceNet. However, due to
space limitations those protocols will not be presented and discussed in this work. Recently,
two other CAN based protocols targeted to safety-critical systems have also been proposed:
TCAN and FlexCAN. Since the scope of these new protocols is somewhat related with the
main topic of this work, they will be presented in the next sections.

TCAN

The Timely-CAN (TCAN) [Bro03] protocol was developed based on the observation that if
the message transmitter knows, when it starts to transmit a message, that it will arrive to the
receivers after the deadline, then it is better to drop such a message (Figure3.5). Aborting
a message in these circumstances can be considered a form of real-time error con�nement,
because no further message retransmissions will be attempted and the interference with other
network tra�c is bounded. According to this scheme, any messages that arrive will arrive in
time. The bandwidth released by not transmitting messages that would arrive late can be
used to absorb delays and hence help to provide timely delivery of other frames.

������� �

���	
��
������ � �����
�
���� ���� ��
�

�		�	

������� �

�		�	

������ �������� �������

��
� ���

�	
��
������

!�	���

Figure 3.5: Typical TCAN message transmission scenario.

Another factor that has contributed for the development of TCAN was the unpredictable
nature of faults that makes impossible the de�nition of o�-line guarantees of timely behavior,
even if an analysis based on fault models is used. In these cases, it is argued that losing
a message should not be considered fatal and the system should continue to function as
normally as possible without the message. Thus, the TCAN protocol relaxes the requirement
for message delivery by assuming that some messages will not be delivered at all.

3.2 CAN and CAN related protocols 61

Each TCAN frame is associated with a delivery threshold time, termed the latest send time
(LST), which is known a priori by all nodes. In this context, the role of message transmitters
is to ensure that a frame is not transmitted after the threshold while the role of the receivers
is to wait for receiving the frame only until the threshold. This, requires a common time base
and thus this is also a time-triggered scheme with a relaxed de�nition of transmission instant,
which can take place within a prede�ned window.

The TCAN protocol lies somewhere between CAN and TTCAN, since it takes advantage
of CAN native robustness by allowing message retransmission within a speci�ed window only,
providing, thus, the timing predictability of TTCAN. The duration of the transmission window
is determined by response time analysis.

Nevertheless, the TCAN protocol alone does not provide the kind of operational �exibility
that is pursued in this work, i.e., the ability of changing the communication requirements
online without compromising dependability. Implementing operational �exibility in TCAN
requires a mechanism for controlling the changes of the communication requirements and to
propagate those changes to all nodes.

FlexCAN and SafeCAN

FlexCAN is a recently proposed architecture [PF04] targeted for highly dependable safety-
critical systems. FlexCAN is built upon a specialized protocol termed SafeCAN [PK04] that
deals with error detection and management of replicated components, both buses and nodes.
The FlexCAN architecture has been validated in a steer-by-wire system [Pim04].

FlexCAN provides a set of software components, called safeware, that enable end users to
write safe applications without needing to design all the application from scratch. In this way,
end users deal with simpli�ed models because the details of the underlying protocol regarding
hardware recon�guration, replicated component management, fault and error detection and
fault con�nement, are hidden from them by SafeCAN.

There is no global clock in FlexCAN, message synchronization is done on an application
basis. That is, any data source, e.g., sensors, controllers and actuators in a control loop, can be
selected to produce time-triggered messages and all other network nodes should synchronize
with the message sent by the data source. Thus, FlexCAN uses an event-triggered com-
munication protocol (CAN) and a time-triggered synchronization protocol at the application
layer.

FlexCAN deals mainly with the replication of communication channels and nodes. A
FlexCAN fault-tolerant unit (FTU) is made of one node and 2 replicas (in a total of 3 nodes)
and each node is connected to 3 CAN channels, resulting in 9 network interfaces. SafeCAN
is responsible for error detection and node management in an FTU and manages the node
components to make them appear as a single node to the application.

SafeCAN assumes a set of application oriented time-triggered cycles termed application
cycles of length TS (Figure 3.6). The cycle is initiated by a data producer that sends a pro-

62 Chapter 3. Flexibility and safety of some bus protocols

ducer message (PM). Message consumers (e.g., controllers) receive the message, perform some
computations, and in turn may generate additional CAN messages for still other consumers
(e.g., actuators). Consumers may also generate feedback messages (CM). The set of replicated
components are termed primary, secondary, tertiary and so on. It is assumed that only one
controller message goes on each CAN channel and this message (C-P) is sent by the primary
controller. SafeCAN is responsible for selecting just one primary from a set of replicated
components identi�ed by a hardware serial number. All remaining components are designated
as secondary, tertiary, etc. according to a ranking mechanism. SafeCAN relies basically on
timers. If the primary controller does not send its message C-P after a delayτS then the
secondary controller S assumes that the primary has failed and will switch to primary and
output the C-P message as shown in Figure 3.6. If the secondary has also failed, the tertiary
component will output the C-P message after a delay τT . This procedure is repeated for
additional replicated components. Figure 3.6 also depicts the relative timing of the C-P and
CM messages.

�

���

������	
���
���� � ��

����	��
��������

����	��
���
������

������	��
���
������

�����	��
���
������

����	��
��������

��

��

��

��

��

��

��

�

�

�

��

��

��

��

��

��

��

��
�

Figure 3.6: Timed synchronization of SafeCAN messages (adapted from [PF04]).

3.3 Time-Triggered Protocol
The Time-Triggered Protocol (TTP/C)1 [TTT02] has been developed at the Technical

University of Vienna in 1993 to be used in safety critical real-time systems. Commercial
deployment of the protocol has been undertaken by TTTech since 1998. The main concern of

1The "C" stands for class C type systems, according to the Society of Automotive Engineers SAE classi�-
cation.

3.3 Time-Triggered Protocol 63

the protocol designers was safety, second composability and third �exibility [KG94]. Although
it is a communication protocol, its properties in�uence the design philosophy of the entire
computer architecture: the Time-Triggered Architecture (TTA) [HK03].

The TTP/C protocol supports the use of Fault-tolerant Units (FTU) that consist of two
or more identical replicas of each control computer. The protocol ensures that all operational
replicas receive the same input data and thus are coherent. In each FTU, two replicas are
active in sending messages while any additional nodes serve as shadow nodes that are passive
until one of the active replicas fails and becomes silent.

A TTP/C node (Figure 3.7) has a host computer, responsible for executing the applica-
tion software, a TTP/C controller and an input/output interface to sensors/acuators. This
electronic module is the smallest replaceable unit (SRU) in case of fault. The communication
network interface (CNI) is a dual-port memory that allows simultaneous access from the host
CPU and the controller to share data. The communication controller comprises the proto-
col engine, the storage of TTP/C control data (MEDL � Message Descriptor List) and an
independent hardware unit, the bus guardian to protect the bus from timing failures of the
controller.

I/O Interface Controlled Object

Host Computer

Bus Guardian

MEDL

Driver
 Driver

TTP/C bus

Protocol

Processor

Communication Network Interface

(CNI)

In
te

rr
u
p
t

T
T

P
/C

 C
o

n
tr

o
ll
e
r

Figure 3.7: Architecture of a TTP/C node.

64 Chapter 3. Flexibility and safety of some bus protocols

3.3.1 Network Topology

TTP/C networks can contain up to 64 nodes. The cabling topology can be bus, star, or any
combination of the two. Multiple stars or sub-buses on stars are also supported. A redundant
star topology with a bus guardian integrated into the star coupler should be adopted in safety-
critical TTP/C con�gurations. A dual bus is used where the two buses are synchronized and
always carry the same data. Each TTP controller sends and receives messages on both buses.

3.3.2 Message Transmission

Communication on the network proceeds according to a TDMA scheme, based on static
tables loaded at each node. This TDMA scheme divides time into slots each being statically
assigned to a particular node. During its slots the node has exclusive write permission to the
interconnection network. The slots are grouped into rounds: in the course of a TDMA round
every node is granted write permission in exactly one slot. Furthermore, nodes always send in
slots having the same relative position within a round; �nally, the slots assigned to a particular
node have the same length in each round (message payload between 2 and 236 bytes of data).
A cluster cycle comprises several TDMA rounds and multiplexes the slots assigned to a node
in succeeding TDMA rounds between di�erent messages produced by the node. Every node
has knowledge, stored in read-only memory, of the complete communications pattern (and not
only of the slots assigned to itself). These data are called message descriptor list (MEDL) and
allow nodes to know a priori the types of messages being sent or received. Thus, there is no
need for transmitting the sender IDs or message IDs explicitly. This static link is exploited in
the architecture for the purposes of error detection and bandwidth e�ciency.

A distributed fault-tolerant clock synchronization algorithm establishes the global time
base needed for the distributed execution of the TDMA scheme.

The scheduling paradigm adopted by TTP/C is static table-based and o�ine. The pre-
computed schedule is loaded into the Message Descriptor List (MEDL) of each controller and a
subset of the MEDL is also loaded in each bus guardian. As a result, every node has complete
knowledge of the complete TDMA scheme and not only the slots assigned to it.

TTP/C has two types of frames: I-frames (initialization frames) and N-frames (normal
frames). I-frames are used for system initialization and convey the internal state of the TTP/C
controller (C-state). This allows nodes waiting to participate in the protocol to join the
network when they receive an I-frame. I-frames are sent by the communication subsystem
during the startup phase of the protocol, and at prede�ned intervals during normal operation
of the protocol to facilitate re-integration of failed nodes. N-frames (normal frames) are used
during normal operation and contain application data. The header byte of a N-frame contains
two �elds: the �rst 1-bit �eld identi�es the message type, and a three bit mode change �eld
is used to request system-wide mode changes.

Available implementations of TTP/C rely either on a bus or star topology and protocol

3.3 Time-Triggered Protocol 65

processors (controllers) are available, implementing the TTP/C protocol. Currently TTP,
supports speeds up to 25 Mbit/s with typical data e�ciency of 60%.

TTP/C supports online mode changes, i.e., several communication schedules, or modes,
can be used and switched online. For example, an aircraft can be on the ground, in take-o�,
or landing and every one of these mutually exclusive phases is called a mode. Every mode has
its own schedule parameters in the MEDL but TTP/C requires that all modes are based on
the same TDMA slot sequence. All synchronized nodes of a TTP/C cluster must operate at
the same time in the same mode.

3.3.3 Bus Guardianship

In TTP/C each node has access to two communication channels and thus has two network
interfaces each with its own bus guardian. Each bus guardian [Tem98] has an independent
copy of the schedule and its own clock oscillator. However they do not synchronize inde-
pendently and share the same power supply and the same encapsulation as their controllers.
Consequently common mode failures are possible. Recently, the bus guardianship has been
moved to a central hub [BKS03], a fully independent fault containment region. However, it
is at the same time a single point of failure. The possible duplication of the central star hub
overcomes this issue. Hence, a safety-critical TTP/C con�guration requires an interconnection
network with two intelligent star couplers, one for each channel.

The guardians are integrated into the star coupler and each star coupler forms an FCR
with its own power supply, distributed clock synchronization system, and timing source. It
has a priori knowledge of the sending slots that are assigned to each node and opens the
respective gate only during the sending slot of a node. The star coupler also regenerates the
incoming signal stream based on its own clock and power supply in order to mask Slightly-of-
Speci�cation (SoS) failures of a sending node.

3.3.4 Clock Synchronization

In TTP/C the clock synchronization among an ensemble of clocks proceeds according to
the three distinct phases:

1. Every clock reads the time values of a well-de�ned ensemble of clocks. In order to
handle a Byzantine fault in each TMDA round, the clock synchronization algorithm
must operate in an ensemble of at least 4 nodes. These statically assigned nodes, the
master clocks, are used to generate the global time.

2. Every node calculates a correction term for its clock using the fault-tolerant average
(FTA) algorithm in order to calculate an average out of four statically selected time-
keeping clocks. Low quality clocks, that are not time-keeping clocks, may use dynamic
rate correction since they do not in�uence the characteristics of the global timebase.

66 Chapter 3. Flexibility and safety of some bus protocols

3. Every node applies the correction term to its local clock to bring its values into better
agreement with the ensemble.

TTP/C also supports external clock synchronization.

3.3.5 Error Detection

In TTP/C the receiver of a frame has knowledge about the physical identity of the sender
of a frame. This knowledge is used to provide error-detection capabilities at the architecture
level, such as a membership service and a clique avoidance service.

TTP/C nodes are assumed to be fail-silent nodes, i.e., they are either operational or
silent towards the rest of the system. The host computer is responsible for silence in the
value domain, while the TTP/C controller uses a bus guardian with its own clock that only
allows transmissions during the pre-allocated time slots, thus providing fail-silence in the time
domain.

A membership agreement service informs all nodes of a cluster about the operational state
of each node within a latency of about one TDMA round. A node is operational if:

• the host computer of the node has updated its life-sign within the last TDMA round
and

• the communication controller is operating and synchronized with the rest of the cluster.

If the host computer has not updated the life-sign, the host is considered non-operational
and the communication controller does not send a frame. The controller remains synchronized
by receiving all frames, but it is unable to transmit.

In TTP/C all nodes are forced to implicitly agree on their controller states (C-states). The
controller state consists of three �elds: the MEDL position, the time, and the membership.
The MEDL position �eld is a pointer to the current entry in the MEDL. The time �eld contains
the global time at the beginning of the current FTU slot. The membership �eld indicates which
FTUs have been active and which FTUs have been inactive at their last membership point.
To enforce C-state agreement between a sender and a receiver the CRC of a normal message
is calculated over the message contents concatenated with the local C-state. A receiver can
only interpret the frame if sender and receiver agree about the controller state at the time
of sending and receiving. In case the C-state of the sender di�ers from the C-state of the
receiver, the message will be discarded by the receiver due to the di�erent CRC.

Re-integration frames are used to re-integrate silent nodes. The result of the checksum
calculation used in TTP/C is such that all active nodes have a consistent C-state. However,
it also means that a node that has a deviating C-state can no longer receive any messages.
The reason for the deviating C-state could be a transient error that corrupted a message only

3.4 FlexRay 67

at that node. To allow reintegration, the current C-state is periodically broadcast explicitly
in special I-frames; the current C-state is not required to decode this message.

TTP/C supports atomic broadcast in the sense that a TTP/C controller terminates op-
eration when it cannot receive a message that has arrived at the majority of the nodes. This
is because the checksum calculation method prevents a node from receiving messages when it
has a deviating membership view; when more than half of the message receptions have failed,
the node becomes silent.

3.3.6 Operational Flexibility
Although TTP/C can send only time-triggered messages, an application can send both

time-triggered and event-triggered messages. The transmission of event-triggered messages
is performed over an event channel (bandwidth is reserved for event transmissions inside the
TDMA slots, and the messages use identi�ers). Obermaisser [Obe02] proposed a scheme
to CAN emulation on TTP/C, in which a CAN-compatible interface is provided and the
CAN messages are transmitted inside TTP/C data frames. The use of event channels does
not interfere with TTP/C composability since bandwidth is not arbitrated among di�erent
nodes (as in CAN), but only among di�erent functions within a node. In this way, timing
and bandwidth analysis for event transmissions is done on a per-node basis and does not
need system-level design. This scheme is somewhat ine�cient concerning resource utilization,
because it relies on bandwidth reservation made at design time that cannot be adapted on-line.
Thus this is still a pre-run time type of �exibility.

At run-time TTP/C can switch between a range of modes [KNH+98] and every host
computer may request a mode change that must be accepted by all nodes before becoming
active. Although a large number of modes can be de�ned in a single cluster design (limited
by the MEDL memory), they all must be de�ned at pre-run time. To avoid mode changes at
the wrong point in time and to prevent inconsistencies between the states of the nodes, the
points in time when mode changes are allowed are determined before runtime, mode changes
are executed only when this is required by the state of the controlled object and all nodes of
a cluster change mode at the same point in time, i.e., all nodes of a cluster must agree on the
current mode at all points in time.

3.4 FlexRay
Some key players of the automotive industry, BMW and DaimlerChrysler, realized that

the requirements for future automotive control applications include the combination of higher
data rates, deterministic behavior, support of fault tolerance and �exibility in both bandwidth
and system extension, could not be met using existing communication protocols. This tech-
nical constatation, together with some commercial considerations, related with royalties and
exclusivity [Fg02], were the main reasons that made BMW and DaimlerChrysler to join forces,

68 Chapter 3. Flexibility and safety of some bus protocols

in September 2000, with Philips and Motorola to form the FlexRay Consortium. Since then
the Consortium has grown to include most of the automotive industry's largest manufacturers,
including Volkswagen, Bosch, Motorola, Toyota, General Motors, Ford and many others.

FlexRay protocol [NFG+02][Bel02][Fg02][Con04b] aims at combining safety and �exibility
by supporting two communication paradigms, deterministic communication (time-triggered
and statically de�ned) and dynamic event-driven communication.

3.4.1 Network Topology

Concerning the network topology, FlexRay supports both active star (with at most 3
cascaded stars between two arbitrary nodes) with possible passive bus extensions. Early
results [Fg02] show that the passive bus (at full speed - 10 Mbit/sec) is limited to stubs of
around 25 cm and to a maximum of 6 to 8 stubs per network.

The star coupler has autonomous powermoding i.e., the star decides to go to the sleep
mode after network idle for a long time. The star coupler also implements error detection
(clamped wire and permanent noise) to exclude a�ected branches from communication and to
auto-recover once the failure has been removed.

3.4.2 Message Transmission

The communication cycle is the fundamental element of the media access scheme within
FlexRay and it is de�ned by means of a timing hierarchy consisting of four levels [Con04b]:

• Static segment � a static TDMA scheme is used to arbitrate transmissions.

• Dynamic segment � a dynamic mini-slotting based scheme is used to arbitrate trans-
missions.

• Symbol window � a communication period in which a symbol can be transmitted on
the network. Symbols are FlexRay commands, e.g., to wake up an active star.

• Network idle time � a communication-free period that concludes each communication
cycle.

FlexRay distinguishes in its time-triggered part between slots, cycles, frames and messages.
A slot is identi�ed by a slot-ID, a cycle by a cycle-ID, a frame by a frame-ID, and a message
by a message-ID. The cycle-ID, the frame-ID, and the optional message-ID are all conveyed
in every time-triggered FlexRay frame.

The static part of the protocol follows a statically and pre-de�ned TDMA strategy with
support for both single channel and dual channel operation (Figure3.8). The TDMA scheme
is established among the controllers using the fault tolerant midpoint clock synchronization
algorithm, for o�set and rate correction.

3.4 FlexRay 69

1

1

2

2

3

3

5

5

6

6

10
4

4
 8

7

9

8

Node A

ID:1, 5, 9

Node B

ID: 2, 4

Node C

ID: 3,8

Node E

ID: 6, 10

Node D

ID: 2, 4, 7

Slot

Static segment
 Dynamic segment

Communication Cycle

7

9

. . .

Channnel 0

Channnel 1

Figure 3.8: De�nition of a communication cycle with static segment (adapted from [Bel02]).

The dynamic part adopts the mini-slotting mechanism of the Byte�ight protocol [M. 00].
The partition between the two segments is made at design time and loaded into the controllers
and bus guardians. The FlexRay protocol can operate in three di�erent modes:

• Static with distributed clock synchronization.

• Mixed static/dynamic with distributed clock synchronization

• Dynamic with single master synchronization, via a start of cycle symbol.

In the static part, nodes that are connected to both channels send their frames simultane-
ously on both channels. Conversely to the static part, in the dynamic part the tra�c on both
channels can be di�erent (see Figure 3.8). If two nodes are connected to a di�erent channel
each, they may share slots in the static part. Thus it is also possible to have di�erent tra�c
in the static part of both channels.

A FlexRay frame can hold a payload up to 244 bytes.

3.4.3 Bus Guardianship

The bus guardian hasa priori knowledge of the transmission times of the node and restricts
transmission attempts of the communication controller to the con�gured time slots. If the bus
guardian detects any mismatch between the schedules of the communication controller and the
bus guardian, it signals an error condition to the host and inhibits any further transmission
attempts. This knowledge (schedule) is downloaded to the guardian during a con�guration
phase. The bus guardian schedule includes active slots in the static segment, the dynamic
segment and the symbol window. The bus guardian can be con�gured to enable or to disable
transmit access during the dynamic segment.

70 Chapter 3. Flexibility and safety of some bus protocols

FlexRay bus guardians do not perform an independent clock synchronization and have no
independent power supply, thus the node and the guardian form a single fault con�nement re-
gion. According to [Con04a], the bus guardian functionality can also be located at a FlexRay's
active star.

3.4.4 Clock Synchronization

In FlexRay the frames that are used for clock synchronization are selected on the basis of
the contents of a message (Sync Bit set). In FlexRay the synchronization ensemble is formed
by eliminating the j largest and j smallest clock values of the selected clocks. FlexRay uses the
fault-tolerant midpoint (FTM) algorithm in order to calculate the correction value out of the
synchronization ensemble. The FTM algorithm calculates its correction value by using only
the two clocks at the extreme ends of the synchronization ensemble. FlexRay also performs a
dynamic rate correction to compensate the drift-rate of the clocks.

3.4.5 Error Detection

The FlexRay error management policy is very similar to the one adopted by TTCAN,
using the dedicated degradation concept that allows three states: normal, passive and halt.
Associated with each channel is a status vector (Channel Status Error Vector - CSEV) mapped
into the diagnosis interface of the communications controller, which can be con�gured to be
an interrupt source (bit-by-bit enable vector).

The full schedule for the time-triggered portion is not installed in each controller. So, each
controller only learns the full schedule when the bus starts up. Bus guardians are informed of
which slots are allocated to their transmissions at initialization time.

3.4.6 Operational Flexibility

Since the full schedule for the time-triggered portion is not installed in each controller,
the receiver of a frame has no knowledge about the physical identity of the sender of a frame.
This increases �exibility, but it reduces the error-detection capabilities at the architecture
level, since the receiver can never identify a faulty sending node on the basis of a faulty or
missing frame.

It is not possible to commute on-line between di�erent modes, to adapt to evolving re-
quirements or to operational conditions (e.g., take-o� and landing in avionics). Changing the
communication schedule requires stopping the network, new con�gurations must be down-
loaded and the network needs to be re-started. The time required for such actions can inhibit
the use of mode changes in time sensitive applications.

3.5 ARINC-629 71

3.5 ARINC-629
ARINC-629 [ARI90] is a bus that was speci�cally designed to provide general purpose

data communications between avionic subsystems [AG97], the so-called terminals (Remote
Data Concentrators and cabinets). ARINC-629 is an evolution of ARINC-429 Digital Data
Transfer Systems speci�ed in 1977 by the ARINC committee. The original 429 standard,
de�ning a unidirectional broadcast data bus (single transmitter, multiple receivers), has been
used extensively in the civil aircraft �eld (e.g. in Boeing 767). Research and development work
carried out by Boeing in the form of the Digital Autonomous Terminal Access Communication
(DATAC) program has, however, resulted in a new standard being agreed for use on modern
civil aircrafts demanding more data processing and higher speed data transfers. This was
applied to the Boeing 777 and became the ARINC-629 standard in 1989.

3.5.1 Network Topology
The maximum bus length allowed for ARINC-629 is 100m and the maximum possible

number of connected Line Replaceable Units2 (LRU) is 120 at a data rate of 2 Mbps. The
maximum stub length connecting each LRU is 40m.

The application is responsible for the coordination of multiple redundant buses.

3.5.2 Message Transmission
The ARINC-629 standard supports two alternative data link level protocols: thebasic

protocol and the combined protocol, which cannot coexist on the same bus. Despite this
fact, there are many similarities between the two.

The bus access is coordinated at two levels:

• System level decomposition of bus time into cycles, both minor and major. Cycle length
may be �xed or variable depending on protocol con�guration.

• Medium access contention resolution across multiple terminals within each minor cy-
cle by a combination of carrier sensing and observation of pre-assigned waiting times
and common bus idle periods, implementing a CSMA-CA (mini-slotting) media access
scheme.

The basic and combined protocols support both periodic and sporadic transmissions. Pe-
riodic messages are transmitted according to their prede�ned parameters. The way in which
event-triggered messages are handled is the main di�erence between the two protocols.

The combined protocol is more suited for mixing periodic and non-periodic tra�c. The
overall bus scheduling scheme is to �rst transmit the periodic messages and then to allow
sporadic messages to compete for the spare bandwidth at the end of the minor cycle. A timing

2Aeronautical terminology, it is equivalent to an Electronic Control Unit (ECU).

72 Chapter 3. Flexibility and safety of some bus protocols

analysis for ARINC-629 [AG97] shows that the protocol is capable of supporting periodic and
sporadic tra�c with deadlines. This is accomplished without any global time source, i.e. each
terminal has its own local time source which may drift relatively to others. Multiple timers
and redundant circuitry are employed within each terminal to prevent single hardware faults
causing multiple nodes to transmit simultaneously.

A message has variable length and can accommodate up to 31 wordstrings. Each word
also has variable length and contains a 20-bit word label and up to 256 20-bit data words. An
ARINC-629 node consists of a bus controller and the main computational unit both connected
via a shared memory. A 2 Mbps serial data transmission rate is speci�ed for twisted pair
conductors.

Basic Protocol

The Basic Protocol (BP) has two sub-modes: the periodic mode and the aperiodic mode.
In the periodic mode, all transmission times are �xed within each minor cycle. In the aperiodic
mode, each individual terminal transmission times may vary between cycles. Notice that in
both modes, access is granted to each terminal in a �xed order and without preemption within
each minor cycle. The protocol de�nes three time intervals:

• Transmit Interval (TI) � represents a common time interval for which each terminal
must wait between its own successive transmissions. A TI timer starts every time the
terminal initiates a transmission.

• Synchronization Gap (SG) � is a common idle time, longer than any individual ter-
minal gap on the bus and is intended to cope with variations in transmission times of
individual terminals between successive minor cycles. The SG timer starts every time
the bus is sensed idle. The timer may be reset either before it has elapsed, if any bus
activity is detected, or after it has elapsed, the next time the local terminal begins
transmitting.

• Terminal Gap (TG) � represents a unique time for which a terminal must wait without
any bus activity before starting its own transmission. The TG timer starts every time
the bus is sensed idle. But unlike SG, the TG timer is reset only after it has elapsed
and upon detection of any bus activity.

ARINC 629 uses a three time-out parameters waiting room protocol [Lam74]. The syn-
chronization gap (SG) controls the entrance to the waiting room, the terminal gap (TG)
controls access to the bus and the transmit interval (TI) prevents a host from monopolizing
the channel. This protocol is depicted in Figure3.9:

1. Two processes P1 and P2 that want to transmit a message are admitted to the distributed
waiting room.

3.5 ARINC-629 73

2. Both processes initially must wait a time greater than SG to enter the waiting room.

3. In the waiting room, both processes wait for another period greater than their individual
TG.

4. All TGs are di�erent, so processes with shorter TG (i.e. P1 with TG1=2) starts to
transmit. In the start of transmission, P1 set its TI to block temporally any further
transmissions from that node.

5. As soon as P1 has started transmitting, P2 backs o� until P1 has �nished.

6. P2 then waits for its TG (i.e. TG2=3) and starts transmitting its message.

M1

M2

P1

P2

SG

SG

TG1

TG2
 TG2

TI

TI

SG > Max{TGi}

TG1 < TG2

minislot

Figure 3.9: The waiting room protocol adopted in ARINC-629.

Combined Protocol

This protocol, initially proposed and developed by British Aerospace and Smiths Indus-
tries, aimed to overcome the de�ciencies of the basic protocol for systems that require a more
e�ective approach to combined handling of periodic and sporadic data transmissions.

In the Combined Protocol, periodic transmissions, the so-called level-1, are handled in a
�xed order and without preemption, as in the Basic Protocol, but bus cycle times are �xed in
duration. Any sporadic message request that arrives during the current minor cycle may only
be serviced within the cycle time available after all periodic messages have completed. These
are infrequent high priority messages with short duration and are called level-2 messages. If
time allows, other sporadic messages are serviced in the remaining cycle time and can be
longer, less frequent and low-priority (level-3). Level-2 and level-3 messages are limited to one
wordstring in length.

As in the Basic Protocol, each terminal is pre-assigned an unique terminal gap (TG). The
transmit interval (TI) is applicable only to the �rst (periodic) terminal transmission in each
minor cycle. For all other terminals, this is overridden by aconcatenation event which forces
all un-elapsed TI timers to be canceled. This has the e�ect of compressing periodic messages
into a burst of activity (separated only by TG delays) at the start of each cycle.

74 Chapter 3. Flexibility and safety of some bus protocols

Two types of synchronization gaps are de�ned: the periodic synchronization gap (PSG),
which is used to achieve synchronization at the minor cycle level and an aperiodic synchro-
nization gap (ASG), that is employed within each minor cycle to synchronize the transitions
between level-1 and level-2 transmissions and, in turn, level-2 and level-3 transmissions. The
ASG timer is started upon detection of bus idle after the initial burst of periodic transmissions
and it is reset upon detection of any bus activity. This is similar to the aperiodic mode of
the Basic Protocol and so, sporadic messages only consume resources when required, i.e. all
terminals are o�ered access to the bus in level-2 and level-3, but this is only used by terminals
that have sporadic messages ready to transmit, which gives level-3 sporadic messages a better
chance (on average) of being serviced.

Within each minor cycle, each terminal is restricted to one level-2 transmission but may
perform multiple level-3 transmissions if required and if there is time available. In order to
enforce �xed duration minor cycles, an aperiodic access time-out (AT) is used to indicate
the time to next periodic (level-1) transmission, so that any sporadic transmission with the
potential to take longer than this time is prevented from starting in the current cycle. Level-
3 sporadic messages are permitted to span multiple minor cycles, i.e., they can be put on
hold during several cycles until they can be transmitted. Backlog level-3 messages always
take priority over those generated in the current cycle. Level-2 sporadic messages must be
transmitted within the current minor cycle, otherwise they are lost (i.e., they are not queued).

3.5.3 Bus Guardianship

ARINC-629 does not consider the use of bus guardians to protect the nodes againstbabbling
idiot failure mode. This is a direct result of the reasoning behind ARINC-629 design: to leave
all fault tolerance support to the application layer. ARINC-629 only provides a single parity
bit. This reasoning is based on the assumption that there will be multiple redundant buses
and the application should be able to tolerate some network errors that may result in message
faults (omissions).

It could be argued that moving the fault-tolerance mechanisms higher in the OSI stack, as
in ARINC-629 or in FlexCAN [PF04], increases both the application design complexity and
potentiates design defects, because every new fault-tolerance mechanism needs to be designed
from scratch for every di�erent application. This is an important factor to take into account
and whose relevance keeps increasing with the application size: the more complex it is, the
higher is the number of potential software defects and more di�cult becomes to identify them.
However, this scenario is not so critical in the speci�c case of aviation industry where time
to market is not so crucial as in other industries and so projects can be made according to
best practices. In other industries, the pressure imposed by the time to market factor may
introduce many defects in the software if an application oriented fault-tolerance approach is
followed. This is why some authors claim [Kop97][PMJ00] that the fault-tolerance mechanisms

3.6 Brief Comparison and Conclusion 75

should be implemented as low as possible within the OSI stack to partially hide them to the
designers. Those mechanisms are carefully designed and properly validated once and may be
used thereafter with some guarantees. This is clearly the approach followed by TTP/C and
in a smaller scale by FlexRay (it does not provide a membership service). The drawback
of providing fault-tolerance mechanisms at the lower levels of the OSI stack is the overhead
introduced by these mechanisms in applications that do not require them.

3.5.4 Clock Synchronization

ARINC-629 adopts a time-controlled medium access strategy where time is partitioned
into mini-slots each longer than the propagation delay of the channel, without requiring a
global synchronized timebase in every terminal. Every terminal is assigned a unique number
of mini-slots that must elapse, with silence on the channel, before it is allowed to transmit.

The mini-slot counters are synchronized by the reception of a message and the longest
period of bus silence is relatively short. Thus relatively high clock drifts can be tolerated.

3.5.5 Error Detection

ARINC-629 standard only provides a single parity bit, all fault tolerance support is ap-
plication layer's responsibility. However some ARINC-629 controllers provide some extra
functionalities as, for example: Manchester encoding error, short string error and bus quiet
error.

3.6 Brief Comparison and Conclusion

Despite being designed for diverse application scenarios, the protocols previously presented
can be compared according to their fundamental properties. In the scope of this thesis the
key property to evaluate is �exibility.

When addressing operational �exibility, event-triggered communication systems such as
native CAN are typically well positioned because they react promptly to communication
requests that can be issued at any instant in time letting the bus available in the absence of
events to communicate. In other words, they react to instantaneous (variable) communication
requirements. On the other hand, time-triggered systems, such as TTP/C and TTCAN, are
not so �exible because communication takes places at pre-de�ned instants, only, not taking
into account run-time variations in the application communication requirements. This can be
improved, as in TTP/C, allowing mode changes between a set of pre-de�ned (static) modes.
Moreover, any time-triggered protocol allows reserving space at design-time for nodes and
message streams that can then be added on-line but this is an ine�cient technique because
extra bandwidth is kept allocated even when it is not needed for long periods.

76 Chapter 3. Flexibility and safety of some bus protocols

Protocol Network MAC Online Built-in Flexibility
topology protocol scheduling3 fault-tolerance of TT tra�c

CAN bus CSMA-BA n.a./yes +++ n.a.
TTCAN bus TDMA/CSMA-BA no/yes ++ no
FTT-CAN bus M-MS2/CSMA-BA yes/yes ++ ++
TTP/C bus/star TDMA no/no +++++ +
FlexRay bus/star TDMA/FTDMA no/yes ++++ no
ARINC-629 bus FTDMA yes1/yes + no

1Possible, although not common; 2Master-Multislave; 3Time-triggered
tra�c/Event-Triggered tra�c

Table 3.1: Summary of communication protocols' properties.

The systems that combine both event and time-triggered paradigms present an interme-
diate level of operational �exibility due to the event-triggered part, despite the low �exibility
of the time-triggered one. This is the case of TTCAN, FlexRay and ARINC-629. This is
even the reason why FlexRay claims to be �exible. Moreover, TTCAN, FlexRay and TTP/C,
block on-line changes to the tra�c schedule matrix or table. These can only be performed in
con�guration mode, which implies halting the system.

The FTT-CAN protocol deserves a particular reference in what concerns operational �ex-
ibility since it was built explicitly with the purpose of improving this aspect. Therefore, it
not only supports event and time-triggered tra�c with temporal isolation but it also deliv-
ers �exible time-triggered communication services, allowing on-line changes to the periodic
communication requirements with timeliness guarantees.

Concerning dependability, TTP/C and FlexRay are, probably, the most robust solutions
with an advantage towards TTP/C because of its membership service. The star topology that
these protocols support also helps improving error detection and isolation capabilities. On the
other hand, the philosophy of ARINC-629 is to leave all dependability issues to the application
level, removing that concern from the communication protocol. TTCAN does not seem to meet
all requirements for safety critical distributed systems (e.g. redundant communication, fail-
silent nodes). In fact, some authors [BBRN04][RP03][FOFF04] claim that native CAN is more
dependable than TTCAN. The original proposal for FTT-CAN did not consider dependability
aspects and thus presents a level similar to that of TTCAN in this aspect.

Table 3.1 summarizes some of the properties of the communication protocols as discussed
above. Among these protocols, FTT-CAN is in a favored position to combine a high level of
operational �exibility with a high level of dependability as long as appropriate mechanisms
are added to it. This is the main motivation for this work.

Chapter 4

Impairments to dependability of CAN
and FTT-CAN

4.1 Introduction
FTT-CAN dependability can be compromised by faults in the channel or faults in the

nodes. A fault in the channel is one fault that a�ects any element of the physical layer of
the network (cable, connectors, transceiver's circuitry, etc.). A fault in a node is one fault
that a�ects any component of the node (microcontroller, memory, sensors, etc.). Both types
of faults can have either external origin, e.g. due to electromagnetic interference (EMI), or
internal origin, e.g. due to a defective component, connector or a cold soldering.

The CAN protocol de�nes its own mechanisms to detect and signal channel errors. Theo-
retically, these mechanisms enforce any frame which su�ers an error to be consistently rejected
by every node of the network. However, as it will be detailed later, this is not true in some
speci�c scenarios. Concerning physical faults of the nodes, the CAN protocol does not de�ne
any mechanism to deal with these faults. Therefore, CAN nodes may theoretically fail in
arbitrary ways. It is responsibility of the fault tolerance mechanisms to restrict the failure
semantics of nodes and channels. In this context, it is important to assess the impact of faults
in CAN and in FTT-CAN to design fault tolerant mechanisms able to e�ciently circumvent
those faults.

4.2 Consequences of faults in the channel
The CAN protocol de�nes its own mechanisms in order to tolerate transient channel errors,

by means of error detection, error signaling and frame retransmission.
For the purpose of this work, only transient faults that change the value of, at least, one

bit that is either transmitted to, or received from the channel, are considered.
In principle, and according to the error detection and signaling capabilities of CAN, any

77

78 Chapter 4. Impairments to dependability of CAN and FTT-CAN

frame which su�ers an error would be consistently rejected by all the nodes of the network.
However, some failure scenarios have been identi�ed [RVA+98][PMJ00] that can lead to unde-
sirable symptoms such as inconsistent omission failures and duplicate message reception. In
this context, we will start this section by discussing CAN fault con�nement mechanisms to
better understand the failure scenarios that lead to inconsistent failures.

In CAN each node that detects an error sends an error �ag composed of six consecutive
dominant bits enabling all nodes on the bus to be aware of a transmission error. The frame
a�ected by the error automatically re-enters into the next arbitration phase. The error recovery
time (the time from detecting an error until the possible start of a new frame) varies from 17
to 31 bit times [NYQS00].

To prevent an erroneous node from disrupting the functioning of the whole system, e.g. by
repetitively sending error frames, the CAN protocol includes fault con�nement mechanisms
that are able to detect permanent hardware malfunctioning and to remove defective nodes
from the network. To do this a CAN controller has two error counters; the transmit error
(TEC) and the receive error (REC) counters which are incremented/decremented according
to a set of rules [BOS91][ISO93]. Each time a frame is correctly received or transmitted by a
node, the value of the corresponding counter is decreased. Conversely each time a transmission
error is detected the value of the corresponding counter is increased.

Depending on the value of both counters, the station will be in one of the three states
de�ned by the protocol: error active, error passive and bus-o�. In the error active state
(REC<128 and TEC<128) the node can send and receive frames without restrictions. In the
error passive state ((REC>127 or TEC>127) and TEC<=255) the node can transmit but
it must wait 8 supplementary bits after the end of the last transmitted frame and it is not
allowed to send active error frames upon the detection of a transmission error, it will send
passive error frames instead. Furthermore, an error-passive node can only signal errors while
transmitting.

After behaving well again for a certain time, a node is allowed to re-assume the error-active
status. When the TEC is greater than 255 the node CAN controller goes to the bus-o� state.
In this state, the node can neither send nor receive frames and can only leave this state after
a hardware or software reset and after having successfully monitored 128 occurrences of 11
consecutive recessive bits (a sequence of 11 consecutive recessive bits corresponding to the
ACK, EOF and the intermission �eld of a correct data frame).

When in the error passive state, the node signals the errors in a way that cannot force the
transmitter to retransmit the incorrectly received frame. This behavior is a possible source of
inconsistency that must be controlled, as it will be detailed in the next section. As an example
of the consequences this can have, consider the case of an error-passive node being the only one
to detect an error in a received frame. The transmitter will not be forced to retransmit and the
error-passive node will be the only one not to receive the message. Several authors proposed
avoiding the error passive [RVA+98][HKD97][FNP+98] state to eliminate this problem. This

4.2 Consequences of faults in the channel 79

is easily achieved [RVA+98][PMJ00] using a signal available in most CAN circuits, the error
warning noti�cation signal. This signal is generated when any error counter reaches the value
96. This is a good point to switch o� the node before it goes into the error-passive state,
assuring that every node is either helping to achieve data consistency or disconnected.

In the next section, other inconsistency problems reported in the literature that are more
di�cult to solve will be described. All these problems appear even if no node is in the error-
passive state.

4.2.1 CAN Inconsistency Scenarios
Inconsistency scenarios in CAN are a direct consequence of the instant in which the trans-

mitter and the receiver validate a message.
According to CAN speci�cation version 2.0, part A page 21, point 4 - Message validation

[BOS91]:

"The point of time at which a message is taken to be valid is di�erent for the
transmitter and the receiver of the message.
Transmitter: The message is valid for the transmitter, if there is no error until
the end of END OF FRAME. If a message is corrupted, retransmission will follow
automatically and according to prioritization. In order to be able to compete for
bus access with other messages, retransmission has to start as soon as the bus is
idle.
Receivers:
The message is valid for the receivers, if there is no error until the last but one bit
of END OF FRAME."

Due to this frame validation rule, the behavior of the CAN controllers, in case of er-
ror in the last bit of the EOF, is special and it can generate very speci�c error scenarios
[RVA+98][PMJ00]. Whenever a transmitter detects an error in the last bit of the EOF, it
handles it in the usual way, i.e. it starts an error �ag in the next bit, it invalidates the cur-
rent frame transmission, and it retransmits the message (new higher priority messages will be
transmitted �rst). Conversely, when a receiver detects an error in the last bit of the EOF,
it correctly accepts the frame and it generates an overload �ag. This behavior is depicted in
Figure 4.1a.

A set X of receiving nodes detects an incorrect dominant value in the last bit of the EOF,
while the transmitter and the set Y of receiving nodes, see a correct recessive bit. The nodes
of X start the transmission of an overload �ag immediately after the error. The remaining
nodes detect the �rst dominant bit of the overload �ag in the �rst bit of the inter-frame space
and they also start the transmission of overload �ags. Therefore, both the transmitter and the
nodes belonging to Y consider the frame as being correctly transmitted. The nodes belonging
to X also accept the frame and consistency is achieved, despite the last-bit mismatch.

80 Chapter 4. Impairments to dependability of CAN and FTT-CAN

r
 r
 r
 d
 overload flag

r
 r
 r
 d
 overload flag

r
 r
 d
 overload flag

Receivers (Y)

Receivers (X)

EOF

accept the frame

accept the frame

no retransmission

r
 r
 r
 d
 overload flag

r
 r
 r
 d
 error flag

r
 r
 d
 error flag

Transmitter

Receivers (Y)

Receivers (X)

EOF

gets the frame once

gets the frame twice

successful retransmission

r
 r
 r
 d
 overload flag

r
 r
 r
 d
 error flag

r
 r
 d
 error flag

Receivers (Y)

Receivers (X)

EOF

does not get the frame

gets the frame once

fails before retransmission

Transmitter

Transmitter

a

b

c

Figure 4.1: Some possible error scenarios in CAN (adapted from [RP03]).

The scenario depicted in Figure 4.1b causes nodes to receive the same frame twice. In this
case an error corrupts the last but one bit of the EOF of the nodes belonging to the set X, so
in the next bit these receivers start the transmission of an error frame. The �rst dominant bit
of this error �ag is seen by the transmitter and by the nodes belonging to Y as an error in the
last bit of their EOF, and so, the nodes belonging to X reject the frame. Notice that the nodes
belonging to Y accept the frame because of the frame validation rule. The transmitter, in
turn, retransmits the frame causing the nodes belonging to the Y set to eventually receive the
frame twice. This possible error scenario in which an error in the last but one bit may cause
an inconsistent message duplicate (IMD) (Figure4.1b), i.e. some nodes receive duplicates of
a frame while others only receive a single frame, was �rstly identi�ed by Ru�no [RVA+98].

In Figure 4.1c another possible error scenario, also �rstly reported by [RVA+98], is de-
picted. This case is similar to the one illustrated in Figure4.1b, but now the transmitter fails
by crashing after the �rst transmission of the frame and consequently, it does not retransmit
the frame. Therefore, the nodes belonging to Y receive the frame whereas those of X do not.
This causes inconsistent message omissions (IMO). Notice that the transmitter does not need
to fail by crashing after an error in the last but one bit of the EOF to cause an inconsistent
message omission. If a time-triggered decision at the receivers side has to be made while the
sender is retransmitting the message or the transmitter is not allowed to retransmit the frame
(as in TTCAN), then the inconsistency will not be removed in some receivers.

The error mechanisms of CAN also ensure that, under certain fault assumptions, the

4.3 Consequences of physical faults of the nodes 81

transmitter of a frame is always able to detect whether this frame has been rejected by any
node. Only in some speci�c scenarios, which are described in [PMJ00], the transmitter would
not able to detect that the transmission has been inconsistent. However, we assume that the
probability of these scenarios is very low and, as a result they will not be considered further.

The probability of those error scenarios depends on an important factor, the CAN bit
error rate. The analysis presented in [RVA+98] is based on the assumption that the bit error
rate varies from 10−4, in case of an aggressive environment, to 10−6 in the case of a benign
environment. The results obtained, based in these assumptions, for IMO/h and IMD/h are
rather high and are a serious impairment of using CAN (or CAN based protocols) in safety-
critical applications.

4.2.2 FTT-CAN inconsistency scenarios

In FTT-CAN networks, additionally to the previous scenarios, there are some new scenarios
that may cause inconsistent message omissions.

• Inconsistent message omissions of the synchronous (time-triggered) messages (Figure
4.2). An inconsistent synchronous message omission occurs whenever it is inconsistently
received by some nodes and the sender is not able to retransmit it. This is a direct
consequence of truncating the synchronous tra�c at the end of the respective window.

• Inconsistent message omissions of the Trigger Message (Figure 4.3). An inconsistent
message omission of a TM occurs whenever the TM is inconsistently received and the
master is not able to retransmit the frame during the trigger message transmission
window (e.g. due to a burst of errors in the channel).

Concerning the impact of message omission and/or duplicates in FTT-CAN, three di�er-
ent perspectives can be considered, according to the criticality and nature of the exchanged
messages: Trigger messages, synchronous messages and asynchronous messages. Solutions to
circumvent these issues will be presented in the next Chapter.

4.3 Consequences of physical faults of the nodes
In principle, the CAN protocol does not restrict thefailure semantics of the nodes, so that

they may fail in arbitrary ways. Some of these failures are automatically handled by CAN's
native implementation of error detection capabilities and automatic fail-silence enforcement,
described previously, leading the erroneous node to a state, the bus-o� state, where it is unable
to interfere with other nodes. However, in some speci�c situations, these mechanisms do not
fully contain the errors within the nodes. Speci�cally, a CAN node only reaches the bus-o�
state (fail silence) after a relatively long period of time (when the TEC reaches 255). For
example, in the case of an erratic transmitter in a 32 node CAN network at 1 Mbps, the

82 Chapter 4. Impairments to dependability of CAN and FTT-CAN

��

���������	
 � ��
��

��

�� � �� � �� ��� �� ���
���

����� �� ��� ��
���	����� ���

���� � �� � �� ��� �� ������ �

���� � �� ��� �� ������ �

���� � �� ��� �� ������ �

�����
�
���� ��

��� ���

���

Figure 4.2: synchronous message inconsistent message omission scenario. Slave nodes 1 and
2 do not receive synchronous message 2 that is correctly received by slave 0.

������������ �	�

�	 �����
�
�������

��

��

�����	

����� �

����� �

����� �

��

��

����

����

�		�	 �� ��� ������������ ���

Figure 4.3: Trigger message inconsistent message omission scenario. Slave nodes 1 and 2
correctly receive the trigger message while slave 0 does not.

4.4 Inconsistent Message Delivery and Bit Error Rate 83

worst-case time to bus o� is 2.48 ms [RV97]. Moreover, a CAN node running an erroneous
application can also compromise most of the legitimate tra�c scheduled according to a higher
layer protocol implemented in software in a standard CAN controller, simply by accessing
the network at arbitrary points in time (babbling idiot failure mode). Notice that a faulty
application running in a node with a CAN controller may transmit high priority messages
at any time without causing any network errors, and consequently the CAN controller will
never reach the bus-o� state. An uncontrolled application transmitting at arbitrary points in
time via a non-faulty CAN controller is a much severe situation than a faulty CAN controller
also transmitting at arbitrary points in time because, in the �rst case, a non faulty CAN
controller has no means to detect an erroneous application transmitting legitimate tra�c. In
the second case the CAN controller would enter bus-o� state after a while and the error would
be eventually con�ned.

The initial FTT-CAN protocol proposal [AFF98] does not restrict the failure semantics
of either master node or slave nodes. Thus the consequences of physical faults in FTT-CAN
nodes are the same as in CAN plus the ones resulting from the single point of failure nature
of the master node. This calls for the development of some speci�c circuits to restrict the
ways an FTT-CAN node may fail and enforce a fail-silent failure mode, as it will be further
detailed in Chapter 7.

4.4 Inconsistent Message Delivery and Bit Error Rate

CAN is particularly suited to be used in real-time systems because the response time of
any message can be upper bounded [TBW95], depending both on the bus load and on channel
errors. Bus load can be easily computed, however, as it was previously said, channel errors are
a random variable that depends on several factors: the environment where the system operates
(dynamic in most cases), the bus transmission rate, the wiring harness, the electromagnetic
shielding of the devices, etc. The resulting uncertainty in the calculation of the worst case
response time of a CAN message is one of the factors that limits the adoption of CAN in some
safety-critical applications.

Over the years several studies have been conducted [NSS00][HNP00][BBRN02] to assess the
worst case response time of CAN messages under channel errors. These studies used generic
error models, that take into account the nature of the errors, either single bit errors or burst
of errors, and their minimum inter-arrival time. However, no error statistics were provided to
support the error models. The existence of error statistics in CAN would contribute to more
realistic fault models. Worst case and average case scenarios are still open issues, and so the
degree of pessimism adopted in the design of CAN based safety-critical real-time distributed
systems tends to be very high, resulting in high resource demanding solutions.

In TTCAN the automatic message retransmission of CAN is disabled, while in FTT-CAN
it is restricted. In these protocols, an error in a given message does not a�ect the response

84 Chapter 4. Impairments to dependability of CAN and FTT-CAN

time of others, and the error detection and signalling of CAN would normally ensure that
the error would be consistently detected by all network nodes except in the error scenarios
described in the previous section, where inconsistent message delivery may occur.

Inconsistent message reception scenarios are much more frequent in the case of TTCAN
[RP03] than in native CAN and their frequency depends on thebit error rate of the CAN
bus. All the analysis in [RVA+98] is based on the assumption that thebit error rate varies from
10−4, in case of an aggressive environment, to10−6 in the case of a benign environment. These
assumptions, although realistic in other networks, seem somewhat pessimistic considering the
speci�c case of CAN and specially the characteristics of the CAN physical layer.

4.4.1 Probability of inconsistencies in CAN, TTCAN and FTT-CAN

In [RVA+98], the probability of inconsistency scenarios in CAN is calculated as a function
of the channel bit error rate (B). In [RP03] the analysis is adapted to include the cases with
no retransmissions upon error (TTCAN).

According to Ru�no [RVA+98] the probability of having an error in the last but one bit
of the EOF is given by PIFO (inconsistent frame omission (IFO)), assuming that the number
of bits of a frame is τdata and that the probability of having an error in one particular bit
follows a geometric distribution as expressed in Equation4.1. The probability of a node crash
failure, in turn, obeys to a Poisson distribution with a failure rateλ, as shown in Equation 4.2,
considering a ∆t period corresponding to the interval between the end of a transmission and
the end of the last retransmission. If the sender crashes within∆t after the �rst error, with
probability (1−e−λ×∆t), then an inconsistent message omission (IMO) occurs (Equation4.3).
If the sender eventually retransmits the message within∆t period, an inconsistent message
duplicate (IMD) will be delivered (Equation4.4).

It is assumed that the probability for the same bit error being simultaneously perceived by
all nodes is much lower than having it perceived by a subset of the nodes only. This implies
that the probability of inconsistent frame omissions PIFO only accounts for the temporal
distribution of the errors occurring in the last but one bit of a frame of lengthτdata and that
every error will be perceived only by a subset of the nodes.

PCAN
IFO = (1−B)τdata−2 ×B (4.1)

PCAN
Fail = 1− e−λ×∆t (4.2)

PCAN
IMO = PIFO × PFail (4.3)

PCAN
IMD = PIFO × (1− PFail) (4.4)

4.4 Inconsistent Message Delivery and Bit Error Rate 85

Considering the speci�c case of Time-Triggered CAN (TTCAN), where the automatic
retransmission of messages upon error or arbitration loss is disabled (single shot transmission
mode), the e�ect of not retransmitting a frame is identical to a crash failure in the sender.

Thus, Equations 4.3 and 4.4, in the case of TTCAN, are transformed into[RP03]:

P TTCAN
IMO = PIFO (4.5)

P TTCAN
IMD = 0 (4.6)

This result means that in TTCAN networks, even if one considers a benign environment
[RVA+98] with a bit error rate of 10−6, the probability of IMO is in the order of magnitude of
a few tens per hour, which is a rather high value that could be experimentally measured and
validated.

The FTT-CAN has some similarities with TTCAN, since during the synchronous windows
message retransmission is controlled and could even be disabled in case of transmission error
but not on arbitration loss. During the asynchronous window it behaves like native CAN.
The analysis of the FTT-CAN protocol in terms of inconsistent message delivery re�ects this
duality and the probability of inconsistent message delivery depends on the average ratio
(ρ) between the length of the asynchronous window (AW) and elementary cycle length. To
simplify the analysis it is assumed that the trigger message is included in the asynchronous
window and it can be retransmitted until the end of the asynchronous window. It is also
assumed that synchronous messages retransmission upon error is disabled.

Equation 4.4, in the case of FTT-CAN, is transformed into4.7, because message duplicates
may occur only during the asynchronous window.

PFTT
IMD = PCAN

IMD (onAW) = PIFO × (1− PFail)× ρ (4.7)

Message omissions may occur both during the asynchronous and synchronous windows.
In the synchronous windows the probability of omissions is the same as in TTCAN, while in
the asynchronous windows the probability of omissions is the same as in native CAN. In this
way, Equation 4.3, is transformed into 4.8.

PFTT
IMO = PCAN

IMO (onAW) + P TTCAN
IMO (onSW)

= PIFO × PFail × ρ + PIFO × (1− ρ)

= PIFO(ρ× PFail + 1− ρ) (4.8)

The probability of inconsistencies in CAN, TTCAN and FTT-CAN are presented in Table
4.1. These results are based in the same assumptions of Ru�no's work considering a node
failure rate λ = 10−4 failures per hour. In FTT-CAN, the ρ factor was set to 0.5 meaning
that in average the asynchronous and synchronous windows have the same size.

86 Chapter 4. Impairments to dependability of CAN and FTT-CAN

CAN TTCAN FTT-CAN
bit error ∆t = 5ms ρ = 0.5
rate IMD/h IMO/h IMO/h IMD/h IMO/h
10−4 2.84× 103 3.94× 10−7 2.84× 103 1.42× 103 1.42× 103

10−5 2.86× 102 3.98× 10−8 2.86× 102 1.43× 102 1.43× 102

10−6 2.87× 101 3.98× 10−9 2.87× 101 1.43× 101 1.43× 101

Table 4.1: Estimated rates of IMO per hour in CAN, TTCAN and FTT-CAN

It should be stressed that these results are based in BER assumptions only, not in real
experimental data. Nevertheless the probability of inconsistent message duplicates or/and
omissions is too high to be ignored, specially in the case of TTCAN and FTT-CAN. The safe
case scenario speci�cation in the design process of any safety-critical system based on CAN,
should consider the occurrence of inconsistencies regardless of their probability of occurrence.
However, depending on that probability, the safeguard mechanisms can be designed at di�erent
levels and with various overhead penalties and e�ciencies.

The pessimistic nature of thebit error rate assumptions together with the absence of public
data concerning CAN bit error rates were the main drive to experimentally assess the CAN
bit error. So, the next section presents some results of CAN bit error rate taken from an
experimental setup speci�cally designed to measure it. The experimental data gathered also
contributes to the de�nition of a more realistic CAN fault model to be used in the existing
CAN response time analysis tools.

4.5 Assessing CAN Bit Error Rate
There are two possibilities to measure the number of inconsistent message omissions in

CAN: a direct one and an indirect one. The direct approach relies on counting the errors, at
the receiver, that a�ect only the last but one bit of a CAN frame. This approach cannot rely
on COTS CAN controllers since they do not provide information about the bit position where
an error has occurred, if after the ID �eld. The second approach, the indirect one, is based
in the measurement of the bit error rate parameter and compute the probability of error in
the last but one bit using Equation 4.1. Again, it is not possible to perform this experiment
based on a COTS CAN controller since there is no way to count every single bit error. Notice
that the CAN controller error counters are incremented in a non-linear way and in some cases
there is no way to distinguish a bit error from a burst of errors, since the resulting increment
in the error counters would be similar.

This calls for the use of specialized hardware able to detect, at the bitstream level, mis-
matches between the transmitted and the received bitstream. The bitstream comparison
should be made at the receiver side just after the bit sampling stage to re�ect the low level

4.5 Assessing CAN Bit Error Rate 87

nature of the bit error rate, a fundamental channel parameter that depends only on the re-
lation between the bits transmitted and received at the sampling point, without any further
protocol processing.

Besides the bitstream comparison, the experimental setup, depicted in Figure4.4 and in
Figure 4.5, explicitly counts the errors in the last but one bit of the EOF. Using this setup
both direct and indirect approaches are followed and two parameters can be directly extracted
from the experiment: the upper bound of inconsistent message omissions (Possible IMO/h in
Table 4.2) and the number of bit errors.

MoiCAN

bus driver

Atmel T89C51CC02

bus driver

30m cable

CAN

Shielded box

Log recording PC

Rx_i

Rx_b
 Tx

Figure 4.4: Experimental setup.

Figure 4.5: View of the experimental setup.

The heart of the instrument designed to monitor errors is the MoiCAN IP core [Oli03],

88 Chapter 4. Impairments to dependability of CAN and FTT-CAN

optimized for implementation in Xilinx FPGAs. MoiCAN is a subset of a CAN 2.0A controller
with two operating modes: monitor and active. In monitor mode it watches the bus and
receives frames without interfering with the bus in any way. In active mode, besides monitoring
the bus, it also acknowledges frames, signals errors with error �ags and reacts to overload �ags,
i.e. it acts as a standard CAN controller in the receiving mode only.

The MoiCAN core implements all CAN features directly related with frame reception. It
also has a set of special purpose 8-bit registers: the Bit Error Counter register, the Stu�
Error Counter register, the CRC Error counter register, the Form Error Counter register, the
Acknowledge Error Counter register, the Last-but-one-bit Error Counter Register. MoiCAN
also has a 24-bit register which is incremented every time a valid message is received and a
16 MHz 32-bit timer to timestamp every error. So, whenever an error occurs, its timestamp,
the frame �eld where the error occurred and the �eld bit position are stored in a table with
256 entries. All these registers and the error table can be periodically polled via a synchronous
microprocessor interface.

Notice that MoiCAN has not been formally submitted to CAN conformance tests. However
a superset of MoiCAN, the CLAN [AO03][OFSF03], has been extensively used together with
COTS CAN controllers with no problems being reported so far, increasing the con�dence level
on its conformance.

Besides the MoiCAN board, the experimental setup includes a transmitter board based
on the Atmel T89C51CC02 CAN controller and a log recording PC, which connects to the
MoiCAN via the parallel port. Both boards use identical CAN bus drivers, the Philips 82C250.
The boards ensemble is depicted in Figure 4.6.

A particular feature of the Atmel T89C51CC02 CAN controller is the single shot trans-
mission mode (no automatic retransmission upon error or arbitration loss). This transmission
mode is not available in many CAN controllers, since it is not part of the CAN protocol
(although it is mandatory for TTCAN).

Each frame transmitted by the Atmel CAN controller conveyed a four-byte message counter
(sequence number), that is incremented every time a message is transmitted (either successfully
or with errors). In a sense this counter passes the transmitter view of the network to the
receiver because the transmitter always knows when a message is transmitted without errors
(CAN frame validation rule). On the other hand, a receiver has no way to know if a message
that was correctly received has been correctly transmitted (a last but one bit error could have
occurred at the sender). In this way the receiver is able to compare the number of received
messages with the sequence number of the received message, and to count the total number of
messages lost during the experiments. This was the reason why single shot transmission mode
was adopted in the experiments. However this scheme does not allow the detection of errors
in the last but one bit. These errors are detected at the receiver side by specialized hardware
and are stored in the Last-but-one-bit Error Counter Register.

The inclusion of a sequence number in every transmitted frame is also used to partially

4.5 Assessing CAN Bit Error Rate 89

Figure 4.6: View of the metal box containing the MoiCAN board and the ATMEL controller
board (the smaller one).

validate the MoiCAN core, because the di�erence between message's sequence number and
the MoiCAN message counter should be consistent with the values stored in MoiCAN's error
counter registers.

The CAN bitstream produced by the Atmel controller at 1 Mbps goes through a 30m CAN
bus to the MoiCAN board. The same bitstream also goes via a 10cm internal shortcut to the
MoiCAN board, where they are bitwise compared. MoiCAN board registers are polled every
10sec and their values are stored in a log �le in the PC. It is assumed that transmission errors
do not a�ect the 10cm shortcut, placed inside a shielded box.

The MoiCAN bit timing was divided into 8 time-quanta (tq), corresponding 1tq to the
SYNC_SEG, 1tq to the PHASE_SEG1, 4tq to the PROP_SEG and 2tq to the PHASE_SEG2
[BOS91]. The Atmel controller transmits 8-byte data frames every 400µs, using approximately
25% of the CAN bus bandwidth.

During all the experiments the MoiCAN core was in the active mode, i.e. it transmits
acknowledge bits and error frames. This is so because in the passive monitor mode the
MoiCAN core does not transmit acknowledge bits and thus the ATMEL CAN controller would
transmit an error frame for every frame transmission, making impossible the occurrence of
errors in the last but one bit of the CAN frame.

The experimental work was divided in two phases. The experiments performed during the
�rst phase measured the bit error rate and the number of errors in last but one bit of the EOF
�eld, over a long time interval in order to obtain statistically relevant results. The experiments
conducted on the second phase were intended to assess the electromagnetic interference caused

90 Chapter 4. Impairments to dependability of CAN and FTT-CAN

by a mobile phone in several operational scenarios with di�erent electromagnetic shielding
properties. Each of these experiments lasted for a short time interval and their results cannot
be directly extrapolated, specially in the cases were no errors were measured.

4.5.1 Experiments conducted over a long time interval

Three sets of lengthly experiments were conducted: one at the University laboratories (be-
nign environment), other at a factory, near a high-frequency arc-welding machine (aggressive
environment) and another at the factory production line (normal environment).

The tests were conducted at João R. Matos, S.A. (www.electrex.pt), a manufacturer of
welding equipment. Figure 4.7 presents a view of one of several welding machines testing
workbenches (aggressive environment). The CAN error measurements were carried out during
several days. During this time several di�erent models of welding machines were tested,
positioned at an average distance of 2 meters from the measurement equipment.

Figure 4.7: Experimental setup illustrating the aggressive environment.

Figure 4.8 presents a view of the factory production line were several tests were also
conducted over a period of several days. We considered this environment a normal one,
although it is still disturbed by some electromagnetic interference of several welding machines.
The di�erence from the aggressive environment is that they are located more than 20 meters
away from the the CAN bit error rate measurement equipment.

The CAN cable was folded in order to make a winding with just one turn and the MoiCAN

4.5 Assessing CAN Bit Error Rate 91

Figure 4.8: View of the factory production line illustrating the normal environment.

and Atmel boards were shielded within a metal case.
The results of the experiments are presented in Table4.2. Notice that in the computation

of the bit error rate, all errors within error bursts were accounted individually. ThePossible
IMO/h value in Table 4.2 represents the experimental upper bound for the real value of
IMO/h, in case all last but one bit errors cause an omission. Notice that the value ofPossible
IMO/h was normalized for a network load of 100%.

Besides the bit error rate, Table 4.2 also presents a parameter, the interference rate, which
accounts for the total number of interferences, i.e., single bit errors and error bursts, instead
of bit errors only. The interference rate, i.e., the ratio of all interferences over all transmitted
bits, gives a better insight of the real interference pattern. From the error model point of
view, the total number of interferences and their frequency is probably more relevant than
the total number of bit errors. An interference causes a message transmission fault, except
for the cases where the interference corrupts the last but one bit of the EOF �eld, and the
di�erence between a single error and a burst is just the extra bus inaccessibility time imposed
by the error burst duration. To better illustrate the importance of this parameter consider
the following scenario:

• 1012 bits were transmitted in a given channel.

• 108 bit errors were measured.

92 Chapter 4. Impairments to dependability of CAN and FTT-CAN

Benign Normal Aggressive
environment environment environment

Bits
transmitted 2.02× 1011 1.98× 1011 9.79× 1010

Bit
errors1 6 609 25239

Errors in last
but one bit 0 0 8

Bit Error
Rate 3.0× 10−11 3.1× 10−9 2.6× 10−7

Interference
Rate 3.0× 10−11 8.2× 10−10 6.3× 10−8

Possible2

IMO/h �� �� 2.9× 10−1

Table 4.2: Experimental results (1 Accounting for error bursts; 2 upper bound, if all last but
one bit errors cause an omission).

• All these errors were part of just 100 error bursts.

The bit error rate of such channel would be 10−4, a poor value, while the interference
rate would be 10−10. The question is to decide which of the parameters better characterizes
this particular channel. A system designed based just in the bit error rate would require a
considerable overhead in terms of bandwidth, to cope with an average of a bit error in every
104 bits transmitted, and possible bus redundancy, to increase the probability of error free
transmission. In contrast, a system based in the interference rate assumption would necessarily
be more resource e�cient.

Table 4.3 presents the probability of inconsistencies both for CAN, TTCAN and FTT-
CAN. The probability of inconsistencies presented in the �rst three rows of Table4.3 is based
in the same bit error rate as in Ru�no's work [RVA+98], while the other three rows corre-
spond to the measured values of the bit error rate during the experimental work. The same
assumptions of Ru�no's work [RVA+98] were considered to compute the values of Table 4.3
considering a node failure rate of λ = 10−4.

Observing Table 4.3, it seems that in native CAN the occurrence of inconsistent message
omissions has a lower probability than previously assumed. At least in the environments
considered in the experiments. In fact it is below the 10−9 threshold usually accepted for
safety-critical applications [Kop97]. However, the probability of inconsistent message dupli-
cates (messages are eventually delivered but they could be out of order) is still high enough
to be taken into account.

Concerning both TTCAN and FTT-CAN, one cannot neglect inconsistent message omis-

4.5 Assessing CAN Bit Error Rate 93

CAN TTCAN FTT-CAN
bit error ∆t = 5ms ρ = 0.5
rate IMD/h IMO/h IMO/h IMD/h IMO/h
10−4 2.84× 103 3.94× 10−7 2.84× 103 1.42× 103 1.42× 103

10−5 2.86× 102 3.98× 10−8 2.86× 102 1.43× 102 1.43× 102

10−6 2.87× 101 3.98× 10−9 2.87× 101 1.43× 101 1.43× 101

2.6× 10−7 7.59 1.05× 10−9 7.59 3.79 3.79

3.1× 10−9 8.93× 10−2 1.24× 10−11 8.93× 10−2 4.46× 10−2 4.46× 10−2

3.0× 10−11 8.75× 10−4 1.22× 10−13 8.75× 10−4 4.37× 10−4 4.37× 10−4

Table 4.3: Estimated rates of IMO per hour in CAN, TTCAN and FTT-CAN.

sions because they are rather frequent. Nevertheless it should be mentioned that there is a
mismatch between the expected (from equations 4.1 and 4.5) value of IMO/h (7.59) and the
measured value (2.9×10−1) in the aggressive environment experiment. Thus the probabilistic
error model, based on the bit error rate, using the statistical data on errors in the last but
one bit was not experimentally veri�ed.

Table 4.4 presents the sizes of the error bursts observed both in the aggressive and in the
factory �oor environments.

In both cases, the observed errors are either single bit errors or 6-bit wide errors. Error
bursts of di�erent duration are quite rare. Since these error bursts were measured in an
highly noisy environment, we conjecture that they are a consequence of the fault containment
mechanisms of CAN, when the Atmel CAN controller reaches the bus passive state before
the MoiCAN controller. In this case, when an error is detected, the Atmel CAN controller
transmits a passive error �ag (6 recessive bits) while the MoiCAN controller would transmit
an active error �ag (6 dominant bits). The error detection circuitry compares the passive error
�ag transmitted by the Atmel CAN controller, via the 10 cm wire, with the active error �ag
conveyed in the bus lines and detects a 6-bit error burst.

The electromagnetically noisy environment contributes to this conjecture in the sense that
it could drive a CAN controller to an error passive state in a relatively short time interval,
when the soldering machine is activated. Conversely, in between soldering machine activations
it is expectable that the CAN controller would be driven back to an error active state. It is
also conceivable that both CAN controllers could reach the error passive in di�erent instants,
giving their di�erent views of the bus.

If, after further experiments with a modi�ed version of the MoiCAN core, this conjecture
proves to be correct, it will mean that these 6-bit error frames are artifacts that do not
correspond to real error bursts, instead they correspond to single bit errors. This �nding
does not invalidate the conclusions taken from the experimental data because we are being

94 Chapter 4. Impairments to dependability of CAN and FTT-CAN

Aggressive environment Factory �oor
Error burst Number of errors Number of errors
(in bits)

1 2431 75
2 0 0
3 1 0
4 1 0
5 2 0
6 3712 88
7 31 0
8 1 0

Table 4.4: Error bursts size in the aggressive environment experiment and in the factory �oor
experiment.

pessimistic and the real value for the bit error rate would be even lower.
Table 4.5 presents the distribution of single errors and start of error bursts over the possible

frame states of the MoiCAN state machine.

4.5.2 Experiments conducted over a short time interval

Several additional short experiments, intended to assess the interference caused by a mobile
phone in the CAN network, were conducted at a University laboratory. The motivation to
perform these experiments is related with the widespread use of mobile phones near CAN
networks, e.g., in cars, and with the reporting of interferences, although not quanti�ed, of
these devices in CAN networks [HNP00][NYQS00].

Eight scenarios were tested lasting 120 seconds each, during which 10 phone calls were
made. The di�erence between each test scenario was the mobile phone positioning, the EMI
shielding of the measurement instruments (MoiCAN and ATMEL boards) and the CAN ca-
bling. In the �rst experiment the mobile phone was put over a plastic surface that was covering
the open metal box that contains the boards, as depicted in Figure4.9. In the second exper-
iment the mobile phone was put 12 cm above the open metal box that contains the boards,
as depicted in Figure 4.9. In the third experiment, the mobile phone was placed over the
CAN sockets still with the metal box open (Figure4.10). In the fourth experiment the mobile
phone was placed over the CAN cable 15 cm way from the open metal box (Figure4.10). In
the �fth experiment, the mobile phone was placed over the closed metal box (Figure4.11). In
the sixth experiment, the mobile phone was placed over the CAN sockets but this time with
the metal box closed (Figure 4.11). During these six experiments, the 30 m shielded cable
was used. In the seventh experiment the previous cable was replaced by a 1 m cable that was

4.5 Assessing CAN Bit Error Rate 95

Aggressive environment Factory �oor
Frame state Single errors Bursts Single errors Error bursts
INTERMISSION 544 3667 7 88
SUSPEND_TX 312 0 0 0
IDLE 0 0 47 0
SOF 704 0 0 0
ID 39 0 4 0
RTR 76 0 2 0
RSVD_BITS 100 0 1 0
DLC 344 0 0 0
DATA 179 0 12 0
CRC_SEQ 5 0 1 0
CRC_DELIMIT 0 6 0 0
ACK_SLOT 2 0 0 0
ACK_DELIMIT 11 17 0 0
EOF 45 57 0 0
OVLD_FLAG 0 1 1 0
OVLD_DELIMIT_WAIT 0 0 0 0
OVLD_DELIMIT 0 0 0 0

Table 4.5: Distribution of single errors and start of error bursts considering the states of the
MoiCAN state machine.

96 Chapter 4. Impairments to dependability of CAN and FTT-CAN

Figure 4.9: First experiment, on the left side, and second experiment, on the right side.

Figure 4.10: Third experiment, on the left side and fourth experiment, on the right side.

folded on top of the metal box and the mobile phone was placed over it (Figure4.12), while
in the eighth experiment only one of the wires of the 1 m cable was folded (Figure4.12).

These experiments were not intended to measure the bit error rate in each of those sce-
narios, instead they were designed to illustrate the close interdependency between the EMI
shielding and the number of transmission errors. Nevertheless, the data collected in these
experiments will be presented in terms of total number of errors, error burst size distribution
and error location, in each experiment.

Table 4.6 presents the sizes of the error bursts, the total number of errors and the number
of interferences, while Table 4.7 presents the distribution of single errors and start of error
bursts over the possible frame states of the MoiCAN state machine and the errors in the last
but one bit. These tables only contain information concerning experiments one and three,
since no errors were detected in the other six experiments.

4.5 Assessing CAN Bit Error Rate 97

Figure 4.11: Fifth experiment, on the left side and sixth experiment, on the right side.

Figure 4.12: Seventh experiment, on the left side and eighth experiment, on the right side.

98 Chapter 4. Impairments to dependability of CAN and FTT-CAN

The main conclusion that can be draw from these experiments is that electromagnetic
interferences caused by a mobile phone are quite severe if the CAN controllers are not fully
shielded and the mobile phone is very close to the them. Notice that the assumption about no
errors being induced in the 10 cm wire connecting the Atmel board to the MoiCAN board no
longer holds when the metal box is open. In this case the Tx signal that goes on the 10 cm wire
is much more susceptible to interferences that the CAN wires that carry di�erential signals.

These results also show that the interferences induced in the cabling alone (experiments 4,
7 and 8) do not cause transmission errors. This last conclusion needs to be put in perspective,
since the experiments were run only for a very short time interval. Notice also that the
interference pattern induced by the mobile phone di�ers from the one found in the industrial
environment. Most of the errors caused by the mobile phone occur within the IDLE frame
state while in the industrial environment they occur in the INTERMISSION frame state.

Error burst Experiment 1 Experiment 3
(in bits)

1 1233 556
2 16 8
3 0 0
4 4 0
5 2 0
6 30 5
7 1 0
8 0 0
9 1 0

Errors 1471 594
Interferences 1357 571
Errors (last
but one bit) 0 0

Table 4.6: Sizes of the error bursts, total number of errors and number of interferences.

4.6 Fault Hypothesis
Having described the impairments to CAN and FTT-CAN dependability and presented

some results, based in experimental data, of their probability, it is now possible to state the
fault hypothesis that will be used throughout this work, towards a dependable FTT-CAN
system.

Concerning channel faults, only transient faults that change the value of, at least, one bit

4.6 Fault Hypothesis 99

Experiment 1 Experiment 3
Frame state Single error Burst Single error Burst

INTERMISSION 23 152 1 29
SUPS_TX 0 0 0 0

IDLE 1161 35 545 5
SOF 0 0 0 0
ID 5 4 4 2
RTR 0 0 0 0

RSVD_BITS 0 0 0 0
DLC 0 0 0 0
DATA 37 35 4 1

CRC_SEQ 8 12 2 1
CRC_DEL 0 0 0 0
ACK_SLOT 0 0 0 0

ACK_DELIMIT 0 0 0 0
EOF 0 0 0 0

OVLD_FLAG 0 0 0 0
OVLD_DELIMIT_WAIT 0 0 0 0

OVLD_DELIMIT 0 0 0 0

Table 4.7: Distribution of single errors and start of error bursts considering the states of the
MoiCAN state machine.

are considered. The speci�c fault scenario reported in [PMJ00], which causes an inconsistent
transmission that the transmitter is not able to detect, is not considered in this work.

Also, no masquerading faults are considered, e.g. a malicious node forcing the transmission
of incorrect trigger messages.

Although channel bit error statistics have been collected, no special assumption is made
about the frequency or the duration of channel faults. Thus, it is assumed that inconsistent
message omissions and duplicates may occur. The reasons for this are twofold, in the �rst
place faults induced in the channel are heavily dependent on the particular environment where
the system operates. Secondly, the most relevant result that emerged from the bit error
rate experiments, i.e., inconsistent message omissions below 10−9 occurrences per hour, is
applicable to systems based on CAN, only.

Similarly to the master node, the transmission medium is also a single point of failure of
FTT-CAN. The mechanisms proposed in this work do not aim to tolerate permanent faults
of the transmission medium, such as a partition of the cable, and therefore these faults are
not considered. Notice, however that the bus may easily be duplicated, e.g., using Ru�no's

100 Chapter 4. Impairments to dependability of CAN and FTT-CAN

Columbus egg idea [RVA99b] to handle physical bus partition.
Concerning physical faults of the nodes, both masters and slaves are assumed to exhibit

fail-silence failure semantics. This means that they can only fail by not issuing any message to
the network. For the masters, this assumption is substantiated by their internal redundancy.
In contrast, the internal structure of the slaves does not enforce this assumption. Nevertheless,
crash failure semantics can be assumed for them as similar techniques could be used in order
to achieve this property.

The clock synchronization problem is not addressed in the dissertation and it is assumed
that nodes, both masters and slaves, are always synchronized. This assumption is based in
the fact that the trigger message transmitted by the active master, besides conveying the
scheduling information, also acts as a synchronization mark to all network nodes. That is, the
master node is also the time master and it is assumed that in between two consecutive trigger
messages (typically 5msec to 10msec) the clock timers of each node do not diverge more than
a negligible amount of time. Notice that FTT-CAN time granularity is quite coarse since it
corresponds to the elementary cycle duration. Slave nodes do not require a global time base to
operate, they only need a simple timer to enforce the separation between the event- and time
triggered phases of the protocol, i.e., the asynchronous and synchronous windows respectively.

4.6.1 System properties
Considering the previous fault hypothesis and the mechanisms of CAN and FTT-CAN

described in Chapter 3, some underlying properties related to fault-tolerance aspects of both
CAN and FTT-CAN are devised.

CAN.p1 Whenever a receiver rejects a frame, the error signaling mechanisms of CAN compel
the transmitter to reject this frame as well. In other words, one transmitter considers
that a frame has been successfully transmitted only if this frame has been consistently
received by the rest of the nodes in the network.

CAN.p2 Whenever a node attempts to transmit a CAN frame and it does not succeed due
to an error, then some correct CAN controllers may receive the frame correctly while
others may reject the same frame. This inconsistency can only occur if there was an
error in the last but one bit of the frame. In all other situations, all CAN controllers
consistently reject the frame. The following two properties are direct corollaries of this
one.

CAN.p3 Upon message retransmission caused by a network error, a correct CAN controller
may receive the same frame correctly more than once.

CAN.p4 Whenever a correct CAN controller receives a valid frame, without further infor-
mation there is no way to tell whether the sender successfully sent that frame or failed
in sending it due to network errors.

4.7 Achieving fault-tolerance in FTT-CAN 101

In what concerns FTT-CAN, the transmission of the Trigger Message is particularly rel-
evant since it conveys the master view of the network, mainly the EC-schedule, and serves
as a synchronization mark. Its transmission mechanism is the following: the active master
transmits the TM and, in case of error, tries to retransmit it during a given window (typically
about half the EC duration). Eventual backup masters, required to circumvent the single
point of failure of the FTT-CAN master node (this issue will be detailed further on Chapter
6), try to transmit a TM with a small delay relative to the active one and in single-shot mode
with immediate abort after transmission request, i.e. transmission takes place if bus is idle,
only. Among several possible backup masters, only one can succeed and only if the active
master failed, resulting in the following properties:

FTT-CAN.p1 Only one master can transmit a trigger message successfully within each
elementary cycle.

FTT-CAN.p2 One backup master can succeed in transmitting the trigger message only if
the active master is faulty. Therefore, there is only one active master at a time.

FTT-CAN.p3 Whenever the active master fails, the backup master which wins arbitration
and becomes the active master is the one with the shortest replacement delay. If more
than one backup master has the same replacement delay, the one which wins arbitration
is the one that attempts to transmit the TM with the lowest identi�er (a pre-con�gurable
parameter in each master).

4.7 Achieving fault-tolerance in FTT-CAN
The FTT-CAN protocol was originally developed to ful�ll three basic requirements: time-

liness, �exibility and e�ciency [AFF98] [APF02]. This was achieved by combining the advan-
tages of time- and event-triggered paradigms and providing �exibility to the time-triggered
tra�c. Without discussing the merits of such an approach neither presuming a causal e�ect,
recall that both TTCAN and FlexRay proposals, which are posterior to FTT-CAN, are some-
what based in the same basic idea of combining time- and event-triggered communication
paradigms. This reveals a clear trend towards communication systems capable of supporting
both communication paradigms. Still, FTT-CAN goes a bit further by allowing time-triggered
messages to be scheduled dynamically and online, in contrast with both TTCAN and FlexRay
where time-triggered massages are static and scheduled at pre-runtime. This fact makes
the development of fault-tolerant mechanisms to TTCAN and FlexRay quite straightforward
because there is an a priori common knowledge of the message scheduling by all nodes. This
is not the case in FTT-CAN, however, as it will be shown later, it is possible to build fault-
tolerant mechanisms for FTT-CAN that preserve the protocol inherent �exibility particularly
concerning the time-triggered tra�c. The complexity of those fault-tolerant mechanisms is
comparable with the solutions adopted in TTCAN and FlexRay.

102 Chapter 4. Impairments to dependability of CAN and FTT-CAN

������

���	
 �

�
� ����

���	
 � ���	
 � ���	
 �

Figure 4.13: FTT-CAN basic architecture.

The initial FTT-CAN architecture emerging from the protocol speci�cation considered a
single master, responsible for the network tra�c scheduling, admission control of new message
streams or modi�cations to the current ones and for the cyclic transmission of the trigger mes-
sage. Slave nodes could transmit event-triggered messages during the asynchronous window
and master scheduled time-triggered messages during the synchronous window. This basic
architecture is depicted in Figure 4.13.

The �rst step towards the de�nition of a fault tolerant FTT-CAN architecture is the
identi�cation of the impairments to dependability of the original FTT-CAN architecture
[AFF98][APF02] as well as of native CAN. The previous sections have identi�ed those impair-
ments and presented some new experimental data, related with the probability of inconsistent
message omission. Experimental data indicates that the probability of inconsistent message
omissions, which depends on the channel bit error rate, might be substantially lower than
previously assumed. In fact, in the experiments it is below the 10−9 occurrences per hour,
the commonly accepted threshold for safety-critical applications. This fact enables the direct
use of native CAN in safety critical applications without requiring sophisticated and band-
width ine�cient atomic broadcast algorithms. Since the asynchronous messaging system of
FTT-CAN preserves all native CAN properties, we conjecture that FTT-CAN asynchronous
messages do not require an atomic broadcast algorithm to achieve consensus among FTT-CAN
nodes. Notice, however, that this conjecture is only valid within the reported experiments sce-
narios and the experimental results do not pretend to be universally applicable. The same
experimental results have also shown that the CAN bit error rate is high enough to make
FTT-CAN synchronous messages very susceptible to inconsistent message omissions.

Other impairment to FTT-CAN dependability is related with the failure semantics of the
master and the slave nodes. The fault hypothesis assumes that nodes exhibit a crash failure
semantics, i.e., nodes can only fail by not issuing any message to the network (fail-silence
failure mode). Unfortunately this does not match standard CAN and FTT-CAN nodes, thus,

4.7 Achieving fault-tolerance in FTT-CAN 103

some mechanisms must be developed to enforce such behavior.
Besides the inconsistent message transmission and the failure semantics of FTT-CAN

nodes, another obvious problem with FTT-CAN is the single point of failure nature of the
master node. If the master node fails to transmit trigger messages, transmit them out of time
or with erroneous contents, then all network activity could be seriously compromised or even
disrupted.

Having analyzed CAN and FTT-CAN impairments to dependability and de�ned an ad-
equate fault hypothesis characterizing the possible fault scenarios that an FTT-CAN based
system is supposed to tolerate, one can now design fault-tolerant mechanisms to limit the
impact of such faults. The faults included in the fault hypothesis are handled by determinis-
tic fault tolerant mechanisms that enforce a continued correct system service. On the other
hand, the faults that are not considered by the fault hypothesis, at the design stage, can cause
severe consequences with unpredictable outcomes. To handle these faults, two approaches are
typically adopted. Either the system is driven into a static and safe position or, for situa-
tions that require a fail-operational behavior, best-e�ort strategies must be used, to drive the
system back to a correct state, usually referred to asnever give up strategies.

The available spectrum of techniques to tolerate the faults included in the fault model
is, as referred in Chapter 2, quite broad, ranging, for example, from distributed consensus
algorithms to fully replicated infrastructures with design diversity and voting. Hence, the
particular con�guration of a system can be more or less complex and fault-tolerant as desired
by the system designer, knowing that the more faults a given system tolerates the more
expensive it will be.

As it was previously referred, in the speci�c case of FTT-CAN, an additional issue exists:
its �exibility in terms of the time-triggered tra�c. Opposed to FlexRay, TTP/C or TTCAN,
where such tra�c is static and de�ned at pre-run time, in FTT-CAN it is scheduled online,
supporting dynamic communication requirements.

Allowing �exible communication requirements in a real-time distributed system brings up
some concerns regarding safety, since a change in communication requirements can possibly
lead to a network overload and consequent timing failures. Furthermore, if the communication
requirements can change online and unboundedly, it is not possible to usea priori knowledge
to distinguish correct transmissions from wrong ones. The use of a priori knowledge is of
utmost importance in fault-tolerance techniques, to distinguish between what is correct and
what is wrong. However, if the on-line requests to change the communication requirements are
admissible only within strict boundaries, both temporally and in value, then it will become
possible to guarantee the continued safe and timely behavior of the network. This requires the
�ltering of the requests in order to accept only those that conform to speci�cations. In this
way, the system will still be �exible with respect to the communication requirements although
the �exibility is limited to an extent up to which safety is not jeopardized.

The impairment caused by the single point of failure formed by the master holding the

104 Chapter 4. Impairments to dependability of CAN and FTT-CAN

SRDB and the tra�c scheduler can be circumvented using replication, with one or more similar
nodes acting as master backups. In this way, as soon as a missing trigger message is detected,
a backup master comes into the foreground and transmits it, maintaining the communication.

Replication is a common technique to provide fault-tolerance and it is used, for example,
in TTCAN to cope with failures of the time master. However, master replication in FTT-
CAN includes an extra complexity resulting from the dynamic nature of the SRDB. Since the
system requirements, replicated at all masters SRBS, are �exible and may evolve over time,
there is a potential for inconsistency in the replicated SRDB images and particularly in the
SRTs (Synchronous Requirements Table), compromising the replica determinism requirement.
Two situations are particularly relevant:

• During an asynchronous startup/restart a master node may lose the contents of its SRT.
This calls for the de�nition of a protocol to transfer the SRT from the active master to
the unsynchronized one.

• During the processing of an update request to change the communications parameters,
it must be ensured that all replicas process the same request, in the same order and
commit the request synchronously. This calls for the de�nition of an adequate protocol
to enforce consensus preventing a master to accept a request while others may reject it
or di�erent masters committing a request at di�erent instants.

Apart from these situations and during standard operation mode, there are no reasons for
the replicas to diverge. To cope with these issues, the master node replication in FTT-CAN
is addressed by means of four mechanisms:

1. A policing mechanism that allows backup masters to detect loss of synchronization.

2. A synchronization protocol to allow out-of-sync backups to re-synchronize in a short
interval.

3. An agreement protocol to handle SRT updates in order to minimize loss of synchroniza-
tion during SRT update requests.

4. A master replacement mechanism upon active master failure.

Enforcing Master's fail-silence assumption both in time and value domains calls for the
internal replication of the SRDB and the tra�c scheduler in two di�erent CPUs and compare
both outputs in terms of value and timing. The trigger message is issued only if both schedule
outputs, i.e. EC-schedules, are identical and produced within a narrow time window.

Slaves should also be fail-silent and although one could adopt the same mechanism used in
master nodes, that would be expensive. Thus, slave nodes fail-silence enforcement both in time
and value domain should only be adopted in special cases where the slave node information

4.7 Achieving fault-tolerance in FTT-CAN 105

������ �����	

��
 ����
�

��
 �������

����� �

�� ��

��
!

��
�

�"#�

����� !

�� ��

����� $

�� ��

����� %

�� ��

�"#�

&����	 	�'(���

��
 ����
�

��
 �������

��
!

��
�

�"#� �"#�

Figure 4.14: Fault-tolerant FTT-CAN architecture based on a replicated broadcast bus, master
replication and bus guardians.

(value and timing) is absolutely essential. In other cases, limiting slave nodes ability to
transmit uncontrollably will su�ce. This corresponds to enforce fail-silence behavior in the
time domain only, and it could be accomplished by a bus guardian.

Apart from the considerations above, it is also important to refer that the proposed archi-
tecture may also include replicated transmission paths in the communication system. This is
important for the case in which the physical partition of the communication system must be
tolerated. In this case, every node connects to both paths and transmits simultaneously on
both, too. However, errors or physical partitioning may disturb the synchronization of both
paths. Upon reception, a speci�c driver gets rid of duplicated messages by using messages
identi�cation and a maximum separation interval between the arrivals in both paths. As it
was referred in the previous section bus replication is not considered in this work. Neverthe-
less, for the sake of completeness the proposed fault-tolerant FTT-CAN architecture already
includes that feature, as depicted in Figure 4.14.

Given FTT-CAN �exibility with respect to the tra�c scheduling, arising from the master
node ability to schedule network tra�c according to several policies and to accept runtime
requests to change the message parameters, the bus guardians should also be �exible to adapt
to evolving schedules. From a slave perspective, a schedule is valid only within the scope of
an elementary cycle, thus the bus guardian policing a node only needs to be aware of the node
schedule in an EC by EC basis. In this way the node and its bus guardian should decode
the trigger message contents in parallel and the bus guardian should block any unscheduled

106 Chapter 4. Impairments to dependability of CAN and FTT-CAN

transmission from the node.
Possible electromagnetic interference or other source of errors may cause a fault in message

transmission with the correspondent message omission. Depending on the omission location
within the EC, several schemes capable of recovering from such situations need to be designed.
If the omission occurs in the trigger message transmission it is possible to retransmit it during
the trigger message transmission window in order to remove the omission. If a synchronous
message is omitted, this can be detected by the absence of answer to the trigger message
in the respective EC. In this case, the master may use fault-tolerant scheduling techniques
to try to recover the missing message, e.g. by accounting for possible retransmissions and
rescheduling the message again within the deadline, if possible. The detection of missing
synchronous messages can be also used to implement a membership service for slave nodes.
In what concerns masters, a speci�c membership service is implemented based on a polling
mechanism. An omission of an asynchronous message could be removed by retransmitting the
omitted message as in CAN. These schemes are only valid in case of transient interferences that
cause sporadic message omissions. In order to tolerate permanent node failure a replication
scheme needs to be adopted. This has already been referred for the master node but it also
applies to slave node producing critical information.

4.8 Conclusion

This Chapter presented an overview of CAN and FTT-CAN impairments to dependabil-
ity. One of the main concerns is the problem of possible inconsistent message duplicates and
omissions when a fault occurs in the last but one bit of a CAN frame. The impact of incon-
sistent message duplicates/omissions depends on CAN bit error rate. There was no public
data available on this issue and the initial bit error rate assumptions seemed to be rather
pessimistic, given the CAN electrical physical layer properties. This was the main motiva-
tion to experimentally assess the CAN bit error rate. Experimental results have con�rmed
the pessimistic nature of the initial bit error rate assumptions since measured values are, in
fact, substantially lower than previously assumed. An important result is that the number
of inconsistent message omissions per hour in an aggressive environment may be below the
10−9 threshold commonly considered for safety-critical systems. This result, if con�rmed with
more experiments in typical application scenarios, makes hardly justi�able the existence of
algorithms to enforce atomic broadcast in CAN. Although inconsistent message omissions are
rare, the number of inconsistent message duplicates must be taken into account, but, in this
case the mechanisms to account for duplicates can be made quite simple and light.

However, the considerable number of inconsistent message duplicates in CAN is a serious
impairment to both TTCAN and FTT-CAN, since every such duplicate is transformed into an
inconsistent omission because message retransmission is disabled (in FTT-CAN synchronous
windows retransmissions may be allowed in a controlled way).

4.8 Conclusion 107

Based in known CAN impairments to dependability, described over the years in the lit-
erature, and in the experimental work presented in this Chapter, a fault hypothesis with no
special assumptions about the frequency or the duration of channel faults was also presented.

The FTT-CAN impairments to dependability presented in this Chapter are the main moti-
vation to the development of fault-tolerance mechanisms able to support the use of FTT-CAN
in safety-critical systems. An architecture to enforce fault-tolerance in FTT-CAN concluded
this Chapter. This architecture assumes fail silence nodes, master replication, bus redundancy
and a set of other mechanisms to support these assumptions.

108 Chapter 4. Impairments to dependability of CAN and FTT-CAN

Chapter 5

Handling Message Omissions

5.1 Introduction

Possible electromagnetic interference or other source of errors may cause a fault in message
transmission, possibly leading to a message omission. In case that omission is transient, it
might be removed by means of the automatic retransmission upon error of CAN. Notice that
the omission caused by an error in the last but one bit of a CAN frame is included in the
previous case, despite some nodes possibly receiving and others not receiving the message,
causing an inconsistent message omission. A message retransmission, necessary to recover
from the omission, may in�uence the timeliness of other messages and, in a limit situation,
a single transmission error could compromise the timeliness of all messages in a domino like
e�ect.

In the case of FTT-CAN, the temporal isolation enforced by the protocol between the
synchronous and asynchronous windows, by suspending all transmission activity at the end
of each window, guarantees that no domino e�ect happens across those windows in case of
network errors. In this way, errors in the asynchronous window will cause message retrans-
mission possibly extending to subsequent asynchronous windows, but without interfering with
the timeliness of the synchronous messages. Notice that, despite the time gaps between the
consecutive asynchronous windows, FTT-CAN enforces that message arbitration and retrans-
missions occur in a logically continuous manner, so that priority inversions do not occur in
the transitions between ECs. The in�uence of transmission errors during the synchronous
windows is also bounded because automatic message retransmission upon error is disabled,
as it will be discussed later, thus leading to message omissions. From this brief discussion
it follows that asynchronous messages behavior in FTT-CAN is similar to native CAN while
the behavior of synchronous message is more peculiar since messages are not automatically
retransmitted upon transmission error.

A non-faulty message transmitter is always aware, by property CAN.p1 of Chapter4, of
a message omission. Thus, and depending on the omission location within the EC, several

109

110 Chapter 5. Handling Message Omissions

schemes capable of recovering from such situations should be designed.
For example, if an omission occurs during the trigger message transmission it would be

desirable to retransmit the TM during, at least, a given retry window in order to attempt
removing the omission. If a synchronous message is omitted, this can be promptly detected by
the master monitoring the synchronous tra�c. In this case, the master may use fault-tolerant
scheduling techniques to try to recover the missing message, e.g. by accounting with time for
possible retransmissions and rescheduling the message again within the deadline, if possible.
Another possibility to circumvent the occurrence of a synchronous message omission is to add
extra time, at scheduling time, to the synchronous window, according to some fault model, to
accommodate possible message retransmissions without violating the schedule. An omission
of an asynchronous message, as referred before, can be removed simply by retransmitting it,
as in native CAN, provided the sender does not crash in the meantime.

These schemes are only valid in case of transient interferences that cause sporadic message
omissions. In order to tolerate permanent node failure a replication scheme needs to be
adopted both for slave and master nodes. The issue of enforcing master replica determinism
will be addressed in Chapter 6. This Chapter presents mechanisms to handle asynchronous,
synchronous and trigger message omissions, based on both spatial and time replication.

5.2 Handling trigger message omissions
The mechanisms proposed to handle trigger message omissions are twofold and depend on

the nature of the failure, either transient, where a temporal redundancy scheme is adopted
(controlled retransmission), or permanent, where a spatial redundancy mechanism (replica-
tion) is used. Both mechanisms are used in parallel, however, the temporal redundancy scheme
has a higher priority than the one based in replication preventing a master replica to replace
the current active master in the case of a transient interference. The master is substituted
when it fails by not issuing a TM, only.

5.2.1 Transient trigger message omissions
In case of error during the transmission of the TM, the mechanism proposed relies on its

retransmission, but con�ned to a window called the Trigger Message Transmission Window
(TMTW), as depicted in Figure 5.1-A. The length of this window is con�gurable at startup
time. Given the temporal validity of the TM, i.e., the temporal validity of the EC-schedule
it conveys, which is one EC, it becomes meaningless to transmit it close to the end of the
cycle. Notice that, to maintain the coherency of the temporal framework of the synchronous
messaging subsystem, the next TM is not delayed and the master tries to keep its periodicity.

This controlled TM retransmission scheme also maintains the temporal isolation between
the asynchronous and synchronous protocol phases by computing the synchronous window
starting time relatively to the reception of the next TM. A slave node, after receiving a TM,

5.2 Handling trigger message omissions 111

����� ������	
 ����
�
�

��

�

� �
�
�
�
�

���	�����	��� ��	�����	���

���������	��

�������� �	�� � �

� �
�
�
�
�
�
�
�

� �
�
�
�
�
�
�

��	����� ��	�����	���

�

�
�

Figure 5.1: Controlled retry mechanism used to transmit the trigger message.

takes some time to decode it, both to extract the scheduling information and the length of
the asynchronous window (law(n)). A timer (Timer(law(n))) is set with the length of the
asynchronous window extracted from the TM, which is used to enforce temporal isolation
between protocol phases. Notice that each slave node maintains another timer which periodi-
cally generates an interrupt during the expected time window corresponding to the reception
of the TM, the EC timer. This interrupt is used to open the asynchronous message transmis-
sions during the TM transmission in order to prevent priority inversions of the asynchronous
messages. If the TM is not received when expected the slave node will attempt to transmit
any pending asynchronous message, however it will fail to do so because the master node is
also attempting to transmit a higher priority message, the trigger message, and will win the
arbitration process. Thus the slave node will eventually receive a TM and in order to compute
the e�ective LAW it only has to subtract the current value of the EC timer from the LAW
value conveyed in the trigger message.

In the scenario depicted in Figure 5.1-B, the active master only succeeds to transmit the
trigger message at the fourth attempt, thus the length of the asynchronous window is reduced,
but without interfering with the synchronous messaging subsystem.

In the scenario depicted in Figure 5.1-C, the active master only succeeds to transmit the
trigger message at the seventh attempt, but still before the end of the TMTW. In this case
and since the e�ective LAW is negative, the synchronous window will be truncated and only

112 Chapter 5. Handling Message Omissions

the sub-set of the synchronous messages with the highest priority, scheduled for that EC, that
�t in the remaining time will be e�ectively transmitted.

Another possible scenario, illustrated in Figure 5.1-D, corresponds to the case where the
transient interference spans across all the TMTW causing consecutive trigger message trans-
mission errors. In this case the active master does not fail, but it is unable to successfully
transmit the trigger message during the TMTW. Thus, several or all network nodes, either
masters or slaves, will not receive a valid trigger message. Consequently, slave nodes cannot
transmit during the respective EC. However, if an error in the last but one bit occurs during
the TMTW some nodes may receive a valid trigger message and attempt to transmit syn-
chronous messages, while others would not. This has no serious consequences in the protocol,
because if a backup master receives a valid trigger message it just stops trying to become
active in this EC. For the case of a slave node, it will begin normal protocol operation but this
process will be interrupted by the reception of the next trigger message. The active master
that was unable to transmit the trigger message during the TMTW will compute the next ele-
mentary cycle schedule and will transmit it when the EC timer expires. Backup masters that
have received the trigger message out of the expected receiving instant or have not received a
trigger message or were not able to transmit their own, increment their EC count, and wait
for the next EC timer expiration to try sending the next TM. This scheme avoids unnecessary
master replacements and ensures that only one backup master can succeed in transmitting
the trigger message and only if the active master fails by crashing. It also allows coping with
interferences that last for more than one EC. When the TM is omitted in a given EC, all
masters maintain their previous state, active or backup.

5.2.2 Master replication and replacement

Master replication and replacement is required to tolerate permanent failures of the master
node. Recall that according to the fault hypothesis the master node is fail silent and so when
it fail it stops transmitting.

The master failure detection and replacement technique consists in making the backup
masters try to transmit the TM a short delay, the replacement delay (Figure 5.2), after
the expected start of the TM transmission by the active master. The masters use a single
shot transmission by issuing an abort request immediately after the transmit one. If the
active master is already transmitting a trigger message on the bus, then the abort request is
successful, otherwise, if the backup master e�ectively started transmitting the TM, the abort
request fails and the trigger message produced by the backup master is e�ectively transmitted.
In the former situation, the backup master su�ers a CAN receive interrupt and stays in the
same state. In the latter situation the backup master su�ers a CAN transmit interrupt and
changes its state to active.

In case of error during the transmission of the TM, all masters, active and backup, retry

5.3 Spatial redundancy to handle synchronous and asynchronous message omissions 113

������ �����	

���

�� �� ��

�� ��
����		���

�� ��
����		���

�� ��
����		���

����	 ���������� � � �� ��� � ���	� �� �� ����
� � �� ��� � ���	� �� �� ������

�
 �

 !"#$% %$&'!($)$*# +$'!,

��

�
 ����	
����		���

�
 ����	
����		���

�
 ����	
����		���

������
������	

�-
���

.��/��
������	

��

0$#%, +$'!,

Figure 5.2: Master replacement process.

transmitting it in single shot mode after a short delay, the retry delay (Figure5.2).
This controlled retry mechanism gives all masters the time required to check the reception

of a TM before attempting to send it. Consequently, only one TM is successfully transmitted in
each EC. This process can be repeated several times during the Trigger Message Transmission
Window (TMTW). If no trigger message is successfully transmitted during the TMTW all
masters increment their EC count, and wait for the next EC timer expiration to try sending
the next TM. This allows coping with interferences that last for more than one EC. When the
TM is omitted in a given EC, all masters maintain their previous state, active or backup.

If there are several backup masters present in the network the situation is similar, since
possible backup master competition is handled by the native CAN arbitration. This imple-
mentation is quite e�cient since the master replacement delay is a fraction of the trigger
message duration, and so the induced jitter due to master replacement is low.

A simpli�ed version of this replacement mechanism, without the controlled retransmission,
was successfully implemented in the CANivete [FSMF98] system, with a master replacement
delay of 300µsec [FPAF02].

5.3 Spatial redundancy to handle synchronous and asynchronous
message omissions

A slave node responsible for transmitting critical data, e.g., an alarm sensor, needs to be
replicated in order to deliver continuous service upon primary slave failure. Since slave nodes
may transmit either synchronous or asynchronous messages or both types of messages, the
slave replication scheme must cover all these cases.

As it was discussed in section 5.2, there are two possible types of redundancy that could be

114 Chapter 5. Handling Message Omissions

used in di�erent contexts: temporal and spatial redundancy. Temporal redundancy consists
in retransmitting messages over time while spatial redundancy implies the physical duplica-
tion of nodes. Temporal redundancy tolerates transient interferences that inhibit a node to
transmit during a short time interval. Spatial redundancy, on the other hand, tolerates node
crashing. As it was referred in Chapter 2, it is impossible to detect node failures in asyn-
chronous distributed systems without relaxing the asynchrony assumptions, so we assume
that asynchronous messages have a maximum inter transmission time. Moreover, it is di�cult
to instantly distinguish a transient interference from a node crash in an asynchronous system
even with maximum inter transmission times. In this case a node transmitting a late message
due to, e.g., electromagnetic interference, could be considered crashed by a failure detector
just after the maximum inter transmission time has elapsed, causing an unnecessary node
replacement.

This section presents a scheme to account for spatial redundancy of FTT-CAN slave nodes,
while the next section will present a mechanism that implements temporal redundancy for
transmitting synchronous messages. The last section of this Chapter discusses the particular
case of atomicity of asynchronous messages that may convey safety-critical data, e.g., alarms
or FTT-CAN protocol management information.

Depending on the type of tra�c a given node transmits, two schemes to support spatial
redundancy are proposed, one for nodes that only transmit asynchronous tra�c and other for
the nodes that transmit synchronous tra�c. Notice that the scheme to replicate nodes that
transmit asynchronous tra�c only, could also be adopted in native CAN networks.

5.3.1 Nodes transmitting asynchronous messages only

Replication of nodes that only transmit asynchronous messages is based on a failure detec-
tor installed at each replica. It is assumed that the replica priority is lower than the primary
(IDreplica = IDprimary + 1) and every asynchronous message has a known maximum inter
transmission time (MIT) assigned (thus they are not asynchronous messages in the strict
sense). Based on the maximum message inter transmission time the failure detector, located
in the replica, could detect a faulty primary slave and replace it. However, transient bus
interferences may cause maximum inter transmission time violation that could be interpreted
by the failure detector as faulty primary slave. In this case both the primary and the slave
replica will compete for message transmission and, if they enter arbitration, the one transmit-
ted by the primary slave will win arbitration given its higher priority. The slave replica will
only succeed replacing the primary slave if this one fails by crashing. In this way, the slave
replica does not interfere with the network unless it suspects the primary slave has failed by
not transmitting a message before its maximum inter transmission timer expires. Figure5.3
presents the automaton of the replica transmitting asynchronous messages only.

5.3 Spatial redundancy to handle synchronous and asynchronous message omissions 115

������

����	�

����
� �	����

� ����
����� ����
��
� �
������ �������
� ����� ����
�����

���
�

��� ����
�����
� ��	���� �������

��
�
���
� �����

� ����� ����
�����

� ��	���� �������

��
�
���
� �����

� ����� ����
�����

� ����
����� ����
��
� �
������ �������

��� � ������� ����
 �
���������� ����

Figure 5.3: Automaton of slave replica that transmits only asynchronous messages.

5.3.2 Nodes transmitting synchronous messages only

The principle adopted in the replication of nodes transmitting only synchronous messages is
di�erent from the one adopted for the previous case, since it does not rely on a failure detector.
The slave replicas always try to transmit the synchronous messages scheduled by the master.
The scheme assumes single shot transmission mode and requires that the priority of the slave
replica is lower than any primary node that transmits synchronous messages (IDreplica <

∀IDprimary). According to this scheme, the slave replica only succeeds in transmitting a
synchronous message if the primary slave fails to transmit it, either because it has crashed or
because the single shot transmission has su�ered a transient interference and there is enough
room in the synchronous window for that transmission. Notice that the EC-schedule conveyed
in the trigger message only accounts for a single transmission of each message during the
synchronous window. The computation of the synchronous window duration for a particular
EC-schedule is conservative in the sense that it accounts for all possible stu� bits, which usually
gives a slack space that is not used. Depending on the size and location of the interference it is
possible that both the primary slave and its replica will transmit within the same elementary
cycle. This is not a problem because the contents of both messages would be identical and
the receiver of the messages could simply discard one of the message instances or rewrite the
�rst one. Thus, this scheme of spatial replication also indirectly implements, in some cases,
temporal redundancy as depicted in Figure 5.4-B.

Nodes transmitting both asynchronous and synchronous messages should implement both

116 Chapter 5. Handling Message Omissions

��

���������	
 � ��
��

��

�

�� � �� � �� ��� �� ��

�����

��

�

�� � �� � �� ��� �� �� �� �

Figure 5.4: Temporal replication of slave node transmitting only synchronous messages.

replication behaviors.

5.4 Temporal redundancy to handle synchronous message omis-
sions

The previous section focused on slave node spatial replication and presented two schemes
for implementing such replication in nodes transmitting either synchronous or asynchronous
messages. If a transient interference disturbs a slave node transmitting a synchronous mes-
sage, the replication scheme also provides temporal replication because that message could be
transmitted by the slave replica possibly within the same elementary cycle.

This section addresses the cases of non-replicated slave nodes transmitting synchronous
messages. In principle these slave nodes are not so critical as the ones that require replica-
tion. However it might be desirable to retransmit a faulty message (a�ected by a transient
interference) before its deadline expires.

Prior to discuss the impact of sporadic errors occurring during the FTT-CAN synchronous
window, it is important to specify that, in our assumption, sporadic errors do not include
transmitter or receiver failures (leading to a bus-o� state). Our analysis considers the single
error sources only: bit errors, stu� errors, CRC errors, form errors and acknowledgment error.
The worst case scenario considering all these possible error sources occurs when an error
corrupts the last bit of the End-of-Frame �eld of a maximum sized message (133τbit being
τbit the time required to transmit one bit) and the subsequent error frame has the maximum
size (20τbit). Notice that the maximum message length, for CAN base frame format, is 133
bits (with a maximum of 22 stu� bits)[CiA99]. This single error causes a message loss and
consumes a bandwidth equivalent to 153τbit (inaccessibility time).

5.4 Temporal redundancy to handle synchronous message omissions 117

As it was discussed in Chapter 2 the interference pattern could be described by an error
model, either stochastic or deterministic. The fault model adopted in this work is a deter-
ministic one and it foresees the occurrence of N errors inside each EC phase. However, the
remainder of this section will start by considering a single error occurrence per EC. The re-
sults will then be extended to the case of N errors. Notice that from the experimental results
presented in Chapter 4, considering the occurrence of a single error within each EC phase is
quite pessimistic.

Depending on the context where the FTT-CAN based system is used, either soft or hard
real-time, di�erent mechanisms could be adopted to con�ne or to tolerate transmission errors
during the synchronous window. These mechanisms could be either passive or active. Passive
ones are located at each slave and rely on the addition of extra time to the synchronous
windows, according to some fault model, to accommodate possible message retransmission
within the same elementary cycle where the error has occurred. Active mechanisms are master
node responsibility and rely on the detection of missing synchronous messages that should have
been transmitted by slaves. Knowing which messages failed to be transmitted, the master node
could try to recover the error by, e.g., re-scheduling missing messages within the deadline, if
possible.

5.4.1 Passive mechanisms

The basic idea behind the passive mechanisms to handle synchronous message omissions
is to mask the error occurrence extending the synchronous window duration, at scheduling
time, according to an error model.

Handling soft real-time synchronous message omissions

Assuming that a synchronous message can be lost in case of error (soft real-time), one may
choose to drop the message in which the error has occurred or retransmit this one and drop a
lower priority one. This option is related with the synchronous message transmission method
adopted. Dropping the message a�ected by the error implies the use of a special transmission
mode: the single shot transmission in case of error and not on arbitration loss, as common.
Conversely, if one chooses to drop a lower priority message, FTT-CAN continues operating in
the CAN usual way with automatic retransmissions in case of error or arbitration loss, until
the end of the synchronous window. At this point the protocol will truncate any pending
tra�c, thus dropping any non transmitted messages.

These two options are illustrated in Figure5.5 and Figure 5.6, respectively. In this example,
a synchronous window with 4 messages SM1, SM2, SM3 and SM4 (SM1 highest priority)
is disturbed by an error during the transmission of SM1. The error is detected and, in a
worst-case scenario, the bus stays inaccessible for 133τbit + 20τbit. This inaccessibility time
corresponds to an error occurring in the last bit of the End-of-Frame �eld of a maximum sized

118 Chapter 5. Handling Message Omissions

message and that error causes a maximum sized error frame.
In the case depicted in Figure5.5 the message is not retransmitted and, since this particular

synchronous window was designed to accommodate 4 messages, only SM2, SM3 and SM4 will
be transmitted given that transmission of message SM1 has been aborted before completion.
In order to accommodate a single error in a maximum sized message, the initial window length
has to be extended by 20τbit. The overhead introduced to accommodate one error and the
consequent message loss is relatively low.

��

���������	
 � ��
��

��

�� � �� � �� ��� �� �

������

������� ����

Figure 5.5: Error inside a synchronous window; the message where the error occurs is lost.

In the case depicted in Figure 5.6 the message is retransmitted using the usual CAN
automatic retransmission mode in case of error or arbitration loss. Since the synchronous
window was designed to accommodate 4 messages, only the messages with higher priority are
transmitted (SM1, SM2 and SM3). The node producer of message SM4, after the message
SM3 completes, tries to transmit but there is no time left in that window to successfully
complete the transmission, so the message is dropped. Again the initial synchronous window
length has to be extended by 20τbit.

��

���������	
 ���
��

��

�� � �� � �� ��� �� �

������

������� ���� �� �

Figure 5.6: Error inside a synchronous window; the message where the error occurs is retrans-
mitted and one with lower priority is lost.

The synchronous message transmission method depicted in Figure5.6 is easier to imple-
ment in existing CAN controllers, than the one depicted in Figure5.5, since it is based on the
standard CAN operation mode, i.e. automatic retransmission in case of error or arbitration

5.4 Temporal redundancy to handle synchronous message omissions 119

loss. Other consequence of using this method is that high priority messages are the ones
with higher probability of being e�ectively transmitted, because upon transmission error high
priority messages will keep winning arbitration.

The synchronous message transmission method illustrated in Figure5.5 requires a special
transmission mode in which retransmission is attempted in case of arbitration loss, only, but
not on transmission error. This operation mode depends on the particular CAN controller
adopted, e.g., NEC µPD789850 DCAN controllers provide direct support for this mode, but
the vast majority of the others do not.

Current implementations of FTT-CAN have been using the method depicted in Figure
5.6.

Handling hard real-time synchronous message omissions

An FTT-CAN based system with hard real-time requirements must be able to accommo-
date a sporadic error occurring in the last bit of a maximum sized message that causes a
maximum sized error frame, keeping the network inaccessible for133τbit +20τbit = 153τbit and
still be able to retransmit the a�ected message before its deadline. Therefore, it is important
to assure that there is su�cient slack time available in the bus schedule.

Keeping the same error assumptions as in the previous case, i.e. at most one error every
EC, and following the reasoning adopted for the soft real-time case, the FTT-CAN synchronous
window has to be extended at most by153τbit to accommodate the retransmission of the erro-
neous message and the error frame. So, the e�ective EC time available for message scheduling
is also reduced by 153τbit.

In the example illustrated in �gure5.7 a message SM2 is distressed by an error that causes
an inaccessibility time of 153τbit, afterwards the message is retransmitted successfully.

��

���������	
 � ��
��

��

�� � �� � �� ��� �� �

��������������� ����

��

Figure 5.7: Error inside a synchronous window causing message retransmission and no message
loss.

In the previous examples, a simpli�ed and rather pessimistic error model limited to one
frame error per EC was considered. However, some sources of errors generate bursts with a
short inter-occurrence interval, possibly leading to more than one error in each EC. Neverthe-

120 Chapter 5. Handling Message Omissions

Synch. window Message omitted Message retransmitted
length (ms) impact of 20 τbit (%) impact of 153 τbit (%)

1 2.00 15.30
2 1.00 7.65
4 0.50 3.83
6 0.33 2.55
8 0.25 1.91
10 0.20 1.53
20 0.10 0.77

Table 5.1: Impact of an error in an FTT-CAN synchronous window (at 1 Mbps), in terms of
bandwidth and the mechanism adopted to handle errors.

less, the same reasoning explained before is still valid, but for each individual error occurrence.
Thus, for the case of soft real-time communication, if the errors are all part of a single burst
(error inter-arrival time is less or equal than 1τbit), the scheduler must consider an extra
N + 20τbit in each synchronous window for each possible error occurrence (N), or N × 20τbit

considering a worst-case scenario when the error inter-arrival time is greater than a maximum
sized error frame and each error causes a maximum sized error frame.

For the case of hard real-time communication, the scheduler must consider153τbit for each
possible error occurrence in synchronous windows, accounting, thus, a total ofN × 153τbit in
each synchronous window. In this way, the FTT-CAN protocol would support a guaranteed
timely behavior in the presence of errors as long as the error frequency is less than or equal to
the number of errors considered by the error model. Notice that if the asynchronous tra�c also
has hard real-time requirements, the same reasoning should be applied, and consequently, the
asynchronous window duration should also be dimensioned appropriately, for example using
the method proposed by Broster et al. [BBRN02].

With a deterministic error model, this approach may lead to a low e�ciency scenario in
which a signi�cative amount of bandwidth is allocated for error recovery, if too many bit
errors are to be tolerated in the synchronous windows. Table5.1 summarizes the impact of
tolerating a single bit error inside each FTT-CAN synchronous window considering window
lengths from 1 ms to 20 ms. If one consider the case of a 4 ms synchronous window, tolerating
an error without retransmitting the message costs, at most, 0.5% of the window bandwidth,
while if the message is to be retransmitted to preserve its real-time properties, the impact
on the bandwidth is 3.83%. Notice that these values, although a�ordable, are too pessimistic
because it is considered that an error might occur in every elementary cycle.

5.4 Temporal redundancy to handle synchronous message omissions 121

5.4.2 Active mechanisms

A di�erent approach to cope with a given error pattern is to react to an error occurrence
and to verify online its impact in the system overall timeliness.

The idea consists in monitoring the bus tra�c and feedback the gathered data to an online
scheduling algorithm able to perform tra�c scheduling, so it can take the appropriate measures
in case of error occurrence: re-scheduling the a�ected message(s) for subsequent ECs, allowing
message loss if the a�ected message is not critical, starting emergency operation procedures,
etc. In any case, possible retransmissions are controlled by the scheduler and the automatic
retransmission upon error is disabled. However, as referred previously, this increases the
probability of occurrence of synchronous inconsistent message omissions and, in that case, the
master node may detect a missing synchronous message that may have been received by some
nodes and, in other cases, will receive a synchronous message that may have not been received
by some nodes. A case of special concern is when di�erent masters (active and replicas) detect
a synchronous message omission in an inconsistent way. Thus, some will try to re-schedule
the missing message while others will perform an error free scheduling. However, this does not
raise major concerns since the view of the active master prevails and replicas with di�erent
schedules will issue a synchronization request to the active master, as it will be detailed in the
next Chapter.

The general technique of scheduling using a fault model to account for temporal redun-
dancy is generically called fault-tolerant scheduling and it has been substantially developed,
both concerning the execution of tasks in uniprocessor systems [LC86][BPSW99b] or multi-
processor systems [GMM97][WBDP98].

Given the centralization of the scheduling function in FTT-CAN, many of the existing ap-
proaches for uniprocessor systems can be easily adapted, just considering the non-preemption
of message transmission and the execution model based on a sequence of separate phases, i.e.,
the synchronous windows.

However, the additional computing overhead can be too high for low processing power
8-bit microcontrollers, as the ones typically adopted in CAN networks. An easy technique
consists in building a vector of �ags each synchronous window, indicating the synchronous
messages received, using the same format as the EC-scheduling. At the end of the synchronous
window and after computing the schedule of the next EC, the master only needs to execute
an XOR of the EC-schedule with the �ag vector to detect and identify the missing messages.
This corresponds to the verify and update time slot depicted in Figure 5.8. This hardware
dependent time interval needs to be added after the synchronous window. It corresponds to a
bus idle time and allows the master to update the EC-schedule before transmitting the next
trigger message. If possible, the omitted messages are added to the corresponding EC-schedule,
without interfering with the normal scheduling operations.

122 Chapter 5. Handling Message Omissions

�� ��� ����� ���

� � � � � � � �

��	
�

�
�

�� �������� ���� �� ������� ��

 !"#$% &
' ()'&*!
��+,-.!'(/!

01�234

� � � � � � � �567

� � � � � � � �

�%
-."8
8(, 9#
'89

Figure 5.8: Possible fault-tolerant scheduling technique.

5.4.3 Asynchronous message atomicity

It was conjectured, based on the experimental assessment of CAN bit error rate presented
in the previous Chapter, that in native CAN the probability of occurrence of inconsistent
message omissions is below the 10−9 threshold usually accepted for safety-critical applications
[Kop97]. However, the experimental results obtained cannot be universally applicable since
they largely depend on the considered interference pattern that, in a limit scenario, could
corrupt all legitimate bus tra�c.

In the case of FTT-CAN, asynchronous messages are transmitted according to CAN stan-
dard without any supervision from the master node. Moreover, there are speci�c scenarios,
despite infrequent, in which CAN does not enforce atomic broadcast, i.e. a transmitted mes-
sage may not be consistently delivered by all the correct nodes of the network and in the same
order [CASD85]. Therefore, several solutions to achieve atomic broadcast in CAN have been
suggested [LB03][PV03][PMJ00][KL99][RVA+98].

Despite the gaps between the consecutive asynchronous windows, FTT-CAN enforces that
message arbitration and retransmissions occur in a logically continuous manner, so that pri-
ority inversions do not occur in the transitions. In this way the asynchronous windows of
FTT-CAN act as the native CAN bus where the time taken by the trigger message and the
synchronous window corresponds to inaccessibility time. Omissions of asynchronous mes-
sages are eventually removed by means of retransmissions. For the peculiar scenarios referred
previously, solutions in [LB03], [PV03] and [RVA+98] can be used but they are based on asyn-
chronous message con�rmation/retransmission and, thus, need certain adaptations to comply
with the timing of the FTT-CAN protocol, e.g., to account for the variable inaccessible time

5.5 Conclusion 123

corresponding to the length of the synchronous window and the trigger message. Moreover,
the computation of the worst-case response time for achieving consensus using those solutions
depends on the message set properties and thus such computation must be done on-line. The
overhead imposed in terms of number of transmissions required also makes these protocols
relatively bandwidth ine�cient. The approach in [KL99] is based in extra hardware and uses
continuous retransmission trials in case of network errors, interfering with the timing def-
initions of FTT-CAN. The MajorCAN protocol [PMJ00] enforces atomic broadcast at the
frame level and would solve most of the consistency and synchronization problems related
with replica management. However it goes beyond the CAN standard, since it proposes a new
format for the CAN error frames that copes with the last but one bit error problem.

For the above reasons, a simpli�ed scheme speci�cally tailored to FTT-CAN was developed,
taking advantage of some unique properties such as the consistent view of the system imposed
by the master and the fact that a transmitter always knows if it has successfully transmitted
a message. This scheme was developed to enforce consistent updates of the SRTs of active
and backup masters and will be discussed further on in Chapter6.

5.5 Conclusion
This Chapter discussed the issues related with transmission errors in FTT-CAN causing

message omissions. If an error is transient possibly caused by electromagnetic interference,
techniques based in temporal replication (message retransmission) could be used to recover
the message a�ected by that error. If the error cause is permanent, techniques based in
spatial replication need to be adopted (node replication). Schemes to replicate slave nodes
transmitting either asynchronous or synchronous messages have been proposed and discussed.

The impact of errors in FTT-CAN varies according to the protocol phase where they occur.
Errors in the trigger message transmission that lead to its omission may cause temporary
network silence. To circumvent this problem the active master node continuously attempts to
retransmit the trigger message during the trigger message transmission window. After that,
and if it does not succeed, it will transmit the next TM conveying the subsequent EC-schedule
when the EC timer expires.

A transmission error during the asynchronous window is handled as in native CAN, i.e.,
the slave node responsible for the transmission of the faulty message will retry its transmission
until it succeeds. If that slave node crashes, its replica will transmit the message when the
timer that controls the message's maximum inter transmission time expires.

Two alternatives to synchronous message transmission were discussed, one based in normal
CAN transmission mode, with automatic retransmission enabled in case of error or arbitration
loss within the synchronous window, and other based in a special transmission mode where
the automatic message retransmission is enabled only for the case of arbitration loss.

Transmission errors during the synchronous window could be masked, using a passive

124 Chapter 5. Handling Message Omissions

mechanism that adds extra time to the synchronous windows and allows a small number of
retransmissions, or recovered from, using an active mechanism capable of detecting missing
synchronous messages that should have been transmitted by slaves, and re-scheduling them
whenever possible. It has been conjectured that existing fault tolerant scheduling techniques
can be used in the FTT-CAN master, with a simple adaptation concerning the non-preemption
of message transmission and the transmission within a sequence of separate windows. A
similar adaptation has been previously carried out concerning the use of classical preemptive
task scheduling analysis [AF01]. The veri�cation of that conjecture is, however, outside the
scope of this dissertation.

Chapter 6

Enforcing Master Replica
Determinism

6.1 Introduction

As it as described in Chapter 3, the whole FTT-CAN based distributed system is synchro-
nized by the reception of the EC trigger message. When this message is omitted, either due to
a master permanent failure or to some temporary glitch, a loss of connectivity happens. That
is, the FTT-CAN master node is a single point of failure. This, of course, is no longer true
when the master is replicated so that upon failure of the active master, a master replica enters
into action within a su�ciently short interval. It is necessary, however, that the masters fail
in a silent way and that they are synchronized with respect to the tra�c dispatching, i.e., in
which EC they must generate the same EC-schedule.

In FTT-CAN, the static tra�c dispatching table usually adopted in other master slave
architectures is replaced by a dynamic table containing the communication requirements, i.e.
properties of the message streams such as period, phasing, transmission time. This table is
then scanned on-line by a tra�c scheduler. In this case, there is no longer the concept of a
cycle count relative to a �xed referential such as the top of a dispatch table.

Thus, other mechanisms must be used to detect synchronization loss between active and
backup masters. The idea is having master replicas to monitor both the timing and the
contents of the EC trigger messages delivered by the active master. On one hand, if the
next trigger message is delayed more than a given tolerance a replica enters into action and
transmits the missing EC trigger message. From that moment on, the replica becomes the
primary master and the previous primary, if still operational, will become the master replica.
Notice that more than one backup master may be used, as long as each one is assigned a
di�erent identi�er (FTT-CAN allows 8 di�erent IDs for master nodes). On the other hand, if
the contents of the EC-schedule conveyed in the trigger message di�ers from the one computed
by the replica, the active master view prevails and the replica SRT becomes unsynchronized.

125

126 Chapter 6. Enforcing Master Replica Determinism

To enforce consistency and synchronization the replica that assumes the role of primary
master must have the same knowledge of the faulty master, i.e., they must be replica determi-
nate. The master nodes are replica determinate if, starting from the same initial conditions
(same Synchronous Requirements Table � SRT) and fed by identical inputs (change requests),
they produce the same result (EC-schedule) at the same time (every EC). However, since the
system requirements, replicated at all masters' SRT are �exible and may evolve over the time,
the procedure to synchronize the replicated masters is critical since a communication fault
during this process can lead to inconsistency in the replicated SRT images, compromising the
replica determinism requirement.

Furthermore, there is also a problem of coherency between the multiple instances of the
SRT. There may be change requests that, due to omission communication faults, are taken
by the active master but not by one or more replicas, or vice-versa. When this happens, it is
important to reestablish coherency and synchronization among all masters as fast as possible.

There are, thus, two situations that can cause inconsistencies among the SRTs located at
each master:

1. After an asynchronous startup/restart a master has an outdated SRT. This calls for the
de�nition of a protocol to transfer the SRT from the active master to the unsynchronized
one.

2. During the processing of an SRT update request, issued by a node, it must be ensured
that all replicas process the same request, in the same order and commit the request
synchronously. This calls for the de�nition of an adequate protocol to enforce consensus
preventing, thus, a master to accept a request while others may reject it or to di�erent
nodes commit the request at di�erent instants.

Apart from these situations and during standard operation mode, there are no reasons for
the replicas to diverge. This is so, because the fault hypothesis considers that master nodes
are fail-silent both in the temporal and value domain and that, between two trigger messages,
the clock drift among the active master and the replicas is always smaller than the master
replacement delay.

This Chapter presents two techniques and protocols proposed to enforce replica deter-
minism among FTT-CAN master replicas, i.e., a solution for the synchronization of start-
ing/restarting masters problem and a protocol to enforce coherent updates of the SRTs in
all master replicas [FAF+03][RNPR+04]. In what concerns the synchronization of start-
ing/restarting masters, two techniques are shown. One is for the case in which the masters
rely on the planning scheduler [FPAF02], for reduced computing overhead. The other targets
systems in which the tra�c scheduling is performed every EC, requiring more computational
power. In particular it will be considered the case in which masters are equipped with a
specialized hardware scheduling co-processor [MFA+02].

6.2 Masters synchronization relying on a planning scheduler 127

6.2 Masters synchronization relying on a planning scheduler

As it was referred in Chapter 3, an on-line scheduler builds the synchronous schedules for
each EC, based on the SRT. These schedules are then inserted in the data area of the respective
EC trigger message and broadcast with it. Due to the on-line nature of the scheduling function,
changes performed in the SRT at run-time will be re�ected in the bus tra�c within a bounded
delay, resulting in a �exible behavior [APF02].

The planning-scheduler [APF99] is a software-based implementation that allows reducing
the processing overhead of on-line scheduling. This technique consists on building a static
schedule table for a given period of time into the future called plan and rebuilding that table
on-line at the end of each plan. The plan duration is not correlated with the messages periods
and thus the memory requirements to hold a plan table are bounded and knowna priori. On
the other hand, the plan schedule, once built cannot be changed. Thus, the planning scheduler
establishes a compromise between computational overhead and reactivity to change requests
an it is particularly well suited to systems with low computational capacity nodes (e.g. based
on simple 8-bit microcontrollers).

An important aspect is the synchronization between primary and backup masters in what
concerns tra�c scheduling. Since the schedulers that run on the masters are dynamic, it must
be guaranteed that in each EC they generate similar schedules at the same time. Thus, in
every EC all backup masters compare their own schedules with the schedule conveyed in the
trigger message, to detect any mismatch. Moreover, they also compare a short cyclic sequence
number (3-bit) that is also encoded in the trigger message, to tolerate up to 7 trigger message
omissions.

During operation, an asynchronously starting master, or a master restarting in the course
of a reset, can cause inconsistencies among the masters. In these cases the view of the active
master prevails and thus some masters may need to re-synchronize themselves. Thus, whenever
an inconsistency is detected the backup master issues a synchronization request, causing the
current primary master to download the SRT as well as the relative phasing information
necessary to resume scheduling synchronously.

The synchronization process may take a few ECs depending on the size of the SRT and
on the current network utilization. This is a time critical task since during its execution
modi�cations to the SRT are not allowed and the synchronizing master is not yet capable of
replacing the primary in case of failure.

Since the synchronization protocol relies in asynchronous messages to transmit the required
information, it introduces an overhead that a�ects the performance of the asynchronous mes-
saging system.

The data that has to be received by a backup master in a synchronization process can
be divided in two groups, one containing static properties of messages and other containing
scheduling state dependent properties. Example of static properties are the data size, period

128 Chapter 6. Enforcing Master Replica Determinism

������ ����	

�����	 ����	

������� ����� ����
������� ����� ��
������� ����� ����

����� �� ����� �� ����� �� ����� ���� ����� �� ����� ��!�

����� ���"
���#��������$

�$���%#��&���#� %�' ���
()*+, -.+.,/01 2

������"
 �����

$��3�� ���� �%���4�%
()*+, -.+.,*567892

����� �� ����� ��!�

�:;<=> ?@ @AB;CDEB?FGHIJ �%�""� % 3����"� KJ �%�""�% 3����"�

L

M

N O
������ ���� �%���4� %
()*+,-.+.,)*PQ0RQ2

Figure 6.1: Timeline of the scheduling synchronization process.

and deadline and for scheduling state dependent data the instantaneous relative phasing.
The timeline of the synchronization process is depicted in �gure6.1. A schedule incon-

sistency is detected at A, which causes the backup master to issue a synchronization request
at B. Once the active master receives the synchronization request (MST_DATA_QRY), it
starts to download the SRT table and the relative phasing data in two rounds starting in the
following EC. In the �rst round, the SRT is fragmented and conveyed by several messages
(MST_DATA_MSGPROP). These messages carry only the static properties (e.g. period,
deadline, message IDs, etc). Once the �rst state transfer round is complete, the dynamic
scheduling dependent data (e.g. relative phasing) is also fragmented into several messages
(MST_DATA_SCHINF) and transmitted. The transmission of this last transfer round must
be enclosed within a single plan, plan i in the example, and only after the scheduling of the
next plan, plan i+1, is completed (C) in order to assure the consistency of the time dependent
scheduling data. Notice that the relative phases of all messages are expressed with respect
to the start of each plan. Once this data is fully received by the backup master, it waits for
the beginning of the next plan, plan i + 1 in this example, to start the scheduling for the
following plan, plan i + 2. The backup master is then ready to monitor the trigger messages
produced by the active master and replace it in case of failure as soon as a new plan begins
(D). Notice that to facilitate the synchronization of the planning scheduler, the start of a new
plan is encoded in the trigger message.

From the master synchronization point of view, the existence of the planning scheduler

6.2 Masters synchronization relying on a planning scheduler 129

is quite convenient since it gives room for state transfer without compromising the normal
network activity and also without imposing an excessive load to the masters.

6.2.1 Computing the worst-case scheduler synchronization latency
As it was previously described, the synchronization of a backup master node requires the

proper reception of a set of data from the active master. During this process the backup
master is unable to replace the current active master since it has not enough information
either in the time or value domain, to build equal schedules in parallel. Therefore, to assess
the system reliability it is important to compute an upper bound for the time required by the
synchronization process.

The number of CAN frames required (NF) to send either static or scheduling state data
depends on the size of the SRT. Particularly, it depends on the number of messages (NRT)
and on the amount of data required to represent the respective set of properties for each one
(MPLen). Knowing that the maximum number of data bytes that can be carried in each CAN
message is 8, equation 6.1 gives the number of CAN data frames and their respective size,
needed to transmit static and scheduling state data of the SRT.

NF =





⌊
(NRT×MPLen)

8

⌋
|DLC=8

+1|DLC=x
if x 6= 0

⌊
(NRT×MPLen)

8

⌋
|DLC=8

otherwise

with

x = (NRT ×MPLen)−
⌊

(NRT×MPLen)
8

⌋
× 8

(6.1)

Besides these data frames, the synchronization process also requires one more data frame:

• MST_DATA_QRY : sent at the beginning of the synchronization process requesting
the data from the active master (DLC=0).

The successful end of the transaction is signalled in the identi�er of the last message.
The FTT-CAN protocol supports real-time asynchronous messages, with guaranteed re-

sponse time [PA00]. Given the set of asynchronous messages exchanged in the system, the
minimum bandwidth reserved for the asynchronous windows and the relative priority of the
asynchronous messages used by the scheduler synchronization protocol, it is possible to obtain
an upper bound for the time required to transfer the complete set of messages. However, it is
also required that the scheduler state data can be transferred between the end of the planning
scheduler execution and the end of the respective plan. This can be enforced using a plan
length with adequate duration and establishing a WCET for the scheduler [Alm99].

Such upper bound can be determined as follows (Figure 6.2): at a given point in time a
backup master declares itself out of synchronism and issues a synchronization request. This

130 Chapter 6. Enforcing Master Replica Determinism

������ ����	

�����	 ����	

������� ����� ����
������� ����� ��
������� ����� ����

����� �� ����� �� ����� �� ����� ���� ����� �� ����� ��!�

"#$%&'($)*+,)($ '-./-0,

�1�1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1

�123 24�55�4 6����5� 73 24�55�4 6����5� �8���49�9 � : ���9:

;<=

>

?@A
����� �� ����� ��!�

"#$%&'($)*-B
CDEFG HIFJ K L MNO PQLM RNSTMU TM VWN XY OWNZN
VWN QLUV [NUULSN \]M^N_TMS VWN ZNQLVT^N PWLUNU
UW]`Qa WL^N RNNM VZLMU[TVVNab TM^LQTaLVTMS TV

c de+$0

Figure 6.2: Computing the worst case synchronization time for the planning scheduler based
scheme.

request is blocked σ by a synchronous window and a trigger message. It is then transmitted
in the following EC. The active master takes a snapshot of the SRT and prepares the transfer,
which starts in the following EC. If the relative phases are available, the master also prepares
them for transfer. Otherwise, it waits for the termination of the current planning scheduler
instance. Suppose they are available, thus all messages in MSGPROP and SCHINF are
transferred in sequence. The length of the transfer (w + C) can de determined with the
method presented in [Alm99], where C is the transmission time of the last message in the
whole transaction and w is the interference that this message may su�er from higher priority
messages, including the preceding messages in the transaction. However, it can happen that
the plan changes in the EC in which the transfer would end, thus invalidating the schedule
state data. This causes the backup master to wait for the planning scheduler to �nish and
for the new relative phases to be transferred. Once this transfer is done the backup master
waits for a new plan to trigger its own planning scheduler. At the end of this second plan, the
backup master is synchronized. The total time is thus:

STWC = σ + LEC +
⌊

w+C
LEC

⌋
× LEC + 2× LPlan (6.2)

where:

σ is the maximum blocking that a�ects the last message in the synchronization protocol before
it enters arbitration.

6.2 Masters synchronization relying on a planning scheduler 131

LEC is a constant value corresponding to the length of the EC.

LPlan is a constant value corresponding to the length of a plan.

Notice that, if it is not necessary to retransmit the scheduling state data the upper bound
is reduced by one plan.

6.2.2 Experimental results

To assess the feasibility and correctness of the proposed synchronization process, some
experiments were carried out using a 5-node network made of CANivete [FSMF98] boards
based on Philips 80592 microcontroller. The EC duration was set to8.9ms, the trigger message
used 2 data bytes, supporting a maximum of 8 synchronous messages, and the maximum
duration of the synchronous window was set to4.5ms. The plan duration was 30 ECs and the
transmission rate was 125 Kbps. Apart from the synchronous and scheduler synchronization
messages, asynchronous ones with up to 8 data bytes were also injected in the bus but with
lower priority than those involved in the SRT transfer. The synchronous message set used
in this experimental set up is represented in Table 6.1. As referred in previous sections, in
this case the static scheduling data consists of the message identi�er, data size, period and
deadline, while the scheduling state data consists only in the ID plus the relative phasing of
the messages at the beginning of the next plan. All these properties are encoded in one byte
each.

ID Period Deadline Init. Phase Size
#(ECs) #(ECs) #(ECs) (bytes)

1 1 1 0 1
2 1 1 0 3
2 2 2 0 3
4 3 3 0 2
5 4 4 0 5
6 4 4 0 5

Table 6.1: Synchronous message set properties.

Using equation 6.1, the total number of messages needed by the master synchronization
protocol is three 8 byte messages for the static data (ID, P, D, S) and one 8 byte plus one 4
byte messages to send the schedule state data (ID, Ph).

The upper bound for the synchronization time (equation6.2) of

STWC = 6.2 + 8.9 + b11.4
8.9 c+ 2× 30× 8.9 ' 558ms

132 Chapter 6. Enforcing Master Replica Determinism

The experiment was repeated several times in di�erent conditions and, on average, the time
to fully synchronize was around385ms (less than one and a half plans). The maximum interval
measured in the experiments was (550ms), which corresponded to the worst-case situation in
which an extra plan was required to repeat the transfer of the scheduling state data. Notice
that due to low processing power of the microcontrollers used in the test platform, the use of
such a large plan is a requirement.

6.3 Masters synchronization based on a scheduler co-processor

If the scheduling is made in an EC by EC basis, instead of a plan by plan basis, or
if the plan duration is not enough, the synchronization solution proposed in the previous
section cannot be used, since the active master would not have enough time in one plan to
transfer the scheduling state data (relative phasing). Another solution to this problem is to
take a snapshot of the SRT of the active master and transfer it to the backup master that
issued the synchronization request, accounting for the duration of this process (in ECs). After
the reception, the backup master holds an outdated image of the SRT and thus must build
successive ECs from the snapshot instant until reaching synchrony with the active master.
This approach requires, however, a higher computing power which sometimes is not available
in simple microcontrollers. A possible solution is the use of specialized dedicated hardware,
such as the MESSAgE coprocessor [MAF05], capable of scheduling an EC in a small fraction
of its duration.

This new solution assumes that all master nodes are equipped with a microcontroller and
a MESSAgE coprocessor, as depicted in Figure6.3.

���

��� ���	

����
�

���

Figure 6.3: FTT-CAN master node architecture, including a scheduling co-processor.

In this case, the coprocessor works as a slave of the node CPU, taking care of message
scheduling and schedulability analysis, while the CPU is responsible for dispatching and node
management. The coprocessor schedules synchronous tra�c on an EC basis, generating EC-

6.3 Masters synchronization based on a scheduler co-processor 133

schedules. Between the generations of successive EC-schedules the node CPU can change the
message parameters inside the coprocessor, as well as add to or delete messages from the set
or update these parameters.

6.3.1 MESSAgE coprocessor

The coprocessor is capable of scheduling up to 32 messages according to one of three
selectable criteria: rate monotonic, deadline monotonic or general �xed priority-based. Its
functionality is best understood by considering Figure6.4 which illustrates its programming
model, as seen by the node CPU.

�������

�����
�����

�	�
��
�
��
��
�

�
��
�
�
��
����
��

�����

� ������� ����������
�������� ����� �� !"#

$% & "'(�)*�� !�������

+,� �- .� -� /.0 ./0 ��1 ���
%�2���� 3 "���*� !�������

�"!��

Figure 6.4: MESSAgE programming model.

Each message to be scheduled is assigned to one of the 32 available Message Parameters
Register Slots (MPRSs). Each MPRS holds �ve, 8-bit parameters which characterize the
message. The message schedules produced by the coprocessor are made available on the 32-
bit EC-Schedule Register (ECSReg), using the same format as the TM. This allows placing
the contents of the ECSReg directly in the data �eld of the TM. The Control and Status
Register (CSReg) is used to control the coprocessor in scheduler or analyzer modes, and to
check its status.

The Message State Register (MSReg) includes a bit �ag for each MPRS, which indicates if
the corresponding message has already been release but was not yet scheduled (it is delayed).
This information can be read to check the scheduler state, or written to force a particular
state. MSReg is used in the master's synchronization protocol, allowing the state of the active
master's coprocessor to be copied to the coprocessors in the backup masters.

In its current FPGA-based implementation, MESSAgE runs at a maximum clock rate of
24MHz, which allows it to generate an EC-schedule in at most25µs. This is about two orders
of magnitude less than any real-world EC duration (1-10ms), which leaves virtually all the EC
duration available for schedulability tests. As we shall see, this fast scheduling time is also

134 Chapter 6. Enforcing Master Replica Determinism

important in the masters' synchronization protocol.

6.3.2 Synchronization protocol
The synchronization protocol between masters involves, basically, the transmission of the

SRT as well as the coprocessor scheduler state from the active to the backup masters. This
data transfer is carried out using high-priority asynchronous messages.

������ ����	

�����	 ����	

�������������� ����������� !"�" #$% &

'()*+, -. ./0)1230-456

78 ���99�� :����9� ;8 ���99�� :����9�

��� �� <��� �����=��>?
7@AB7B@?
CD;EDF

GHI

A���:�� <��� �����=��>?
7@ AB7B@
JKLMNF O��P�Q R=���S=��T��<R
AUV WJS����<�X��

WJS
���<�X� =� �
WJYZ[��:QX���<

J�Q������� � �������Q����< AA7L \ A] ���� �� ^��P�Q

WJ_ WJ[WJ` WJYa_ WJY WJYZ_ WJYZ[WJYZ` WJYZb WJYZbZ_

���<�X��9�������������
<������<

c

d

e

f

g

Figure 6.5: Master synchronization protocol timeline.

The timeline of the synchronization process is depicted in Figure 6.5. It begins with a
backup master detecting inconsistency on the received EC-schedule (A) and issuing a syn-
chronization request (MST_DATA_QRY message) to the active master (B). This causes the
latter to download the scheduling data in two rounds. The �rst round comprises the transmis-
sion of the static portion of the SRT (MST_DATA_MSGPROP). This data is fragmented in
a set of CAN messages and transmitted in the asynchronous windows of a number of ECs.

In the second round the active master transmits the scheduling state data (MST_DATA_
SCHINF). This comprises the relative phases of all messages and their respective states. Be-
cause this transmission may span more than one EC, the data actually sent to the backup
master is a snapshot of the phases and message states captured by the node CPU in the
coprocessor, just before the start of this round (C).

At the end of this round (D) the active master sends a special message containing the
dynamic data transfer interval (DDTI), which is the count of the number of elapsed ECs
since the coprocessor state was captured. This number tells the backup master the scheduling
delay (in ECs) relative to the active master. Since the coprocessor in the backup master is

6.3 Masters synchronization based on a scheduler co-processor 135

now updated with the scheduling data just received, the node CPU just needs to command
its coprocessor to generate that number of consecutive EC-schedules (fast-forward). After
that, the backup master is synchronized (E). Note in Figure 6.5 that the backup master
synchronizes only one EC after the reception of the DDTI message. This is to guarantee that
the backup master has enough time (at least one EC long) to generate the required number of
EC-schedules speci�ed in the DDTI message even when this message arrives late in the EC.
Since we expect DDTIs of just a few ECs (because the dynamic portion of the scheduling data
can be packed in a few CAN messages - see next section) and given the high scheduling speed
of the coprocessor (0.5% of a 5ms EC), it is reasonable to assume that backup masters can
achieve synchronization one EC after they receive the DDTI message.

It is also important to remind that the use of a scheduling coprocessor is not mandatory.
This technique can be used as long as the master microprocessor has su�cient computing
power. Possibly, it might be necessary to increase the "fast forwarding" period to more than
one EC.

6.3.3 Worst-case synchronization time
An upper bound for the synchronization time using the a scheduling coprocessor can be

determined adopting a reasoning similar to the one followed in section6.2.1. At a given point
in time (A) a backup master declares itself out of synchronism and issues a synchronization
request (B). This request is blocked σ by a synchronous window and a trigger message. It
is then transmitted in the following EC. The active master takes a snapshot of the SRT and
prepares the transfer, which starts in the following EC and lasts for (RSP = w + C), where
w and C have a similar meaning as in 6.2.1. Once this transfer is completed (D) the backup
master generates D+1 consecutive EC schedules and it becomes synchronized with the active
master (E). The total time is thus:

STWC = σ + LEC +
⌈

w+C
LEC

⌉
× LEC + LEC = RSP + 2× LEC (6.3)

where:

RSP is the response time of DDTI message measured from the point where the synchronization
request is issued by the backup master.

LEC stands for the EC duration.

Notice that this analysis considers that all messages either fromMSGPROP or SCHINF are
sent in sequence, without idle time in between. Equation6.3 gives us an absolute upper bound.
For the same example considered in the previous method, the worst-case synchronization time
STWC is now according to expression 6.3:

STWC = 6.2 + 8.9 + b11.4
8.9 c × 8.9 + 8.9 ' 42ms

136 Chapter 6. Enforcing Master Replica Determinism

��

�� ��

�� ��

�� ��

�����	

��	�
� ���	��

������ ���	��

�����	 �

����������
 !"#!$%&'(

�� �������)

*+,-+./012

��

 !"#!$%&3(
��

 4 5

��

6�7���	 7�����

 4 5)
6�7���	 7�����

Figure 6.6: Queuing of SRT update requests at each master.

This is about one order of magnitude faster than the synchronization scheme presented in
the previous section.

6.4 SRT update protocol
As already explained, FTT-CAN needs replicated masters to avoid the single point of

failure that a single master would represent. In such a scheme, every master keeps a local
replica of the SRT, and uses this replica in order to produce its output (i.e. the trigger message
and the respective EC-schedule). If the local copy in the backup master is inconsistent such
master cannot replace the active one upon its failure. Due to this, guaranteing that every
master has a consistent replica of the SRT becomes vital for FTT-CAN.

There is only one master operation which may modify the local copy of the SRT, i.e., the
processing of an update request. Therefore, as long as each request is consistently processed
by all the masters, the consistency of their SRT copies is preserved. Moreover, if more than
one request is received then these requests must be processed in the same sequence. However,
inconsistent channel errors turn out to be an impairment to this consistency because they may
cause di�erent masters to process requests in a di�erent order, as it is discussed next.

Slaves (clients in Figure 6.6) are allowed to send update requests only within the asyn-
chronous using speci�c high priority control messages. Every master stores the slave's requests
in a local queue, which is sorted by priorities (see Figure6.6). In this way, the highest priority
request of the local queue is always the �rst one to be processed. Note that masters choose
the highest priority request after the end of the asynchronous window, when no more requests
can be received (until the next EC).

Therefore, if the request queues were consistent at that point, then all masters would
process the same request and the consistency of the SRT would be preserved. In contrast, if
the queues were inconsistent at that point then the requests processed by di�erent masters
might di�er, leading to an inconsistent update of the SRT. This means that the problem of

6.4 SRT update protocol 137

������� �������
	
��
�� ������ ������ �������
�� ����������
	 ������ ������ ������ �������
�� ����������

 !

"# "# "#
"# "# "#

 ! !

$%

&'
��� �

��
�� !�����

������ !�����

&'
��� �
()*+),-./0

1234256789

	 ������ ������ : �� ���
�;��<���
=�> :
�< �<� ���
�� ������

����< ?
�����
�����

Figure 6.7: An example of unsynchronized masters caused by an inconsistent slave request

guaranteing consistency among the masters could be solved by just enforcing that every master
has a consistent request queue at the end of every asynchronous window. Unfortunately, this
consistency is not automatic in FTT-CAN due to the so-called last bit error scenario (property
CAN.p2 from Chapter 4).

6.4.1 Consistency of the request queues

The error detection and signaling mechanisms of CAN theoretically ensure that any frame
is either consistently received or consistently rejected by every node of the network. If this
property was actually satis�ed in any possible scenarios then the request queues would be
always consistent.

Nevertheless, it has been reported [RVA+98] that in certain fault scenarios, a subset of
nodes may receive a frame which other nodes reject. In a standard CAN network, the system
recovers from this transient inconsistency as soon as the transmitter retransmits the frame,
even if the retransmission is delayed by higher priority messages or by further channel er-
rors. But in an FTT-CAN network, the time available for frame retransmission within an
asynchronous window is limited. This fact, implies that a transient inconsistency may not be
solved by the end of the current asynchronous window, thedecision instant. This is illustrated
in Figure 6.7. In this example, slave 1 and slave 2 send a request within the asynchronous
window of the �rst EC. The request sent by slave 2 is consistently received by both masters
whereas the request sent by slave 1 is only received by the backup master. This transient
inconsistency makes each master choose a di�erent request for processing. From this point
on, the state of the masters is inconsistent. Therefore, in case of active master's failure, the
backup master takes over and sends a TM conveying an erroneous EC-schedule.

There are several solutions in the literature that address the problem of data consistency
in CAN networks [RVA+98][PV03][KL99] and which were referred in the previous Chapter.
It was then stated that, for di�erent reasons, these solutions are not directly applicable to
FTT-CAN.

More general agreement protocols have also been presented (e.g. in [DSS98] [Sch90]

138 Chapter 6. Enforcing Master Replica Determinism

[WPS+00]), both in the area of distributed systems and in the area of distributed databases.
These protocols are intended for application domains with high computational power, high
network bandwidth and e�cient operating system support. But if one considers the speci�c
case of �eldbus-based distributed embedded real-time systems with low bandwidth (typically
below 1 Mbit/s) and scarce computational resources (8-bit microcontrollers), the performance
and timeliness penalties arising from those protocols are too heavy to cope with.

Since none of the mentioned solutions can guarantee consistency among the masters in a
satisfactory manner, a new agreement protocol has been designed. This protocol is especially
tailored for FTT-CAN as it takes advantage of its particularities in order to reduce the com-
putation and communication overhead of the protocol itself. The details of this protocol are
given in the next section.

6.4.2 Protocol Description

In order to eliminate inconsistencies among masters, the active master assumes the role
of leader, whereas the backup masters assume the role of followers. Instead of using speci�c
messages, the active master uses the TM to spread its state. In particular, the TM conveys
the identi�er of the request which is being processed as well as the state of this processing.
The state may be idle, if no request is being processed, admission control, if one request is in
process, or reply, if the request processing has �nished and the result is being noti�ed to the
requester.

The FTT-CAN message ID encoding schema allows for 64 di�erent IDs (6 bits) for SRT
update requests, which correspond to the IDs of the synchronous messages the requests refer
to. Each request ID is associated with a particular message stream and the requests to update
the SRT can be issued by a slave node or by the application running in the master node. In
this last case the request must also be broadcast to the network so that the backup master can
also process it. Subsequently, the requests queue within each master is sorted by decreasing
CAN IDs mainly to enforce the �xed priority philosophy of CAN and facilitate the detection
of request duplicates. As referred above, the request ID together with the status of the request
process are piggybacked onto the TM, using one byte of its data �eld. The bit encoding is the
following:

• The six least signi�cant bits encode the request ID.

• The two most signi�cant bits are used to indicate the current state of the request process

00 - idle, no request being processed

01 - admission control

10 - reply accept

11 - reply reject

6.4 SRT update protocol 139

����� �
���	

	��
���������

��

��

��

��

�� �� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

�
�	�� ��
���

��
��� �

��
��� �

 �	���

!"#
$"
%&
'()
*

����� +
,�-��
� ���

����� .
,���/ ���

�� ��

�� ��

�� ��

�� ��

0���
���	

	��
������
1 ��-��
� 02

,���/
1 ��-��
� 02

���	

	��
������
1 ��-��
� 02

0��� 34
���	

	��
������
1 ��-��
� 02

 ���	�
��-��
�

Figure 6.8: Phases of the update protocol.

Whenever a backup master is not able to follow the active master (e.g. because it does not
have the request to be processed), it considers itself as being unsynchronized, and initiates
the re-synchronization process referred to in sections6.2 or 6.3.

Figure 6.8 illustrates how the SRT update protocol works in the absence of channel and
node faults. The whole process is divided into three phases: request, admission control
and reply. In the request phase, the slave broadcasts an update request. Since there is no
pending request with higher priority, the active master changes its state to admission control
and piggybacks the request ID and the protocol state on the next TM. After receiving this
TM all the active and backup masters wait until the end of the asynchronous window and
then start the admission control test.

As soon as the admission control test concludes, the active master broadcasts the result.
Again, the result of the admission control and the new protocol state are piggybacked on the
TM. This phase is called reply phase. At the end of this phase, all nodes (both masters and
slaves) know which request has been processed as well as the result of the admission control
test. Therefore, each master can update its local replica of the SRT, if necessary.

Once the processing of an update request has concluded and the result of the admission
control has been broadcast, the active master is ready to process another request.

The worst case response time to an SRT update request depends on whether there were
inconsistencies in the transmission of TMs during the request processing. To determine an
upper bound it is necessary to use an appropriate error model that allows estimating the
number of extra ECs that each phase may require for consistent TM transmission. Moreover,
it is also necessary to establish a minimum inter-transmission time of the requests from the
same node, which can be easily enforced by the protocol. With an estimation of such worst-
case response time, a timeout can be setup in the requesting nodes, after which they give up
waiting for a reply.

Without errors, one single update request takes 4 ECs to be committed but if there are
more queued requests to be processed immediately after an initial one, each will take 3 ECs to
be committed. If there areN sources of update requests, considering a su�ciently long inter-

140 Chapter 6. Enforcing Master Replica Determinism

����� �
���	

	��
���������

�� �� �� ��

�� �� �� ��

�� �� ��

�� �� �� ��

�
�	�� ��
���

��
��� �

��
���

!�	��� �� ��

�� ��

�� ��

�� ��

"#$%&&%'()'(*+',
- +./0.&* 12

"#$%&&%'()'(*+',
- +./0.&* 12

"#$%&&%'()'(*+',
- +./0.&* 12 3

.4,5
- +./0.&* 12

���
����

6���� 7��
�

Figure 6.9: Delay in the SRT update caused by a burst of errors.

transmission time for each of them, the maximum number of queued requests isN , taking a
time equal to 4 + (N − 1) × 3 ECs to be committed. However, since the queue is prioritized
(N levels, 1 highest), the worst-case time to commit the request withID = k (1 ≤ k ≤ N) is
given by 4 + 3(k − 1) ECs.

6.4.3 Protocol behavior in the presence of channel and node faults

A potential problem of a leader-follower approach, like the one previously described, is
that an inconsistent transmission of the TM might cause inconsistency among the backup
masters. However, the active master knows whether the transmission of its TM has been
inconsistent (property CAN.p1) and can take advantage of this feature. Therefore, upon TM
transmission error (possible inconsistency), the active master retransmits the same TM. If,
�nally, the retransmission is not successful in one EC, e.g., due to an error burst, then in
the following EC the master issues a new TM with an updated EC-schedule but maintaining
the same protocol state information. In this way, the delayed leader delays all followers (see
Figure 6.9).

Therefore, although replicated masters could face transient inconsistencies, such inconsis-
tencies would be eventually solved after a consistent transmission of the TM. Thus, channel
errors may enlarge the protocol execution but do not jeopardize consistency.

In case the active master crashes while processing an update request (Figure 6.10), a
backup master takes over according to the master replacement mechanism described in the
previous Chapter. Note that due to property CAN.p2, a backup master cannot determine if
the other nodes have received the last TM and, therefore, it cannot know the state in which the
other backup masters are. Due to this, each backup master tries to send a TM which conveys
the same protocol information it received in the last TM. In this way, whenever a backup
master becomes the active master, it behaves like the previous active master by maintaining
the same protocol state information one EC and delaying the remaining backup masters. In
addition, a backup master which did not receive the last TM is compelled to be the last one

6.4 SRT update protocol 141

����� �
���	

	��
���������

��

��

��

��

�� �� �� ��

�� ��

�� �� �� �� �� ��

�� �� �� ��

�
�	�� ��
���

����	
� �

����	
� �

��	���

 !"#!$%&'() *

 !% +,$-.%&'() *

����� /
��01�
� ���

����� 2
����3���

45 67

45 67

45 67

89:; <9=>??>@A B@ACD@:
E D;FG;?C 8H I;J:K

E D;FG;?C 8H<9=>??>@A B@ACD@:
E D;FG;?C 8H

89:; LIM9=>??>@A B@ACD@:
E D;FG;?C 8H

����	�
��01�
�

N���
����

�
I

N3 �
O���	P��	�� ��01�
������
��3 ��
�	���

Q����
R1�
�

Figure 6.10: Active master crashes while processing an SRT update request. Master replica 2
does not receive the request and must issue a synchronization request. Notice that the error
burst does not allow the TM retransmission during the TMTW by a master replica.

to compete in becoming active by using a longer replacement delay. The consequence of this
rule is that a delayed backup master cannot become active master unless every other backup
master is also delayed.

In the last part of the protocol, the request is committed to the SRT as soon as the state
transition from reply to admission control is detected. This means that the commit is carried
out as soon as a TM is received indicating such transition. If there are inconsistent TMs in
this part of the protocol, some replicas may commit before others (Figure6.11). This could
cause a transitory discrepancy in the EC-schedules of replicas and active master. Therefore,
all replicas switch o� the policing mechanism, that compares their own EC-schedule with the
one conveyed within the TM, between the reply phase, if the request is accepted, and the
request commit. This prevents replicas from issuing costly re-synchronization requests, when
they are not in fact unsynchronized. Notice that the active master will not start processing
other request while the reply from the previous was not successfully transmitted and thus,
successfully received by all nodes.

6.4.4 Automatons of the entities involved in the protocol

This section presents the automatons that model the behavior of the slave, the active and
the backup master. Notice that these automatons preserve all relevant properties of the proto-
col, however, for the sake of simplicity and to abstract the fundamental behaviors adopted in
the protocol modeling, some non fundamental aspects are not included. AppendixA presents
some low level details of the SRT update protocol that are closer to the implementation.

142 Chapter 6. Enforcing Master Replica Determinism

�� ��

�� ��

�� ��

�� ��

�����	
���	

�	����� �

�	����� �

���	��

����� �
�	������

�� ��

�� ��

��

�� ��

�� !"
$�%&�'()*

)+!� ,�
-+./''/01 201($0!

�344��5

��

��

��

��

)+!� ,�
-+./''/01 201($0!

�	����� �
�344���

�	����� �
�344���

��4	 ����	

6

3
 78
��

Figure 6.11: Backup masters committing SRT update request at di�erent instants due to
inconsistent TM transmission and an error burst.

����

�����

��	�
����
�� ������ ��� ��	�����	�

����

��	�
����
�� ������ ��	�����	�

���
���
�� ����������
��

��
����

��	�
����
�� ������ ��	�����	�
��

 	� �! ���	�"��	��� # �	��#

��	�
����
�� ����
�� ��� ��	�����	�

Figure 6.12: Slave's automaton.

Slave automaton

As depicted in Figure 6.12, each slave may be in one of the following states: idle, retry
and wait.

During the idle state, the slave can request a change of the SRT. This is done by sending
an update request within the asynchronous window. Depending on the result of this trans-
mission the slave steps either into the retry state, if the transmission was inconsistent, i.e.,
not successfully accomplished, or to thewait state, if the transmission was consistent.

The slave reaches the retry state only if the transmission of the update request within the
previous EC has been inconsistent. Therefore, and in order to recover from this inconsistency,
the slave retries sending the same update request. After successfully transmission or after
reaching the end of the following asynchronous window, the slaves steps into thewait state.

6.4 SRT update protocol 143

�� ������

���� �� 	�
��

��
�
������ ��� ��
��
���

���������������
���

��������

��� ��
�	�����
�����������	�
����

��
�
���� �� ��
��
���

�����������������

��
�
������ ��� ��
��
���

���������������
���

��������

Figure 6.13: Active master's automaton.

In the wait state, the slave waits for the reply from the active master. This reply, embedded
in the TM, is recognized because it contains the same request identi�er as the original update
request issued by the slave. As soon as the TM containing the reply is received, the slave
leaves this state and goes back to the idle state. However, if after a given timeout the reply
TM is not received, then the slave considers its request as being rejected and steps back to
the idle state.

Active master automaton

The automaton executed by the active master (Figure6.13) has three states: listen, admis-
sion control and reply. Notice that the active master's transitions are allowed only when the
TM is consistently transmitted, i.e., no transmission errors are detected. This is represented
in Figure 6.13 with the condition Send(TM<...>). In reality the Send(TM<...>) operation
is more complex, because it involves a bounded retransmission interval (TMTW) in case of
transmission errors, as described in section 5.2.

The active master stays in the listen (a_listen in Figure 6.13) state as long as an update
request is not being processed. Once a request is received, the active master sends a TM
which indicates the transition to theadmission control state (a_ac in Figure 6.13) and informs
which request is going to be processed. However, the active master itself does not step to the
admission control state until the TM is successfully transmitted. If this condition is not
veri�ed then the active master re-tries to send the TM until it is successfully transmitted.
The selection of the request to be processed is non-preemptive: once one request has been
chosen, the active master does not change its decision.

In the admission control state, the active master processes the selected request and sets the

144 Chapter 6. Enforcing Master Replica Determinism

��������

���	 ��
����

��	
�������	��

��	
������
������

��	
������������
��	
�������	��

����	

���	
��
����

�� ������

������� �����
�������

����
�������	��������
��	�

����
������
������

����
������������

Figure 6.14: Backup master's automaton.

timer Tac. This timer indicates the time which the slowest backup master requires to carry out
the admission control. Therefore, it ensures that the active master does not step to the next
state before any of the backup masters have �nished. Once theTac timer expires, the active
master sends a TM conveying the admission control result as well as the indication of state
transition to the reply state (a_reply in Figure 6.13). The active master keeps transmitting
this message until it is consistently transmitted. When this happens, it moves to thereply
state.

The active master can leave the reply state and move either to the idle state, if no more
update requests are pending, or to the admission control state, if at least one update request
is pending. In both cases, the active master moves to the selected state only if the TM, which
indicates that transition, is successfully transmitted. If this second condition is not veri�ed
then the active master re-tries to send the TM until it is consistently transmitted. If this
process extends beyond one EC, i.e., one TMTW, the state of the update protocol is kept.

Backup master automaton

Figure 6.14 shows the possible states of the backup master. Notice that, since any backup
master could become the active one upon active master crash, all the states described in the
previous section are also included in this state machine. Such states are represented with a
dotted circle.

The initial state of the backup master is thepassive listen state (p_listen in Figure 6.14).

6.4 SRT update protocol 145

During this state, each backup master waits for the reception of a TM indicating the transition
to the passive admission control state (p_ac in Figure 6.14) as well as the identi�er of the
request that is going to be processed.

Once in the passive admission control state, each backup master checks its request queue
in order to determine whether the selected request has been received or not. If the selected
request has been received then it is processed. Otherwise, the backup master waits for the
request during one EC. If after that time the request is not received, then the backup master
considers itself as being unsynchronized, and starts the re-synchronization process (resync
state in Figure 6.14) referred to in sections 6.2 or 6.3.

Two conditions have to be veri�ed in order for a backup master to leave the passive
admission control state and move to the passive reply state (p_reply in Figure 6.14). In the
�rst place, the admission control must have been concluded and, in the second place, a TM
indicating the result of the admission control must have been received. If the TM is received
before the admission control �nishes or if the result from the active master does not match
its own result, then the backup master considers itself as being unsynchronized.

A backup master leaves the passive reply state as soon as a TM which indicates the
transition to the next state is received. The next state can bepassive listen or passive admission
control, depending on the decision made by the active master.

Whenever a backup master succeeds in transmitting its own TM, it becomes an active
master. Note that this is equivalent to jumping from one state of the backup master automaton
to the same state of the active master automaton. For the sake of clarity, Figure6.14 does not
include the transitions among the active states (a_listen, a_ac and a_reply) because they
correspond exactly to the transitions depicted in Figure6.13.

6.4.5 Protocol veri�cation

A protocol is basically a set of rules which indicates how entities interact in order to
provide a given service. Regardless of the service provided, this set of rules must ful�ll two
requirements: it must be complete and logically consistent (i.e. without contradictory rules).
Writing a validation model of the protocol in a formal description language, helps guaranteeing
that these requirements are ful�lled. The model writing process forces the designer to make
explicit assumptions about the environment as well as to specify the protocol rules in an
unambiguous way. This process is a key step in the early detection of protocol speci�cation
mistakes. In addition, a validation model allows the use of tools whichautomatically verify the
logical consistency of the protocol rules and the observance of the correctness requirements.
However, to build an e�ective model, all relevant properties of the protocol should be preserved
during the abstraction process.

The SRT update protocol has been partially veri�ed by means ofmodel checking. According
to Clark et al. [CGP01], model checking is a formal veri�cation technique by which:

146 Chapter 6. Enforcing Master Replica Determinism

"a desired behavioral property of a reactive system is veri�ed over a given system
(the model) through exhaustive enumeration of all the states reachable by the system
and the behaviors that traverse through them."

Applying model checking to a design consists of three main tasks. The �rst task is the
modeling of the system in a formalism accepted by a model checking tool. In this work, the
system has been modeled in PROMELA (PROtocol MEta LAnguage), with SPIN (Simple
PROMELA Interpreter) as the model checker [Hol91][Hol04].

The second task is the speci�cation of the properties that the system must verify. These
properties are usually speci�ed in temporal logic, such as Linear Temporal Logic (LTL)
[Pnu79].

The third task is the veri�cation of these properties over the model. This task is supposed
to be fully automatic, but it actually requires some human intervention. The result of the
veri�cation is either 'yes', if the system satis�es the property speci�ed, or acounterexample
that shows a trace to the state where the property is not veri�ed.

The following sections are devoted to explaining how each one of these tasks has been
carried out.

6.4.6 Modeling

The main challenge in model checking is to deal with the state explosion arising either from
over-speci�cation or from a poor abstraction process. Due to this, a veri�cation model must be
as simple as possible, yet su�ciently powerful to represent all types of coordination problems
that can occur in the system. All relevant properties of the protocol must be represented
whereas other irrelevant aspects must be abstracted away.

When modeling a distributed system, one has to consider if nodes execute either in a
synchronous way or in an asynchronous way. FTT-CAN nodes execute in an asynchronous
way, even though the existence of temporal windows within the Elementary Cycle introduces a
sort of synchronism among the nodes. For instance, slaves are not allowed to transmit within
the TM window. The transmission of requests within the asynchronous window is interleaved
so that slave requests can be received in any order.

Nevertheless, for the purpose of this veri�cation, a synchronous behavior can be assumed
for the nodes. This assumption is justi�ed by the fact that even though the slave requests
can be received in any possible order, the masters' request queues are sorted by priority.
Therefore, the order in which the requests are received within a single asynchronous window is
not relevant, and can be abstracted away. Owing to this, this model serializes the transmission
of requests.

PROMELA is a C-like language. It allows de�ning a protocol in terms of three objects:
processes, message channels and state variables. In the validation model, FTT-CAN masters
and slaves are modeled as processes which exchange information with each other through

6.4 SRT update protocol 147

�����

��

��

��

��

	
�� �
���

��������

�� ��

�� ��

������
� �
��

��
��
�
��
�
�
!"
#

$
$
$

$
$
$

�%���� �����&
��

Figure 6.15: PROMELA model scheme.

message channels. It should be stressed that the validation model, presented in this section,
is not aimed at verifying the basic services of FTT-CAN but only the SRT update protocol.

A PROMELA process is de�ned for each node. Moreover, an additional process, called
Timer, is introduced in the model in order to synchronize the execution of the other processes.
In the model, every process is connected toTimer through a synchronous channel, as described
in Figure 6.15. These synchronous channels, de�ned in the following vector, are intended to
activate and deactivate processes.

chan init_EC_node[NNODES]= [0] of {bit};

On the other hand, masters and slaves communicate by means of shared variables, instead
of using PROMELA channels. In particular, the following variables are used:

typedef type_tm {
byte id_master;
bit id_req;
mtype status;

};

bool node_alive[NNODES];
bool requests[NSLAVES_X_NMASTERS];
type_tm Tm_Rx;
bool omission_flag;

The function of these shared variable is explained next. Vector init EC node can be
interpreted as a vector of semaphores, which Timer uses in order to guarantee that only one

148 Chapter 6. Enforcing Master Replica Determinism

process is active at a time. The granularity provided by this mechanism is one EC. Moreover,
Timer follows an activation order which represents the time division of the EC. It �rst activates
one of the slaves; which represents the beginning of the asynchronous window. The activated
slave executes one step of its automata (which was described in Section 5) and waits until the
next activation. Once the activated slave has �nished its computation step,Timer activates the
next slave, which proceeds like the previous one. The order in which the slaves are activated is
not relevant for the veri�cation process, because the request queues of the masters are sorted
by priority, and not by reception order.

Therefore, without losing generality, a �xed activation order is used to reduce the com-
plexity of the model. Once the last slave has �nished its computation step,Timer activates
the �rst master; which represents the beginning of the TM window. The procedure for acti-
vating the masters in the TM window is equivalent to the one explained for the slaves in the
asynchronous window. Each master executes one computation step as soon as it is activated
and then waits until the next activation. Once the activated master has �nished its compu-
tation, Timer activates the next one. After the last master has �nished,Timer activates the
�rst slave again and the entire cycle is restarted. In contrast to slaves, the activation order of
the masters is relevant in order to guarantee some properties which are fundamental for the
proper modeling of the system. This is better explained later on, after introduction of the
variable Tm_Rx.

Requests is a vector of booleans of size #SLAVES×#MASTERS, which is used to model the
transmission of the slave requests. Each entry of this vector represents a request from one slave
to one master. In order to model inconsistent transmissions of the requests, i.e. properties
CAN.p1 and CAN.p2 (see section 4.6.1), a slave process may set the entry of only some
masters.

The structured variables Tm_Rx and Tm_Tx model the mechanisms for transmission of the
TM (properties FTT-CAN.p2 and FTT-CAN.p3). Tm Rx contains the TM of the current EC,
whereas Tm_Tx is mainly used to implement the arbitration process within the TM window.
At the end of its computation step, the activated master decides the contents of the TM it
wish to send. Then, this master checks the values kept inTm_Tx. If the activated master wants
to send a TM of higher priority than the TM currently kept inTm_Tx then it overwrites Tm_Tx
with the values of its own TM. This mechanism ensures that at the end of the TM window,
after activation of every master, Tm_Tx contains the TM of the master of highest priority in
the system (property FTT-CAN.p1). At that precise instant, before activating the �rst slave
and thus starting a new EC, Timer copies the values from Tm_Tx to Tm_Rx.

In order to model the inconsistent transmission of the TM, each process has the choice, in
any computation step, of not reading Tm_Rx. Whenever this happens, the process which did
not read Tm_Rx sets the variable omission_flag to true. This ensures that the transmitter
of the TM knows that the transmission has been inconsistent (i.e. at least one process has
not read Tm_Rx), as stated in property CAN.p1. However, in order to properly model this

6.4 SRT update protocol 149

property, Timer must guarantee that the master which transmitted the TM in one EC is
the last one to be activated in the next EC. So the activation order of the masters needs be
dynamic. Node_alive is a vector of booleans which indicates whether a node is non-faulty or
has crashed. Every entry of this vector is assigned to a unique node process, which is allowed
to set the entry to false at the end of any of its computation steps. Timer only activates those
processes whose node alive entry is true. This models the crash failure semantics of the nodes.

6.4.7 Property speci�cation and veri�cation

In order to assess the correctness of the protocol designed in this work, three properties
have to be veri�ed. These properties are discussed next. They have been only veri�ed for
a system with four nodes (three masters and one slave). Notice that although only a slave
node is included in the veri�ed model, it is unlikely that any practical system will need more
than three masters. Veri�cation with a higher number of nodes has not been possible due to
the state explosion. Formalizing these properties required de�nition of a number of additional
boolean variables, which are mainly used to indicate internal states of the nodes.

The properties were speci�ed in Linear Temporal Logic (LTL) [Pnu79]. Temporal logic
allows one to succinctly describe many interesting temporal properties of systems. Informally,
in LTL the symbol [] means that the related property is always veri�ed, while the symbol<>
means that the related property will be eventually veri�ed.

Property 1 (Termination) � If a slave consistently sends a request r then a master even-
tually processes r.

[]((r_tx_c) -> <> (reply[0] || reply[1] || reply[2]))

r_tx_c is a boolean which is set by the slave after consistently sending a request and
reply[i] is a boolean which master i sets as soon as it steps to the reply state.

Property 2 (Integrity) � If a master has processed a request r, then some slave must have
sent request r.

[]((reply[0] || reply[1] || reply[2]) -> r_tx))

r_tx is a boolean which is set by the slave after sending a request.

Property 3 (Agreement) � If a correct master has processed a request r, then all correct
masters eventually process request r. The speci�cation of this property requires three
expressions like the one below, one for each master.

[](reply[0] -> <> ((node_alive[1] -> reply[1])
&& (node_alive[2] -> reply[2])))

The expressions for master 1 and master 2 are omitted since they are analogous to this
one.

150 Chapter 6. Enforcing Master Replica Determinism

6.5 Conclusion
This Chapter addressed the problems that arise from replicating FTT-CAN masters to

avoid the single point of failure.
The �rst problem is synchronizing FTT-CAN masters to ensure that backups remain

synchronized with the active master, even if they temporarily loose synchrony, e.g., due to
asynchronous start/restart. Two solutions were proposed for this problem: one taking ad-
vantage of the planning scheduler capabilities and other based in more powerful computing
hardware such as a custom scheduling co-processor.

The second problem is accepting runtime requests to update the communication require-
ments, while guaranteeing the consistent processing of the requests at all masters. The proto-
col proposed to handle SRT update requests, was designed taking into account the constrains
imposed by the application domain where it is targeted to, i.e., dependable distributed real-
time embedded systems. In particular, it takes advantage of some speci�c properties of CAN
and FTT-CAN in order to reduce the protocol complexity as well as the computation and
communication overheads.

The proposed protocol is a semi-active one in the sense that all requests are processed
in parallel by every replica. However, in order to eliminate inconsistencies between masters,
the active master is prioritized to the other masters. The active master rules all the process,
assuming the role of the protocol leader, while the backup masters assume the role offollowers.
Possible local inconsistencies arising from lack of atomic broadcast protocol, are consistently
cleared during the protocol execution by the active master in a leader-followers approach.

The computational and bandwidth overheads of this protocol are very low when compared
to other solutions, since it only uses one extra message, the request message. The rest of the
protocol messages are piggybacked into existing FTT-CAN messages. Also, the computational
complexity is independent from the number of replicas, making the protocol scalable.

This protocol was also partially validated using a PROMELA model and the SPIN model
checker for the case of a system with four nodes (three masters and one slave). Three basic
protocol properties have been veri�ed: termination - consistent delivered requests will be
eventually processed by a master; integrity - all processed requests were issued by some slave;
agreement - if a correct master has processed a request, then all correct masters eventually
process the same request.

The method to synchronize unsynchronized masters together with the SRT update re-
quest protocol allow enforcing the required level of replica determinism so that FTT-CAN
backup masters can successfully replace the active master without giving away the high level
of operational �exibility.

Chapter 7

Enforcement of Fail Silence Behavior
in FTT-CAN nodes

7.1 Introduction

A faulty FTT-CAN node that sends unsolicited messages at arbitrary points in time (bab-
bling idiot failure mode [Kop97]) without respecting the bus access rules imposed by the master
node can disable nodes with legitimate messages to access the network. However, this failure
mode can only occur if a node fails in an uncontrolled way. Network topologies that support
the operation of fail uncontrolled nodes are costly [Pow91]. Thus a node should only exhibit
simple failure modes and ideally it should have just a single failure mode, the fail silent failure
mode [Tem98], i.e., it produces correct results or no results at all. In this matter, a node can
be fail-silent in the time domain, i.e., transmissions occur at the right instants, only, or in
the value domain, i.e., messages contain correct values, only. With fail silence behavior, an
error inside a node cannot a�ect other nodes and thus each node becomes a di�erent fault
con�nement region [Tem98]. Furthermore, if k failures of a functional unit in a system must
be tolerated, then k+1 replicas of that unit are needed as long as they are fail silent. If the
replicas are fail uncontrolled, then3k+1 will be required. Thus, the use of fail silent nodes also
reduces the complexity of designing fault-tolerant systems. Usually, fail silence is enforced by
bus guardians, which are autonomous devices with respect to the node network controller and
host processor, which act as failure mode converters, i.e., the failure modes of the component
are, at the interface to other components, replaced by the failure modes of the guardian.

In order to be fail-independent with respect to the interface it monitors the bus guardian
must belong to a separate fault con�nement region. A guardian would be of no use if it
failed whenever the node that it is guarding also failed. Some potential sources of common
mode failures are: clocks, CPU/hardware, power supply, protocol implementation, operating
system, etc. Designing the bus guardian with independent hardware, with no common com-
ponents and design diversity can help to avoid common failure modes. Despite the possible

151

152 Chapter 7. Enforcement of Fail Silence Behavior in FTT-CAN nodes

design compromises made between independence, fault coverage and simplicity/cost in any
bus guardian architecture it is mandatory for the guardian to have somea priori knowledge
of the timing behavior of the node it is policing. In time-triggered networks this implies that
each bus guardian needs to have its own copy of the schedule and an independent knowledge
of the time.

Despite CAN e�cient error detection capabilities and automatic fail-silence enforcement,
referred in Chapter 4, a CAN node only reaches the bus o� state (fail silence) after a relatively
long period of time (when the transmission error counter reaches 255). For example, in the case
of an erratic transmitter in a 32 node CAN network at 1 Mbps, the worst-case time to bus o� is
2.48 ms [RV97]. Moreover, a CAN node running an erroneous application can also compromise
most of the legitimate tra�c scheduled according to a higher layer protocol implemented in
software in a standard CAN controller, simply by accessing the network at arbitrary points in
time. Notice that a faulty application running in a node with a CAN controller may transmit
at any time without causing any network errors, and consequently unable of leading the CAN
controller to the bus-o� state, simply by using the highest message priorities. An uncontrolled
application transmitting at arbitrary points in time via a non-faulty CAN controller is a much
severe situation than a faulty CAN controller also transmitting at arbitrary points in time
because, in the �rst case, a non faulty CAN controller has no means to detect an erroneous
application. In the second case the CAN controller would eventually reach the bus-o� state.

This Chapter presents two di�erent approaches to enforce fail silent behavior both in the
master and in the slave nodes. Fail silence in the slave nodes is enforced using either dynamic
bus guardians or internal replication and temporized agreement. The latter mechanism enforce
fail silent both in the time and in the value domain and it was designed to be used primarily
on the master nodes, given their central role.

7.2 Slave nodes fail silence enforcement

As it was discussed in Chapter3, there are several possible approaches to enforce fail silence
behavior in a distributed system node. Bus guardians are usually adopted in this task because
they are simpler than replicating the whole node and using some sort of voting mechanism.
Apart from the cost issue, simplicity is also important because a simpler component is often
more dependable than a complex one. These were basically the reasons behind the option to
design FTT-CAN compliant bus guardians to protect the bus against slave node's unsolicited
access. Being FTT-CAN a two-phase protocol with event- and time-triggered parts, an FTT-
CAN compliant bus guardian should police both protocol phases.

Concerning the event-triggered phase of the FTT-CAN, it is not possible to exactly specify
nor anticipate when a message will be transmitted. This adds extra di�culty inbabbling idiot
detection and hence, in the design of a bus guardian. To be feasible, a bus guardian for
the event-triggered phase of the protocol requires a minimum of knowledge concerning the

7.2 Slave nodes fail silence enforcement 153

message parameters produced by each node, e.g., messages IDs and minimum inter message
transmission time. Conversely, in the time-triggered phase of the protocol, a node is only
allowed to write to the bus during a prede�ned time window. Therefore it is possible to
detect fail-silence violations just by watching when the node writes to the bus. In this way,
a bus guardian protecting the bus from a babbling node needs to have a priori knowledge
of the messages the node is suppose to transmit including the transmission instants (tra�c
schedule). This work is primarily focused on designing a bus guardian capable of policing the
time-triggered phase of FTT-CAN. For the event-triggered phase we propose adapting some
mechanisms proposed by Broster and Burns [BB03], speci�cally the minimum message inter
transmission time is used to block a node consuming excessive bandwidth.

The peculiarities of CAN do not help or simplify the task of designing a bus guardian for
FTT-CAN. CAN protocol works in a bit-by-bit basis and at any instant any node may transmit
(e.g. start an error frame) depending of its local view of the bus. That is, the transmission
and reception signals are closely related at the bit level and not at the frame level as in other
�eldbuses, e.g. TTP/C and FlexRay. Thus the typical technique used in bus guardians for
the last two networks, i.e. isolating the respective node from the network outside its allowed
transmission/reception windows, is not possible in CAN because, even outside such windows,
CAN nodes must answer to every frame with the acknowledge bit and must participate in the
re-synchronization process upon errors by transmitting error frames.

Broster and Burns [BB03] proposed a generic bus guardian architecture targeted to event
triggered communication protocols. The proposed solution uses an external guardian which is
a completely independent node connected directly to the bus. Broster and Burns also showed
that a generic bus guardian architecture could be adapted for the speci�c case of the CAN bus.
In this architecture the bus guardian does not police the node directly, instead it monitors
the bus tra�c to detect babbling nodes. In this way this bus guardian is only able to isolate a
node that sends correct messages more often than it should and with the correct IDs. A node
sending consecutive active error frames, or with a stuck at dominant failure mode or sending
correct messages with unknown IDs, could not be located and isolated from the network. With
this solution and apart from performance and topological issues, there is no reason to have a
bus guardian policing each node since in fact it is not capable of doing that job. A single bus
guardian with a direct control line to each node could do the same job.

Broster and Burns proposal assumes a static message set and does not consider online
modi�cation of the communication requirements, limiting system's �exibility with respect to
online message parameter modi�cations. In this sense those bus guardians are static and could
be programmed at pre-run time or startup with the message parameters. We believe that it
is feasible to allow online modi�cations to the event-triggered communication requirements.
This could be accomplished by an entity responsible for online admission control of requests to
change the communication requirements and for notifying bus guardians of possible changes in
the message parameters. The online admission control is necessary to guarantee that requests

154 Chapter 7. Enforcement of Fail Silence Behavior in FTT-CAN nodes

to change a given message property do not violate the overall tra�c schedulability. The bus
guardian noti�cation, upon accepting a request, is necessary to re-program the bus guardians'
�lters at runtime.

In our approach the CAN controller of a non-faulty node participates in every network
transaction. It is isolated from the network, by the bus guardian, only if it attempts to corrupt
the bus schedule. The bus guardians proposed for the slave nodes are initially programmed,
at reset time, by the node host processor with the parameters of the set of messages that
the node is responsible to transmit, both asynchronous and synchronous. At run time the
bus guardian is programmed, every elementary cycle, by the network master, by means of the
trigger message. Notice that this programming refers only to the messages to be transmitted
during the synchronous window of one EC. Possible modi�cations of synchronous messages
parameters are handled by the master, only. Slave nodes (and their bus guardians) are noti�ed
of the modi�cations by means of the EC-schedule conveyed in the trigger messages. Both the
bus guardian and the node CAN controller, connected to the node host processor, receive
messages in parallel. However, the node host processor is unable to interfere with the bus
guardian except during initialization time.

7.2.1 Bus guardians requirements

Given the peculiarities and restrictions imposed by FTT-CAN, a list of the requirements
that should be supported by the bus guardians protecting the bus againstbabbling slave nodes
can be enumerated.

1. The bus guardian must protect both the event- and time-triggered phases of FTT-CAN.

2. The bus guardian should enforce temporal isolation among FTT-CAN phases, including
the interval for trigger message transmission where all slave's tra�c is disabled.

3. Event-triggered tra�c within the asynchronous windows should be policed according to
message's minimum inter transmission time. Asynchronous messages not listed in the
bus guardian's bus access list are not allowed to be transmitted.

4. Time-triggered tra�c within the synchronous windows should be monitored to guarantee
that a node only transmits messages listed in its bus access list.

5. The bus access list describes the message set the node is allowed to transmit, both syn-
chronous and asynchronous. Each list entry contains the message type (synchronous or
asynchronous), identi�cation and size. For asynchronous messages the list also contains
the minimum inter transmission time (MIT).

6. The bus guardian only allows transmission of the messages present in its bus access list.
This prevents masquerading faults, e.g., a slave node assuming the role of master.

7.2 Slave nodes fail silence enforcement 155

��� ��� �� ���

	�
 ��
��� ��

� �

���
��� ��

� �

���� ���
��� ��

���
��� ��

� �

��� � � �� � �
����

�� � �� ��� ��

� �

�� ��

	��
� ��

��

�����

Figure 7.1: Implementing the bus guardian based on an o�-the-shelf CAN controller.

7. The bus guardian should detect and isolate a node sending either consecutive active
error frames (possibly due to a faulty receiver) or sending consecutive dominant bits
(stuck at dominant failure mode).

8. Initial bus con�guration (writing the bus access list) could be done by the node host
processor, but only during system startup. At run-time the node host processor could
not con�gure the bus guardian.

9. Run-time bus guardian recon�guration should be possible via the network only. This is
necessary to accommodate modi�cations of message parameters, issued by the network
master.

Given these requirements, two design options were considered for implementing the bus
guardians. One is based on an o�-the-shelf CAN controller and the other one is based on
specialized hardware that implements a subset of the CAN protocol, only.

7.2.2 COTS-based bus guardian

The �rst solution considered the implementation of the FTT-CAN bus guardian using a
second standard CAN controller, that supports silent mode operation1, attached to a dedicated
microcontroller. In the silent mode operation the CAN controller does not interfere with the
bus, i.e., it does not transmit ACK bits neither active error �ags. This ensemble is connected
in parallel with the node host processor CAN controller, hereafter also called main controller,
and before the bus driver, to monitor and control the operation of the node (Figure7.1).

1The Philips SJA1000 provides this operational mode.

156 Chapter 7. Enforcement of Fail Silence Behavior in FTT-CAN nodes

Initially, the bus guardian receives the network tra�c, i.e. RXBG = RXN = RX, in
parallel with the main CAN controller. After receiving and decoding a trigger message the
bus guardian enters the policing mode. In this mode, the reception of its CAN controller is
switched to the output of the node main CAN controller, i.e. RXBG = TXN , and starts
policing the network tra�c generated by the node main CAN controller until the end of the
synchronous window. After that it goes back to the initial state and the whole process is
repeated every cycle.

During the asynchronous window the bus guardian veri�es whether the node is transmitting
messages more often than it should, verifying message's minimum inter transmission time and
size. If it is, the bus guardian blocks its access to the bus. During the synchronous window the
bus guardian also monitors the messages transmitted by the node and veri�es if they respect
both the EC-schedule and declared size (DLC �eld).

One limitation of this approach comes from the fact that the bus guardian microcontroller
only becomes aware of any message after it has been fully received by its CAN controller.
Therefore, any potential damage to the system may have already be done and the error
detection latency (Figure 7.2) is at least as long as the transmission time of one message plus
the time taken by the microcontroller to check the message validity (receive interrupt latency
and processing - RX ISR). If the RX ISR duration is shorter than the CAN inter-frame space,
i.e. 3 bit times, the node will be isolated before any subsequent transmission can start. Thus,
the worst-case fail silence enforcement latency will equal 136 bit times corresponding to 133
bit times for a maximum CAN normal frame format (formerly CAN 2.0A) message plus 3 bit
times for the inter-frame space.

�� �������	
 ��

�����
���� ����� ����

��� ���

��
���� �
���

����� ������ ��
 ����
��

���	� ��	� ���� 	 ���
� �
�������
� ����
��

����� �����
����� �� ��� !�

Figure 7.2: Fail silence enforcement using a bus guardian based on a standard CAN controller.

However, this latency can be longer if the RX ISR duration extends beyond the CAN inter-
frame space. In this case, the node may start another transmission before the bus guardian
takes action and isolates it from the network. Then, the bus guardian aborts the on-going
transmission immediately and an error is generated in the network causing interference from
error frames between 14 and 20 bit times. The worst-case fail silence enforcement latency

7.2 Slave nodes fail silence enforcement 157

(WCFSL) will thus be 153 bit times (133 + 20) plus the RX ISR duration (∆RXISR
). The

resulting value can be obtained by expression (7.1).

WCFSL = d(133 + 20 + ∆RXISR
)e × τbit (7.1)

Table 7.1 presents some worst-case scenarios for several durations of FTT-CAN syn-
chronous windows and for several transmission rates of the CAN bus, considering the RX
ISR duration shorter than 3 bit times.

For small sized synchronous windows and low bus transmission rate, a faulty node can
corrupt a signi�cant part of, or even all, the synchronous window. However, it only corrupts
a single synchronous window since the node is then isolated from the network by the bus
guardian. After disabling the bus access, the bus guardian may also cause a hard reset to the
node host processor and its respective CAN controller, if programmed to do so at initialization
time. This might be helpful for the case of a non-permanent failure, allowing the node to
recover autonomously.

Sync. window 125 250 500 1
duration (ms) Kbps Kbps Kbps Mbps

1 0 1 3 6
2 1 3 6 13
4 3 6 13 26
6 4 9 19 39
8 6 13 26 52
10 8 16 32 65
20 16 32 65 130

Table 7.1: Maximum number of maximum sized synchronous messages that �t in a given EC,
considering the impact of a node failure and error con�nement latency of 1 message time.

A tricky issue in the implementation of this solution is related with the switching of the
bus guardian CAN controller input so that it can eitherlisten to the bus or listen to the node
CAN controller output. The bus guardian must always receive the trigger message despite
possible trigger message retransmissions during the TMTW. In this way, the signal C1 (Figure
7.1) selects the bus input after the last synchronous message of an EC is transmitted and it
selects the node input after receiving the trigger message, only. Notice that the bus guardian
must implement a set of timers similar to the ones described in section 5.2.1 to account
for possible TM retransmissions during the TMTW and still being able to enforce temporal
isolation between protocol phases.

A particular negative aspect of these bus guardians is that when they are receiving data
from the bus they are unable to police the nodes and, thus, preventing them to transmit

158 Chapter 7. Enforcement of Fail Silence Behavior in FTT-CAN nodes

unsolicited tra�c. Furthermore, they are also unable to block the access of a node sending
consecutive active error �ags or dominant bits (stuck at dominant failure mode). This is so
because the bus guardian does not decouple the transmission from the node it policies from the
tra�c produced remotely and, thus, it is unable to decide whether a particular error source
is local or remote. Notice that when C2=0 the tra�c received by the bus guardian CAN
controller is the result of the logical AND of the tra�c locally transmitted by the node with
the tra�c transmitted by all other network nodes.

Summarizing, this bus guardian does not protect the network against all possible failure
modes of the slaves it policies, e.g., the stuck at dominant failure mode. However, in this
case, it is expectable that CAN native fault containment mechanisms will eventually drive the
faulty node to an error passive or bus o� state. Nevertheless, this bus guardian architecture is
still capable of enforcing temporal isolation between protocol phases and policing synchronous
message transmission, provided the failure modes are less severe.

7.2.3 Specialized hardware-based bus guardian

Another approach to design FTT-CAN bus guardians is to use specialized hardware that
implements a subset of the CAN protocol and is able to examine the validity of an ongoing
message transmission, right after the transmission of the respective ID and DLC message
�elds (Figure 7.3). In this approach, since the bus guardian can detect an erroneous message
earlier, it can also take action sooner and thus, its worst-case fail silence enforcement latency
is shorter.

The operation of the bus guardian is based on its capacity to observe the network state
(Rxbus) and the node transmission state (Txnode), independently and bit by bit. In this way,
the bus guardian needs to decode the node transmission, that accounts for the node contribu-
tion to the overall bus tra�c in parallel with the decoding of the bus tra�c. In the proposed
bus guardian architecture, this is the responsibility of the frame sequencer unit and the con-
trol logic unit. The frame sequencer unit provides bit level bus guardian synchronization with
the bitstream �owing in the bus and generates the sampling control signal that is used by the
control logic to drive two shift registers that store the frames transmitted by the node (Txnode)
and the frames �owing in the bus. Notice that when the node does not transmit to the bus,
then Txnode = recessive and Rxbus conveys the bus tra�c. Conversely, when the node is
transmitting to the bus, then Txnode =Rxbus if there are no local errors or Txnode 6=Rxbus, in
the cases when the view of the node di�ers from the bus state. A mismatch in the bitstream
transmitted by the node and the one observed in the bus, depending on its position in the
CAN frame, may indicate a possible error in the local node.

Two classes of errors could be detected by this bus guardian: the logical errors related
with the FTT-CAN protocol and the errors at CAN bitstream level. Examples of logical
protocol errors are unsolicited synchronous message transmission and asynchronous message

7.2 Slave nodes fail silence enforcement 159

����� �������� 	�
�����
�
�����������
�� �������� � �� !"

#$ �% &'() *+',)--'+

./& ,'01+'22)+

#3 43

56- (+78)+

9:;<=:> >:?@A
#3BCDE

43FGH

#3 FGH

IJK
LM
NOPQ
RS

%�!�T

U=VWX
YXZ[X;AX=

Figure 7.3: Bus guardian architecture based in specialized hardware and its integration in the
slave node.

transmissions not respecting the minimum inter transmission time. Examples of bitstream
errors include a node constantly sending active error frames or permanent dominant bits (stuck
at dominant failure mode). Several mechanisms have already been proposed by Barrancoet al.
[BRNPA04] to handle bitstream errors. In particular Barrancoet al. generalize the bitstream
error concept to account for bit-�ipping faults that occur whenever a node exhibits a fail
uncontrolled behavior and starts sending erroneous and random bits with no restrictions in
the value domain, destroying every correct contribution from non faulty nodes. The proposed
bus guardian architecture relies in these mechanisms to detect and isolate ((E/D = 1)) every
node exhibiting this failure mode.

Figure 7.4 depicts the main functional blocks of the bus guardian. The frame sequencer
receives the input signal, resulting from the contributions of all nodes including the local node
when it is transmitting, and uses it to synchronize the bus guardian with the bitstream �owing
in the bus. Thus, the frame sequencer extracts the clocking information from the bitstream
and feeds it (sampling signal in Figure 7.4) to the bitstream error processing unit and to the
shift registers A and B. The bitstream error processing unit makes a bitwise comparison of
the most recent bits received in the sift registers to detect any possible mismatch. In case
the local node transmits, for example, an active error frame that is not present in the bus,
possibly meaning that the local CAN controller is faulty, the bitstream error processing unit
isolates the node from the bus. Notice that the bitstream error processing unit can evaluate

160 Chapter 7. Enforcement of Fail Silence Behavior in FTT-CAN nodes

������

����	

��
� �������� �

��
� �������� �

���������
�����

����������

�������
�����

����������
��
� !
"#
$

����	

����� %������� &���������
'()*)�+*%(�,

-+
���./�� 0 12���

������

-3)

�����

4����
��5/�����

Figure 7.4: Main building blocks of the bus guardian.

the correctness of every transmission issued by the local node, because it receives the same
bitstream that is also received by the local node CAN controller.

Shift register B stores the ID and the DLC of each message transmitted by the local
CAN controller (15 bits). Shift register A stores the trigger message ID and DATA �elds
(75 bits). After receiving each TM and storing its content in the shift register A, the logical
error processing unit extracts the node schedule for that EC, derives the number of messages
to transmit (Nmsg) in that EC and sets the timer to enforce the temporal isolation between
protocol phases.

During the asynchronous window, the logical error processing unit analyzes the ID and
DLC of the messages transmitted by the local node (shift register B) and blocks message
transmissions that violate the pre-de�ned minimum inter-transmission time or ID or size. To
validate the minimum inter transmission time property of each message, a timer is set each
time an asynchronous message is transmitted and reset after the minimum inter transmission
time elapses. A transmission is allowed when the timer is reset, only.

During the synchronous window and with the knowledge ofNmsg, the bus guardian drives
the bus transmission line (Txbus) according to the following rules:

1. If Nmsg > 0 and the bus is idle than Txbus =Txnode (E/D = 0). This allows the node
to start a message transmission. Nmsg is decremented for each successful transmission.

2. If Nmsg = 0 and the bus is idle than Txbus = recessive (E/D = 1), i.e., the node cannot
start a message transmission.

3. If a transmission from other node is in progress than Txbus =Txnode, but only to transmit

7.3 Internal replication and temporized agreement 161

�������������	��
� �

�
 �
��� ��� �� �� ���	�

����� �� �! "�#
$% �#!&'!(��)$"#* �����

+��, !%,� -%"$,"$�#!�
�#-��!�.�# $% �#!&

�������������	��
�

/0 � 1��!���

������������ ���

2��. (���%- �� (� #���
", ",�$% �� -��. (� 3),

�������44��� 555

Figure 7.5: Enforcing fail silence with bus guardians based on specialized hardware.

acknowledge bits, error frames or overload frames. At all other times Txbus = recessive

(E/D = 1).

Whenever the node starts a transmission during the synchronous window withNmsg > 0,
the bus guardian policies the transmission bit by bit until the end of the message ID and
the DLC �elds. If one of these �elds is incorrect, the bus guardian immediately aborts the
on-going transmission, inducing an error in the bus and isolating the node from the network,
possibly generating a hard reset to the host node processor and CAN controller may also be
generated.

In this approach, the worst-case fail silence enforcement latency (WCFSL) corresponds to
the error detection latency, i.e. 22 bit times (SOF to DLC plus stu� bits) plus the hardware
error detection delay (∆Hardware), plus the time taken by the transmission of error frames
induced by the bus guardian when the on-going transmission is aborted, i.e. between 14 and
20 bit times (Figure 7.5). The resulting value can be obtained by expression (7.2).

WCFSL = d(22 + 20 + ∆Hardware)e × τbit (7.2)

If ∆Hardware is of the order of magnitude of a few bit times, then, WCFSL will be close
to 52 bit times, which is the transmission time of a minimum-sized CAN frame. Thus, the
interference caused by aborting an erroneous transmission is close (less than 10τbit) to the
time allocated by the master to a correct message. Since a node issuing an erroneous message
must have Nmsg > 0, this means that the interference uses the bus time allocated to that
node, with practically no interference on the bus schedule, during the time-triggered phase
of FTT-CAN. Notice, also, that the erroneous message is destroyed by the bus guardian, not
being delivered.

7.3 Internal replication and temporized agreement
For the case of the master node, and possibly some slave nodes, it is necessary to enforce

fail-silence both in the time and value domains. This is mandatory in the master, to guarantee

162 Chapter 7. Enforcement of Fail Silence Behavior in FTT-CAN nodes

����� ���� �

����� ���� 	

��
������ ������������

���� ���� 	

���� ���� �

���� ���� 	

���� ���� �

������ ����

�� ���� �

�� ���� 	

��

���������
����

��	

���
��

����

	

���	

	��� 	

	��� �

��� �

��� 	

Figure 7.6: Interfacing a pair of processors with a CAN controller in a master node to enforce
fail-silent behavior.

the correctness of the EC-schedule that is broadcast to the network. A bus guardian �lter-
ing functionality cannot be used in FTT-CAN master nodes because of the causal relations
between the master node computed schedule and the bus guardian operation. Fail silence
enforcement in FTT-CAN master nodes requires a replicated processing/voting scheme.

Several schemes have been reported over the years to control failure modes of distributed
systems nodes. Notable examples of implementations of two processor fail-silent nodes are
Stratus [WB91] and Sequoia [Ber88]. In these systems, a reliable common clock source is used
for driving a pair of processors which execute in lock-step. Access to the bus is controlled
by a reliable comparator circuit which only enables access to the bus if the signals generated
by the two processors are the same. Our approach is somewhat similar to this one, but we
do not require lock step operation of the processors. Also no restrictions are placed to the
processors as long as they produce their outputs correctly and within a narrow time window,
thus favoring design diversity.

The proposed approach is based on a speci�c network interface that supports internal
duplication of the node in a transparent way. Basically, this interface enforces an agreement
both in the time and in the value domain between all the messages generated by both internal
replicas. In case of disagreement, no message is actually sent to the network. Figure7.6 depicts
such a network interface called Dual Processor CAN controller Interface (DPCI) which can
be used within the FTT-CAN masters. The CPUs run from independent clocks and each
of them is connected to a dedicated DPCI port (on the left side) through which it sees the
CAN controller programming interface as if it was physically connected to it. Synchronization
between DPCI and each CPU is enforced by semi-synchronous port interfaces.

7.3 Internal replication and temporized agreement 163

The CAN controller is connected to the right side port. This port is customized according
to the interfacing requirements of the speci�c controller being used. Apart from that, the
datapath shown in Figure 7.6 is standard for any CAN controller type. The bus transactions
initiated by the CPUs are translated by the DPCI in read or write CAN controller accesses.
All CPU writes directed from each port to any controller register, go through a separate Write
FIFO memory. These memories decouple the two CPUs, allowing them to run at their own
pace. The Comparator unit compares at all times the contents at the head of the two Write
FIFOs. A write access to the CAN controller is generated only if a match is detected (correct
output in the value domain).

The Programmable Timer (PT) allows this validation to be extended to the time domain
as required for example with the generation of FTT-CAN trigger messages. In this case, when
a CPU writes the transmission request on its Write FIFO, the PT is started. The other CPU
must issue its request before the programmed time-out interval (correct output in the time
domain) for the transmission request to be e�ectively passed to the CAN controller. If a time-
out is reached or a mismatch is detected on the Comparator, an external line signals the fault,
allowing the node to be disabled, possible generating a hard reset. The temporal validation is
selected on a per transaction basis according to hardwired DPCI con�guration. Notice that
there must be some kind of synchronization among the internal replicas. Otherwise, even a
small clock drift would lead both replicas to diverge and eventually isolating the node from the
network. Therefore, the required synchronization is achieved upon a write operation, which
generates an interrupt upon successful completion. This interrupt is raised simultaneously in
both ports, allowing both replicas to synchronize. CPU replicas located in backup masters do
not transmit regularly, thus they are synchronized by the reception of the trigger message.

Associated with each CPU port there is also a Register File, which replicates most CAN
controller registers. These include the interrupt, status, control and command registers, as
well as the receive bu�er. All the registers have the same functionalities as their original
counterparts within the CAN controller. This replication of the controller registers inside the
DPCI is necessary for two reasons. Firstly, because in most controllers some registers change
after being read (e.g. interrupt and status registers). Secondly, because this allows the CPUs
to run decoupled (for example, when they both read the receive bu�er).

The DPCI maintains both register �les up to date according to the internal state of the
CAN controller. This is achieved by a combination of polling periodically the controller
registers and using interrupts to signal changing conditions in the controller. For example
when the interrupt line from the CAN controller is asserted indicating a message reception,
the control unit copies the contents of the controller interrupt register, status register and
read bu�er to their respective positions in both Register Files inside the DPCI. Both CPU
interrupt lines are then activated and the CPUs now respond to these interrupts as if they
were servicing directly the CAN controller.

164 Chapter 7. Enforcement of Fail Silence Behavior in FTT-CAN nodes

7.4 Conclusion
This Chapter presented solutions to impose fail silent behavior in FTT-CAN nodes both

slaves and masters. Two solutions are addressed, both based on hardware components that
are attached to the node's network interface. One solution relies on bus guardians that allow
enforcing fail-silence in the time domain, i.e. they inhibit faulty nodes from transmitting
messages at arbitrary instants wasting bandwidth and disturbing legitimate tra�c. These
bus guardians are adapted to support dynamic tra�c scheduling and are �t for use in the
slave nodes, only. The other solution relies on a special network interface, with duplicated
microprocessor interface, that supports internal replication of the node, transparently. In this
case, fail-silence can be assured both in the time and value domain since transmissions are
carried out only if both internal nodes agree on the transmission instant and message contents.
This solution is well adapted for use in the master node but can also be used, if desired, in
slave nodes.

Two possible implementations for the bus guardians are presented and discussed, which
have di�erent costs and performance in terms of latency to enforce fail silence upon detection
of an erroneous transmission and thus, on the interference over legitimate tra�c. One is
based on COTS components while the other one relies on specialized hardware. The former
one, despite easier to implement is substantially more limited in terms of the failure modes
supported and in the latency required to enforce fail silence.

Chapter 8

Conclusions and Future Work

The central proposition of the thesis supported by the present dissertation, claims that
it is possible to provide a bounded degree of �exibility without compromising dependability.
The case-study adopted to validate this claim was the Flexible Time-Triggered CAN protocol:
a protocol that combines the predictability of time-triggered systems, favoring the design of
fault-tolerance mechanisms, and the �exibility of CAN, favoring the adaptation to evolving
conditions.

The FTT-CAN protocol was originally developed to ful�ll three basic requirements: time-
liness, �exibility and e�ciency. This was achieved by combining the advantages of time- and
event-triggered paradigms and providing �exibility to the time-triggered tra�c. FTT-CAN
goes a bit further than other protocols that also combine event- and time-triggered tra�c,
as TTCAN and FlexRay, by allowing time-triggered messages to be scheduled dynamically
and online, in contrast with those protocols where time-triggered messages are static and
scheduled at pre-runtime. This fact makes the development of fault-tolerant mechanisms to
TTCAN and FlexRay quite straightforward because there is ana priori common knowledge
of the time-triggered message schedule by all nodes. This is not the case in FTT-CAN. How-
ever, as it was demonstrated in this work, it is possible to build fault-tolerant mechanisms
for FTT-CAN that preserve the protocol inherent �exibility particularly in the time-triggered
tra�c.

Allowing �exible communication requirements in a real-time distributed system brings up
some concerns regarding safety, since a change in communication requirements can possibly
lead to a network overload and consequent timing failures. Furthermore, if the communication
requirements can change online and unboundedly, it is not possible to usea priori knowledge
to distinguish correct transmissions from wrong ones. The use of a priori knowledge is of
utmost importance in fault-tolerance techniques, to distinguish between what is correct and
what is wrong. However, if the on-line requests to change the communication requirements
are admissible only within strict boundaries, both temporally and in value, then it becomes
possible to guarantee the continued safe and timely behavior of the network. This requires the

165

166 Chapter 8. Conclusions and Future Work

�ltering of the update requests in order to accept only those that conform to speci�cations.
In this way, the system will still be �exible with respect to the communication requirements
although the �exibility is limited to an extent up to which safety is not jeopardized.

The �rst step towards the de�nition of a fault tolerant FTT-CAN architecture was the
identi�cation of the impairments to dependability of the original FTT-CAN architecture as
well as of native CAN. In this context, those impairments have been identi�ed and some
new �ndings, based in experimental data, related with the probability of inconsistent message
omissions, were presented. Experimental data indicates that the probability of inconsistent
message omissions, which depends on the channel bit error rate, appears to be substantially
lower than previously assumed. In fact, in the experiments it is below the10−9 occurrences
per hour, the commonly accepted threshold for safety-critical applications. This fact enables
the direct use of native CAN in safety critical applications without requiring sophisticated
and bandwidth ine�cient atomic broadcast algorithms. Since the asynchronous messaging
system of FTT-CAN preserves all native CAN properties, we conjecture that FTT-CAN asyn-
chronous messages do not require an atomic broadcast algorithm to achieve consensus among
FTT-CAN nodes. However, the same experimental results have also shown that the CAN bit
error rate is high enough to make FTT-CAN synchronous messages very susceptible to incon-
sistent message omissions. The level of susceptibility of the asynchronous messages also raises
substantially if the retransmission process upon error is interrupted before an unsuccessful
transmission.

After having identi�ed the generic impairments to FTT-CAN dependability, the impact of
transmission errors in FTT-CAN, causing message omissions, was addressed next. A message
omission could occur either due to transient electromagnetic interference or permanent node
failure. Techniques based in temporal replication (message retransmission) were proposed to
recover messages a�ected by transient errors, while techniques based in spatial replication
(node replication) were proposed to cope with permanent node failure.

Other impairment to FTT-CAN dependability is related with the failure semantics of the
master and the slave nodes. The fault hypothesis assumes that nodes exhibit a crash failure
semantics, i.e., nodes can only fail by not issuing any message to the network (fail-silence
failure mode). Unfortunately this does not match standard CAN and FTT-CAN nodes, thus,
mechanisms to enforce such behavior were developed. Two solutions were addressed, both
based on hardware components that are attached to the node's network interface. One so-
lution relies on bus guardians that allow enforcing fail-silence in the time domain, i.e. they
inhibit faulty nodes from transmitting messages at arbitrary instants wasting bandwidth and
disturbing legitimate tra�c. These bus guardians support dynamic tra�c scheduling and
are �t for use in the slave nodes, only. The other solution relies on a special network inter-
face, with duplicated microprocessor interface, that supports internal replication of the node,
transparently. In this case, fail-silence can be assured both in the time and value domain since
transmissions are carried out only if both internal nodes agree on the transmission instant and

8.1 Thesis validation 167

message contents. This solution is suited for use in the master node but can also be used, if
desired, in slave nodes.

Two possible implementations for the bus guardians are presented and discussed, which
have di�erent costs and performance in terms of latency to enforce fail silence upon detection
of an erroneous transmission and in the failure modes supported. One is based on COTS
components while the other one relies on specialized hardware (for example, using FPGA
technology).

Besides the inconsistent message transmission and the failure semantics of FTT-CAN
nodes, another obvious problem with FTT-CAN is the single point of failure nature of the
master node. If the master node fails to transmit trigger messages, transmit them out of time
or with erroneous contents, then all network activity could be seriously compromised or even
disrupted. This impairment was circumvented through master replication, with one or more
similar nodes acting as master backups. In this way, as soon as a missing trigger message
is detected, a backup master comes into the foreground and transmits it, maintaining the
communication. Two problems emerge from replicating FTT-CAN masters to avoid the single
point of failure. The �rst problem is synchronizing FTT-CAN masters to ensure that backups
remain synchronized with the active master, even if they temporarily lose synchrony, e.g.,
due to asynchronous start/restart. Two solutions were proposed for this problem: one taking
advantage of the planning scheduler capabilities and other based in more powerful computing
hardware such as a custom scheduling co-processor. The second problem of replicating FTT-
CAN masters and accepting runtime requests to update the communication requirements, is
guaranteeing the consistent processing of the requests at all masters. The protocol proposed to
handle SRT update requests, was designed taking into account the constrains imposed by the
application domain where it is targeted to, i.e., dependable distributed real-time embedded
systems. In particular, it takes advantage of some speci�c properties of CAN and FTT-CAN
in order to reduce the protocol complexity as well as the computation and communication
overheads.

8.1 Thesis validation

The thesis stated in Chapter 1, arguing that it is possible to provide a high degree of oper-
ational �exibility in distributed embedded systems without compromising their dependability,
was validated throughout this dissertation for the speci�c case of FTT-CAN. In fact, it has
been shown, mainly with the work presented in Chapters 5, 6 and 7, that it is possible to
build �exible fault-tolerant mechanisms capable of adapting online to evolving requirements.

Several mechanisms and protocols proposed to enforce a correct and consistent behavior
despite possible errors and evolving operational scenarios and requirements, were speci�ed,
analyzed and validated. The validation was done via of the implementation of the protocol to
synchronize masters upon asynchronous start/restart and the master replacement scheme. The

168 Chapter 8. Conclusions and Future Work

protocol to enforce consistent updates of the SRT was partially validated via model checking,
while the components to enforce fail-silent behavior in FTT-CAN nodes were functionally
speci�ed, designed and analyzed.

8.2 Future research
Adapting the fault-tolerant architecture to FTT-Ethernet

The FTT paradigm, presented by Pedreiras [Ped03], was implemented also over Ethernet,
leading to the FTT-Ethernet protocol [PAG02]. However, FTT-Ethernet fails to provide the
level of dependability required for use it safety-critical applications. Concerning the archi-
tectural aspect, FTT-Ethernet impairments to dependability are similar to the ones initially
exhibited by FTT-CAN, e.g., master single point of failure and fail-uncontrolled behavior of
the nodes, both master and slaves. This requires a master replication scheme and components
to enforce fail silence behavior of FTT-Ethernet nodes. These components could be physically
located within the Ethernet switches in a star topology favoring, thus, failure con�nement.

Concerning the impairments to FTT-Ethernet dependability arising from the Ethernet
message transmission nature, e.g., the necessity of an explicit acknowledge from all receiver
nodes to validate a transmission, the mechanisms proposed for FTT-CAN are not directly
applicable to FTT-Ethernet. There are many proposed solutions for this problem of reliable
delivery in Ethernet, but it is necessary to assess their impact on FTT-Ethernet timeliness
and complexity.

The work of converting FTT-Ethernet into a dependable architecture opens many appli-
cation domains in the area of real-time adaptive distributed systems.

It is interesting to say that preliminary work on the �eld of fault-tolerant scheduling
has already been carried out in FTT-Ethernet, following the proposals presented in Chapter
5. Namely, a mechanism to detect slave synchronous omissions and to reschedule them has
already been developed [AF04].

A holistic approach to dependable adaptive real-time distributed systems

Most of the work presented in this dissertation deals with the communication sub-system
only. However, tasks running in a distributed real-time system also need to be taken into
account to make that system adaptable to evolving scenarios in a dependable way.

Recent work by Calha and Fonseca [CF04] explores the issue of centralized holistic schedul-
ing of messages and tasks according to the FTT paradigm. This work could be extended to
allow the dynamic adaptation to distributed real-time systems by allowing task migration
between nodes and recon�guring the corresponding message scheduling. The FTT paradigm
allows a centralized management of a distributed system by keeping the system requirements
in a monolithic data structure and disseminating commands to the whole system by means of

8.2 Future research 169

trigger messages.
The main challenge of this work is to provide additional services required to secure the

centralized on-line management of the whole distributed system. These services include a
membership service, to maintain information about which nodes are functioning and which
have failed, a clock synchronization protocol, to provide an absolute global time reference, and
a reliable, possibly certi�able, resource management service, to allocate and deallocate system
resources according to evolving operational requirements. Thus, provided the centralized on-
line management is correct and both the communication infrastructure and the operating
system running in every node are timely and reliable, it will be possible to adapt to evolving
operational scenarios, keeping the system within safety boundaries, without having to analyze
all possible operational modes o�-line.

We conjecture that the implementation of a membership service is facilitated, in the context
of FTT, by the centralized nature of some data structures. The master node could detect a
slave node that failed to transmit a synchronous message, thus suspecting it entered the fail
silent failure mode. Conversely, a slave node transmitting asynchronous messages only, could
send heartbeat messages to report its state. These solutions need to be further investigated
according to the scenarios described in Chapter 4.

The resource management service is the cornerstone of the FTT architecture and needs to
be formally validated since it is responsible for the global bandwidth management and process
activation.

Inserting the master functionalities within a hub or a switch

In distributed embedded systems based in bus topologies, the communication medium is
a single point of failure. In applications with safety-critical requirements, the bus is usually
replicated to circumvent this impairment to dependability. However, bus replication alone
may not prevent the occurrence of spatial proximity faults when node replicas are located
close to each other as, for example, when an accident damages the left front wheel of a car or
a small �re a�ects an airplane.

Star topologies are adopted when node replicas cannot be physically separated. Besides
favoring the resilience to spatial proximity faults, the use of star topologies also favors the
centralized management and isolation of faulty nodes. This approach has been followed both
in TTP/C and in FlexRay, where the bus guardian functionalities are integrated within the
star. Thus, despite exhibiting a distributed nature with a TDMA medium access protocol
(in the case of FlexRay the TDMA scheme refers to the time-triggered phase of the protocol,
only), these protocols are topologically centralized.

The FTT architecture is based in broadcast message transmission and is logically central-
ized with the master node controlling the medium access during the synchronous windows.
Thus, the idea of inserting master functionality in a centralized component, either a hub or a
switch, is a natural consequence resulting from the logically centralized nature of the medium

170 Chapter 8. Conclusions and Future Work

access control strategy. In this way, and besides being responsible for admission control and
message scheduling, a hub/switch version of the master node could also monitor the contri-
bution of each node to the overall network tra�c using the active hub concept proposed by
Barranco et al. [BRNPA04].

Analyzing the applicability of existing approaches to fault tolerant scheduling for
use in FTT-CAN

As it was referred in Chapter 5, fault tolerant scheduling techniques have been substantially
developed, both concerning the execution of tasks in uniprocessor systems or multiprocessor
systems. Other possible taxonomy divides these techniques in two categories, the static o�-
line fault tolerant scheduling and the on-line fault tolerant scheduling. Both techniques could
be adapted to FTT-CAN, however, FTT-CAN architecture is better suited for on-line fault-
tolerant scheduling.

A �rst step in this direction was already made, as reported in Chapter 5. However several
fault tolerant scheduling techniques need to be analyzed and evaluated in terms of complexity
versus performance. After electing a fault tolerant scheduling algorithm, which by itself is not
a trivial task, the next step would be the joint fault tolerant scheduling of messages and tasks.

Generalization to other protocols of the mechanisms proposed in this work

Despite being speci�c to FTT-CAN, the components and mechanisms proposed in this
work seem to be adaptable to other master-slave protocols, such as WorldFIP [IEC00] (with
dynamic bus arbitrator table) or Foundation Fieldbus-H1 [IEC00].

The bus guardian architectures designed for FTT-CAN slave nodes could be adapted to
master-slave protocols or to event-triggered protocols. In the �rst case the bus guardian would
police the node in order to prevent it to transmit any unsolicited message and in the second
case the bus guardian would prevent the node to transmit consecutive messages before elapsing
the minimum inter transmission time.

The dual port controller interface concept used to enforce fail silence behavior both in time
and in the value domain within the FTT-CAN masters, is already a generic component that
can be equally applied to other protocols, not necessarily master-slave.

Bibliography

[AAR01] J.-C. Laprie A. Avizienis and B. Randell. Fundamental concepts of dependability.
Technical Report 739, University of Newcastle upon Tyne, School of Computing
Science, 2001. {18,19}

[ADGFT04] Marcos Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
Consensus with byzantine failures and little system synchrony. In Rachid Guer-
raoui, editor,Distributed algorithms, volume 3274/2004 ofLecture Nodes in Com-
puter Science, pages �, Oct 2004. {25}

[AF01] Luís Almeida and José Alberto Fonseca. Analysis of a simple model for non-
preemptive blocking-free scheduling. Proceedings of the 13th Euromicro Confer-
ence on Real-Time Systems (ECRTS 2001), 13-15 June 2001, Delft, The Nether-
lands, 2001. {124}

[AF04] Jorge Andrade and Nuno Ferreira. FTT em Redes não Fiávies. Technical report,
Projecto �nal de curso, Departamento de Electrónica e Telecomunicações da
Universidade de Aveiro, 2004. {168}

[AFF98] L. Almeida, J. A. Fonseca, and P. Fonseca. Flexible time-triggered communi-
cation on a controller area network. Proceedings of Work-In-Progress Session of
RTSS'98 (19th IEEE Real-Time Systems Symposium), 1998. {56,83,101,102}

[AG97] N. C. Audsley and A. Grigg. Timing analysis of the ARINC 629 databus for real-
time applications. Microprocessors and Microsystems, 21:55�61, 1997. {71,72}

[Alm99] L. Almeida. Flexibility and Timeliness in Fieldbus-based Real-time Systems. PhD
thesis, University of Aveiro, Portugal, Nov 1999. {18,129,130}

[Alm04] Luís Almeida. Real-time networks (for distributed embedded systems). Handouts
of the ARTIST Summer School on Real-tme Scheduling and Resource Manage-
ment, Piazza Armerina, Sicily, Italy, July 5th - 9th, 2004. {v,13}

[AO03] N. Arqueiro and A. Oliveira. Design, Implementation and Test of an FPGA based
CAN Controller. Technical Report, Universidade de Aveiro/IEETA, March 2003.
{88}

171

172 BIBLIOGRAPHY

[APF99] L. Almeida, R. Pasadas, and J. A. Fonseca. Using a planning scheduler to improve
�exibility in real-time �eldbus networks.Control Engineering Practice, 7:101�108,
1999. {59,127}

[APF02] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN Protocol: Why and
How. IEEE Transactions on Industrial Electronics, 49(6), 2002. {5,14,101,102,127}

[ARI90] ARINC. ARINC Speci�cation 629 Multi-transmitter data bus. Aeronautical Radio
INC, 2551 Riva Road Annapolis, Maryland, 1990. {16,71}

[ARI91] ARINC. Arinc speci�cation 651: Design guidance for integrated modular avion-
ics. Standard 651, Aeronautical Radio, Inc (ARINC)� Airlines Electronic Engi-
neering Committee, 1991. {11}

[ASJS96] Tarek Abdelzaher, Anees Shaikh, Farnam Jahanian, and Kang Shin. RTCAST:
Lightweight multicast for real-time process groups. InProceedings of the IEEE
Real-Time Technology and Applications Symposium, pages 250�259, 1996. {37}

[Asp03] James Aspnes. Randomized protocols for asynchronous consensus.Distrib. Com-
put., 16(2-3):165�175, 2003. {23}

[BA04] I. Bate and N. Audsley. Flexible design of complex high-integrity systems using
trade o�s. In 8th IEEE International Symposium on High Assurance Systems
Engineering, pages 22�31, 2004. {45}

[BB03] I. Broster and A. Burns. An analysable bus-guardian for event-triggered com-
munication. In Proceedings of the 24th Real-time Systems Symposium, pages
410�419, Cancun, Mexico, Dec 2003. IEEE. {52,153}

[BBRN02] I. Broster, A. Burns, and G. Rodríguez-Navas. Probabilistic analysis of CAN with
faults. In Proceedings of the 23rd Real-time Systems Symposium, pages 269�278,
Austin, Texas, 2002. {42,53,83,120}

[BBRN04] I. Broster, A. Burns, and G. Rodríguez-Navas. Comparing real-time communi-
cation under electromagnetic interference. InProceedings of the 16th Euromicro
Conference on Real-Time Systems (ECRTS 04), Catania, Sicily, Italy, June 2004.
Computer Society, IEEE. {40,42,47,76}

[BCC+99] Gordon S. Blair, Fábio M. Costa, Geo� Coulson, Hector A. Duran, Nikos Parla-
vantzas, Fabien Delpiano, Bruno Dumant, François Horn, and Jean-Bernard Ste-
fani. The design of a resource-aware re�ective middleware architecture. InPro-
ceedings of the Second International Conference on Meta-Level Architectures and
Re�ection, pages 115�134. Springer-Verlag, 1999. {4}

BIBLIOGRAPHY 173

[BDM93] Michael Barborak, Anton Dahbura, and Minoslaw Malek. The consensus problem
in fault-tolerant computing. ACM Comput. Surv., 25(2):171�220, 1993. {25}

[Bel02] Belschner, R. et al. FlexRay Requirements Speci�cation, version 2.0.2. FlexRay
Consortium, http: // www. flexray-group. com, 2002. {v,68,69}

[Ber88] P. Bernstein. Sequoia: A Fault-Tolerant Tightly Coupled Multiprocessor for
Transaction Processing. IEEE Computer, 21(2):37�45, 1988. {35,162}

[BES+96] F. Brasileiro, P. Ezhilchelvan, S. Shrivastava, N. Speirs, and S. Tao. Implementing
Fail-Silent Nodes for Distributed Systems. IEEE Transactions on Computers,
45(11):1226�1238, 1996. {35}

[BF93] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability of
life-critical real-time software. IEEE Trans. Softw. Eng., 19(1):3�12, 1993. {20}

[BHG86] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
control and recovery in database systems. Addison-Wesley Longman Publishing
Co., Inc., 1986. {31}

[BHRT03] Roberto Baldoni, Jean-Michel Hélary, Michel Raynal, and Lenaik Tangui. Con-
sensus in byzantine asynchronous systems. Journal of Discrete Algorithms,
1(2):185�210, 2003. {24,25}

[BKS03] Günther Bauer, Hermann Kopetz, and Wilfried Steiner. The central guardian
approach to enforce fault isolation in a time-triggered system. The 6th Inter-
national Symposium on Autonomous Decentralized Systems (ISADS 2003), April
2003. {35,36,65}

[BMST93] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The primary Backup
Approach. S. Mullander, ed.,chapter 8, second edition, pages 199�216, 1993. {37}

[BOS91] Robert BOSCH. CAN Speci�cation Version 2.0. Postfach 300240, D-7000
Stuttgart 30, 1991. {48,49,78,79,89}

[Bos04] Bosch TT CAN homepage. Time Triggered Communication on CAN. http:
// www. can. bosch. com/ content/ TT_ CAN. html, 2004. {55}

[BPB+00] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico, K. Ramamritham,
J. Stankovic, and L. Strigini. The meaning and role of value in scheduling �exible
real-time systems. J. Syst. Archit., 46(4):305�325, 2000. {2}

[BPSW99a] A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright. Probabilistic scheduling
guarantees for fault-tolerant real-time systems. InProceedings of the conference

http://www.flexray-group.com�
http://www.can.bosch.com/content/TT_CAN.html�
http://www.can.bosch.com/content/TT_CAN.html�

174 BIBLIOGRAPHY

on Dependable Computing for Critical Applications, page 361. IEEE Computer
Society, 1999. {41}

[BPSW99b] A. Burns, S. Punnekkat, L. Stringini, and D.R. Wright. Probabilistic scheduling
guarantees for fault-tolerant real-time systems. InProceedings of the 7th Interna-
tional Working Conference on Dependable Computing for Critical Applications,
pages 361 � 378. IEEE Society Press, 6 - 8 Jan 1999. {121}

[BRNPA04] M. Barranco, G. Rodríguez-Navas, J. Proenza, and L. Almeida. CANcentrate: An
active star topology for CAN networks.Proceedings of the 5th IEEE International
Workshop on Factory Communication Systems (WFCS 2004), 2004. {48,159,170}

[Bro03] I Broster. Flexibility in Dependable Communication. PhD thesis, Department
of Computer Science, University of York, York, YO10 5DD, UK, Aug 2003.
{11,41,47,60}

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast proto-
cols. J. ACM, 32(4):824�840, 1985. {23}

[CASD85] F. Cristian, H. Aghali, R. Strong, and D. Dolev. Atomic broadcast: From simple
message di�usion to byzantine agreement. In Proc. 15th Int. Symp. on Fault-
Tolerant Computing (FTCS-15), pages 200�206, Ann Arbor, MI, USA, 1985.
IEEE Computer Society Press. {122}

[CDV01] Gianluca Cena, Luca Durante, and Adriano Valenzano. A new can-like �eld
network based on a star topology. Comput. Stand. Interfaces, 23(3):209�222,
2001. {48}

[CEN96] CENELEC. European standard EN 50170. Fieldbus: Vol.1: P-Net. European
Committee for Electrotechnical Standardisation, 1996. {15}

[CF04] Mário Calha and José A. Fonseca. Approaches to the ftt-based scheduling of tasks
and messages. In Proceedings. 2004 IEEE International Workshop on Factory
Communication Systems, pages 3�11. IEEE Computer Society, 2004. {168}

[CFP03] Francisco Carreiro, José A. Fonseca, and Paulo Pedreiras. Virtual Token-Passing
Ethernet - VTPE. Proceedings of FeT'2003 5th IFAC Conference on Fieldbus
Technology, 2003. {15}

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999. {20}

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model Checking. The
MIT Press, Cambridge, Massachusetts, 2001. {145}

BIBLIOGRAPHY 175

[CHTCB96] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette
Charron-Bost. On the impossibility of group membership. In Proceedings
of the 15th Annual ACM Symposium on Principles of Distributed Computing
(PODC'96), pages 322�330, New York, USA, 1996. ACM. {39}

[CiA99] CiA. CAN physical layer. http: // www. can-cia. de/ CANdll. pdf, 1999. {116}

[CiA02] CiA. CANopen. CiA (CAN in Automation), 2002. EN 50325-4 Standard. {48}

[Con04a] FlexRay Consortium. FlexRay Communications System - Electrical Physical
Layer Speci�cation, v2.0. Technical report, FlexRay Consortium, 2004. {70}

[Con04b] FlexRay Consortium. FlexRay Communications System - Protocol Speci�cation,
v2.0. Technical report, FlexRay Consortium, 2004. {16,36,68}

[Cor99] Echelon Corporation. Introduction to the LONWORKS System, Version 2.0.
Echelon Corporation, 1999. {18}

[Cri91] F. Cristian. Reaching agreement on processor-group membership in synchronous
distributed systems. Distributed Computing, 4(4):175�188, 1991. {39}

[CT91] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for asyn-
chronous systems (preliminary version). InProceedings of the tenth annual ACM
symposium on Principles of distributed computing, pages 325�340. ACM Press,
1991. {24}

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225�267, 1996. {22,26}

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchro-
nism needed for distributed consensus. J. ACM, 34(1):77�97, 1987. {26}

[DS98] Assia Doudou and André Schiper. Muteness detectors for consensus with byzan-
tine processes. In PODC '98: Proceedings of the seventeenth annual ACM sym-
posium on Principles of distributed computing, page 315. ACM Press, 1998. {25}

[DSS98] X. Defago, A. Schiper, and N. Sergent. Semi-Passive Replication.Proceedings of
Symposium on Reliable Distributed Systems, pages 43�50, 1998. {37,137}

[DSU03] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and
multicast algorithms: Taxonomy and survey. Research Report IS-RR-2003-009,
Japan Advanced Institute of Science and Technology, Ishikawa, Japan, September
2003. {v,33}

[FAA88] FAA. Advisory circular ac 25.1309-1a. Technical report, Federal Aviation Ad-
ministration, 1988. {20}

http://www.can-cia.de/CANdll.pdf�

176 BIBLIOGRAPHY

[FAF+03] J. Ferreira, L. Almeida, J. Fonseca, G. Rodriguez-Navas, and J. Proenza. Enforc-
ing Consistency of Communication Requirements Updates in FTT-CAN. Pro-
ceedings of the Workshop on Dependable Embedded Systems, held in conjunction
with the 22nd Symposium on Reliable Distributed Systems (SRDS 2003), pages
7�12, October 2003. {126}

[Fg02] FlexRay-group. Handouts of the international �exray workshop. FlexRay Con-
sortium at http: // www. flexray-group. com, April 2002. {67,68}

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure
interactive consistency. Inf. Process. Lett., 14(4):183�186, 1982. {25}

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374�382, 1985. {23}

[FMD+00] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther.
Time triggered communication on CAN. InProceedings of 7th International CAN
Conference. CAN in Automation GmbH, Oct 2000. {v,55}

[FNP+98] P. Ferriol, F. Navio, J. Pons, J. Proenza, and J. Miro-Julia. A double CAN archi-
tecture for fault-tolerant control systems. In5th International CAN Conference,
ICC'98, San Jose CA, Nov 1998. {78}

[FOFF04] J. Ferreira, A. Oliveira, P. Fonseca, and J. A. Fonseca. An experiment to assess
bit error rate in CAN. RTN 2004 - 3rd Int. Workshop on Real-Time Networks
satellite held in conjunction with the 16th Euromicro Intl Conference on Real-
Time Systems, June 2004. {42,47,76}

[FPAF02] J. Ferreira, P. Pedreiras, L. Almeida, and J. Fonseca. Achieving fault tolerance in
FTT-CAN. Proceedings of the 4th Workshop on Factory Communication Systems
(WFCS 2002), 2002. {113,126}

[Fre95] L.-B. Fredriksson. A CAN kingdom can kingdom rev. 3.01. Technical report,
KVASER AB, Sweden, 1995. {48}

[FSMF98] P. Fonseca, F. Santos, A. Mota, and J. A. Fonseca. A dynamically recon�gurable
CAN system. Proceedings of 5th International CAN Conference, 1998. {113,131}

[GMM97] Sunondo Ghosh, Rami Melhem, and Daniel Mossé. Fault-tolerance
through scheduling of aperiodic tasks in hard real-time multiprocessor systems.
IEEE Trans. Parallel Distrib. Syst., 8(3):272�284, 1997. {121}

[Gro03a] Bluetooth Special Interest Group. Bluetooth core speci�cation v1.2. https:
// www. bluetooth. org/ spec/, 2003. {14}

http://www.flexray-group.com�
https://www.bluetooth.org/spec/�
https://www.bluetooth.org/spec/�

BIBLIOGRAPHY 177

[Gro03b] ETHERNET Powerlink Standardization Group. Ethernet powerlink presenta-
tion. http: // www. can-cia. de/ CANdll. pdf, 2003. {14}

[GT91] Ajei Gopal and Sam Toueg. Inconsistency and contamination (preliminary ver-
sion). In Proceedings of the 10th annual ACM symposium on Principles of dis-
tributed computing, pages 257�272. ACM Press, 1991. {33,34}

[Hav86] N. Haverty. MIL-STD 1553 - a standard for data communications.Communica-
tion & Broadcasting, 10(1):29�33, 1986. {14}

[HK03] Günther Bauer Hermann Kopetz. The time-triggered architecture,. InProceed-
ings of the IEEE, 2003. {63}

[HKD97] H. Hilmer, H.-D. Kochs, and E. Dittmar. A fault-tolerant communication archi-
tecture for real-time control systems. In Proc. IEEE Int. Workshop on Factory
Communication Systems, Barcelona, Spain, Oct 1997. {78}

[HM90] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549�587, Jul 1990. {12}

[HNP00] H. Hansson, C. Norström, and S. Punnekkatt. Integrating reliability and tim-
ing analysis of CAN-based systems. Proceedings of IEEE Workshop on Factory
Communications Systems (WFCS-2000), 2000. {83,94}

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
Englewood Cli�s, New Jersey, 1991. {146}

[Hol04] G.J. Holzmann. The Spin Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading, Massachusetts, 2004. {146}

[HS95] M. Hiltunen and R. Schlichting. Properties of membership services. InProceedings
of the Second International Symposium on Autonomous Decentralized Systems,
pages 200�207, 1995. {39}

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical report, Cornell University, 1994.
{v,26,27,28,29,30,32,33}

[iA] CAN in Automation. Can history. http://www.can-cia.de/can/protocol/
history/history.html; accessed February 18, 2005. {47}

[IEC00] IEC. IEC International Standard 61158: Fieldbus standard for use in industrial
control systems - Type 1: Foundation Fieldbus H1; Type 3: PROFIBUS; Type
7: WorldFIP. International Electrotechnical Committee, 2000. {14,15,170}

http://www.can-cia.de/CANdll.pdf�
http://www.can-cia.de/can/protocol/history/history.html�
http://www.can-cia.de/can/protocol/history/history.html�

178 BIBLIOGRAPHY

[IEE00] IEE. EMC and functional safety. IEE guidance document, IEE, Sept 2000.
Available from http://www.iee.org.uk/PAB/EMC/core.htm. {40}

[ISO93] International Standards Organisation. ISO 11898. Road Vehicles�Interchange
of digital information�Controller area network (CAN) for high speed communi-
cation, 1993. {5,48,49,78}

[ISO00] ISO. ISO 11898-4, Road Vehicles�Interchange of digital information�
Controller area network (CAN) part 4: Time triggered Communication. Interna-
tional Standards Organisation, 2000. Working Draft. {16}

[ISO01] ISO. Road vehicles - controller area network (CAN) - part 4: Time triggered
communication, 2001. {53,56}

[IXX05] IXXAT. FO-Star-Coupler. http: // www. ixxat. de/ fo-star-coupler_ en,
7460,5873. html ; accessed February 21, 2005., 2005. {48}

[KG94] Hermann Kopetz and Günter Grünsteidl. TTP � A Protocol for Fault-Tolerant
Real-Time Systems. IEEE Computer, 27(1):14�23, January 1994. {16,37,63}

[KL99] J. Kaiser and M. Livani. Achieving Fault-Tolerant Ordered Broadcasts in CAN.
Proceedings of the European Dependable Computing Conference, pages 351�363,
1999. {122,123,137}

[KMMS97] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith. Solving consensus in a
byzantine environment using an unreliable fault detector. In in Proceedings of
the First Int. Symposium on Principles of Distributed Systems (OPODIS '97),
pages 61�76, 1997. {25}

[KNH+98] Hermann Kopetz, Roman Nossal, René Hexel, Andreas Krüger, Dietmar
Millinger, Roman Pallierer, Christopher Temple, and Markus Krug. Mode han-
dling in the time-triggered architecture.Control Engineering Practice, 6(1):61�66,
January 1998. {67}

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Press, 1997. {1,5,12,45,74,92,122,151}

[Kop98] H. Kopetz. A comparison of CAN and TTP. Technical Report 1998, Technishe
Universitat Wien, Austria, 1998. {47}

[KS94] Hagbae Kim and Kang G. Shin. Modeling of externally-induced/common-cause
faults in fault-tolerant systems. InProceedings of the 13th Digital Avionics Sys-
tems Conference, pages 402�407. AIAA/IEEE, October 1994. {41}

http://www.iee.org.uk/PAB/EMC/core.htm�
http://www.ixxat.de/fo-star-coupler_en,7460,5873.html�
http://www.ixxat.de/fo-star-coupler_en,7460,5873.html�

BIBLIOGRAPHY 179

[Lam74] Leslie Lamport. A new solution of Dijkstra's concurrent programming problem.
Communications of the ACM, 17(8):453�455, August 1974. {72}

[Lap92] J. C. Laprie. Dependability�Basic Concepts and Terminology, volume 5 of De-
pendable Computing and Fault-tolerant Systems. Springer-Verlag, 1992. IFIP
WG 10.4. {18,19}

[Lat03] Elizabeth Latronico. Problems Facing Group Membership Speci�cations for X-
by-Wire Protocols. Proceedings of the IEEE International Conference on De-
pendable Systems and Networks, student paper, 2003. {20}

[LB03] G. M. A. Lima and A. Burns. A consensus protocol for CAN-based systems. In
Proceedings of the 24th Real-time Systems Symposium, pages 420�429, Cancun,
Mexico, Dec 2003. Computer Society, IEEE. {122}

[LC86] A. L. Leistman and R. H. Campbell. A fault-tolerant scheduling problem.IEEE
Trans. Softw. Eng., 12(11):1088�1089, 1986. {121}

[Le 92] Gérard Le Lann. Designing real-time dependable distributed systems. Comput.
Commun., 15(4):225�234, 1992. {46}

[Lev00] Nancy G. Leveson. Intent speci�cations: An approach to building human-
centered speci�cations. IEEE Trans. Softw. Eng., 26(1):15�35, 2000. {20}

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.ACM
Transactions on Programming Languages and Systems, 4(3):382�401, 1982. {24,25}

[LSTS02] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control real-time schedul-
ing: Framework, modeling and algorithms. Special issue of RT Systems Jour-
nal on Control-Theoretic Approaches to Real-Time Computing, 23(1/2):85�126,
Jul/Sept 2002. {2}

[LSZ+01] Joseph P. Loyall, Richard E. Schantz, John A. Zinky, Partha Pratim Pal, Richard
Shapiro, Craig Rodrigues, Michael Atighetchi, David A. Karr, Jeanna Gossett,
and Christopher D. Gill. Comparing and contrasting adaptive middleware sup-
port in wide-area and embedded distributed object applications. InICDCS, pages
625�634, 2001. {3}

[M. 00] M. Peller and J. Berwanger and R. Griebach. ByteFight - A New High-
Performance Data Bus System for Safety-Related Applications.BMW AG, EE-
211 Development Safety Systems Electronics, 2000. {16,69}

[MAF05] Ernesto Martins, Luís Almeida, and José Alberto Fonseca. An FPGA-based
Coprocessor for Real-Time Fieldbus Tra�c Scheduling - Architecture and Imple-
mentation. Journal of Systems Architecture, 51:29�44, January 2005. {132}

180 BIBLIOGRAPHY

[MF01] E. Martins and J. Fonseca. Improving �exibility and responsiveness in FTT-
CAN with a scheduling coprocessor. Proceedings of FeT'2001 - 4th FeT IFAC
Conference Fieldbus Technology, 2001. {60}

[MFA+02] E. Martins, J. Ferreira, L. Almeida, P. Pedreiras, and J. Fonseca. An Approach
to the Synchronization of Backup Masters in Dynamic Master-Slave Systems.
Proceedings of the WiP Session of 23rd IEEE International Real-Time Systems
Symposium (RTSS), 2002. {126}

[MFH+02] B. Müller, T. Führer, F. Hartwich, R. Hugel, and H. Weiler. Fault tolerant
ttcan networks. In Proceedings of 8th International CAN Conference. CAN in
Automation GmbH, Oct 2002. {53}

[MIS95] MISRA. Integrity, MISRA Report 2. Technical report, The Motor Industry
Software Reliability Association, 1995. {21}

[MR97] Dahlia Malkhi and Michael Reiter. Unreliable intrusion detection in distributed
computations. In CSFW '97: Proceedings of the 10th Computer Security Foun-
dations Workshop (CSFW '97), page 116. IEEE Computer Society, 1997. {25}

[MRJ97] Ashish Mehra, Jennifer Rexford, and Farnam Jahanian. Design and evaluation
of a window-consistent replication service. IEEE Trans. Comput., 46(9):986�996,
1997. {37,38}

[MSCV04] Pedro Martins, Paulo Sousa, Antonio Casimiro, and Paulo Verissimo. Dependable
adaptive real-time applications in wormhole-based systems. InProceedings of the
2004 International Conference on Dependable Systems and Networks (DSN'04),
page 567. IEEE Computer Society, 2004. {4}

[NFG+02] Roman Nossal, Emmerich Fuchs, Thomas M. Galla, Roland Lang, Dietmar
Millinger, and Michael Sprachmann. How to Build Automotive Applications
Based on the FlexRay Communication System. Proceedings of the SAE World
Congress, March 2002. {68}

[NSS00] N. Navet, Y.-Q. Song, and F. Simonot. Worst-case deadline failure probability in
real-time applications distributed over CAN (controller area network). Journal
of Systems Architecture, 46(7), 2000. {83}

[NYQS00] N. Navet, Y.-Q.Song, and F. Simonot. Worst-case deadline failure probability
in real-time applications distributed over controller area network. Journal of
Systems Architecture, 46(1):607�617, 2000. {41,78,94}

[Obe02] R. Obermaisser. Can emulation in a time-triggered environment. InProceedings
of the 2002 IEEE International Symposium on Industrial Electronics (ISIE), vol-
ume 1. IEEE, January 2002. {67}

BIBLIOGRAPHY 181

[OFSF03] Arnaldo Oliveira, Pedro Fonseca, Valery Sklyarov, and António Ferrari. An
object-oriented framework for CAN protocol modeling and simulation. In
FET2003: 5th IFAC International Conference on Fieldbus Systems and their
Applications, pages 243�248, Aveiro, Portugal, July 2003. {88}

[Oli03] Arnaldo Oliveira. MoiCAN Project. http: // www. ieeta. pt/ ~arnaldo/
projects/ MoiCAN/ MoiCAN. htm, 2003. {87}

[PA00] P. Pedreiras and L. Almeida. Combining event-triggered and time-triggered tra�c
in FTT-CAN: Analysis of the asynchronous messaging system.Proceedings of the
IEEE International Workshop on Factory Communication Systems, pages 67�75,
2000. {129}

[PAF00] P. Pedreiras, L. Almeida, and J. Fonseca. Improving the responsiveness of syn-
chronous messaging system in FTT-CAN. Proceedings of DCCS'2000, IFAC
Workshop on Distributed Computer Control Systems, 2000. {59}

[PAG02] Paulo Pedreiras, Luís Almeida, and Paolo Gai. The ftt-ethernet protocol: Merg-
ing �exibility,timeliness and e�ciency. In ECRTS '02: Proceedings of the 14th
Euromicro Conference on Real-Time Systems. IEEE Computer Society, 2002.
{168}

[PBA03] D. Prasad, A. Burns, and M. Atkins. The valid use of utility in adaptive real-time
systems. Real-Time Syst., 25(2-3):277�296, 2003. {2}

[PBG99] M. Peller, J. Berwanger, and R. Grieÿbach. byte�ight speci�cation. BWM AG,
draft edition, Nov 1999. Available From www.byteflight.com. {15,16}

[PD95] M. Peraldi and J. Decotignie. Combining real-time features of local area networks
FIP and CAN. Proc. of ICC'95 (2nd International CAN Conference), 1995. {56}

[Ped03] Paulo Pedreiras. Supporting Flexible Real-Time Communication on Distributed
Systems. PhD thesis, University of Aveiro, Portugal, July 2003. {5,58,168}

[PF04] Juan R. Pimentel and José Alberto Fonseca. Flexcan: A �exible architecture
for highly dependable embedded applications. RTN 2004 - 3rd Int. Workshop
on Real-Time Networks sattelite held in conjunction with the16th Euromicro Intl
Conference on Real-Time Systems, June 2004. {v,47,61,62,74}

[PHN00] S. Punnekkat, H. Hansson, and C. Norström. Response time analysis under er-
rors for CAN. Real-Time Technology and Applications Symposium (RTAS'2000),
2000. {40}

[Pim04] Juan R. Pimentel. An architecture for a safety-critical steer-by-wire system.
Proceedings of the SAE World Congress 2004, 2004. {61}

http://www.ieeta.pt/~arnaldo/projects/MoiCAN/MoiCAN.htm�
http://www.ieeta.pt/~arnaldo/projects/MoiCAN/MoiCAN.htm�
www.byteflight.com�

182 BIBLIOGRAPHY

[PK04] Juan R. Pimentel and John Kaniarz. A can-based application level error detection
and fault containment protocol. Proceedings of the INCOM'04, 11th IFAC Symp.
on Information Control Problems in Manufacturing, 2004. {61}

[PMJ00] J. Proenza and J. Miro-Julia. MajorCAN: A modi�cation to the Controller Area
Network to achieve Atomic Broadcast. IEEE Int. Workshop on Group Commu-
nication and Computations. Taipei, Taiwan, 2000. {74,78,79,81,99,122,123}

[Pnu79] Amir Pnueli. The temporal semantics of concurrent programs. InProceedings
of the International Sympoisum on Semantics of Concurrent Computation, pages
1�20. Springer-Verlag, 1979. {146,149}

[Pow91] D. Powell. Delta-4 - A generic Architecture for Dependable Distributed Comput-
ing. 1991. {151}

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228�234, 1980. {22,25}

[PV03] Luís Miguel Pinho and Francisco Vasques. Reliable real-time communication in
can networks. IEEE Trans. Comput., 52(12):1594�1607, 2003. {122,137}

[RGS95] R. Rajkumar, M. Gagliardi, and Lui Sha. The real-time publisher/subscriber
inter-process communication model for distributed real-time systems: design and
implementation. In Proceedings of the Real-Time Technology and Applications
Symposium, page 66. IEEE Computer Society, 1995. {37,38}

[RNPR+04] G. Rodríguez-Navas, J. Proenza, J. Rigo, J. Ferreira, L. Almeida, and J. Fonseca.
Design and Modeling of a Protocol to Enforce Consistency among Replicated
Masters in FTT-CAN. Proceedings of the 5th Workshop on Factory Communica-
tion Systems (WFCS 2004), pages 229�238, 2004. {126}

[RP03] Guillermo Rodríguez-Navas and Julián Proenza. Analyzing Atomic Broadcast
in TTCAN Networks. In Proceedings of the 5th IFAC International Conference
on Fieldbus Systems and their Applications (FET 2003), Aveiro, Portugal, pages
153�156, 2003. {v,47,76,80,84,85}

[RTC00] RTCA/EUROCAE. Requirements Speci�cation for Avionics Computer Resource
(ACR). Technical report, Radio Technical Commission for Aeronautics/European
Organisation for Civil Aviation Equipment, 2000. {1,45}

[Ruc94] M. Rucks. Optical layer for CAN. In Proceeding of the 1st International CAN
Conference, volume 2, pages 11�18, Mainz, Germany, 1994. CiA. {48}

BIBLIOGRAPHY 183

[Rus99] John Rushby. Partitioning for avionics architectures: Requirements, mechanisms,
and assurance. NASA Contractor Report CR-1999-209347, NASA Langley Re-
search Center, June 1999. Also to be issued by the FAA. {11}

[Rus01] J. Rushby. Bus Architectures For Safety-Critical Embedded Systems.Proceedings
of the First Workshop on Embedded Software (EMSOFT 2001), 2211:306�323,
2001. {11,36}

[RV97] J. Ru�no and P. Veríssimo. Hard real-time operation of CAN. CSTC Technical
Report RT-97-02, 1997. {83,152}

[RVA+98] J. Ru�no, P. Veríssimo, G. Arroz, C. Almeida, and L. Rodigues. Fault-tolerant
broacast in CAN. Digest of Papers, 28th International Symposium on Fault Tol-
erant Computer Systems, pages 150�159, 1998. {40,78,79,80,81,84,85,92,122,137}

[RVA99a] J. Ru�no, P. Veríssimo, and G. Arroz. A Columbus' egg idea for CAN media
redundancy. In Digest of Papers, The 29th International Symposium on Fault-
Tolerant Computing Systems, pages 286�293, Madison, Wisconsin, USA, Jun
1999. IEEE. {48}

[RVA99b] J. Ru�no, P. Veríssimo, and G. Arroz. A Columbus' egg idea for CAN media
redundancy. In Digest of Papers, The 29th International Symposium on Fault-
Tolerant Computing Systems, pages 286�293, Madison, Wisconsin, USA, June
1999. IEEE. {100}

[RWS01] Binoy Ravindran, Lonnie Welch, and Behrooz Shirazi. Resource management
middleware for dynamic, dependable real-time systems. Real-Time Systems,
20(2):183�196, 2001. {4}

[Sch90] F. B. Schneider. Implementing Fault-Tolerant Services Using the State Ma-
chine Approach: A Tutorial. ACM Computing Surveys, 22(4), December 1990.
{30,37,137}

[SES+92] S. Shrivastava, P. Ezhilchelvan, N. Speirs, S. Tao, and A. Tully. Principal Features
of the Voltan Family of Reliable Node Architectures for Distributed Systems.
IEEE Transactions on Computers (Special Issue on Fault-Tolerant Computing),
41(5):542�549, 1992. {35}

[She03] C. Shelton. Scalable Graceful Degradation for Distributed Embedded Systems.
PhD thesis, Carnegie Mellon University, 2003. {3}

[SK04] Charles P. Shelton and Philip Koopman. Improving system dependability with
functional alternatives. In Proceedings of the 2004 International Conference on

184 BIBLIOGRAPHY

Dependable Systems and Networks (DSN'04), page 295. IEEE Computer Society,
2004. {3}

[SLST99] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao. The case for feedback control real-
time scheduling. Proceedings of Euromicro Conference on Real-Time Systems,
pages 11�20, 1999. {2}

[SR89] John A. Stankovic and K. Ramamritham.Tutorial: hard real-time systems. IEEE
Computer Society Press, 1989. {12}

[SRG94] L. Sha, R. Rajkumar, and M. Gagliardi. The simplex architecture: An approach
to building evolving industrial computing systems. InProceedings of the Inter-
national Conference on Reliability and Quality in Design, pages 122�126. ISSAT
Press, 1994. {2}

[SSM+] D. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and L. DiPalma. To-
wards Adaptive and Re�ective Middleware for Network-Centric Combat Sys-
tems, CrossTalk, November. 2001. Available from: http://www.cs.wustl.edu/
~schmidt/PDF/crosstalk.pdf; accessed February 21, 2005. {3}

[TBW95] K. Tindell, A. Burns, and A. J. Wellings. Calculating controller area network
(CAN) message response times. Control Engineering Practice, 3(8):1163�1169,
1995. {18,40,83}

[Tem98] C. Temple. Avoiding the babbling-idiot failure in a time-triggered communication
system. Fault Tolerant Computing Symposium, pages 218�227, 1998. {34,65,151}

[TH95] K. Tindell and H. Hansson. Babbling idiots, the dual-priority protocol, and smart
CAN controllers. InProceedings of the 2nd International CAN Conference, pages
7.22�28, 1995. {52}

[Tho93] Jean-Pierre Thomesse. Time and industrial local area networks. Proceedings of
COMPEURO'93, Paris, France, 1993. {14}

[Tho98] J. P. Thomesse. A review of the �eldbuses.Annual Reviews in Control, 22:35�45,
1998. {13}

[TTT02] TTTech. Time-Triggered Protocol TTP/C High-Level Speci�cation Document
(edition 1.0). http: // www. ttagroup. org, 2002. {16,62}

[VC02] P. Veríssimo and A. Casimiro. The Timely Computing Base Model and Ar-
chitecture. IEEE Transactions on Computers - Special Issue on Asynchronous
Real-Time Systems, 51(8), aug 2002. {4}

http://www.cs.wustl.edu/~schmidt/PDF/crosstalk.pdf�
http://www.cs.wustl.edu/~schmidt/PDF/crosstalk.pdf�
http://www.ttagroup.org�

BIBLIOGRAPHY 185

[Veg96] L. Vega. Modèles de Coopération et de Communication entre Processus Temps
Réel Répartis. Expression de Contraintes de Temps pour la Véri�cation de Pro-
priétés Temporelles dans la Communication. PhD thesis, CRIN - Institut Na-
tional Polytechnique de Lorraine, Nancy, France, 1996. {12}

[Ver03] Paulo Veríssimo. Uncertainty and predictability: Can they be reconciled? In
Future Directions in Distributed Computing, pages �. Springer-Verlag LNCS 2584,
May 2003. {4}

[WB91] S. Webber and J. Beirne. The Stratus Architecture. Digest of Papers FTCS-21,
pages 79�85, 1991. {35,162}

[WBDP98] A. J. Wellings, L. Beus-Dukic, and D. Powell. Real-time scheduling in a generic
fault-tolerant architecture. In RTSS '98: Proceedings of the IEEE Real-Time
Systems Symposium, page 390. IEEE Computer Society, 1998. {121}

[Wen78] Wensley, J. et al. SIFT: Design and Analysis of a Fault Tolerant Computer for
Aircraft Control. Proceedings of IEEE, 66(10):1240�1255, 1978. {35}

[WPS+00] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understand-
ing replication in databases and distributed systems. InProceedings of 20th In-
ternational Conference on Distributed Computing Systems (ICDCS'2000), pages
264�274, Taipei, Taiwan, R.O.C., April 2000. IEEE Computer Society Technical
Commitee on Distributed Processing. {37,138}

[zBT93] Özalp Babaoglu and Sam Toueg. Non-blocking atomic commitment. InDis-
tributed systems (2nd Ed.), pages 147�168. ACM Press/Addison-Wesley Publish-
ing Co., 1993. {31}

[ZJ98] H. Zou and F. Jahanian. Real time primary-backup (rtpb) replication with tem-
poral consistency guarantees. In Proceedings of the IEEE International Confer-
ence on Distributed Computing Systems, pages 48�56. IEEE Computer Society,
1998. {37}

186 BIBLIOGRAPHY

Appendix A

Low level details of the SRT update
protocol

This Appendix presents some low level details of the SRT update protocol, in the form of
�owcharts, that are closer to the implementation.

Figure A.1 shows the �owchart of a slave node and highlights two phases, one in which
the slave waits for a successful request transmission and another in which the slave waits for
the reply. Both phases are time bounded.

Figure A.2 depicts the �owcharts of the active and backup masters. Their functionality
is similar, however, the backup master uses the protocol information conveyed in the trigger
message sent by the active master to synchronize its internal state. The backup masters also
declares itself unsynchronized when it receives a trigger message with a request that is not
in its queue or the result of the admission control di�ers from the one achieved by the active
master.

Figure A.3 shows the �owcharts of the interrupt handlers related with the transmission
of the trigger message by the active master and with is reception by the backup master.
The commit operation in case of a successful reply to an update request is made during the
execution of these interrupt handlers using a global variable (commit*) to synchronize this
operation. This variable is set in the active and backup masters request handling tasks and it
is reset in these interrupt handlers.

187

188 Appendix A. Low level details of the SRT update protocol

�� ������� �	
�

�
���

�� �� � �

�

�
�

�

����
�

�����
�
�����

��� ������������� �	
�

� !"# $% &'�(�	
) �� *������) ���+ ��, 	
)��-- 	
./
 ������) ��-- �������
�(�	
) �� *������) ���+ ��, ������) ��-- ������
����� � �0�1��

2345367 7 89:6;<66<=: 8378> ?@963A <: B963 =C
DE 388=8F D@3 7<;3=57 B=8836?=:G6 7= 7@3 3:G
=C 7@3 :3E7 96>:B@8=:=56 H<:G=H6

�(�	
*.I���J��K�����0�1���

�

L5BB366C5M 8345367

2345367 M=67

Figure A.1: Slave's �owchart.

189

������������	

�

�
��
������� �����
� ���������
� �� �� ��� �� �����
���������

��������
 ��
��������

����� �����	

�

�����������

 !"#$% &'("%)

*�+�

+�� ���� ��
�������� �����

�����,�
�������

����� �������

� ������������
� �� �� ��� �� ��
���
��������

������-�.

�
�

������ ����	

��
� ���
�
�
����� �� � �� ��

�

����������
 �!

�

������""
!��# �

�

$ %�
� ��� �� ��
��&'() �� *������) ��+%
�� ������) ��"",-

�!�
��
�� �������
&,-+

.���� ��/��#

�
������"
!��

0�1
�

������",-

����
2�
��.����

.���� ��.����

����
�3"4

�

��!

'() ��
�
� ���
.����#

'() ��
�
� ���
.����#

�

�

1�� ��.���� ����
.����

������"��/��

�,- �������
�����#

�

�

$ %�
� ��� �� ��
��&'() �� *������) ��+%
�� ������) ��""��/��

Figure A.2: Active (left) and backup (right) master �owcharts.

190 Appendix A. Low level details of the SRT update protocol

�� �� ������	�
��

�
���

��
���
�

�� �� �������
�� !"#� $�%!��&

��	�
�''(�)� �*+

�*

,)����-''.

,)���� �
/

�� �)�0
 12�

,)����-'3

4

4

�

�

�� �� �����	
	���

����

�������	�����	

�� �� �������
 !�"#$% &�'(��)

�	
	��**+, -� �./�

��.

0-11�	2**3

0-11�	 ��4���	 	-
	5� 6��

0-11�	2*7

8

8

�

�

Figure A.3: Trigger message transmission handler (left) and rigger message reception handler
(right) �owcharts.

Appendix B

Table of Abbreviations

Abbreviation Meaning
BER Bit Error Rate
CAN Controller Area Network
COTS Commercial o�-the-shelf (COTS)
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSMA Carrier-Sense Multiple Access
CSMA-CA CSMA - Collision Avoidance
CSMA-CD CSMA - Collision Detection
CSMA-DCR CSMA - Deterministic Collision Resolution
CSMA-BA CSMA - Bitwise Arbitration
DES Distributed Embedded Systems
EC Elementary Cycle
EMI Electromagnetic Interference
IMD Inconsistent Message Duplicate
IMO Inconsistent Message Omission
ISO International Standards Organization
ET Event-Triggered
FPGA Field-Programmable Gate Array
FTT Flexible Time-Triggered protocol
FTT-CAN Flexible Time-Triggered protocol on CAN
FTT-Ethernet Flexible Time-Triggered protocol on Ethernet
IMA Integrated Modular Avionics

continues ...

191

192 Appendix B. Table of Abbreviations

continued ...

Abbreviation Meaning
LAW Minimum Length of the Asynchronous Window
law(i) Length of the Asynchronous Window of EC i
LSW Upper bound for the Length of the Synchronous Window
lsw(i) Length of the Synchronous Window of EC i
MAC Medium Access Control
MEDL Message Descriptor List
OSI Open Systems Interconnection
QoS Quality of Service
SRDB Synchronous Requirements Database
TCAN Timely CAN
TDMA Time-Division Multiple Access
TM Trigger Message
TT Time-Triggered
TTCAN Time-Triggered CAN
TTP Time-Triggered Protocol

Appendix C

List of publications

Papers with the candidate as �rst author:

• J. Ferreira, L. Almeida, J. Fonseca, P. Pedreiras, M. Mauro. On the dependability and
�exibility of CAN and CAN based protocols. VII Workshop de Tempo Real, 13 May
2005, Fortaleza, Brazil.

• J. Ferreira, L. Almeida, J. A. Fonseca, P. Pedreiras, E. Martins, G. Rodríguez-Navas, J.
Rigo, J. Proenza. Combining Operational Flexibility and Dependability in FTT-CAN.
Submitted to IEEE Transactions on Industrial Informatics.

• J. Ferreira, A. Oliveira, P. Fonseca, J. Fonseca. An Experiment to Assess Bit Error Rate
in CAN. In Proceedings of 3rd International Workshop on Real-Time Networks, 29 July
2004, Catania, Italy.

• J. Ferreira, L. Almeida, J. Fonseca, G. Rodriguez-Navas, J. Proenza. Enforcing Consis-
tency of Communication Requirements Updates in FTT-CAN. InProceedings of Work-
shop on Dependable Embedded Systems workshop satellite of the 22nd Symposium on
Reliable Distributed Systems (SRDS 2003), October 2003, Florence, Italy.

• J. Ferreira, L. Almeida, E. Martins, P. Pedreiras, J. A. Fonseca. Components to En-
force Fail-Silence Behavior in Dynamic Master-Slave Systems. InProceedings of 5th

IFAC International Symposium on Intelligent Components and Instruments for Control
Applications (SICICA 2003), June 2003, Aveiro, Portugal.

• J. Ferreira, P. Pedreiras, L. Almeida, J. Fonseca, The FTT-CAN protocol: improving
�exibility in safety-critical systems. IEEE Micro (special issue on Critical Embedded
Automotive Networks), volume 22, number 4, July/August 2002, pp 46-55.

• J. Ferreira, P. Pedreiras, L. Almeida, J. A. Fonseca. Achieving Fault Tolerance in FTT-
CAN. In Proceedings of 4th IEEE International Workshop on Factory Communication
Systems (WFCS'02), 2002, Västerås, Sweden.

193

194 Appendix C. List of publications

• J. Ferreira, P. Pedreiras, L. Almeida, J. A. Fonseca. FTT CAN Error Con�nement.
In Proceedings of 4th IFAC Conference Fieldbus Technology (FeT'2001), 2001 Nancy,
France.

Other papers co-authored by the candidate:

• J. Fonseca, J. Ferreira, E. Martins, "Future Trends in the Hardware of Embedded Sys-
tems", Embedded Real-Time Systems Implementation (ERST 2004) Workshop, 2004,
Lisboa, Portugal.

• G. Rodríguez-Navas, J. Rigo, J. Proenza, J. Ferreira, L. Almeida, J. Fonseca. Design and
Modeling of a Protocol to Enforce Consistency of the Replicated Table of Communication
Requirements in FTT-CAN", In Proceedings of 5th IEEE International Workshop on
Factory Communication Systems, September 2004, Vienna, Austria.

• E. Martins, J. Ferreira, L. Almeida, P. Pedreiras, J. Fonseca. An Approach to the
Synchronization of Backup Masters in Dynamic Master-Slave Systems. In Proceedings
of RTSS'02, IEEE Real-Time Systems Symposium, Work in Progress session, December
2003, Austin, USA.

• J. Fonseca, J. Ferreira, M. Calha, P. Pedreiras, L. Almeida. Issues on Task Dispatching
and Master Replication in FTT-CAN. In Proceedings of IEEE AFRICON'02, 2003,
George, South Africa.

• L. Almeida, José A. Fonseca, A. Mota, P. Fonseca, E. Martins, P. Pedreiras, J. Fer-
reira. Flexibility, Timeliness and E�ciency in Fieldbus Systems: The DISCO Project
Approach. Proceedings of 8th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA 2001), 2001, Antibes, France.

