155 research outputs found

    ACARORUM CATALOGUS IX. Acariformes, Acaridida, Schizoglyphoidea (Schizoglyphidae), Histiostomatoidea (Histiostomatidae, Guanolichidae), Canestrinioidea (Canestriniidae, Chetochelacaridae, Lophonotacaridae, Heterocoptidae), Hemisarcoptoidea (Chaetodactylidae, Hyadesiidae, Algophagidae, Hemisarcoptidae, Carpoglyphidae, Winterschmidtiidae)

    Get PDF
    The 9th volume of the series Acarorum Catalogus contains lists of mites of 13 families, 225 genera and 1268 species of the superfamilies Schizoglyphoidea, Histiostomatoidea, Canestrinioidea and Hemisarcoptoidea. Most of these mites live on insects or other animals (as parasites, phoretic or commensals), some inhabit rotten plant material, dung or fungi. Mites of the families Chetochelacaridae and Lophonotacaridae are specialised to live with Myriapods (Diplopoda). The peculiar aquatic or intertidal mites of the families Hyadesidae and Algophagidae are also included.Publishe

    Narratives Crossing Boundaries: Storytelling in a Transmedial and Transdisciplinary Context

    Get PDF
    As the dominant narrative forms in the age of media convergence, films and games call for a transmedial perspective in narratology. Games allow a participatory reception of the story, bringing the transgression of the ontological boundary between the narrated world and the world of the recipient into focus. These diverse transgressions - medial and ontological - are the subject of this transdisciplinary compendium, which covers the subject in an interdisciplinary way from various perspectives: game studies and media studies, but also sociology and psychology, to take into account the great influence of storytelling on social discourses and human behavior

    Numerical modelling for the hydrothermal activity & habitability of Mars

    Get PDF
    Modern space and planetary explorations are enthusiastically searching for extraterrestrial biosignatures, and even intelligence in our cosmic neighbourhood. Mars is the epicentre of planetary research and astrobiology, as during ancient geological periods, the Red Planet should have had a thicker atmosphere, and exhibits evidence for ancient aqueous, volcanic and hydrothermal activity. Such physical processes that persist on a planetary body through geological time increase the probability of the emergence and evolution of antediluvian microbial species. However, present-day Mars is a cold and arid desert. So, could the Red Planet host evidence of extinct or/and even extant microbial life? To contribute towards deciphering this mystery, this PhD research focuses on determining the thermodynamic and hydrological evolution, and subsequent habitability of ancient hydrous environments on Mars. Martian habitability, especially during the planet’s ancient geological history, has not been decisively established yet. Moreover, quantitative analyses and models for the ancient or present bioenergetic potential on Mars are scarce. Water – rock interactions enduring in longlived hydrothermal settings on Earth yield appreciable quantities of chemical nutrients that support microbial species under hydrothermal conditions. Through this perspective, the habitability of simulated Martian hydrothermal systems deserves to be computed and analysed. This PhD research explores simulated volcanogenic and impact-induced hydrodynamics on Mars, and the astrobiological potential of such ancient or more recent Martian aqueous environments via computational scenarios. High-resolution numerical simulations for the aqueous circulation and thermodynamics in a variety of putative Martian hydrothermal systems have been constructed and interpreted. Rock permeability, porosity, temperature, pressure, enthalpy, heat capacity, and thermal conductivity comprise governing physical parameters for the duration and mechanics of the hydrothermal cycle in each simulation. Therefore, the presented thermodynamic simulations explore thoroughly the evolution and duration of putative impact-induced or magmatic-induced hydrological systems on Mars from the pre-Noachian to the late Amazonian. The thermodynamic results of these models are then used as input conditions in further computations for Martian water – basaltic rock reaction pathways and their subsequent bioenergetic yield (habitability). Eventually, quantitative habitability assessments are conducted based on the energy – chemical nutrient availability and on the thermal constraints that cumulatively render these environments habitable or uninhabitable for hypothetical lithotrophic microbial species in the Martian subsurface. In parallel, NWA 8159 (shergottite) and Lafayette (nakhlite) Martian meteorite samples were examined through Scanning Electron Microscopy (SEM) analysis to identify their Martian mineralogies, and detect alteration phases – fluid compositions that have affected these basaltic rocks on Mars, or on Earth due to weathering processes after their fall. Petrological analyses provided additional insights into the geochemical composition and evolution of these Martian rocks. Furthermore, image processing on acquired SEM-BSE montage maps of the NWA 8159 and Lafayette samples revealed the porosity of these Martian rocks, and subsequently constrained and enhanced the hydromechanic and habitability models of this PhD research. The hydrothermal and habitability simulations indicate that the Martian basaltic subsurface could have supported hydrogenotrophic microbial life for periods ranging from 0.1 Myr to 3 Myr under preserved hydrothermal conditions. The modelling results additionally suggest that deeper basaltic domains (subsurface depth ≥ 1.5 km) in large impact craters (100-, 200-km diameters) or intrusive volcanic rock settings, could comprise the most promising sites for astrobiological research. The ideal habitable thermal range in which nutrients, and specifically H2, are released in appreciable amounts through ongoing water – rock reactions is from 50 °C to 121 °C. Under such hydrothermal conditions, the Martian subsurface is modelled able to support the survival and growth criteria of hydrogenotrophic life. However, aqueous circulation and geochemical reactions should endure for an average minimum period of 120 Kyr to support microbial growth, and conceivably, the microbial colonization of the Martian subsurface. The numerical simulations of this research support that cold aqueous flows and short-induration hydrological systems on Mars are unable to support the survival of potential microbial species for a period ≥ 2 Kyr. Finally, even in the most optimistic thermodynamic scenarios for Martian habitability, microbial species in the deep Martian subsurface cannot be supported for a period longer than 1 – 2 Myr, after hydrothermal activity has halted. This indicates that any potentially inhabited environments on Mars could have supported microbial life only for an average maximum period of 3 – 4 Myr. Conclusively, planetary environments beyond Earth that may have been hosting hydrothermal or aqueous activity continuously for Myr or even Gyr (i.e.: the Jovian and Kronian moons, beneath their icy crusts) comprise the most habitable extraterrestrial niches of the Solar System, and promising sites for astrobiological findings

    A review of commercialisation mechanisms for carbon dioxide removal

    Get PDF
    The deployment of carbon dioxide removal (CDR) needs to be scaled up to achieve net zero emission pledges. In this paper we survey the policy mechanisms currently in place globally to incentivise CDR, together with an estimate of what different mechanisms are paying per tonne of CDR, and how those costs are currently distributed. Incentive structures are grouped into three structures, market-based, public procurement, and fiscal mechanisms. We find the majority of mechanisms currently in operation are underresourced and pay too little to enable a portfolio of CDR that could support achievement of net zero. The majority of mechanisms are concentrated in market-based and fiscal structures, specifically carbon markets and subsidies. While not primarily motivated by CDR, mechanisms tend to support established afforestation and soil carbon sequestration methods. Mechanisms for geological CDR remain largely underdeveloped relative to the requirements of modelled net zero scenarios. Commercialisation pathways for CDR require suitable policies and markets throughout the projects development cycle. Discussion and investment in CDR has tended to focus on technology development. Our findings suggest that an equal or greater emphasis on policy innovation may be required if future requirements for CDR are to be met. This study can further support research and policy on the identification of incentive gaps and realistic potential for CDR globally

    “Turning A New Leaf” Development of Spectroscopic Protocols to Study Plant Health

    Get PDF
    Improved methods to monitor plant health may be pivotal for future protection of crops from disease and environmental stressors. Epicuticular waxes, and macronutrients (K+ and Ca2+) hold important physiological functions within plants, and are therefore, excellent markers of plant health. This thesis has developed new spectroscopic analytical methods to directly image changes in epicuticular waxes and Ca2+ and K+ on plant leaves, for future application to monitor plant health

    Male Reproductive Anatomy

    Get PDF
    The male reproductive system, which is made up of the testes, scrotum, epididymis, vas deferens, seminal vesicles, prostate gland, bulbourethral gland, ejaculatory duct, urethra, and penis, functions mainly in the production, nourishment, and temporary storage of spermatozoa. Epigenetic modifications are essential to regulate normal gonadal development and spermatogenesis. The sperm epigenome is highly susceptible influence by a wide spectrum of environmental stimuli. This book focuses on the male reproductive system, discussing topics ranging from aspects of anatomy and risk factors for male infertility to clinical techniques and management of male reproductive health

    The Proceedings of the 23rd Annual International Conference on Digital Government Research (DGO2022) Intelligent Technologies, Governments and Citizens June 15-17, 2022

    Get PDF
    The 23rd Annual International Conference on Digital Government Research theme is “Intelligent Technologies, Governments and Citizens”. Data and computational algorithms make systems smarter, but should result in smarter government and citizens. Intelligence and smartness affect all kinds of public values - such as fairness, inclusion, equity, transparency, privacy, security, trust, etc., and is not well-understood. These technologies provide immense opportunities and should be used in the light of public values. Society and technology co-evolve and we are looking for new ways to balance between them. Specifically, the conference aims to advance research and practice in this field. The keynotes, presentations, posters and workshops show that the conference theme is very well-chosen and more actual than ever. The challenges posed by new technology have underscored the need to grasp the potential. Digital government brings into focus the realization of public values to improve our society at all levels of government. The conference again shows the importance of the digital government society, which brings together scholars in this field. Dg.o 2022 is fully online and enables to connect to scholars and practitioners around the globe and facilitate global conversations and exchanges via the use of digital technologies. This conference is primarily a live conference for full engagement, keynotes, presentations of research papers, workshops, panels and posters and provides engaging exchange throughout the entire duration of the conference
    corecore