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Summary 

From studies of behaviour, chemical communication, genomics and developmental biology, among many others, honey bees have long been a 

key organism for fundamental breakthroughs in biology. With a genome sequence in hand, and much improved genetic tools, honey bees are 

now an even more appealing target for answering the major questions of evolutionary biology, population structure, and social organization. 

At the same time, agricultural incentives to understand how honey bees fall prey to disease, or evade and survive their many pests and 

pathogens, have pushed for a genetic understanding of individual and social immunity in this species. Below we describe and reference tools 

for using modern molecular-biology techniques to understand bee behaviour, health, and other aspects of their biology. We focus on DNA and 

RNA techniques, largely because techniques for assessing bee proteins are covered in detail in Hartfelder et al. (2013). We cover practical 

needs for bee sampling, transport, and storage, and then discuss a range of current techniques for genetic analysis. We then provide a 

roadmap for genomic resources and methods for studying bees, followed by specific statistical protocols for population genetics, quantitative 

genetics, and phylogenetics. Finally, we end with three important tools for predicting gene regulation and function in honey bees: 

Fluorescence in situ hybridization (FISH), RNA interference (RNAi), and the estimation of chromosomal methylation and its role in epigenetic 

gene regulation. 

 

Journal of Apicultural Research 52(4): (2013)                                                       © IBRA 2013 
DOI 10.3896/IBRA.1.52.4.11 

Footnote: Please cite this paper as: EVANS, J D; SCHWARZ, R S; CHEN, Y P; BUDGE, G; CORNMAN, R S; DE LA RUA, P; DE MIRANDA, J R; FORET, S; FOSTER, L; 
GAUTHIER, L; GENERSCH, E; GISDER, S; JAROSCH, A; KUCHARSKI, R; LOPEZ, D; LUN, C M; MORITZ, R F A; MALESZKA, R; MUÑOZ, I; PINTO, M A (2013)  

Standard methodologies for molecular research in Apis mellifera. In V Dietemann; J D Ellis; P Neumann (Eds) The COLOSS BEEBOOK, Volume I: standard methods 
for Apis mellifera research. Journal of Apicultural Research 52(4): http://dx.doi.org/10.3896/IBRA.1.52.4.11  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153410372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jay.evans@ars.usda.gov
http://dx.doi.org/10.3896/IBRA.1.52.4.11


2 Evans et al. 

Métodos estándar para la investigación molecular en Apis 

mellifera  

Resumen  

Las abejas de miel han sido durante mucho tiempo un organismo clave para avances fundamentales en biología a partir de estudios de su 

comportamiento, comunicación química, genómica y de biología del desarrollo, entre otros muchos. Con la secuencia del genoma en la mano 

y herramientas genéticas mucho mejores, las abejas son ahora un blanco aún más atractivo para responder a las preguntas más importantes 

de la biología evolutiva, la estructura de las poblaciones y la organización social. Al mismo tiempo, los incentivos agrícolas para entender cómo 

las abejas caen enfermas, o evadir y sobrevivir a sus muchas plagas y patógenos, han presionado para comprender genéticamente la 

inmunidad individual y social en esta especie. A continuación se describen y se hace referencia a herramientas que hacen uso de  modernas 

técnicas de biología molecular para entender el comportamiento de las abejas, su salud y otros aspectos de su biología. Nos centramos en las 

técnicas de ADN y ARN, en gran parte debido a que las técnicas de evaluación de las proteínas de la abeja se tratan en detalle en Hartfelder 

et al. (2013). Cubrimos las necesidades prácticas de toma de muestras de abejas, su transporte y almacenamiento, y luego se discuten una 

serie de técnicas actuales de análisis genético. A continuación, se proporciona una hoja de ruta para los recursos genómicos y métodos para 

estudiar las abejas, seguido de protocolos estadísticos específicos de la genética de poblaciones, la genética cuantitativa y la filogenia. 

Finalmente, se termina con tres herramientas importantes para predecir la regulación génica y la función en las abejas melíferas: la 

hibridación in situ fluorescente (FISH), la interferencia de ARN (iARN), y la estimación de la metilación cromosómica y su papel en la 

regulación epigenética de los genes. 

 

西方蜜蜂分子研究的标准方法 

摘要 

通过行为、化学通讯、基因组和发育生物学等方面的研究，蜜蜂已经成为用于在生物学基础研究领域取得重大突破的一种重要模式生物。结合已

有的基因组序列和多种改进的遗传学工具，蜜蜂已经越加成为回答进化生物学、种群结构和社会性结构等方面重大问题极具吸引力的研究目标。

与此同时，农业上为了解蜜蜂如何困于病害或者避开和幸存于多种害虫和病原菌的危害，也促进了对这一物种个体和社会免疫的遗传学理解。以

下我们介绍和引用了一些运用现代分子生物学技术研究蜜蜂行为、健康、以及其它方面生物学的工具。Hartfelder等2013已对研究蜜蜂蛋白做了

详细的论述，因此我们将重点放在DNA和RNA技术上。本文也包含了在蜜蜂采样、运输和保存过程中的实际需要，并讨论了当前的一系列遗传分

析技术。然后我们提供了研究蜜蜂时所需的基因组资源和方法的路线图，以及群体遗传学、数量遗传学和系统发生学研究中特定的统计学方法。

最后，我们以预测蜜蜂基因调控和功能的三个重要工具收尾：荧光原位杂交（FISH）、RNA干扰（RNAi）和染色体甲基化及其在表观遗传基因

调控中作用的估算。  
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1. Sample management  

1.1. Introduction 

In order to best reflect honey bee biology, data generated from 

molecular-genetic studies should reflect as closely as possible the 

state of honey bee tissues, entire bees, or colonies just prior to 

sampling. This fact places a premium on collecting and storing 

samples in a way that retains this state. Although technological 

developments in molecular biology allow for a great diversity of 

insights from collected bee samples, it is often forgotten how much 

these insights are hampered by errors in the collection, storage and 

processing of samples (Chernesky et al., 2003). These problems are 

especially evident when data from different studies or laboratories are 

compared (Birch et al., 2004). The only solution to this is optimization  

of collection, storage and primary processing protocols, so as to 

minimize the influence of sample degradation on the molecular 

analyses and the reliability of the data. As is often the case, cues can 

be taken from other areas of biology, notably the medical field, where 

such practices are widely adopted (Valentine-Thon et al., 2001; 

Verkooyen et al., 2003). 

A secondary consideration is that a sample may be used for 

several different analyses; proteins, nucleic acids, fats and lipids, 

metabolites etc., requiring a collection and processing protocol 

suitable for all compounds analysed. Usually this means that the 

sample management conditions follow the requirements for the least 

stable of the compounds, which for bee research is usually the RNA. 

RNA is highly sensitive to degradation by robust RNAse enzymes 

found in all cells, unless the sample is stabilized with RNAse-inhibiting 

additives and/or frozen as soon as possible. Given the necessity of 

RNA analyses for many questions related to bees and their parasites 

and pathogens (e.g., de Miranda et al. 2013), field-appropriate 

methods for stabilizing RNA are required.  

 

1.2. Sample collection 

The optimum strategy for collection and transport of bee samples 

depends partly on what type of sample is collected. Bees, pupae, 

larvae and eggs can be sampled whole or as field-dissected 

components, such as heads, thoraxes, abdomens, guts, endophalli, 

semen, ovaries etc. Many bee viruses are shed in large amounts in 

the guts, as are many bacterial and protozoan pathogens (Shimanuki, 

1997; Fries, 1997). Faeces may therefore be a good marker for the 

infection status of the whole bee, although care has to be taken to 

distinguish between passively acquired/passaged microbes and true 

tissue infections. Faeces also allow bees to be sampled repeatedly, and 

non-destructively. It may therefore be useful for determining the virus 

status of queens (Hung, 2000), especially if these are a major source 

of infection of the worker population (Chen et al., 2005b; Fievet et al., 

2006), or for following disease progression in individual bees.  
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Below are suggestions for the collection of different types of bee 

samples. In all cases a priori decisions are all needed with respect to 

the use of chemical stabilizers, collection cards and the temperatures 

during transport and storage.  

 

1.2.1. Adult bees 

1.2.1.1. Nurse bees  

Inspect each frame in a colony and find a frame with sealed and 

unsealed brood which is covered by adhering nurse bees and then 

take the frame out of the colony.     

 

1.2.1.2. Foraging bees  

Block the hive entrance where foraging bees are accumulating and 

collect the returning foraging bees.  

 

1.2.2. Pupae 

1.   Cut out a section of sealed brood, to be transported whole.   

 Such a brood section can be sent through the post, although 

 with the caveat that such transport away from the hive might 

 affect bee or parasite gene activities.  

2.   Uncap brood cells, lift pupae by their neck by curling fine    

 curved forceps underneath their heads and transfer to a 

 suitable transport medium, either individual microcentrifuge 

 tubes or collection cards (see section 1.3.5).  

 

1.2.3. Larvae 

1.   Cut out a section of open brood and transport in a 

 temperature -humidity controlled box, to prevent dehydration. 

2. Remove larvae from the comb using either a blunt grafting 

 needle (small larvae) or soft forceps (large larvae) and 

 transfer to individual microcentrifuge tubes or collection cards. 
 

 

 

 

 

1.2.4. Eggs 

1.   Cut out a section of comb with eggs and transport in a 

 temperature-humidity controlled box, to prevent dehydration. 

2.   Remove eggs using a blunt needle and transfer individually or 

 in bulk to microcentrifuge tubes or collection cards. 

 

As an alternative for the rapid collection of massive amounts of eggs 

and early embryos: 

1.   Strike soundly a frame containing early-stage bees onto a 

 sterile surface twice. 

This releases over half of the eggs and embryos held by that frame,  

2.   Brush or lift into a new vessel.  

While uncapped honey will drip via this method, if done at the right 

intensity, older uncapped larvae will remain in their cells. 
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1.2.5. Extracted guts 

1.   Grab the stinger and last integument of adult worker bees 

 firmly with a pair of fine, straight forceps. 

2.   Pull backwards gently, removing the whole hindgut and 

 midgut. 

3.   Transfer guts to individual microcentrifuge tubes or collection 

 cards (see section 1.3.5.). 

 

1.2.6. Drone endophallus and semen 

1.   Turn drone upside down and grip laterally between thumb 

 and index finger. 

2.   With the other hand, gently but persistently squeeze the 

 abdomen of the drone dorso-ventrally, exerting pressure 

 backwards, until the endophallus is extruded from the drone. 

3.   Apply more severe pressure, again backwards, to avert the 

 endophallus and, for mature drones, cause ejaculation of 

 semen. 

4.   Cut off the entire endophallus with scissors, or collect the 

 exposed semen (brown-red colour) and/or seminal fluid 

 (translucent white) with a sterile micropipette. 

5.   Collect the material individually in microcentrifuge tubes or on 

 collection cards. 

 

1.2.7. Faeces 

If destructive sampling is allowed:  

1.   Remove the whole gut from individual bees (see above) and 

 expel faecal mass. 

If repeated sampling is required: 

1.   Place adult bees into a Petri dish until defecation has 

 occurred. 

2.   Collect faeces individually or pooled in microcentrifuge tubes 

 or on collection cards. 

 

1.2.8. Dead bee samples 

Many bee disease experiments involve bee death as a parameter. 

Dead bee samples from such experiments are, of course, valid 

material for analysis. They should be treated like freshly killed material 

and frozen as soon as possible to minimize the effects of decay on 

RNA integrity, using the collection methods appropriate for the sample 

type, as given above. Dead bee traps attached to hives are suitable 

for collecting such bees and should be emptied daily to minimize the 

effects of decomposition. 

Passive surveys also involve dead bee samples, in this case those 

sent in by beekeepers for post-mortem analysis of the cause of colony 

death. These bees will have been dead long enough for decomposition 

and drying to have severely affected the integrity of the RNA, including 

viral RNAs. Such degradation can severely affect the accuracy and 

reliability of detecting and quantifying individual RNAs (Bustin and 

Nolan, 2004; Fleige and Pfaffl, 2006; Becker et al., 2010). This means 
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that only positive results from such samples are informative, since 

negative results can be either due to the absence of virus or the 

degradation of the RNA.  

It is possible to adjust for differential RNA degradation in the 

different samples with quantitative RT-qPCR techniques, by using host 

internal reference gene levels for normalizing the virus titers (Dainat 

et al., 2011) and setting the threshold for template detection with the 

most degraded sample, so that all samples are evaluated by the same 

degradation criteria. How to determine the detection thresholds using 

RT-qPCR assays is covered in section 4.4. 

 

1.3. Sample transport  

Sample transport from the collection site to the laboratory is the most 

critical step in sample management, since this is where the integrity 

of the sample is most easily compromised (Chen et al., 2007). Sample 

integrity can be preserved to different degrees with the following 

methods, given in order of effectiveness. The gold standard for sample 

collection and transport is to freeze on-site, but this is not always 

possible. All alternatives are basically aimed at getting the samples as 

quickly and conveniently as possible into a freezer, with minimum 

degradation. The most useful tool for transporting frozen material is a 

liquid nitrogen-based ‘dry shipper’, which is specifically developed and 

approved for international shipment of biological samples at ultra-low 

temperatures (-150oC). The best can hold these temperatures for 

more than one week. Other options, for more local transport, are 

(dry) ice-boxes and portable/car freezers. Courier and mail services 

are less reliable, both with respect to the maintenance of temperature 

and the duration of transport.  

 

1.3.1. Freezing with dry ice 

 Samples: all. 

 Conditions: freeze instantly; keep frozen throughout transport 

using blocks of dry ice in a cooler.  

 Transport: restricted transport; dry ice must be replenished 

ca. every 48 hours. 

 Processing: transfer samples to freezer. 

 Pros: gold standard; fast.  

 Cons: very expensive; complex field operation.  

 

1.3.2. Freezing with ‘wet’ ice 

Short-term field-storage on ‘wet’ (frozen water or ice packs) ice is 

cheap and very practical for many field-studies and surveys. The 

samples should be frozen as soon as possible, ideally within hours, 

and kept frozen continuously until RNA processing (a complete frozen 

transport chain). If a complete frozen transport chain cannot be 

guaranteed, then a chemical stabilizing agent (see section 1.3.4.) 

should be used to prevent degradation of the RNA by RNAses, until 

the samples enter a frozen transport chain. The most important rule 

for RNA preservation is to keep the samples as cold as possible, as 



long as possible and to avoid thawing the sample after it has been 

frozen unless it is to extract RNA. 

 Samples: all. 

 Conditions: collect in freezer bags, store on wet ice.  

 Transport: cold transport; wet-ice; < 12 hours. 

 Processing: transfer samples to freezer. 

 Pros: simple; fast; cheap field operation. 

 Cons: heavy, expensive mail transport, leaks due to  

      thawing. 

 

1.3.3. Live transport 

Bees can also be transported live, which allows them to be sent much 

more quickly, cheaply and reliably by post than frozen samples. One 

drawback is that the stress of live transport may affect the expression 

of host genes, and possibly virus replication, which should be taken 

into account when planning experiments.  

1.  Adult bees can be transported live 1) In a well-ventilated bee 

 shipping box containing queen candy and a sponge soaked in 

 water glued to the bottom of the box or 2) in units of 10-15 

 bees in commercial queen cages with queen candy. Such 

 queen cages are readily available to most beekeepers. 

 Samples: adults. 

 Conditions: room temperature.  

 Transport: < 48 hours. 

 Processing: freeze on arrival. 

 Pros: simple; fast; suitable for beekeepers. 

 Cons: stress during transport. 

 

2.   Pupae can be transported live 1) as a section of capped brood 

 in a well-ventilated bee shipping box, preferably in a warm 

 environment to prevent chilling, 2) as queen cells for queen 

 pupae in a specialized temperature-humidity controlled queen-

 cell transport container, available from beekeeping suppliers. 

 Such cells should be handled with great care, as developing 

 queen pupae are very sensitive to disturbance, or 3) as a 

 whole frame in a specialized carrier box for frames, available 

 from beekeeping suppliers, or in a swarm box/nucleus hive. 

 Samples: pupae. 

 Conditions: room temperature.  

 Transport: < 48 hours. 

 Processing: remove samples from comb and freeze. 

 Pros: simple, fast.  

 Cons: pupae may emerge during transport. 

 

3.  Larvae and eggs can be transported live 1) as a section of 

 comb, in a temperature and humidity-controlled box or 2) as a 

 whole frame in a specialized carrier box for frames, or in a 

 swarm box/nuc.  

The COLOSS BEEBOOK: molecular methods 7 

 Samples: larvae; eggs. 

 Conditions: controlled temperature and humidity.  

 Transport: less than 48 hours. 

 Processing: remove samples from comb and freeze. 

 Pros: simple, fast. 

 Cons: expensive by mail, unsealed larvae are subject to           

       temperature stress and starvation. 

 

1.3.4. Chemical stabilizers 

There are a number of chemicals that can be used to help stabilize 

nucleic acids during transport. Their purpose is to inhibit nucleases, 

especially the resilient RNAses, and in doing so destroy all enzymatic 

activity in the sample. So, if the final assays include natural enzymatic 

activity, these stabilizers should be avoided. For similar reasons, many 

stabilizers are also incompatible with serological detection methods, 

such as ELISA.  

A large excess (5-fold by weight) of stabilizer should be added to 

ensure a high enough concentration within the tissues for inhibiting 

RNAses. It is also essential that the solution penetrates the tissues 

completely to abolish all RNAse activity. This is a major difficulty for 

aqueous stabilizers, which cannot penetrate the hydrophobic insect 

exoskeleton. These are therefore only suitable for extracted tissues, 

eggs and small larvae, unless bodies are partially disrupted at the 

start. Organic preservatives, such as 100% ethanol, have much more 

effective penetration of the exoskeleton and are therefore better for 

stabilizing whole adult bee samples. Although 100% ethanol is 

suitable for preserving RNA destined for short-fragment RT-qPCR-

based assays, storage in 70% ethanol has been shown to result in 

strong degradation (Chen et al., 2007). However, recent data using a 

short amplicon (124 bp) diagnostic for Deformed wing virus (DWV) in 

a Taqman assay (Chantawannakul et al., 2006), showed no loss of 

DWV signal after adult bees were stored for 4 weeks in 70% EtOH at 

room temperature compared to snap frozen controls (G. Budge, 

unpublished data). RNA can also be stabilized by high concentration 

sulphate salt solutions (Mutter et al., 2004), of which RNAlater® 

(Qiagen) is the best known. A generic version can be made as 

follows:  

700 g di-ammonium sulfate  

40 ml 0.5M EDTA (pH 8.0) 

25 ml 1M tri-sodium citrate (di-hydrate salt; 29.4 g/100 ml) 

1l sterile water 

~1.3 l total volume 
 

 

 

 

 

 

 

 

 

Once stabilized, RNase activities will be inhibited and samples can 

be stored for up to 1 month at 4°C, and long-term at -20°C or -80ºC 

with minimal degradation. The stabilizer should be removed from the 

bee sample prior to homogenization and RNA extraction.   



1.  100% ethanol   

 Samples: whole adult bees; pupae; large larvae; tissues. 

 Use: 5 volumes by weight. 

 Storage: 1 month at room temperature or lower. 

 Processing: Remove ethanol and process samples as normal. 

 Pros: Cheap; effective penetration. 

 Cons: Evaporation; possible transport restrictions; heavy; 

incompatible with serological assays . 

 

2.  RNAlater® & generic equivalent 

 Samples: tissues; eggs; small larvae. 

 Use: 5 volumes by weight. 

 Storage: 1 month at room temperature, or lower. 

 Processing: Remove stabilizer and process samples as normal. 

 Pros: Non-hazardous; effective penetration. 

 Cons: Expensive (except generic version); heavy. 

 

It is possible to use RNAlater® for darkened pupae and adult 

bees, if they are crushed into a paste or cut into 5mm sections (Chen 

et al., 2007). This is laborious and risks losing virus particles and RNA 

to the stabilizing solution, but may be required in certain circumstances. 

In such cases, the crushed bees should be centrifuged at 1,000 rpm 

for 5 minutes at 4oC before removing the stabilizer and processing the 

crushed bee tissues.  

 

1.3.5. Sample collection cards 

Samples can also be dried on filter paper-based collection cards. In 

this case the molecules are stabilized primarily through desiccation, 

rather than low temperature, so thorough drying during sampling and 

low humidity during storage is essential for this method. The FTA™-

cards produced by Whatman are furthermore impregnated with 

chemicals to prevent bacterial or enzymatic degradation of nucleic 

acids (Becker et al., 2004; Rensen et al., 2005). The method is ideal 

for liquid samples (blood, urine, sputum etc.) but has also been used 

for insect samples (Harvey, 2005) including honey bee larvae, pupae, 

extracted tissues and mites. Such filter-dried samples can be analysed 

for all manner of compounds (Jansson et al., 2003; Chamoles et al., 

2004; Li et al., 2005; Zurfluh et al., 2005) including RNA (Karlson et al., 

2003; Prado et al., 2005). The major advantages are the ease and 

reduced costs of collection, transport, labelling and long-term storage 

at room temperature, reducing the requirements for freezer space, 

boxes and tubes (Kiatpathomchai et al., 2004; Harvey, 2005; Karlson 

et al., 2003; Rensen et al., 2005; Prado et al., 2005). The major 

disadvantages are the uneven distribution of target across the filter 

paper and the gradual loss of target during prolonged storage (Chaisomchit 

et al., 2005). Samples collected on collection cards should therefore 

also be processed as soon as possible, by cutting out the entire dried 

sample and soaking this in an appropriate buffer, as recommended by 

the FTA™-card protocol, for the recovery of nucleic acids.  
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FTA™ collection cards 

 Samples: Tissues; faeces; eggs; larvae; pupae; mites. 

 Use: Squash sample on card and air-dry. 

 Storage: At room temperature in dry container. Not in freezer. 

 Processing: Cut out sample and soak directly in extraction  

buffer for 15 minutes. Proceed as for fresh samples. 

 Pros: Excellent preservation; light; easy storage and  

indexing; versatile; preservation of faeces. 

 Cons: Expensive; variable processing; uneven distribution  

across card; not suitable for adult bees, not suitable for bulk 

samples. 

 

1.4. Long-term sample storage 

The critical factors for long-term sample preservation, as with 

degradation in the weeks after collecting, are minimizing the activity 

of nucleases. This can be achieved by a combination of: 
  

 

 

 

 

 

 

 

1.4.1. Freezing 

Freezing at -80ºC is the gold-standard for long-term storage of bee 

samples intended for RNA analysis. Freezing at -20ºC also provides 

good storage for preserving the quality of bee samples. However, 

significant to complete degradation of RNA can occur within days in 

dead bees kept at 4°C (Chen et al., 2007; Dainat et al., 2011). It is 

therefore strongly recommended to transfer frozen bees to the -80°C 

freezer immediately after samples are brought back from the field to 

the laboratory, if analysis is not initiated immediately. 

 

1.4.2. Drying 

Apart from drying soft bee stages and tissues on collection cards, bulk 

samples of whole bees can also be freeze-dried, or lyophilized. 

Lyophilization is a convenient way to store samples long-term at room 

temperature and preserves the chemical integrity of most compounds, 

although some functional activity may well be lost. Freeze-drying/

lyophilization requires a specialized instrument that draws a vacuum 

while the samples are kept below the point where solid and liquid 

phases can co-exist (below -50oC), so that the ice sublimates, i.e. 

changes directly to vapour without melting first. Any biological sample 

can be lyophilized and the instructions for this come with the particular 

lyophilizing apparatus. It should be noted here that reconstituted 

dried tissue is fundamentally different from frozen wet tissue, with 

different and more variable recovery efficiencies for the different 

biomolecules than for fresh tissues. Lyophilized samples are stored at 

room temperature in a sealed box with desiccating packages, to 

prevent re-hydration.  

 

1.4.3. Chemical stabilizers 

There are several chemical agents that inhibit RNAses and thus 

reduce RNA degradation during handling and storage (see Section 

4.4.4.). They do not provide any additional benefit to frozen samples, 



 2.2.2. Blender 

An excellent, cheap alternative to the beadmills, especially for large 

volumes is homogenisation with a blender.   

 

 Pros: Large volume; rapid; uniform. 

 Cons: Cross-contamination risk due to re-use of blender; 

incompatible with organic solvents; corrosion of blender due 

to salts. 

1.   Add between 30-200 frozen bees to blender. 

2.   Add 500 μl ice-cold buffer per bee. 

3.   Homogenise by gradually raising the blender settings, for   

  about 5 minutes total homogenization. 

 

2.2.3. Paint shaker 

A paint shaker (e.g. Automix shaker; Merris Engineering ltd) is a 

surprisingly efficient method of grinding bulk samples which has been 

used for various matrices including soil , grains, rice, wheat, honey, 

and bees (Woodhall et al., 2012; Budge, unpublished data). The 

method is completely scalable ranging using polypropylene wide-

mouth environmental bottles (Nalgene) ranging in size from 60 ml to 

2000 ml. 
 

 

 

 

 

 Pros: Large volume; easy; cheap; no cross-contamination; 

high throughput. 

 Cons: Large piece of equipment required. 

  

1.   Place 30-1000 frozen bees in an appropriately sized bottle 

 (Nalgene) containing 5 x 25.4 mm stainless steel ball 

 bearings. 

2.   Dry grind on the paint shaker for 8 minutes until the sample is 

 sufficiently disrupted. 

3.   Add the required volume of extraction buffer depending on 

 the protocol. 

4.  The addition of 1% Antifoam B (Sigma) to GITC, GHCl or 

 CTAB extraction buffers can aide buffer recovery and reduce 

 cross contamination. 

5.   Wet grind for a further 4 minutes. 

6.   Spin at 6000 g for 5 mins. 

7.   Recover supernatant. 

 

2.2.4. Mortar and pestle 

Traditional manual method for pulverizing samples.  

 

 Pros: Medium volumes; cheap; low maintenance. 

 Cons: Cross-contamination risk; time consuming; lack of 

uniformity. 

 

1. Place 1-30 bees in a pre-frozen mortar of appropriate size. 

2.   Add liquid nitrogen to cool samples to well below freezing. 

but can be useful for storing samples temporarily at room temperature. 

Their effectiveness varies and they do not prevent degradation 

absolutely (Chen et al., 2007) but they are useful if minor degradation 

can be tolerated and the samples can be processed within a few 

months of collection.  

 

 

2. Sample processing 

2.1. Introduction 

The initial processing of a sample is another key step in ensuring the 

uniformity and reliability of an assay. Nevertheless, generally little 

attention is paid to optimizing this part of the protocol for both 

maximum recovery of the target molecule(s) and for reducing 

variability. In general, the shorter and faster the protocol the better, 

since each additional step will contribute to the overall error and 

reduce the recovery efficiency, both of which compromise results. 

Here we will describe generalities of sample processing before 

independent chapters describing RNA and DNA extraction from 

samples. 

 

2.2. Sample homogenisation 

A highly variable step in sample processing is sample homogenization, 

not only between different homogenization options but also between 

different samples using the same protocol. The choice of 

homogenization method depends on the sample type and number of 

bees per sample. There are numerous options outlined below. 

 

2.2.1. Bead-mill homogenizers 

These are the best option for uniform and reproducible homogenization 

of small (individual) bee samples. The samples are mixed with glass, 

ceramic or steel 1-3 mm beads and extraction buffer in sturdy 

disposable plastic tubes and shaken at high velocity in a machine. 

They also provide consistent cell wall disruption of bacteria and other 

microbes for parasite/pathogen or microbiome surveys. 

 

 Pros: Low-medium volume; rapid; uniform; no cross-

contamination. 

 Cons: Generally only suitable for small bee samples (1-10 

bees). 

 

1. Place single bee in a 2 ml screw-cap microcentrifuge tube. 

2. Add four 2 mm glass beads. 

3. Add 500 μl ice-cold buffer. 

For medium-large volume beadmills, increase the number of bees, 

beads and buffer in proportion to the maximum allowable volume of 

the disposable container. 

4. Make sure that the bead mill is balanced, if this is a  requirement. 

5. Shake for 5-10 minutes at the highest setting. 
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3.   Grind the bees to a powder using an appropriate sized, pre-

 frozen pestle. 

4.   Transfer the powder to a plastic tube or bottle. 

5.   Add 500 μl extraction buffer per bee.  

6.   Shake tube until the powder has suspended fully in the buffer. 

 

2.2.5. Mesh bags 

Mesh bags are sturdy plastic bags with a small pore fine mesh inside. 

The sample is placed on one side of the mesh, ground from the 

outside and the homogenate is collected from the other side of the 

mesh, filtering out large particles. 

 

 Pros: Medium-large volume; easy; cheap; no cross-

contamination. 

 Cons: Lack of uniformity; split bags. 

 

1.   Place up to 30 frozen bees in a disposable mesh-bag (e.g.,  

 www.bioreba.com; #430100). 

2.   Add 500 μl buffer per bee. 

3.   Flash-freeze the entire bag in liquid nitrogen. 

4.   Remove from liquid nitrogen. 

5.   Wait 30 seconds. 

6.   Pulverize contents by grinding the bag with a large pestle for 

 2 minutes on a hard surface, taking care not to damage the 

 bag.  

7.   Massage the bag until completely thawed. 

8.   Remove one (or more) 100 μl aliquots of homogenate.  

9.   As an alternate method, described in section 4.3.2. samples can 

 be crushed in disposable mesh bags using a heavy rolling pin. 

 

2.2.6. Micropestle 

You will need individual disposable micro pestles that fit 

microcentrifuge tubes. These can be bought or made by heating a 

1000 μl blue tip in a flame and moulding it into a disposable pestle in 

a microcentrifuge tube while it cools.  

 

 Pros: Single bees; cheap; low maintenance. 

 Cons: Time consuming; lack of uniformity. 

 

1.   Grind a frozen bee tissue or larval sample with the micropestle 

  in a microcentrifuge tube.  

2.   Discard pestle. 

3.   Add 500 μl buffer per bee. 

4.   Mix with a vortex. 

 

2.2.7. Robotic extraction 

Companies produce robotic extraction stations to facilitate high-

throughput analysis of samples. Comparisons between several such 

systems, or between automated and manual extraction, generally find 
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little difference in terms of assay sensitivity and reproducibility 

(Rimmer et al., 2012; Bruun-Rasmussen et al., 2009; Agüero et al., 

2007; Petrich et al., 2006; Knepp et al., 2003, but see Schuurman et al., 

2005). Such systems are generally only suitable for easily disrupted, 

soft tissues or samples.  

 

 Pros: Single bees; rapid; high throughput; uniform; low cross 

contamination risk. 

 Cons: Expensive; inflexible protocols; soft tissues only. 

 

Follow manufacturers’ protocol for sample processing. 

 

 

3. DNA extraction and analysis 

3.1. Introduction 

Isolating and analysing an organism’s DNA is key for developing 

insights into species or strain identification, for uncovering variants 

useful in breeding or a more thorough understanding of biology, and 

for discovering the microbes carried by individuals.  DNA extraction 

methods must be robust for small amounts of starting material even if 

that material has become degraded. They must deliver extracted DNA 

of sufficient quality, purity, and quantity for downstream efforts 

ranging from target identification (e.g., via the Polymerase Chain 

Reaction, PCR, below in section 6.3.1.), sequence analysis, and 

cloning, among others. Below are tested protocols for common DNA 

analyses of diverse bee samples, starting with the isolation and 

purification of DNA. Isolating DNA from tissues can be accomplished 

using a variety of commercial kits, or via procedures built on standard 

disrupting and separating agents as below. Here we describe 

protocols made from primary ingredients, since this is illustrative of 

the critical components in these and pre-made extraction protocols. 
 

 

 

 

 

 

 

3.2. Genomic DNA extraction from adult bees 

3.2.1. DNA extraction using CTAB  

This protocol is for the extraction of DNA from bee abdomens and/or 

the thorax, using a lysis buffer containing CTAB, a compound that is 

able to separate polysaccharides from other cell materials. The choice 

of tissues avoids eye contaminants such as pigments, which can inhibit 

PCR and other downstream applications. The method can be scaled 

down for the extraction of Varroa destructor mites (see the BEEBOOK 

paper on varroa (Dietemann et al., 2013) for details on sampling) or 

bee embryos and up for larger larvae and pupae (see section 1.2. for 

their collection). Volumes should be adjusted accordingly based on 

sample volume (i.e. initial grinding in 5X sample volume of buffer, 

ca.25-> 200 µl). The subsequent two extraction protocols are simpler, 

but the CTAB procedure is excellent for problematic samples and is flexible 

in terms of tissue disruption, separation, and rescue of nucleic acids. 

http://www.bioreba.com


1. Extract only the abdomen and/or thorax if possible. If a whole 

animal is extracted, use a Qiagen or similar column following 

manufacturer’s protocol for final purification of extracted DNA 

in order to reduce pigments that can inhibit genetic assays. 

2.   Put tissue from a single bee in a 1.5 ml microcentrifuge tube. 

3.   Add 500 µl of CTAB + 2 µl 2-mercaptoethanol (0.2%).  

CTAB buffer:   

 100 mM Tris-HCl, pH 8.0 

 1.4 M NaCl  

 20 mM EDTA 

 2% w/v hexadecyl-trimethyl-ammonium bromide (CTAB) 

This buffer both stabilizes nucleic acids and aids in the separation of 

organic molecules. See MSDS as CTAB is a potential acute hazard.  

4.   Homogenize with pestle. 

5.   Add 50 µg proteinase K and 25 µl of RNase cocktail.  

While this step is optional, proteinase K improves yields by disrupting 

cell and organelle boundaries and is critical for extraction of DNA from 

many microbes. 

6.   Vortex briefly to mix. 

7.   Incubate at 55-65°C from several hours to overnight. Invert   

      occasionally during incubation (e.g. once every 30 minutes    

      for the first two hours). 

8.   Centrifuge for 1 min at maximum speed (~14,000 rpm).   

Unwanted tissue debris will form a pellet at the bottom of the 

microcentrifuge tube. 

9. Transfer liquid to fresh tube, leaving tissue debris pellet   

      behind. 

10.  Add equal volume phenol:chloroform:isoamyl alcohol    

      (25:24:1). 

11.  Invert several times (10-20 times) to mix then put on ice for     

       2 min. 

12.  Spin at full speed (~14,000 rpms) for 15 min at 4°C. 

13.  Transfer upper phase to fresh tube. 

14.  Add 500µl cold isopropanol + 50 µl 3 M NaOAc. 

15.  Vortex to mix, then incubate at 4°C > 30 min.  

Samples can be stored at ambient temperature at this point for 

several days if needed for transport or timing, otherwise 4°C is best. 

16.  Spin at full speed (~14,000 rpms) for 30 min at 4°C. 

17.  Carefully decant liquid from DNA pellet. 

18.  Add 1 ml 4°C 75% EtOH. Tap vortex briefly to loosen pellet. 

19.  Spin at full speed for 3 min at 4°C. 

20.  Decant liquid from pellet. 

21.  Air dry pellet about 10 minutes to evaporate all residual traces   

      of alcohol. 

Do not over dry pellet, as it will be hard to resuspend. 

22.  Resuspend in 50-100 µl nuclease-free water (overnight at 4°C). 

23.  Check DNA quantity and integrity on an agarose gel.  

24. First, prepare TBE gel buffer (an aqueous solution with a final  
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working concentration of 45 mM Tris-borate and 1 mM 

EDTA). This is often prepared first as a ‘5x’ concentration 

comprised of 4 g Tris base (FW = 121.14) and 27.5 g boric 

acid (FW = 61.83) dissolved into approximately 900 ml 

deionized water. Add 20 ml of 0.5 M EDTA (pH 8.0) to this 

solution and adjust the solution to a final volume of 1l.  

Confusingly, the ‘working solution’ of this buffer for most uses is as 

0.5x = a 1/10 dilution of the stock buffer. 

25. For a 1.5% agarose gel on a large-format gel rig, add 3 g of     

      sterile agarose to 200 ml TBE buffer in a 500 ml or larger 

 Erlenmayer flask, microwave at high heat for ca. 45 s (without 

 boiling). For smaller gel rigs the volume of the gel can be 

 from 50 to 100 ml. Take flask out and swirl, then heat in the 

 microwave again until at full boil for 45 seconds, monitoring to 

 avoid spillover. The agarose must fully dissolve so the liquid is 

 perfectly clear 

26.  Let the solution cool while swirling every minute until the   

      flask can be held for several seconds without unbearable heat 

27.  While hot, pipette in 10 µl ethidium bromide solution (EtBr, 

0.5 mg/ml, used with caution as EtBr is a carcinogen and 

mutagen) and swirl until mixed 

28.  Pour into a horizontal gel rig and insert plastic combs holding 

ca. 10 µl of sample each 

29.  Let the gel solidify fully; gels can be wrapped in plastic wrap  

for longterm storage (overnight in place or for days at 4oC). 

30.  Mix 5 µl of the extraction solution with 2 µl of a 40% weight/

volume sucrose load buffer (made as 4 g sucrose and 25 mg 

bromophenol blue in 10 ml distilled water) 

31.  Submerge gel in a rig containing 0.5 x TBE, remove gel comb  

and load the 7 µl of sample/dye mix in separate wells using 

DNA molecular weight standards (e.g., 500 bp molecular 

ruler, www.biorad.com) 

32.  Draw the DNA across the gel toward the anode/positive 

charge at ca. 100 V depending on the gel rig size and 

specifications. 

33.  Monitor via the blue bromophenol blue stain movement    

(which tracks a DNA size fragment of ca. 300 bp in a 1.5% 

gel), stopping the gel and visualizing the DNA using 

ultraviolet light when it has progressed enough. 

34.  DNA can also be quantified via a spectrophotometer such as 

the Nanodrop (www.nanodrop.com), following 

manufacturer’s protocol: Briefly, after calibration 1 µl of 

nucleic acid solution is placed onto a cleaned pedestal, the lid 

is closed and a reading is taken prior to cleaning by wiping 

the pedestal in preparation for the next sample. The machine 

will estimate concentration using the equation dsDNA: A260 

1.0 = 50 ng/µl. 

35. Store at -20°C or below. 

http://www.biorad.com


3.2.2 DNA extraction using Qiagen Blood and Tissue DNA kits 

This is a reliable extraction method using a commercial kit sold by 

Qiagen (www.quiagen.com), it is suitable for honey bee guts, small 

larvae or tissues from larger larvae or adults (avoid using the 

compound eyes). 

 

1. Place 50 mg honey bee material in a centrifuge tube and 

mince thoroughly on ice with a mini pestle 

2. Add 180 µl Buffer ATL and 20 µl Proteinase K at the provided 

concentration 

3.   Vortex 30 seconds and incubate at 56oC for 1 hour, vortexing    

      for 30 seconds after 30 min 

4.   Premix equal volumes of Buffer AL and ethanol (96-100%), 

mixing enough to provide 400 µl per sample plus 10% extra  

5.   Vortex samples 30 seconds and add 400 µl AL/EtOH mix each, 

vortex again 30 seconds 

6.   Pipette all into DNeasy Mini spin column nested in a 2 ml 

collection tube.  

7.   Centrifuge at > 8000 rpm in a microcentrifuge (6k g). Discard 

flow-through and collection tube 

8.   Place spin column in new 2 ml collection tube, add 500 µl 

Buffer AW1, centrifuge 1 min at > 8000 rpm. Discard flow-

through and collection tube 

9.   Place spin column in new 2 ml collection tube, add 500 µl 

Buffer AW2, centrifuge 3 min at > 14000 rpm. Discard flow-

through and collection tube 

10. Remove spin column, checking to be sure ethanol is gone and 

place into a clean 1.7 ml centrifuge tube 

11. Add 200 µl Buffer AE to the centre of the membrane, incubate 

at room temperature and then centrifuge for 1 min at > 8000 

rpm. Eluted DNA will be in tube. Check quantity by Nanodrop 

or agarose gel as in section 3.2.1 above. 

 

3.2.3. DNA extraction using Chelex 

The Chelex method (Walsh et al., 1991) provides a very rapid way to 

protect DNA from degradative enzymes and from some of the 

potential contaminants that might inhibit experiments. In principle, 

the Chelex resin will trap salts needed by degradative enzymes, 

leaving DNA in solution. In practice, Chelex extractions can be prone 

to degradation, and should be kept in the freezer when not in use, or 

these extractions should be used within 24 hours of extraction. If the 

extracted tissues contain pigments and other inhibitors for 

downstream experiments, it is often successful to dilute the Chelex 

extraction 1:9 with distilled water before use. Finally, when drawing 

from these extractions it is important to pipette from the top of the 

aqueous layer, avoiding the resin itself. Below is a recipe that works 

well for legs from adult bees or beetles, for whole varroa mites, or for 

other tissues of about that size. 

12 Evans et al. 

1.   Add two posterior legs into Eppendorf tubes.  

2.   Allow them to dry until the EtOH evaporates. 

3.   Transfer to each tube: 

 100 µl of Chelex® (5% solution in water),  

 5 µl of proteinase K (10 mg/ml).  

4. Incubate the samples in a thermocycler with the following 

 program:  

 1 h at 55°C,  

 15 min at 99°C,  

 1 min at 37°C,  

 15 min at 99°C,  

 Pause at 15°C. 

 

 

 

 

 

 

 

 

3.3. DNA detection using southern blots with DIG 

labelling 

Southern blotting was invented by Edward M Southern as a means for 

detecting specific nucleotide sequences in a complex mixture and 

determining the size of the restriction fragments, which are 

complementary to a probe. Southern blotting combines transfer of 

restriction-enzyme-digested and then electrophoresis-separated DNA 

fragments from a gel to a membrane and subsequent detection by 

probe hybridization. A variety of non-radioactive methods have been 

developed to label probes for detection of specific nucleic acids. The 

Roche Applied Science DIG system is a simple adaptation of 

enzymatic labelling and offers a non-radioactive approach for the safe 

and efficient labelling of probes for hybridization reactions. 

 

3.3.1. Restriction enzyme digestion and agarose gel 

electrophoresis 

This step is carried out in order to array chromosomal sections across 

a one-dimensional space so that unique sections can be probed for 

matches to a query sequence. In principle, the targeted gene will be 

embedded in a single chromosomal segment flanked by specific 

sequences that match the restriction enzyme used.  

 

1. Digest 5-10 µg of genomic DNA in a volume of 30 µl with an 

appropriate restriction enzyme by setting up reaction as 

follows: 

 3 µl 10X buffer, 

 0.3 µl of BSA if needed (this will be on the restriction enzyme 

label), 

 3 µl enzyme (10U/µl), 

 5-10 µg genomic DNA, 

Add sterile water to reach a total volume of 30 µl. 

Generally, enzymes that cut frequently in the target genome are used 

here (e.g., ‘four-cutters’ that cut at a specific four-base-pair sequence, 

an event expected to occur ca. once every several hundred base-pairs). 



2.   Allow the digestive reaction to go for overnight at 37°C (or    

      temperature appropriate to your specific enzyme). 

3.   Run the full 30 µl of reaction mixture with 3 µl 6X loading dye 

on 1% agarose gel (see section 3.2.1) containing ethidium 

bromide (1 µg/ml ) for 2 hours at 100 volts. Include one lane 

of a DIG-labelled DNA Molecular Weight Marker at the 

appropriate level.  

4.   Take a picture of the digestion. 

5.   Depurinate the agarose gel for exactly 10 min in 0.25 M HCl if 

DNA fragment > 4 kb. 

6.   Denature the gel in freshly made denaturing solution (0.5M 

NaOH, 1.5 M NaCl) for 2 x 15 min at RT, slowly shaking on 

rotating shaker.  

Denaturation of the DNA into single strands allows hybridization with 

a probe possible.  

7.   Rinse the gel with sterile water. 

8.   Neutralize the gel in neutralizing solution (0.5 M Tris-HCl, pH 

7.4, 1.5 M NaCl) for 2 x 15 min, slowly shaking on rotating 

shaker. 

9.   Equilibrate gel in 20X SSC for 10 min. 

 

3.3.2. Assembly of the transfer setup and transfer of DNA 

from gel to membrane 

DNA is here pulled from the gel into a nylon membrane by capillary 

action pulled by the positive charge of the membrane. Once in contact 

with the membrane, DNA is attached using high-voltage cross-linking. 

 

1.   Set up capillary transfer using 20X SSC as a transfer agent: 

Inside a baking glass dish filled with 20X SSC, place a glass 

plate that is elevated by four rubber stoppers that is slightly 

larger than the gel. 

2.  Cover the glass plate with a piece of wick-blotting paper that 

has to be long enough so that it is in contact with the  

20X SSC transfer solution.  

The buffer flows up the wick-blotting paper by capillary action, then 

through the gel to the membrane.  

3.   Smooth out the air bubbles between the glass and the 

blotting paper by gently rolling with a glass pipette. 

4.   Place the gel facing down on the wet blotting paper.  

5.   Cut a small triangular piece from the top left-hand corner to 

simplify orientation.  

6.   Smooth out the air bubbles. 

7.   Cut one piece of positively charged nylon membrane to match 

size of the gel.  

8.   Soak the membrane in water for 2-3 min to wet and then 

float in 20X SSC.  

9.   Gently place the membrane on the top of the gel.  

10. Mark well positions on the membrane.  

11. Smooth out the air bubbles.  
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12. Cut 4-5 sheets of Whatman 3MM paper to the same size as 

the gel and place on top of the membrane.  

13. Place a stack of paper towels on top of the Whatman 3MM 

papers.  

14. Add a 200-400 g weight to hold everything in place. 

15. Allow the DNA to transfer for 10-16 hours.  

16. After transfer, rinse the membrane briefly in 6X SSC.  

17. Immobilize DNA to the membrane by UV cross-linking 

(120,000 microjoules per cm²). Membrane is now ready for 

labelling (section 3.3.3.). 

 

3.3.3. Synthesis of DIG-labelled DNA probe  

DIG-labelled probes offer a method to identify where probes have 

attached on the membrane (e.g.., the location of their targeted DNA 

match). These DIG probes are an alternative to highly regulated and 

more dangerous radio isotopic probes. 

 

1. Mix the DIG-labelled PCR reaction components from the 

Roche Applied Science PCR DIG Labelling Mix with the probe 

template as follows: 

 5 µl PCR Buffer (10X), 

 5 µl PCR DIG Labelling Mix, 

 0.5 µl Upstream Primer (25 µM), 

 0.5 µl Downstream Primer (25 µM), 

 0.5-1 µl Template (plasmid DNA, 10-100 pg, or genomic DNA, 

1-50 ng), 

 0.75 µl Enzyme Mix, 

 Add sterile water until total reaction volume is equal to 50 µl. 

2.   Set the annealing temperature of PCR reaction to reflect the 

predicted annealing temperature of the primers, also reported 

at the time of purchase. 

3.   The kit contains a post-hoc check for probe labelling efficiency 

that is recommended. 

 

3.3.4. Hybridizing the DIG-labelled DNA Probe to DNA on the 

Blot 

This procedure relies on the Roche Applied Science DIG Easy® Hyb, 

DIG Wash and Block Buffer Set, (with the fluorescent reporter CSPD®).  

 

1.   Pre-warm an appropriate volume of DIG Easy® Hyb solution® 

 to the hybridization temperature.  

2.   Pre-hybridize membrane in a small volume of pre-warmed 

 DIG Easy® Hyb solution (20 ml if in a 200 ml hybridization 

 tube). 

3.   While the membrane is pre-hybridizing, denature 10 µl of DIG

-labelled DNA by boiling for 5 min.  

4. Rapidly cool on ice. 

5.   Add appropriate amount of denatured probe to give you  

(25 ng/ml) into DIG Easy® Hyb solution. 



6.   Incubate with agitation in a hybrid oven at 55-58oC for 

overnight. 

7.   Wash membrane in 25-50 ml Washing Solution-1 (2X SSC, 

0.1% SDS) 2X for 5 min at room temperature under constant 

agitation. 

8.   Wash membrane in 25-50 ml Washing Solution-2 (0.1% SSC, 

0.1% SDS) 2X for 5 min at 68oC under constant agitation. 

9.   Wash membranes briefly (1-5 min) in 25 ml of 1X Washing 

Buffer provided in DIG Wash kit. 

10. Incubate membranes for 30 min in 1X Blocking Solution 

diluted in maleic acid buffer (supplied in the kit). 

11. Incubate membrane in Anti-body solution for 30 min.  

To make anti-body solution, add 1 µl anti-body to 20 ml 1X blocking 

solution.  

12. Wash membrane in 1X Washing buffer 2X for 15 min.  

Make sure membrane is immersed in the Washing buffer.  

13. Prepare 20 ml 1X Detection Buffer.  

14. Equilibrate membrane in 20 ml 1X Detection Buffer for 2-5 

min.  

15. Transfer the membrane with DNA side facing up to a Plastic 

wrap that is at least twice the size of the membrane.  

16. Apply 1 ml of CSPD®, ready-to-use (about 20-25 drops) to the 

membrane.  

17. Quickly cover the membrane with the plastic wrap.  

18. Incubate for 5 min at RT.  

19. Drain off excess buffer by gently brushing across the top of 

the membrane covered by plastic wrap with a paper towel. 

20. Tape the membrane into a film cassette.  

21. Close the cassette and incubate at 37°C for 10 min to 

enhance the luminescent reaction. 

22. Remove the film for development using a standard x-ray film 

developer.  

 

 

4. RNA methods 

4.1. Introduction 

Analyses based on RNA have two major advantages over DNA 

analyses. First, they are by definition restricted to a step in the 

expression of proteins from an organism’s genome. This means that 

RNA pools are generally far less complex than are pools of DNA 

representative of the organism’s entire genome, and that a 

quantitative estimate of different RNA’s can provide a useful surrogate 

for the proteins produced at that time point for a specific organism or 

tissue within an organism. Second, since nearly all of the recognized 

viral threats to honey bee exist without a DNA stage, these threats 

are only visible via RNA analyses. These arguments make RNA the 

resource of choice for many honey bee analyses; despite greater 

concerns over storage and preservation of tissues. 
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A common strategy is to extract total nucleic acids directly in strongly 

denaturing buffers, so as to inactivate RNAses immediately during 

homogenisation. RNAses have numerous disulphide bridges. This 

makes them very stable in a very wide range of conditions, such that 

strong denaturants are required to permanently inactivate them. Heat, 

detergents (sodium dodecyl sulphate), organic solvents (phenol), 

proteinases, chaotropic salts (guanidine isothiocyanate), reducing 

agents (β-mercaptoethanol; dithiothreitol) and nucleic acid protecting 

compounds (CTAB; cetyl trimethylammonium bromide) are some of 

the more common methods used to inactivate RNAses. The nucleic 

acids can be purified from other compounds with affinity columns, 

magnetic bead-linked nucleic acid binding agents or by precipitation 

with alcohol or lithium chloride. The most common, quickest and most 

reliable combination is a chaotropic salt/β-mercaptoethanol extraction 

buffer, followed by purification on disposable affinity columns 

(Verheyden et al., 2003). The main disadvantage of RNA precipitation 

(with 2 volumes ethanol, 1 volume isopropanol or with 6M LiCl) is that 

many undesirable compounds often co-precipitate with the nucleic 

acid, requiring further precipitations or washes to clean the sample. 

There are many excellent commercial RNA extraction kits available, 

based on one or more of these principles. However, their performance 

in comparative tests varies greatly, depending on the organism, tissue 

type and nucleic acid extracted (Konomi et al., 2002; Knepp et al., 

2003; Wilson et al., 2004; Schuurman et al., 2005; Labayru et al., 

2005). Below are two protocols, representing the most common 

approaches to RNA extraction.   
 

 

 

 

 

 

 

4.2. Affinity column purification 

The processing consists of making a primary homogenate from 1-30 

bees, purifying RNA from one (or more) aliquots of the homogenate 

using affinity columns, and measuring the RNA concentration.  

β-mercaptoethanol is toxic so processing should be done in a fume 

hood. Prepare all the buffers and tubes before starting.  

The protocol below is based on the columns marketed by Qiagen 

or generic equivalents. The maximum recommended amount of tissue 

per column is 20 mg. More than 20 mg tissue causes the column to 

bind too much protein, reducing the yield and quality of the nucleic 

acid. Bees, pupae and large larvae weigh between 100-180 mg each, 

and so need to be homogenised first in a primary extract, from which 

a volume equivalent to 20 mg tissue is then processed on the affinity 

columns. A suitable denaturing buffer for this primary extract is a 

Guanidine Iso-Thio Cyanate (GITC) buffer, which has similar 

properties to the Qiagen RLT buffer: 

 

1.   Mix the GITC buffer:  

 5.25 M guanidinium thiocyanate (guanidine isothiocyanate), 

 50 mM TRIS.Cl(pH 6.4), 

 20 mM EDTA, 



4.3.1 TRIzol® extraction 

Advanced preparation: You will need RNase-free bench, pipettes, 

barrier tips, pestles and 1.5 ml microcentrifuge tubes. Bench tops and 

other glass and plastic surfaces can be treated to remove RNAse 

contamination by application of RNAse Zap (Ambion), following 

manufacturer’s protocol. Disposable tips, pestles, and microcentrifuge 

tubes should be purchased RNase–free. You will need cold 75-80% 

ethanol and 100% isopropanol, both nuclease-free; and a pre-chilled 

centrifuge (at 4°C for 30 min) for Step 9. Have ready at room 

temperature, the TRIzol® and other reagents needed. It is recommended 

to use a vented fume hood for safety when working with TRIzol® and 

chloroform. It is also very important to work quickly with bee tissue, 

as it is possible that RNA will degrade if bees thaw for ten or more 

minutes (Dainat et al., 2011). 
 

 

 

 

In a very sterile (RNAase-free) environment: 

1. Add 500 µl of TRIzol® to frozen bee abdomens in 1.5 ml 

tubes. 

2. Mash the tissue until completely homogenized with a pestle 

and shaking.  

All soft tissues should be disrupted completely. Remove pestle and 

scrape it off along the rim of the microcentrifuge tube. Sample should 

be viscous. 

3.   Centrifuge at 5,000 rpm for 1 min to pellet debris. 

4.   Transfer the TRIzol® suspension to a fresh tube, leaving out 

the chitinous debris pellet. 

5.   Add another 500 µl TRIzol® and invert several times to mix. 

6.   Add 200 µl chloroform. 

7.   Shake vigorously for 15 sec.  

Do not vortex! This may increase DNA contamination in your sample. 

8.   Incubate at RT for 2-3 min. 

9.   Spin at 4°C for 15 min at ~14,000 rpm. 

 

NOTE: Be especially diligent about avoiding RNases from this 

point on! 

 

10. Label a fresh set of RNase-free microcentrifuge tubes. 

11. Carefully remove tubes from centrifuge.  

12. Use a 1 ml pipette tip with pipettor set at 550 µl to draw off 

the upper phase and transfer it to a fresh tube.  

Carefully avoid the interface (one product that ensures a clean break 

between phases is the Phaselock gel (5 Prime Inc.) and could be used 

here). 

13. Add 500 µl 100% Isopropanol. 

14. Invert 3-5 times to mix gently. 

15. Incubate at RT for 10 min. 

16. Centrifuge at 4°C for 10 min at full speed (~12,500rpm), 

placing all tubes in the same rotation (e.g., hinge facing away 

from arc) so pellet location will be consistent. 

 1.3% Triton X-100, 

 1% β-mercaptoethanol. 

2.   Place exact, pre-determined number of frozen bees in the 

homogenizer of choice.  

3.   Per bee, add the following amount of GITC buffer: 

 

 

 

With these extract volumes, 100 μl extract is approximately 20 mg 

bee tissue 

4.   Mix: 

 100 μl bee extract, 

 350 μl RLT buffer + 1% β-mercaptoethanol. 

5.   Proceed according to the Plant RNA extraction protocol (see 

Qiagen instructions booklet).  

Inclusion of the Qia-shredder column step is not required, but 

significantly increases yield and purity of nucleic acid. 

6.   Elute in 100 μl nuclease-free water. 

7.   Determine nucleic acid concentration and purity (see section 

8.4.; “Nucleic Acid Quality Assessment”).  

8.   Store as two separate 50 μl aliquots at -80oC, one for working 

with and one for storage. 

9.   Include a ‘blank’ extraction (i.e. an extraction of purified 

water) after every 24 bee samples, to make sure none of the 

extraction reagents have become contaminated. 

 

4.3. Acid phenol RNA extraction from adult bees 

The below recipes use an acid-phenol phase separation for isolating 

RNA from DNA and other tissue components. The TRIzol® (Invitrogen™) 

protocol is the most commonly used, and widely available, method of 

acid-phenol extraction of RNAs. However, using a generic lysis and 

acid-phenol buffer (e.g. section 4.3.2) provides a cost effective 

alternative than TRIzol®, and allows a great reduction in the use of 

the caustic chemical phenol for pooled samples. We use honey bee 

abdomens because they provide representation of the microbes and 

immune components of the honey bee, while avoiding pigments in the 

eye which can inhibit downstream enzymatic reactions. The procedure 

is also appropriate for larvae, whole adult bees and pupal RNA 

extractions, if volumes are scaled upward, i.e. doubled, to reflect the 

volume of the sample, for the latter two. 
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Bee Weight Buffer Total volume 

Worker bee 120 mg 500 μl 600 μl 

Drone 180 mg 700 μl 900 μl 

Worker pupa 160 mg 650 μl 800 μl 

Drone pupa 240 mg 1000 μl 1200 μl 



17. Carefully siphon off liquid using a 1 ml pipette tip.  

Observe the pellet (white) so you do not inadvertently aspirate it into 

the tip! Be cautious as it may dislodge and float. 

18. Add 1 ml of cold 75-80% nuclease-free EtOH. 

19. Invert several times to mix. 

20. Spin at 4°C for 5 min at full speed. 

21. Carefully decant liquid using a 1 ml pipette tip, avoiding the 

pellet and tilting the tube so no alcohol remains at the bottom 

of the tube covering the pellet. 

22. Let tubes air dry in a clean area just until the EtOH has 

evaporated (~20-30 min). 

23. Resuspend RNA pellet in 100 µl of RNase-free water. 

24. Incubate at 55°-60°C for 10 min in water bath, ideally with 

shaking or flicking tubes for 10 seconds once during this time. 

25. Quantify and validate RNA integrity using spectrophotometer 

(Nanodrop, section 3.2.1), following manufacturer’s protocols, 

or run a small amount on 1-2% agarose gel (see section 

3.2.1) to verify RNA quality. This can be accomplished by 

looking for degradation products migrating as a diffuse smear 

below the sharp 28S and 18S ribosomal RNA bands, which 

migrate at an analogous rate to ca. 1.75 and 2 kb double-

stranded DNA markers. Alternatively, an Agilent 2100 RNA 

chip will provide both an accurate quantification and a 

measure of RNA integrity. 

26. Freeze for storage at -80°C for long term storage, -20°C if you 

plan to use the RNA within 24 hrs. 

27. Yields should be at least 100 µg (1 µg/µl) total RNA. 

 

4.3.2. Bulk extraction of RNA from 50-100 whole bees using 

the acid-phenol method 

For colony-level surveys of bee microbes, including pathogens, it is 

often important to analyse a bulk sample of bees in order to ensure a 

more accurate view of colony loads (most parasites and pathogens 

are not found uniformly across all bees in the hive, see section 4. 

‘Obtaining adult workers for laboratory experiments’ of the BEEBOOK 

paper on maintaining adult workers in vitro laboratory conditions 

(Williams et al., 2013) and the BEEBOOK paper on statistics (Pirk et 

al., 2013) for details on how to sample bees). Similarly, if a colony-

level genetic or phenotypic (gene-expression) trait is desired it is 

often better to generate an estimate that is the average across many 

colony members rather than a few selected bees. Extractions from a 

sample of tens of bees can be costly since volumes of reagents must 

be scaled up. The below protocol greatly reduces the most costly (and 

hazardous) ingredient used in RNA extractions, acid-phenol, and 

otherwise generates equivalent yields and purity to the TRIzol® 

extraction described above. 

 

1. Put whole frozen bees (stored at -80oC since death) into a 

disposable extraction bag (e.g. www.Bioreba.ch) and add 500 µl 

lysis/stabilization solution (section 4.3.3) per bee (i.e. for 50 

bees add 25 ml solution). 

2. Mash until homogenized using a rolling pin, leaving the bag 

partly open initially to allow air to escape. 

3. Allow to settle ~10 min so bubbles go down.  

You can mash 10 or so bags consecutively at a time. By the time #10 

is finished, the bubbles in #1 have subsided. Keep pending bags on 

ice in bucket. 

4.   Transfer 620 µl of extraction liquid into a pre-labelled 1.5 ml    

      micro tube. 

Note: It is advisable to save subsamples of the lysed tissues 

as a reserve (Store at-80°C). 

 

5.   Add 380 µl acid phenol.  

6.   Vortex 30 sec to mix well. 

7.   Incubate 10 min in a 95°C hot block.  

Place weight on top of tubes to prevent lids from popping open.  

8.   Wearing goggles and a lab coat carefully remove weight and 

then transfer the tubes from hot block to pre-chilled rack in 

ice.  

It is best to keep hot block in hood to contain the phenol.  

9.   Incubate on ice for 20 min. 

10. Bring to RT. 

11. Add 200 µl chloroform.   

12. Shake vigorously for 1 sec. 

13. Incubate at RT 3 min. 

14. Centrifuge at 14,000 rpm for 15 min at 4°C. 

15. Transfer 500 µl upper phase to fresh tube. 

16. Add equal volume of isopropanol (100%). 

17. Invert ten times to mix. 

18. Incubate at RT 15 min. 

19. Centrifuge at 10,000 rpm for 10 min at 4°C. 

20. Carefully decant liquid from pellet. 

21. Wash w/ 1 ml of cold 75% EtOH. 

22. Centrifuge at 10,000 rpms for 2 min at 4°C. 

23. Carefully decant liquid from pellet. 

24. Spin 1 min.  

25. Remove excess alcohol with pipette tip.  

26. Air dry completely. 

27. Resuspend in 200 µl nuclease-free H2O. 

28. Solubilize for 10 min at 55°C. 

29. Store at -80°C. 

30. Yields should be higher than 200 µg (1 µg/µl) total RNA, and 

extractions should be stable for > 5 years. RNA degradation 

can be checked using an Agilent Bioanalyzer or by 2% 

agarose gels looking for the co-migrating large ribosomal 

RNA’s as a sign of largely intact RNA. If extractions are to be 

shipped or kept at temperatures above -50oC for more than 

48 hours, RNA should first be precipitated in an equal volume 

of isopropyl alcohol, shipped in that state, then suspended 

starting at step 22 above. 
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4.3.3. RNA lysis/stabilization buffer 

1.   Fill a 1l beaker with 300 ml of nuclease-free water and insert 

a large magnetic stir bar. 

2.   Following safety procedures (http://www.sciencelab.com/

msds.php?msdsId=9927539 ) add:  

94.53 g guanidine thiocyanate (CH5N3·CHNS; MW = 118.16) 

(Sigma #50981), 30.45 g ammonium thiocyanate (CH4N2S; 

MW = 76.12) (Sigma #43135), 33.4 ml of 3M sodium acetate 

(NaOAc), pH 5.5 ml ultrapure molecular biology-grade (USB # 

75897 or Sigma #71196). 

3.   Stir until completely dissolved. 

4.   Pour into 1l graduated cylinder and bring up to 550 ml with  

nuclease-free water. 

5.   Pour from graduated cylinder into autoclave-safe desired 1l 

bottle. 

6.   Add: 50 ml glycerol (C3H8O3; MW=92.09 g/mol) (Sigma #   

G6279) and 20 ml Triton-X 100 (Sigma #T8787). 

7.   Autoclave on liquid cycle for 15 min with slow exhaust. 

8. Remove from autoclave immediately, cool and store at 4oC. 

This makes a total volume of 620 ml. 
 

 

 

 

 

 

 

4.4. RNA quality assessment 

The next step is to determine the condition of the RNA sample, prior 

to any assay. The three critical parameters are quantity, quality and 

integrity (i.e. absence of degradation). Quantity and quality are 

usually assessed by spectrophotometry (Green and Sambrook, 2012), 

by comparing the peak absorbance at 260 nm (nucleic acids), 280 nm 

(proteins) and 230 nm (phenolic metabolites). A number of companies 

now market spectrophotometers and fluorometers that provide a 

complete UV absorbance profile from 1 μl of sample, from which the 

concentration of the nucleic acid can be determined, as well as its 

purity with respect to protein and metabolite contaminants. However, 

nucleic acid integrity can only be determined by running an electrophoretic 

trace profile, and assessing the degree of degradation by comparison 

of different nucleic acid size classes. The most comprehensive RNA 

quality analysis is through a chip-based microelectrophoresis system 

that provides a complete electrophoretic trace of the RNA sample 

which is used to quantify the integrity of the RNA, as well as the 

amount and purity (Bustin, 2000). Agilent, Qiagen, Invitrogen and 

BioRad market such systems. However, for fresh samples or those 

preserved with stabilizers or in a frozen transport chain, with little 

expected degradation, a simple UV absorbance spectrum is usually 

sufficient.  

 Read the absorbance of an RNA sample at 230 nm, 260 nm 

and 280 nm. 

 A260 of 1.0  = 40 ng/μl ssRNA 

   = 37 ng/μl ssDNA 

   = 50 ng/μl dsDNA 
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 A260/A280 < 2.0 indicates contamination with proteins. 

 A260/A230 < 2.0 indicates contamination with phenolics.    
 

 

 

 

 

 

 

4.5. cDNA synthesis from total RNA 

Most downstream measurements of RNA traits rely on the 

complementary DNA (cDNA) generated by back-transcribing RNA 

using a commercially available reverse transcriptase such as 

‘Superscript’ (Invitrogen). Reverse transcription is the most delicate 

step in RT-PCR. This step is very sensitive to inhibitors and 

contaminants in the sample (Ståhlberg et al., 2004b) such that the 

efficiency can vary between 0.5% and 95%. This efficiency is 

furthermore also strongly affected by both the absolute and relative 

amounts of target RNA in a sample, especially at very low levels of 

target (Ståhlberg et al., 2004a; 2004b), and by a variety of reaction 

conditions (Singh et al., 2000).  

To minimize this variability, the RNA concentrations should be 

measured accurately by spectrophotometry (Qubit; Invitrogen), and a 

constant amount added to the cDNA reactions. If the RNA 

concentration is very low (< 10 ng/µl), 100 ng neutral carrier tRNA 

can be added to the reaction prior to addition for cDNA synthesis 

stabilize reverse transcription and detection reliability. The final major 

parameter to optimise is the cDNA primer. Different target-specific 

cDNA primers (such as used in One-step RT-qPCR reactions), can 

have significantly different reverse transcription reaction efficiencies, 

which will affect the quantitative estimation of the targets in the 

sample (Bustin, 2000). A useful, practical approach is therefore to first 

prepare a fully representative cDNA ‘copy’ of the entire RNA population, 

using random ‘hexamer’ (6-nucleotide) primers. Such a complete cDNA 

population will have much less quantitative biases between different 

targets due to variable reverse transcriptase reaction efficiencies, 

allowing for more accurate quantitative comparison and normalisation 

between different targets. However, cDNA prepared with random 

primers can sometimes overestimate the original amount of target 

RNA (Zhang and Byrne, 1999). Another commonly used technique for 

sampling RNA pools is to use poly-dT primers targeting the 

polyadenylated stretch found at the 3’ end of most messenger RNAs 

and also on most of the honey bee viruses. 

 

4.5.1 Reverse Transcription of RNA 

The following is a robust reverse-transcription protocol for generating 

cDNA that is fully representative of the original RNA population: 

 

1.   Mix: 

 0.5 μg  sample RNA template,  

 1 ng  exogenous reference RNA (e.g. Ambion RNA250), 

 1 µl   50 ng/μl random hexamers,  

 1 µl   10 mM dNTP,  

 up to 12 µl  RNAse free water. 



2.   Heat the mixture to 65°C for 5 min and chill quickly on ice. 

3.   Add: 

 4 µl 5X First-Strand Buffer, 

 2 µl 0.1 M DTT, 

 1 µl (200 units) of M-MLV RT. 

4.   Mix by pipetting gently up and down.  

5.   Centrifuge briefly to collect the contents at the bottom of the 

tube. 

6.   Incubate 10 min at 25°C. 

7.   Incubate 50 min at 37°C. 

8.   Inactivate the reaction by heating 15 min at 70°C. 

9.   Dilute the cDNA solution ten-fold with nuclease-free water 

before using in PCR assays. 

 

4.6. Qualitative RT-PCR for honey bee and 

pathogen targets 
 

Detection by PCR can be “qualitative”, i.e. recording only the presence 

or absence of the target cDNA, by analysing the accumulated “end-

point” PCR products after the PCR is completed. The sensitivity of the 

assay can be raised or lowered as desired by, respectively, increasing 

or decreasing the number of amplification cycles. Usually PCR does 

not exceed 40 cycles, which is theoretically sufficient to detect a 

single molecule of the target DNA in the original template, when 

analysing the end products by agarose gel electrophoresis. Consider 

the following rough calculation: 

 

 Assuming perfect doubling with each amplification cycle. 

 20 molecules (i.e. 1 molecule) prior to PCR = 240 molecules 

after 40 cycles of PCR. 

 240 molecules of a 100 bp DNA fragment  (mw ~ 61,700 g/

mol) 

= 1.1 x 1012 molecules  x 1 mol/6.0221415 x 1023 molecules 

= 1.8 x 10-12 mol  x 61,700 g/mol 

= 1.1 x 10-7 g  = 110 ng DNA 

 

Normally, 20 ng DNA is easily visible as a single band on an 

ethidium bromide-stained agarose gel. Even when allowing for 

imperfections in the amplification, 40 cycles are therefore theoretically 

more than sufficient to detect a single molecule in a reaction.  

However, such extreme sensitivity is rarely required in practical or 

even most experimental settings. Furthermore, by aiming for absolute 

detection at the level of a single molecule of target DNA, the detection 

system becomes axiomatically susceptible to high rates of detection 

error: both false positives (accidental amplification of contaminating 

molecules) and false negatives (non-detection of a single molecule 

due to amplification insufficiencies).  

By raising the detection threshold a few orders of magnitude, to 

around 1,000 molecules per reaction (~210 molecules prior to PCR) it 

is possible to produce detectable amounts of target DNA (~240 

molecules) with 30 cycles of amplification (210+30 molecules), again 

assuming perfect doubling each cycle. This avoids most of the risk of 

both types of detection errors, since chance contamination events of 

singular molecules (false positive results) are now below the detection 

threshold and there is sufficient initial target DNA in the reaction to 

avoid accidental non-detection (false negative results). A few more 

cycles beyond 30 can be added to compensate for the imperfections 

in the PCR efficiency. This means that 35 amplification cycles should 

be the upper limit for most practical applications. Beyond 35 cycles, 

the rapidly increasing risk of detection errors outweighs the marginal 

gains in sensitivity.  

 

4.7. Quantitative RT-PCR for honey bee and 

pathogen targets 
 

Detection of specific PCR products can also be made continuously as 

the PCR proceeds (i.e. in ‘real time’). In this case the cycle number at 

which the accumulated PCR products reach a fluorescence detection 

threshold, read after each cycle by laser optics, can be very accurately 

related to the initial amount of target in the reaction, through the use 

of exponential algorithms and internal and external quantitation 

standards (Bustin et al., 2009; 2010). This is the basis for real-time 

quantitative PCR (qPCR). The great advantage of real-time qPCR, 

apart from the accurate quantitation of the initial amount of target 

DNA in the reaction, is that the diagnostic threshold for qualitative 

detection can be set after the reactions have taken place, or at a 

number of different levels, from the same data set. This is useful if 

different diagnostic sensitivities are required for different experimental 

or reporting purposes, or for quality control management purposes.  

There are numerous methods for qPCR in the literature, and this 

approach has been used for measuring gene activity in honey bees 

and all of their major parasites and microbial associates. The primary 

difference in those cases will come in the specific primers used for 

amplification and in some cases in changes to the chemistry or 

thermal conditions. One main decision point is between using SYBR 

green or another non-specific fluorescent marker that measures 

(amplified) DNA non-discriminately versus reporters that target 

specific amplified products directly such as TaqMan probes (Applied 

Biosystems; e.g. Chen et al., 2004). There is considerable debate over 

the merits of each approach. Assays using Taqman® chemistry and 

other internal probe methodologies are inherently more specific than 

those using Sybr chemistry, due to the additional match required in 

the probe sequence. Therefore, Taqman® assays are more prone to 

Type II errors (false negative), where a negative result is returned 

despite the sample being positive (perhaps due to slight modification 

in the probe region within the sample). Sybr-based assays are more 

likely to return a Type I error (false positive), due to difficulties in 

distinguishing between low positive signal at the threshold of 

detection and non-specific binding. The errors for both methods can 

be minimized after careful preparatory work. 
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4.7.1. One-Step versus Two-Step RT-PCR 

The buffer conditions for reverse transcription and PCR are largely 

compatible, which means that the two steps can be coupled in a 

single tube reaction, with the incubation conditions favouring first the 

reverse transcription, and then the PCR. Such ‘One-Step’ RT-PCR kits 

reduce the number of manipulations and associated errors, both 

qualitative and quantitative. The disadvantage is that they use up the 

sample RNA at a much higher rate than ‘Two-Step’ RT-PCR, where the 

cDNA is produced independently in a separate reaction. One-Step  

RT-PCR is also generally less sensitive than Two-Step RT-PCR, since 

the reaction conditions are not optimised exclusively for reverse 

transcription, and cannot account easily for variable reverse transcription 

efficiencies between different assays/primers (Bustin, 2000; Bustin  

et al., 2009). The main disadvantage of Two-Step RT-PCR is that the 

additives included in the reverse transcription buffer to enhance 

primer binding and reaction efficiency, can also encourage the 

production of non-specific PCR products during PCR, which affects the 

quantitation accuracy. To minimize such effects, cDNA should be 

diluted ten-fold with water before being used for Two-Step RT-PCR.  

Commercial One-Step or Two-Step RT-qPCR kits have proprietary 

reagent mixtures that are optimised for the corresponding 

recommended cycling profiles. Different kits therefore perform 

differently with particular primers and cycling profiles (Grabensteiner 

et al., 2001), and the choice of RT-PCR kit is therefore also part of the 

optimization procedure. To take maximum advantage of such  

pre-optimized systems, the most practical approach is to design the 

assays and primers to fit these optimized recommendations, whenever 

this is possible.  
 

 

 

 

4.7.2. One-Step RT-qPCR 

The following is a robust, standard One-Step RT-qPCR protocol for 

amplifying and quantifying targets <400bp in length, using SYBR-

green detection chemistry, and starting with an RNA template: 
 

 

 

 

 

 

1.   Mix: 

 3 μl 5 ng/ μl RNA,  

 0.4 µl 10 μM Forward primer (0.2 μM final concentration), 

 0.4 µl 10 μM Forward primer (0.2 μM final concentration), 

 0.4 µl* 10 mM dNTP* (0.2 mM final concentration*), 

 x µl OneStep Buffer + SYBR-green (as per manufacturer), 

 y µl nuclease-free water, 

 r μl reverse transcriptase  (as per manufacturer), 

 z µl Taq polymerase (as per manufacturer), 

 20 µl total volume. 

(* dNTPs are often included in the optimized buffer) 

2.    Incubate in real-time thermocycler:  

  95°C 5 min, 

  35 cycles of: 

 95°C 10 sec, 

58°C 30 sec *read for qPCR. 
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3. For Melting Curve analysis of the products, incubate: 

 95°C 1 min, 

 55°C 1 min, 

 +0.5°C increments for 5 sec, with reads from 55oC to 95oC. 

In addition, DNA sequencing of the amplified products is 

recommended. 

 

4.7.3. Two-Step RT-qPCR 

The following is a robust, standard qPCR protocol for amplifying and 

quantifying targets <400bp in length, using SYBR-green detection 

chemistry, and starting with a cDNA template: 

 

1.   Mix:  

 3 μl cDNA (pre-diluted 1/10, in nuclease-free water), 

 0.4 µl 10 μM Forward primer (0.2 μM final concentration), 

 0.4 µl 10 μM Forward primer (0.2 μM final concentration), 

 0.4 µl* 10 mM dNTP* (0.2 mM final concentration*), 

 x µl Buffer + SYBR-green (as per manufacturer), 

 y µl nuclease-free water, 

 z µlTaq polymerase (as per manufacturer), 

 20 µl total volume. 

(* dNTPs are often included in the optimized buffer) 

2.   Incubate in real-time thermocycler: 

 95°C for 5 min, 

 35 cycles of: 

95°C for 10 sec, 

58°C for 30 sec* read (qPCR), 

3.   For Melting Curve analysis of the products, incubate: 

 95°C for 1 min, 

 55°C for 1 min, 

 +0.5°C increments for 5 sec, with reads from 55oC to 95oC. 
 

 

 

 

4.7.4. Two-step Quantitative PCR for high-throughput assays  

The below variant of qPCR is for a 96-well plate format on the CFX96 

real time system (BioRad) or related machines, and works for both 

bee transcripts and pathogen targets. The primary difference over the 

prior protocol is that this one is initiated with cDNA generated in a 

non-specific way, rather than from de novo reverse-transcription for 

each viral and/or host test and control (as shown in the previous 

section). 

 

1. Mix 1x SsoFast EvaGreen® supermix (BioRad) with 3 mM of 

each forward and reverse primer for a given target (final 

volume 4 µl). 

2.   Add 1 µl (~8 ng) of cDNA template to specific wells. 

3.   Use the following cycling conditions:  

 97°C for 1 min, 

 45 (maximum 50) cycles of: 

95°C for 2 sec, 

60°C for 5 sec, 



Melt curve from 65-95°C at +0.5°C/5 sec increments. 

4.   Verify amplicon melting points for every positive sample.   

Amplicons from positive controls and initial samples should be cloned 

into pGEM-T Easy vector (Promega) to verify sequence.  

5.   Run four distinct no-template controls on the plate to monitor 

for contamination and non-specific amplification.  

6.   Standard curves should be run using a recombinant plasmid 

dilution series of the primer targets from 101 to 108 copies, 

providing a linear equation to calculate the copy number in 

each sample using 10 Cq – b / m, where Cq = quantification 

cycle, b = y-intercept, and m = slope. 

 

4.7.5. Multiplex RT-(q)PCR 

Often there is a need to amplify several target RNAs from a single 

sample. This can be done in several parallel ‘uniplex’ reactions, or in a 

single ‘multiplex’ reaction containing the primer pairs for all different 

targets (Williams et al., 1999; Wetzl et al., 2002; Syrmis et al., 2004; 

Szemes et al., 2002). Detection of the different amplicons is usually 

by size difference and electrophoresis for qualitative PCR, or by target

-specific labelled probes in real-time quantitative PCR (Mackay et al., 

2003). A number of such qualitative multiplex PCR protocols have 

been designed for honey bee viruses as well (Chen et al., 2004b; 

Topley et al., 2005; Grabensteiner et al., 2007; Weinstein-Texiera  

et al., 2008; Meeus et al., 2010). Real-time qPCR can also be 

multiplexed, by using a range of different fluorophores and excitation-

reading laser channels. This is useful for minimizing between-reaction 

variability, if both target and internal reference standards can be 

amplified simultaneously, in the same reaction. Other uses are to 

distinguish between variants of the same gene or pathogen. 

Currently, up to four different targets can be detected and quantified 

simultaneously in qPCR. 

However, there are many serious disadvantages of multiplexed 

PCR methods that may ultimately outweigh the advantages of 

consolidation and efficiency: 

 

 Multiplex RT-PCR is considerably less sensitive than uniplex 

RT-PCR (the reagents will be exhausted by several targets 

instead of just one), as much as several orders of magnitude 

depending on the number of targets (Herrmann et al., 2004). 

 Optimization of multiplex (q)PCR assays is considerably more 

complicated than uniplex (q)PCR, due to the large number of 

primers and probes that need to be optimized simultaneously 

for absence of undesired interactions. An alternative to 

multiplex RT-(q)PCR that avoids many of the assay 

optimization problems due to the complex primer mixes is the 

Multiplex Ligation Probe Amplification method. .  

 The PCR products need to be resolved on size or by 

fluorophore, before they can be quantified, nullifying many of 

the gains in efficiency and cost. 
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 Amplification (and thus quantification) of one target can be 

strongly affected by the prior amplification of more abundant 

targets in the reaction, either through competition for a 

limited pool of reagents, or through inhibition of the PCR 

reaction at later stages by the PCR products produced during 

earlier cycles, which sequester most of the polymerase (Santa 

Lucia, 2007).  

For these reasons, it is often much more practical and simple to use 

uniplex RT-PCR, even for large volume and throughput projects.  

 

4.8. Primer and probe design  

There are numerous primer design software packages around to help 

design primers and, if appropriate, TaqMan® probes for the amplified 

regions (Yuryev, 2007). Such software generally recommends using 

very short amplicons (< 100 nucleotides), which shortens the cycling 

times, avoids incomplete amplicons and saves reagents, avoiding 

competition even at late cycles. However, longer amplicons (up to 500 

base pairs) provide much greater flexibility in designing an internal 

(e.g., TaqMan®) probe for the target. The probe should as much as 

possible be devoid of secondary structures (stem-loops) and have a 

Tm slightly higher than that of the amplification primers, so that it 

anneals to the denatured target molecules before any primer-driven 

polymerisation takes place. ‘G’ bases should be avoided at the 5’ end, 

where the fluorophore usually resides, since they quench 

fluorescence, even after cleavage (Bustin, 2000). 

 

4.8.1. Primer length, melting temperature and composition 

Both amplification primers should ideally be the same length (around 

20 nucleotides) with similar melting temperature (Tm) between 55oC-

60oC, giving enough room for experimental annealing temperature 

optimization and long enough to avoid non-specific amplifications. It is 

useful to design all assays and primers around the same annealing 

temperature, so that a single cycling program can be used for all 

assays, and that different assays can be run concurrently with the 

same program, on the same plate. 56oC is a good, standard, robust 

target for the in silico estimated Tm for primers. The primer sequences 

should be evenly balanced between A/T and G/C nucleotides and 

avoid long homopolymeric stretches (i.e. runs of more than 4 of the 

same nucleotide).  

 

4.8.2. Annealing temperature 

The annealing temperature for the assay should be optimized 

experimentally, with a temperature gradient, which can be generated 

by most modern thermocyclers in a single run. Set the annealing 

temperature at 1-2oC below the highest temperature that still 

generates a signal/band, to make sure the assay is both specific and 

robust. For primers with a Tm of 56oC, the optimized assay annealing 

temperature is usually around 58oC and the maximum annealing 

temperature still generating a (weak) signal around 60oC.  

 



Fig. 1. Formation of primer-dimer through complementarity between 

the 3’ ends of two primers (A) or self-complementarity of the 3’ end of 

a single primer (B).  

4.8.3. Cycling parameters 

The default incubation times recommended for particular kits have 

been optimized for the reaction components and should be followed 

unless there are compelling reasons not to. Typical for PCR products 

< 400 bp is 10 seconds denaturation at 95oC; 15 seconds annealing-

extension at 58-60oC. Longer products require an additional 

incubation of 60 seconds per 1,000 bp at 72oC.   

 

4.9. Assay optimization 

Each assay should be optimized experimentally since the various 

components can significantly affect the reaction dynamics  

(Caetano-Anolles, 1998). The criteria for optimization can be sensitivity, 

specificity or reproducibility, and for qPCR also reaction efficiency. 

Higher primer concentrations and lower annealing temperatures 

increase sensitivity, but reduce specificity. Optimising for reproducibility 

usually means identifying the highest annealing temperature, the 

lowest primer concentrations and the shortest incubation times that 

consistently generate the right product, without secondary products, 

at a consistent amplification cycle. 

 

4.9.1. Primer-dimers and other PCR artefacts  

PCR is susceptible to qualitative and quantitative errors caused by the 

accidental, and highly efficient, amplification of short non-target PCR 

templates, especially when there is little target template available. 

Such artefactual amplifications arise from fleeting, partial 

complementarity of the primers with non-target templates, or among 

the primers themselves (SantaLucia, 2007). The latter version is called 

‘primer-dimer’ and is formed through (self)-complementarity at the 3’ 

end of the amplification primers. For example, if one primer ends in 

N16AC-3’ and another primer in N16GT-3’, the two primers can form a 

short template through the pairing of these two 3’ base-pairs (Fig. 1A). 

If a primer ends in complementary bases (N16GC-3’ or N16AT-3’) it 

could even create a 2-bp overlap with itself (Fig. 1B), generating a 

short amplifiable fragment. The risk of primer-dimer increases with 

the number of unique primers in a reaction, such as in multiplex PCR 

(see section 4.7.5.; “Multiplex RT-(q)PCR”). Primer-dimer is identified 

if a product is produced in a template-free reaction. If PCR artefacts 

are only produced in samples, but not template-free controls, then the 

cause is less clear, involving most likely other nucleic acids molecules  

present in the samples. In both cases, the easiest solution is to design 

new primers and test these experimentally (SantaLucia, 2007).  

 

4.9.2. Primer concentration 

Primer concentration can be conveniently optimised at the same time 

as annealing temperature (Topley et al., 2005; Todd et al., 2007). A 

useful starting point is 0.2 µM reaction concentration for each primer. 

Higher concentrations tend to increase sensitivity but also non-specific 

products, which interfere with accurate quantification. Lower 

concentrations reduce sensitivity and accurate quantification.  
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4.9.3. Magnesium concentration 

Magnesium is an essential ion required for most nucleic-acid processing 

enzymes, particularly polymerases. The use of ion-chelating agents, 

such as EDTA, to stop or inhibit polymerases and nucleases attests to 

the importance of Mg+2 in nucleic acid reactions (Green and Sambrook, 

2012). Most commercial buffers contain optimized concentrations of 

Mg+2, so that currently there is little need for further Mg+2 optimization. 

Above a certain minimum concentration, magnesium has only 

marginal influence on reaction efficiency and almost none on reaction 

specificity.   

 

4.10. Quantitation Controls 

In order to accurately quantify the amounts of target in individual 

samples a number of different controls are used. These can be 

broadly divided into external reference standards, which are used to 

quantify the targets, and internal reference standards, which are used 

to correct the quantitative data for differences between individual 

samples in overall RNA quality and quantity. 

 

4.10.1. External reference standards 

The classic way to relate indirect measurements to absolute amounts 

of target is through external reference standards. These are 

established by running the RT-qPCR assay on a dilution series of a 

known amount of target (external standard), using the resulting data 

to calculate the relationship between the absolute amount of target 

and cycle number, and then using this equation to convert the sample 

data to absolute amounts (Bustin, 2000). All modern real-time PCR 

thermocyclers have this function automatically included in their 

software, requiring as only input the absolute concentrations of the 

external standards. Such curves are also extremely useful during 

optimization of the RT-qPCR reaction conditions, particularly for 

determining the reaction efficiency (Bustin et al., 2009).  

External reference dilution standards should be prepared for all 

targets, including the internal reference standards. This is done, in 

short, by amplifying the appropriate fragment with PCR, purifying and 

cloning this fragment in a plasmid and preparing purified, well 

quantified plasmid DNA. This plasmid DNA can be either used directly 

to prepare DNA-based external standard series, or be used to 



synthesize RNA transcripts which in turn are quantified accurately and 

used to prepare RNA-based external standard series. DNA-based 

standards tend to be more sensitive and reproducible but RNA-based 

standards are more realistic and also take the cDNA reaction 

efficiency into account. The professional literature is divided on the 

issue, with good arguments for both approaches (Pfaffl and Hageleit, 

2001). Both curves still require several positive control RNA samples 

per run, to normalize between runs for differences in reagent mixtures 

and, in the case of the DNA curve, to account for the reverse 

transcription step as well. 

 

Reference standards from PCR products: 

1.   Amplify the target fragment by RT-PCR.  

2.   Confirm the amplification and absence of secondary products 

with electrophoresis. 

3.   If there are secondary products, excise the correct fragment 

under low-intensity UV light. 

4.   Purify the fragment using a commercial DNA affinity 

purification column. 

 

The purified PCR fragments can be used directly to prepare an 

external reference standard, as follows: 

1.   Estimate the DNA concentration of the fragment in ng/µl, 

using spectrophotometry (e.g. Nanodrop, section 3.2.1) or 

fluorimetry (e.g. Qubit®; www.inVitrogen.com). 

2.   Estimate the molecular weight of your fragment.  

This can be done exactly, based either on actual sequence or on 

fragment length, in the tools tab at www.currentprotocols.com. An 

approximate estimate for fragments within the 100-1000 bp range is:  

MWdsDNA = bp x 617 ng/nmol 

3.   Convert the DNA concentration to copies/µl as follows: 

copies/µl = [ng/µl]/[MWdsDNA] x [6.0221415 x 1014 copies/nmol] 

4.   Store the undiluted DNA fragment in aliquots at -80oC. 

5.   Prepare a working quantification standards series by serial ten

-fold dilution of the DNA fragment, ranging from 1012 – 100 

copies/µl, in 10 ng/µl yeast or E. coli tRNA (Bustin et al., 2009), 

to minimize loss of standard DNA due to adsorption to the 

microcentrifuge tube walls. 

 

Whether or not the PCR products are used directly for preparing 

external reference standards, they should also be cloned: for confirmation 

of the fragment by sequencing, for long-term preservation of a 

positive DNA control and for the synthesis of RNA-based external 

reference standards. The fragment should be cloned into a T/A plasmid 

cloning vector that has T7 and T3 RNA promoters either side of the 

cloning site. Many molecular supply companies market such T/A cloning 

vectors, which are specially prepared for cloning PCR fragments.  
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1.   Clone PCR fragments. 

Protocols for cloning PCR fragments are beyond the scope of this 

paper. For this, the reader is referred to the product manuals 

provided by commercial suppliers of T/A cloning kits, and specialist 

manuals, such as the outstanding and long-established “Molecular 

cloning: a laboratory manual“, by Green and Sambrook (2012). 

2.   Confirm candidate bacterial clones by colony PCR. This is a 

conventional 20 µl PCR reaction using the primers and 

amplification profile appropriate for the target, containing a 

small smudge of primary bacterial colony as template.   

3.   Run the colony-PCR products on an agarose gel (Green and 

Sambrook, 2012, see section 3.2.1).  

4.   Identify those colonies containing a plasmid with a cloned 

target. 

5.   Prepare small-scale liquid cultures of positive bacterial clones 

(Green and Sambrook, 2012). 

6.   Mix 0.5 ml of liquid bacterial culture with 0.5 ml 50% sterile 

glycerol and store this at -20oC (glycerol stocks). 

7.   Prepare plasmid DNA from the remaining liquid bacterial 

culture, using either a commercial plasmid purification kit or 

home-made reagents recommended in a molecular laboratory 

manual (Green and Sambrook, 2012).  

Make sure that the protocol includes an RNAse step, to digest any 

bacterial RNA. 

8.   Purify the plasmid DNA on a commercial DNA affinity 

purification column. 

9.   Sequence the plasmid, using universal plasmid-based primers.  

This is best done at specialist commercial facilities. 

10. Confirm the presence of the insert in the plasmid from the 

sequence data, and the orientation of the insert in the 

plasmid. 

11. Estimate the DNA concentration of the plasmid in ng/µl, using 

spectrophotometry (e.g. Nanodrop, section 3.2.1) or 

fluorimetry (e.g. Qubit®; www.InVitrogen.com). dsDNA 

 A260 1,0 = 50 ng/µl  

12. Estimate the molecular weight of the plasmid + insert, by 

combining their lengths in bp and converting either exactly at 

www.currentprotocols.com or approximately as follows:  

MWdsDNA = (bpplasmid + bpinsert) x 607.4 + 157.9 ng/nmol 

13. Convert the DNA concentration to copies/ul as follows: 

copies/µl = [ng/µl]/[MWdsDNA] x [6.0221415 x 1014 copies/nmol] 

14. Store the undiluted plasmid in aliquots at -80oC. 

15. Prepare a working quantification standards series by serial ten

-fold dilution of the plasmid, ranging from 1012 – 100 copies/µl, 

in 10 ng/µl yeast or E. coli tRNA (Bustin et al., 2009). 
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RNA-based external reference standards 

1.  Transcribe RNA from purified plasmid DNA, using either the T7 

or the T3 promoter, depending on the orientation of the insert 

and the desired strand polarity of the RNA.  

2.   Linearize the plasmid with a restriction enzyme that digests 

right after the cloned fragment, in the desired orientation.  

This ensures that the RNA transcripts have a defined length.  

3.  Transcribe the digested plasmid with a specific commercial T3/  

T7 RNA transcription kit. 

Follow the corresponding instructions. Alternatively, detailed protocols 

with home-made reagents can be found in Green and Sambrook 

(2012). 

4.  Digest the synthetic, transcribed RNA with DNAse, as 

recommended by the kit manufacturer.  

This is to remove contaminating plasmid DNA which may co-amplify 

and thus interfere with correct quantification.  

5.  Purify the DNAse-treated RNA on RNA affinity purification 

columns. 

6.  Estimate the RNA concentration in ng/µl, using 

spectrophotometry (e.g. Nanodrop, section 3.2.1) or fluorimetry 

(e.g. Qubit®; InVitrogen). ssRNA A260 1,0 = 40 ng/µl 

7.   Calculate the insert size (number of bases from the T3/T7 

promoter site to the restriction enzyme site on the other side 

of the insert used for digesting the plasmid).  

8.   Estimate the molecular weight of the RNA transcript either 

exactly at www.currentprotocols.com or approximately as 

follows:  

MWssRNA = nt x 320.5 + 159.0 ng/nmol 

9.   Convert the concentration of the synthetic RNA to copies/µl as 

follows: 

copies/µl = [ng/µl]/[MWssRNA] x [6.0221415 x 1014 copies/

nmol] 

10. Store the undiluted RNA in aliquots at -80oC. 

11. Prepare a working quantification standards series by serial ten

-fold dilution of the RNA, ranging from 1012 – 100 copies/µl.  

Do not use an RNA carrier for preparing the dilution series, since 

this carrier RNA will participate in the reverse transcriptase reaction 

and thereby significantly affect quantification!! Instead, dilute either in 

nuclease-free water or in 10 ng/µl of a neutral DNA carrier, obtained 

from a commercial source.  

 

4.10.2. Internal reference standards 

Unfortunately, external standards cannot correct for factors unique to 

each sample that affect the RT and/or PCR reactions, such as RNA 

quality and quantity, enzyme inhibitors, sample degradation, internal 

fluorescence etc. To correct for these factors, internal reference 

standards are used. These come in two forms: 
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4.10.2.1. Exogenous internal reference standards 

Exogenously added internal reference standards are a pure, unrelated 

RNA of known concentration and integrity that is added to each 

sample prior to analysis.  Such RNAs can be bought commercially (for 

example, Ambion’s RNA250) and can be used to correct the data for 

the presence of enzyme inhibitors in individual RNA samples 

(Tentcheva et al., 2006). The amount added per reaction should be 

low; < 1% of the amount of sample RNA, so as not to affect the  

RT-qPCR reaction efficiencies. 

 

4.10.2.2.  Internal reference standards 

Endogenous internal reference standards (commonly called 

‘housekeeping genes’) are relatively invariant host mRNA targets 

present in every sample that can be used to normalize quantitative 

data for minor variations between samples in RNA quality and quantity 

(Bustin et al., 2009; Radonić et al., 2004). The problem is that it is 

impossible to prove categorically that the expression of any candidate 

‘invariant’ gene is not affected by the expression of the target gene 

(Radonić et al., 2004). For this reason it is currently recommended to 

use a battery of 3 or 4 internal controls, from different classes of 

genes (metabolic enzymes, structural proteins, transcription factors, 

ribosomal proteins etc.) and construct a control-gene index, with 

which to normalise between samples (Bustin, 2000). Common internal 

reference standards for honey bee research are β-actin (Chen et al., 

2005a; Shen et al., 2005a; 2005b; Locke et al., 2012), rRNA 

(Chantawannakul et al., 2006), microsomal glutathione-S transferase 

(Evans and Wheeler, 2000; Gregory et al., 2005); ribosomal proteins 

RP-S5 (Evans, 2004; 2006; Wheeler et al., 2006), RP49 (Corona et al., 

2005; Yañez et al., 2012), RP-S8 (Kucharski and Maleszka, 2002), and 

transcription factors eIF3-S8 (Grozinger et al., 2003) and eF1α (Toma 

et al., 2000; Yamazaki et al., 2006). 

One technical difficulty with endogenous internal reference 

standards is the presence of contaminating genomic DNA in a sample, 

which could be amplified instead of the mRNA. There are two 

solutions to this:  

 Digest the RNA sample with DNAse prior to RT-PCR.  

Many RNA purification kits come with this option.  

 Design the RT-PCR assay such that the primers are separated 

by a (large) intron in the genomic copy of the gene.  

Only the spliced mRNA will be amplified by the assay (Bustin, 2000). 

Such intron-spanning primers have been designed for the honey bee 

RP49 mRNA and B-actin-isoform-2 mRNA (de Miranda and Fries, 2008; 

Yañez et al., 2012; Locke et al., 2012). 

As stated above, all internal reference standards also require their 

own external standards for accurate quantification. The inclusion of 

internal reference standards obviously greatly increases the cost of a 

project. The inclusion of internal controls is therefore one of several 
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parameters to be decided on when starting a project, based on the 

projects’ objectives, requirement for quantitative precision and 

available finances. Generally, the need for internal controls is greater 

for fully quantitative experiments with highly detailed analysis of 

relatively few samples. The need is much less for semi-quantitative 

survey-type studies, with fewer specific analyses and large numbers 

of samples. 

 

4.10.2.3. External standard for viral target quantification 

1. Extract RNA (Qiagen RNeasy® Mini Kit and QiaShredder®, 

according to manufacturer´s protocol) of bees with an RNA 

target (in this example DWV). 

2. Generate an external standard by amplifying a DWV genomic 

fragment of 1520 bp via RT-PCR, using the primers Fstd  

(5´-GGACCATCCTTCCAGTCTACGAT-3´) and Bstd  

(5´-CTGTAGGTTGTGCTCCTGATGAAGA-3´) and the one-step 

RT-PCR kit from Qiagen. 

3. This fragment contains the 354 bp fragment, which can be 

amplified by the primer pair F1/B1 (Genersch, 2005), for 

quantification. 

4. Quantify the number of PCR-fragments via photometric 

analysis at 260 nm wavelength (Nanodrop, section 3.2.1). 

5. Prepare a dilution series from the initial concentration through 

three orders (10-fold dilutions) of concentrated solutions.  

 

This set of fixed dilutions will be used to ensure that PCR 

efficiency is maintained and to identify the precise predicted copy 

number for a particular Cq threshold. 

 

4.11. Microarrays 

A microarray is a powerful multiplex detection technology consisting 

of an ordered array of hundreds of molecular probes specific for 

different target RNAs bound to a solid support, usually a slide. The 

target sequences in an RNA sample are hybridized to these probes 

and these hybridization events are detected by a variety of, usually 

optical, detection chemistries (de Miranda, 2008). The power of the 

technology lies in the massive multiplexing potential where the 

relative and absolute amounts of hundreds of different targets can be 

determined simultaneously (Cheadle et al., 2003; Gentry et al., 2006). 

As molecular biology, pathology and diagnostics moves away from 

single organism/gene effects to surveying interactions among pathogens 

and (host) genes, microarray-based diagnostics will become increasingly 

relevant. Microarray printing technology is becoming cheaper and 

more reliable, and single-use disposable microarrays for specific multi-

target diagnosis are increasingly available (Yuen et al., 2003; 

Lieberfarb et al., 2003; Noerholm et al., 2004; Lin et al., 2004; 

Perreten et al., 2005; Fiorini et al., 2005). Uniformity of hybridisation 

across the microarray, important for reliability in quantitation, is 

maximized with a range of nano-technological innovations (Yuen et al., 

2003; Noerholm et al., 2004; Fiorini and Chiu, 2005), improved 
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oligonucleotide design (Rouillard et al., 2003) and with replication of 

the spots or even whole arrays (an array of arrays) across the slide. 

The probe-target hybridisation can be detected through FRET-based 

probes, SYBR-green-I dye, or labelling of the nucleic acid sample 

containing the target sequences. Microarray technology can also be 

combined with quantitative RT-PCR, multiplex (pyro)sequencing and 

label-free electronic or optical detection technologies to increase the 

speed, accuracy, specificity or information content of the diagnosis 

(Weidenhammer et al., 2002; Erali et al., 2003; Gharizadeh et al., 

2003; Fixe et al., 2004).  

Numerous honey bee arrays have already been designed for 

different research purposes (Whitfield et al., 2002; Evans and 

Wheeler, 2000; 2001; Robinson et al., 2006). A microarray has also 

been developed for the semi-quantitative detection of honey bee 

viruses (Table 5 in Glover et al., 2011) which will be developed further 

for diagnostic purposes.  

Microarrays can also be developed for serology-based detection of 

proteins (Sage, 2004), using a similar approach as the sandwich 

ELISA (Enzyme-Linked ImmunoSorbent Assay: see de Miranda et al., 

2013). The probe-target recognition events are visualized and 

detected using similar detection chemistries as for nucleic acid-based 

microarrays.  

 

4.12. Northern blots using DIG labelling  

The primary advantage of using Northern blot analyses for identifying 

specific predicted RNA’s, versus a PCR-based method, comes in the 

ability to predict the size of the entire transcript that is targeted using 

standard gel size markers. This is key especially when transcripts are 

subjected to editing (splice variants or enzymatic cutting as for small 

RNAs) and editing must be validated using a technique other than 

PCR. In addition, since probe binding is more permissive of nucleotide 

changes, Northern blots can be used to verify transcripts that might 

have mutations at primer sites used for PCR. In addition, this 

approach has somewhat lower vulnerability to point mutations that 

might cause a specific primer pair to fail to amplify a predicted target. 

The disadvantage to using Northern blots versus a PCR method as 

above is in time and expense and in a somewhat reduced ability to 

quantify transcript abundance. The below protocol avoids the use of 

radio-isotopic nucleotides as probes. 

 

4.12.1. Agarose /formaldehyde gel electrophoresis 

What follows is a standard protocol for denaturing gels suitable for 

linear separation of RNA strands: 

  

1. Be RNase free!! Use gel apparatus designated for RNA. Wipe 

apparatus with “RNaseAway” and rinse thoroughly with RNAse

-free water. 

2. Prepare 100 ml of 1% agarose/formaldehyde gel: 

1. Dissolve 1 g agarose in 72 ml DEPC-treated water in a 250 ml 

glass flask.  



2. Cool to 60oC in a water bath.   

3. Add 10 ml of 5X MOPS running buffer (200 mM MOPS 

buffer, 50 mM Sodium acetate, 20 mM EDTA, pH 7.0) and 

18 ml of 37% formaldehyde. 

         Precautions: Formaldehyde vapours are toxic. Prepare the 

gel in a fume hood.  

3. Pour the gel to the gel tank and allow it to set.  

4.   Add sufficient 1X MOP running buffer to fill the tank in order 

 to cover the gel and remove the comb carefully. 

5.   To prepare samples for gel electrophoresis, mix:  

     11 µl of each RNA sample (0.5-1 µg/µl), 

     5 µl 5X MOPS running buffer,  

     9 µl 37% formaldehyde, 

     25 µl of 50% formamide. 

6.   Heat the sample at 65oC for 15 min.  

7.   Cool on ice for 2 min.  

8.   Add 3 µl loading dye mix and 2 µl ethidium bromide (0.5 mg/ml).  

9.   Run the gel immediately after loading samples. 

10. When the gel dye bands have separated and migrated at least 

2-3 cm into the gel, or as far as 2/3 the length of the gel, 

visualize under UV light and take picture.  

The 28s and 18sribosomal RNA (rRNA) should appear as sharp 

bands on the gel with no apparent smearing from degradation. The 

28S rRNA band should be approximately twice as intense as the 18S. 

 

4.12.2. Assembly of the transfer setup and transfer of RNA 

from gel to membrane 

1.   To prepare a gel for transfer, rinse the gel in DEPC-treated 

 water twice for 20 min to remove the formaldehyde, which 

 will otherwise interfere with transfer of RNA from gel to the 

 membrane.  

2.   Soak the gel in RNase-free 20X SSC (3.0 M NaCl and 0.3 M 

sodium citrate, pH 7.0) for 45 min before proceed to setting 

up the transfer.  

3.   Cut uncharged nitrocellulose membrane to size of gel.  

4.   Soak the membrane in water for 2-3 min to wet . 

5.   Float in 20X SSC. 

 

The transfer is conducted by the capillary method (Fig. 2). 

 

1. Place a piece of thick blotting paper on the top of a glass plate 

 that is elevated by four rubber stoppers placed near each 

 corner of a baking glass dish.  

2. Drape the ends of the wick blotting paper over the edges of 

the plate.  

3. Fill the glass dish with RNase-free 20X SSC until the wick 

blotting paper on the top of glass plate is completely wet. 

4. Squeeze out all air bubbles by rolling with a glass rod or 

pipette. 
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5. Place the gel facing down on the wet blotting paper. 

6. Squeeze out air bubbles by rolling a glass pipette.  

7. Cut a small triangular piece from the top left-hand corner to 

simplify orientation. 

8. Place the wetted membrane on the surface of the gel by 

aligning the cut corners.  

9. Get rid of any air bubbles under the membrane by rolling a 

glass pipette. 

10. Cut 4-5 sheets of Whatman 3MM paper to the same size as 

membrane.  

11. Place on top of the membrane.  

12. Place a stack of paper towels on top of the Whatman 3MM 

papers.  

13. Add a 200-500 g weight to hold everything in place.  

14. Allow the transfer of RNA to proceed by capillary action 

overnight.  

15. Disassemble the transfer stack at the next day.  

16. Rinse the membrane briefly in 6X SSC.   

17. Immobilize RNA to the blot by UV cross linking while the 

membrane is still damp. 

 

 

 

 

4.12.3. Preparation of DIG labelling (non-radioactive) probe 

While DNA probes can also be used to detect RNA targets, a DIG-

labeled RNA probe is ideal for detecting RNA on a Northern blot 

because RNA probes (riboprobes) that are transcribed in vitro are able 

to withstand more rigorous washing steps preventing some of the 

background noise. RNA probes give better sensitivity for detecting low 

amounts of RNA target than DNA probes. The following protocol is 

based on the Roche DIG RNA Labelling Kit, SP6/T7. 

Fig. 2. Schematic diagram of the process used to transfer nucleic 

acids from a gel onto a binding membrane. 



1.   Linearize the recombinant plasmid DNAs with the target insert 

 by cutting a restriction enzyme cleavage site downstream 

 from the cloned insert using a restriction enzyme that creates 

 5’ overhangs (the choice of this enzyme will depend on the 

 sequence of both the plasmid and insert). 

 2.   After restriction digestion, purify the DNA by spin column 

 purification or via phenol/chloroform/isoamyl alcohol 

 extraction and ethanol. 

This is commonly referred to as the ‘plasmid mini-prep’ and there 

are numerous commercial and home-made recipes for doing so that 

all work well. 

3.   Add the 2 μg purified template DNA to the following 

 transcription reaction mixture to make 26 µl probe as follows: 

 4 µl 10X NTP labelling mixture, 

 4 µl 10X Transcription buffer, 

 2 µl Protector RNase Inhibitor, 

 4 µl RNA Polymerase SP6/or T7. 
 

Adjust the volume with additional water until a final volume of 26 µl. 

4.   Place transcription reaction in the 37°C incubator for 2 hours. 

Longer incubations do not increase the yield of labeled RNA. 

5.   Stop reaction with 2μl 0.2M EDTA (pH 8.0).  

Labeled probes are stable for at least one year at -15 to -25°C. 

 

4.12.4. Hybridization analysis 

(Roche Applied Science DIG Easy® Hyb, DIG Wash and Block Buffer 

Set, CSPD®Ready-to-use protocol) 

1. Pre-hybridize the blot with pre-warmed DIG Easy® Hyb  

(10– 15 ml per 100 cm2) in a specialized hybridization bag or 

any sealable container: 

1.   Incubate the blot for 30 min at 65°C.  

2.   Agitate gently during the pre-hybridization step. 

2.   Pipette the desired volume of probe (50-100 ng probe per ml 

hybridization buffer) into the hybridization bag.  

3.   Continue to incubate with rotation at 65°C for 10-16 hours. 

4.   After the hybridization is complete, wash the blot in a tray 

 containing Low Stringency Buffer (2x SSC containing 0.1% 

 SDS) twice by incubating the tray at RT for 5 min with gentle 

 agitation. 

5.   Transfer the blot to preheated High Stringency Buffer (0.1x 

 SSC containing 0.1% SDS).  

6.   Incubate the blot twice (2 x 15 min, with shaking) in High 

 Stringency Buffer at 65°C. 

7.   After last wash, pull out the blot out of the hybridization 

 container.  

8.   Place it between two Whatman paper sheets. 

Do not allow the membrane get too dry so the membrane can be 

stripped and reused for hybridization. 

9.   Place blot onto a piece of Plastic wrap that is at least twice 

 the size of the membrane. 
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10. Add 1 ml detection reagent (anti-digoxigenin-AP conjugate 

 and the premixed stock solution of CSPD® ready-to-use) to 

 stain the membrane and leave for 5 min.  

11. Completely wrap up the blot with the plastic wrap.  

12. Put it in a film cassette for chemiluminescent detection of 

 hybridization signals. 

   

4.13. In situ hybridization 

4.13.1. Tissue fixation 

1. Dissect out individual tissues. 

2. Wash tissues with cold PBS 2-3 times.   

3. Fix tissues in freshly made 4% paraformaldehyde in 100mM 

PBS (pH 7.0) overnight at 4oC. 

4. Rinse in nuclease-free water three times. 

5. Store tissues in 70% ethanol at 4oC until further use. 

6. For tissue dehydration, carry out successive incubation in 

ethanol (70%, 95% and 100%) and xylol (2 x 5 min each).  

7. Embed in paraffin. 

8. Cut Paraffin sections into 2-5 micron thick segments. 

9. Mount on poly-L-lysinated slides which are to be stored at 4°C 

overnight. 

10. To rehydrate the sections prior to hybridization:  

1.   Carry out descending concentration of ethanol (100%, 

  95% and 70%).  

2.   Dewax in xylol.  

3.   Treat with proteinase K (10 ug/ml) for 30 min.  

4.   Acetylate with 0.33% (v/v) acetic anhydride in 0.1 M 

 triethanolamine-HCl (pH 8.0) for 10 min. 

 

4.13.2. Preparation of DIG labelling (non-radioactive) probe 

Using Roche DIG RNA Labelling Kit, SP6/T7. The same procedures as 

for Northern blot (see section 4.12.). 

 

4.13.3. Hybridization Analysis 

1.   Pre-hybridize the sections in pre-hybridization solution (50% 

 formamide, 5X SSC, 40 µg/ml salmon sperm) at 58oC for two 

 hours. 

2.   Incubate in hybridization buffer with Dig-labeled TARGET 

 probe solution to a concentration of 100-200 ng/ml of probe 

 in pre-hybridization solution at 58oC overnight. 

3.   After hybridization, wash the sections twice in low stringency 

 wash solution (2X SSC, 0.1% SDS) at room temperature for 

 five minutes.  

4.   Wash twice in high stringency wash solution (0.1 × SSC, 0.1%    

      SDS) at 52oC for 15 min.  

Note: The hybridization signals are detected with Alkaline 

phosphatase (AP)-labeled sheep anti-DIG antibody conjugate (Roche 

Applied Science). 

5.   Add the conjugate solution to the dry sections. 



6.   Incubate at 4°C for two hours in a chamber in which humidity 

 is maintained at > 70% relative humidity.  

7.   Rinse the slides three times with washing buffers.  

8.   Perform the colour development by adding the buffer solution 

 containing nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-

 3-indoyl phosphate (BCIP) on the tissue sections. 

9.   Incubate for three to six hours at RT protected from bright 

 light. 

10. Stop the colour reaction by a 5 min wash in Tris/EDTA (0.1 

 mM, pH 8.0).  

11. Remove the non-specific staining in 95% EtOH overnight. 

12. Rehydrate the sections through: 

1.   Successive incubation in ethanol (70%, 95%, and 100%). 

2.   Incubation in xylol (2 X15 min each). 

13. Mount in Eukitt® resin (Sigma).  

Note: Negative control reactions include regular dUTP instead of  

DIG-labeled TARGET probe. 

14. Observe and photograph In Situ hybridization slides under a 

light microscope. 

The hybridization signals are shown by dark blue sites where the 

DIG-labeled probe bound directly to the viral RNA. The section of 

negative control will stain pink only with the nuclear fast red. 

 

 

5. Proteomic methods 

5.1. Introduction 
 

 

Proteins are the ultimate functional product of most gene expression 

so optimally one would prefer to look at proteins when trying to 

understand the mechanisms an organism uses to respond to a given 

condition. As with any other biomolecule, tools for identifying and 

quantifying proteins are a prerequisite to their successful study. Single 

proteins are typically detected using antibodies but very few 

antibodies have been generated against bee proteins and none have 

been commercialized. Of all the analytical methods available for 

studying proteins, mass spectrometry is the most sensitive, most 

accurate and least biased. Proteins can be identified by mass 

spectrometry by first hydrolyzing them with a specific protease such 

as trypsin. The masses and fragmentation patterns of the resulting 

peptides can then be determined and used to identify the peptides 

individually and the protein(s) they came from (i.e. proteomics). This 

process works best when all possible proteins that might be present 

are known and is only really successful when an organism’s genome 

has been sequenced. To this end, in recent years proteomics has 

begun to be applied in bees towards understanding a range of 

paradigms. 

Where is the future of proteomics research in bees heading? 

Mapping protein expression across all tissues and castes in adult bees 

is the logical next step after sequencing the bee genome. The 
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genome helps to determine which proteins may be present but where 

are those proteins expressed? The protein expression atlas in bees 

will tell that and will mark a significant step forward for bees as a 

model system as this would be the first such comprehensive atlas in 

any multicellular organism. Additional protein-based methods (protein 

extraction and immunochemical assays for protein abundance) are 

covered in further detail in the BEEBOOK paper on physiology and 

biochemistry (Hartfelder et al., 2013). 

 

 

6. Population genetics 

6.1. Introduction 

Measuring the current variation in genetic traits within and across 

populations can give insights into past movement of individuals, 

population size, and the association of specific genetic histories with 

honey bee biological traits such as behaviour, disease resistance, and 

colony life histories. Honey bees, thanks to human transport and 

breeding, are made up of numerous and often entwined genetic 

lineages and one aim of population-genetic analyses are to resolve 

these connections. 

 

6.2. Mitochondrial DNA analysis 

In principle, one honey bee (worker or drone) per colony is enough to 

determine the maternal origin of the whole colony given the maternal 

inheritance of mitochondrial DNA (mtDNA), i.e. all the daughter 

workers and son drones from one honey bee queen share the same 

molecule. Due to the risk of drifting between colonies, it is ideal, and 

in some cases essential, to make this one collected individual of a life 

stage where host colony is unambiguous (e.g., a developing bee or 

one observed exiting from a brood cell). In cases where this is not 

possible, pre-flight worker bees could be substituted, although it is 

arguably worth sampling more than one individual to avoid mistakes 

in assigning colony heritage.  

The most widely used mitochondrial region for population genetic 

studies is the intergenic region located between the tRNAleu and cox2 

(subunit 2 of the cytochrome oxidase) genes. This region shows 

length and sequence variation that allows discrimination of honey bee 

evolutionary lineages (Garnery et al., 1993). It is composed of two 

types of sequences: P and Q. The sequence P can be absent (lineage 

C from east Europe) or present in four different forms: P (lineage M 

from west Europe), P0 (lineages A from Africa and O from Near East), 

P1 (Atlantic African sub-lineage) and P2 (restricted to the Y lineage 

from Ethiopia; De la Rúa et al., 2009). The number of Q sequences 

and the sequence variation developed through a RFLP test with the 

restriction enzyme DraI (Garnery et al., 1993) can be used to 

determine the haplotype within each lineage. Below is the protocol to 

determine the mitochondrial haplotype, modified from Garnery et al. 

(1993) by including a new thermal regime for PCR and optimizing the 



chemistry of PCR reactions. A full description of how this locus can 

discriminate among honey bee ecotypes is presented in the BEEBOOK 

paper on characterizing subspecies and ecotypes by Meixner et al. 

(2013). 

 

1. Honey bee samples are immediately transferred into tubes 

with absolute EtOH and preserved at  -20°C until DNA 

extraction. A single or two legs from one individual are 

enough to extract total DNA following the Chelex®-based 

(Biorad, Inc.) protocol (Walsh et al., 1991; see section 3.2.3.). 

2. PCR amplify the intergenic region with the primers E2  

(5’-GGCAGAATAAGTGACATTG-3’) located at the 5’ end of the 

gene tRNAleu and H2 (5’-CAATATCATTGATGAACC-3’) located 

close to the 5’ end of the gene cox2 (Garnery et al., 1993). 

This amplification can be performed by using Ready-To-Go TM PCR 

Beads (product code 27-9557-01, GE Healthcare), that are pre-mixed 

and pre-dispensed reactions for PCR featuring, therefore reducing the 

pipetting steps and the chances to handling error. They contain all the 

necessary reagents for a 25 µl reaction volume. 

3.   Add 20.2 µl of PCR-quality water to each tube. 

4.   Mix by gently flicking it with the fingers. 

5.   Add 0.4 µl of each primer (10 mM) and vortex and centrifuge 

the mix to get all the components at the bottom of the tubes. 

6.   Add 4 µl of DNA extraction solution and mix. 

7.   Place the reaction mixtures in a thermo cycler with the 

following amplification program: 

Denaturation at 94 °C for 5 min, 

Followed by 35 cycles of: 

94 °C for 45 sec, 

48 °C for 45 sec, 

62 °C for 2 min,  

Final elongation step of 20 min at 65 °C. 

8.   To identify successful amplicons, 2 µl of the PCR product of 

each sample are electrophoresed in a 1.5% agarose gel (see 

section 3.2.1) with ethidium bromide included and 

photographed over a UV light screen. 

9.   Aliquots of the PCR product are then digested with the 

endonuclease DraI (recognition site 5’-TTTAAA-3’) by adding: 

10X endonuclease buffer to a final concentration of 1X,  

0.06U of DraI/, 

10 µL of PCR product, 

Incubate at 37°C overnight. 

10. To determine RFLP patterns, the digested products of each 

sample are electrophoresed in a 4% agarose Nusieve® or 

Metaphor® (Lonza Biosciences) gel at 100 volts for ca. 1 hour 

30 min and photographed over a UV light screen. 

11. At least one sample with a characteristic RFLP pattern should 

be directly sequenced using the same primers as for the 

amplification.  
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12. Prior to sequencing, purify PCR products:  

 Either with QIAquick® PCR Purification Kit (Qiagen). 

 Alternatively, PCR products can be purified with isopropanol 

and 5 M ammonium acetate as follows:  

1.   To 10 µl of PCR product add:  

7 µl of 5 M ammonium acetate, 

 17 µl of isopropanol. 

2.   Leave 10 min at room temperature. 

3.   Centrifuge 30 min to 13,500 rpm. 

4.   Discard the supernatant.  

5.   Add 500 µl of cold 70% EtOH. 

6.   Centrifuge 5 min at 13,500 rpm. 

7.   Remove supernatant and allow to dry overnight. 

8.   Re-suspend in 30 µl of water. 

 

6.3. Nuclear DNA analysis 

Nuclear markers are biparentally inherited and allow genotyping of 

workers to obtain information from both the mother queen and the 

drones she has mated with. Nuclear analyses of A. mellifera involve 

widely used microsatellites and more recently, single nuclear 

polymorphisms or SNPs. 

 

6.3.1. Microsatellites 

Microsatellites consist of short motifs (one to six nucleotides) that are 

repeated from four to 20+ times at points scattered across all 

eukaryotic genomes. They are useful as markers for genetic structure 

since the number of repeats at any given locus is unstable and new 

repeat variants are constantly arising by mutation and being lost by 

drift and other population-level events. Strategies to screen a total of 

550 polymorphic microsatellite loci have been described in A. mellifera 

(Solignac et al., 2003), and many thousands more are found in the 

complete honey bee genome (Honey Bee Genome Sequencing 

Consortium, 2006). The protocol described here has been used to 

analyse the temporal genetic variation of island honey bee 

populations (Muñoz et al., 2012), the mating frequency of the Iberian 

honey bee (Hernández-García et al., 2009) and the population genetic 

structure of European honey bees (Muñoz et al., 2009; see also the 

BEEBOOK paper on characterizing subspecies and ecotypes by 

Meixner et al. (2013) for a full review of the use of microsatellites in 

determining honey bee ecotypes). It takes advantage of multiplexing, 

whereby multiple loci are screened in a single PCR reaction and size 

assay. These loci are widely used, and it is subsequently possible to 

compare allelic counts and genotypes across different studies. 

 

6.3.1.1 Microsatellite reaction mix 

To prepare the reaction mix, add: 

 1X reaction buffer (provided as a 10x solution with Taq 

polymerase), 

 1.2 mM MgCl2, 



 0.3 mM of each dNTPs,  

 0.4 µM of each primer,  

 1.5 U Taq polymerase,  

 > 5 ng DNA (provided in 2µl DNA solution). 

 

6.3.1.2 Primers for multiplexed honey bee microsatellite loci 

A113-F-(FAM) CTC GAA TCG TGG CGT CC 

A113-R  CCT GTA TTT TGC AAC CTC GC 

A007-F-(NED) GTT AGT GCC CTC CTC TTG C 

A007-R CCC TTC CTC TTT CAT CTT CC 

AP043-F-(VIC) GGC GTG CAC AGC TTA TTC C 

AP043-R CGA AGG TGG TTT CAG GCC 

AP055-F-(PET) GAT CAC TTC GTT TCA ACC GT  

AP055-R CAT TCG GTA TGG TAC GAC CT 

B124-F-(FAM) GCA ACA GGT CGG GTT AGA G 

B124-R CAG GAT AGG GTA GGT AAG CAG 

 

6.3.1.3 Thermal cycling conditions for multiplex PCR 

Incubate the samples as follows: 

5 min at 95°C, 

Followed by 30 cycles:  

95°C for 30 sec, 

54°C for 30 sec, 

72°C for 30 sec, 

Final extension is 30 min at 72°C. 

 

6.3.1.4 Size estimation of PCR products 

PCR products are visualized by capillary electrophoresis and sized with 

an internal size-standard (e.g., using the Applied Biosystems or 

MegaBACE systems, both of which have extensive use for 

microsatellite scoring). Alleles are subsequently scored using 

GeneMapper v3.7 software (Applied Biosystems™). It is also possible 

to measure microsatellite size variants using large denaturing 

polyacrylamide gels (e.g. Evans, 1993) although this method has 

fallen from favour do to the hazards of polyacrylamide and difficulties 

in manually scoring allele sizes.  

Once genotypes of samples have been established, microsatellite 

data are well suited for assessing parentage of nestmates (Evans, 

1993), for standard population-genetic statistics including ecotype 

determination (Estoup et al., 1993; reviewed by Meixner et al., 2013), 

and for genome mapping (Solignac et al., 2003), among other uses. 

 

6.3.2. Single-nucleotide polymorphisms (SNPs) 

In the honey bee and other species for which extensive data have 

been gathered on genomic sequence variants, it is possible to use 

SNPs to reconstruct past migration events, and to separate races and 

populations. A SNP is any validated nucleotide change between the 

genomes of two or more samples, and SNP’s can occur both within 

the coding regions (exons) of genes and in the vast regions that 
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separate genes or lie in non-coding parts of the genome. SNP 

analyses are standard in human, veterinary, and agricultural systems, 

and this approach will continue to increase as a viable option for the 

study of honey bees. Unfortunately, high-throughput SNP genotyping 

remains an expensive endeavour that requires cutting edge technologies 

and the expertise often only available in a core laboratory facility or at 

larger institutions. In addition, prior to genotyping the honey bee 

sample of interest, a SNP assay must be developed (or purchased, if 

commercially available) from sequence data relevant for the study 

population. At present, there are only two SNP assays developed and 

published for honey bees. The first one (Whitfield et al., 2006), which 

consisted of 1536 SNP loci that were selected mainly based on spacing 

criteria, was developed for genotyping using the Illumina GoldenGate™ 

assay and is not commercially available, although a honey bee SNP 

database (over 1 million SNPs) is available at NCBI (http://

www.ncbi.nlm.nih.gov/snp/) and this resource could be exploited to 

establish a system for genotyping. More recently, Spötter et al. (2011), 

published a 44,000 SNP assay designed for analysis of varroa-specific 

defence behaviour in honey bees. This assay uses Affymetrix™ 

technology, and it is now commercially available via AROS Applied 

Biotechnology AS. 

As illustrated in Spötter et al. (2011), development of a SNP assay 

is a time and resource intensive undertaking, yet it can be designed to 

address a specific objective (e.g., to investigate varroa-specific 

defence behaviour). Once the design stage is accomplished, the assay 

can then be used to genotype honey bee samples at hundreds to 

thousands of loci via high-throughput technologies. Illumina® 

technologies, for example, offer a number of options for high 

throughput genotyping depending on the number of SNPs to be 

interrogated. The GoldenGate assay, employed by Whitfield et al. 

(2006), interrogates 96, or from 384 to 1,536 SNP loci simultaneously 

(plex levels can be 384, 768, or 1,536). For genotyping a number of 

SNPs larger than 6,000 up to 2,500,000 the Infinium assay (also a 

product from Illumina) is required.  

Both the GoldenGate assay and the Infinium assay take three 

days for completion and require reasonable quality and accurately 

quantified genomic DNA. DNA concentrations should be 50 ng/µl, 

quantified a fluorometric assay (e.g., Picogreen) or spectrophotometry 

(e.g., Nanodrop, section 3.2.1). DNA can be extracted from the 

thoraces of honey bees that had been stored at -80°C or in absolute 

EtOH. The GoldenGate assay involves several steps including DNA 

activation for binding to paramagnetic particles, hybridization of 

activated DNA with assay oligonucleotides, washing, extension, 

ligation, PCR, hybridization onto the BeadChip, and finally analysis of 

the fluorescence signal on BeadChip by the iScan System.  

Unlike in the GoldenGate assay, where universal primers are used 

to amplify SNP-reactive DNA fragments, in the Infinium assay 

genomic targets hybridize directly to array-bound sequences. 

Following hybridization onto the BeadChip, samples are extended and 
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fluorescently stained. As for the GoldenGate assay, the last step 

consists of analysis of scanned BeadChips using the iScan System. 

Genotype data generated by both assays using the iScan System (and 

other systems), are then analysed using the GenomeStudio 

Genotyping (GT) Module. The calls are automated but can be manually 

verified and edited if necessary (e.g., if there are signs of unequal 

proportions of an expected biallellic marker). Finally, summary 

statistics and results are exported for further analyses using standard 

population genetics software packages such as STRUCTURE (http://

pritch.bsd.uchicago.edu/structure.html).  

With increasingly affordable sequencing costs allowed by next 

generation technologies (e.g., 100 bp or shorter), it will be feasible to 

carry out population-genetic and strain-identifying projects via whole-

genome sequencing. This technique involves a scan (usually 3-fold 

sequencing depth or more, i.e., > 750 million sequenced bases for the 

honey bee) of a genome or population of interest followed by an 

alignment of those short reads to a reference genome (for the honey 

bee this would be the genome assembly from HGSC, 2006). It is 

relatively straightforward, using free programs available for download 

(e.g., http://bioinformatics.igm.jhmi.edu/salzberg/Salzberg/

Software.html) to identify and in some cases quantify SNPs that differ 

among samples. There are also public sites at which one can import 

data and benefit from a maintained supercomputer dedicated to such 

genomic analyses (e.g. https://main.g2.bx.psu.edu/). SNP analyses 

derived from sequencing data have yet to make an impact on honey 

bee science but they are expected to in the next few years. 

 

 

7. Phylogenetic analysis of 

sequence data 

7.1. Introduction 

The goal of this protocol is to provide the reader with an easy to use, 

reliable, and technically appropriate method to choose, align and 

analyse sequence data for phylogenetic analyses of taxa or genes of 

interest. Analysis of highly conserved loci (i.e. rRNA, cytochrome 

oxidase I) or population genetic studies from one species, require 

nucleotide level data to achieve necessary resolution in tree topology. 

Amino acid sequences are typically used when reconstructing 

phylogenies from an encoded protein across a large evolutionary 

distance, which can make alignment at the nucleotide level difficult.  

Over time, one develops their preferred approach and programs to 

use in this process, of which there are many. While the following 

protocol reflects preferences of the authors, it is appropriate for a 

wide variety of applications, user skill levels, and relies on freely 

available programs with graphical user interface (GUI)-based options. 

Detailed information on use is available from each of the program 

sites, given below. As a disclaimer, concatenation of sequence data, 
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while appropriate and employed for taxonomy classification, is a more 

specific approach some users may wish to use but will not be 

discussed here. Additionally, though PAUP is also widely used in 

phylogenetic analyses, it requires a small fee and therefore is not 

discussed here, though labs with frequent phylogenetic needs may 

wish to purchase this program. MEGA and other software free to the 

public can invoke many or all of the same phylogenetic analyses as 

PAUP. 

The steps to perform a phylogenetic analysis are: 

1.   Obtain and format sequences of interest. 

2.   Format sequence data in FASTA format. 

3.   Align sequence data. 

4.   Trim aligned sequence data to equal length. 

5.   Perform phylogenetic analyses. 

Each step is described below in detail. 

 

7.2. Obtaining and formatting sequences of 

interest for phylogenetics 
 

 

 

Once you have obtained DNA sequence data for your study, you may 

wish to add accessioned sequence data to your analyses. This will be 

particularly important if you want to root your phylogeny and provide 

an outgroup (sequence(s) to which all of your sequences are distantly 

related) to strengthen comparative interpretation of your data. 

Accessions from nucleotide sequence data banks can be searched, 

using a keyword(s) or via a BLAST search algorithm (i.e. blastn, 

megablast, etc.), to identify homologues to your sequence of interest. 

These include GenBank (via NCBI; (http://www.ncbi.nlm.nih.gov/), 

EMBL-Bank (via EBI; http://www.ebi.ac.uk/embl/), and DNA Data 

Bank of Japan (DDBJ; http://ddbj.sakura.ne.jp/).  If using rRNA 

sequence data, SILVA rRNA database (http://www.arb-silva.de/) can 

be used to retrieve reference sequences that are quality-scored 

(Pruesse et al., 2007). 

 

7.3. Sequence data in FASTA format 
 

For compatibility in downstream analyses, sequence data should be in 

a single file and FASTA formatted.  Sequence databases include 

FASTA as an option for output format. An example of FASTA 

formatted sequences retrieved from GenBank (abbreviated in length 

for the sake of space): 

 

>gi|21747902|gb|AY114459.1| Apis mellifera mellifera isolate 

melli4 cytochrome oxidase subunit I (COI) gene, partial cds; 

mitochondrial gene for mitochondrial product 

CCCCGAATAAATAATGTTAGATTTTGATTACTTCCTCCCTCATTAT

TAATACTTTTATTAAGAAATTTATTTTACCCAAGACCAGGAACTG

GATGAACAGTATATCC 

 

http://bioinformatics.igm.jhmi.edu/salzberg/Salzberg/Software.html
http://bioinformatics.igm.jhmi.edu/salzberg/Salzberg/Software.html
https://main.g2.bx.psu.edu/
http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/embl/
http://ddbj.sakura.ne.jp/
http://www.arb-silva.de/


>gi|14193071|gb|AF153104.1| Apis cerana haplotype 4 

cytochrome oxidase subunit 1 (COI) gene, partial cds; 

mitochondrial gene for mitochondrial product 

TTTCTAATTGGAGGTTTTGGAAATTGATTAATTCCTTTAATATTA

GGATCTCCAGATATAGCATTTCCTCGAATAAATAATATTAGATTC

TGATTACTCCCTCCTTC 

>gi|67626085|gb|DQ016070.1| Apis dorsata haplotype 7 

cytochrome c oxidase subunit 1 (CO1) gene, partial cds; 

mitochondrial 

TTTTTAATTGGAGGATTTGGAAATTGATTAATCCCTTTAATATTA

GGGTCTCCAGATATAGCATTTCCTCGAATAAATAATATTAGATTT

TGATTATTACCTCCTT 

 

The sequence identifier (e.g. accession number) and title for each 

entry is preceded by a carrot symbol “>” and ends with a hard return. 

The immediate next line below this is the sequence information and 

should contain no spaces. The end of the sequence is determined by 

a hard return.  You will want to abbreviate the title of your sequence 

entries now, prior to alignment, using the all-important accession 

number or perhaps just the species name. The number of characters 

allowed in the sequence title is limited, to varying degrees, by 

alignment programs but are typically 30 characters or less. Only 

letters, numbers, underscores “_”, and pipes “|” are typically allowed. 

The above sequence entries are prepared for alignment like this:  

 

>AY114459_A_mellifera 

CCCCGAATAAATAATGTTAGATTTTGATTACTTCCTCCCTCATTAT

TAATACTTTTATTAAGAAATTTATTTTACCCAAGACCAGGAACTG

GATGAACAGTATATCC 

>AF153104_A_cerana 

TTTCTAATTGGAGGTTTTGGAAATTGATTAATTCCTTTAATATTA

GGATCTCCAGATATAGCATTTCCTCGAATAAATAATATTAGATTC

TGATTACTCCCTCCTTC 

>DQ016070_A_dorsata 

TTTTTAATTGGAGGATTTGGAAATTGATTAATCCCTTTAATATTA

GGGTCTCCAGATATAGCATTTCCTCGAATAAATAATATTAGATTT

TGATTATTACCTCCTT 

Note that you may want to keep two copies of your sequence 

data files: one with all the original information pertaining to the 

sequences and a second with just the abbreviated titles prepared for 

alignment analysis. 

 

7.4. Alignment of sequence data 

The alignment quality of sequences is critically important to achieving 

a strong phylogenetic reconstruction. There are a variety of multiple 

sequence alignment programs available, with varying capacity for the 

number of sequences input and user-determined parameter 

adjustments. Additionally, some aligners may be specific for protein 

sequence data vs. nucleotide data. Two alignment programs that are 
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available for all computing platforms (Mac OSX, Windows, and Unix/

Linux), accessible at an off-site server via the web if installing locally 

is not desired, and known for robust alignment algorithms are 

discussed here. 

 

7.4.1. Clustal  

Clustal (Thompson et al., 1994) is a commonly used alignment 

program that will handle protein, DNA, or RNA sequence data and is 

actively maintained (http://www.clustal.org/). The version ClustalW, 

currently in version 2.1 (Larkin et al., 2007), can be installed locally 

and run in command-line or it can be run remotely at an off-site 

server where it is already installed (i.e. at EMBL-EBI; http://

www.ebi.ac.uk/Tools/msa/clustalw2/ or at GenomeNet; http://

www.genome.jp/tools/clustalw/). ClustalW allows the user to specify 

certain parameters of the alignment algorithm. Users who do not have 

the knowledge to make parameter specifications may choose general 

purpose, default settings (as at the EMBL-EBI site). ClustalX, a 

graphical version and Clustal Omega, specifically for large sets of 

protein sequence data are also available. 

 

7.4.2. MUSCLE 

Though less commonly used than Clustal, MUltiple SequenCe 

aLignmEnt (MUSCLE; http://www.drive5.com/muscle/) is another easy 

to use, good option for sequence alignment (currently limited to 500 

sequences/1MB of data). 

 

7.5. Trimming aligned sequence data to equal 

length 
 

 

To properly compute phylogenetic analyses on a sequence data set, 

the number of positions in each sequence should be equal. This 

includes gaps and insertions/deletions (indels) in the aligned data set, 

not the actual number of nucleotides or amino acids. Use your 

sequence alignment editor to trim the aligned files to equal size or to 

the size of the region you are interested in analysing (i.e. a specific 

domain encoded within your gene).   

 

7.6. Performing phylogenetic analyses  

Again, there are a number of options for users to perform 

phylogenetic analyses, but only two will be discussed here: MEGA and 

SATé.  

 

7.6.1. Using MEGA 

The program MEGA (Molecular Evolutionary Genetics Analysis; http://

megasoftware.net) (Tamura et al., 2011), currently available as 

version 5.05, is continually being updated and improved. Note: use of 

MEGA will require the user to download and install the freely available 

software to their computer. MEGA 5 can be used as a platform to 

complete all of the above steps (building your sequence data file, 

http://www.clustal.org/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.genome.jp/tools/clustalw/
http://www.genome.jp/tools/clustalw/
http://www.drive5.com/muscle/
http://megasoftware.net
http://megasoftware.net


Fig. 3. Phylogenetic reconstruction of cytochrome oxidase I gene 

from Apis and Bombus species (Hymenoptera; Apidae) using  

Neighbour-Joining method (A) and Maximum Likelihood (B). Topology 

of each was tested with 1,000 bootstrap iterations (consensus tree is 

shown) using Nasonia vitripennis (Hymenoptera; Pteromalidae) as 

outgroup. Scale represents the substitution rate per site from a total 

of 981 positions.  A) was computed using Maximum Composite  

Likelihood (Tamura et al., 2004) with uniform rates among sites and 

pairwise gap deletion. B) was computed using Tamura-Nei model 

(Tamura and Nei, 1993) with uniform rates at all sites. 

alignment using Clustal or MUSCLE, and trimming sequence data). It 

gives the user the ability to construct phylogenies using distance 

based (i.e. Neighbour Joining) and character based (i.e. Maximum 

Likelihood) methods (see Table 1) and test them using bootstrapping. 

It also includes a tree viewer that allows for some editing of the final 

output tree and many additional features not covered here.   

 

7.6.1.1. Converting data to MEGA format 

Before phylogenetic tests can be run on your sequence data file, it 

must be converted into a format that MEGA can read, the *.meg file 

format.   

1. From the ‘File’ menu in MEGA, select ‘Convert File Format to 

MEGA…’, browse to your alignment file, select ‘FASTA format’ 

from the ‘Data Format’ pull down menu, then select ‘OK’.   

2. A window will open asking for you to specify a name and 

location for the newly created *.meg file.  

The new file will be created and opened under a tab in the same 

window next to your open FASTA format file.   

3.   MEGA will warn you to check the file for any errors and 

 adjustments to your *.meg file can be made in this window 

 and saved.  

Details about the *.meg format are available in MEGA. 

 

7.6.1.2. Constructing and testing phylogenetic trees 

Described below is a basic, distance based Neighbour-Joining analysis 

using bootstrap statistical tests for robustness (Felsenstein, 1985).   

1. From the main MEGA window, open the ‘Phylogeny’ pull down 

tab and select ‘Construct/Test Neighbour-Joining Tree’. 

2. Browse to and open the .meg file you just created. Select the 

appropriate data type (nucleotide or protein sequence data).  

Note the defaults for missing data, alignment gaps and identity and 

make any changes if necessary then select ‘OK’.   

3.   A window will open asking you to identify your sequence data 

 as protein-coding or not.   

4.   Another window will open asking for genetic code selection.  

For the example, provided here, using the cytochrome oxidase I (COI) 

gene, select ‘Invertebrate Mitochondrial’. 

5.   A third window opens and allows you to select a number of 

 parameters for your analysis.   

A minimum of 100 and typically 1,000 iterations of bootstrapping are 

used to test the robustness of your phylogeny. For now, we will 

accept the default parameters for our simple analysis.   

6.   A progress window will open for you until the test is 

 completed.   

7.   When complete, a window opens with two tabs showing the 

 ‘Original tree’ generated, as well as a ‘Bootstrap consensus 

 tree’, which is the tree you should refer to.  

Bootstrap support values show the percentage of iterations supporting 

the shown topology.   
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8.   The tree image can be saved as a pdf for good resolution for 

 presentation (Fig. 3A), can be saved as a mts Tree Session 

 File for future viewing in MEGA, or exported and saved as a 

 more general Newick (.nwk) format file that is readable by a 

 variety of other tree viewing programs (e.g. FigTree http://

 tree.bio.ed.ac.uk/software/figtree/ ; TreeDyn http://

 www.treedyn.org/). 

 

For comparison, a Maximum Likelihood (ML) analysis of the same 

alignment was performed in a similar manner and is shown in Fig. 3B. 
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7.6.2. Using SATé 

An alternative software package to MEGA for ML analyses is SATé 

(Simultaneous Alignment and Tree estimation; Liu et al., 2012), which 

infers sequence alignment and tree building concurrently as an 

iterative process using the ML method. This program must also be 

downloaded for use, and is currently freely available as SATé-II at 

http://phylo.bio.ku.edu/software/state/sate.html. The user experience 

for SATé is still being improved, including recommendations for how 

to parse phylogenetic runs. A strength of SATé is that it accepts up to 

1,000 sequences in the FASTA format as described in section 7.3., 

and claims speed and precision in phylogenetic analyses. Through 

changes in subproblem size parameters (below) it is possible to run 

SATé on desktop machines, but using this software on high-memory 

and high-CPU clusters will be simpler since those parameters will be 

less likely to affect performance. Several alignment programs are 

bundled with the download, including Clustal and MUSCLE. If an 

alignment is already prepared, SATé will use Randomized a(x)- 

elerated Maximum Likelihood (RaxML) (Satmatakis, 2006) to infer an 

initial tree for phylogeny reconstruction.  

From the main SATé window, select the desired analysis criteria in 

the following sections:  

 

7.6.2.1. External tools 

SATé breaks the tree topology down into subproblems during each 

round of analysis and realigns the data for each subset, merges the 

alignments into a full alignment and re-estimates the tree for full 

alignment.   

1. ‘Aligner’ is used to select the multiple sequence alignment tool 

to produce the initial full alignment. 

2. ‘Merger’ is used to select the multiple sequence alignment tool 

to merge the alignments of subproblems into a bigger and 

final multiple sequence alignment. 

3. ‘Tree estimator’ uses RAxML for tree estimation with the 

chosen evolutionary ‘Model’. 

 

7.6.2.2. Sequence import and tree building 

1. Click ‘Sequence file…’ to upload your sequence alignment file 

in FASTA format (Note: the file MUST have the extension 

*.fas or *.fasta to be read by SATé; see section 7.3.). 

2. Select the appropriate ‘Data Type’ (nucleotide or amino acid). 

3. If you have previously generated a ‘Tree file’, you can upload 

it as the initial guide for SATé, if appropriate. 

 

7.6.2.3. Job Settings 

1. Specify the ‘Job Name’ for identifying output files created by 

SATé. 

2. Select the folder/directory for storing the created outfile files 

using ‘Output Dir.’ 

 

The COLOSS BEEBOOK: molecular methods 33 

7.6.2.4. SATé Settings 

This section allows users to control the details of the algorithm. In 

each iteration, the dataset will be breaking down into non-overlapping 

sequence subproblems and these subproblems are given to the 

chosen alignment tool. 

1. There are options under ‘Quick Set’ to allow a more or less 

intensive search during the SATé iterative process. 

2. ‘Max. Subproblem’ is used to control the largest dataset that 

are aligned during the iterative process.   

3. Use the ‘Fraction’ option to express the maximum problem 

size as a percentage of the total number of taxa in the full 

dataset.  

This value will be limited by available computational power. 

4.   Use the ‘Size’ option for size cutoff in absolute number of 

 sequences. 

5.   Select ‘Decomposition’ to choose how the process should be 

 broken to create subproblems. 

6.   ‘Apply Stop Rule’ is used to control how SATé should be 

 finished.   

The decision to stop can be done based on number of iterations (one 

may be sufficient), the amount of time in hours or ‘Blind Mode 

Enabled’ meaning that SATé will terminate if it ever completes one 

iteration without improving the ML score. 

7.   Click ‘Start’ to run the SATé analysis. 

 

There will be five files created in the selected directory after SATé 

is completed. An alignment file (*.aln), tree file (*.tre), best ML score 

file (*.score), error file (*.err) and history file (*.out). Unlike MEGA, 

SATé does not have bundled tree viewing or alignment viewing 

programs, so the user will need to open the tree file using one of the 

tree viewing programs described above and the alignment file using 

Clustal or a similar alignment viewing program. The other files can be 

opened with a text editor (i.e. Notepad, TextEdit). In addition, SATé 

does not utilize bootstrap testing to support inferred tree topology. 

Rather, a similarity score from 0-1 (0 is most similar and 1 is least 

similar) is placed on the branches to aid in topology interpretation.  

Hence, other reconstruction methods should be compared to confirm 

the output. 

 

7.6.3. Building trees using distance and character based 

methods 

To assess the reliability of the tree topology, users should be aware of 

the phylogenetic tree construction and tree analysis methods 

according to the data and algorithmic strategy used. Each method has 

different assumptions that may or may not be valid for the 

evolutionary process of the given sequence data. For example, the 

distance based method UPGMA (Unweighted Pair Group Method with 

Arithmetic mean) assumes a neutral mutation rate proportional to 

time (a molecular clock). Therefore, it is important to be aware of this 

http://phylo.bio.ku.edu/software/state/sate.html


Table 1. Classification of phylogenetic analysis methods and strategies.  

fact when evaluating tree topology generated by each method. It is 

encouraged that one run a variety of distance based methods 

(Neighbour-Joining, UPGMA, Minimum Evolution) that calculate 

evolutionary distance between sequences, and character based 

methods (Maximum Parsimony, Maximum Likelihood, Bayesian) that 

determine the most probable evolutionary event history between 

sequences (Table 1).   

Statistical testing of topology should also be performed where 

possible, i.e. bootstrapping analysis. Altering the substitution model, 

rates and patterns, and treatment of gaps/missing data may also be 

warranted, though the varying justifications for each of these tests is 

beyond the detail provided here. Low branch support for any topology 

shown in the final tree or conflicts in topology determined by multiple 

testing should be addressed when presenting any phylogenetic data.  

 

 

 

 

 

 

 

 

8. Genomic resources and tools 

8.1. Introduction 

Genomic analyses take several forms. At one level, any study that 

draws inferences for protein-coding genes or other genetic traits in 

the context of their neighbors on chromosomes is ‘genomic’. More 

recently, genomic studies are those that use massive DNA sequencing 

strategies to describe and piece together entire sections of the 

targeted genome, without using PCR or other selective techniques to 

target specific short regions. Ultimately, genomic studies hope to 

assemble chromosome-length stretches of an organism’s genetic 

blueprint, and then annotate or describe the functionality of specific 

regions within chromosomes. The field of genomics is driven by 

technological advances, including huge cost reductions for the 

sequencing of samples and advances in both statistical methods and 

computational resources for analysing the obligatory large datasets.  

Current estimates indicate that entire pipelines (sets of routines 

needed for an output analysis) are viable for only six months before 

becoming obsolete. One helpful review of modern techniques is given 

by Desai et al. (2012) and there are numerous advances and tutorials 

available via the forums Seqanswers.com and the GALAXY wiki 
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(http://wiki.galaxyproject.org/FrontPage). Researchers are advised to 

consult these sources while planning genomic, transcriptomic, and 

metagenomic projects, as the standards and possible analyses are 

improving constantly. 

 

8.2. Honey bee genome project 

After a multi-year international project, the honey bee genome was 

described in fall, 2006, in a main overview paper (Honey bee Genome 

Sequencing Consortium, 2006) and > 30 satellite genome-enabled 

companion papers (primarily in the journals Insect Molecular Biology 

and Genome Research). Sequence data, generated using dideoxy 

sequencing was assembled into ca. 10,000 contigs (blocks of 

overlapping sequence reads) spanning ca. 238 million base pairs. 

These contigs are in many cases linked together by scaffolding (a 

strategy whereby long strands of DNA are sequenced from each end 

and linked via informatics) leading to an assembly that was > 95% 

complete for the non-repetitive genome. Honey bee genes and 

various genomic features are predicted based on homology to other 

organisms, evidence from RNA expression studies, and evidence for 

open reading frames. The current genome assembly along with a 

consensus (“GLEAN”) gene set and other resources are available at 

“Beebase” (www.beebase.org/, Christine Elsik, Univ. Missouri) and at 

the U.S. National Institutes of Health National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov/genome?

term=apis%20mellifera). Both sites allow for downloading sequences 

as well as searching the genome via the BLAST family of search 

algorithms, while the Beebase site also provides the chance to 

‘browse’ the genome visually. Efforts are continuing to improve the 

primary Apis mellifera genome data while adding sequence data from 

different honey bee strains. 

 

8.3. Honey bee parasite and pathogen genomes 

Most of the named RNA viruses for honey bees have been sequenced 

and published. These genomes are relatively small and tend to be 

placed into the NCBI databases upon publication (http://

www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=439488). 

Genome sequences for several parasites and pathogens with larger 

genomes (e.g., Paenibacillus larvae, Ascosphaera apis, Nosema 

ceranae, and the mite Varroa destructor; (Qin et al., 2006; Cornman 

et al., 2009; Cornman et al., 2010; Chan et al., 2011) are held at the 

NCBI as well as at Beebase and can be queried there alongside the 

above honey bee genome data.  

 

8.4. Comparative genomics 

Currently, assembled genome sequences exist for over 30 insects and 

other arthropods, and that number is soon to increase dramatically 

(http://arthropodgenomes.org/wiki/i5K). Resources that have proven 

useful for comparing honey bee genes to those found in other insects 

(e.g., to Drosophila and other insects for which gene function is firmly  

Tree building strategy Method 

  Distance based Character based 

Clustering algorithm 
UPGMA 

Neighbour Joining 
n/a 

Optimality criterion Minimum Evolution 

Maximum Parsimony 

Maximum Likelihood 

Bayesian Analysis 
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http://www.ncbi.nlm.nih.gov/genome?term=apis%20mellifera
http://www.ncbi.nlm.nih.gov/genome?term=apis%20mellifera


 

 

decided) include the NIH-NCBI and the OrthoDB database run from 

the University of Geneva (http://cegg.unige.ch/orthodb5). In addition, 

as each incarnation of the honey bee genome is published, annotations 

based on presence/absence and functional similarity to other insects 

is simultaneously added. With projects on four other Apis species 

underway, along with social and solitary apoid bees, strategies for 

comparative genomics will be in flux for some time. The orthoDB 

database, along with flybase (www.flybase.org) are good places to 

start for insights from comparative genomics, and each site has hosts 

the requisite tools (gene searching/alignment/retrieval) for carrying 

out comparative analyses. 

 

8.5. Second-generation sequencing 

Initial genome projects, from small viruses through the human and 

honey bee project, all relied on ‘Sanger’ dideoxy sequencing, a 

relatively expensive but accurate protocol developed in the 1980’s 

that generates sequences (often drawn from random cloned fragments 

for the popular ‘shotgun’ sequence method) of several hundred to 

1000 base pairs. Since 2000, there has been a great economization of 

sequencing, such that current technologies are more than ten-fold 

less expensive than Sanger sequencing. Nevertheless, Sanger 

sequencing persists and is often the right strategy when compared to 

newer technologies (which currently give either quite short or quite 

inaccurate sequences). Readers should consider ILLUMINA/SOLEXA 

sequencing (summarized in the methylation section 11. below), 454 

pyrosequencing, SOLiD sequencing or the Ion Torrent platform (all 

platforms are reviewed by Metzger, 2010), and the final decision 

might rest on local availability along with different strengths of each 

platform. As of 2012, most DNA and RNA sequencing efforts include 

at least some component of ILLUMINA sequencing, as that technology 

is viewed as being most cost-effective. 

 

8.6. Genomic sequence assembly 

Standards and tools for genome sequence assembly and analysis are 

constantly improving and the best strategy for carrying out a genome 

project is often through collaboration or through mimicking the 

protocols and computational strategies used by a recent genome 

project of similar scope (genome size, budget for sequencing and 

informatics, etc.). Accordingly, we will not list specific pipelines for 

these processes, but can direct researchers to sites such as http://

www.broadinstitute.org/scientific-community/science/programs/

genome-sequencing-and-analysis/computational-rd/computational-, 

http://bioinformatics.igm.jhmi.edu/salzberg/Salzberg/Software.html, 

and http://soap.genomics.org.cn/soapdenovo.html. Of these options, 

whole-genome assemblies using the ALLPATHS-LG method (the first 

link above for the Broad Institute) have been highly successful for 

both microbes and higher organisms, and this method is arguably the 

tool of choice currently.  
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8.7. Transcriptomic analyses (“RNASeq”) 

Transcriptomic analyses are helpful for seeing trends in honey bee 

gene expression as well as changes due to experimental conditions, 

and bee researchers have carried out such studies for many years, 

adapting as new methods arise. Two recent papers have used the 

ILLUMINA platform for studying gene regulation in response to 

nutrition (Alaux et al., 2011) and responsiveness to varroa mites and 

viruses (Nazzi et al., 2012), respectively. Analyzing RNASeq data will 

depend on the sequencing platform as well as developments in 

software and public or personal computational resources, all of which 

are under constant renewal. Generally, RNASeq experiments rely on 

differential gene expression (DGE) between categories of one factor 

(e.g., bees exposed to mites versus controls) and the statistical 

analysis identifies which regions are up- or down-regulated in the 

context of this factor. Nazzi et al., 2012 used a technique prescribed 

by Mortazavi et al., (2008) that, like all current methods, first 

develops a model for how often a particular expressed region should 

be seen in a sequencing effort, and then uses the number of times 

that sequence was sampled to determine whether it was up-or down 

regulated compared to an expected level.  There are now numerous 

such methods and both methods and strategies to trim the 

computational resources for their use are being improved monthly. 

Public platform with video tutorials for RNASeq analysis that promises 

to remain current is described at the Galaxy site (https://

main.g2.bx.psu.edu/). 

 

8.8. Metagenomics 

Metagenomic approaches began as an attempt to study the functional 

significance of all organisms in a habitat, and the term was first used 

to describe soil microbes and their collective proteins (Handelsman  

et al., 1998). In honey bees, usage has so far focused on identifying 

pathogen taxa (Cox-Foster et al., 2007; Runckel et al., 2011, Cornman 

et al., 2012) and, more recently, on targeted surveys of bacterial 

associates in honey bee guts (Martinson et al., 2011; Mattila et al., 

2012). There are six key decision points in metagenomic surveys and, 

rather than choose any specific recipe, we will instead list those 

decisions and their outcomes: 

 

8.8.1. RNA versus DNA sampling  

RNA pools contain those genomes that are actively producing proteins 

AND genomes of the key RNA viruses in bees. RNA sampling is often 

used for assessing bee pathogens. DNA sampling is preferable when 

samples are poorly preserved (given the higher stability of DNA) and 

as a means of reducing the often overwhelmingly high frequency of 

ribosomal RNA’s (75-80%) in most sequenced RNA samples. 
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8.8.2. Sample preparation  

Both RNA and DNA destined for metagenomic surveys can be 

extracted using the means described in sections 3 and 4 (e.g. Trizol® 

extractions for RNA and CTAB extractions for DNA). For more 

recalcitrant samples (e.g. spore stages, or samples of organisms with 

impermeable coats, common to bacterial species and fungi) it is 

important to use mechanical or enzymatic rupturing of the cell coat 

via proteinase K, as described in the above CTAB DNA extraction 

protocol (section 3.2.1.), or prolonged shaking with a suspension of 

low-affinity silica particles or other inert solids. 

 

8.8.3. Amplicon-based or shotgun sequencing  

Given the low costs of sequencing, it is feasible now to simply survey 

all nucleic acids in a sample and then assign them to taxa in various 

kingdoms via searches of local or online databases. Nevertheless, 

targeted deep sequencing of specific taxonomic groups can benefit 

from a selection of specific regions via PCR-based amplification prior 

to generating the sequencing libraries. This has been done most 

frequently with the 454 sequencing platform since relatively long read 

lengths on this platform (> 400 bp) enable the capture of sequence 

data for a substantial section of the targeted species. Several studies 

have now used amplicon-based sequencing to describe bacterial 

populations carried by honey bees. As with any PCR protocol, this 

approach will under sample taxa with mismatches to the initial primer 

sequences since no PCR primers are truly ‘universal’ to a targeted 

group. Nevertheless, there are many examples of primers that amplify 

broadly across all of the major bacterial taxonomic groups, and 

amplicon-based 454 sequencing has appears to provide a consistent 

and accurate view of bacterial communities in bees. The software 

environment Qiime (http://qiime.org/) is widely used to match 

amplicon-based sequences to microbial databases in order to identify 

and quantify taxa. 

 

8.8.4. Assembly of shotgun sequences vs. read mapping 

For sequences generated by shotgun sequencing, it is generally 

desirable to assemble all sequencing reads into contigs (aggregates of 

nearly identical sequences from the same region and species) prior to 

statistical analysis, since this can reduce computational needs greatly 

while retaining vital statistics including the number of reads per 

contig. Once the computationally intensive assembly of contigs has 

taken place (using for example the Metavelvet routine, http://

metavelvet.dna.bio.keio.ac.jp/) datasets can be reduced by many 

orders of magnitude.  This is critical if online or ‘cloud’ databases are 

searched for microbial matches since the data transfer speeds alone 

for such searches can be measured in days when using raw sequence 
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reads. In addition, contigs are by definition longer than any individual 

read and therefore also can provide a more secure match to distant 

taxa. The count data for sequenced reads per contig provides the 

measure of depth that, once scaled to contig length, allows estimates 

of microbial frequency. Once metagenomic sequences have been 

assembled, moderate experiments can often be enacted without cost 

to the user at public resources such as GALAXY (https://main.g2.bx.psu.edu/). 

As with any complicated statistical procedure it is highly possible to 

get erroneous matches and statistical results, and researchers are 

advised to enlist the help of colleagues with current expertise here. 

In practice, metagenomic analyses are also carried out by 

mapping (aligning with high probability) individual sequence reads to 

members of a reference database, and algorithms (including Tophat, 

http://genomics.jhu.edu/software.html) have been developed that are 

extremely efficient at doing so. For diagnostic regions with highly 

conserved sequences (e.g., parts of the rRNA operons) both 

assembling and mapping are problematic and query sequences often 

cannot be placed securely to even family-level matches. In this case, 

it is best to bin sequences at a higher taxonomic level (even Order) 

rather than force matches into a possibly erroneous taxon. 

Nevertheless, as genome sequencing of microbial species is increasing 

exponentially, even rare and distant taxa tend to have a fully 

sequenced family member in the public databases, as described below 

in section 8.8.5. 

 

8.8.5. Databases for metagenomics 

Several sites have emerged for mapping metagenomic sequence reads 

and amplicons, including the longstanding Ribosomal Database Project 

for bacterial and archael 16S alignments (http://rdp.cme.msu.edu/), 

the SILVA databases for rRNA’s generally (http://www.arb-silva.de/), 

and MEGAN (ab.inf.uni-tuebingen.de/software/megan/), which aspires 

to map to targets across the tree of life. Each site allows for limited 

web searching, and for downloading relevant databases for more 

efficient local searches. 

 

8.8.6. Post-assignment statistics  

Quantifying differences between two or more samples in the taxa to 

which reads or contigs map is the ultimate goal for many metagenomic 

experiments. While not the only option, MG-RAST (metagenomics.anl.gov/) 

provides an example of statistical comparisons using read mapping. 

Assuming read accounts are normalized by size of their target (various 

methods have been used for this), and then the count frequencies 

themselves can be used with a variety of standard statistics. Similarly, 

Qiime, mentioned above in section 8.8.3, provides an effective way 

for mapping reads to microbial taxa. 

http://qiime.org/
http://metavelvet.dna.bio.keio.ac.jp/
http://metavelvet.dna.bio.keio.ac.jp/
https://main.g2.bx.psu.edu/


9. Fluorescence In Situ 

Hybridization (FISH) analysis of 

tissues and cultured cells 
 

 

9.1. Introduction 
 

Fluorescence in situ Hybridization (FISH) is a sensitive and specific 

method for localizing expressed genes or microbes within tissues of 

the honey bee. In general, a probe matching a specific DNA or RNA 

sequence is exposed to prepared tissues. This probe can then be 

localized using fluorescent tags, pointing the researcher to the precise 

location of a desired target. To date this method has been used 

successfully to show the locations of bacterial associates of bees 

(Martinson et al., 2012, Yue et al., 2008, and below). 

 

9.2. Tissue fixation and tissue sectioning 

exemplified with gut tissue 

1. Immobilize about 20 bees with CO2. 

2. Cut of the head. 

3. Fix the abdomen on a separation plate with micro pins.  

4. Remove carefully the alimentary tract of each bee with 

forceps.  

5. Transfer the hindgut and the midgut into one well of a 24-well 

microtiter plate. 

6. Fix tissues in 4% formalin (Roth) for 24 hours at 4°C by 

shaking. 
 

 

 

The further embedding and blocking procedure using e.g. Technovit 

8100 and Technovit 3040 kits (Heraeus-Kulzer) should be performed 

as given in the manufacturer´s protocols (Heraeus-Kulzer, T8100 

embedding kit).  

7.   Wash the alimentary tracts with 6.8% sucrose in 1xphosphate 

 buffered saline (1xPBS, pH 7.0) for 24 hours at 4°C. 

8.   For dehydration transfer the tissue in 100% acetone for one 

 hour. 

9.   Pre-infiltrate the organs with T8100 basic-solution and 100% 

 acetone (mixed 1:1) for two hours. 

10. Prepare the infiltration solution (0.6 g hardener I in 100 ml 

 T8100 basic solution). 

11. Transfer the organs into the infiltration solution. 

12. Incubate at 4°C for at least 24 hours and up to one week, 

 depending on tissue size. 

13. Apply careful shaking for better infiltration results. 

14. Prepare the embedding solution (mix 0.5 ml hardener II with 

 15 ml infiltrating solution). 

15. Fill the mould of a Teflon-embedding form (pre-cooled at -20° C) 

with the embedding solution. 

16. Transfer the tissue and orientate it in the mould. 

17. Close the well immediately with a plastic strip. 
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18. Incubate at 4°C for 3 hours to allow polymerization.  

19. Finally, block the polymerized probes with histoblocs and with 

 the Technovit 3040 kit (both from Heraeus-Kulzer) using the 

 manufacturer´s protocol. 

20. Prepare semi thin-sections (2-4 µm) with a rotation microtome 

 (Leica). 

Use a knife with a hard metal edge (Tungsten). 

21. For fluorescence in situ-hybridization transfer the tissue 

 sections on Polysine™-covered glass slides (Fisher Scientific, 

 Menzel-Gläser). 

 

9.3. Fixation of cultured cells grown in 

suspension 

1. Transfer 100 µl of cultured cells into a cell funnel-chamber of 

a cell spin (Tharmac). 

2. Centrifuge the cells with 600 rpm (54xg) gently for 5 minutes 

on a glass slide (VWR). 

3. Remove the cell funnel-chamber. 

4. Let the medium air dry. 

5. Fix the cells in 4% formalin (Roth) at 4°C for 24 hours. 

 

9.4. FISH-analysis of tissue sections and fixed 

insect cells 
 

 

1. Wash the slides (tissue sections and fixed insect cells) twice in 

1xPBS. 

2. For further processing, transfer each slide into a 10 ml dish. 

3. Add 10 ml of 1 µg ml-1 Proteinase K in Proteinase K-buffer 

(0.2 M Tris-HCl, pH 7.5). 

4. Transfer the dish into a humid chamber (Eppendorf, 

Thermostat Plus) for 5 min at 37°C. 

5. Remove the Prot K and wash each slide with 10 ml of 1xPBS. 

6. For post-fixation add 10 ml of 4% formalin (Roth). 

7. Incubate at RT for 20 min. 

8. Aspirate the formalin. 

9. Remove remaining solution by washing the slides three times 

with 1xPBS-buffer. 

10. Prepare hybridization buffer:  

   200 µl of 100% formamide,  

   180 µl 5 M NaCl,  

   20 µl 1 M Tris/HCl, 

   1 µl 10% SDS, 

   599 µl DEPC-H2O, pre-warm to 46°C in a heating block. 

11. Add the probes to 37.5 µl pre-warmed (46°C) hybridization 

 buffer: 
 

7.5 µl species-specific probe annealing to a region of the 16S 

 rRNA or another species-specific genomic region of the 

 pathogen to be detected labelled with fluorescein 

 isothiocyanate-FITC with a final concentration of 15 ng µl-1. 



Sequence of Nosema spp.-probes: Gisder et al. (2011); sequence of 

DWV-probe: Möckel et al. (2011); sequence of P. larvae-probe: Yue  

et al. (2008)  

5 µl Euk516-probe (5‘-ACCAGACTTGCCCTCC-3‘, universally 

 detecting eukaryotic ribosomes by hybridizing to a universal 

 conserved sequence of the eukaryotic 18S rRNA) labelled with 

 sulforhodamine 101 acid chloride-Texas Red® with a final 

 concentration of 10 ng µl-1.  

12. Continue incubation in the heating block which is now covered 

 with a lid (i.e. incubation at 46°C in the dark). 

13. Cover the slides with LifterSlips (VWR). 

14. Pipette 50 µl of hybridization buffer to each slide (tissue 

 sections or fixed cells). 

15. Transfer the slide into a hybridization chamber (Corning, 

 Corning chamber), drop 15 µl H2O into the given wells to 

 preserve the humidity.  

16. Close the chamber tightly. 

17. Put the corning chamber in a 46°C water bath for overnight 

 hybridization. 

18. Open the hybridization chamber and remove the cover slips in 

 1xPBS. 

19. Wash the slides three times with 1xPBS.  

20. Let them air dry. 

21. Stain the nuclei with 50 µl 4′, 6-Diamidin-2-phenylindol- 

 (DAPI, 1 µg ml-1 in 99% methanol) solution for 10 min in the 

 dark. 

22. Wash the slides again three times with 1xPBS.  

23. Let them air dry. 

24. Cover the slides with the ProLong Gold antifade reagent 

(Invitrogen) and a cover slip (Roth). 

25. Analyse the tissue sections and the cells under an inverse 

fluorescence microscope (e.g. Nikon, Ti-Eclipse) at 100-fold and 600-

fold magnification using consecutively a FITC-, TexasRed- and DAPI-

filter. 

 

 

10. RNA interference 

10.1. Introduction 

RNA interference (RNAi) is a cellular mechanism leading to a knock-

down of gene expression mediated by target specific double-stranded 

RNA (dsRNA) molecules (Fire et al., 1998).  Understanding the 

mechanism of mRNA destruction by these dsRNA molecules 

dramatically increased the possibilities of functional genomics studies 

during the last decade especially in organisms where the recovery of 

mutants is not feasible. Thus RNAi has become a dominant reverse 

genetic method for the study of gene functions and furthermore, plays 

an increasing role in therapeutics and in pest control (Maori et al., 2009; 

Liu et al., 2010; Hunter et al., 2010). 
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Up to now a dozen studies report on the successful usage of RNAi in 

honey bees. But the application methods and also the choice of RNAi 

effective molecules are very diverse. Several studies report on the 

application of dsRNA to eggs and larvae whether by injection 

(Aronstein and Salivar, 2005; Beye et al., 2002; Maleszka et al., 2007) 

or ingestion (Aronstein et al., 2006; Patel et al., 2007; Kucharski  

et al., 2008; Nunes and Simoes, 2009; Liu et al., 2010). Others report 

on a successful manipulation of adult bees (Amdam et al., 2003; 

Farooqui et al., 2004; Seehuus et al., 2006; Schlüns and Crozier, 

2007; Maori et al. 2009; Paldi et al., 2010; Mustard et al., 2010; 

Jarosch and Moritz, 2011; Jarosch et al., 2011).  

This section aims at a collection of RNAi protocols successfully 

applied in honey bees beforehand. The well-established protocols for 

producing dsRNA as well as siRNA (short interfering RNAs, the 

products of dsRNA once the enzyme Dicer and its partners have 

processed them) molecules are presented. Moreover, the two 

application methods feeding and injection are presented and 

compared to each other. In conclusion, we summarize five important 

factors that may decrease the effectiveness of target gene expression 

knock-down.  

 

10.2. Production of RNA interfering molecules 

10.2.1. siRNA design and synthesis 
 

 

So far most bee scientists have used dsRNA rather than siRNA for 

RNAi experiments. Although dsRNA molecules have advantages in 

handling, off-target effects (Jarosch et al., 2012) have been reported 

in honey bees. Therefore the usage of siRNAs is recommended where 

feasible. This allows the selection of one or a few short sequences to 

initiate RNAi, rather than the many tens of possible permutations 

generated by a typical dsRNA construct, any of which might cause 

effects away from the desired target. 

 

1.   Design 3-6 siRNAs for your target gene in order to find an 

 optimal siRNA. 

General guidelines for siRNA design: 

     siRNA targeted sequence is usually 21 nt in length. 

     Avoid regions within 50-100 bp of the start codon and the     

      termination codon. 

     Avoid intron regions. 

     Avoid stretches of 4 or more bases such as AAAA, CCCC. 

     Avoid regions with GC content < 30% or > 60%. 

     Avoid repeats and low complex sequence. 

     Avoid single nucleotide polymorphism (SNP) sites. 

     Perform BLAST homology search to avoid off-target     

      effects on other genes or sequences (16- to 18-nt–long  

 stretches of homology are suggested as the maximum 

 acceptable length in RNAi studies per Ambion siRNA 

 design guidelines). 



     Design negative controls by scrambling the target siRNA 

 sequence. This control RNA has the same length and 

 nucleotide composition as the target specific siRNA but in 

 a different order. Make sure that the scrambled siRNA 

 does not show homologies for any known bee gene.  

Several web based programs for appropriate siRNA design, which 

implement the actual siRNA design algorithms, are available  

(e.g. siRNA target designer version 1.6 (Promega); siDesign center 

(Dharmacon, Inc); Block-iTTM RNAi Designer (Invitrogen). 

2.   Use T7 RibomaxTM Express RNAi System (Promega) for siRNA 

 production. 

1.   Follow the manufacturers´ instructions. 

2.   Incubation time may be increased in order to increase the 

 siRNA yield (A time-course experiment has to be 

 performed beforehand in order to find the optimal 

 incubation time). 

3.   Assess the quality and quantity by photometric measurements 

 (OD260) and by capillary gel electrophoresis (alternatively 

 agarose gel electrophoresis, see section 3.2.1). 

 

10.2.2. Production of dsRNA 

Since dsRNAs can cause off-target effects, you need to be careful in 

designing them. Nevertheless, RNAi efforts using dsRNA constructs 

have proven effective in honey bees. To avoid targets that might 

interfere with other honey bee genes, you need to compare your 

sequence with the honey bee genome during the design process using 

the Basic Local Alignment Tool (www.ncbi.nlm.nih.gov). Make sure 

none of the designed dsRNAs has 20-bp segments identical to any 

known bee sequence. As dsRNAs are processed by the dicer complex 

into a cocktail of siRNAs 19–21 nt in length, the absence of 20-nt 

stretches of homology minimizes the possibility of off-target effects.  

 

1.   Use the E-RNAi web application (Horn and Boutros, 2010) for 

 optimal dsRNA design.  

Design of dsRNA sequences has to be stringent in order to avoid/   

minimize off-target effects. 

2.   Set up appropriate negative controls. 

Note: be careful using GFP; this sequence might cause off-target   

effects in some cases (GenBank ID: U17997, Clontech; Jarosch   

and Moritz, 2012). 
 

Other possible negative controls: e.g., Q-marker (Beye et al., 2002). 

3.   Amplify the chosen target fragment by using target specific T7 

 (TAA TAC GAC TCA CTA TAG GGC GAT) added primer in 

 optimized PCRs using approximately 100-ng genomic DNA 

 obtained by chloroform– phenol extraction (e.g. Maniatis  

           et al., 1982). 
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4.  Clone the amplified fragments into pGem-T easy vectors 

 (Promega) according to the manufacturer’s instructions. 

 (Cloning eliminates the possibility of a dsRNA mixture due to a 

 polymorphism of the PCR product). 

5.  Transform your plasmids into JM109 competent cells 

 (Promega) following the instructions from the manufacturer. 

6.   Prepare the plasmids according to Del Sal (1988). 

7.   Analyse the identity of the cloned sequence by Sanger 

 sequencing. 

8.   Once the right clone has been identified its insert needs to be 

 amplified to serve as a template for dsRNA production by 

 standard PCR using again T7 tailed primers. 

8.1. E.g. use Biotherm DNA Polymerase (Genecraft); chemicals:  

   0.2 mM dNTPs, 

   0.3 µM of T7-promotor added primer,  

   5 U Taq Polymerase,  

   in a total reaction volume of 100 µl. 

8.2. PCR protocol:  

   5 min DNA denaturation, and Taq activation, at 95°C,  

   40 cycles of: 

           95°C for 30 sec, 

 x°C (primer specific annealing temperature) 30 sec,  

 72°C for 1 min.  

   A final extension of 20 min at 72°C completes the 

 protocol. 

9.   Purify the PCR-products with the QIAquick® PCR Purification 

 Kit (Qiagen). 

10. Use the T7 RibomaxTM Express RNAi System (Promega) for 

 dsRNA production. 

Time course experiments and experiments for optimizing the 

incubation temperature have to be conducted beforehand (e.g. 

Jarosch et al., 2011 used an extended transcription time of 5 h at 32°C). 

11. Purify the dsRNA by a Trizol® (Invitrogen) - chloroform-

 treatment following the manufacturers´ instructions. 

12. Resolve the pellet in nuclease free water. 

13. Assess the dsRNA quality and quantity photometrically and by 

 agarose gels or capillary gel electrophoresis.  

The photometric measurement of the OD260/OD280 ratio should be 

between 1.8 and 2. A lower ratio indicates contamination with 

proteins. As a contamination with DNA or dsRNA degradation cannot 

be detected by photometry, visualization of the dsRNA product is 

necessary. For this 1.5% agarose gels can be used, see section 

3.2.1). A single distinct band should be visible. 

14. Adjust dsRNA concentrations to 5 µg/µl by diluting with insect 

 ringer (54 mM NaCl; 24 mM KCl; 7 mM CaCl2 x 2H2O) right 

 before the injection. 



10.3. RNAi Applications 

10.3.1. RNAi in adult honey bees via feeding 

1. Take newly emerged bees (1-2 d old) from one colony from 

one brood frame. 

2. Set up at least two controls:  

1. Bees fed with 50% sugar water alone.  

2. Bees fed with scrambled siRNA (siRNA with exactly the    

    same nucleotides as the target siRNA but in an altered   

    order lacking any similarity with other known bee genes). 

3.   Take a mixture of two siRNAs specific for the target gene.  

Note: in previous experiments a mixture of two siRNAs was more 

effective than single siRNAs (Jarosch et al., 2011). 

4.   Put 35-40 newly emerged bees in wooden cages (see the 

 BEEBOOK paper on maintaining adult honey bees in vitro 

 under laboratory conditions (Williams et al., 2013)) supplied 

 with a small comb and pollen ad libitum. 

5.   Put cages in temperature controlled incubators (see the 

 BEEBOOK paper on maintaining adult honey bees in vitro 

 under laboratory conditions (Williams et al., 2013)) and feed 

 with 1.5 ml 50% sugar water containing approximately 1 µg 

 siRNA per insect every 24 hours. 

6.   Dependent on the actual experiments bees can be held for 

 several weeks. 

7.   Once the experiment is finished, bees should be shock-frozen 

 in liquid nitrogen in order to maintain the RNA status. 

 

10.3.2. RNAi in honey bee larvae via feeding 

1.  Take a comb with second instar larvae out of the colony.  

2.  Transfer it to the lab.  

The whole treatment is conducted at room temperature. 

3. Draw a map of the different treatment groups on the very           

     same comb for future identification of the treated individuals. 

4. Apply 1 µl of sugar solution containing the respective amount  

of dsRNA directly into the cells. Deposit it at the bottom of the 

worker brood cell that contains a drop of food. Avoid touching 

the larvae. Successful experiments used dsRNA concentrations 

between 0.5 µg (Nunes and Simões, 2009) and up to 1.26 µg 

(Aronstein et al., 2006). 

In addition to the first dsRNA feeding you may feed another µg of 

your dsRNA after 12 hours. This feeding cycle can be repeated for 

several days (Liu et al., 2010) until the life stage of interest is reached. 

5.   Place the comb back to its host colony two hours after 

 treatment and take samples at the life stage you are 

 interested in.  
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10.3.3. Gene knock-down by abdominal injection of target-

specific dsRNA/siRNA 

 RNA interfering molecules injected by intra-abdominal injection do 

not reach every tissue (Jarosch and Moritz, 2011). But especially the 

fat body can be easily reached by this user friendly method (Amdam 

et al., 2003; Jarosch and Moritz, 2011). 

1.   Take age-defined workers (see the BEEBOOK paper on 

miscellaneous methods (Human et al., 2013)). 

Note: newly emerged workers are a little bit more difficult to inject as 

their abdomen is quite flexible. 

2.   Immobilise bees by cooling down in at 4°C.  

3.   Fix the bees on wax plates using small fixing pins. 

4. Inject 5 µg of freshly diluted dsRNA or alternatively 3 µg of 

 freshly diluted siRNA (treatment and control dsRNA/siRNA) 

 between the 5th and 6th abdominal segment using a 10 µl 

 microsyringe (e.g. Hamilton). 

 5.  Inject negative controls with insect ringer (54 mM NaCl;  

 24 mM KCl; 7 mM CaCl2 x 2H2O). 

6.   Keep the injected workers on wax plates until they recover 

  and keep bees not showing haemolymph leakage (visible on 

  their substrate or as a droplet on the cuticle) together with 

  about 25 nurse bees (1-10 days) in cages (see the BEEBOOK 

  paper on maintaining adult honey bees in vitro under   

  laboratory conditions (Williams et al., 2013)). 

7.   Sacrifice the bees by shock-freezing in liquid nitrogen. 

8.   Store them at -80°C until tissue preparation.  

9.   Prepare the worker tissues on cooled wax plates using an RNA 

 Stabilization Reagent (e.g. RNAlater®) in order to avoid RNA 

 degradation.  

 

10.4. Concluding remarks 

Based on the literature (see Huvenne and Smagghe, 2012 for review) 

five aspects seem to be most important to conduct successful RNAi 

knockdown experiments in honey bees. 

Concentration of dsRNA: For every target gene the most effective 

concentration of RNAi molecules has to be determined. It does not 

follow the general rule: The more the better. Nunes and Simões (2009) 

for example report on the removal of 2nd instar larvae, which were fed 

with 3 and 5 µg dsRNA. In contrast, larvae fed with just 0.5 µg dsRNA  

did not show a significant higher removal rate than the control group, 

and moreover exhibited an mRNA silencing effect of about 90%. 

Nucleotide sequence: Sequences of the RNAi effective molecules 

have to be carefully designed and tested in order to avoid off-target 

effects.  

 



Length of the dsRNA fragment: When not using siRNAs the length of 

the dsRNA fragments may be crucial for uptake and efficient silencing. 

Most experiments used dsRNA ranging from 300 to 520 bp (see 

Huvenne and Smagghe, 2012 for review). Moreover, a minimal length 

of 211 bp is suggested in S2 cells (Saleh et al., 2006). 

Honey bee life stage: Although adults are easier to handle, 

literature of other insects suggest a larger silencing effect in younger 

life stages. E.g. in fall armyworms (Spodoptera frugiperda) the 

silencing effects after RNAi treatment were reported to be less 

effective than in S. frugiperda larvae (Griebler et al., 2006). Thus the 

usage of larvae rather than adults where feasible may be advisable in 

honey bees as well. 

Application method: The two application methods presented here 

both have pros and cons. The feeding regimes lead to an individually 

different consumption of food and therefore to the ingestion of 

different dosages of dsRNA. But in contrast to injections protocols, 

feeding is much easier in handling and moreover, it causes less stress 

in the target animals. Moreover, studies suggest, that the composition 

of the target tissue may have some influence on the accessibility of 

dsRNA when choosing injection as application method (Jarosch and 

Moritz, 2011).  

 

 

11. DNA methylation in honey bees  

11.1. Introduction  

Methylation of chromosomal DNA is a flexible epigenetic mechanism 

that plays a critical role in gene regulation, and patterns of 

methylation across the genome are often surrogates for interesting 

sets of proteins that are regulated in concert with each other and with 

biological traits.  In order to detect methylated bases in genomic DNA 

(essentially only cytosines are methylated), DNA has to be treated 

with bisulfite to convert non-methylated cytosines to uracil and 

subsequently to thymine during the PCR amplification step.  

 

11.2. DNA methylation in honey bees  

So far, four full methylomes (genome-wide methylation patterns) 

have been generated for Apis mellifera using the following tissues: 

adult brains of queens and workers and 96 hrs-old queen and worker 

larval heads (Lyko et al., 2010; Foret et al., 2012). The below protocol 

describes methylation analyses of DNAs extracted from the dissected 

brains of 50 age matched active queens and 50 8-day old workers 

(dissection of clean, gland-free brains is shown at: http://

dl.dropbox.com/u/59152790/Brain%20dissection%20Maleszka%

20lab.wmv).  

A similar protocol was used to generate larval methylomes (Foret 

et al., 2012) and in principle this procedure should work for any bee 

tissue and/or life stage from which intact RNA’s can be extracted as 

below (section 11.3.). 
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11.3. DNA extraction from various tissues for 

methylation analysis 
 

 

 

 

Methylation analyses do not depend on a particular DNA extraction 

method. Nevertheless, the below extraction has been validated in a 

variety of honey bee tissues. 

 

1.   Homogenize tissues in a 1.5 ml microcentrifuge tube in a 

 small volume of NTE buffer:  

    100 mM NaCl, 

    50 mM Tris pH 8.2, 

    10 mM EDTA,  

    1% SDS,  

    Proteinase K (500 µg per ml, freshly dissolved). 

2.   Add a small amount (0.01%) of a non-ionic detergent such as 

 Triton X100. 

The detergent is beneficial (increases the efficiency of proteinase K 

digestion), but not necessary.  

3.   Add more buffer (roughly 500 µl per 20-50 mg of tissue). 

4.   Incubate at 55°C for 1-3 hrs. 

5.   Extract with 1 volume of phenol: chloroform. 

6.   Spin for 10 min at 10,000rpm. 

7.   Collect the upper phase (repeat the extraction if the upper 

 phase looks cloudy). 

8.   Add 1 µl of RNase A (10 mg/ml). 

9.   Incubate for 10 min at 370C to digest RNA. 

This step is not necessary for bisulfite conversion, but the 

presence of RNA interferes with measuring DNA yield. 

10. Precipitate DNA with 1 volume of isopropanol or 2 volumes of 

 EtOH. 

11. Spin gently (5,000 rpm for 2 min). 

12. Discard the supernatant. 

13. Wash the pellet once with 70% EtOH. 

14. Remove ethanol, but DO NOT DRY THE PELLET! 

15. Dissolve the pellet in TE buffer by heating to 65°C. 

16. Store at 4°C (or at -80°C for long term storage). 

Clean DNA preps are stable at 4°C for at least 5 years. The majority 

of DNA strands from the above prep are 200-250 kb in length with the 

smallest molecules around 70 kb. 

Note: DNA preps from larvae might appear milky after this 

procedure, but such preps are suitable for bisulfite conversions. 

Alternatively use the MasterPure DNA Purification kit from AMRESCO 

(Cat. No. MCD85201) yields cleaner larval preps.  

 

 

 

 

 

 

http://dl.dropbox.com/u/59152790/Brain%20dissection%20Maleszka%20lab.wmv
http://dl.dropbox.com/u/59152790/Brain%20dissection%20Maleszka%20lab.wmv
http://dl.dropbox.com/u/59152790/Brain%20dissection%20Maleszka%20lab.wmv


11.4. High-throughput sequencing of targeted 

regions 

11.4.1. Fragmentation of DNA 

1.   Fragment 5µg of high molecular weight DNA using the Covaris 

 S2 AFA System in a total volume of 100µl.  

Fragmentation-run parameters:  

   Duty cycle 10%, 

   Intensity: 5,  

   Cycles/burst: 200,  

   Time: 3min, 

   Number of cycles: 3, 

   This results in a total fragmentation-time of 180s. 

2.   Confirm fragmentation with a 2100 Bioanalyzer (Agilent 

 Technologies) using a DNA1000 chip, aiming for fragment 

 sizes of 140 bp on average for both queen and worker DNAs.  

 

11.4.2. End-repair of sheared DNA 

Having a blunt (neither strand longer than the other) end to each 

double-stranded DNA section is needed to attach the below adaptors 

(‘handles’ that help connect DNA during library formation), and this is 

achieved as follows: 

1. Concentrate fragmented DNA to a final volume of 75 µl using 

a DNA Speed Vac.  

2. End-repair fragmented DNA in a total volume of 100 µl using 

the Paired End DNA Sample Prep Kit (Illumina, PE-102-1001) 

following manufacturer’s protocol.  

 

11.4.3. Adaptor ligation 

Ligate adaptors using the Illumina Early Access Methylation Adaptor 

Oligo Kit (P/N: 1006132) and the Paired End DNA Sample Prep Kit 

(Illumina, PE-102-1001), as recommended by the manufacturer. 

 

11.4.4. Size selection of adapter-ligated fragments 

For the size selection of the adaptor-ligated fragments use the E-Gel 

Electrophoresis System (Invitrogen) and a Size Select 2% precast 

agarose gel (Invitrogen) as below.  

1. Load each fragmented DNA on two lanes of an E-gel.  

2. Electrophorese using the “Size Select” program for 16 min.  

3. Using a size standard (50 bp DNA Ladder, Invitrogen, Cat no. 

104 16-014), extract 240 bp fragments from the gel.  

4. Pool samples and directly transfer to bisulfite treatment 

without further purification.  

 

11.4.5. Bisulfite conversion and amplification of the final 

library 

1.   Bisulfite treatment can be carried out with the EZ-DNA 

 Methylation Kit (Zymo) as recommended by the manufacturer, 

 with the exception of a modified thermal profile for the 

 bisulfite conversion reaction. Alternatively the QIAGEN EpiTect 
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 Bisulfite Kit can be used. 

The conversion is carried out in a thermal cycler using the   

 following thermal profile:  

15 cycles of: 

95° C for 15 sec, 

50° C for 1hr, 

Incubate at 4° C for at least 10 min. 

2.   Amplify the resulting libraries using the Fast Start High Fidelity 

 PCR System (Roche, 03 553 400 001) with buffer 2, the 

 Illumina PE1.1 and PE2.1 amplification primers, and the below 

 protocol.  

PCR thermal profile:  

95°C- 2min, 

11 cycles of: 

95°C for 30 sec, 

65°C for 20 sec, 

72°C for 30 sec, 

72°C for 7 min, 

20°C hold. 

3.   Purify products on PCR purification columns (MinElute, 

 Qiagen), eluting in 20 µl elution buffer (Qiagen).  

 

11.4.6. Validation of the libraries  

1. Analyse 1 µl of the libraries on a 2100 Bioanalyzer (Agilent 

Technologies) using a DNA1000 chip. 

2. Confirm product size of ca. 240 base pairs and adequate 

quantity using the DNA1000 size standards. 

 

11.4.7. Sequencing and data analysis  

1. Use a Solexa Genoma Analyzer GAIIx with a v2 Paired End 

Cluster Generation Kit - GA II (Illumina, PE-203-2001) and v3 

36 bp Cycle Sequencing Kits (Illumina, FC-104-3002) following 

manufacturer’s protocols, for sequencing.  

2. Extract sequences using Illumina Pipeline v1.4 software. 

3. Perform image analysis and base calling using Illumina SCS 

v2.5 software. 

8 pM of material is used per sequence lane, generating between 10 

and 16M sequence reads. 

 

11.5. Mapping and methylation assessment  

1.   Trim the above sequence data using the Illumina Data 

Analysis Pipeline. 

2.   Align bisulfite-converted sequencing reads to the honey bee 

 genome using the BSSeeker software (http://

 pellegrini.mcdb.ucla.edu/BS_Seeker/BS_Seeker.html) as 

 described in Foret et al. (2012); http://www.pnas.org/

 content/suppl/2012/03/12/1202392109.DCSupplemental/

 pnas.201202392SI.pdf#nameddest=STXT.  

 



3. Reads containing consecutive CHN nucleotides are the   

      product of incomplete bisulfite conversion and must first be 

 discarded.  

4.   To increase the accuracy of methylation calls, only those 

 cytosines fulfilling neighbourhood quality standards are 

 counted (bases of quality 20 or more, flanked by at least 

 three perfectly matching bases with a PHRAP quality score of 

 15 or more).  

5.   The methylation status of each cytosine base can be modelled 

 by a binomial distribution with the number of trial equal to the 

 number of mapping reads and the probability equal to the 

 conversion rate.  

6.   A base is called methylated if the number of reads supporting 

 a methylated status departed from this null model significantly 

 at the 5% level after correcting for multiple testing. 

7. Differentially methylated genes are identified using 

 generalized linear models of the binomial family; the response 

 vector CpGmeth (number of methylated and non-methylated 

 reads for each CpG in a gene) was modelled as a function of 

 two discrete categorical variables, the caste and the CpG 

 position: CpGmeth = caste * CpGi.  

8.   P-values are corrected for multiple testing using the Benjamini 

 and Hochberg method. These tests are carried out using the  

           R statistical environment (http://www.r-project.org).  

9. Honey bee ESTs and predicted genes are loaded into a Mysql 

 database and visualized with Gbrowse, where CpG 

 methylation levels in queens and workers are added as 

 separate tracks. 

 

11.6. Methylation dynamics and expression of 

individual genes  

Targeted analyses of selected genes can be conducted using 454 

sequencing of amplified gene fragments from bisulfite-converted 

DNAs. For a small-scale testing the amplicons can be cloned into a 

plasmid, cloned and sequenced using via Sanger dideoxy sequencing 

(Foret et al., 2009). Both approaches can be used to validate genome

-wide methylation data, but 454 sequencing allows for a much higher 

coverage, as shown in section 8.5. 

 

11.6.1. Amplicon sequence selection 

1.   Illumina sequencing and BSMAP mapping results can be 

  confirmed by 454 sequencing of a set of bisulfite amplicons. 

2.   Specific amplicon sequences are selected using raw  

  methylome data and the following arbitrary criteria:  

1.   Minimum coverage - 5 mapped reads for each queen and 

  worker sample.  
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2.   Minimum 2 methylated CpGs within a region of ~400-600 bp of 

sequence showing at least 50% difference in methylation 

levels between the two samples. This selection is very 

stringent, but assures that amplicons with high probability of 

differential methylation are selected.  

3.   In addition a few regions of mtDNA that is not methylated are 

  selected as controls (optional).   

 

11.6.2. Bisulfite DNA conversion 

1. The Qiagen EpiTect Bisulfite Kit and the manufacture’s 

protocol is widely accepted as the most efficient and reliable 

kit for DNA conversion.  The amount of starting materials can 

range from 0.1 to 2 μg. 

2. Because DNA conversion with bisulfite is only ~98% efficient 

it is highly recommendable to repeat this protocol twice. 

3. 1/10th of the second conversion reaction is sufficient for 

subsequent amplification. 

 

11.6.3. Bisulfite PCR 

Bisulfite amplicons are amplified using a nested PCR protocol (Wang 

et al., 2006; Foret et al., 2009). Nested primers contained an 

additional 9 nucleotide-long linkers with EcoRI or HindIII recognition 

sequences allowing directional cloning of the amplicons.  

PCR reactions are performed in 25 µl volume containing: 

 1x PCR buffer,  

 mM MgCl2, 

 mM dNTP, 

 50 pmol each forward and reverse primer,  

 5 units Taq polymerase. 

 

Reaction efficiencies are optimized via annealing temperature 

gradients (Mastercycler gradient PCR machine, Eppendorf) and testing 

multiple Taq polymerases such as GoTaq (Promega) or FastStart Taq 

(Roche).  

Cycling profile is as follows:  

 Initial denaturation at 940C for 2 min,  

 Followed by 40 cycles of:  

           15 sec denaturation at 940C,  

  15 sec annealing at primer-specific optimal temperature, 

  60 sec extension at 720C,  

 A final extension cycle at 720C for 5 min. 

 

When using FastStart Taq polymerase, the denaturation 

temperature was increased to 950C, initial denaturation time to 5 min 

and cycling denaturation and annealing times to 30 sec.  

 

 

http://www.r-project.org


11.7. RNA extraction 
 

 

1. RNA for analysis can be extracted using the TRIzol®/QIAGEN 

RNeasy combination method followed by the QIAGEN Mini or 

Rneasy Minelute Cleanup kit, or by the detailed protocol in the 

RNA methods section 4.3. above. 

2. RNA concentrations are then evaluated via Nanodrop (section 

3.2.1) analyses and integrity assessed by gel electrophoresis 

(see section 4.4.). 

 

11.8. cDNA synthesis and template quantification 

 

1. Typical first-strand reactions consist of a 20µ volume 

containing: 

    0.5-2 mg of total RNA, or 50-100 ng of poly(A)RNA,  

    100 pmol of anchored d(T)20VN primer, 

    200 units of Superscript III (Invitrogen), 

    1X concentration of proscribed buffer. 

2.   The tube is incubated for 1 h at 50°C. 

3.   Terminate by adding 30 µl of TE buffer and freezing.   

4.   Resulting cDNAs can be screened for levels of specific genes 

 via quantitative-PCR as described in the RNA methods in 

 section 4.7. 
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