

AN ARCHITECTURE FOR THE

FORENSIC ANALYSIS OF WINDOWS SYSTEM GENERATED ARTEFACTS

NOOR HAYATI HASHIM

A submission presented in partial fulfillment of the requirements of the
University of Glamorgan/Prifysgol Morgannwg for the degree of

Doctor of Philosophy

November 2011

This is to certify that, except where specific reference is made,

described in this thesis is the result of the candidate’s research. Neither

this thesis, nor any part of it, has been presented, or is currently

submitted, in candidature for any degree at any other University.

Signed ………………………………………

 Noo

Date ………………………………….......

Signed ………………………………………

 Professor Iain Sutherland (

Date ………………………………………

Certificate of Research

This is to certify that, except where specific reference is made,

described in this thesis is the result of the candidate’s research. Neither

this thesis, nor any part of it, has been presented, or is currently

submitted, in candidature for any degree at any other University.

………………………………………

Noor Hayati Hashim (Candidate)

………………………………….......

………………………………………

Professor Iain Sutherland (Director of Studies

………………………………………

This is to certify that, except where specific reference is made, the work

described in this thesis is the result of the candidate’s research. Neither

this thesis, nor any part of it, has been presented, or is currently

submitted, in candidature for any degree at any other University.

Director of Studies)

ABSTRACT

AN ARCHITECTURE FOR THE

FORENSIC ANALYSIS OF WINDOWS SYSTEM GENERATED ARTEFACTS

Computer forensic tools have been developed to enable forensic investigators to

analyse software artefacts to help reconstruct possible scenarios for activity on

a particular computer system. A number of these tools allow the examination

and analysis of system generated artefacts such as the Windows registry.

Examination and analysis of these artefacts is focussed on recovering the data

extracting information relevant to a digital investigation. This information is

currently underused in most digital investigations. With this in mind, this

thesis considers system generated artefacts that contain information

concerning the activities that occur on a Windows system and will often

contain evidence relevant to a digital investigation. The objective of this

research is to develop an architecture that simplifies and automates the

collection of forensic evidence from system generated files where the data

structures may be either known or in a structured but poorly understood

(unknown) format. The hypothesis is that it should be feasible to develop an

architecture that will be to integrate forensic data extracted from a range of

system generated files and to implement a proof of concept prototype tool,

capable of visualising the Event logs and Swap files.

This thesis presents an architecture to enable the forensic investigator

to analyse and visualise a range of system generated artefacts for which the

internal arrangement of data is either well structured and understood or those

for which the internal arrangement of the data is unclear or less publicised

(known and not known data structures). The architecture reveals methods

to access, view and analyse system generated artefacts. The architecture is

intended to facilitate the extraction and analysis of operating system generated

artefacts while being extensible, flexible and reusable. The architectural

concepts are tested using a prototype implementation focussed the Windows

Event Logs and the Swap Files. Event logs reveal evidence regarding logons,

authentication, account and privilege use and can address questions relating to

which user accounts were being used and which machines were accessed. Swap

file contains fragments of data, remnants or entire documents, e-mail

messages or results of internet browsing which reveal past user activities.

Issues relating to understanding and visualising artefacts data structure are

discussed and possible solutions are explored. The architecture is developed by

examining the requirements and methods with respect to the needs of

computer forensic investigations and forensic process models with the

intention to develop a new multiplatform tool to visualise the content of Event

logs and Swap files. This tool is aimed at displaying data contained in event

logs and swap files in a graphical manner. This should enable the detection of

information which may support the investigation.

Visualisation techniques can also aid the forensic investigators in

identifying suspicious events and files, making such techniques more feasible

for consideration in a wider range of cases and, in turn, improve standard

procedures. The tool is developed to fill a gap between capabilities of certain

other open source tools which visualise the Event logs and Swap files data in a

text based format only.

ACKNOWLEDGEMENTS

First, I am ever grateful to God, the Creator and the Guardian, and to whom I

owe my very existence. Second, I would like to express my deep and sincere

gratitude to my director of study, Prof. Iain Sutherland, for his support

throughout the course of this thesis. I especially want to thank him for all the

time he took to read and re-read this thesis so as to make it as good as

possible. On the other hand, I also want to thank the people who served as

evaluators in the evaluation phases of my thesis; research student at the

Information Security Group, Faculty of Advanced Technology, University of

Glamorgan.

On a different note, I am deeply indebted to my husband, Abdul Aziz

Arshad, whose patient love enabled me to complete this work. Besides working

to help with the financial needs, he finds the time to help with the household

chores; cook, clean, and look after the children. He also provides suggestions

and encouragement throughout the research and writing of this thesis. I also

want to thank my daughter and son, Nur Fatihah Abdul Aziz and Muhammad

Alfatih Abdul Aziz, who are the joy of my life, for letting Mak work on her

research and thesis when she needed to do so.

Finally, a special thank you to my mum and dad, Allahyarhamah

Saripah Ahmad and Allahyarham Hashim Abd Samad, to whom I dedicate my

work. Although they are no longer in the world, their unfailing love and

unwavering belief in my capabilities have contributed to my being able to

successfully complete my doctoral study in University of Glamorgan. Last but

certainly not least, my special gratitude is due to my sister, my brothers and

their families for their loving support.

Noor Hayati Hashim

April 2011

vi

CONTENTS

Table of Contents .. vi

List of Figures .. xii

List of Tables ... xvi

1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Research Problem .. 6

1.2.1 Why This Research is Important 10

1.3 Research Hypothesis, Aim, Objectives and Questions 10

1.3.1 Hypothesis .. 10

1.3.2 Aim ... 11

1.3.3 Objectives ... 11

1.3.4 Information Extraction .. 12

1.3.5 Organising Data ... 13

1.3.6 Supporting Forensic Analysis .. 14

1.4 Scope of the Research .. 14

1.5 Research Methodology .. 15

1.6 Research Contributions... 16

1.7 Organisation of the Thesis .. 17

1.8 Origins of Some of the Chapters ... 18

2 LITERATURE REVIEW .. 19

2.1 Forensics and Forensic Science ... 20

CONTENTS vii

2.2 Computer Forensics and Computing .. 20

2.3 Computer Crime and Digital Investigation 22

2.4 Data Sources for Digital Evidence .. 26

2.4.1 Persistent Data .. 27

2.4.2 Volatile Data .. 30

2.4.3 Digital Evidence ... 31

2.5 Methodologies, Tools and Techniques .. 32

2.5.1 Digital Evidence Formats .. 33

2.5.2 Tools and Framework .. 38

2.6 An Overview of Computer Forensic Analysis and Data Collection
 ... 41

2.6.1 Logical Collection ... 42

2.6.2 Physical Collection ... 44

2.6.3 Analysis of Data ... 45

2.6.3.1 Timeframe or Temporal Analysis 47

2.6.3.2 Data Hiding Analysis ... 49

2.6.3.3 File Analysis ... 52

2.6.3.4 Relational or Link Analysis 56

2.7 Conclusion ... 56

3 SYSTEM GENERATED ARTEFACTS AS FORENSIC

OBJECTS .. 59

3.1 Introduction ... 60

3.2 System Generated Artefacts ... 61

3.2.1 Event Logs As System Generated Artefacts 63

3.2.1.1 Event Logs Features .. 63

3.2.1.2 Evidentiary Value of Event Logs 68

3.2.1.3 Event Logs Tools and Related Issues 69

3.2.2 Swap Files As System Generated Artefacts 73

3.2.2.1 Swap Files Features ... 74

3.2.2.2 Evidentiary Value of Swap Files 75

3.2.2.3 Swap Files Tools and Related Issues 76

3.2.3 The Registry As A System Generated Artefact 77

CONTENTS viii

3.2.3.1 The Registry Features ... 78

3.2.3.2 Evidentiary Value of the Registry 85

3.2.3.3 Registry Tools and Related Issues 87

3.2.4 Web Cookie Files As System Generated Artefacts 88

3.2.4.1 Web Cookie Files Features 88

3.2.4.2 Evidentiary Value of Web Cookie Files 90

3.2.4.3 Web Cookie Files Tools and Related Issues 90

3.2.5 Recycle Bin As A System Generated Artefact 91

3.2.5.1 Recycle Bin Features ... 91

3.2.5.2 Evidentiary Value of the Recycle Bin 93

3.2.5.3 Recycle Bin Tools and Related Issues 93

3.2.6 Internet Explorer Activity Files As System Generated
Artefacts ... 94

3.2.6.1 Internet Explorer Activity Files Features 94

3.2.6.2 Evidentiary Value of Internet Explorer Activity
Files ... 98

3.2.6.3 Internet Explorer Activity Files Tools and Related
Issues... 99

3.3 Digital Forensic Tools and Techniques 99

3.3.1 Commercial Forensic Tools .. 102

3.3.1.1 EnCase ... 102

3.3.1.2 Forensic ToolKit ... 104

3.3.2 Open Source Forensic Tools ... 105

3.3.2.1 Sleuth Kit and Autopsy 106

3.4 Problems Facing System Generated Artefacts Analysis 107

3.5 Conclusion ... 111

4 SYSTEM GENERATED ARTEFACTS FORENSIC ANALYSIS

SYSTEM DESIGN .. 113

4.1 Introduction ... 113

4.2 Existing Structure and Requirements of Digital Forensic

Investigations .. 114

4.3 Windows System Generated Artefacts Forensic Analysis System
Architecture ... 115

CONTENTS ix

4.4 System Analysis .. 126

4.5 Windows System Generated Artefacts Forensic Analysis
(SAFTool) System Requirements .. 127

4.5.1 Functional Requirements... 128

4.5.2 Security Requirements ... 130

4.5.3 Software Quality Requirements 130

4.5.4 Other Requirements ... 131

4.6 Windows System Generated Artefacts Forensic Analysis System
Design .. 133

4.7 Operation and Control Specifications 138

4.8 Data Management ... 142

4.9 Object Oriented Approach to System Development 144

4.10 Conclusion ... 149

5 SYSTEM GENERATED ARTEFACTS FORENSIC ANALYSIS

SYSTEM IMPLEMENTATION... 150

5.1 Introduction ... 150

5.2 Software Development Tools ... 151

5.2.1 Integrated Development Environment 152

5.2.2 Object Oriented Programming 153

5.2.3 Database Management Systems (DBMS) and
Connectivity ... 154

5.3 Implementation of the Architecture ... 156

5.3.1 Classes Identified ... 159

5.3.2 Interaction and State Behaviour 162

5.3.3 Data Management and the Database 165

5.3.4 SQL Statements ... 169

5.3.5 Fulfilling the Architecture’s Other Requirements 171

5.4 Implementation Diagrams .. 175

5.5 Conclusion ... 178

6 EVALUATION AND DISCUSSION ... 179

6.1 Research Evaluation ... 181

6.1.1 Data Interpretation and Analysis 183

6.1.2 Experimental Setup ... 184

CONTENTS x

6.2 Comparison with Other Tools ... 192

6.3 Objective Evaluations Experiment of Forensic Analysis System
 ... 193

6.4 Practical Experiments .. 194

6.4.1 Experiment on the Event Logs with the Event Viewer 195

6.4.2 Experiment on the Event Logs with the evtstats.pl and
lsevt.pl .. 197

6.4.3 Experiment on the Event Logs with the SAFTool......... 199

6.4.4 Swap Files Analysis Using WinHex 209

6.4.5 Swap Files Analysis Using the SAFTool 211

6.4.6 Analysis of the Results ... 218

6.4.7 A Comparison of the Results for the Event Logs and Swap
Files Experiments .. 219

6.5 Subjective Evaluations Experiment of Forensic Analysis System
 ... 228

6.5.1 Subjects of Experiments ... 228

6.5.2 Structure of Experiments... 230

6.5.3 Results .. 234

6.6 Additional Experiments .. 240

6.7 Conclusion ... 254

7 CONCLUSIONS AND FUTURE WORK 256

7.1 Summary ... 256

7.1.1 Information Extraction .. 258

7.1.2 Organising Data ... 259

7.1.3 Supporting Forensic Analysis .. 260

7.2 Conclusions .. 262

7.3 Issues and Future Work .. 264

Bibliography ... \///266

Appendices ... 296

A Event Logs Data Structure for Windows Vista 296

B Registry Data Structure .. 300

C Use Cases .. 305

CONTENTS xi

D Sequence Diagrams .. 308

E Full Class Diagrams .. 313

F Full Database Tables .. 317

G Full Dataset .. 323

H Additional Dataset .. 326

I Questionnaire 343

xii

LIST OF FIGURES

2.1 Computer Investigation Model (Microsoft TechNet, 2007) 23

2.2 A Digital Evidence Bag Comprising Three Files (Turner, 2006) 35

2.3 An Overview of the Advanced Forensics Format (Garfinkel, 2006) 36

2.4 An Overview of the Digital Evidence Exchange File Format
(International Telecommunication Union, 2009) 37

2.5 Layers of Analysis Based on the Design of Digital Data (in Carrier,
2005).. 41

2.6 An Overview of Correlation Between Types of Analysis 47

2.7 Methods for Analysing Data ... 49

3.1 Event Viewer Panes .. 70

3.2 An Example of the Opened Event Properties Dialog in Event Viewer 70

3.3 Windows Operating System History (Microsoft TechNet, 2007) 73

3.4 Result of pagefile.sys Analysis ... 76

3.5 Registry Editor Showing Registry Values in the Value Pane 82

3.6 Hive Bin Structure (Morgan, 2009).. 83

3.7 The Last-logged-on User and Domain are Stored in the Key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\
CurrentVersion\Winlogon ... 86

3.8 Web Cookie File Content .. 90

4.1 High Level Description of Overall Architecture 120

4.2 Four Layers Architecture Applied to Overall Architecture 123

4.3 Four Layers Architecture Applied to Windows System Generated
Artefacts Forensic Analysis System ... 123

LIST OF FIGURES xiii

4.4 Layer Architecture Relates to the Overall Architecture 124

4.5 Package Architecture Applied to the System..................................... 125

4.6 The System Analysis Model ... 126

4.7 Collaboration for the Windows System Generated Artefacts Forensic
Analysis System ... 135

4.8 Objects for the Windows System Generated Artefacts Forensic
Analysis System ... 138

4.9 Activity Diagram for Use Case Analyse New Artefact 140

4.10 Activity Diagram for Use Case Visualise Artefact Data 142

5.1 Package Diagram View for the Software Architecture 157

5.2 Structural and Data View of the Architecture 158

5.3 The Packages and Classes for the Windows System Generated
Artefacts Forensic Analysis System ... 161

5.4 The Class Diagram for the Windows System Generated Artefacts
Forensic Analysis System ... 161

5.5 Interface for the Use Case Analyse New Artefact 163

5.6 State Machine for the Visualise Artefact Data Window.................... 164

5.7 Database Design for the Event Logs and Swap Files Structures 169

5.8 SQL to Create Tables for the Artefacts and Event Logs 170

5.9 Associations Between RelationalBroker Class and Classes from Other
Packages ... 171

5.10 Plugin Framework .. 173

5.11 Component Diagram for the Windows System Generated Artefacts
Forensic Analysis System ... 177

5.12 Deployment Diagram for the Windows System Generated Artefacts
Forensic Analysis System ... 177

6.1 The Event Viewer Shows the Content of the Windows Event Logs .. 196

6.2 The evtstats.pl Shows the Statistic from an Event Log File 198

6.3 The lsevt.pl Shows the Event Records from an Event Logs File 198

6.4 No Plugin Installed ... 201

6.5 The SAFTool Displays Active Menu When the Event Logs Plugin Has
Been Installed ... 201

6.6 The SAFTool Displays Active Menu When the Swap Files Plugin Has
Been Installed ... 202

LIST OF FIGURES xiv

6.7 The SAFTool Displays Active Menu After the Event Logs and Swap
Files Plugin Have Been Installed... 202

6.8 The SAFTool Displays the Event Log Files the User Can Choose to
Analyse ... 203

6.9 The SAFTool Displays the Menu Option, Progress Window and
Processing Time Message Window for the Event Logs Analysis 204

6.10 The SAFTool Displays the Menu Option and the List of Event Logs
Files the User Can Choose to View Further 205

6.11 The SAFTool Displaying the AppEvent04.Evt Event Records 206

6.12 The Types of Events for the Event Logs .. 207

6.13 The Timeline of Event Logs Records .. 207

6.14 The SAFTool Allows the User to Generate A Report for the Event Logs
Analysis. ... 208

6.15 The Report Generated for the Event Logs Analysis 208

6.16 The Hexadecimal Data Display, ASCII Text Display and Info Pane for
WinHex. .. 210

6.17 The Find Text Function for WinHex .. 210

6.18 The SAFTool Displays the List of Swap Files the User Can Choose to
Analyse .. 212

6.19 The SAFTool Displays the Menu Option, Progress Window and
Processing Time Message Window for the Swap Files Analysis 213

6.20 The SAFTool Displays the Menu Option and List of Swap File Names
the User Can Choose to Visualise the Swap Files 214

6.21 The Hexadecimal Data and ASCII Text Display Format for Displaying
the Contents of Swap Files ... 215

6.22 The Square Block Diagram for the Density of Swap Files 216

6.23 The SAFTool Enables the User to Generate A Report for the Swap
Files Analysis. ... 217

6.24 The Report Generated for the Swap Files.. 217

6.25 Total Event Records Located for the evtstats.pl Script and SAFTool
... 220

6.26 Graph Showing the Number of Records Located With Processing Time
... 222

6.27 Comparison of Total Size of Data Shown by the WinHex and SAFTool
... 223

6.28 Total Size of Data Located Over Time for WinHex 225

6.29 Total Size of Data Located Over Time for the SAFTool 225

LIST OF FIGURES xv

6.30 Participant’s Satisfaction Level with the System Generated Artefacts
Forensic Analysis Tool (SAFTool) .. 238

6.31 Total Event Records Located for the evtstats.pl Script and SAFTool in
Consistency Test ... 242

6.32 Graph Showing the Number of Records Located With Processing Time
in Consistency Test ... 244

6.33 Comparison of Total Size of Data Shown by the WinHex and SAFTool
in Consistency Test ... 246

6.34 Total Size of Data Located Over Time for WinHex in Consistency Test
... 248

6.35 Total Size of Data Located Over Time for the SAFTool in Consistency
Test ... 249

6.36 Participant’s Satisfaction Level with Fifteen Participants in using the
System Generated Artefacts Forensic Analysis Tool (SAFTool) 253

xvi

LIST OF TABLES

2.1 Persistent Data Types (modified from Nolan et al., 2005) 28

2.2 Volatile Data Types (in Carvey, 2004; Bejtlich et al., 2005; and Nolan
et al., 2005) ... 30

2.3 Data Hiding Methods ... 50

2.4 File Analysis Methods .. 53

3.1 System Generated Artefacts .. 62

3.2 Event Logs Organisation .. 64

3.3 Event Logs Header Structure .. 65

3.4 Event Log Records Data Structure .. 65

3.5 Values for Logon Types (Anson and Bunting, 2007) 68

3.6 Swap File Default Name and Location .. 75

3.7 Registry Files From Different Windows Platforms and Their Location
... 79

3.8 Registry Organisation (Anson and Bunting, 2007) 81

3.9 Registry Value Data Types (Anson and Bunting, 2007) 82

3.10 Registry Header Data Structures (Morgan, 2009) 84

3.11 Hive Bin Data Structures (Morgan, 2009) ... 84

3.12 Cell Data Structures (Morgan, 2009) ... 85

3.13 Web Cookie Files Location ... 89

3.14 Summary of Web Cookie Files Format (Jones, 2003) 89

3.15 Recycle Bin File Location ... 92

3.16 The Structure within the INFO2 File (Jones, 2003) 92

LIST OF TABLES xvii

3.17 index.dat File Location ... 95

3.18 Fields in the index.dat File Header (Jones, 2003) 96

3.19 Fields in the HASH Table of index.dat File (Jones, 2003) 96

3.20 Relevant Fields in the REDR Activity Record (Jones, 2003) 97

3.21 Fields in the URL and LEAK Activity Record (Haiping et al., 2009) . 98

3.22 Category of Tools by Britz (2004) and Svensson (2005) Studied 101

3.23 Comparison of Various Functionalities Provided by the Commercial
and Open Source Tools Studied ... 109

4.1 Class Responsibility Collaboration for the Main Classes Contained in
Windows System Generated Artefacts Forensic Analysis System 136

5.1 Data Dictionary for the Structural and Data View Model Diagram . 159

5.2 Event Action Table for Figure 5.6 .. 164

6.1 Requirements of the Architecture Revisited Illustrating the
Architecture Satisfies Each .. 180

6.2 Numbering for Event Log Files and Swap Files 185

6.3 Event Logs Experimental Results for Experiment 2 188

6.4 Swap Files Experimental Results for Experiment 2 Using WinHex 190

6.5 Swap Files Experimental Results for Experiment 2 Using Prototype
Tool.. 190

6.6 Ability to Parse the Data Set and Display the Results 218

6.7 Number of Records Retrieved for Event Viewer, evtstats.pl and
SAFTool .. 220

6.8 Processing Times for Event Viewer, lsevt.pl and SAFTool 221

6.9 Total Size of Data for WinHex and the SAFTool 223

6.10 Processing Time for WinHex and the SAFTool 224

6.11 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by WinHex ... 227

6.12 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by the SAFTool .. 227

6.13 Forensic Knowledge and Expertise of Human Subjects 230

6.14 File Size of File Subjects... 230

6.15 Number of Records Retrieved for Event Viewer, evtstats.pl and
SAFTool in Consistency Test ... 241

LIST OF TABLES xviii

6.16 Processing Times for Event Viewer, lsevt.pl and SAFTool in
Consistency Test ... 243

6.17 Total Size of Data for WinHex and the SAFTool in Consistency Test
... 245

6.18 Processing Time for WinHex and the SAFTool in Consistency Test . 247

6.19 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by WinHex in Consistency Test ... 250

6.20 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by the SAFTool in Consistency Test.................................. 250

6.21 Forensic Knowledge and Expertise of Human Subjects of Fifteen
Participants .. 251

6.22 File Size of File Subjects for Additional Experiments 252

A.1 Event Logs Header ... 297

A.2 Event Logs Chunk Header ... 298

A.3 Event Logs Record .. 299

B.1 Security Records (SK) Data Structures (Morgan, 2009) 301

B.2 Key Records (NK) Data Structures (Morgan, 2009) 301

B.3 Subkey-lists Record Data Structures (Morgan, 2009) 302

B.4 Value Records (VK) Data Structures (Morgan, 2009) 302

B.5 Value-lists Records Data Structures (Morgan, 2009) 303

B.6 Normal Data Blocks Records Data Structures (Morgan, 2009) 303

B.7 Big Data Records Data Structures (Morgan, 2009) 304

B.8 Big Data Indirect Cells Records Data Structures (Morgan, 2009) 304

G.1 Event Logs File Name and File Size of File Subjects 324

G.2 Swap Files File Name and File Size of File Subjects 324

G.3 Review of the Tasks Carried Out by Five Participants 325

H.1 Event Logs File Name and File Size of File Subjects in Consistency
Test .. 327

H.2 Swap Files File Name and File Size of File Subjects in Consistency
Test .. 327

H.3 Number of Records Retrieved for Event Viewer, lsevt.pl and SAFTool
(First Run) .. 328

H.4 Number of Records Retrieved for Event Viewer, lsevt.pl and SAFTool
(Second Run) ... 329

LIST OF TABLES xix

H.5 Number of Records Retrieved for Event Viewer, lsevt.pl and SAFTool
(Third Run) ... 330

H.6 Processing Time for Event Viewer, lsevt.pl and SAFTool (First Run)
... 331

H.7 Processing Time for Event Viewer, lsevt.pl and SAFTool (Second Run)
... 332

H.8 Processing Time for Event Viewer, lsevt.pl and SAFTool (Third Run)
... 333

H.9 Total Size of Data for WinHex and SAFTool (First Run) 334

H.10 Total Size of Data for WinHex and SAFTool (Second Run) 334

H.11 Total Size of Data for WinHex and SAFTool (Third Run) 335

H.12 Processing Time for WinHex and SAFTool (First Run) 336

H.13 Processing Time for WinHex and SAFTool (Second Run) 336

H.14 Processing Time for WinHex and SAFTool (Third Run) 337

H.15 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by the WinHex (First Run) .. 338

H.16 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by the WinHex (Second Run)... 338

H.17 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by the WinHex (Third Run) ... 339

H.18 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by the SAFTool (First Run) ... 340

H.19 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by the SAFTool (Second Run) .. 340

H.20 Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap Files
Identified by the SAFTool (Third Run) .. 341

H.21 Review of the Tasks Carried Out by Fifteen Participants 342

1

CHAPTER 1

INTRODUCTION

1.1 Background

An increasing crime rate in connection with the use of the Internet and

computers has resulted in a growing demand for computer forensics, a field

that is evolving to provide tools, techniques and systematic approaches to

process and analyse digital evidence (Casey, 2004). Computer forensic

investigators today analyse crimes ranging from computer security breaches to

high impact crimes where damages can result with a large number of

compromises, thereby causing monetary losses due to Internet threats and

defamation (MyCERT, 2007).

The focus of this thesis is to examine the area of forensic tool

development, to produce a prototype tool and to demonstrate the issues

relating to tool creation. In comparison to other IT and computer professionals,

it is common to see computer forensic investigators equipped with various

tools (EnCase, FTK) in the same way as a network administrator is equipped

with a range of software tools to diagnose faults and assess the security of a

network. In order to obtain and process digital evidence, computer forensic

investigators need to use tools, procedures and methods that are capable of

1.1 Background 2

providing various functions in a forensically sound manner, and possibly,

using layers of abstraction to detect features from large volume of data. In fact,

the toolkits available to forensic investigator has been compared to a Swiss

army knife by the National Institute of Standards and Technology (America)

(NIST) (2006) where many tools provide very specific functionality that needs

to be augmented by other tools during the course of a full investigation

(Newman, 2007). Tools are usually designed to achieve a function or a

particular range of functions to support the different phases of a digital

forensic investigation. These key investigative phases are: system

preservation, evidence searching, and event reconstruction (Carrier, 2006).

Casey (2004) refers to these three phases of a digital investigation as:

acquisition, analysis and presentation.

In the investigative phases, a tool is used during the acquisition phase,

where the data is copied from the suspect storage device to either a trusted

device or file. This tool must also preserve all of the data on the suspect’s

storage device, to prevent evidence from being altered or overwritten (ACPO,

2003). In the analysis phase, tools are used to examine the acquired data in

order to identify pieces of evidence that support or refute a hypothesis

regarding any incident. In the presentation phase, data from the analysis

phase is arranged into a useful format; and a conclusion with related evidence

from the investigation is presented. In all, computer forensic investigators

need tools to identify, acquire, preserve and analyse data in a forensically

sound manner. These requirements have inspired the production of various

types of tools used during computer forensic investigations some of which are

discussed in Chapter 2.

In investigative cases that involve computer systems, Carrier (2005)

indicates that storage devices, specifically non-volatile devices such as hard

disk drives, are important for analysing digital data. Based on studies of hard

disk files (Gillam and Rogers, 2005; Alink et al., 2006; Garfinkel, 2006; Harms,

2006; Mee et al., 2006; Lee et al., 2007a; and Murphey, 2007), from the

1.1 Background 3

physical to application level there are three levels of analysing data: volume

analysis, file system analysis, and application analysis.

The analysis of the physical storage device usually begins with volume

analysis. In volume analysis, data at volume level is examined to determine

the location of file system, hidden data or other data. The contents of each

volume, is usually a file system. File systems are a collection of data structures

that are used by applications within the operating system to create, read, and

write files. In most of the forensic work, file system analysis recovers the

directory entries (Vlastos and Patel, 2007). Then, in file system analysis, the

file system is analysed and resulting data fragments; metadata associated

with files and file content. The structure of each file is dependant on the

application or operating system that created the file. Application analysis can

be described as the process of analysing the file contents in order to

understand what is inside of a file. Analysis of the application level is

important because this is the level where the various user activities and

configurations relating to applications are recorded. Operating system files can

be analysed to determine what programs were running and how a particular

system may have been used (Carrier, 2005).

Considering the different possible application and operating system

files a number of different forensic tools may be appropriate to analyse these

files. Given the Windows registry as a forensic artefact, a computer forensic

investigator may use different tools and procedures to analyse registry files. In

the case of the Registry this is due to the fact that the registry file is a

compound file that is comprised of multiple layers (Guidance Software, 2005).

In summary, the principle involved at the most basic physical media

analysis sequence is: the disk is analysed to produce a stream of bytes.

Followed by, the stream of bytes is analysed at the volume level to distinguish

volumes. The volumes are analysed at the file system level to determine the

files (including deleted material, but residing in the file system). The files are

then analysed at the application level to determine user actions. Further

1.1 Background 4

elaboration on existing approaches relating to file analysis is described in

Chapter 2.

According to Carrier (2005), one of the basic challenges for any

computer forensic investigator is the complexity of the data. There are

numerous file types, each with a different structure and the structure is based

on the application or operating system that created them. For example, a

computer forensic investigator may require forensic evidence that illustrates

the Internet usage in the Windows registry (Mee et al., 2006). This evidence

may be uncovered using a specific methodology (often built into a tool), the tool

presents them with the relevant hives that contain information in a tree-like

structure.

In addition to physical media, investigators may also obtain evidence

from other sources such as live memory analysis. Where the capture of live

memory is not possible, some evidence of memory activity can be recovered

from the Swap files left on the hard drive. The similarity between application

analysis and memory analysis is that both requires information about internal

data structure and fields layout (Schuster, 2006; Okolica and Peterson, 2010).

In contrast to application analysis where a file is analysed to understand the

contents, memory analysis examines the processes that were running in the

memory. Both analysis deal with internal data structure and data

organisation to work with. A file can be structured as one or more fields,

containing data. These fields can be categorised into either information (the

content of a file) or metadata (information on the structure or content of the

file).

To interpret and analyse data, digital investigators must know how

data is arranged in order to interpret the file content. Files are created by

operating systems to facilitate quick access to applications and for a range of

other purposes. The data structure of a file is a sequence of bytes, each

sequence with a specific meaning and purpose. In system memory analysis, a

process is the combination of some executable code, a virtual address space,

and one or more threads of execution (data structure). Each process is

1.1 Background 5

represented as an EProcess block. The EProcess block is a data structure that

maintains various attributes of a process, as well as pointers to other

attributes and data structures relating to the process (Ruff, 2007). The data

structures (file content and EProcess block) need to be read and analysed by a

computer forensic investigator when conducting an investigation.

A typical digital investigation of a computer system requires the

individual analysis of numerous files. Reviewing files and interpreting their

possible relevance to the case is time-consuming. This task becomes more

complex as the volume of data increases, in particular when searching for

specific files or content in large volumes of irrelevant files. The overwhelming

volume of data found in modern systems which commonly includes Terabytes

of data (Frauenheim, 2004), necessitates new efficient software-based tools,

designed to deal with complexity, since data can take many interesting forms

that require unique types of display and interaction. Fry (2007) suggests that

the key goal of analysing data is to highlight its function in order of

importance, and reveal the patterns and these functions that exist across

multiple dimensions.

The proprietary nature and wide usage of the Windows system used

(both desktops and servers) has made it a common source of evidence. Based

on academic work into the investigative process in relation to the forensic

analysis of Windows computer systems (Carvey, 2004; Bejtlich, 2005; Dongen,

2007; Luo, 2007; Murphey, 2007; Schuster, 2007), there are a number of

possible artefacts for analysis, i.e. memory, application and file system. Morris

(2003) suggests that system artefacts may be of evidential value when

examining a Windows computer system. Several of these artefacts are created

on Windows systems during normal operations without reference to the user

and without the user’s knowledge.

Since a number of artefacts register user activities and investigators

are ignorant of this, there is a need to extract, analyse and present the

artefacts in an intuitive and informative way. Accordingly, this thesis

1.2 Research Problem 6

addresses the analysis of Windows system generated artefacts. For the

purpose of this thesis, a system generated artefact is defined as follows:

Definition 1 An artefact is a single file which may potentially contain

evidence that will have been created as a routine function of the various types of

computer operating systems. For example, an artefact which has been created

as a repository for deleted files, contains information stored in records so that

the original information about the file may be restored, such as the file name.

In today’s world, where the number of crimes committed using

computers continues to increase, a need exists for advanced forensic software

tools which allow computer forensic investigators to follow digital tracks left by

persons committing illegal activities. According to Volonino et al. (2007), “plain

text documents, log files, or even system files may contain traces of this

evidence”. Using visualisation techniques in displaying information about

computer data helps forensic specialists in searching suspicious files (Teerlink

and Erbacher, 2006; Vlastos and Patel, 2007; Read et al., 2009). The work

described in this thesis concerns the architecture that supports the extraction,

analysis and presentation of the system artefacts. The Windows operating

system has been considered for the work due to its popularity, and to ensure

evaluation of the work can be performed adequately by being able to gain

access to a sufficiently large set of test data (see Chapter 7).

1.2 Research Problem

Recent technological advancements in computer hardware have had a

significant impact on the size and cost of hard disks. It is known that hard disk

capacity is increasing and the price of data storage is decreasing (Hitachi,

2008). Digital investigators can be overwhelmed by the vast number of files

contained on a single modern hard drive where capacities at the time of

writing are around 2 terabytes and are estimated to reach 4 terabytes in size

by 2011 (Brown et al., 2005). In the case where only a portion of the digital

evidence on the computer is of interest (e.g. a log file), it is more practical to

1.2 Research Problem 7

search the computer immediately and just take the information required

(Craiger et al., 2005). Extracting only essential files is easier, faster, and less

expensive than copying the entire contents and can also solve the potential

business process problem of shutting down a large server (Sommer, 1998).

Nevertheless, in extracting limited sets of files there is a risk that digital

evidence will be overlooked or damaged during the collection and preservation

process. Given the risks of collecting only a few files, it is necessary to impose a

strict approach that will maintain the integrity of the digital evidence

acquired.

Acquiring a certain file directly from a live system may be impossible

when an operating system kernel prevents file access (such as a swap file).

However, it is still possible to access this file using a specially crafted driver,

or a special device, for example, Filter_1 by New Technologies, Inc.

(www.forensic-intl.com) (Schweitzer, 2003). There are also a number of

commercial tools that are able to copy the swap file of a running system. For

example, the software utilities like Norton Commander or Norton DiskEdit.

However, as with a number of these system artefacts the easiest way to collect

the swap file is to unplug the system and export the file from a drive.

System generated artefacts represent valuable sources of evidence and

are increasingly the focus of investigation and legal discovery as they are

generated by the system and are not readily visible to the common user, which

also makes it more plausible that they have not been altered (Volonino et al.,

2007). Examples of data that can be recovered and examined are Internet

activity and temporary backup files, passwords and deleted files. Hence,

ignorance on the part of the digital forensic investigator concerning the

location, format, existence and content of these system artefacts can result in

important evidence being lost. Therefore, system generated artefacts as in

Definition 1 make analysis of system generated artefacts to be easily realised

and understood by digital forensic investigator is one of the most exciting

areas to be explored in order to improve the effectiveness of digital

investigations.

1.2 Research Problem 8

Analysing a system generated artefact is usually achieved by

translating a stream of bytes into a usable data structure. An important

question related to data structure is how to access and manipulate the data

structures and fields that composed a data structure. On top of the technical

challenges of locating and interpreting information, digital forensic

investigators face the challenge of interpretation.

During the analysis phase, correct interpretation requires not only data

structure with their fields’ layout, but also data organisation. However, digital

forensic investigators, either experienced or inexperienced, should ideally be

free from the issues of dealing with the concepts of data structure and data

organisation. A data structure and a data organisation are defined below:

Definition 2 A data structure is an organisation of data including structural

relationships (Adamson, 1996).

Definition 3 “A data organisation is a way to represent information in a data

structure, together with algorithms that access and/or modify the structure”

(Knuth, 1997).

Digital forensic investigators have to sift through hundreds of

thousands of files and analyse each file on a computer system. Normally, a

typical file needs to be analysed, either by the application that created the file

or by a suitable specialised viewer. For example, a JPEG file requires an image

viewer to correctly interpret the JPEG file format. As a result, the examination

process of one file can significantly differ from the examination process of

another file. For these reasons, as previously indicated, the forensic

investigator needs a large toolkit to process and interpret evidence. An

investigator may also benefit from further additional tools, ones that are

capable of visualising the evidence extracted from a case, given the large

volumes of data which need to be sifted through during an investigation.

According to Ayers (2009) (as cited in Roussev and Richard, 2004), “existing

tools are failing to keep pace with the increasing complexity and evidential

volumes of modern computer forensic investigations”. These problems have

been addressed in other fields: such as network security, by using visualisation

1.2 Research Problem 9

methods (Read et al., 2009); for reverse engineering of binary and data files, by

using visualisation methods and text based methods (Conti et al., 2008); and in

overcome the limitations of existing digital evidence presentation methods,

and text or command line utilities, by using of 3D visualisation techniques

(Vlastos and Patel, 2007). Due to the size and complexity of the data sets

associated with network traffic, particular patterns indicating evidence of a

network intrusion may often only be detected when the data is displayed

visually to a human operator. According to Teerlink and Erbacher (2006), “In

particular when examining the advanced techniques developed during the last

few years for hiding, wiping, encrypting and deleting digital data. It has also

been suggested that visually displaying information related to a digital

investigation can reduce the time required to identify evidential material”.

This thesis suggests an approach for extracting, analysing and

representing digital evidence from system generated artefacts. This includes

artefacts for which the internal arrangement of data is either well structured

and understood or those for which the internal arrangement of the data is

unclear or less publicised; for the purpose of this thesis these are referred to as

‘known’ and ‘not known’ data structures. Ideally it should be possible to

extend the proposed architecture in the future to extract and analyse other

types of artefact if an extensible architecture was used, and possibly, a design

that would only require only the relevant parser to interpret the different data

structure.

Such system generated artefacts forensic analysis tool could provide

further evidence as to what may have occurred during an investigation, for

instance, when checking the Windows system for signs of compromise. Such a

tool could also provide a passive forensic analysis system solution that could

visualises the system’s activity for signs of compromise and analyse and

visualise data from the registry, event logs, recycle bin, Internet explorer

activity file, swap files and more.

1.3 Research Hypothesis, Aim, Objectives and Questions 10

1.2.1 Why This Research is Important

This research is important in that it will support digital forensic investigators

in answering questions that arise prior to analysing a system generated

artefact. Such questions include: what is the internal data structure (digital

evidence) of the artefact – what can be revealed when we decode the artefact?,

and which method is most appropriate for visualising the extracted data? For

example, is the artefact content suitable for displaying in text or command line

utilities?

In addition, a digital forensic investigator may decide to examine or

display the data in different ways, an alternative method of presentation may

be preferable to a specific investigator or when considering different types of

investigation. For instance, in some investigations, the content of an image file

may be the significant element of a case, in other investigations it may be the

metadata associated with the image file. Therefore, a digital forensic

investigator whose intention is to use the revealed artefact’s contents as

evidence in developing their report may like to know if the artefact’s contents

can be highlighted in order of importance, or if there are relationships with

other files.

1.3 Research Hypothesis, Aim, Objectives and

Questions

1.3.1 Hypothesis

This thesis proposes that it should be feasible to develop an architecture that

is able to integrate forensic data from known and not known internal data

structures of system generated artefacts by the Windows operating system and

to design and implement a proof of concept prototype tool, with appropriate

example artefacts.

1.3 Research Hypothesis, Aim, Objectives and Questions 11

1.3.2 Aim

The key aim of this project is to develop an architecture that simplifies and

automates the collection and extraction of forensic evidence for known data

structure and not known internal data structure system generated artefacts by

the Windows operating system. The project plans to develop a prototype tool

that is capable of visualising known data structures of appropriate artefacts in

such a way that the investigator can easily see what data is available within

these areas of the Windows. This architecture should aid investigators in the

forensic analysis of Windows system generated artefacts.

1.3.3 Objectives

The objectives of the project are summarised below:

I. Research

a. A review of system generated artefacts and the use of this type

of artefact in computer forensic analysis.

b. Current state-of-the-art tools regarding accessing and

visualisation of system generated artefacts.

II. Implementation

a. To develop an architecture to deal with system generated

artefacts, and to integrate data from different sources.

b. To implement a prototype tool, based on the architecture,

capable of visualising a selected subset of system generated

artefacts files in such a way that the investigator can easily

access and extract available data.

III. Evaluation

The evaluation process would involve:

a. Comparison of the proposed system would be made against

current state-of-the-art tools used.

1.3 Research Hypothesis, Aim, Objectives and Questions 12

b. An evaluation using appropriate test data sourced from blind

sourced second-hand hard drives.

The research hypothesis will be verified by developing a prototype

digital forensic analysis tool that is built upon open-source applications and

that presents users with an interface that displays the content of a specific file.

The research is structured around three central questions discussed in

Sections 1.3.4, 1.3.5 and 1.3.6.

Performance of the digital forensic analysis software/system/tool is

evaluated through (1) objective analysis and (2) subjective experiments. The

objective analysis involves quantifying the accuracy of the data extracted from

the forensic analysis software/system/tool upon receiving an artefact and

displaying the content of that artefact to support and improve the artefact

forensic analysis system. In one experiment, the effectiveness of the

visualisation function of the proposed digital forensic analysis

software/system/tool is analysed through experiments. These used a series of

scenarios constructed from a selection of Event logs and Swap files information

obtained from Glamorgan University’s Computer Forensic laboratory in which

forensic images were taken during a disk study (Jones et al., 2009). Another

experiment considers verifying functionalities and usefulness of the software

application is done through eliciting expert opinion. The objective is to verify

the software’s capability of visualising known data structure of Event logs and

not known data structure of Swap files in such a way that the investigator can

easily see what data is available within these areas of the Windows operating

system.

1.3.4 Information Extraction

Question 1: How can we extract information from an artefact?

One of the first challenges that an artefact forensic analysis system has to cope

with is how the data have been stored in a specific file / file system. This is

1.3 Research Hypothesis, Aim, Objectives and Questions 13

achieved by interpreting the data structure as this describes the relevant data

and metadata portions of the file and file system. When we want to read data

from the storage device, we determine where the data starts and then refer to

its data structure to determine what the information of value is stored. The

challenge is to interpret this data structure: each field has a size and name,

although the size and name information is not saved with the data structure,

and represents the information in a data structure. An additional challenge is

to find abstraction data structures that are not explicitly available in a file and

can be used to represent a file. Thus, appropriate parsers are required to

extract different types of data structure that are explicitly and implicitly

contained in a file.

1.3.5 Organising Data

Question 2: How can we organise and integrate the various data structures

to improve the correlation of the data obtained?

Upon identifying data structures (known and not known), how can these data

structures be integrated? How can data be used for data retrieval, further

analysis and data representation? An issue that should be considered is the

flexibility of the proposed mechanism. The mechanism should be flexible

enough so that additional data structures can easily be incorporated into a

common data store and this should include the facility to search through the

data. Keyword searching is used to search for texts or hexadecimal values that

the user may be have interest. At the same time, mechanisms to ensure that

no data is altered should also be considered, to ensure forensic integrity is

maintained. This is usually achieved in forensic tools by the use of a hash

function which is used to verify the integrity of the original media before and

after imaging and used to verify the integrity of working copies of the original

media (Casey, 2000).

1.4 Scope of the Research 14

1.3.6 Supporting Forensic Analysis

Question 3: How can we use the information obtained in the first two

questions to support and improve forensic analysis?

Several issues have to be addressed before the information identified in

Question 1 can be used to improve forensic analysis: How to deal with data

presentation that represents the different context of understanding data. Also,

when the user gains useful insight about the file, how can information be

inferred from fields extracted from a data structure? In order to identify the

benefits of incorporating visualisation as a function into the tool, we need to

perform relevant analysis on the techniques that can be used to expose

particular aspects of the data.

1.4 Scope of the Research

This research works on artefacts from the Windows family of operating

systems. An artefact is a single file or an area containing evidence that has

been created as a routine function of the various types of computer operating

systems, and is a computer-created file. It is categorised into two classes of file

format that is a known and not known file format. A not known file format

artefact is a “flat” file and will not have any fields. These types of artefact

usually have operations that may only be performed on objects of this type.

Users are allowed to examine and manipulate such objects using only these

operations, not knowing how the objects have been implemented (Schneider

and Bruell, 1998).

This research limits its work to the Windows XP and Vista operating

systems as these two versions of the operating system were the most common

systems in use at the beginning of this work. They were also the two most

commonly encountered in the disk study analysis conducted at the University

of Glamorgan (Jones et al., 2009), thus a significant body of test data will be

1.5 Research Methodology 15

available. In terms of operating system artefacts, for reasons outlined in

Chapter 3, this research focused on event logs file and swap files. These

artefacts are selected based on their internal data structure and the

characteristic of the file. It should however be noted that it is intended that the

system is intended to be able to readily adapt to new files. The proposed

system focuses on examination of a file by extracting, analysing, and

displaying file information visually. It does not focus on the preservation of

hard disk image, case management facilities or other processes involved in a

computer forensic investigation.

1.5 Research Methodology

The following sections of this thesis describe the research approach used to

address the research hypothesis outlined in this chapter (Chapter 1). It

explores possible research design methodologies and then assesses the possible

evaluation methods that could be applied both to the proposed architectural

design and the prototype software. In terms of research methodology and

research design Lakatos (1978) and Kuhn (1996) define research as “an

activity that contributes to the understanding of a phenomenon”. The

phenomenon is a set of behaviours of an entity that is of interest to a

researcher or a particular research community. Understanding a phenomenon

provides knowledge that enables prediction of the behaviour of some aspect of

the phenomenon. Research methods or techniques are the set of activities a

research community considers appropriate for the production of knowledge.

Research can be a key tool in informed decision-making and can be central to

determining what should be done, what can be done, how it will be done, and

how well it has been done (O’Leary, 2005).

According to Leedy and Ormrod (2005), “a research design is a general

strategy for solving a research problem”. According to Kumar (2005) as cited in

Kerlinger (1986), “A research design is a plan, structure and strategy of

investigation so conceived as to obtain answers to research questions or

1.6 Research Contributions 16

problems. The plan is the complete scheme or programme of the research. It

includes an outline of what the investigator will do from writing the hypotheses

and their operational implications to the final analysis of data.” In planning

and designing a research study, the researcher addresses the research problem

through certain methodologies that are particularly appropriate to the nature

and type of data the investigation of the problem requires (Kumar, 2005). In

addition, data and methodology interdependency is where the methodology to

be used for a research problem take into account the data that needs to be

collected to address the research aims, objectives, and questions (Leedy and

Ormrod, 2005).

In the application development phase, the design is converted to a

functional code. Development of a program (implementation) is the process

where program functions and activities are put in place (BJA, 2010). The

implementation encompasses coding, unit testing, and test-case definition

activities. The proposed approach is implemented as a working tool to support

system design practice. It is implemented as a tool to demonstrate the solution

for the hypothesis of the research, which is a new architecture able to analyse

and visualise information extracted from Windows system generated artefacts.

1.6 Research Contributions

Several of the results set this research apart from other related studies. The

research proposes an overall solution and validates a new architecture that

supports digital evidence examination and is applicable to a wide range of

internal data structures found in Windows system artefacts. The experiment

shows that this approach provides improved support for a number of artefact

forensic analyses. The contributions of this thesis are as follows:

• An architecture for extracting artefacts contained in hard disk images.

The artefact data is parsed separately and later combined into a single

representation. Such an approach can be extended to include other data

1.7 Organisation of the Thesis 17

from various areas within the Windows system as identified and/or

required by the user.

• An architecture that is capable of visualising data contained in an

artefact in such a way that the investigator can easily see what data is

available within these areas of Windows operating system.

• The provision of an open source architecture. Further, this architecture

will be as extensible and flexible as possible: for future improvements,

research and addition of features; and integration of the implemented

system into a wider forensic tool.

• Visualisation is the method chosen to understand and communicate

information. A prototype tool has been implemented for visualising the

Event logs and Swap files data. Visualisation techniques used is means

to reveal patterns and show features in order of their importance.

1.7 Organisation of the Thesis

The thesis has seven chapters, including this introductory chapter which

covers the background to this research, followed by the research problem,

research hypothesis and questions, scope of the research and research

contributions.

Chapter 2 covers the literature review on the theoretical foundation of

computer forensics, the processes involved in a digital forensic investigation

that involves digital evidence, and the spectrum of physical storage media

analysis. It also investigates the theory and practice of examining artefacts

extracted from a Windows operating system.

Chapter 3 focuses on information contained in system generated artefacts.

This includes the data structure and data organisation of system generated

artefacts. It also explains the possible forensic value and importance of these

1.8 Origins of Some of the Chapters 18

system generated artefacts. The state-of-the-art tools available to the digital

investigator are also examined and discussed.

Chapter 4 is central to this work and describes the design process of the

proposed architecture. It introduces the proposed architecture which deals

with the complex structure of Windows system generated artefacts. The

architecture requirements and objectives are defined based on the priority of

the requirements identified in Chapters 2 and 3, and from the highlighted

issues of the current state-of-the-art tools.

Chapter 5 provides details of how artefacts with known and not known data

structures (previously identified in Chapter 3) are incorporated into the visual

system generated artefacts forensic analysis system (SAFTool). This chapter

explains the implementation of the architecture and the development of the

prototype, and discusses various techniques used to implement the

architecture.

Chapter 6 details the results and describes the evaluation of the visual

system generated artefact analysis system, which includes a qualitative review

of the input from experts in the field of forensics. In addition, lessons learned

from the evaluation are also presented and discussed in this chapter.

Chapter 7 concludes the thesis by summarising the contributions made and

discussing future research directions.

1.8 Origins of Some of the Chapters

Parts of this thesis have been published previously. Portions of Chapter 3 are

based on the work presented in Hashim and Sutherland (2007). Portions of

Chapter 4 are taken from Hashim and Sutherland (2010).

19

CHAPTER 2

LITERATURE REVIEW

This chapter reviews the background for the development of the architecture

and prototype forensic analysis tool. The development of an architecture and

prototype forensics analysis tool involves understanding the current best

practice and literature available on the theoretical foundation of computer

forensics and the processes involved in a digital forensic investigation that

involves digital evidence, and the full spectrum of physical storage media

analysis. It also investigates the theory and practice of examining artefacts

extracted from the Windows operating system. The chapter starts by

presenting concepts from forensic science and computer science that can be

used to collect, examine and analyse digital evidence stored on a computer.

Although this chapter focuses on the background of computer forensics

analysis, it also discusses some issues related to the analysis of digital

evidence and the representation of digital evidence since they form the basis

for the research described in subsequent chapters. The specific focus of this

chapter is to review the key issues associated with the forensic analysis of a

computer system.

2.1 Forensics and Forensic Science 20

2.1 Forensics and Forensic Science

Casey (2004) defines forensics as “a characteristic of evidence that satisfies its

suitability for admission as fact and its ability to persuade based upon proof”.

Forensic techniques can be used to recover and analyse latent evidence such as

fingerprints left on doors, DNA recovered from blood, or, in computer of digital

forensics, the files on a hard drive. Casey (2004) also indicates that forensic

science provides tools, techniques and a systematic approach to process and

analyse digital evidence and use this evidence to reconstruct what occurred

during the perpetration of a crime, with the ultimate purpose of linking an

offender, victim and crime scene. The use of forensic science provides a body of

proven scientific investigative knowledge, techniques and methods for

formulating and testing hypotheses concerning what may have occurred

during unauthorised or criminal activity.

2.2 Computer Forensics and Computing

A number of core concepts from forensic science can be transferred into

computer forensics, for example, offering carefully tested methods for

processing and analysing digital evidence. According to Guillermo et al. (2007),

“computer forensics combines elements of law and computer science to collect

and analyse data from computer related systems in a way that is admissible as

evidence in a court of law”. The use of a computer to create and store

information leaves behind ‘electronic fingerprints’ that can be fundamental to

determining the outcome of a criminal case (Anderson, 2005).

In the literature, several definitions of computer forensics discussing

how a computer may be related to a digital investigation have been found

(Caloyannides, 2001; Kruse II and Heiser, 2002; Vacca, 2002; Carrier, 2003;

Mohay et al., 2003; Britz, 2004; Solomon et al., 2005). According to Mohay et

al. (2003), “computer forensics relates to the investigation of situations where

there is computer-based (digital) or electronic evidence of a crime or suspicious

2.2 Computer Forensics and Computing 21

behaviour, and the crime or behaviour may be of any type, quite possibly not

otherwise involving computers”. Computer forensics therefore involves the

preservation, analysis and interpretation of computer data and more

specifically, it establishes procedures for recovery, preservation, and analysis

of digital evidence (Britz, 2004). According to Mohay et al. (2003), “it is also

concerned with the analysis of any information stored by, transmitted by or

derived from a computer system in order to determine the validity of hypotheses

which attempt to explain the circumstances or cause of an activity under

investigation”. According to Solomon et al. (2005), “In terms of the investigative

process forensic computing is the process of identifying, preserving, analysing,

and presenting digital evidence in a manner that is acceptable in a legal

proceeding”. According to Britz (2004), the importance of computer forensics

processes protecting digital evidence from alterations, damage, and data

corruption by providing mechanisms for evidence duplication to enable

creation of forensically sound images that are useful for data analysis.

According to Vacca (2002), “Computer forensics is about evidence from

computers that is sufficiently reliable to stand up in court and be convincing”.

The process begins with the acquisition of digital evidence, when information

is collected or stored in anticipation of being examined and computer forensics

ensures the preservation and authentication of computer data which can be

easily altered, erased or subjected to claims of tampering if it is not properly

handled. According to Schweitzer (2003), “An important aspect of computer

forensic analysis is the recovery and analysis of deleted files and other forms of

compelling information that are normally invisible to the user”.

Caloyannides (2001) reviews computer forensics as “the collection of

techniques and tools used to find evidence in a computer”. Kruse and Heiser

(2002) emphasise the responsibility of computer forensic specialists as being

“to follow clear, well-defined methodologies and procedures, and flexibility

encouraged when encountering the unusual”. According to Carrier (2003), “the

2.3 Computer Crime and Digital Investigation 22

term digital forensics is commonly used and has historically been used to

describe a much more involved process where the investigator must trace user

activity and cannot provide a simple yes or no answer”.

Computer forensics can be regarded as a reactive field because the

forensic collection and analysis of data is shaped by the development and use

of new technology and applications.

2.3 Computer Crime and Digital Investigation

Volonino et al. (2007) employs the term computer crime to describe both

information crime and high-tech crime, terms that are used interchangeably

by most people, the courts, and the legal system. These terms can be used to

refer to the two categories of offenses that involve computers: Firstly where

the computer is a target, so the computer or its data is the target of a crime. In

the second case the computer as an instrument; where a computer is used to

commit the crime.

According to Britz (2004), “the first major publically noted computer

crime occurred in 1986, when an accounting error of less than one dollar was

investigated by employee at the University of California at Berkeley”. In this

case although it appeared initially as an insignificant accounting error this

actually related to a vulnerability that existed within the data system that was

exploited by a hacker who was able to move about the system with remarkable

ease and relative impunity. Child pornography, web defacement, fraud

investigations, corporate investigations and hacking are examples of computer

crime where computers are involved at some point in the case. However, there

are three, not mutually exclusive, categories of computer crime: targets,

means, and incidentals. According to Britz (2004), “In fact, a computer itself a

piece of evidence, can be processed to identify thousands of pieces of digital

evidence and each piece of digital evidence can be analysed to identify

ownership, location and timing”.

2.3 Computer Crime and Digital Investigation 23

Instead, the term digital investigation is apparently used to describe “a

process that uses science and technology to analyse digital objects and that

develops and tests theories, which can be entered into a court of law, to answer

questions about events that occurred” (Carrier, 2005).

Figure 2.1: Computer Investigation Model (Microsoft TechNet, 2007)

There are a number of possible model that outline the process of an

investigation including (Carrier and Spafford, 2003; Mandia et al., 2003;

Mohay et al., 2003; DoJ, 2007; Microsoft TechNet, 2007). However all of these

models have four keys phases in common: Assess, Acquire, Analyse, and

Report (Figure 2.1): when an investigator is faced with a possible digital crime,

the investigator should first analyse the scope of investigation and formulate

the action to be taken. An example outcome of this assessment phase is a

detailed document containing all of the information that is considered relevant

about the situation and provides details about how systems might be affected

and a proposed course of action.

2.3 Computer Crime and Digital Investigation 24

Once a course of action has been determined from the Assessment, then

as shown in Figure 2.1 the Acquire Phase is implemented to gather, protect

and preserve the original evidence. This process of acquisition needs an

appropriate collection of hardware and software tools to acquire data during

the investigation. Such a toolkit may contain a laptop computer with suitable

software tools and also backup media which can be write protected. This

toolkit should be created in advance from a collection of tried and tested tools

so that the investigator is familiar with the tools features and more

importantly the tool limitations before they are used in an actual

investigation. Digital evidence collection can be performed on either ‘live’ or

‘dead’ systems. In live systems investigations, where the computer is powered

on during part of the investigative phase, the main focus is usually evidence

relating to volatile memory or continuing network activity. The investigation

may also involve the collection of specific data from very large systems. In

some cases this may rely on some areas of the host operating system of the

computer being investigated to support the analysis. However, in ‘dead’

systems investigation, where the computer is powered off and the storage

media (usually the hard drive) is copied and analysed, trusted applications in a

trusted operating system are used to find evidence. The use of an identical

copy and trusted software tool is to support the admissibility of the evidence in

a court of law. When important data are saved during an investigation, a MD5

or SHA1 hash value of the content of a file is computed and to show that the

copied data is not altered and to provide future reassurance of the file’s

authenticity. Evidence is stored and archived in a way that ensures its safety

and integrity. There are three options when collecting digital evidence from a

computer: just copying the information needed by creating a sparse copy of a

folder or file according to Collins (2008), sparse means not dense, copying

everything by creating a bit-stream disk-to-file and copying

2.3 Computer Crime and Digital Investigation 25

everything by making a bit-stream disk-to-disk copy (Nelson et al., 2004).

Once evidence has been collected the data requires analysis to provide

an interpretation and possible meaning for any network, host or removable

media data that has been collected as part of the process (Figure 2.1). Different

approaches can be applied during the analysis in line with recommended best

practice. Different forms of analysis include timeframe analysis for the

timeline activities on victim’s computer that showing email correspondences,

online chat session (Casey, 2004), data hiding analysis for the deleted files and

email that have been purposely hidden (Nelson et al., 2004) and file analysis

for searching credit card numbers that could be stored in a spreadsheet or

database data (Solomon et al., 2005). Furthermore, the specific type of analysis

performed depends on the goal of the investigation and to some degree on what

evidence the investigator expects to find based on the charges brought against

the suspect.

In the final section of the model outlined in Figure 2.1 the Report

Phase, the gathered information and documentation collected throughout the

investigation is interpreted to formulate conclusions based on the evidence

found.

The course of action recommended by most guidelines (Middleton, 2002;

Shinder and Tittel, 2002; Mandia et al., 2003; Schweitzer, 2003) suggests that

irrespective of whether the case will end up in a court of law or form part of

internal disciplinary proceeding, the goals of a forensic investigations are to:

conduct structured investigation, preserve and secure electronic data using

methods that can withstand the court of law, obtain all relevant data,

minimises the cost and business disruption to the host organisation, and to

integrate any computer related digital evidence into appropriate legal

proceedings (Cummings and Lowry, 2003).

2.4 Data Sources for Digital Evidence 26

2.4 Data Sources for Digital Evidence

Data is the basic form of information that is collected, analysed and

interpreted to create knowledge in computer forensics. Electronic data is easily

created, hidden and manipulated, and deleted. These electronic data can be

found through the forensic examination of the computer storage media,

typically the hard disk drive. A hard disk can contain a myriad of different

files systems and file types. Digital forensics, in many cases can provide a

substantial body of evidence: state of mind and knowledge of, access to specific

information and about a computer user’s activities (Howell, 2005).

There are a number of ways of describing the types of data that are

collected in a typical forensic investigation (Guillermo et al., 2007). Volatile

data can be described as data that is stored in memory or that will be lost

when the computer is turned off. The term persistent or non-volatile data is

used to mean data stored on a logical hard drive and is preserved when the

computer is powered off. Persistent data includes active data, temporary data

and ambient data (or residual data) and archival data. According to Hailey

(2003) active data is the information that can be accessed through the file

system. This refers to data files, programs, and files used by the operating

system. Archival data is data that has been backed up and stored. This could

consist of backup tapes, CD-ROMs, USB Storage devices or entire hard drives.

Mohay et al. (2003) states ‘‘ambient data is typically used to describe data that

is stored in non-traditional computer storage areas, not accessible at the logical

or application level, created by operating system and applications in the

background during operation, and typically includes deleted files, file slack,

volume slack, Windows swap file, unallocated space, stored printer images and

Internet artefacts”. Lewis (2004) and Newman (2007) also support this

statement.

2.4 Data Sources for Digital Evidence 27

2.4.1 Persistent Data

Persistent data is important because of the high volume of material available

and subsequently most forensics evidence is found in persistent data.

Examples include documents, emails, web activity and deleted files. Persistent

data for Windows and Unix/Linux can be compiled as in Table 2.1. Persistent

data includes operating system generated artefacts such as logs, files, lists,

passwords, caches, history and recently used lists. Some is in plain text, some

is obscured and some is encrypted. These system generated artefacts are the

result of the evolving and increasing complexity of the different forms of

computer operating systems. To simplify the user interface of many operating

systems, and to deal with the issue of multiple users, typically the modern

operating system has to store increasing amount of information relating to a

user, their actions, preferences and credentials. Such types of data or

information can be referred to as operating system generated artefacts. The

most important thing about operating system generated artefacts is that they

can be used to as evidence to identify users and their computing activities

(Guidance Software, 2005).

2.4 Data Sources for Digital Evidence 28

Table 2.1: Persistent Data Types (modified from Nolan et al., 2005)

Data Avenue By Operating System

Windows Examples Unix/Linux Examples

System

Files

Basic input/output system (BIOS) setup

Boot Records

- Master boot record

Volume boot sector

Event/System Logs

- MAC times

(mtime – time of last modification,

atime – time of last access, ctime –

time of last status change)

System Registry

Basic input/output system

(BIOS) setup

Boot Records

- Master boot record

- Volume boot sector

Event/System Logs

- /etc/syslog.conf

Timestamps

- Modification time

- Access time

- Change of status

- Deleted time

Temporary

Files

*.tmp

Spool File

- *.shd

- *.spl

-

Spool File

- /var/spool/lpd

Web

Artefacts

Internet Explorer

- Bookmarks (favourites)

C:\Documents and Settings\[user]\

Favourites

- Cookies

C:\Documents and Settings\[user]\

Cookies

- URL history

C:\Documents and

Settings\[user]\Local Settings\History

Each Linux flavour, build,

or browser might put the

data in a slightly different

place.

2.4 Data Sources for Digital Evidence 29

Table 2.1: Persistent Data Types (modified from Nolan et al., 2005)(continued)

Data Avenue By Operating System

Windows Examples Unix/Linux Examples

Web

Artefacts
- Temporary Internet files

C:\Documents and

Settings\[user]\Local

Settings\Temporary Internet Files

Registry Hive

HKEY_CURRENT_USER\

Software\Microsoft\Internet\

Explorer\Typed URLs

Netscape

- Cookies

- URL history

history.dat (a Berkeley DB file)

- Temporary Internet files

- Web Cache

index.db (a Berkeley DB file)

File

Recovery

Deleted data

- Files

- Emails

Slack space

- Random Access Memory (RAM) slack

- Disk Drive slack

- File slack

Swap files

Unallocated Space

Partial Files

Windows Artefacts

While there are some

differences, Windows and

Linux file recovery is

basically similar.

Hidden

Files

Files can be assigned an attribute so that

they will not be displayed with normal file

system viewing methods. Files may be

marked as hidden to protect files from

being corrupted by casual users or to hide

illicit data or activities.

2.4 Data Sources for Digital Evidence 30

2.4.2 Volatile Data

According to Carvey (2004), “Volatile data ceases to exist when power is

removed from the system (either by unplugging the system or shutting it down),

and generally includes (but is not limited to) information regarding system

processes and applications or services running on the system, network

connections to and from the system, and the contents of the system clipboard”.

 According to Bejtlich et al. (2005), ‘‘analysing volatile data of a victim

computer usually contains significant information that helps determine the

‘who’, ‘how’ and possibly ‘why’ of the incident’’. This is becoming increasingly

important due to the expanding size of volatile memory contained in many

computer systems. At the time of writing, desktop systems commonly have 4

Gigabytes of RAM while high end systems may have 16, 32 or even 64 GB

(Dell, 2010). Table 2.2 shows the volatile data types and avenues contained in

the computer system.

Table 2.2: Volatile Data Types
(in Carvey, 2004; Bejtlich et al., 2005; and Nolan et al., 2005)

 Volatile Data Types and Avenues

System date and time

Logged on user(s)

Process information

Network connections

Open Transmission Control Protocol (TCP)

or User Datagram Protocol (UDP) ports

Control Protocol (TCP) or User Datagram

Internal routing table

Network status

Clipboard contents

Command history

Services/driver information

Scheduled jobs

Open files

Random Access

Memory (RAM)

Registers

Cache

2.4 Data Sources for Digital Evidence 31

2.4.3 Digital Evidence

Digital evidence itself needs to be clearly defined. According to Craiger et al.

(2005), “In 1999, the Scientific Working Group on Digital Evidence (SWGDE)

defined digital evidence as: Information of probative value stored or

transmitted in binary form”. Digital evidence is electronic in nature and can be

found as data on computer systems that can refer to documents or events that

occur within a computer system or network and also on media. In line with

this definition, examples of digital evidence could be common application files

(e.g. word processing), graphical files, audio and video recording files, server

logs, and application executables.

Additionally, operating systems and computer programs also store

digital evidence in a variety of places and at a variety of levels. This is seen in

Carrier (2005) where data in a volume is analysed to determine where file

system and hidden data might reside. The file system can be analysed to find

files and recover deleted files. Then a specific file can be analysed to determine

what programs were running or to determine content, which may be of

evidential value, for instance, the picture contained in a JPEG image file. Any

digital evidence that has been recovered can be categorised during analysis

into one of three major categories of evidence (Carrier, 2002):

• Inculpatory evidence: that which supports evidence of guilt

• Exculpatory evidence: that which supports evidence of innocence

• Evidence of tampering: that which suggests evidence of tampering

Digital evidence may be sought in a wide array of computer-related crimes,

and computer forensic examinations use a variety of methods for discovering

data that resides in a computer system, or for recovering deleted, encrypted, or

damaged file information. Computer crime includes, but is not limited to, the

theft of intellectual property (copyright), child pornography, threatening

letters and fraud. All of these crimes would leave varying types and degrees of

digital material which can be investigated and may be used to link a suspect to

the crime.

2.5 Methodologies, Tools and Techniques 32

The ability to access and analyse the content of files is important to the

success of an investigation. As a result of different file types and formats of

data, and where the data resides, the investigator is faced with the need to be

equipped with tools, techniques and approach to the acquisition and processing

of digital evidence.

2.5 Methodologies, Tools and Techniques

The unique requirements of computer forensics have stimulated the creation of

special software designed to either collect relevant data or to analyse that data

in order to find information related to a specific case (Kruse II and Heiser,

2002). A number of forensic tools have been created aimed at achieving the

different requirements of the investigation methodology outlined in the

previous sections and the requirements of these tools and some examples are

discussed in this section.

In many cases, information is gathered during a computer forensics

investigation that is not typically accessible by the computer user. Therefore,

investigators use a variety of techniques and both open source and proprietary

forensic applications to examine a forensic copy of the original media. The

investigator’s objective is to examine all of the available areas on the drive for

possible fragments of data; this includes system data, deleted, encrypted,

hidden or damaged files (Hailey, 2003; Carrier, 2005).

There are tools and techniques for each stage of the investigation: the

identification, extraction, preservation and documentation of computer data.

When considering the various types of electronic storage media capable of

holding digital information that may be subject to forensic analysis there is a

need for a wide range of functionality. The required tool capability can be

implemented as a single tool or as a series of specific tools that are used to

handle specific data. These tools differ in cost, functionality, and complexity

and maybe open source or closed source proprietary tools. Typically,

2.5 Methodologies, Tools and Techniques 33

the majority of tools available can be divided into two categories: those that

acquire evidence and those that analyse evidence. Normally, an acquisition

tool will contain some internal verification mechanism, to prove that the copy

is exact and has not been altered. In addition, a degree of presentation

functionality is often included in analysis tools. There are examples of software

tools suites which provide most of the functionality required for an

investigation: EnCase from Guidance Software, and the Forensic Tool Kit

(FTK) from AccessData.

The process of verification to ensure evidence has not been modified is

an essential part of many forensic tools, where it is vital for verifying data

integrity, providing continuity and assure provenance. This is usually achieved

by a hash function, where it is used to verify the integrity of the original media

after imaging, and used to verify the integrity of working copies against the

original media. This ensures chain of custody, protecting the integrity of the

evidence demonstrating that it has not been altered or tampered with while it

was in custody. Current best practice for the forensic acquisition process is to

make a forensic copy, to capture all of the user addressable portions of the

storage device. Problems have arisen due to the possible manipulation of the

storage device at a firmware level (Sutherland et al., 2010), and also as a

result of dealing with diverse kinds of evidence. The latter problem is being

explored with approaches that attempt to standardise the format used to store

digital evidence (Garfinkel, 2006; Turner, 2005).

2.5.1 Digital Evidence Formats

The evidence collection in digital forensics investigations includes the

methods, techniques and procedures used in retrieving evidence (Newman,

2007). To facilitate the analysis and interchange of data, some sort of data

organisation attributes must be considered. One aspect is a standard format to

digital evidence storage. The Common Digital Evidence Storage Format

2.5 Methodologies, Tools and Techniques 34

Working Group (2006) states ‘‘without standards that are both open and

technically sound, the risk is that evidence may be lost, cases may be

compromised, and innocent people may be improperly convicted-or guilty

parties let free”.

The most commonly used forensic formats copy a disk drive: one

method is for the forensic tool to make an exact copy of the original material by

creating a bit-stream data copy of the disk. The Linux / Unix based ‘dd’ image

file which copies chunks of data from one file and writes it to another referring

to the file systems or file content This is sometimes referred to as a ‘raw’

image, a sector by sector copy of the data of a device into a file (The Common

Digital Evidence Storage Format Working Group, 2006).

An alternative method is to capture evidence not in the form of a raw

image but rather as an embedded image format. This is commonly a forensic

tool producing a proprietary format by making a bit-stream copy that contains

data from the source device with additional descriptive data such as the date

and time of capture and associated case details. There may also be one or more

hash values or cyclic redundancy checks (CRC) to assure data integrity. Some

tools also create a raw image and a separate file is used to save the additional

details. S01: the SMART evidence file also uses compression (AccessData,

2009). The EnCase Evidence File Format is a proprietary format that has

become the de facto standard for forensic files. The E01 EnCase evidence file

format contains the evidential data, possibly compressed and numerous CRC

checks that serve to preserve the chain of custody (Guidance Software, 2005).

The implementation consists of series of compressed pages of a disk images.

These pages can be individually retrieved or searched and decompressed thus

allowing random access to the contents of the image file. Besides using other

files for additional information, EnCase embed additional information in their

files to provide integrity checks.

Related work in digital evidence storage methods and metadata

specifically relating to storage methods for digital evidence includes EnCase,

(2005); Garfinkel, (2006); and Turner, (2006). Notable is work by Turner on the

2.5 Methodologies, Tools and Techniques 35

use of Digital Evidence Bags for the acquisition and processing of digital

evidence obtained from different digital devices and sources. The method relies

on the container used to store the captured information. The unification of

digital evidence from different sources automatically creates three types of file

as shown in Figure 2.2: .tag file, .indexnn file and .bagnn file.

Figure 2.2: A Digital Evidence Bag Comprising Three Files (Turner, 2006)

The additional descriptive data for a bit-stream copy, also referred to as

metadata for the hard drive copy, is contained in the plain text file of a tag file.

The index file is a text based tab delimited file and detailing the contents of

the corresponding bag file, such as folder paths, a list of filenames, and

timestamp information. The ‘bag’ component of the file contains the actual

evidence captured in the format of raw binary information, files, structured

text or categorised files.

Garfinkel (2006) employed the term Advanced Forensics Format (AFF)

to describe an approach where imaged disk storage and compressed data were

used to store any type of forensic data, such as disk images and exported files.

A series of pages or segments of an imaged hard drive are compressed before

2.5 Methodologies, Tools and Techniques 36

being stored with associated metadata. In addition to laying out information,

the AFF creates a variable-length structure called an ‘AFF segment’ that

consists of a header, segment name, flag, data payload area and footer as

shown in Figure 2.3. The AFF considers metadata as a separate file, and also

within the same AFF file.

Figure 2.3: An Overview of the Advanced Forensics Format (Garfinkel, 2006)

Similar to the work undertaken by Turner (2006), a study group formed

by the Telecommunication Standardisation Sector from the Republic of Korea

(International Telecommunication Union, 2009) proposed a common digital

evidence exchange file format for communication between digital evidence

sites and between different types of forensic tools. Examples of digital evidence

sites are: digital evidence extracted from electronic devices, disk image for

electronic device, disk image for physical part of electronic device, digital

evidence extracted from disk image and digital evidence being transmitted via

network. The definition used for disk image is a single file containing the

complete contents and structure which represents a data storage device, such

as a hard disk, CD, or DVD; and electronic device is any probative information

stored or transmitted in digital form that a party to a court case

Metadata

Metadata

Metadata

Hard Disk Data

Hard Disk Data

head

name: page1

flag: 2

tail

data

2.5 Methodologies, Tools and Techniques 37

may use at trial. In this digital evidence exchange file format, as shown in

Figure 2.4, a file header, data segment and trailer (containing a hash) are

included. The File header includes the information about electronic evidence

for exchange and method for integrity check and sender verification. In the

data segment, the subject for exchange is included which can be one of the

sites of digital evidence. The file trailer is comprised of two kinds of hash

value: Data Hash and File Hash for integrity check and File Signature for

sender identification.

Figure 2.4: An Overview of the Digital Evidence Exchange File Format
(International Telecommunication Union, 2009)

While there are a number of methodologies and techniques that can be

applied and tools which investigators may use, the tools tend to focus on

specific problems and have varying different functionality. For example,

ThumbsPlus for displaying images files (Kruse II and Heiser, 2002); SafeBack

is primary used for imaging the hard disks (Solomon et al., 2005); and

Password Recovery Tool Kit (PRTK) for recovering password (Middleton,

2002). It has been suggested that Richard and Roussev (2006), “digital

forensics tools need to employ more sophisticated data analysis techniques and

better collaborative functions to allow digital forensics investigators to perform

2.5 Methodologies, Tools and Techniques 38

investigations without becoming overwhelmed by low level details, such as

physical disk organisation or the specific file structure”. Therefore, there is a

potential for the development of an architecture designed to be extensible and

an initial prototype implementation focussed on developing an automated

approach for the investigators to sift through System Generated Artefacts. The

proposed approach also visualises the System Generated Artefacts in a way

that the investigator can easily see what data is available within these areas

of the Windows Operating system. This work focuses on the analysis of these

artefacts.

2.5.2 Tools and Framework

Computer forensics is concerned as much with following prescribed procedures

for evidence collection as with the technical aspects of collecting digital

evidence. There are several guides that discuss the collection and acquisition

of evidence:

• Best Practices for Computer Forensics (SWGDE, 2006)

• Electronic Crime Scene Investigation – A Guide for First Responders

(USDOJ, 2001)

• First Responders Guide to Computer Forensics (CERT, 2005)

• Fundamental Computer Investigation Guide for Windows (Microsoft

TechNet, 2007)

• Good Practice Guide for Computer-Based Electronic Evidence (ACPO,

2003)

However, these guides are aimed at the most common scenarios, along

with these the investigator needs to have skill, techniques and tools.

Furthermore, with the ever-expanding role of digital evidence in civil, criminal

and employment case, it is not possible to specify guidelines for each type of

case. It is necessary for computer forensics organisations and agencies to have

2.5 Methodologies, Tools and Techniques 39

a comprehensive policies and procedures (Volonino et al., 2007).

The need to combat computer crime requires the creation of

investigative and forensic tools. Furthermore, recent advancements in

computer technologies where capacities at the time of writing area are around

2 terabytes and are estimated to reach 4 terabytes in size by the end of 2011

(Hitachi, 2008), and the advanced techniques for hiding, wiping, encrypting

and deleting digital data leave the investigator with an increase in both the

number and complexity of cases. They also leave digital forensics in need of

tools that are significantly improved, both in richness of features and in speed

of operation. Advanced forensic tools are needed to reduce the tedious effort of

forensic examiners, especially when searching large hard drives. Richard and

Roussev (2006) highlight the need of the digital forensics community for new

tools and strategies for the rapid processing of large forensic data sets, which

can now originate from numerous sources. Methods for exploring this data

including using visualisation techniques help to display information about

computer data can help forensic examiners.

Gillam and Rogers (2005) developed a tool that has four basic functions:

the ability to search a hard drive for image files; present an interface for an

examiner to browse through the images found and select those that are

relevant; generate a report of the search function that include the full logical

path of the file; and minimal training for the user to utilise the tool. This tool

uses recursive directory search, pattern-based search and header-based search

to search images in a file. Pattern-based search is done by using asterisks as

wildcards that make simple or complex filters possible. Header-based search is

used to overcome the problem of file name or file extensions being changed to

hide the images. This search is done first by using ImageFormat class in .NET

and next by an algorithm that tests the raw format of a file during a search

process. This example tool by Gillam and Rogers (2005) highlight the basic

functions that need to be performed by a tool when searching a hard drive for

2.5 Methodologies, Tools and Techniques 40

images files, and shows the methods used in creation of investigative and

forensic tools.

In the creation of investigative and forensic tools, Vlastos and Patel

(2007) focus on the problem of how to visualise digital evidence in an intuitive

view, easy and constructive manner for deleted files, wiped files, encrypted

and transformed files because of the advanced techniques for hiding, wiping,

encrypting and deleting digital data. The tool uses a 3D visualisation

technique for displaying the data in the specific block or square of a hard disk

drive images. The hard drive’s image is split into blocks, partitions and files

which have their own view associated with them: the block view, the explorer

view and the tree view. Splitting the tool into two smaller modules, one for the

extraction of data and the other for the presentation of the data, has proven to

be very effective in implementing a visualisation system that offers flexible

and extensible capabilities. From this, it has also been learned that XML is

more effective for the interchange of data from any forensic tool and storing

the data, suggesting this may be a possible technology for implementing a

prototype tool in this project.

Besides creating tools for investigative purposes, Bos and Knijff (2005)

and Petroni et al. (2006) presented frameworks which can be used as guides to

acquire, decode and report evidence. These frameworks work by not containing

specific functionality of low-level data extraction. Bos and Knijff (2005)

extended the framework concept by making it easy to add functionality

without having to think about user interface and repeating common

programming tasks. The TUL2G by Bos and Knijff (2005) offers the plug-ins

method for adding plug-ins to perform investigation-related tasks without any

strict interface to follow through. The FATKit by Petroni et al. (2006) is a

framework for system memory’s digital forensic data extraction and analysis.

The forensic analysis approach of the FATKit is based on system abstractions

which are sets of analysis modules that can be added where appropriate.

2.6 An Overview of Computer Forensic Analysis and Data Collection 41

2.6 An Overview of Computer Forensic Analysis and

Data Collection

As data can be in many types and contained within different structures,

analysis of data can be from many different places as mentioned by Carrier

(2005) in Figure 2.5.

Figure 2.5: Layers of Analysis Based on the Design of Digital Data
(in Carrier, 2005)

 Carvey (2007) demonstrated that knowing the multiple locations where

information is maintained within a particular system, allows an investigator

to link information that is found in other areas and to reduce the uncertainty

in the analysis. According to Reyes et al. (2007), the analysis phase of the

digital forensic process is the point at which the data is explored in more detail

and where the data is drawn together and the analysis is the sum of all data

applied towards the resolution of the incident. For example, in an intellectual

property theft case, the data from a collection of systems were pulled together.

The file server audit logs were reviewed and the user list it provided was used

2.6 An Overview of Computer Forensic Analysis and Data Collection 42

to query the proxy server logs. When the log files for the users were reviewed,

a short list was created by focusing on webmail and forum traffic. The short

list was used to triage and prioritise the examination of the user workstations,

which quickly revealed the individual responsible for the criminal activity

when the webmail messages were pulled from the Internet cache, and

recreated.

The collection of digital evidence involves preparing the digital evidence

to facilitate the analysis stage. The process of collection can be either physical

or logical. In physical collection, data is recovered and identified across the

entire physical drive without regard to the file system. In logical collection as

described by Carrier (2005), data is recovered and identified based on installed

operating system(s), file system(s), and/or applications(s) (Figure 2.5). Once

the data is extracted, it is analysed, that is to interpret the extracted data to

determine its significance to the case.

The following sections explore the collection and analysis process in

more detail.

2.6.1 Logical Collection

In the literature (Carrier, 2005), several analysis types of physical storage

media to translate various types of usable structure have been found to form

the basis for further analysis of physical storage media. We present related

work on forensic analysis based on data structure and data organisation as

defined in Definitions 2 and 3 in Chapter 1.

Sansurooah (2006) suggests logical collection as an approach for

collection based on the installed operating system(s), file system(s) and/or

application(s):

• Extraction of the file system information: these are methods that reveal

distinctive characteristics such as directory structure; file location,

names and attributes; and date and time stamps.

2.6 An Overview of Computer Forensic Analysis and Data Collection 43

• Data reduction: these are methods to identify and eliminate known files

through the comparison of hash values.

• Extraction of files pertinent to the examination: these methods are based

on file location, name and extension, and file attributes.

• Recovery of deleted files: these are methods to recover files that have

been deleted, which the content of the file remains until the space

occupied by the file is re-used by newer files.

• Extraction of password-protected, encrypted, and compressed data: these

are methods used to perform an in-depth analysis of a case which is

possible through finding the backup copy of the file which is not

password-protected, and finding the cleartext versions of encrypted

documents, and finding the cache cleartext password, and brute force

attacks for passwords.

• Recovering data from the unallocated storage space. This unallocated

storage space exists from the end of a file to the end of the cluster

assigned to a file which has not been intentionally manipulated by

suspects.

• Data recovery of the unallocated space: these are methods to extract data

based on when files are erased or deleted. The content of the file is not

actually erased only referenced to the data within the File Allocation

Table (FAT) that is actually deleted.

2.6 An Overview of Computer Forensic Analysis and Data Collection 44

2.6.2 Physical Collection

It is fair to say that most existing forensic analysis identifies and recovers files

and data based on installed operating system(s), file system(s) and

application(s). For example, the ils tool from the Sleuthkit first recovers the

boot sector, then calculates the start of the data region, and finally iterates

over chunks of data in the data region when run against a FAT file system

(Murr, 2007). An alternative is to identify and recover data across the entire

physical drive without regard to the file system. Sansurooah (2006) suggests

that approaches undertaken in physical collection use the following methods:

• Keyword searching: this method searches for text or hexadecimal values

on the disk. Files including specific words may be of interest and can be

found through keyword searching.

• File carving: this method extracts a collection of data from a larger

binary object where file system structures are not used during digital

investigations, thus, recovers a file from unstructured digital forensic

images. This technique carves files from unallocated space using type-

specific information, such as footers, headers, and internal structures. An

example of this type of tool is the Scalpel (Richard and Roussev, 2005).

• Examining the partition table: this method locates the partition tables

and processes them to identify file system structures, including where

the file system starts and ends.

• Examining the unused space: this method checks and determines where

else evidence can be located in each partition. Two categories of checks

can be performed. The first check looks at the last partition and

compares its ending location with the end of its parent volume, and if the

final partition ends before the end of the volume, there are sectors that

can contain hidden data. The next checks compare the start and end

sectors of consecutive partitions. If the second partition does not start

2.6 An Overview of Computer Forensic Analysis and Data Collection 45

immediately following the first partition, the non-partitioned sectors can

have been used to hide data and should be analysed.

Nevertheless, only work undertaken using extraction of files pertinent to the

physical collection method is elaborated upon in this thesis.

2.6.3 Analysis of Data

The analysis of data refers to the interpretation of the recovered data and

placement of it in a logical and useful format, and the correlation and

corroboration of possible evidence. Hence, the analysis phase is the phase

where the acquired data may be described as ‘of evidential value’ (Sansurooah,

2006). Digital evidence can in addition to identifying the object and its source,

be used to sequence events, determine locations and paths, and establish the

time of the action. Analysis of extracted data leads to a more complete picture

of a crime – what happened, who caused the events, when, where, how, and

why.

In Volonino et al. (2007), approaches undertaken in performing the

analysis of extracted data are categorised as: timeframe analysis; data hiding

analysis; file analysis; and application analysis. The timeframe analysis

method is useful in determining when events happened on a computer system,

which can be used as a part of associating usage of the computer to an

individual at the time the events occurred. Files are associated with file

attributes such as creation date and time, modified date and time, accessed

date and time for information as to when the file was used. A user is

represented by username and password to log into a system. User and files are

used to link the suspect and the data by producing the timeline of named files

created, modified or accessed.

Data hiding analysis is useful in detecting and recovering hidden data,

which may indicate knowledge, ownership or intent of the data. Files contain

information and provide perception of the capability of the system, and the

knowledge of the user. This is therefore, an analysis that requires further

2.6 An Overview of Computer Forensic Analysis and Data Collection 46

steps to be taken when involve file in file analysis. Application analysis is

useful when a program exists without the data file on the storage device or a

file has no apparent application associated with it.

These four methods can also be categorised into one of three categories

of analysis: relational, functional and temporal (Casey and Turvey, 2004).

Temporal analysis is conducted to create a chronological list of events by

sorting events and actions in the order that they have taken place. This is done

with the help of date-time stamps indicating creation, modification and access

times to files and folders. Functional analysis is performed to understand how

a particular application or system works and to comprehend the meaning of

the data it creates. This information can be used to determine what has

happened based on the knowledge of how the application responds to a specific

event. It is often useful to consider what conditions were necessary for certain

aspects of the crime to be possible. Relational (or link) analysis is done in an

effort to identify relationships between suspects, victim, and crime scene.

Relational analysis can provide information about the geographical locations of

suspects, victims, computers and the interactions that have taken place.

Determining where an object or person was in relation to other objects or

people is very useful when investigating crimes involving networked

computers. Relational evidence also includes locations of files and folders on a

computer, and location of hidden and missing data.

These categories of analysis include all the methods mentioned above

for performing the analysis of extracted data. Timeframe analysis correlates to

temporal analysis; data hiding analysis and application analysis and file

analysis correlates to relational analysis; and application analysis, file

analysis correlates to functional analysis. Correlation between types of

analysis is shown diagrammatically below in Figure 2.6.

2.6 An Overview of Computer Forensic Analysis and Data Collection 47

Analysis of Data

timeframe

analysis
data hiding

analysis
file analysis application

analysis

Volonino et al.

(2007)

Casey and Turvey

(2004)

Figure 2.6: An Overview of Correlation Between Types of Analysis

The categories of analysis of data that were described in the previous

section are further elaborated in the next section. These example works

highlight the type of analysis used, methods, and terminologies followed for

each author.

2.6.3.1 Timeframe or Temporal Analysis

Casey (2004) discusses the need to create a time line of events to identify

patterns and gaps, shedding light on a crime, and leading to other sources of

evidence. Hosmer (2002) states “The time lime of ‘computer events’ may provide

a critical piece of information relating to the prosecution of involved persons.

This information can help to pinpoint the location of certain individuals, can

assist with the determination of alibis, can uncover conversations and

correspondences, and can possibly help to ultimately determine the guilt or

innocence of those facing criminal charges”. The research that has been

conducted on the specific use of applying timeframe analysis to digital

evidence includes the work by Harms (2006); Murphey (2007); and Kahvedzic

and Kechadi (2008).

Harms (2006) considers a timeframe analysis approach when seeking to

understand how a computer system had been compromised and for solving an

intrusion case through reviewing System Restore points in Windows XP. The

approach relied on the time line creation of events on a compromised laptop

which exposed how the system had been exploited, subsequent key logger

Relational Analysis

Functional Analysis

2.6 An Overview of Computer Forensic Analysis and Data Collection 48

installation, key logger application execution time, and information on key

logger application uninstall date. The timeframe of the attack has been

identified as a method of analysis which has answered the questions about this

incident. This highlights the value of performing a time frame analysis on

system generated artefacts.

A work conducted by Murphey (2007), suggests that the idea of using

time frame analysis in correlating events in Windows shortcut (.lnk file) with

events in event logs. The event logs in this study were recovered in unallocated

space. It was achieved by identifying events during the period of interest and

showing specific operation of specific services in an event logs. The attributes

of a .lnk file and to be more specific the timestamps are used to correlate the

shortcut file and the time series of the event logs. This time series of events

illustrates the motivation for timeframe analysis, and even can be viewed as a

requirement of forensic analysis toolkits.

In the work undertaken by Kahvedzic and Kechadi (2008), a System

Restore Point in Microsoft Windows that archives the Registry and stored the

log of changes that happened to the system is used in the analysis of digital

evidence. Past user activity in the Windows Restore point have been extracted

by comparing multiple Registry hives found within the Restore points. It is

done by extracting a Most Recently Used (MRU) key from the Registry,

comparing it across different Restore Points and extracting the user activity

that the MRUs held. The MRU is the list that stores evidence of files names,

applications and other information that has been opened by the user in the

previous. Each MRU lists particular user activity and updates its content if this

activity occurs. RPCompare is one tool developed to address the issues raised

in comparing Restore Points (Kahvedzic and Kechadi, 2010). The RPCompare

tool was executed on the OpenSaveMRU key to extract user activity and a

timeline of the different timestamps of this MRU was created. This timeline

shows where peaks that indicate a higher amount of new MRU

2.6 An Overview of Computer Forensic Analysis and Data Collection 49

entries were created and therefore means more user activity during the peaks.

This category of methods in analysis of data is shown in Figure 2.7.

2.6.3.2 Data Hiding Analysis

Data hiding is the technique whereby a file is changed or manipulated in an

attempt to conceal information from the examiner. Simple examples include:

changing the extension of a filename; setting a file’s attribute to hidden; or

using encryption to keep the contents secret (Nelson et al., 2004). There is a

body of research investigating techniques that can aid in identifying and

assisting in the processing of digital evidence. One such technique attempts to

recover data hiding or ways data is hidden is by changing the applicable file

extension to hide the file. For example, child pornographers may hide

pornographic images by designating them as text files, .JPG or .TXT by simply

changing their names (Britz, 2004). Methods employed to hide data are

described in Table 2.3.

Figure 2.7: Methods for Analysing Data

Figure 2.7: Methods for Analysing Data

2.6 An Overview of Computer Forensic Analysis and Data Collection 50

Table 2.3: Data Hiding Methods

Methods Descriptions

Password

Protected Files

These are methods that depend on a password the suspect uses

and prove the suspect intended to keep the contents of a file

from everyone else.

Compressed Files

These are methods that depend on file compression used to

hide information and make it unreadable by anything other

than the compression utility used to save space. An algorithm

used to compress a file is used to reverse the compression

process to get the uncompressed version of the file. The main

reason for file compression is to save a storage device or space

in transmission across the networks, but in computer forensics,

file compression can also be used to hide information (Volonino

et al., 2007).

Encrypted Files

These are methods that depend on encryption used to hide

data. In this context, encryption is a method used to conceal

incriminating evidence. Files are changed to the point that they

are unreadable until the software used to encrypt is used to

reverse the process. The most commonly recognised use of

encryption is to maintain the confidentiality of information, but

if criminals use encryption to conceal their behaviour, an

investigator may well be confronted with the data encrypted by

them.

Steganography

These are methods that depend on the ability to hide data

within another file. This is done by substituting or replacing a

small portion of the existing file with the embedded or hidden

file or hidden message. This embedded or hidden file or hidden

message can be hidden in a sound file, a graphic file, or on

unused spaces on a hard disk. The goal of steganography is to

avoid drawing attention the transmission of a hidden message.

For example, someone who saves pornography to their hard

drives may choose to hide the evidence through this method

(Solomon et al., 2005).

2.6 An Overview of Computer Forensic Analysis and Data Collection 51

Criminals can use encryption to prevent access to incriminating data:

when they need to obfuscate their illegal activity, they encrypt their

communications and the files they exchange. For example, the possible use of

Skype that encrypts communication between criminals (Simon and Slay,

2010).

In the work undertaken by Casey (2002), three approaches were

involved in recovering encrypted files. First, the examiner needed to find the

unencrypted copies of the data that existed before the data was encrypted. To

find this data, searches were conducted by the examiner in the disk or from

the RAM. This is a further example why system generated artefacts are so

important in forensic analysis. Another approach to gaining access to

encrypted data was to obtain the passphrase that protected the private key.

This passphrase can be obtained from the computer using memory dumps that

disclose information relating to encryption or using a systematic method that

generates a list of keywords found on the disk. If the passphrase cannot be

obtained from the computer, the investigator may be able to obtain the

decryption passphrase by searching for slips of paper containing the

passphrase or interviewing and persuading the suspect to cooperate. There are

various examples of legislation that can be applied to legally require a suspect

to surrender encryption keys. An example from the United Kingdom (UK) is

The Regulation of Investigatory Powers Act 2000 (RIPA, 2000). This

legislation also sets out the legal framework for another approach to obtain the

passphrase, that is, to monitor the suspect’s machine using software or

hardware in an effort to obtain the desired passphrase. The software approach

works by enabling key logging, remote file access, and screen captures, thereby

helping the investigator to obtain encrypted files remotely. The hardware

approach works by recording keystrokes into its

2.6 An Overview of Computer Forensic Analysis and Data Collection 52

internal memory when the hardware is connected between the keyboard and

the CPU.

The third approach in recovering encrypted files was to guess the

passphrase used to protect a private key. Manual passphrase guessing is only

suitable for a small number of passphrases used is likely, and is feasible to all

types of permutations. The automated approach used: a list of common

passphrases, a dictionary in the language(s) of the suspect; and more

sophisticated permutation techniques (Casey, 2002).

2.6.3.3 File Analysis

File analysis approaches utilize the methods described in Table 2.4. This

category of analysis of data is shown diagrammatically above in Figure 2.7.

A possible sequence of activity that took place on the system is the

result of a detailed file analysis. It may also possibly result in locating more

evidence. Research that has been conducted on the specific use of applying

application and file analysis to digital evidence includes that conducted by

Gillam and Rogers (2005); Mee et al. (2006); Turnbull et al. (2006); Dongen

(2007); Murphey (2007); and Vlastos and Patel (2007).

2.6 An Overview of Computer Forensic Analysis and Data Collection 53

Table 2.4: File Analysis Methods

Category of Methods Descriptions

File content These are methods that depend on the content of a file

where obvious files are examined for evidentiary content.

Metadata

These are methods that depend on the metadata

information. This metadata information is used by the

authority to support evidence which links the user to the

action that he/she has taken.

Application files

These are methods that depend on the existence of an

application without the data file on the storage device or a

file that has no apparent application associated with it.

When either scenario exists, this indicates that there may

be offsite storage or another storage device being used that

contains data files or application software.

Operating system file

type and

directory/folder

structure

These are methods that depend on standard file format and

standard folder or directory to store files. For example, the

Microsoft operating system has a directory structure

different from that of the directory structure of a

Macintosh operating system.

Patterns
These are methods that depend on human habits or

patterns particular to the suspect. The way files are named

or saved as well as time and date indicates patterns.

User configurations

These are methods that depend on what the user has

customised on their computer system that leads to finding

evidence. For example, questions regarding the

configuration that should be asked are: ‘Does the user

password expire?’, ‘Is there a remote login feature

enabled?’ and ‘What kind of network settings are in place?’.

2.6 An Overview of Computer Forensic Analysis and Data Collection 54

In the work undertaken by Turnbull et al. (2006), Google Desktop was

used as the source of file analysis in order to find digital evidence. Google

Desktop is an application that provides a searching utility on a single

Windows desktop computer. As Google Desktop is a searching utility program,

the storage files of the Google Desktop hold local emails and store remote

emails, HTML Internet pages visited, thumbnail images and certain cached

file types such as text. Unique features of Google Desktop are that it caches,

indexes and stores Internet sites visited in much the same way as Windows.

All the information in the storage files of the Google Desktop can provide

information to the forensic investigator during file analysis. Although the

storage files of Google Desktop are not humanly readable format, the data that

is stored in the storage files of Google Desktop is still accessible.

Forensic analysis of file content produced by Google Desktop is limited

to the Google Desktop user interface. The forensic analysis of metadata

produced by Google Desktop may not provide an accurate representation of the

files contained in the machine in which it is situated. The cause of this is that

Google Desktop is meant for indexing and retrieving user created data and not

indexing all files on a machine. Google Desktop does not search or index all

files used to operate and maintain the machine, but search space that are

more liable to contain documents stored by the user. However, Google Desktop

interface is provided with browse timeline functionality. This timeline

functionality allows a user to view the times at which files were opened and

cached by the system. This is useful since it can provide a timeline of events

internally rather than having to do time frame analysis separately.

The limitation of most concerns to Turnbull et al. (2006) is that most

files created and used by Google Desktop are not humanly readable format,

and this format is not known to the researcher. However, the data of the

Google Desktop can be viewed by using the Google Desktop program

2.6 An Overview of Computer Forensic Analysis and Data Collection 55

itself. But, this is not an optimal solution because the data has been filtered

and contaminated by the Google Desktop program. Similar to the work

undertaken by Mee et al. (2006), and Turnbull et al. (2006) used the Registry

as the source of file analysis in order to find evidence for Internet usage.

According to Mee et al. (2006), “The Registry is one of the main places to view

various pieces of information relating to the operating system, applications that

have been installed on the machine, and information about users who have

access to the machine, their settings and the privileges they have to the

applications and networks. For example, Microsoft Network (MSN) Messenger

stores a cache of contacts for users”.

The value of the Registry as a forensic artefact through the information

it contains includes Websites viewed, network storage accessed, newsgroup

accessed, list of users’ contacts for instant messenger programs and the Telnet

program’s lists of recently accessed systems. Registry files are stored in a

number of different locations within the Windows system. These files are

known as hives, and contain binary format data in groups of keys, subkeys and

values. The same as Google Desktop, the Registry data are examined using the

Registry viewer for the hierarchical structure of its hives.

Building on the work undertaken by Dickson (2006), and Dongen (2007)

provided a further use of file analysis to examine artefacts left by Windows

Live Messenger 8.0. There are eight types of artefacts which are left behind

after the use of Windows Live Messenger 8.0 on Microsoft Windows XP:

artefacts to identify which Windows Live Messenger (WLM) accounts have

been used on the computer (checking Windows application event file –

AppEvent.Evt); artefacts to show where the contact files of WLM accounts can

be found and what useful information they contain (searching Member.stg,

.WindowsLiveContact and .CONTACT file); conversation content and the

2.7 Conclusion 56

condition in which it can be found (swap file, hyberfil.sys, Master File Table

file); IP addresses for file transfers between sender and receiver; chat/message

log files; traces of shared/transmitted files with a contact; audio and video such

as voice clips and webcam sessions; and contact and user display pictures.

Therefore, by analysing all of these traces it is possible to obtain an overall

picture of a user’s WLM activities.

2.6.3.4 Relational or Link Analysis

Expanding on work in several areas of intrusion detection systems, attribution

techniques and alert correlation, Wang and Daniels (2006) used relational

analysis to identify members of an attack group and their relationship.

Attackers, victims, stepping stones and background attackers are the most

common members of an attack group. Through the attack group members’

identification and their relational links, Wang and Daniels (2006) contributed

to network analysis by proposing a novel graph model and hierarchical

reasoning framework. This category of methods in analysis of data is shown

diagrammatically above in Figure 2.7.

2.7 Conclusion

Most of the work undertaken in forensic analysis focuses on identifying and

employing data from a file system to be used as digital evidence. This is due to

the common practice of investigators viewing digital data objects that have

content or substances that can be perceived. It has been demonstrated by

Gillam and Rogers (2005); Mee et al. (2006); Turnbull et al. (2006); Dongen

(2007); Murphey (2007); and Vlastos and Patel (2007) that the use of

2.7 Conclusion 57

data extracted from the file system is beneficial in representing the

significance of the file as forensic object. Nevertheless, such an approach may

not be applicable to files that are not well-documented. Therefore, we need to

include additional files that are not categorised as within the file system, as a

forensic object. An example of such a file is the swap file, which is a disk-based

file controlled by the Memory Manager (The NT Insider, 1998). Thus, we need

to include provisions for analysing, searching and correlating other files

without expecting the user to know the data structure and attributes of those

files, i.e. little will be known about a given file. While many approaches have

only a limited view of the file, nevertheless visual approaches that aid the

interpretation process can be realised.

Existing analysis of a file system uses a file viewer or editor to display

the file contents. This means that a user has to obtain and access an

appropriate viewer or editor to display and view the file contents. However,

since the viewer or editor is the interface by which the user primarily views

and navigates through the file, there is a need to have a forensic analysis

system that includes visualisation in assisting investigators to interpret data.

This research differs from that in previous studies in that we are interested in

analysing forensic objects by integrating data from different sources and in

developing an interface capable of visualising file contents, file statistics and

file information. We see the limitations of the existing viewers or editors to

display the file contents, as a log viewer such as the Event Viewer only

interprets the saved log if the type of log file is correctly set and the Registry

Editor provides support only for keys and values of a live Registry logical

structure (Anson and Bunting, 2007).

My intention is to extend the analysis process supported by such file

viewers or editors by including visualisation to represent information in a file.

2.7 Conclusion 58

To gain insight a file’s content, analytical visualisation is employed, which

enables us to scrutinise large numbers of data. Information on data structure,

and a good understanding of the priority of the requirements to manipulate

and visualise are inferred from the research of the system generated artefacts

and the event logs and swap files be the focus, review of the state-of-the-art

tools in examining these system generated artefacts; and later employed as

requirements of the development of a flexible and extensible architecture to

process the various system generated artefacts.

59

CHAPTER 3

SYSTEM GENERATED ARTEFACTS
AS FORENSIC OBJECTS

This thesis is focused on the evidence contained in Windows system generated

artefacts. As such the following chapter provides a general introduction to

some of the artefacts generated by the Windows operating system. It discusses

a number of traces which are left behind after the use of a Windows system

which motivate further analysis of the artefacts and possible tools that can be

applied to extract information of evidential value. Chapter 2 presented the

background of computer forensic analysis, and discussed the theory and

practice of examining artefacts extracted from the Windows operating system.

This chapter will describe state-of-the-art tools available to the digital

investigator. These are also examined and discussed including limitations and

possible areas for improvement, and the generation of new forensic tools to

analyse system generated artefacts are covered accordingly in this chapter.

The intention is to demonstrate the need for an architecture that will

specifically extract the information highlighted in the following sections of this

chapter.

3.1 Introduction 60

3.1 Introduction

In searching a digital crime scene for evidence, evidence can be recovered from

various locations, most commonly from within a volume or file system. The

emphasis is often placed on files and their content which involves numerous

searching methods such as file names or naming patterns, keyword searches of

file content or searching files based on the metadata such as the last accessed

or written time listed. According to Carrier (2005), “The result of file system

analysis can be file content, data fragments and metadata associated with

files”.

Volonino et al. (2007) states that ‘‘system generated artefacts are files

methodically created by the operating system, such as the metadata, duplicate

pointer files, link files, swap files, event logs, and temporary data/cache files.

The users do not create these files, therefore contained valuable evidence. The

fact that the files are not readily visible to the casual user also makes it more

plausible that these files have not been altered”.

Richard and Roussev (2006) describe “a forensic process model as

follows: for each file in a given file system, perform a number of type-specific

operations such as indexing, keyword searches, thumbnail generation, and

others. Digital evidence, such as deleted files, file slack, directory structures,

registries, and other operating system structures (which include system

generated artefacts) are treated and represented as special file types in the

forensic process model”.

3.2 System Generated Artefacts 61

3.2 System Generated Artefacts

There are a number of possible files which can provide sources of digital

evidence which have been discussed in previous sections, including hidden

files, file recovery, web artefacts, temporary files and system files. However,

some of these files are created by the user and so the user may be aware of

their existence and may make some effort to remove them. These system

artefacts, which are created by the operating system, are important for digital

investigators as they capture a user’s activities and are often overlooked by

users or intruders as they attempt to cover their tracks. These artefacts are

normally hidden from the normal user and often require specific knowledge or

specialised tools to find it and access the information. For example, assume a

suspect is working on a spreadsheet and wants to check her e-mail. She does

not close the spreadsheet window but instead opens a new window to read the

e-mail. In order to free up RAM, the operating system places memory being

used by the inactive window (spreadsheet) in the pagefile and then proceeds to

address the active window. If the user goes back and forth between the

spreadsheet and e-mail, valuable information is stored in the pagefile from

both the spreadsheet and the e-mail program. Since users have so many

generates for unrealised files (in above example, spreadsheet file and e-mail

file created in the pagefile), it becomes necessary for the digital investigator to

focus on these system generated artefacts’ evidentiary values.

Based on existing work, system generated artefacts can play a

significant role in aiding a digital investigation and when searching for

evidence (Casey, 2000; Jones, 2003; Mandia et al., 2003; Anson and Bunting,

2007; Carvey, 2007; Murphey, 2007) since they contain information concerning

the activities that occur on a Windows system and may contain significant

evidence available in a digital investigation due to the fact that specialised

tools are needed to access them. In order to identify the values of various

3.2 System Generated Artefacts 62

artefacts, it is necessary to understand the information contained in these files

and the various files’ internal structures. It should be noted that in some cases

it may be clear how the files are structured due to metadata included in the

files, in other cases the data may appear to be unstructured.

Considering extant work by Casey (2000); Jones (2003); Mandia et al.

(2003); Anson and Bunting (2007); Carvey (2007); and Murphey (2007), this

project examines the six most commonly considered artefacts: Event Logs,

Swap File, Registry, Cookie Files, Recycle Bin and Internet Explorer Activity

Files. Table 3.1 provides a brief description of some of these artefacts.

Table 3.1: System Generated Artefacts

Windows Artefacts Brief Description

Event Logs

Event log files record information about which users have been

accessing specific files, successfully logged onto a system,

unsuccessfully attempted to log on to a system, track usage of

specific applications, track alterations to the audit policy, and

track changes to user permissions (Mandia et al., 2003).

Swap File
A swap file is a disk-based file controlled by the Memory

Manager (The NT Insider, 1998).

Registry
“A central hierarchal database in the Microsoft operating

system that maintains configuration settings for applications,

hardware devices and users” (Carvey, 2007).

Web Cookies

A text file containing information about web sessions. This is

placed by the web server on a user’s computer so the web page

may be requested back at a later date (Jones, 2003).

Recycle Bin

A file containing files marked as deleted on a Windows system.

A file that has been deleted by mistake may be retrieved

provided the Recycle Bin has not been emptied (Casey, 2000).

Internet Explorer

Activity File

A Web browser (Firefox, Internet Explorer etc.) caches the

content of visited web pages and cookies within system files

named index.dat (Jones, 2003).

Prefetch

A Prefetch cache to speed up boot and application launch time.

Prefetch caches take information from the boot process and

from Scheduled Tasks (Hay, 2005).

3.2 System Generated Artefacts 63

The artefacts of Microsoft Windows listed in Table 3.1 contain

significant amounts of digital evidence that enable investigators to reconstruct

activities that took place on a machine before it was seized. This chapter

focuses on the Event logs and the Swap file, although it examines the

usefulness of registry, web cookies, recycle bin and Internet explorer activity

file in the forensic analysis of a system. The next sections consecutively discuss

the features, evidentiary values, tools and issues related to event logs, swap

files, registry, web cookies, recycle bin and Internet explorer activity file as

sources for evidence collection.

3.2.1 Event Logs As System Generated Artefacts

The Windows operating system creates event logs in the process of recording

day-to-day events that occur on a Windows system. This is performed by the

Windows service named eventlog. The service starts when Windows loads on

all platforms by default (Allen, 2005).

3.2.1.1 Event Logs Features

The Windows event logs files are, essentially, databases with the events

related to the system, security, and applications. These events are audited

and written to one of three configurable event log files: AppEvent.Evt,

SysEvent.Evt and SecEvent.Evt. These three files are stored in the

SystemRoot folder of the system. Table 3.2 below illustrates the different

default locations in which the various versions of Windows store the .Evt file.

3.2 System Generated Artefacts 64

Table 3.2: Event Logs Organisation

Windows Artefacts Brief Description, Windows Version and Location

Application Event

Log

Contains a log of application usage and logged messages from

the operating system and programs.

AppEvent.Evt

Windows NT 4.0 %SYSTEMROOT%\system32\config\

Windows 2000 %SYSTEMROOT%\WINNT\config\

Windows XP %SYSTEMROOT%\system32\config\

Windows Vista %SYSTEMROOT%\system32\winevt\Logs\

Security Event Log Records activities that have security implications such as logins.

SecEvent.Evt

Windows NT 4.0 %SYSTEMROOT%\system32\config\

Windows 2000 %SYSTEMROOT%\WINNT\config\

Windows XP %SYSTEMROOT%\system32\config\

Windows Vista %SYSTEMROOT%\system32\winevt\Logs\

System Event Log Notes system events such as shutdowns.

SysEvent.Evt

Windows NT 4.0 %SYSTEMROOT%\system32\config\

Windows 2000 %SYSTEMROOT%\WINNT\config\

Windows XP %SYSTEMROOT%\system32\config\

Windows Vista %SYSTEMROOT%\system32\winevt\Logs\

The event logs consist of a binary structure, with a header and a series

of event records stored in the file. The event log is maintained as a circular

buffer since older event records are cycled out of the file whenever a new event

record is added to the file. At the same time, there is correlation between the

event logs, registry and many message files (DLL) on a system (Carvey, 2007).

The location of event logs is dependent on the version of Windows

running on the computer. According to Anson and Bunting (2007), in order to

examine the contents of an event log, the event log header and event records

contain structure, values and information as shown in Tables 3.3 and 3.4 that

can assist an investigator in recognising and interpreting event log files. The

event log records contain information about an event such as the date, time,

user, computer, event ID, source, type and category (Microsoft, 2007).

3.2 System Generated Artefacts 65

Table 3.3: Event Logs Header Structure

Field

Number

Offset

(bytes)

Size

(bytes)
Description

1 0 4 Size of the record; for an .evt file header, the size is

0x30 (48) bytes. Event record sizes are 56 bytes.

2 4 4 Magic Number (“LfLe”)

0x654C664C, or 4C664C65 (LfLe) when the

endianness is reversed.

3 16 4 Offset within the .evt file of the oldest event record

4 20 4 Offset within the .evt file of the next event record to

be written

5 24 4 ID of the next event record

6 28 4 ID of the oldest event record

7 32 4 Maximum size of the .evt file (from the Registry)

8 40 4 Retention time of event records (from the Registry)

9 44 4 Size of the record (repeat of DWORD at offset 0)

Table 3.4: Event Log Records Data Structure

Field Name
Offset

(bytes)

Size

(bytes)
Description

RecordSize 0 4 Beginning of Record Size Marker (4 bytes – 32

bit little endian integer)

MagicNumber 4 4 Fixed Value Delineator or Object Marker (4

bytes – 0x4C664C65, which is ASCII “LfLe”)

RecordNumber 8 4 Record Number (4 bytes – 32 bit little endian

integer)

TimeGenerated 12 4 Created time stamp (Unix 32 bit little endian

time stamp)

TimeWritten 16 4 Written time stamp (Unix 32 bit little endian

time stamp)

EventID 20 2 Event ID (2 bytes – 16 bit little endian integer)

EventType 24 2 Event Type (2 bytes – 16 bit little endian

integer value used as an index to return

“Event Name”)

(0x01 = Error; 0x10 = Failure; 0x08 = Success;

0x04 = Information; 0x02 = Warning)

3.2 System Generated Artefacts 66

Table 3.4: Event Log Records Data Structure (continued)

Field Name Offset

(bytes)

Size

(bytes)

Description

EventTypeName 26 2 String Count (2 bytes – 16 bit little endian

integer – describes number of strings in the

event record)

EventCategory 28 2 Category (2 bytes – 16 bit little endian integer)

EventCategoryName 30 2 Generated by looking up the associated Event

Category number

LastRecordNumber 32 4 Closing record number

OffsetDescription 36 4 String offset; offset to the description strings

within this event record

LengthSID 40 4 Length of the user SID; size of the user SID in

bytes (if 0, no user SID is provided)

OffsetSID 44 4 Offset to the user SID within this event record

DataLength 48 4 Data length; length of the binary data

associated with this event record

OffsetData 52 4 Offset to the data

SourceName 56 - Source Name (Variable length Unicode text

with padding and null terminator 0x0000)

ComputerName - Computer Name (Variable length Unicode text

with padding and null terminator 0x0000)

SID

Field 15 Field 14 SID of Security Principal or Group (may or may

not be present). If 1-5, which is S-1-5 (NT

Authority – unique identifier), then full SID

follows

- If SID follows 14, then this is security authority

of SID that follows (0-5)

- If SID follows 14, then this is remainder of SID,

appearing in 5 sets of 32 bit integers

Message - 4 Strings – Depending on the number of defined

strings (Field 9), strings will be in Unicode and

separated by an ending with null terminators

0x0000.

Data Field 17 Field 16 Data – an optional field used when message is

unique (typically containing an offset or value

for an error, etc). Data is regular text (non-

Unicode) with each string separated by 0x20

(space) and ending with 0x0D0A (carriage

return) and null terminator

EndRecord 241 4 End of record size marker (4 bytes – 32 bit

endian integer)

3.2 System Generated Artefacts 67

Windows registers and records events in the Application log, System log

and Security log and each of these logs stores different information based on

the type of events. Types of event in the Application and System logs are

different from the types of event in the Security log. Information, warning and

error are the types of event entries that are recorded in the Application and

System logs while success and failure are event entries that are recorded in the

Security log. These types of event are used in an attempt to troubleshoot

system anomalies and used with other column fields to find indicators of

attack.

As indicated in the above section, there are three categories of event

logs within Windows. The Application log contains actions that particular

software applications identify as events. For example, the antivirus

applications use this log to record when the program gets updated and the

Microsoft Security Centre will write a record to this log. The Security log

contains detail regarding logon events. Such events logged include successful

logon attempts as well as unsuccessful logon attempts. The System log

contains events logged by the Windows system component. The System log is

used by the operating system to track events such as driver failures or when a

system component does not start up correctly. For example, when a Windows

service fails to start, details will be found in the system logs (Microsoft, 2005a).

One useful piece of information that can be gained from Event logs is a

record of which accounts have been used to access the systems and how these

accesses have been made. Such accesses are called logon events (Anson and

Bunting, 2007). Logon events are generated and recorded in the Security log

and these events grant an account access to a computer’s resources. In

Windows, each of the different versions of the operating system uses a logon

type to indicate different kinds of logon events. A logon type can be classified

into one of the nine types. Windows logon types are values to indicate the way

in which the account logged on to the system. The values for logon types are

shown in Table 3.5 below.

3.2 System Generated Artefacts 68

Table 3.5: Values for Logon Types (Anson and Bunting, 2007)

 Logon

 Type
Logon Title Description

2 Interactive A user logged on to this computer at the console.

3 Network A user or computer logged on to this computer from the

network.

4 Batch Batch logon type is used by batch servers, where

processes might run on behalf of a user without the user’s

direct intervention.

5 Service A service was started by the Service Control Manager.

7 Unlock This workstation was unlocked.

8 NetworkCleartext A user logged onto a network and the user password was

passed to the authentication package in its plain text

form.

9 NewCredentials A process, thread or program cloned its current token

and specified new credentials for outbound connections.

The new logon session has the same local identity, but it

uses different credentials for other network connections.

10 RemoteInteractive A user logged on to this computer remotely using

Terminal Services or a Remote Desktop connection.

11 CachedInteractive

A user logged on to this computer with network

credentials that were stored locally on the computer. The

domain controller was not contacted to verify the

credentials.

3.2.1.2 Evidentiary Value of Event Logs

Event logs record and reveal information about activities that occur on a

Windows system. These logs can be used to diagnose and troubleshoot

problems on a Windows system as the logs record information about hardware

and software problems. According to Mandia et al. (2003), by reviewing the

System log, Application log and Security log, the following information of

possible evidentiary value can be obtained:

• Which users have been accessing specific files?

• Who has been successfully logging on to a system?

• Who has been trying unsuccessfully to log on to a system?

3.2 System Generated Artefacts 69

• Usage of specific applications.

• Alterations to the audit policy.

• Changes to user permissions.

Logs may contain event entries with specific information about the

recorded event represented by fields that are typically of investigative interest

and many activities that happen within a Windows system can be

reconstructed by analysing these events. For example, Date, Time, IP

addresses and/or Computer Names of involved system fields can be used to

determine which computer was used to perform a specific action, what time

someone logged into a computer, and from where (Casey, 2000).

An event identifier is assigned to each event whenever an event is

audited on the Windows system. The Event ID column contains a number

which corresponds to the type of event that has occurred; most commonly

associated with logon and authentication activity. An Event ID associated with

remote desktop events is useful in identifying the name and IP address of the

originating computer for the remote connection. This is used in determining

successful remote desktop connection and reconnection, so in some cases Event

logs can play an important role in addressing intrusion cases. In cases

involving remote desktop connections, Event logs may be the best source of

evidence regarding the attacker.

3.2.1.3 Event Logs Tools and Related Issues

Since the logs are stored in proprietary binary format and not in a text-

readable format, a special tool is needed to interpret the data and to display

the content in a Human Readable form. The contents of the event logs can be

viewed using the event viewer tool supplied with the Windows operating

system. The Event Viewer tool provided by Microsoft depicts the three

classifications of event logs within Windows in two different panes. One pane

shows the list of the available log files and the other provides a list of each of

3.2 System Generated Artefacts 70

the different event entries, one line per entry. Figure 3.1 shows the two panes

of Event Viewer and shows a list of event entries in the

Application/Security/System log. Figure 3.2 shows an example of the opened

Event Properties dialog whenever a selected entry is double-clicked. There are

other tools that include functionality to view event entry by relying on the

Windows API, including Log Parser and Event Analyst.

Figure 3.1: Event Viewer Panes

Figure 3.2: An Example of the Opened Event Properties Dialog
in Event Viewer

3.2 System Generated Artefacts 71

Another free tool provided by Microsoft to process and view event logs is

the Microsoft Log Parser (Microsoft, 2005). It can be downloaded from the

Microsoft Download Centre1 and is able to process a number of different types

of log format. The Log Parser tool processes Event logs in three parts using

different components: input, query and output. Its query component uses SQL

queries to parse, filter and analyse logs. The Log Parser uses SQL for the

searching function and so it can be difficult for users who are not already

familiar with SQL. The input component is the specified input type of interest,

while the output component is the defined output type that is wanted to be

displayed.

There are commercial tools that perform some basic log analysis

functions. For instance, the LANguard Security Event Log Monitor

(LANSELM), from GFI (2007) is an event logs monitor that retrieves event

logs from networked NT/2000 servers and workstations and alerts the

administrator of possible intrusions.

Read (2009) mentions several tools that work with many different log

formats for detailed log analysis, such as the Spotfire (TIBCO, 2011) and

Sawmill (VisiData, 2011). Such a commercial tool is based on an Intrusion

Detection Systems (IDS) and there is a need to undertake more in-depth

analysis of event logs, such as fusing or correlating event logs from multiple

computers. The ability to identify a set of interesting log events across

different systems can be a useful function; and data mining tools can be used

to extract a pattern of repeated yet unusual events from the event logs.

One possible issue in examining data from multiple systems in

correlation of the data is the question of the reliability of the timestamp.

Jeffrey and Clark (2000) noted that event logs store the date that the entry

was made and time that each entry was written in the log. Windows saves

1 Log Parser available at:
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=
890cd06b-abf8-4c25-91b2-f8d975cf8c07.

3.2 System Generated Artefacts 72

time stamps in FILETIME format. FILETIME format is the number of ticks,

in 100ns increments, since 00:00 1 Jan, 1601 (Microsoft, 2007). This

FILETIME format needs to be translated to Unix time format since the Event

logs measure the time in Unix format (Carvey, 2007). Unix time format is the

number of seconds since 00:00 1 Jan 1970. The timestamp is stored in GMT

and no information about the time zone setting for the computer is recorded.

The timestamp therefore has to be adjusted in order to analyse it when

considering logs that originated from computer systems in different time zone.

This compounds the problem of possible variation between the clocks of

various systems and the need for system administrators to resolve these issues

to compare and analyse events (Carvey, 2007).

In addition to the timestamp issue, there is also the possibility of data

loss. According to Anson and Bunting (2007), data loss happens when an event

ID has been updated on a newer version of the operating system, and an older

version of the operating system is used to interpret it. This happens when

analysis is done using an older version of the operating system and the event

logs has been created with the newer version of the operating system. It also

happens to the username where a username is represented by the SID when a

log from a different computer is analysed instead of the log from the local

machine. This occurs because the SID of the log for the different machine is

interpreted as a username by querying the list of usernames stored on the

local machine.

The evolution of the Windows operating system can also complicate the

issue (Anson and Bunting, 2007). The operating system controls the way in

which the logs are generated, so the evidence found is the consequence of the

version of the operating system used by that victim (Anson and Bunting,

2007). The history of the Windows operating system is shown in Figure 3.3.

3.2 System Generated Artefacts 73

Figure 3.3: Windows Operating System History (Microsoft TechNet, 2007)

3.2.2 Swap Files As System Generated Artefacts

According to Lee et al. (2007a), “System memory analysis aims at gathering

information from the contents of a computer’s memory with the purpose of

finding which processes were running, when they were started and by whom,

what specific activities those processes were doing and the state of active

network connections”. Kornblum (2007) reports that virtual memory

implemented by the operating system allows a larger range of memory or

storage addresses for stored data than physical memory. The computing

system maps the virtual addresses to real hardware storage addresses and

also manages storage swapping between physical memory (RAM) and hard

disk (swap file).

A swap file can be defined as part of virtual memory and is a disk area

where memory pages belonging to various processes can be swapped in or

3.2 System Generated Artefacts 74

swapped out, depending on how this is handled this can provide a useful

source of activity including material which the user did not intend saving to

disk. The intermediate characteristic of a swap file, i.e. containing certain

processes from memory but located in a hard disk can be used by a digital

forensic investigator to solve the investigation, by using such information in

order to acquire critical information such as passwords and credit card

numbers that being ‘swap out’ from main memory to swap file.

A portion of the hard disk is used as additional memory and data is

swapped from the physical memory to this space on the disk as memory as

needed in the physical memory. This data is held in a file called the Swap file.

This file is created automatically by the operating system. Swap files are

created by the operating system in a default location.

3.2.2.1 Swap Files Features

Caloyannides (2001) described the swap file as the portion of the hard drive

used by Windows system to temporarily store data that would normally be

stored in the volatile RAM, but the RAM is currently in use by other processes.

This file contains all sorts of data, including e-mails, web pages, word

processing documents and any other work that has been performed on the

computer during the work session (Shinder, 2002). Consequently, the swap file

will include residual information; examples include previously opened files and

print spooling (Mohay et al., 2003). In other words, a swap file is simply

dedicated space on a hard drive whose contents are temporary and overwritten

as needed. A swap file is generated at each boot session and remains unless it

is configured to be cleaned each time the system is powered down. However,

the shutdown period increases when the swap file is configured to be cleared

out by setting the registry value to 1 for

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SessionM

anager\MemoryManagement\ClerPageFileAtShutdown.

3.2 System Generated Artefacts 75

Table 3.6: Swap File Default Name and Location

 File Name Windows Version Location

Win386.swp Windows 95/98/ME %SystemDrive%\

pagefile.sys
Windows NT/2000/XP %SystemDrive%\

Windows Vista %SystemDrive%\

3.2.2.2 Evidentiary Value of Swap Files

When a computer’s RAM is full and the operating system must allocate

memory for an application that doing some processing, Windows creates the

swap space as a single file and this is known as a swap files on the root folder

of the system drive to make room in RAM. The default swap file name and the

location within the file system is outlined above, Table 3.6. The swap file is a

collection of memory pages which belongs to various processes (Lee et al.,

2007a), threads (Schuster, 2006) and also stores CrashDump data. This

CrashDump data is essentially a dump of the physical memory when a ‘blue

screen of death’ (BSoD) occurs (Ruff, 2007). A commonly used forensic method

is the searching of unallocated space for deleted files (Shinder and Tittel,

2002); and this approach can also be applied in searching the swap files for the

deleted files and other digital object through the detection of file headers and

footers (Casey, 2004). Thus, swap files can include a great deal of information,

specifically passwords that were never intended to be recorded onto the hard

drive (Lee et al., 2007b), drafts of documents that were never saved to disk,

and so on.

Accordingly, there is the possibility of swap files containing a wide

range of data including passwords, user IDs, credit card numbers, messenger

chat logs and contents of recently used files, such as address books and URLs

3.2 System Generated Artefacts 76

(Lee et al., 2007a). An example is displayed in Figure 3.4, where a password is

detectable in a pagefile.sys file.

Figure 3.4: Result of pagefile.sys Analysis

3.2.2.3 Swap Files Tools and Related Issues

The pagefile is locked by the kernel when Windows system is running.

However, the pagefile can be accessed using a specially crafted driver or

special device. This special device or crafted driver must be brought onto the

target or have been installed previously. Another way to collect the pagefile is

to unplug the system and access the pagefile through the standard forensic

process hard drive extraction.

An application will fail to operate when the system runs out of virtual

memory as a result of insufficient swap file space being provided. Swap file size

depends on how much RAM there is, and how much additional memory space

that workload requires. For computers with small amounts of RAM (256MB), it

is possible to configure the swap file 1.5 times the

A sample of the

password present in

the swap file.

3.2 System Generated Artefacts 77

size of the installed RAM, but for computers with a large amount of RAM,

there is not much point in allocating a swap file that is 8 GB, if the computer

has 8 GB of RAM. There is little point in allocating a large minimum size of

swap file, since it typically won’t be used (Sanderson, 2004). Even if the

minimum and maximum swap file size is not the same, fragmentation occurs

and this can lead to additional performance degradation. The best way to know

the size needed for swap files is to monitor how much of the swap files in use

and the associated system paging activity.

The contents of swap files are not easily readable by the investigator.

The investigator can view the swap files’ contents, but not in a manner that

makes the viewing or extraction of valuable data easy. Looking for leads in the

swap file by viewing it with standard binary editing utilities is tedious and will

most likely be unfruitful because of the volume of data involved. In order to

unravel the contents of swap files, more productive, specialised tools are

needed so that numerous fragments of page file data can be extracted and

assembled (Schweitzer, 2003). There are, however, various computer forensic

filters designed to automatically identify computer investigation leads stored

in Windows swap files. The identified leads are used to craft lists of key words

and strings of text for use with computer forensic tools. Winhex (Vyavhare,

2009) is a freeware tool and is promoted (Volonino et al., 2007) as a tool that

can be used to examine swap files in forensic investigations.

3.2.3 The Registry As A System Generated Artefact

The Windows Registry is a database that stores hardware and software

configuration information, user preferences, and setup information. It uses a

binary format and is optimised to be machine, rather than human readable

and so cannot be viewed with a text editor. The Registry has a hierarchical

structure similar to the directory structure on the hard disk.

3.2 System Generated Artefacts 78

3.2.3.1 The Registry Features

The registry is a system-defined binary database designed to store and retrieve

configuration data required by applications and operating system components.

The binary nature of the Registry means that the registry files cannot be read

from a DOS prompt text editor or the Recovery Console and locating the

registry files depends on which Windows platform is installed (Russinovich,

1999).

In Windows 95, 98 and ME there are only two registry files, which is

the system.dat and user.dat. In Windows XP, 2000 and Vista there are

several registry files. The files are stored in the Windows\System32\Config

folder. When looking at an offline Registry, the files are: Software, System,

SAM, Security and Default (no file extension is used). One more registry

file is NTuser.dat and it does have a file extension. Table 3.7 illustrates the

registry files from different Windows platforms and their locations. Windows 7

includes further refinements including virtualisation to ensure compatibility

with earlier versions. This thesis is however focused on Windows XP and 2000.

3.2 System Generated Artefacts 79

Table 3.7: Registry Files From Different Windows Platform
and Their Locations

 File Name Windows Version Location

System.dat

User.dat

Windows

95/98/ME
%SystemRoot%\

NTUSER.DAT

system/SECURITY/

SAM/software/default

system.alt

system/SECURITY/

SAM/software/

default.sav

system/SECURITY/

SAM/software/

default

.log

Windows NT
%SYSTEMROOT%\ System32\Config\

%SYSTEMROOT%\Profiles\ <username>\

Windows

2000/XP

%SYSTEMROOT%\System32\Config\

%SYSTEMROOT%\Documentsand

Settings\ <username>\

Windows Vista

%SYSTEMROOT%\System32\Config\

C:\Users\<username>\

The Software, System, SAM, Security, Default and

NTuser.dat files have various functions. The Security stores information

about security. This file contains information regarding various service

accounts for the operation of Windows. For example, the system stores the

credentials for service accounts and launches them automatically under the

appropriate account since services run without being openly activated by a

logged in user. The SAM file is a security database of hashed passwords and

usernames which stores information about the Security Accounts Manager

(SAM) service. For example, each user, group and machine in Windows are

assigned a security identifier (SID) and this SID is used as a means of

identification. SIDs to users for logon is resolved by parsing the SAM. The

System stores all the information about hardware, software, and the default

Windows setting. For example, each

3.2 System Generated Artefacts 80

service that starts upon Windows booting is listed in the Registry key

HLKM\SYSTEM\CurrentControlSet\Services and the settings for the

Windows Firewall are stored in the Registry key

HLKM\SYSTEM\CurrentControlSet\Services\SharedAccess\Paramet-

ers\FirewallPolicy in the SYSTEM file. The Software file stores

information about software and how Windows will perform and the default

Windows setting. The HLKM\SOFTWARE key in this file contains software

settings relating to installed software and uninstalled software; and even who

last logged on to a system. The Default file stores all the default user

settings. A number of Registry keys are used to track user activities and can

be found in the NTuser.dat file and are updated when a user performs

specific actions. The NTuser.dat file stores all settings that each user selects

and these settings will override settings stored in the System file.

The structure of the Registry itself contains the keys, subkeys and

values at a physical level (in an offline Registry). There are five root level keys.

Keys are the master keys (HKEY_LOCAL_MACHINE and HKEY_USERS) which

are two in number and derived keys (HKEY_CLASSES_ROOT,

HKEY_CURRENT_USER, HKEY_CURRENT_CONFIG), meaning they are linked to

the master keys which are three in numbers. Table 3.8 below shows the

different keys, subkeys, and locations of the Windows registry file. Values are

the Registry values which are associated with Name, Type and Data

attributes. All values have names and value’s name is analogous to a file’s

name. Each value contains data of a specified data type specified by a number.

Figure 3.5 shows the Registry editor with a series of values in the value pane.

3.2 System Generated Artefacts 81

Table 3.8: Registry Organisation (Anson and Bunting, 2007)

Root Key Name Brief Description

HKEY_LOCAL_MACHINE

(HKLM)

Used to establish the pre-computer settings.

Hive Key Hive File and Location

HKLM\SAM %SYSTEMROOT%\system32\config\SAM

HKLM\SECURITY %SYSTEMROOT%\system32\config\ SECURITY

HKLM\SOFTWARE %SYSTEMROOT%\system32\config\ SOFTWARE

HKLM\SYSTEM %SYSTEMROOT%\system32\config\ SYSTEM

HKEY_USER

(HKU)

Used to contain the user environment settings for the

console user as well as other users who have logged on to

the system.

Hive Key Hive File and Location

HKU\.DEFAULT %SYSTEMROOT%\system32\config\default

HKU\S-1-5-19 Documents and Settings\LocalService \ntuser.dat

HKU\S-1-5-19_Classes Documents and Settings\LocalService\Local Settings\

Application Data\Microsoft\Windows \UsrClass.dat

HKU\S-1-5-20 Documents and Settings\NetworkService\ ntuser.dat

HKU\S-1-5-20_Classes Documents and Settings\NetworkService\ Local

Settings\Application Data\Microsoft\

Windows\UsrClass.dat

HKU\SID Documents and Settings\UserName\ ntuser.dat

HKU\SID_Classes Documents and Settings\UserName\Local

Settings\ApplicationData\Microsoft\Windows

\UsrClass.dat

 HKEY_CLASSES_ROOT Used to associate file types with programs that open

them and also to register classes for Component Object

Model (COM) objects. This key is derived from two keys,

HKLM\Software\Classes and HKCU\Software \Classes.

 HKEY_CURRENT_USER Used to configure the environment for the console user.

This key is derived from a link to HKU\SID. SID is the user’s

security identifier.

 HKEY_CURRENT_CONFIG Used to establish the current hardware configuration

profile.

3.2 System Generated Artefacts 82

Figure 3.5: Registry Editor Showing Registry Values in the Value Pane

Table 3.9 below shows each of the data types, their corresponding

number and a brief description of what the data type means.

Table 3.9: Registry Value Data Types (Anson and Bunting, 2007)

Data Type Number Description

REG_NONE 0 Data type is not defined.

REG_SZ 1 Fixed length text string expressed in user

friendly format, normally describes

components.

REG_EXPAND_SZ 2 Variable length data string.

REG_BINARY 3 Binary data that is displayed in the editor as

hex.

REG_DWORD 4 32 bit double word values.

REG_DWORD_LITTLE_INDIAN 4 32 bit double word values with bytes in

reverse order.

REG_DWORD_BIG_INDIAN 5 32 bit double word values with bytes in

normal order with the highest bit appearing

first.

REG_LINK 6 An internal use only data type for a Unicode

symbolic link.

REG_MULTI_SZ 7 Multiple string fields in which each string is

separated by a null; two nulls mark the end of

the list of strings.

REG_RESOURCE_LIST 8 Listing of resources lists of devices or device

drivers.

Name, Type and Data

attributes for Registry

values.

3.2 System Generated Artefacts 83

The Windows registry is organised in a tree structure and is analogous

to a file system. However, the internal structure of Windows registry hives is

different from typical file systems. Registry hive files contain a header and

continue with a series of hive bin blocks. Hive bins are linked together and

within each hive bin can be found a series of variable length cells. Figure 3.6

illustrates the layout of a typical hive bin. The data portion of each cell

contains either value data or one of several different record types such as: key

(NK) records, subkey-lists, value-lists, value (VK) records, security (SK)

records, big data records and big data indirect offset cells (Morgan, 2009).

Figure 3.6 below depicts the Registry hive files contain a header and

continue with a series of hive bin blocks and within each hive bin can be found

a series of variable length cells.

Hive Bin Header

Cell 1 Length

Cell 1 Data

Cell 2 Length

Cell 2 Data

Cell 3 Length

Cell 3 Data

.

.

Figure 3.6: Hive Bin Structure (Morgan, 2009)

Table 3.10 through Table 3.12 illustrates data structures for all of the

elements in the registry: header, hive bins, and cells. Table 3.10 below depicts

the Registry header with the offset values within the file to the key cell.

3.2 System Generated Artefacts 84

Table 3.10: Registry Header Data Structures (Morgan, 2009)

Offset Size (bytes) Type Description

0x0 4 String(“ref”) Magic number

0x4 4 Unsigned Integer
Sequence Number 1: matches next field if

hive was properly synchronised.

0x8 4 Unsigned Integer Sequence Number 2: matches previous

field if hive was properly synchronised.

0xC 8 Unsigned Integer 64-bit NT time stamp

0x14 4 Unsigned Integer Major version

0x18 4 Unsigned Integer Minor version

0x24 4 Offset Pointer to the first key record

0x28 4 Offset Pointer to the start of last hive bin in file.

0x30 64 String Hive file name

0x90 4 Unsigned Integer Flags

0x1FC 4 Unsigned Integer Checksum of data to this point in header.

Within the Registry hive file, a series of hive bin blocks that follows

after the header contains offsets to additional data structures, such as lists of

other hive bins, as well as lists of cells. Table 3.11 below depicts the Registry

hive bin data structure with the offset values.

Table 3.11: Hive Bin Data Structures (Morgan, 2009)

Offset
Size

(bytes)
Type Description

0x0 4 String(“hbin”) Magic number

0x4 4 Unsigned Integer
This bin’s distance from the first hive

bin

0x8 4 Unsigned Integer This hive bin’s size (multiple of 4096)

0xC 16 Unknown Unknown

0x1C 4 Unsigned Integer Relative offset of next hive bin

0x20..[bin size] Variable Structure List
List of cells used to store various

records

3.2 System Generated Artefacts 85

The Registry hive file contains data that is stored in cells. A cell holds a

key, a value, a security descriptor, a list of subkeys, or a list of key values.

Table 3.12 below depicts the Registry cell data structures with the cell header;

that is a field that specifies the cell’s size, and the cell’s value.

Table 3.12: Cell Data Structures (Morgan, 2009)

Offset

Size

(bytes)
Type Description

0x0 4 Signed Integer Cell length (including these 4 bytes)

0x4 Variable Varies
Contains one of: NK record, VK record, SK

record, subkey-list, value-list or raw data blocks

Furthermore, the data portion of each cell contains either value data or one of

several different record types such as: key (NK) records, subkey-lists, value-

lists, value (VK) records, security (SK) records, big data records and big data

indirect offset cells (see Appendix B).

3.2.3.2 Evidentiary Value of the Registry

The Registry on Windows operating systems is a rich source of evidence and

contains data relating to the configuration of the operating system, and most

of the applications present on the system. In addition to system configuration

data for the operating system and applications present on the system, the

Windows Registry holds information regarding user activities including

recently accessed files. Software used by attackers creates a footprint within

the Registry, leaving the investigator clues about the incident (Carvey, 2007).

Due to the binary format of the registry, a specialised tool is required to view

the contents. Some, but not all, of the registry information can be accessed

using the Registry editor supplied with the operating system. In Figure 3.7,

DefaultUserName shows who last logged on to a system in the

HKLM\SOFTWARE\Microsoft\WindowsNT\Current\Version\Winlogon\De-

3.2 System Generated Artefacts 86

faultUserName. Similarly Figure 3.7 illustrates another value which can be

obtained by looking at the DefaultDomainName in the same key, which

describes the local or domain security authority of the last account used to

logon.

Figure 3.7: The Last-logged-on User and Domain are Stored in the Key HKEY_
LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon

According to Morgan (2009), “The Windows registry stores a wide

variety of information, including core system configurations, user specific

configuration, information on installed applications, and user credentials, and

is therefore a potentially rich source of evidentiary data”. This can be seen in

the information regarding installed software, last logon and banners. A

Registry entry is created and shows software information when programs are

installed on a computer, and this information persists in some cases even

when the software is removed or uninstalled. The information can be found in

HKLM\SOFTWARE. An example of the information held in the Registry

relating to users would be the information identifying when the last-logged-on

user was doing so using a local account, an account from the local site’s

domain, or an account from another trusted domain. The information can be

DefaultUserName shows who last

logged on and DefaultDomainName

describes the last account used to logon.

3.2 System Generated Artefacts 87

obtained from HKLM\SOFTAWRE\Microsoft\WindowsNT\CurrentVersion-

\Winlogon. Information regarding the location and contents of banners are

useful in investigating a network intrusion. The registry key in which they are

stored is HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\-

Policies\System and contains the caption and text of a logon banner that is

set on the local system.

3.2.3.3 Registry Tools and Related Issues

The interface by which the user primarily views, searches, or modifies the

Registry is with the Registry editor tool (regedit.exe), which is installed as part

of the Windows operating system. However there are several additional

available tools that can be used to examine the Registry: the Advanced

Registry Tracer by Elcomsoft (2005) for live Registry, while Guidance Software

has EnCase (2005) and AccessData has Registry Viewer (2009) for performing

research on compound files of the Registry hives. The built in Windows utility,

registry editor (regedit) can be accessed from the run command.

In the registry editor, the left pane is used to view the keys for the

registry and the right pane is used to view the values for the registry. It is

possible to navigate the hierarchy of the various registry keys and examine the

series of values associated with each key. The Windows registry editor has a

search function to search for keyword data within the keys, values or data

areas of a registry. The Registry editor will not however allow access to the

protected areas of the registry where security information is recorded.

The registry is easily damaged (Nelson et al., 2004) and should not be

edited or altered via manual editing unless this is essential and the impact of

the changes is clearly understood. As the impact of a mistake can render the

system inoperable, it is good practice to back up the Registry before making

any changes. Furthermore, the registry hive files in an offline mode

3.2 System Generated Artefacts 88

are different from the live registry as seen in Windows. The differences are

non-volatile keys such as the HARDWARE hive file key under HKLM (live

registry) and the CurrentControlSet key for the offline environment (Anson

and Bunting, 2007). The operating system displays local times to the user as

an offset to Greenwich Mean Time (GMT) based on the user’s local time zone

offset stored in the Registry. So, an adjustment will need to be made to the

timestamps if the time zone of the machine used to examine media is different

to the time zone of the examined media (Carvey, 2007).

3.2.4 Web Cookie Files As System Generated Artefacts

Web cookies are files that are created by the Web sites visited and sent to the

web browser along with the web pages viewed. These web cookies reveal the

fact that the user has visited that particular web and may also hold a range of

other information.

3.2.4.1 Web Cookie Files Features

The purpose of a cookie may be one or more of the following (this list is not

exhaustive):

• To notify the Web site that you have visited it in the past.

• To store a username and password to enable an automatic login when

returning to a Web site.

• To record personal user information relating to the website, e.g. name,

personal preferences, advertising information, etc.

• To record preferences from previous visits to enable a site to display

appropriate adverts.

Web cookies are stored in a specific folder in the hard disk. The location

of this folder depends on the version of the Windows and relate to a user

account. Table 3.13 shows the typical location of cookie files.

3.2 System Generated Artefacts 89

Table 3.13: Web Cookie Files Location

 File Name
Windows

Version
Location

<username>@<websitename>.txt

Windows

95/98/ME

%SystemRoot%\Cookies

%SystemRoot%\Profiles\

<username>\Cookies

Windows

NT/2000/XP

%SystemDrive%\Documents

andSettings\<username>\ Cookies\

Windows

Vista

%SystemDrive%\Users\

<username>\AppData\Roaming\

Microsoft\ Windows\Cookies\

%SystemDrive%\Users\

<username>\AppData\Roaming\

Microsoft\ Windows\Cookies\ Low

Cookie files are in human readable ASCII format and in line by line

format. The first line contains the variable name and the second line contains

the value for the variable name. The third line contains the website name that

issued the cookie and the fourth line contains flags. Lines five and six are

concatenated and reassemble the expiration time. The next two lines (lines

seven and eight) are concatenated and reassemble the creation time. Table

3.14 summarises web cookie files’ format.

Table 3.14: Summary of Web Cookie Files Format (Jones, 2003)

Line Number Fields Description / Summary

 1 The variable name

 2 The value for the variable

 3 The website of the cookie’s owner

 4 Optional flags

 5 The most significant integer for expired time, in FILETIME format

 6 The least significant integer for expired time, in FILETIME format

 7 The most significant integer for creation time, in FILETIME format

 8 The least significant integer for creation time, in FILETIME format

 9 The cookie record delimiter (a * character)

3.2 System Generated Artefacts 90

3.2.4.2 Evidentiary Value of Web Cookie Files

The website usually places information in a cookie in a user’s computer to

record information about a web session, so it may be requested back at a later

date. Cookies are useful as they can be used to automatically sign a user into a

specific site and also can hold information about a user’s purchases in a web

shop. For this reason, cookies aid digital investigators by providing insight into

a suspect’s Internet activity. For example, after visiting a website such as

www.play.com, a cookie will be generated on the user’s computer that looks

similar as to that illustrated in Figure 3.8.

Cookies can also be used for nefarious purposes since malicious web

sites can upload malware masquerading as a cookie to a user’s computer

(Nolan et al., 2005).

Figure 3.8: Web Cookie File Content

3.2.4.3 Web Cookie Files Tools and Related Issues

There are a number of possible tools that can be used to parse and extract

information from cookie files. Attempts can be made to secure cookies and to

prevent tampering and exploitation by malware, usually by some form of

A generated cookie after

www.play.com was visited.

3.2 System Generated Artefacts 91

encryption (MacVittie, 2010). One example of a tool to parse information in a

cookie file and return the results in a field delimited format is the Galleta tool

developed by Jones (2003). Output from this tool, which is in field delimited

format, can be imported to a spreadsheet program so it can be sorted, searched

and filtered. This spreadsheet program can also format the data so that it is

appropriate for a report.

3.2.5 Recycle Bin As A System Generated Artefact

A copy of a deleted file is moved to the Recycle Bin directory when a user

deletes a file through Windows Explorer. Although the deletion date and time

of a file is not stored in the folder entry, the date and time of deletion is stored

in the file. The exact file location again depends on the version of Windows

installed on the system.

3.2.5.1 Recycle Bin Features

When a user deletes a file, it is moved to the Recycle Bin. All the original

information about the file is stored in a hidden index file, called INFO/INFO2

that is located in the Recycled folder. The process is: (1) deletion of the file’s

folder entry in the folder in which the file resides; (2) the creation of a new

folder entry for the file in the Recycle Bin; and (3) the addition of information

about a file in a hidden system file named INFO/INFO2. INFO is the file for

the Windows 95, 98, and ME while INFO2 is the file for the Windows

NT, 2000, and XP. The Recycle Bin is a hidden system folder and this

Recycle Bin directory location is dependent on the version of Windows running

on the local machine as shown in Table 3.15.

3.2 System Generated Artefacts 92

Table 3.15: Recycle Bin File Location

 File Name Windows Version Location

INFO Windows 95/98/ME %SystemRoot%\Recycled\INFO

INFO2 Windows

NT/2000/XP

%SystemRoot%\Recycler\<USER

SID>\ INFO2

$R<randomfilename>.

<originalfileextension>

$I<randomfilename>.

<originalfileextension>

Windows Vista
%SystemRoot%\$Recycle.Bin\

<USER SID>\

When a user sends a file to the Recycle Bin, Windows records the date and

time of deletion and other information, such as the file’s location prior to being

sent to the Recycle Bin, its index number in the Recycle Bin, and the new

filename in the Recycle Bin in the INFO/INFO2 file. Only files deleted by the

user and not files deleted by the operating system are in the INFO/INFO2 file.

Therefore, the INFO/INFO2 file record indicates that a user knowingly deleted

the file. Table 3.16 shows the structure within the INFO2 file.

Table 3.16: The Structure Within the INFO2 File (Jones, 2003)

Offset (bytes) Size (bytes) Description

0xC 4 Recycle Record Size

Start of Record+0x04 Variable Recycle File Name (Null terminated)

Start of Record+0x108 4 Recycle Record Unique ID

Start of Record+0x10C 4 Drive Number for Recycled File

Start of Record+0x110 8 Deletion Date and Time

Start of Record+0x118 4 Deleted Physical File Size

3.2 System Generated Artefacts 93

3.2.5.2 Evidentiary Value of the Recycle Bin

In order for Windows to restore the file from the recycle bin, certain

information must be stored in records so that the original information in the

file may be restored. In the case where a digital investigator wishes to

determine if a file has been used by an attacker and discarded, the recycle bin

is the starting point to recover the file. Examining the recycle bin can

determine when a user deleted a particular file, the sequence of deletion and

other important file metadata.

The Recycle Bin INFO/INFO2 file records metadata pertaining to a

particular file, such as the date of deletion and the original path, and may be

useful in confirming or refuting computer users’ explanations regarding the

presence or history of computer files recovered from their drives.

3.2.5.3 Recycle Bin Tools and Related Issues

There are a number of possible tools that can be used to restore the files that

have been deleted and stored in the Recycle Bin. In many cases, this data is

not entirely over written and by using tools such as ProDiscover (2003);

EnCase (2005); FTK (2009); and PC Inspector by Convar Deutschland GMBH

(www.convar.de), the files can be restored. When a file is deleted and stored in

the Recycle Bin, it has not physically moved to the Recycle Bin. The file

remains in the original location, but its directory entry has been moved and

placed in the hidden folder called Recycled and the deleted file renamed. When

a Recycle Bin is used to recover the files, the original path is read from the

INFO/INFO2 file, the file renamed and its directory entry restored. This makes

recovery from the Recycle Bin possible (Whitehead, 2010).

3.2 System Generated Artefacts 94

3.2.6 Internet Explorer Activity Files As System

Generated Artefacts

Internet Explorer is a free web browser from Microsoft. A web browser is a

software application used to locate and display web pages. The normal data of

Internet Explorer browser includes Cookie records, History records and Cache

records. These records are saved in files (index.dat) in different directories.

Internet Explorer caches websites that a user visits. It stores cached files in

the C:\Windows\Temporary Internet file folder. Internet Explorer uses file

named index.dat for this purpose in the newer version of Internet Explorer,

starting with Internet Explorer 4 and so on. The records in the index.dat file

contain the Uniform Resource Locator (URL), the date that the page was last

modified by the server, and the date that the URL was last accessed by the

user.

3.2.6.1 Internet Explorer Activity Files Features

The index.dat is a file hidden from computer users that contains every URL

and every web page that users have ever visited. The index.dat file in Table

3.17 lists additional areas of the file system where index.dat files can be

located. The large scale structure of an index.dat file is the header followed by

an array of fixed sized blocks (Chappell, 2010). The index.dat file contains a

header that gives important information about the file’s properties such as the

file length, the HASH table offset and the Internet cache directory names. This

is shown in Table 3.18.

3.2 System Generated Artefacts 95

Table 3.17: index.dat File Location

 File Name Windows Version Location

index.dat

Windows

95/98/ME

%SystemRoot%\Windows\ Temporary

Internet Files\ Content.IE5\

Windows NT

%SystemRoot%\Winnt\Profiles\<user

name>\Local Settings\Temporary

Internet Files\Content.IE5\

%SystemRoot%\Winnt\Profiles\

<username>\ Cookies\

%SystemRoot%\Winnt\Profiles\

<username>\ Local Settings\History

\History.IE5\

Windows

2000/XP

%SystemRoot%\Document and

Settings\ <username>\Local

Settings\Temporary Internet Files\

Content.IE5\

%SystemRoot%\Document and

Settings\ <username>\ Cookies\

%SystemRoot%\Document and

Settings\ <username>\Local Settings

\History\History.IE5\

Windows Vista

%SystemRoot%\Users\<username>\

AppData\Local\Microsoft\Windows\

History\ History.IE5\

%SystemRoot%\Users\<username>\

AppData\Local\Microsoft\Windows\

History\Low\ History.IE5\

The HASH table is an array of data that contains entries pointing to the

relevant activity data within the index.dat file (Kale, 2007). The HASH table is

the “master lookup table” to find valid activity records within the index.dat

file. If an index.dat file is large enough, it can have multiple HASH tables which

contain a pointer to the next HASH table (Metz, 2009). Each HASH table

contains the HASH table length, the pointer to the next HASH table, the activity

record flags, and the activity record pointers as in Table 3.19.

3.2 System Generated Artefacts 96

Table 3.18: Fields in the index.dat File Header (Thomas, 2003)

Field Name
Offset

(bytes)

Size

(bytes)
Description

File Length 0x1C 4
This field contains the length of the index.dat file, in

0x80 byte sized records.

HASH Table

Offset
0x20 4

This field contains the offset (in bytes) for the

beginning of the HASH table.

Cache

Directories
0x50 12

This field contains the directories where files are

stored that make up the content of the cache. Each

directory is 12 bytes long, although only the first 8

bytes are relevant.

Table 3.19: Fields in the HASH Table of index.dat File (Thomas, 2003)

Field Name

Offset from the

beginning of the

HASH Table

Size

(bytes)
Description

HASH Table

Length
4 4

This field contains the length of the HASH

Table, in 0x80 byte blocks

Next HASH

Table
8 4

This field contains the offset (in bytes for the

beginning of the file) where the next HASH

Table can be located. If the value is zero, this

is the last HASH Table in the index.dat file.

Activity

Record Flags

16 + 8*n;

where n =

0,1,2,3…

4

This 4 byte field contains the flags for the

activity record. If the first byte equals 01, the

following field does not represent a valid

activity record pointer.

Activity

Record

Pointers

20 + 8*n;

where n =

0,1,2,3…

4
This is an activity record offset, in bytes,

from the beginning of the file.

The activity records contain the main information to be recovered from

the index.dat file. The activity records contain important data fields such as

type of activities, length of the activity record, and the data field that is

dependent on the type of activity record. REDR, URL and LEAK represent

types of activity for the activity records (Mil Incorporated, 2010).

REDR stands for redirection and REDR records are very simple records.

The REDR activity record is a statement that the subject’s browser was

3.2 System Generated Artefacts 97

redirected to another site, there is only simple Internet Web sites data

(Thomas, 2003). Table 3.20 shows relevant fields in the REDR activity record.

Table 3.20: Relevant Fields in the REDR Activity Record (Thomas, 2003)

Field

Number
Field Name

Offset (in bytes)

from the beginning

of the HASH Table

Size

(bytes)
Description

1 Record Type 0x00 4
This is the field that

contains the “REDR” string.

2 Record Length 0x04 4

This is the field that

contains the number of

0x80 byte sized blocks that

make up the REDR record.

3 URL 0x10 variable
This is the URL, terminated

by a NULL (0x00) character.

The URL activity record is a set of data that represents the website a

user has visited. A URL activity record contains the record length, the last

access and modified times for the activity, the URL offset and data within the

record, the filename offset and data within the record, the cache directory

number, and the http header offset and data. The LEAK record is generated

when an error occurs during the deletion of a URL cache entry (Murr, 2009).

The LEAK activity record has exactly the same internal structure as the URL

activity record.

In both URL and LEAK types, each record contains an abundance of

information, such as record type; record length; last modified time; last access

time; the user name; Internet web sites; and cache file path information

(Haiping et al., 2009). The fields in the URL and LEAK activity record are

summarised in Table 3.21.

3.2 System Generated Artefacts 98

Table 3.21: Fields in the URL and LEAK Activity Record (Haiping et al., 2009)

Field Name Offset (in bytes) from the

beginning of the URL or

LEAK activity

Size

(bytes)

Description

(version 5) (version 4)

Record Type 0x00 0x00 4 This is the field that contains the

string “URL” or “LEAK”.

Record

Length

0x04 0x04 4 This is the number of 0x80 (128) byte

blocks that the URL or LEAK record

contains.

Last Modified

Time Stamp

0x08 0x08 8 This is the last modified time stamp, in

FILETIME format.

Last Accessed

Time Stamp

0x10 0x10 8 This is the last accessed time stamp, in

FILETIME format.

URL or LEAK

Offset

0x34 0x38 4 This is the URL or LEAK offset, from

the beginning of the record.

Filename

Offset

0x3C 0x40 4 This is the filename offset, from the

beginning of the record.

Local Cache

Directory

Index

0x38 0x3C 1 This is the index (starting with zero) of

the local directories containing the

cache files.

HTTP Header

 Offset

0x44 0x48 4 This is the offset, from the beginning

of the record, where the HTTP

Headers are located.

3.2.6.2 Evidentiary Value of Internet Explorer Activity

Files

One of the potential sources of information that helps to determine the intent

of a computer user is to review the Web sites that the individual has visited.

Internet Explorer (IE) caches URLs that a user visits in the browser history

files and in binary form. When IE is used to browse the web, it keeps a history

of its activity that the investigator can use to develop an understanding of the

user’s activity as well as obtain evidence (Carvey, 2007).

When a user visits any Web site, Internet Explorer first checks to see if

it has already stored a local copy of that Web site in the Temporary Internet

Folders on the hard drive. If a local copy exists, Internet Explorer uses the

3.3 Digital Forensic Tools and Techniques 99

local cached file rather than downloads a fresh copy of the information from

the Internet. It also assigns each cached file with an alphanumeric name, and

maps the new filenames to the actual filenames in system files. The index.dat

file is used to map the cached alphanumeric names to the actual URLs.

3.2.6.2 Internet Explorer Activity Files Tools and Related

Issues

The Internet browser history of a live system can be parsed using the

WebHistorian tool (Mandiant, 2006) and the ProDiscover tool (2003) can be

used for an image. These tools consolidate the browser history information into

an easy to view and understand format. Index Dat Spy (Gould, 2004) and

Index.dat Analyser (Systenance, 2006) can also be used to view the index.dat

contents. Also available is a free viewer, namely Free Internet Window

Washer (2010). It works by choosing ‘View History’ to view the physical

index.dat file. A tool to parse information in an index.dat file and return the

results in delimited text is called Pasco. It was developed by Jones (2003).

Pasco can be run in two different modes: standard methodology and undelete

mode. The difference is that the undelete mode ignores the information in the

HASH table and reconstructs any valid activity records. The output of this tool

will be sent to the standard out (console) by default and can also be imported

to a spreadsheet program of choice so it can be sorted, searched and filtered.

By importing the output to a spreadsheet program, further analysis of the

index.dat is possible and more visualisation techniques can be applied to this

data.

3.3 Digital Forensic Tools and Techniques

Digital forensics includes tools as well as techniques that assist in the digital

investigation process. Numerous digital forensic tools may be used by digital

investigators to search, examine and analyse digital evidence. The

3.3 Digital Forensic Tools and Techniques 100

identification and analysis of digital evidence poses unique challenges to

digital investigators. A computer system may contain thousands of files any

number of which can contain pieces of digital evidence. Each piece of digital

evidence may be analysed to identify ownership, location and timing. A

number of computer forensic tools are available today that provide a necessary

framework for data acquisition and analysis. Britz (2004) categorised these

tools into five groups: boot disks, data duplication, verification and

preservation tools, data recovery tools; and data analysis tools.

Svensson (2005) used level of operation to group these tools into five

categories:

- Bootable Environments Tools: Software that you can use to boot a suspect

system into a trusted state.

- Data Acquisition Tools: Tools used to collect data from a suspect’s system.

- Media Management Analysis Tools: Tools used to examine the data

structures that organise media, such as partition tables and disk labels.

- File System Analysis Tools: Tools used to examine file systems and disk

images to recover and view the content of files and folders.

- Application Analysis Tools: Tools used to analyse the file content, for

example, viewing log files, images etc.

A tool is used during the acquisition phase to copy data from the

suspect hard disk to a trusted device or file. This tool must also preserve the

suspect storage device data. In the analysis phase, tools are used to examine

acquired data in order to identify pieces of evidence that support or refute

hypothesis regarding any incident. In the presentation phase, data from the

analysis phase is arranged into a useful format; furthermore, conclusions and

corresponding evidence from the investigation are presented. In the forensic

process when facing digital investigation tasks, tools are used to look deeper

into the data and the analysis is the sum of data applied towards the

resolution of the incident (Reyes et al., 2007), therefore these tools among

3.3 Digital Forensic Tools and Techniques 101

others should have the functionality of recovering and viewing the content of

files.

Table 3.22: Category of Tools by Britz (2004) and Svensson (2005) Studied

Categories of Tool

Britz

(2004)

Bootable

environments

tool

Data

acquisition

tool

Media

management

analysis tool

File

system

analysis

tool

Application

analysis tool

Svensson

(2005)

Boot disk

Tool

Data

duplication

tool

Verification

and

preservation

tool

Data

recovery

tool

Data analysis

tool

- Indexing

- Text searching

- Viewers

- Time/data

verifiers

- File managers

Once all the data considered pertinent to the investigation has been

preserved, data analysis should be conducted by examining the contents of the

files and analysing slack/free space. According to Britz (2004), data analysis

tools may be grouped in five general categories: indexing, text searching,

viewers, time/data verifiers, and file managers regardless of approach.

Existing tools such as the Microsoft tools supplied as part of the

operating system, such as Event Viewer and Registry Editor and others tools

explained in Sections 3.2.1 through 3.2.6 that can be used for examination of

each of the suggested system generated artefacts. Table 3.22 shows categories

of tool by Britz (2004) and Svensson (2005) that are available for analysis of

the system generated artefacts of the Windows. This thesis will follow the

process suggested by Svensson (2005) and describe tools in the data analysis

category.

3.3 Digital Forensic Tools and Techniques 102

The next sections provide an examination of commercialised forensic

tools and open source forensic tools to provide an insight into what they can

offer an investigator. These are specialist tools that are forensically sound that

can be used to analyse these generated system artefacts. For example, EnCase

and FTK both include facilities to process and examine the Registry. In FTK

the Registry Viewer provides the investigator with an expedient and efficient

means to view the Windows. The following section reviews tools in term of how

they deal with the information stored in Windows system generated artefacts.

3.3.1 Commercial Forensic Tools

A number of commercial vendors provide tools that can be used in computer

and electronic investigations and examinations. Among others services

included in these tools are: data recovery, indexing/searching and graphical

display of results, hashing calculations, and administrative uses. Many

commercial products provide online resources that make their use more

acceptable in a court of law (Solomon et al., 2005).

3.3.1.1 EnCase

EnCase available from Guidance Software (2005), provides investigators with

tools to authenticate, search and recover computer evidence. That is boot disk

tools, data duplication tools, verification and preservation tools, data recovery

tools; and data analysis tools. EnCase allows investigators to manage

computer evidence, to view relevant files including deleted files, file slack, and

unallocated space. This is done by decoding and mounting these files so they

are displayed in a logical or hierarchical format (Bunting and Wei, 2006).

There are EnCase solutions for acquiring Windows, DOS and Linux.

 Guidance Software originally developed EnCase Forensic Edition

software, a stand-alone software for acquiring and examining static forensic

3.3 Digital Forensic Tools and Techniques 103

images. A further development was EnCase Enterprise, which adopted a

server/client model for the business environment. A client side tool would run

on the target host so that it could communicate with the forensic examination

host over a network connection. This is to avoid changes to the target system if

placing the code on the target host and running it (Anson and Bunting, 2007).

 EnCase Enterprise Edition also supports volatile data support. This

feature takes a snapshot of Random Access Memory (RAM), the Windows

Registry, open ports, and running applications. It provides potentially valuable

information that is lost when a machine is shut down (Solomon et al., 2005).

According to Bunting and Wei (2006), “Encase is a fully integrated

Windows based computer forensic software application that provides

investigators with means of analysing all electronic data contained on

computer drives for forensic evidence purposes”. EnCase allows an investigator

to deal with the information stored in Windows artefacts through its following

features: read multiple file system format (FAT, NTFS, ext2, ext3, ReiserFS,

UFS and JFS); read multiple disk image formats (Raw (dd), VMware, EnCase

(.E01) and Safeback); acquire disk images from networked computers; create

hash value for files in the case; disk browsing; keyword searching; an

integrated viewer allows viewing of many file formats; indexes zip files for

analysis of compressed files/folders; and EnScript programming language

which automates almost any functionality with complete control over the

details.

EnCase uses CookieView as a viewer to examine the cookie folder.

CookieView is written by Craig Wilson and when it is installed as a viewer, a

right-click on a cookie in EnCase and use the Send To feature will pass the

cookie file to CookieView, which will open externally and decode the values in

the cookie (Bunting and Wei, 2006).

EnCase can be used to examine the user root folders. However, it does

not pull out vital information that the investigator should know, such as what

operating system is installed. The folder name that contains the Windows

system

3.3 Digital Forensic Tools and Techniques 104

files varies with Windows system versions. The investigator still needs prior

knowledge of the system artefacts in order to pull out information crucial to an

investigation.

Searching features in EnCase are more powerful than those of Sleuth

Kit and FTK, but require training to use their full capabilities (Manson et al.,

2007). EnCase needs to be customised when using string conditions, EnScript

commands, and GREP commands.

3.3.1.2 Forensic ToolKit

The Forensic Toolkit (FTK) by Access Data (2009) is available to the forensic

investigator to acquire, decrypt, analyse and report on digital evidence. When

an investigator uses the FTK, it allows the system artefacts to be loaded from

the image file and this is done through its following features: read file system

format (FAT, NTFS, ext2, ext3); read multiple disk image formats (Raw (dd),

EnCase (.E01), SMART, Snapback and Safeback); email clients analysis;

search feature using keywords; analysis of compressed files/folders by using

indexes of zip files; and create hash values for any file in the case.

The FTK has Known File Filter (KFF) feature with multiple different

pre-programmed filters for evidence viewing which aids the investigator in

focusing on items of interest. For example, an internal viewer allows the

investigator to view Microsoft documents (Word, PowerPoint, and Excel);

various image files; internal email viewer allows investigator to navigate email

from various email storage formats; registry viewing; and password recovery.

Viewer for the registry and password recovery come from other company

products.

FTK reads various image formats: EnCase, SMART, SnapBack,

SafeBack and Linux dd and generates CRC or MD5 hash values (Solomon et

3.3 Digital Forensic Tools and Techniques 105

al., 2005). It provides a number of filtering options, including file slack, file

system slack, and unallocated space. This can be done through the File Filter

Manager of the FTK that enables the user to select which types of files to

include (Casey and Larson, 2004). According to Manson et al. (2007), “the FTK

is identified by certain characteristics: substantially less time commitment to

training is required to use the program; intuitive GUI design for speedy

analysis; lengthy importing process restricts time for analysing of contents of

the image; and less customisable compared to EnCase and Sleuth Kit and

Autopsy”.

EnCase and FTK are promoted to withstand scrutiny in a court of law,

and hence these are widely acceptable and used by law enforcement and

government bodies.

3.3.2 Open Source Forensic Tools

This thesis is concerned with developing an open architecture for the forensic

analysis of system artefacts. For this reason an appraisal of open source tools

will provide a review of the currently available capability of this type of tool.

The development of open source tools usually results from an idea to improve

on something that already exists or to create something totally new. If the tool

is adopted by a significant body of users / developers then it can rival some of

the commercial tools. Open source tools provide alternatives to commercial

Windows-based forensic tools as they are released under a public licence and

can be downloaded from various Internet software development sites

(Kavanagh, 2004; POST, 2005; OSI, 2010). One example, ExifTool by Harvey

(2004) is free and platform independent software used for reading image

metadata, writing and manipulating images. It is both a Perl library and

command-line application. Since these types of tool are offered free of charge,

this enables them to spread even farther and attract even more developers and

the cycle continues (Howlett, 2004).

3.3 Digital Forensic Tools and Techniques 106

Open source tools cost very much less compared to commercial tools.

The acquisition costs for open source tool is based on time and network

thoughput spent downloading the software including cost for burning CDs for

the acquired software. Therefore, investigators using open source tools can

perform their acquisition and analysis at a very low cost. However, the support

for open source tools can be limited where public community support for

troubleshooting exists but not professional support (Manson et al., 2007).

According to Carrier (2002), “open source tools document the procedures they

use by providing the source code, thus allowing the community to accept or

reject them. Having access to a tool’s source code will improve the quality of the

testing process because bugs can be identified through a code review and by

designing tests based on the design and flow of the software” (Carrier, 2002).

Open source tools are not so easy to learn to use in a short time unless,

the user has had previous experience with Linux, and users familiar only with

Windows operating system were definitely find them hard to use. Open source

allows validation of the source code. Sleuth Kit and Autopsy are both open

source tools, promoted as aiding in forensic investigation. Both tools can

examine system generated artefacts. Autopsy is able to find web cookies and

URLs in the Registry by extracting the SAM file from the Registry, and then

Registry Viewer is used to see the web cookies (Manson et al., 2007). According

to Manson et al. (2007), “Open source tools are a very good verification of

evidence found using other products and should be included in the academic

environment”.

3.3.2.1 Sleuth Kit and Autopsy

The Sleuth Kit and Autopsy Forensic Browser (Autopsy) are both open source

tools and run on the Unix and Mac OS X platform (TSK, 2003). Built on The

Coroner’s Toolkit (TCT, 1999), The Sleuth Kit contains command line system

tools and volume system forensic analysis tools (Solomon et al., 2005). These

tools do not rely on the operating system to process the file systems and

3.4 Problems Facing System Generated Artefacts Analysis 107

therefore deleted and hidden content is shown (Manson et al., 2007). With the

volume system tools, partitions are located and extracted and then analysed

with the file system analysis tools.

Autopsy is a forensic browser with a graphical interface to the Sleuth

Kit. Autopsy is HTML based and shows details about deleted data and the file

system structures. Both Sleuth Kit and Autopsy are run in dead analysis and

live analysis mode (Solomon et al., 2005). Evidence search techniques used in

these two tools are: file listing, file content, hash databases, file type sorting,

timeline of file activity, keyword search, metadata analysis, unit data analysis,

and image details (Carrier, 2010). However they do have some drawbacks as

noted by Kleber and Galvao (2006), “we identified two negative factors with

regard to efficiency: the investigated partition type is limited; and the web

interface is not user friendly. These should be considered when adopting them

as a main solution for uncovering erased data system audits”.

Many investigators tend to steer clear from open source software tools,

as they are seldom fully supported by their developers, therefore if any

problems are faced during an investigation, the investigator may not have the

expertise to solve problems posed by the software. However, full commercial

licence controlled tools may also face these problems, as often available

support is limited.

3.4 Problems Facing System Generated Artefacts

Analysis

According to Fry (2007), “in analysing data, the goals are to highlight its

features in order of importance, reveal patterns, and simultaneously show

features that exist across multiple dimensions”. For example, ‘customer’, ‘date’

and ‘product’ are all fields that can be applied meaningfully to a sales receipt.

Achieving the goals involves a large quantity of data and the representative

nature of the data makes it extremely difficult to gain a comprehensive

understanding of its meaning. Each of the system generated artefacts

3.4 Problems Facing System Generated Artefacts Analysis 108

illustrated and described in the above sections (Sections 3.2.1 through 3.2.6)

have these data issues that need to be overcome to be effectively processed and

successful forensic investigations.

The collection of tools available to the investigator continues to expand

and developers update the tools regularly to enable them to work with the

latest technologies. Furthermore, some tools provide a reporting functionality

which allows computer forensic examiners to generate reports regarding

digital evidence items found, but some tools do not offer a reporting facility. It

is the task of the examiner to judge that tools are appropriate for an

investigation, and ideally to provide an effective investigation using tools to

cross validate the findings rather than highlight differences. Table 3.23

summarises the various key functions present, partially present or, in some

cases not present in the tools examined.

So far, the architecture studied in the previous sections does not

indicate how data extracted from the system will be interpreted and presented

to the investigator. Teerlink and Erbacher (2006); Vlastos and Patel (2007);

and Read et al. (2009) have been using visualisation techniques to display

information about computer data which can help forensic specialists direct

their searches to suspicious files. Such techniques will also prove useful if

implemented into forensic tools, allowing the investigator to view data easily,

and may result in investigations being performed more time efficiently.

3.4 Problems Facing System Generated Artefacts Analysis 109

Table 3.23: Comparison of Various Functionalities Provided by the
Commercial and Open Source Tools Studied

 Function EnCase FTK SleuthKit and

Autopsy

1. Read only mode √ √ √

2. Uses Hash Value for individual file √ √ √

3. Easy navigation √ √ √

4. Search facility √ √ √

5. Includes Hex level viewer √ √ √

6. Shows file modified / accessed / created time √ √ √

7. Prior knowledge of system artefact required √ √ √

8. Locate system artefact files automatically * *

9. Visual representation of data

10. Reporting facility √ √

√ - denotes the presence of the functionality

* - denotes partial support of some system artefacts, example: Registry

Table 3.23 extends work by Manson et al. (2007) that shows the main

issues regarding the tools available for analysis of the system generated

artefacts of the Windows. These tools provide reasonable functionality to the

user, but there are a number of areas in need of improvement. Researching the

Windows system generated artefacts using the tools available revealed that, in

particular, there is a lack of tools for the investigator that can easily extract

the information, and present it in a readable form.

Many artefacts are compound in nature. They can be flat files that

contain objects (Swap files), they may be flat files that have a hierarchical

structure (Registry hive files and Event log files), they may be files that are

plain text (web cookie files), or they may be files that are binary (Swap files,

Registry hive files and Event log files). This can be further complicated by the

format of the data within the files. Unfortunately, the internal structures of

3.4 Problems Facing System Generated Artefacts Analysis 110

some of the Windows system artefacts are not well known. Only when there is

a firm grasp of how data is stored, searching for the data can be performed.

Since there is ASCII, binary, hexadecimal encoding and various file formats

including extended log file format in specific artefacts, the information

contained therein requires deeper analysis.

According to Carrier (2003), “there are two problem types in analysing

acquired data: the issue of data complexity and problem of the quantity of data.

The complexity problem arises due to the fact that acquired data is typically in

the lowest and most raw format, which is often too difficult for human

interpretation. To solve the complexity problem, tools are used to translate data

through one or more layers of abstraction until it is understood. The quantity

problem arises from the fact that the amount of data to analyse can be very

large. Data reduction techniques are used to solve this, by grouping data into

one larger event or by removing known data”.

Through understanding the internal construction of Windows system

generated artefacts, investigators will be able to locate them, search the data,

present the data, and deliver the information related to them. Investigators

will also gain the knowledge necessary to correlate the data among them when

they are suspected as avenues of digital evidence, as well as reporting or

communicating the results of forensic analysis clearly to decision-makers such

as members of a jury, or executives in a company. In short, investigators must

have this set of skills if they are going to effectively work with Windows

system generated artefacts.

With every new operating system and new version thereof, there are

requirements to uncover new system generated artefacts and other such

information that proves valuable to the forensic analysis process. For example,

in the case of Event logs in the Windows Vista system, besides the three main

3.5 Conclusion 111

categories of event log (Application, Security and System), there are a number

of other categories under which different events can be logged. They include

Internet Explorer Event Log and Hardware Event Log. Therefore tools and

techniques need to be developed that allow forensic analysts to extract

relevant and pertinent information from the Windows Event Logs on the Vista

system (Carvey, 2007).

The fact that users are not aware of the existence of system generated

artefacts leaves the latter open to exploitation. In the case of a system

compromise, for example, Microsoft’s Internet Information Server (IIS) web

server has a number of vulnerabilities that may allow an intruder access. One

of the ways to uncover attempts to compromise the IIS web server is to

examine the logs generated by the web server. The lack of interaction of the

user with these files means these system generated artefacts are an excellent

source for an investigator to determine what exactly the user has been doing

on the computer.

3.5 Conclusion

In this chapter, artefacts generated by the Windows operating system have

been introduced. The complex structures of each artefacts and their value as

sources of evidence to the investigator have been highlighted as it is the aim of

this thesis to develop a new architecture capable of integrating forensic data

from the known and not known internal data structure of the artefacts. The

decision has been taken to examine Event logs and Swap files as they are both

examples of this type of file. It is therefore proposed that the Event logs

(known data structure) and Swap files (not known data structure) be the focus

of the thesis and considered for the architecture.

3.5 Conclusion 112

 Free forensic tools, open source forensic tools and commercial forensic

tools that can be used to examine files related to system generated artefacts

have also been described. It has been shown that each tool has its own

particular strengths and weaknesses. Some tools provide adequate

functionality for the investigative purposes but the investigator needs to have

prior knowledge and understanding of the system generated artefacts. The

tools cannot support users who lack such knowledge and understanding and

hence such ones will be unable to find the data required.

It is this evident that there is potential for the development of a tool

that is capable of extracting information from Windows system generated

artefacts automatically and providing the results in a manner whereby the

investigator does not require prior knowledge of the internal structure of the

evidence at hand. Extracting crucial data without the investigators’ prior

knowledge of such internal structures will also speed up the analysis process

and allow investigators to include vital data in their reports. To aid the latter,

a reporting facility will be useful to investigators. Chapter 4 explores the

proposed architecture designed to address these issues.

113

CHAPTER 4

SYSTEM GENERATED ARTEFACTS
FORENSIC ANALYSIS SYSTEM
DESIGN

This chapter focuses on a System Generated Artefacts Forensic Analysis

(SAFTool) system design. A proposed architecture is introduced which deals

with the underlying internal data structure of Windows system generated

artefacts. The chapter also discusses the development of that architecture with

reference to the hypothesis of the thesis. The architecture requirements and

objectives are formalised from issues highlighted in the review of the state-of-

the-art tools described in Chapter 3.

4.1 Introduction

In Chapter 3, the number of traces left behind after the usage of the Windows

system was explained, highlighting their potential evidentiary value. Chapter

4.2 Existing Structure and Requirements of Digital Forensic Investigations 114

3 also reviewed the current tools available for a digital investigator to process

and analyse system generated artefacts. A number of areas where additional

functionality could expand the information available to the investigator or

increase the efficiency of the investigator were also indicated, the intention

being to demonstrate the need for an architecture design that will specifically

extract the system related information reviewed in Chapter 3.

Casey (2010) emphasises that investigators not only need to know how

to obtain data using forensic tools, but should also be able to analyse the

available data for useful characteristics and possible flaws. However, there are

concerns over users’ knowledge of the location of an artefact, their ability to

extract relevant information from the evidentiary sources and make use of

presentation techniques or visualisation of data. Although every forensic

analysis will have differing aspects based on the dataset, objectives, resources

and other factors, the underlying process remains fundamentally the same.

Furthermore, the requirements of any digital forensic investigation must also

be taken into consideration when designing the tool, so that the tool really is in

line with the needs of the investigator in analysing system artefacts.

4.2 Existing Structure and Requirements of

Digital Forensic Investigations

Chapter 3 highlighted the general process of a digital forensic investigation;

the stages of extracting data and information from computer storage media

and the need to assure their accuracy and reliability.

Whether serving customers, clients, prosecutors, or defendants, a

computer forensic investigator is required to use the best tools or practices for

the given task. According to Bryson and Stevens (2002), the basic

requirements for any digital forensic investigation are the collection and

preservation of evidence; formulation of leads; focused searches; temporal

analysis; and evidence recovery. Through the use of myriad tools or

techniques, and the basic requirements for any digital forensic investigation,

the core requirements, which are elaborated upon below can be met. The

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 115

objective of this thesis is to devise an architecture and tool to identify digital

evidence using scientifically derived and proven methods. According to

Marcella and Mendenez (2008), “scientifically derived and proven methods can

be used to facilitate or further the reconstruction of events in an investigation”.

4.3 Windows System Generated Artefacts Forensic

Analysis System Architecture

The architecture for the project is required to fully support the

hypothesis of finding a solution for the development of a flexible,

multiplatform and extensible architecture, which may be used for the analysis

and visualisation of Windows artefacts to improve the forensic process. The

statement of requirements for the architectures based on the issues and a

discussion of the failures of the current-state-of-art tools identified in Chapter

3 are as follows:

• The software to be designed is a program that can be used to

investigate/examine a system generated artefact. A system artefact holds

a collection of entries, each recording an artefact data structure.

• It must be possible to locate the artefact, access the artefact, extract data

from the artefact (locate data structure, extract fields of the data

structure, decode fields, interpret the fields of the data structure and

reconstruct the fields),

• It must be possible to examine new artefacts using the menu option, to

check the availability of a data store, to create a data store, to open a

data store containing an existing artefact’s data structure, and to close

an artefact’s data store.

• It must be possible to visualise the data of an artefact in an intuitive

format.

• Reporting facility to extract visual representation of the data.

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 116

Key features of the proposed architecture are as follows:

Flexible and Extensible

The architecture can be defined as flexible and extensible, as it is designed to

be used with various Windows system generated artefacts. The data store

must also be extensible to accept all sizes of data, and cater for different data

types, even without knowing the structure. Someone has to know the structure

to develop the database. So the system can be adapted by someone that does

know the structure for an investigator who may not know the detailed

structured. This includes Windows system generated artefacts that have

known internal data structures and not known internal data structures. A

modular approach is more appropriate to enable maintenance and improve

reliability in use, and to make it easier to upgrade as long as replacement code

adheres to the interface specification, then other parts of the code are not

affected.

Multiplatform

Multiplatform promotes the portability of the architecture. This means, the

use of a development programming language(s) that allows the system to be

run on different hardware with a different operating system.

 This architecture concentrates on the examination of the system

artefacts’ data structures and transforming the data into structured form,

thereby, helping the investigator by automating the time-consuming aspect of

low-level analysis of the system file format and related data complexity.

The proposed architecture is broken into four key stages, each stage

deals with a process of the architecture:

i. The first stage deals with the plugin for the analyser and visualiser

of the artefact to enable investigator to analyse and visualise data of

an artefact. This stage of the architecture develops various plugins

to analyse and visualise data in different artefacts and represent

this data using various techniques. The plugin can be developed

independently of the architecture and plugged into the architecture

at this stage.

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 117

ii. The second stage will be the analyser to identify and extract data in

each of the artefacts being processed. The analyser will need to be

easily reconfigurable to interpret the variety of artefacts. Before this

stage, the artefact to be processed is prepared. The artefact to be

processed comes in one of these formats: exported from imaged hard

drive using tools such as Mount Image Pro or FTK, acquired from a

Digital Evidence Bag container of digital evidence obtained from

disparate sources, or stored using the Advanced Forensics Format

(AFF) to indicate imaged disk storage and compressed data used to

store digital evidence. It Section 3.4, it was outlined that the current

state-of-the-art tools require the user to have a degree of prior

knowledge of the complex structure of the artefact they are

examining. If the user does not know the details of the complex

structure, areas of the structure may be omitted during analysis by

mistake, and vital data may not be found. Locating the complex

data structures automatically does not require the user to know the

exact location of information within the original files. The aim of

this stage is to extract all the data from any data structure and

parse the raw data ready for insertion into the database. Next, is to

invoke the database as a data store that enables data to be stored,

queried and retrieved. The database is used because the data needs

to be shared, updated, and enable rapid query and retrieval for

further analysis and scrutiny. This stage of architecture provides an

interface by which the user can insert and extract data to and from

the architecture. The database will have read-only privilege,

therefore, no data can be changed while being stored in the

database. The architecture will incorporate mechanisms to ensure

that no data in the original complex structure will change to ensure

that forensic integrity is maintained during the investigation. The

architecture will hash the files before entering the database, thus

allowing checks to ensure the data is not altered. Once the data is

processed (stage one), a data store must be available to store the

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 118

data. The data store must be available to store data in a manner to

enable rapid query and retrieval. The data store must also be

extensible to accept all sizes of data, even without knowing the

structure. It must be flexible to store all data processed from all

data structures (known and not known) with recursion and without

recursion. The rapid query and retrieval of data will support the

search functionality of the architecture, visualisation of the data,

and extraction of the data for reports or visualisation for future

analysis. All data retrieved from and inserted to the data store will

be in a standardised format to enable tools to operate independently

of changes to the database format.

iii. The third stage in the process is to transform the data into an easily

readable format. It is a mechanism whereby data is queried from

the database, data representation and further analysis. This is used

to structure the data into a narrative construct. It is proposed that

the architecture will present the data in the structure visually in

many formats. The method in which the data will allow for further

analysis and finally present the data in graphs, charts or

illustrations. This range of formats will allow the user to easily

identify valuable meaningful data in the investigation thus reducing

analysis time. This stage deals with visualising the data that is

retrieved in an intuitive format to enable investigators to extract

evidence. This stage of the architecture represents data using

various visualisation techniques and aids such as graphs, charts

and keyword searching function.

iv. The fourth stage, it is proposed that the architecture provides the

investigator with a reporting feature. This will allow the

investigator to tag various pieces of data; shows visual

representations of data; correlate various search results; add

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 119

various notes and other data related to the case; and compile all

information into meaningful reports.

The architecture was chosen based on the assignment of functionality to

stages/components of the architecture as it proved to be the most usable,

extensible, and did not complicate any structures further. These stages of the

architecture were established by breaking the end result into building steps.

Each step of the architecture can be developed independent of the next. Each

stage of the architecture must provide functionality to the rest of the

architecture. Each stage of the architecture is a step towards to the end result

and each were used during the development of the architecture.

The use of a file within a file system for keeping data and other possible

database designs are not used as this file is only appropriate for a simple

application and for storing data that does not need to be shared and updated

by many users; and other database designs tested did not include the use of

recursion and resulted in more fields being added to the database records. For

example, such records included use of identifiers, keeping note of the parent

child relationship found in the artefact complex structure (e.g. Registry).

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 120

The top level design of the Windows System Generated Artefacts

Forensic Analysis system architecture is shown in Figure 4.1.

Figure 4.1: High Level Description of Overall Architecture

The key features of the proposed architecture are therefore the

analyser, the database, and the visualisation subsystem. This design enables

the design and development of a subsystem independently of other

subsystems. The analyser component first reads in the evidence item and

extracts the data that exists in the original native format in complex structure.

This stage will extract all the data from the complex structure. The user

should not need prior knowledge of the structure. This performs the automated

analysis. Once processed, the data is sent to the database to allow for later

visualisation.

Part of the initial system configuration for processing a particular

artefact, in addition to providing the analyser with information on the

structure of the artefact, will be configuring the database. The database must

be available to store data and this data should be able to be rapidly retrieved

and queried. It must be extensible in terms of accepting data without any

knowledge of the structure and extraction of the data for display or report.

This database can be regarded as an interface between the two components to

Analyser – read in,

processed data and

put data into the

database

Visualiser –

interpreting data for

visualisation

Event

logs

Swap

files

Nth

system

artefact

Time

Line

2D

Nth

techniques

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 121

communicate in a common language that overcomes any specifics related to

the syntax and semantics of the data set.

The proposed design of the visualiser module is intended to support the

investigator in analysing, interpreting and understanding the data generated

from the analyser component and to output the data for the investigator to

explore in more detail. This visualiser provides the interface to the database,

to display the artefact data in selective views and thus focus on particular

aspects of the data or logical flow of interest to the investigator.

Design Justification

The development of a layered architecture for a system is proposed, dividing

the software into a number of subsystems. A subsystem typically groups

together elements of the system that share some common properties or

possibly some common functions (Rational Software Corporation, 2003). An

object oriented subsystem encapsulates a coherent set of responsibilities in

order to ensure that it has integrity and can be maintained. Furthermore

applying the concept of multiple subsystems produces smaller units of

development. If these have clearly defined roles and boundaries this can help

to maximise reuse at the component level. This also improves maintainability,

aids portability between platforms and can assist the software developers in

understanding the complexity of large software systems.

The development of multiple subsystems and smaller units of

development, enable the design and development of a subsystem

independently of other subsystems. It can also enable the extensibility of the

final application with additional subsystems being included where an interface

has been clearly specified and an overarching design permits the expansion of

the application to include new functionality. Dividing a system into

subsystems is an effective strategy for handling complexity and splitting a

system into subsystems helps to maximise reuse at the component levels, as

each subsystem may correspond to a component that is suitable for reuse in

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 122

other applications. An effective design in terms of the decomposition of the

application into subsystems can reduce the impact on the overall system of a

change to its requirements; therefore the use of subsystems can improve

maintainability. Moving an application from one implementation platform to

another platform can be much easier if the software architecture is

appropriate. For example, the conversion of a Windows application so that it

can run in a Unix environment requires changes to the software that

implements the human computer interface. If this is dealt with by specialised

subsystems then the overall software change is localised to these subsystems.

As a result, the system as a whole is easier to port to a different operating

environment.

It is proposed that the architecture for the Windows System Generated

Artefacts Forensic Analysis system have four layers: the presentation layer,

the application logic layer, the domain layer and the database layer, as

illustrated in Figure 4.2. The presentation layer will be responsible for the

differing user interface needs of different artefacts; the application logic layer

will be responsible for the control; the domain layer will be responsible for the

common functionality, or, to retrieve and store data; and the database layer

will be responsible for the data management in order to get data from a

database. The approach that has been adopted during the analysis activity of

use case realisation results in the identification of boundary, control and entity

classes. These boundary classes are mapped onto the presentation layer, the

control classes onto the application layer, and the entity classes on the domain

layer. Control classes reside on the user machine and manage the interaction

between users and the boundary classes and handle the interaction between

the business logic of the application and the entity classes and the associated

data management classes. A design based on the Broker pattern will be used

to handle this (see Section 5.3.4).

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 123

The idea of separating out user interface classes from the business and

application logic classes and from mechanisms for data storage is to keep the

behaviour of the interface separate from the behaviour of the classes that

provide the main functionality of the system. The database layer provides

access to a database. This four layer architecture separates responsibility for

the user interface, the application logic, the domain classes, and the database.

Each layer corresponds to one or more subsystems, which may be

differentiated from each other by differing levels of abstraction or by a

different focus of their functionality. For the Windows System Generated

Artefacts Forensic Analysis system, as illustrated in Figure 4.2, the Artefact

Database layer provides access to a database that contains all the details of

the artefacts, their names and data.

Figure 4.2: Four Layers Architecture Figure 4.3: Four Layers Architecture
Applied to Overall Applied to Windows System

 Architecture Artefacts Forensic Analysis System

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 124

The Artefact Domain layer uses the Artefact Database layer to retrieve

and store data in the database and provides common domain functionality for

the layers above, that is the Artefact Details subsystem in the Application

Logic layer. The Artefact Details subsystem uses some of the same common

domain functionality when detailing an artefact. Each application subsystem

has its own presentation layer to cater for the differing interface needs of the

different artefact types. In the presentation layer design, one of the aims is to

isolate the entity classes in the system from the way that they are presented

on screen and in reports and documents. By this means the reusability of the

classes can be maximised. With all the design justification mentioned in the

above section, the architecture in Figure 4.4 illustrates how the layer

architecture relates to the overall architecture in Figure 4.1.

Figure 4.4: Layer Architecture Relates to the Overall Architecture

USERS

DATA

SOURCES
 Database

Plugin

1

Plugin

2

Nth

Plugin
.....

D
O

M
A

IN

LA
Y
E
R

Data Access

Components

A
P

P
LI

C
A

T
IO

N

LO
G

IC

LA
Y
E
R

Business Entities

Business Components

P
R

E
SE

N
T
A

T
IO

N

LA
Y
E
R

 UI Components

Presentation Logic

Components

A

N

A

L

Y

S

E

R

V

I

S

U

A

L

I

S

E

R

A

N

D

Nth Artefact ...

Registry

Swap Files

Event Logs

4.3 Windows System Generated Artefacts Forensic Analysis System Architecture 125

Figure 4.5 below shows the architecture model based on different views

(the package view of the architecture) in order to reason out the proposed

system and the way it will operate from different perspectives.

Figure 4.5: Package Architecture Applied to the System

The architecture is required to fully support the hypothesis of finding

a solution for the development of a flexible and extensible architecture, open

source and prototype tool, which may used for the analysis and visualisation of

Windows system generated artefacts to improve the forensic process. The

different layers within the architecture reflect the processing of data that

takes place as it is extracted, stored, queried, and visualised.

In order to produce the explicit architecture, the non-functional

requirements, the context of the system and how it and its components are

used and may be further developed in the future are taken into consideration.

4.4 System Analysis 126

4.4 System Analysis

The analysis activities produce the model, and this model shows what parts

are in the system and how those parts are related to one another in the

system. The analysis model for the Windows System Generated Artefacts

Forensic Analysis system is illustrated in Figure 4.6. This model is used to

come out with the requirements and specification of what the proposed system

will do based on the requirements.

Figure 4.6: The System Analysis Model

4.5 Windows System Generated Artefacts Forensic Analysis (SAFTool) System

Requirements 127

4.5 Windows System Generated Artefacts Forensic

Analysis (SAFTool) System Requirements

The specific forensic analysis requirements need to be clearly understood when

analysing the requirements for the system design. The key requirements

highlighted in the previous Section 4.3, is the need for the system to analyse

and visualise data of Windows system artefacts. This may require some form

of data storage to enable the user to query and then visualise the data in an

intuitive format to enable users to extract evidence.

Using the previously stated evidentiary values, features and issues of

windows system artefacts tabled in Chapter 3, a list of requirements can be

generated. These requirements can be divided into functional requirements,

and non functional requirements (security requirements, software quality

requirements and other requirements). What a system does or is expected to

do is the system functional requirements, while non functional requirements

include security requirements, software quality requirements, and other

requirements later describe how well these non functional requirements

support the functional requirements.

Considering the focus of this project is data analysis, the software

development process begins with a statement of requirements, the process

then proceeds through analysis, overall design, detailed design and

implementation. La Bella (2004) suggested the purpose and value of data

analysis was being able to extract different types of data and then turn that

data into valuable information. A discussion of the weaknesses of the current

state of the art tools used to extract and analyse data was identified in

Chapter 3. These weaknesses and other considered issues regarding the

artefacts can be used as the requirements of the architecture.

4.5 Windows System Generated Artefacts Forensic Analysis (SAFTool) System

Requirements 128

4.5.1 Functional Requirements

At this stage, the functional requirements are set out to establish what the

system must do. The functional requirements include:

• Descriptions of the processing that the system will be required to carry

out.

- The Windows System Generated Artefacts Forensic Analysis system

automates (gets data into the system, controls of the system, and gets

data out of the system) the analysis of evidence items (system

generated artefacts). This automated system helps the investigator to

glean the content information (which is textual data resident in the

evidence item) of an evidence item rather than usage information

(which indicates how the evidence item or data on it was used) in a

forensic analysis investigation.

- The Windows System Generated Artefacts Forensic Analysis system

automates the analysis and visualises the system generated artefacts,

thereby relieving the investigator from the time consuming and

tedious aspect of low-level analysis. The Windows System Generated

Artefacts Forensic Analysis system is designed to facilitate the

analysis and visualisation of forensic data in various types of file

format and data complexity.

- The Windows System Generated Artefacts Forensic Analysis system

must be able to locate the internal structure of each artefact file for

analysis. Locating the internal structure automatically does not

require the user to know the exact location of information within the

native files.

- The Windows System Generated Artefacts Forensic Analysis system

must facilitate data extraction, data interpretation, and data

4.5 Windows System Generated Artefacts Forensic Analysis (SAFTool) System

Requirements 129

reconstruction from the internal structure of the artefact without the

user’s prior knowledge of the internal structure.

- Additional functionality should be added through plugins or modules,

as well as scripting capability via an extensive API.

• Details of the inputs into the system.

- The main function of the system is to analyse forensic evidence

(system generated artefacts) that are extracted from hard disk images.

- The system should be flexible by being able to analyse evidence items

collected from a number of platforms, and from many different

sources. The design shall be modular; it should be easy to extend to

support new kinds of targets and new types of analysing or processing

of data.

• Details of the outputs that are expected from the system.

- Presentation functionality and reporting functionality are required.

• Details of data that must be held in the system.

- The Windows System Generated Artefacts Forensic Analysis system

must store data in a forensically sound manner whereby no changes

can be made to the original data. Forensic integrity is maintained by

ensuring no data in the original internal structure of the system

generated artefacts will change.

- No data can be changed while being stored in the system.

In Chapter 3, a discussion of the limitations of the current state-of-the-

art tools were identified. These limitations can be used to inform the

requirements of the system, thus the system must satisfy these and in doing

so, demonstrate an advance on the currently available software tools. Further,

the non-functional requirements are also formulated. These non-functional

requirements are concerned with the how well the system performs rather

than what it does.

4.5 Windows System Generated Artefacts Forensic Analysis (SAFTool) System

Requirements 130

4.5.2 Security Requirements

Data confidentiality:

The data within the evidence item is considered sensitive in nature, where an

attacker can gain access, through accessing the database. Possible methods

shall be considered to protect data within the evidence item from being

disclosed to unintended parties.

Data integrity:

No data in the original complex structure of the evidential artefact will

change.

4.5.3 Software Quality Requirements

Verifiability: The system should support the established, standard

procedures for handling digital evidence as outlined in Section

2.3 in Chapter 2.

Scalability: The architecture should also be scalable. It should be possible

to add visualisation techniques capability to additional

evidence items as the need arises. As discussed in Chapter 3,

with every new operating system and new version thereof,

there are requirements for uncovering new artefacts and

other such information that proves valuable to the forensic

analysis process.

Usability-1: The system must be easy to use by non-expert users

(simplicity).

Usability-2: The system must be easy to use by using keyboard and mouse

to control the system.

Accuracy: Accuracy of the generated information output from the

analysed files and shown using a textual visualisation

4.5 Windows System Generated Artefacts Forensic Analysis (SAFTool) System

Requirements 131

technique is paramount. As this is a key requirement of

forensics tools as outlined in the discussion in Section 2.6 in

Chapter 2, the analysis phase of the digital forensic phase is

the point at which the data is explored in more detail and

where the data is drawn together and the analysis is the sum

of all data applied towards the resolution of the incident.

Reliability: The system must be reliable, that is no major break on

underlying core functionality, which is the resistance to

failure of the system.

Extensibility-1: The system must be extensible. It should be easy to add

support for new types of data sources for analysis. As this is a

key requirement of forensics tools as outlined in the

discussion in Section 2.6 in Chapter 2, this is critical since

new versions of operating systems and applications are

continually developed and the system has to be able to plug in

these new sources with as little work as possible.

Extensibility-2: Additional functionality can be added through plugins or

modules, as well as scripting capability via an extensive and

usable API. As integration with other products, allowing the

architecture to be used freely with other product.

4.5.4 Other Requirements

OR- 1: The system must allow dynamic reconfiguration. This making the

plug and play features possible which increased the system flexibility

as it is designed to be used with various Windows system generated

artefacts.

4.5 Windows System Generated Artefacts Forensic Analysis (SAFTool) System

Requirements 132

OR-2: The architecture and implementation should be independent of

underlying software as possible.

OR-3: Authentication software is used to prove that the evidence has not

been changed. Algorithms like MD5 or SHA-1 are required.

OR-4: There are many document formats and it can become very tedious to

try and find the correct program to read the file. So, a document

examiner that will read many different file formats should be used.

OR-5: The tool must be designed in such a way that it provides a form of

integrity assurance or record when its utilities are executed, such as it

provides an audit record about timestamp or actions taken, or results

return from running those utilities. This requirement needs to be

addressed, as this is compliant with the best practice requirements for

forensics tools as discussed in Chapter 2.

Comparison of the architecture with current state-of-the-art methods

shall prove the superiority of the architecture over the available solutions. It is

possible to evaluate the outcome of the architecture by:

- Compiling a list of objectives for the architecture and those that will be

addressed in the prototype tool.

- Ensure that the architecture satisfies all the objectives outlined. Prove

that no such approach is available to date that satisfies the list of

objectives to date, therefore, clear proof of contribution of science.

- Perform comparison of the prototype tool against the outlined tools.

4.6 Windows System Generated Artefacts Forensic Analysis System Design 133

4.6 Windows System Generated Artefacts Forensic

Analysis System Design

According to (Bennett et al., 2006), “design is about producing a solution that

meets the requirements that have been analysed and the design activity is

concerned with specifying how the new system will meet the requirements;

system design is concerned with the overall architecture of the system and

setting of standards; and design is about translating every aspect of the

analysis model into a design model that will effectively implement the

requirements”.

According to Zhu (2005), an effective system design is:

Well structured: The design should be consistent with chosen design

principles. This is to organise the structure of the design.

Simple: The design should be as simple as possible.

Adequate: The design should meet the stated requirements.

Efficient: The functions provided by the design should be computable by

using the available resources.

Flexible: The design should be able to accommodate likely changes in the

requirements if there are requirement changes.

Practical: Each module in the design should provide the required facilities,

neither more nor less.

Implementable: The functions offered by the design should be theoretically

computable with the information available and achievable using currently

available software and hardware technology.

Standardised: The design should be represented using standard or well-

defined and familiar notation for any documentation.

The system design should provide a solution to the problems outlined in

the previous chapter. The architecture design should give an insight into the

high-level design of modular components and how they interact, thus

4.6 Windows System Generated Artefacts Forensic Analysis System Design 134

providing a foundation to build the solution to solve the problems outlined.

Further, the design of the system should addresses the requirements outlined

in the previous section of this chapter.

The functional requirements for the system are documented in the use

case (see Appendix C). The system is structured as an assembly of interacting

objects. This use case captures an element of functionality of the system,

whereas requirements that apply to the whole system are captured in a list of

requirements. Each use case is a different way to use the system and the

completion of each use case produces a different result accordingly.

The initial documenting of the use cases suggests that the following will

be part of the system as shown in Figure 4.7 below:

• Artefact (entity object): representing the current artefact which the

software program is working with.

• Artefacts (entity object): representing one of the artefacts that is in the

current artefact where there is an arbitrary number of entity objects.

• ArtefactGUI (boundary object): representing the interface between the

artefact system and the user.

• ArtefactDbaseSystem (boundary object): representing the interface

between the artefact system and the database system.

• ArtefactController (controller object): carries out the use cases that user’s

choice of action.

4.6 Windows System Generated Artefacts Forensic Analysis System Design 135

Figure 4.7: Collaboration for the Windows System Generated
 Artefacts Forensic Analysis System

The various use cases work with these objects, as follows (see Appendix C):

• The Analyse New Artefact Use Case involves creating a new Artefact

object, obtaining the new information, and then instructing the Artefact

object to add the new artefact with this information to its collection.

• The Visualise Artefact Data Use Case involves getting a database

specification (all data retrieved from and inserted to the data store will

be in a standardised format to enable tools to operate independently of

changes to the database format) from the user, then telling the

ArtefactDbaseSystem object to read in an Artefact object from this

database, and then display the current information about the desired

artefact.

In the model-view-controller design pattern, responsibilities are

assigned to the various classes. The two entity classes, Artefact and Artefacts

serve as the model. The GUI class, which is the ArtefactGUI, serves as the

view. The controller class, ArtefactContoller, serves as the controller.

4.6 Windows System Generated Artefacts Forensic Analysis System Design 136

The view, ArtefactGUI, needs to be made an observer of the model, Artefact, so

that it always reflects the current state of the model.

Class Responsibility Collaboration (CRC) cards, as used by Bennett et

al., (2006) and shown in Table 4.1 are used to assign responsibilities to various

classes and the collaborations that are necessary to fulfill the responsibilities

for the tasks required by the various use cases.

Table 4.1: Class Responsibility Collaboration for the Main Classes
Contained in Windows System Generated Artefacts Forensic Analysis System

4.6 Windows System Generated Artefacts Forensic Analysis System Design 137

The classes discovered during system analysis and additional classes

discovered during design, suggest that the following will be the classes

required in the class diagram for the Windows System Generated Artefacts

Forensic Analysis system:

• ArtefactApplication – responsible for creating the ArtefactDbaseSystem

and GUI objects. It is the main class for the application and starts up the

application.

• ArtefactListener (a utility class) – responsible for the user’s choice of

action.

• AnalyseNewArtefact – action for analysing artefact objects (used for

recovering data structure).

• VisualiseArtefactData – action for visualising artefact objects (used for

visualising data)

Figure 4.8 is the class diagram for the system where only the name of

each class is shown, the attribute and behaviour compartments are omitted.

The relationships hold between the objects is follows:

• ArtefactApplication object is responsible for creating ArtefactController

object.

• ArtefactDbaseSystem responsible for saving and reloading an artefact.

• ArtefactController object responsible for creating ArtefactGUI object and

this ArtefactGUI object is responsible for keeping track of its current

artefact object displayed.

4.7 Operation and Control Specifications 138

• Artefacts object is responsible for creating and keeping track of record

objects, where there is an arbitrary number of entity objects.

• ArtefactListener object is used by the ArtefactController to allow the

user to choose which action to perform in examining an artefact.

• Artefact object use the appropriate action object when action is chosen.

Figure 4.8: Objects for the Windows System Generated
Artefacts Forensic Analysis System

4.7 Operation and Control Specifications

Operation specifications are detailed specifications of the behaviour of a

system model. An operation specification is a framework for a more detailed

design specification, which can then be used to derive an appropriate

4.7 Operation and Control Specifications 139

implementation of the operation in code. It can also be used to verify that the

method does indeed meet the original specification, which in turn describes

what the users intended, thus checking that the requirements have been

implemented correctly.

An operation that translates a stream of bytes into a usable file

structure of an artefact and recovers the content of the file is invokes during

the use case Analyse New Artefact (in Appendix C). For ease of reference,

the use case description is repeated below:

The artefact’s data may be recovered from a stream of bytes of the

internal structure of an artefact to perform artefact analysis.

A sequence of steps for this operation will include the following steps for

recovering data structure.

1. Locate: Locate the fields (the units of information) within the

structure. Different method of locating fields for different files of the

Windows system generated artefacts. Examples of the methods used

are:

i. Fixed offset

ii. Calculation

iii. Iteration

iv. Location by outside knowledge from some source

2. Extract: To extract the data of the internal structure out of the stream

of bytes.

3. Decode: After the relevant data has been extracted from the internal

structure, it is still possible that further extraction may be necessary,

specifically the bit fields. It will use a list of bit fields to check on each

field in the stream of bytes. Examples of bit fields are: flags,

attributes, date field, time field, etc.

4.7 Operation and Control Specifications 140

4. Interpretation: Takes the output of the previous step or the extract

step and performs various computations. Examples: the value for the

years of date field and second of time field need to be interpreted.

5. Reconstruction: Information from the previous step

(interpretation) is used to reconstruct a usable representation of the

internal structure or fields.

Figure 4.9 shows the activity diagram for the use case Analyse New

Artefact and illustrates the internal operation logic of the process.

Figure 4.9: Activity Diagram for Use Case Analyse New Artefact

The operational process that maps data to a visual form, that is, the

data representation is invoked during the use case Visualise Artefact

Data (in Appendix C). For ease of reference, the use case description is

repeated below:

4.7 Operation and Control Specifications 141

The artefact’s data may be examined to identify valuable meaningful

data and allow for further analysis. The mapping of data to a visual

form presents the data in a more human friendly format by the use of

graphs, charts or illustrations.

A sequence of steps for this operation will include the following steps for

understanding data.

1. Acquire: Obtain the data, whether from a file on a disk or a file over

a network; or database.

2. Parse: Give some structure for the data’s meaning, that is, to

change it into a format that tags each part of the data with its

intended use. Each record of the file must be broken into fields.

3. Filter: Remove any extraneous data.

4. Mine: Add methods as a way to shows patterns.

5. Represent: Determines the basic form of a visual model that a set of

data will take.

Example: Bar graph, tree, table and so forth.

6. Refine: Design methods are used to improve the basic

representation to make the information presented clearer and more

visually useful.

7. Interact: Apply methods for manipulating or controlling the data.

8. Output: The information file is translated into the required output

format and output to the screen.

Figure 4.10 shows the activity diagram for the use case Visualise Artefact

Data and illustrates the internal operation logic of the process.

4.8 Data Management 142

Figure 4.10: Activity Diagram for Use Case Visualise Artefact Data

The activity involved in the use case realisation of the system is next

presented using the following UML diagrams: communication diagram and

sequence diagrams that reflect understanding of the domain and of the

requirements. The communication diagrams and sequence diagrams

illustrating the design for the entire prototype tool can be found in Appendix

D. The sequence diagrams show the interaction between users, systems and

sub-systems; with the emphasis on the ordering of time of messages. The

communication diagram shows similar information as the sequence diagram,

but emphasises the structural organisation of the objects’ send and receive

messages; thus illustrates the dynamic view of the system.

4.8 Data Management

The application needs to store data between one execution of the program and

the next. Data must be contained within a form of shared data storage system

so that users can retrieve it when access is required. Requirements include the

4.8 Data Management 143

storage of persistent data to operate independently of any changes made to the

database, thus reinforcing the architecture’s extensibility.

The aim of using a Database Management System (DBMS) is the

DBMS organises and manages the data and decouples the storage mechanisms

from the application programs. It is proposed that the object oriented system,

that is, the Windows System Generated Artefacts Forensic Analysis System to

be built, use a relational DBMS to provide the storage for the system. The

classes are converted to tables, the classes are flattened into tables in order to

design the storage structures. In this example, the a ProjectMember with

EmpID, FirstName, LastName, and Rate properties; and a

ProjectManager with SignatureLevel and BudgetAuthority properties

classes are flattened into a ProjectMembers table, which groups all

properties defined in the class hierarchy table and contains an additional a

EmpType column. Therefore, now ProjectMembers table has EmpID,

FirstName, LastName, Rate, SignatureLevel, BudgetAuthority,

and EmpType (Hautefeuille, 2011). When the system requires an instance of

a class from the database, it will have to retrieve the data from all the tables

that hold parts of that object instance and reconstruct it into an object. When a

complex object instance has to be stored, it will have to be taken apart and

parts of it will be stored in different tables. Data modelling and the

normalisation approach will be used to flatten out the objects in order to store

them in a relational database.

Separate classes are introduced into the system, whose role is to deal

with the storage and retrieval of the other classes. These classes are part of

the data storage layer. The data storage classes are decoupled from the

business classes. The business classes which contain metadata indicate how

they are to be stored. The same business classes can be reused unchanged with

different storage mechanisms. The classes that provide the data storage

services are held in a separate package. The objective here is to separate the

data storage mechanisms completely from the business classes. One of the

4.9 Object Oriented Approach to System Development 144

business requirements is to produce a report combining data from different

applications, so there is a need to access the data in new ways.

The database design will be capable of storing all an artefact’s file data

from the Windows system. A composite of data will be placed in here based on

definitions and methods in which the data is to be extracted, and will be

specific to each of the artefacts.

Once the data is processed by the analyser, a database must be

available to store data so that this data can be rapidly retrieved and queried.

The design of this database must be extensible in terms of accepting all sizes of

data and extraction of the data for display or printout in the report without

knowing the structure. This database can be regarded as an interface between

the two components to communicate in a common language that overcomes

any specifics related to the syntax and semantics of the data set.

4.9 Object Oriented Approach to System

Development

The purpose of system design is to answer the question: (Stair and Reynolds,

2008) “How will the system solve the problem?”. The primary result of the

system design phase is a technical design that details system outputs, inputs,

and user interfaces; and shows how these components are related (Arnott,

2006). There are several approaches that can be followed today which have

their own justification for users to adopt them, but all attempt to deliver a

better system. Such approaches include: structured system analysis and

design approach, the prototyping approach, the rapid application development

approach, the extreme programming approach, the joint application

development approach, the end user system development approach and the

object oriented systems development.

One of the important design considerations that can have significant

consequences in all areas of the architecture is the choice of the system

development approach. The reason for choosing a specific approach is to avoid

many of the problems and pitfalls in system development.

4.9 Object Oriented Approach to System Development 145

By adopting the object oriented approach for implementation of the

architecture, the built-in beneficial features and advantages that come with

this approach can be adopted and realised. These are the modularity

advantages of the system on the ease of maintenance and upgrading, with

software broken into smaller pieces instead of a monolithic block of code to

deal with all the processes in analysing system generated artefacts; and the

reusable advantages of the system is realised on the integration with other

products, providing a standard and well documented process for other products

for their integration. This is further supported by the fact that this approach

combines the logic of the system development life cycle with the capabilities of

object oriented modelling and programming.

The beneficial features and advantages of the object-oriented approach

are discussed below (Bennett et al., 2006):

Increasing abstraction

Abstraction in object orientation means (Martin, 2001), “The elimination of the

irrelevant and amplification of the essential”. The increase in abstraction

applies both to the activity of programming and the tasks that computer

programs are expected to perform.

Event-driven programming

The applications of object-oriented programming include event-driven systems

such as simulation and graphical user interfaces (GUIs). GUI programs

typically are created using event-driven systems and present the user with

possible activities. This might include: clicking on a button at the top of the

screen, pulling down a menu, and moving the mouse across an icon bar. The

object-oriented approach encapsulates data and processing methods together,

which is useful for this project in that the system can be informed that an

event has occurred, and then manage this by asking a processing method to

act on the relevant piece of data. The intended prototype system will had the

objective of event-driven system that have the dropdown menu populated with

4.9 Object Oriented Approach to System Development 146

the names of all artefacts, so the users are allowed to select an artefact to

examine from the dropdown menu on the interface.

For example, if a simulation task is to be programmed in a procedural

language, it is very difficult to program it effectively in a procedural language

since program designs for procedural languages are based on the assumption

that the program structure controls the flow of execution. Beside, for a

program with functions to tackle the simulation task, it must have separate

routines that test for; and respond to a number of alternative conditions.

Therefore, object oriented techniques are most effective in event-driven

systems such as simulation and GUIs. Before event driven programming, the

event handler is implemented as subroutines and in event driven

programming the event handler is implemented as processing methods of

objects.

Graphical User Interface

Object oriented technology can be employed to anticipate every possible route

that a user might take through a system’s interface. The number of possible

options in a GUI can mean that the majority of desktop applications are now

very difficult to design or control in a procedural way. The object-oriented

paradigm offers a method to design software, each component of which offers

clear services that can be used by other parts of the system quite

independently of the sequence of tasks or the flow of control. The intended

prototype system will present results using a GUI because the goal of GUI

design is to make user’s interaction as simple an efficient as possible in terms

of navigation, analysis and retrieval.

Modular Software

In an object-oriented system, classes have two kinds of definition: from an

external and internal perspective. From an external, a class is defined in terms

of its interface, other objects need only know the services that are offered by

objects of that class and the signature used to request each service. From an

internal, a class is defined in terms of what it knows and what it can do.

Modularity means the implementation of each part of the constructed software

4.9 Object Oriented Approach to System Development 147

is independent of the implementation of other parts of the constructed

software. This contributes to solving some of the most intractable problems in

information systems development. Advantages of modular software are:

• Maintaining a system built in a modular way is easier, as changes to a

sub-system are much less likely to affect the rest of the system.

• It is easier to upgrade a modular system. As long as replacement

modules adhere to the interface specifications of their predecessors,

other parts of the system are not affected.

• It is easier to build a system that is reliable in use. This is because

subsystems can be tested more thoroughly, and fewer problems to be

addressed later when the whole system is assembled.

• Implementation of a modular system can be in small, manageable

increments. Provided each module is designed to provide a useful and

coherent package of functionality, they can be introduced one at a time.

Life Cycle

Object orientation addresses system design by a cyclic development approach.

The iterative process of this approach can repeat and this aspect is linked to

the modular character of an object-oriented system and also the seamless

development of models throughout an object oriented life cycle.

Model Transitions

A successful design is one that meets the requirements in a way that is

functional, efficient, and economic. In structured approaches, the designs for

new systems are hard to trace back to the original requirements.

Object oriented analysis and design avoid these transition problems by using a

set of models throughout analysis and design, adding more detail at each

stage. In Unified Modelling Language (UML) (Shnitman, 2000), a modeling

language used to support the object oriented approach, the fundamental

analysis models are the use case and the class diagram and these continue as

the backbone of the design, with other design models derived directly or

indirectly from them.

4.9 Object Oriented Approach to System Development 148

Reusable Software

Information systems are costly in the case where they are used to invent new

solutions to old problems. This has led to the demand for reusable software

components. Reusable software components can eliminate the need to keep

inventing new solutions. Object oriented development methods offer

developers software components that are reusable in other systems. This is

achieved through the highly modular nature of object oriented software and

also the way that object oriented models are organised. The intended prototype

system will have the objective of developing reusable components that are

reusable in other systems.

The techniques and notation system chosen to support the object

oriented approach is the Unified Modelling Language (UML) (IBM, 2011a).

UML is chosen as it has become the industry standard for modelling

information systems and consists mainly of a graphical language to represent

the concepts that are required in the development of an object-oriented

information system. In UML 2.0 (Object Management Group, 2005), a model is

defined as: “A model captures a view of a physical system. It is an abstraction

of a physical system, with certain purpose. This purpose determines what is to

be included in the model and what is irrelevant. Thus the model completely

describes those aspects of the physical system that are relevant to the purpose of

the model, at the relevant level of detail”.

The thesis had the objective of developing a reusable architecture, as

such object oriented development methods offer developing software

components that are reusable in other systems. This is achieved through the

highly modular nature of object oriented software and also of the way that

object oriented models are organised.

In order to assess the architecture and the system, a prototype tool was

developed based on the architecture. Chapter 5 will discuss the

implementation of the architecture in relation to the prototype in detail.

Chapter 6 will discuss the evaluation and analysis of the architecture and the

in relation to the prototype tool and state-of-the-art tools available.

4.10 Conclusion 149

4.10 Conclusion

The contribution of this project lies not only in the ability to manipulate and

visualise the event logs and swap files, but also in the development of a

flexible and extensible architecture to process various Windows generated

artefacts. This is based on a clear understanding of the priority of the

requirements that have been identified from the highlighted evidentiary

values, features of the artefacts, and issues associated with current state-of-

the-art tools explored in Chapters 1 and 2.

This chapter has described the design of a software architecture for the

forensic analysis of Windows system generated artefacts. Forensic analysis has

a number of unique requirements that directly impact on the design of an

architecture. For example, the need to interact with multiple disparate data

sources led to the development of the plugins. The system architecture is

flexible in the sense that other types of artefact (e.g. Registry, Internet

Explorer Activity Files, Web Cookie files) could be easily added into the system

in addition to Event logs and Swap files. Furthermore, different plugins may

be used for processing each of the artefacts. The following chapter details the

implementation of the architecture.

An object oriented approach, is elaborated in activities to design the

system architecture, identify objects in the system, describe the design using

different objects’ models, and document the objects’ interfaces.

150

CHAPTER 5

SYSTEM GENERATED ARTEFACTS
FORENSIC ANALYSIS SYSTEM
IMPLEMENTATION

In Chapter 4, the proposed architecture aimed at processing Windows system

generated artefacts was introduced and the rationale for the design decision

was discussed. This chapter outlines the development of that architecture in

terms of a prototype implementation. The architecture requirements and

objectives are formalised from the issues identified in the state-of-the-art tools

review in Chapter 3. This chapter then highlights some of the key issues in

creating a prototype implementation of that architecture.

5.1 Introduction

The initial section of Chapter 4 highlighted the requirements of the

architectural design. In terms of the implementation of the prototype system

the architecture necessitates the creation or integration of a number of

components, including a database management system. The implementation of

a prototype system requires a range of tools and languages and vitally a set of

documentation to ensure the system can be understood and

5.2 Software Development Tools 151

extended by other programmers / users. UML provides a number of diagrams,

two of which can be used to document the implementation of the system.

Component diagrams are used to document dependencies between the

different elements of the system. These component diagrams can then be

combined with deployment diagrams to show how the software components

relate to the physical architecture of the system.

5.2 Software Development Tools

A software development tool is a program or application that is employed in

the development, repair, or enhancement of other programs or of hardware

(Daintith, 2004). The software development tools used for the implementation

of the prototype system include the use of Integrated Development

Environment (IDE) that is the NetBeans IDE; object oriented programming

language, that is Java; and JavaDB that comes with database management

system and connectivity (Java Database Connectivity (JDBC)), that is DBMS.

NetBeans IDE is a platform that provides reliable and flexible application

architecture. It provides a means to develop applications by the use of

components provided with NetBeans IDE itself. NetBeans IDE allows the

development of interfaces by allowing the developer to use the generic

framework without the need to manually code the interface. Java is used as

the programming language as Java is object-oriented. Java programming is

object-oriented as is centered on creating objects, manipulating objects, and

making objects work together. This allows the creation of modular programs

and reusable code. JavaDB was the database used for the implementation of

the prototype. This decision was based on the fact that it is an open source

Java technology database. It support standards based SQL, and JDBC API

that supports creating and executing SQL statements.

These tools are used to support the implementation of the whole system

and are discussed below in Section 5.2.1 through 5.2.3.

5.2 Software Development Tools 152

5.2.1 Integrated Development Environment

An Integrated Development Environment (IDE) is a set of tools that aids

application development (Nourie, 2005), essentially it is a software tool that

can be used to keep track of all files containing source code, resource files and

the dependencies between them, recompiling all those that have changed as a

project is being built. Therefore, as the IDE combines the features of many

tools into single development package, and as discussed in Section 5.2, it is

used in the architecture implementation.

Sun Microsystems supports three IDEs for the Java platform:

NetBeans, Sun Java Studio Creator, and Sun Java Enterprise. IDEs are

important as they provide comprehensive facilities to developers for software

development for the implementation of the prototype. It consists of a source

code editor, a compiler, an interpreter, build automation tools and a debugger.

The IDEs for developing HTML applications are HomeSite (Adobe Systems

Incorporated, 2011), DreamWeaver (Adobe Systems Incorporated, 2011) and

FrontPage (Microsoft Corporation, 2011). The IDE selected for the

implementation of the proposed system is NetBeans. The advantages of using

NetBeans are: the NetBeans IDE is open source, written in the Java

programming language, and supported by Sun Microsystems. NetBeans, IDE

provides the services for creating desktop applications, such as window and

menu management features, setting storage and fully supporting Java

Development Kit (JDK). NetBeans IDE incorporates a multi-window editor

which is the mechanism for managing the files that make up a project, links to

the compiler so that code can be compiled from within the IDE, and a debugger

to help step through the code to find errors. NetBeans saves time by managing

window, settings, and data. This is due to the hypothesis of this thesis was to

develop an open source solution and a lot support from the Java community is

there if a problem is encountered during the programming phase.

5.2 Software Development Tools 153

There are several popular IDEs as alternatives to NetBeans IDE,

including Borland JBuilder, IntelliJ IDEA, and Eclipse. These were not used

for the development of the project because they are not as richly featured as

NetBeans IDE. Moreover, NetBeans has a closer relationship with the

programs it is developing than most other IDEs due to its managing window,

settings, and data (Boudreau et al., 2003). In addition, NetBeans IDE contains

drag and drop features that enable the rapid development and revision of

graphical user interface components. Finally, to keep the architecture as

maintainable as possible NetBeans IDE was the choice due to it incorporates a

mechanism for managing the files that make up a project, links to the compiler

that compiled the code from within the IDE, and a debugger to help through

the code to find errors.

Developing new toolkits requires modular applications. NetBeans IDE

provides this feature by having facilities to built multiple modules and create

dependency (communicate among themselves) between them effortlessly. A

module suite can be created inside NetBeans IDE to create modular

applications (Sun Microsystems, 2007).

5.2.2 Object Oriented Programming

An object oriented approach to the problem was considered the most

appropriate method as object oriented programming model the physical world,

in a way that the building of a computer applications represent how objects are

assembled, that is to say, objects are made up of many kinds of smaller objects.

By using this object oriented approach of development, the resulting software

is understandable, reusable, and reliable (KayKeys, 2005).

Object oriented programming focuses on the task for which the users

are using the computers rather than the way a computer handles tasks. It is a

software development methodology in which a program is conceptualised as a

5.2 Software Development Tools 154

group of objects that work together. Classes contain data and method. A

method is how to use that data. These data and methods are used when

creating objects.

There is a number of possible alternative languages that could be

employee to develop the proposed prototype system. The choice of an object

oriented system suggests that Java, C++, C#, Python and Visual Basic are

possible candidates. All these programming languages provide complex

functionality and libraries to develop programs. However to keep the

architecture as platform neutral as possible, Java was the language of choice,

because this would enable the program to run on different platform without

modification.

According to Sun Developer Network (2010), “Java programs are

compiled into a format called bytecode that is run by any operating system,

software, or device with a Java interpreter. A Java program can be created on a

Windows Vista machine that runs on a Linux web server, Apple Mac using OS

X, and Palm personal digital assistant. As long as a platform has a Java

interpreter, it can run the bytecode”.

5.2.3 Database Management System (DBMS) and

Connectivity

The Database Management System is used to organise and manage the tasks

associated with storing and providing effective access to the data. This will

enable a degree of flexibility in accessing the data. Tools and features of the

DBMS can be used to manage the data: Data Definition Language (DDL) is

used to specify the data held in the DBMS and the structures that are used to

hold it; Data Manipulation Language (DML) is used to specify updates and

retrievals of the data; Security is used to control the access to the data and

permissions granted to different users for different levels of access; and

Integrity is used to specify constraints to ensure that the integrity of the data

is maintained.

5.2 Software Development Tools 155

Structured query language (SQL) is used to provide both the DDL and

DML for the relational databases and the main advantage of using this

language is that it forms the basis for the user’s interaction with relational

database systems. Once a user is familiar with the construction of SQL

statements they can apply this knowledge to any database supporting the

language. SQL is the industry-standard approach to accessing relational

databases (IBM, 2006).

The required interaction between the developed tools and the database

is provided by the Java Database Connectivity (JDBC). JDBC is a set of

classes, and when working with a database in developing an application,

JDBC can be used. JDBC classes were developed by a number of organisations

including Microsoft (Microsoft Corporation, 2011a), Sybase (Sybase, 2011),

Oracle (Oracle, 2011), and Informix (IBM, 2011b). According to Cadenhead and

Lemay (2007), “The JDBC library includes classes for each of the tasks

commonly associated with database usage these include making a connection to

a database, creating a statement using SQL, executing SQL query in the

database, and enabling the viewing of the resulting records”.

Database management systems provide various facilities that are

useful in many applications. According to Bennett et al. (2006), “a DBMS

typically offers support for: different views of the data by different users; control

of multi-user access; distribution of the data over different platforms; security;

enforcement of integrity constraints; access to data by various applications;

data recovery; portability across platforms; data access via query languages;

and query optimization”. The hypothesis of the thesis was to develop an

architecture that is able to integrate forensic data from known and not known

internal data structures of system generated artefacts by the Windows

operating system and to design and implement a proof of concept prototype

tool, with appropriate example artefacts. Considering DBMS appear to meet

the main criteria of the architecture.

5.3 Implementation of the Architecture 156

5.3 Implementation of the Architecture

According to Stair and Reynolds (2008), “Systems implementation involves

creating or acquiring the various system components (hardware, software,

databases, etc) defined in the design step, assembling them, and putting the

new system into operation”.

 In Chapter 3 it was determined that the Event logs (a known data

structure) and Swap files (a not known data structure) were the chosen

Windows system generated artefacts selected for the prototype

implementation, as they illustrate the types of complex internal structure

found in Windows system generated artefacts. The following section discusses

the implementation for each package of the architecture will be discussed,

including the development of a class diagram and supporting series of

interactions for the package illustrating how the data is extracted and

processed throughout the architecture.

The packages have been named in a way that allows the use of Java

package notation for classes. For example, the boundary classes will be in the

package SAFTool::Boundary, the control classes will be in the package

SAFTool::Control, and the entity classes will be in the package

SAFTool::Entity. Figure 5.1 shows the package diagram view for the software

architecture of the Windows System Generated Artefacts Forensic Analysis

system.

The architecture can also be modelled using the structural view model

and data view model. A data view is the same diagram as a structural view,

but the architecture defines the type of data that is to be provided by one

subsystem to another subsystem. Figure 5.2 shows structural and data view of

the system under development. The data dictionary presented in Table 5.1

explains the meaning of the entities shown in Figure 5.2.

5.3 Implementation of the Architecture 157

Figure 5.1: Package Diagram View for the Software Architecture

Figure 5.2: Structural and Data View of the Architecture

 5
.3

 Im
p

le
m

e
n

ta
tio

n
 o

f th
e

 A
rch

ite
ctu

re
 1

5
8

5.3 Implementation of the Architecture 159

Table 5.1: Data Dictionary for the Structural and Data View Model Diagram

5.3.1 Classes Identified

As mentioned in Section 4.3 in Chapter 4, the package view of the architecture

has four packages: entity domain package and entity business (entity data

management) package; control package; boundary package; and database

package. The entity classes that collaborate in the package are Artefact and

Artefacts. The entity classes are in the package SAFTool::Entity::Domain.

There is a need to be able to deal with the process of materialising instances of

these classes from the database and, when required, materialising their links

with other object instances or collections of object instances. The Broker

pattern (see Section 5.3.4) is a way of making it possible to materialise the

objects that are linked to other objects only when they are required. The

brokers are in the package SAFTool::Entity::DataManagement, together

5.3 Implementation of the Architecture 160

with any other necessary classes to handle the connection to the database.

The control classes in the SAFTool::Control package create the

boundary classes. The control class needs to have the first dropdown menus

populated with the names of all the artefacts, so it creates an instance of the

control class ListArtefacts and requests it to pass back the artefact names to

the boundary class, making reference to the boundary class in the message

vadUI. The ListArtefacts instance sends the message addArtefactName

(name) repeatedly to the boundary class until it has finished. It then returns

control to the VisualiseArtefactData instance and destroys itself. The main

control class can now enable the boundary classes, allowing the user to select a

particular artefact. Instances of VisualiseArtefactDataUI need to be able to

respond to the message addArtefactName (name) and realise the interface

ArtefactLister.

Many other boundary classes will be needed to allow the user to select

an artefact from the dropdown menu on the interface. Ideally the system

should be able to reuse ListArtefacts in all the use cases where a list of

artefacts has to be displayed in a boundary class. Interface is used to specify

the operations that this entire boundary classes must respond to, that is the

interface ArtefactLister. The boundary classes that need to display a list of

artefacts.

In the SAFTool::Boundary package, the boundary classes

AnalyseNewArtefactUI and VisualiseArtefactDataUI which handle the user

interface will implement the ArtefactLister interface. An instance of the

control class AnalyseNewArtefact is created first and that this creates a new

instance of the AnalyseNewArtefactUI class to handle the user interface. This

goes for the use case Visualise Artefact Data where VisualiseArtefactData is

created first and this creates a new instance of the VisualiseArtefactDataUI

class to handle the user interface. The sequence diagram presented in Figure

5.3 explains the packages and classes involved.

5.3 Implementation of the Architecture 161

Figure 5.3: The Packages and Classes for the Windows System Generated

Artefacts Forensic Analysis System

The class diagram for the architecture is shown in Figure 5.4. A full

class diagram for the system can be found in Appendix E.

Figure 5.4: The Class Diagram for the Windows System Generated

Artefacts Forensic Analysis System

5.3 Implementation of the Architecture 162

5.3.2 Interaction and State Behaviour

An application in an object oriented technology application is a collection of

objects. The behaviour of an object is what the object can do, each responsible

for a small part of the system’s overall behaviour. These behaviours are

contained in the methods of the object, and these methods are invoked by a

message that is send to it, and these objects produce the required behaviour

through interaction, by exchanging messages that request information, that

gives information or that asks another object to perform some task.

The sequence diagram that adds the boundary and control classes to a

collaboration of the entity classes helps to show interaction occurrences. A

detailed sequence diagram showing the various possible interactions can be

found in Appendix D.

Users’ primary objectives need to be taken into consideration when

designing the user interface. In this project, the primary tasks are to recover

data of possible forensic value from within an artefact and to visualise the

artefact in order to display this information to a user. Figure 5.5 shows the

interface of a Java program to implement the use case Analyse New

Artefact for the Windows System Generated Artefacts Forensic Analysis

System. In this use case, the user first selects the name of an artefact from a

list box labelled Artefact Name and Path. At this point, no artefact is selected,

and the user can click on the arrow at the end of the list box to view the list

and select an artefact. When an artefact has been selected, the user can click

on the button labelled Start. This interface works in a way that it can scan for

the artefact file if the investigator does not provide the path to where the

artefact file resides.

Requirements to locate the artefact and access the artefact for the

architecture are realised by using the exporting features of the forensic tool

that imaged the target media during a typical investigation. Using this

forensic image to extract the artefacts makes them available for further

analysis. The user must save or export the artefacts to a location that can be

5.3 Implementation of the Architecture 163

accessed by the tool. The user can provide the path to where the exported

artefacts now reside. If the user does not provide the path to where the

artefacts reside, the tool can scan for the artefacts. The architecture checks for

the present of the artefacts.

The tool will recover the data in the artefact and display the data

contained in the artefact in a new window. In this interface design, the Start

button has been disabled until an artefact has been selected. This method is

used to ensure the reliability of the tool that is the resistance to failure of the

system. State machine diagrams have been used to model the state of elements

of the user interface in order to ensure that the behaviour of the interface has

been specified correctly.

The sequence diagram and the prototype dialogue window developed in

Appendix D do not indicate the permitted states of the interface. The sequence

diagrams show only the sequential view of the user working through the fields

on the screen from the top to the bottom, but it is in the nature of GUI

interfaces that the user can click on interface objects out of sequence. A state

machine or event action table has been used to model all these issues. Table

5.2 shows the event action table for the state machine of Figure 5.6 and outline

the full range of actions that the user might initiate on the prototype.

Figure 5.5: Interface for the Use Case Analyse New Artefact

5.3 Implementation of the Architecture 164

Figure 5.6: State Machine for the Visualise Artefact Data Window

Table 5.2: Event Action Table for Figure 5.6

5.3 Implementation of the Architecture 165

5.3.3 Data Management and the Database

Data preparation involves making sure that all files and databases are ready

to be used when the user wants to start using the system. During a typical

investigation, a forensic image is created of the suspects’ media. For this

project, it is assumed that the forensic image was made of the suspects’ media,

and it is from this image thereof the Event log files and swap files were

extracted by the investigator.

Typical forensic software applications offer a facility to copy or export

files, allowing the investigator to extract particular files of interest for further

analysis. Both the main forensic tools, FTK (AccessData, 2009), and EnCase

(Guidance Software, 2005), offer this facility. To use the prototype tool

developed as part of this thesis, the Event log files and Swap files the

investigator wishes to examine must be exported to a location that can be

accessed by the tool.

An alternative method to extracting the files from a forensic copy would

be to use the Windows API and virtual machine to provide access to a virtual

copy of the suspects system. This could use a live GUI manager in order for the

API calls to be executed and retrieve the data. An example or a similar tool is

Regedit.exe used to view the registry and Event log viewer used to view Event

logs, both of these tools are supplied with the Windows operating system. After

some consideration this method was discarded as it inhibited the flexibility of

the architecture as it relied on the use of an API for access to the desired

artefacts for analysis. The decision was therefore taken to extract the files,

parse the data, and store the data for further examination.

With the information about the data structure of an artefact makes it a

relatively straightforward process to parse the contents of an artefact,

resulting in meaningful structure for the entries. Each artefact will have a

different data structure, therefore, it is a requirement to have means to parse

the various data structure and data types. For the not known data structure

artefacts (swap file), the method will be every four megabytes of data from the

5.3 Implementation of the Architecture 166

stream of bytes of data will be stored. This 4 is used due to, when the memory

in used exceeds the amount of RAM available, the operating system will move

pages (4KB pieces) of virtual address spaces to the swap file. 4MB is used

instead of 4KB due to the size of the swap file used which averaged 555673KB.

Plus, the stored data can be accessed in a read only manner, and this prevents

making any changes to the original data.

So, these capabilities: organise and manage the tasks associated with

storing and providing effective access to the data; enable a degree of flexibility

in accessing the data; control the access to the data and permissions granted to

different users for different levels of access; and the integrity of the data is

maintained, make a DBMS the choice of this Windows System Generated

Artefacts Forensic Analysis System and relational DBMS is appropriate

because there are large volumes of data with varying access requirements for

future reference (as mentioned in Section 4.8 and Section 5.2.3). The DBMS

used by the application will be accessed from the programs using class

libraries to provide the database access functionality and these class libraries

are widely available for commercial DBMSs.

A relational DBMS is the most widely used type of DBMS (Digitivity,

2008). The relational database concept has been developed over a number of

years and is robust, efficient and flexible for the kind of data it is designed to

handle (Bennett et al., 2006). Examples of RDBMSs are Access, Oracle, SQL-

Server, DB2, Informix, Ingres, Progress and Sybase. In Java, Apache Derby or

Java DB is a relational database management system and open source

database and is written in Java. The JavaDB database can be used to suit the

storage of data for known and not known data structures of Windows system

generated artefacts and can be used further for data from different systems.

By using the relational database, it is possible to extend the usage of

the RDMBS to support various types of data for the internal structures of the

artefact, for example, the Windows event logs and the swap files. To

implement the JavaDB RDBMS for the Windows System Generated Artefacts

Forensic Analysis system, this is built using NetBeans IDE, the following

5.3 Implementation of the Architecture 167

must be developed in order for the system to store data from the internal

structure of the artefacts:

1. A database design must be designed to deal with the internal data

structure of the artefacts. This should show all the tables and fields of

the internal structures in the database. For each internal structure, the

design is the structure of the tables to use to represent classes in the

database. It is only the attribute values of the object instances that are

stored in an RDBMS, the operations are implemented in the

programming languages itself.

2. Data is added to and retrieved from relational databases using SQL

statements.

3. Support the further extension and development of the database to

include additional tables for other artefacts. In NetBeans this can be

accomplished by two ways: using external SQL script, and a tool when a

table from another database to be recreated in the new database you are

working with. The process used by the tool has two parts: copy the

structure of the table definition of the table of the other database and

then recreate the table in the new database.

In order to store the objects from an object oriented system in a

relational database, the objects must be flattened out (Hautefeuille, 2011). The

approach by which classes are converted to tables in a relational database is

‘flattening’ the classes into tables in order to design the storage structures. By

mapping classes into tables, the collection classes for a set of objects of the

same class are stored in tables. Selecting every row from the table is the way if

it is necessary to iterate through every instance of a particular class. Objects

do not have keys, so object identifiers are allocated to them and use an

attribute that has a unique value of an instance of a class as a foreign key.

Figure 5.6 shows the database design for the Event log and Swap file

structures. Each structure can be added to the database, using the Artefact for

the database name. For example, in Figure 5.7 the Event logs table and the

5.3 Implementation of the Architecture 168

Swap files table has a foreign key that is ArtefactUID. This is the attribute

value of that table that denotes its structure type is Event logs or Swap files.

The Event logs or the Swap files have only one table associated with their

structure. For the Event logs, the event records in the files are saved to the

database for further analysis. Each event log category has its own table in the

database with its file name and timestamp for the table name. The purpose of

choosing a file name and timestamp for the table name is to make it unique

and retrievable for further analysis. As the user does need to know the table

name and where the table is stored, the prototype tool automatically shows the

artefact name and the user simply selects the desired artefact to be analysed.

This method has been demonstrated by Mee (2009) as an effective

approach for storing information relating to system artefacts. Mee (2009)

addressed the database design required to store elements of the Registry by

introducing comparable underlying tables in which to store the data. The

underlying tables were the Hive table, Key table and KeyData table. These

dealt with the nested keys, and subkeys maintaining the hierarchy of the

Registry data (keys may contain one or more subkeys).

The database design for this should be able to cater for each of the

system artefact’s different internal structures. The database can be designed

and developed to suit different possible representations of the data, either

linearly or hierarchically. In the case of mapping an inheritance hierarchy, the

method used is to implement all the classes, both superclass and subclasses as

separate tables. To retrieve the data for a subclass, both its own table and the

table of its superclass is accessed. Each internal structure of a system artefact

must go through this design as it is added to the database. The end user does

not need to know the structure of the internal structure but the developers of

the architecture must be able to identify and recognise the underlying

structure in order to break the structure down to a database design. A full

diagram of the database structure, including various internal structures, can

be found in Appendix F which illustrates the database as a whole, including

other system artefacts.

5.3 Implementation of the Architecture 169

Figure 5.7: Database Design for the Event Logs and Swap Files Structures

5.3.4 SQL Statements

Each table in a relational database is made up of rows of data. Each row

contains attribute values that are organised into columns. Each column

contains data values of the same attribute type. Once the database design has

been determined, the tables must be created in the database. Each attribute

value in the table must be atomic, that is, it may not contain multiple values

or be capable of being broken down further. Using the SQL Create statement,

the tables can be inserted into the Database. Figure 5.8 below denotes the

Create statements for the Artefacts and Event logs.

 EventUID
 ArtefactUID
 RecordNo
 TimeGenerated
 TimeWritten
 EventID
 EventType
 EventCategory
 StrCount
 SourceName
 ComputerName
 Description

Eventlogs

 PageUID
 ArtefactID
 Page01
 Page02
 Page03
 Page04
 Page05
 Page06
 Page07
 Page08
 Page09
 Page10

Swapfiles

 ArtefactID
 LoadedDate
 CreatedDate
 FilePath
 FileTypeID
 FileCRC

Artefacts

 ArtefactID
 LoadedDate
 CreatedDate
 FilePath
 FileTypeID
 FileCRC

Artefacts

5.3 Implementation of the Architecture 170

Figure 5.8: SQL to Create Tables for the Artefacts and Event Logs

Using JDBC to interact with a database makes creating a database

independent application possible. This means another database can be used

without changing anything in the application. To implement the JDBC for this

system, RelationalBroker abstract class was used. Figure 5.9 shows

associations between RelationalBroker abstract class and classes from other

package for the Windows System Generated Artefacts Forensic Analysis

System.

CREATE TABLE Artefacts

 (

 ArtefactID int NOT NULL PRIMARY KEY,

 LoadedDate datetime NOT NULL,

 CreatedDate datetime NOT NULL,

 FilePath varchar(200),

 FileType int NOT NULL

 FileCRC varchar(200)

);

CREATE TABLE Eventlogs

 (

 EventUID int NOT NULL PRIMARY KEY,

 ArtefactID int NOT NULL FOREIGN KEY REFERENCES Artefacts(ArtefactID),

 RecordNo int NOT NULL,

 GeneratedTime datetime NOT NULL,

 WrittenTime datetime NOT NULL,

 EventID int NOT NULL,

 EventType int NOT NULL,

 EventCategory int NOT NULL,

 StrCount int NOT NULL,

 SourceName varchar(200) NULL,

 ComputerName varchar(200) NULL,

 Description varchar(200) NULL

);

5.3 Implementation of the Architecture 171

Figure 5.9: Associations Between RelationalBroker Class and Classes from
Other Packages

5.3.5 Fulfilling the Architecture’s Other Requirements

Chapter 4 contained a discussion of digital forensics unique requirements and

limitation of the current state of the art tools that are used as the

requirements of the architecture (Chapter 3). Such review and discussion

revealed that there are other requirements that the architecture must comply

with.

According to Walden (2007), “the process of obtaining forensic data is a

significant technical challenge for investigators, since it may modify the source

data or its related metadata, fatally undermining the evidential value of the

forensic material”. A requirement for the architecture was therefore that the

data stored would be deemed to be forensically sound data. This security

requirement for the architecture is mentioned in Chapter 4. In order to

implement this requirement, the MD5 message digest was calculated and

stored in the database. MD5 is a computer algorithm that produces unique

mathematical representations of the data through the creation of a 128 bit

5.3 Implementation of the Architecture 172

message digest from the data input. The MD5 is calculated for both the

original and the copy and then compared to verify data integrity (Newman,

2007). At any stage to ensure the file has not been changed, the MD5 hashing

algorithm can be applied again and the resulting hash compared to the

original to prove the file has not been altered. If the file has been changed, the

MD5 hash values will not match, thus alerting users that the files have been

changed. This technique is used daily in computer forensic practice to ensure

file integrity.

According to O’Conner (2007), “An extensible application is one that can

be extended easily without modifying its original code base. Its functionality

can be enhanced with new plugins or modules”. A plugin is an assembly that

registers itself with the main application framework and provides additional

functionality through a defined interface. The main application framework will

become the API that loads and runs plugins. The plugins communicate to the

services through the main application framework API.

It was proposed that the architecture be extensible, that it is easy

(supported by the design and additional documentation) to add additional

support for new types of data sources regarding analysis. This is critical since

new operating systems and applications are being continually developed and

the system ideally has to be able to support these new sources with as effort as

possible.

In this extensible architecture, new functionalities or application

programming interfaces (APIs) can be added by simply adding a new Java

Archive (JAR) file onto the application classpath or into an application specific

directory. The JDBC is an API to unify work with any database. A developer

just has to change the JDBC driver, which is the implementation of the JDBC

API, and load the proper class.

The architecture allows others to upgrade or enhance specific parts of a

tool without changing the core application. By using applications with

extensible services, the architecture allows the user to provide service

implementations. Service implementations are developed as plugins that can

5.3 Implementation of the Architecture 173

be installed and started during runtime which require no modifications to the

original application. The architecture allows the user to add new providers to

the classpath or runtime extension directory for the ServiceLoader class to find

it. ServiceLoader is an API that helps to find, load and use service providers.

The reason why ServiceLoader class is used over the use of other module

systems was due to the building of modular application and much more

maintainable application is achievable. The service providers are registered

by a configuration file in the JAR file’s directory. Figure 5.10 shows the plugin

framework. There are a number of services that provide different types of

functionality to the plugins.

Figure 5.10: Plugin Framework

According to Fry (2007), “whenever we analyse data, our goal is to

highlight its features in order of their importance, reveal patterns, and

simultaneously show features that exist across multiple dimensions”. According

to Teerlink and Erbacher (2006), “using visualisation techniques to display

information about computer data can help forensic scientists direct their

searches to suspicious files”. According to Guillermo et al. (2007) “the use of

visual representations to accelerate insight into complex data is a characteristic

5.3 Implementation of the Architecture 174

of visual analytic software. Visual representations translate data into a visible

form that highlights important features, including commonalities and

anomalies”.

Chapter 4 (Section 4.3) states the visualiser subsystem will deal with

visualising the data that is retrieved in an intuitive format to enable

investigators to extract evidence. Various techniques of visualisation include

using illustrations of data such as timeline, data map, tree map, flow charts,

graph and table. For example, if an investigator wishes to visualise data by

chronological order, a plugin can be used to list the specified data for time

stamps, and present the resulting to the user. It was proposed that the

architecture present the data extracted from the artefacts’ internal structure

visually. The architecture uses a plugin to graphically represent the data

contained in the system. The plugin can represent the data in various formats

tailored to the nature of the artefact. Other plugins can provide visualisation

of data in a different manner to provide alternative ways to explore the data.

According to Nelson et al. (2004), “a report is to communicate the results

of computing forensics examination or investigation. A formal report presents

evidence as testimony in court, at an administrative hearing, or as an affidavit.

Besides presenting facts, reports can communicate expert opinion”. It is

proposed that the architecture provide the investigator with a reporting

feature. Since the architecture supports various plugin, a reporting plugin can

therefore be used to export out the data to a report. This will allow the

investigator to render their findings and information into a report (various

tagged pieces of data, visual representation of data, correlated search results)

and also allow the investigator to add in various notes and other data related

to the case, thus compiling a complete report that could be presented alongside

expert witness affidavits. Table 3.23 in Section 3.4 illustrates the limitations of

existing tools. It also highlights that both commercial tools discussed in

Chapter 3 supports a reporting facility for the user.

5.4 Implementation Diagrams 175

5.4 Implementation Diagrams

According to Finkelstein (2000), “Software engineering focuses on the real

world goals for, services provided by, and constraints on such system; the

precise specification of system structure and behaviour, and the implementation

of these specifications; the activities required in order to develop an assurance

that the specifications and real world goals have been met; the evolution of such

systems over time and across system families”.

The implementation diagrams illustrate the physical implementation,

that is, the components structure and the deployment for the runtime. There

are two diagram types associated with implementation diagrams: the

component diagram and the deployment diagram. The thesis had the objective

of developing a multiplatform architecture, as such multiplatforms promote

the portability of the architecture.

The component diagram’s shows the structure of components with its

relationships of a system. In the component diagram, the components of an

application or system, interactions with their interrelationships, and their

public interfaces are depicted. According to Ambler (2003), “UML component

diagrams are great for identifying the architectural landscape for your system

as they enable you to model the high level software components, and more

importantly the interfaces to those components”. Figure 5.11 shows the

component diagram for the Windows System Generated Artefacts Forensic

Analysis System with the components wired together to form larger

components and the connection between the internal subcomponents. The

diagram shows the different components, such as Artefacts and Artefact in the

Model layer and how the Controller layer component interacts with these

components. The diagram also depicts a database access component that

represents a library component that the Model layer components will use to

interact with a database.

The deployment diagram shows the run-time architecture of a system.

5.4 Implementation Diagrams 176

Each node represents either a physical machine node or a virtual node and the

connections between the nodes show the system interactions paths. An

example of a node is a mainframe node. The deployment diagram involves

modelling the hardware configurations together with the software components.

. Nowadays, software applications are complex in nature. Software

applications can be stand alone, web based, distributed, mainframe based and

so on. The application is assumed to be a desktop system based application

which is in a standalone environment: deploys services locally, uses the

services, and terminates the services when they are no longer needed. Services

locally deployed by this application are not available to any other application,

that is, no remote services are available.

The nodes for the deployment environment and the relationships

among them are as follows:

• Application Server represents the computer that will receive and process

user requests and send responses from the application. This node

consists of different components of the Windows System Generated

Artefacts Forensic Analysis System, such as View, Controller, Model, and

Database Access.

• Database Server represents the node that hosts the database server. This

node used to store and retrieve the data by the Windows System

Generated Artefacts Forensic Analysis System components.

Figure 5.12 shows the deployment diagram for the Windows System

Generated Artefacts Forensic Analysis System. The deployment diagram

shows the two nodes SAFTool_APP_SERVER and SAFTool_DB_SERVER that

represent the nodes application server and database server, respectively. The

View, Controller and Model components are depicted in

SAFTool_APP_SERVER node and the three are interconnected in the

Windows System Generated Artefacts Forensic Analysis System.

Figure 5.11: Component Diagram for the Windows System Generated Artefacts Forensic Analysis System

Figure 5.12: Deployment Diagram for the Windows System Generated Artefacts Forensic Analysis System

 5
.4

 Im
p

le
m

e
n

ta
tio

n
 D

ia
g

ra
m

s 1
7

7

5.5 Conclusion 178

5.5 Conclusion

In this chapter, the implementation of the architecture was discussed and the

justification for the tools and languages used was outlined. Further, the

products used and created by the design workflow and implemented in the

architecture seek to address the limitations of the current state-of-the-art

tools.

 The hypothesis of the thesis was to develop an architecture that is able

to integrate forensic data from known and not known internal data structures

of system generated artefacts by the Windows operating system and to design

and implement a proof of concept prototype tool, with appropriate example

artefacts with key features of the proposed architecture are: extensible,

flexible and multiplatform to improve forensic process. Considering each of the

proposed packages of the architecture, they only appear to meet the main

criteria of the architecture: extensibility; flexibility; and multiplatform

implementation.

The implementation of the tool will enable the assessments outlined in

Chapter 6 to be conducted and the hypothesis proposed in Chapter 1 to be

tested (Section 1.3).

179

CHAPTER 6

EVALUATION AND DISCUSSION

This chapter presents the results of the evaluation methods applied to the

system prototype and the proposed architecture.

 As illustrated in the Table 6.1, it is evident that the architecture works,

and that it satisfies all functions and the hypothesis of the thesis. The next

section will deal with the evaluation of the architecture with a comparison of

the use of other tools.

The first evaluation analyses the results obtained from using the

prototype tool to analyse nine different Event log files and nine Swap files. The

analysis involves the correct parsing of system artefacts through the process of

extracting data structures and visualising the results in the forms of narrative

constructs and also in graphical form. The output from the system is compared

to that of other available open source forensic software.

 The second evaluation provides further empirical data relating to how

well the system supports the analysis of Windows system generated artefacts

through experts evaluation. The purpose of the empirical studies of the

forensic analysis of Windows system generated artefacts was not to evaluate

Chapter 6 Evaluation and Discussion 180

the quality of system generated artefacts used as digital evidence, but to

evaluate the functionalities and usefulness of the prototype software and to

establish if it successfully assists the investigator to determine what data is

available within the Windows operating system generated artefacts.

Table 6.1: Requirements of the Architecture Revisited
Illustrating the Architecture Satisfies Each

Function Architecture and System

Facilitate the analysis and visualisation of forensic data in

various types of file format and data complexity.

√ Section 5.3.2

Locate the artefact files for analysis. Section 5.3.2

Facilitate data extraction, data interpretation, and data

reconstruction from the internal structure of the artefact.

√ Section 5.3.3

Visual representation of data from the data structures

whether by graphs, charts or illustrations.

√ Section 5.3.5

Reporting facility √ Section 5.3.5

Scalability: Facilitate the extending of supporting new kinds

of kinds of target and new types of analysis.

√ Section 5.3.5

Data integrity:

No data can be changed while being stored in the system.

√ Section 5.3.3

Data integrity:

No data in the original complex structure of the evidential

artefact will change.

√ Section 5.3.3

Verifiability: Uses Hash Value for individual file. √ Section 5.3.5

Other Requirement:

The architecture and implementation should aim at being

as independent of underlying software as possible.

√ Section 5.2.2

Usability: Easy navigation, easy to use by using keyboard

and mouse to control the system.

√ Section 5.3.2

Other Requirement: Authentication software is used to

prove that the evidence has not been changed. Algorithms

like MD5 or SHA-1 are required.

√ Section 5.3.5

Other Requirement: The tool must be designed in such a

way that it provides a form of integrity assurance or record

when its utilities are executed, such as it provides an audit

record about timestamp or actions taken, or results return

from running those utilities. This requirement needs to be

addressed, as this is compliant with the best practice

requirements for forensics tools as discussed in Chapter 2.

√ Section 5.3.3

√ - denotes the presence of the function and requirement

6.1 Research Evaluation 181

6.1 Research Evaluation

In Chapter 1 an experimental method for the research project was proposed. In

this section the research methodology for the evaluation of the architecture

and the prototype system is examined. According to Kumar (as edited in

Rutman, 1977) “Evaluation research is, first and foremost, a process of

applying scientific procedures to accumulate reliable and valid evidence in the

manner and the extent to which specific activities produce particular effects or

outcomes”.

In order to assess the proposed method to visualise information

extracted from Windows system generated artefacts, a number of different

approaches were selected. Experiments are proposed to measure the accuracy

and questionnaires are prepared to verify functionality of the prototype. An

experiment is a process or study that results in the collection of data. The

results of experiments are not known in advance (SAS, 2010). According to

Kumar (2005), “A questionnaire is a written list of questions, the answers to

which are provided by respondents”. The questionnaire comprised questions

designed to assess the prototype’s ability to process the selected system

artefacts. An assessment of the prototype’s functionality against that of other

open source tools was also carried out. Finally, a selection of expert opinion

was sought on the key aspects of the architecture and prototype

implementation. The detailed experimental setup is discussed in Section 6.5.

A clear definition of the details of an experiment makes the desired

statistical analyses possible, and almost always improves the usefulness of the

results. Furthermore, the objective of designed experiments is to improve the

precision of the results in order to examine the research hypotheses (SAS,

2010). The data collection and analysis plan are very important to meet the

specific objectives of an experiment. The data collection and analysis plan

statements for this research were as follows:

i. The experiment with swap files and event log files sourced from the

ongoing disk study work at the University of Glamorgan.

6.1 Research Evaluation 182

Performance of the prototype software was evaluated through a series of

experiments on a selection of Event logs and Swap files obtained from

the forensic lab in which forensic images were taken during a disk study.

A selection of Event logs and Swap files were selected among the

readable hard disks images from different countries. These two types of

system generated artefacts have different file sizes and come from

different versions of the operating system. Furthermore, the Event logs

and Swap files came from a large number of disks that have been

purchased in a number of countries without knowing the background of

their sources (Jones et al., 2009).

ii. A comparison with current state-of-the-art tools.

A comparison of the proposed system was to be made against current

state-of-the-art tools used. Performing the same task using different tools

can be used to verify the results (Nelson et al., 2004).

The objective of this assessment was to obtain the right results with the

relevant system artefacts and quantify the accuracy of parsing correctly

organised records of system artefacts through the process of extracting

known and not known data structures and visualising them in the forms

of narrative construct and statistical graph.

iii. A review of the key design features of the prototype.

Besides quantifying the accuracy of the data extracted, verifying the

functionalities and usefulness of the prototype software was done

through eliciting expert opinion. The objective was to verify the ability of

the implemented prototype software to visualise the known data

structure of Event logs and the not known data structure of Swap files in

such a way that the investigator could easily see what data was available

within these system areas of the Windows operating system. It was also

to verify that the architecture is extensible for extracting information

from the Event logs and Swap files and to allowing some plug in features

to be added to it such as visualisations and various forensic analysis

capabilities. A qualitative review of the input from experts in the field of

forensics would aid the assessment of the system’s functionality.

6.1 Research Evaluation 183

The experimental setup for accomplishing the data collection and analysis

plan is detailed in Section 6.1.2 and the results are recorded as evaluation

measurements.

6.1.1 Data Interpretation and Analysis

The results gained from the experiments were used to compare the developed

software application with that of other tools. To date, there are no published

evidence concerning experiments in analysing and presenting data for

Windows system generated artefacts. Hence, the accuracy of the developed

software application was compared with that of tools used for data extraction,

i.e. Event Viewer and Carvey’s (2007) tools (evtstats.pl and lsevt.pl) for the

Event logs and the WinHex for the Swap files.

Experiments were performed to investigate the number of records

parsed and the total size of data parsed; and processing time taken in parsing

the contents of the files. These experiments were used to measure the accuracy

scores of the data extracted and the time taken to process this data. Measuring

the time taken to process the data is due to that informational visualisation

would normally be reached after much data mining in the analytical tier. As

well as quantifying the accuracy of the data structure extracted, verifying the

functionalities and usefulness of the prototype software was achieved through

questionnaires eliciting experts’ opinions. The results from the comparative

study and the questionnaires were analysed using the Microsoft Excel

statistical package for data analysis and results presentation.

6.1 Research Evaluation 184

6.1.2 Experimental Setup

Test Data

To evaluate the prototype software (and to be able to make statements

concerning the suitability of the architecture) a selection of test data was

required. The test data consists of known data structure (event logs file) and

not known data structure (swap file) system generated artefacts. This test

data extracted from the Windows XP and Windows Vista operating systems

was obtained from hard disk images that had been created as part of a disk

study into data disposal practises at the University of Glamorgan Computer

Forensics Research Laboratory (Jones et al., 2009).

The test data preparation process was as follows:

1. Hard disk images were selected among the readable disks from different

countries. Only 10 hard disk images contained viable event logs files and

swap files to be used as test data. Some of the hard disks had been

deleted or corrupted and were unusable for this study. For some of the

readable disks, attempts were made to remove the data from the disks by

deletion, formatting or reinstallation of the operating systems.

2. From 10 hard disk images, the following were extracted:

a. 12 binary format of event log files; and

b. 10 binary format of pagefile files.

3. The 12 binary formats of event logs and the 10 binary formats of pagefile

files were numbered as in Table 6.2.

6.1 Research Evaluation 185

Table 6.2: Numbering for Event Logs Files and Swap Files

No. Event log file Name

1. AppEvent01.Evt

2. SecEvent01.Evt

3. SysEvent01.Evt

4. AppEvent02.Evt

5. SecEvent02.Evt

6. SysEvent02.Evt

7. AppEvent03.Evt

8. SecEvent03.Evt

9. SysEvent03.Evt

10. AppEvent04.Evt

11. SecEvent04.Evt

12. SysEvent04.Evt

No. Swap file Name

1. pagefile01.sys

2. pagefile02.sys

3. pagefile03.sys

4. pagefile04.sys

5. pagefile05.sys

6. pagefile06.sys

7. pagefile07.sys

8. pagefile08.sys

9. pagefile09.sys

10. pagefile10.sys

Experiment 1

The goal of the experiment was to evaluate the results after the developed

software application had been tested to determine whether it was functioning

as desired under normal conditions.

The experimental process was carried out in the following steps:

1. Use AppEvent04.Evt with Prototype Software.

Measurement used:

- Successful operation

- Unsuccessful operation

6.1 Research Evaluation 186

2. Use SecEvent04.Evt with Prototype Software.

Measurement used:

- Successful operation

- Unsuccessful operation

3. Use SysEvent04.Evt with Prototype Software.

Measurement used:

- Successful operation

- Unsuccessful operation

4. Use pagefile10.sys with Prototype Software.

Measurement used:

- Successful operation

- Unsuccessful operation

Experiment 2

The goal of the experiment was to evaluate the results of the prototype

software application against those produced by other tools. The prototype tool

needed to be examined in terms of its effectiveness in dealing with not known

data structure (swap file) and known data structure (event log) files. The tools

selected for this comparison were the Carvey (2007) Perl script (evtstats.pl)

and Event Viewer for the event log files. evtstats.pl was used as this script

parses through the Event log files in binary mode, bypassing the Windows API

altogether, by doing it this way the Event log files can be parsed on a platform

other than Windows, although Event Viewer gives error messages that a file is

somehow corrupted. Event Viewer is a GUI manager for the Event logs and is

available from Microsoft as a component of the operating system which

interprets the event data and displays it in a readable fashion. The various

ways in which the user can display; work with; and place conditions on an

event is a real benefit and getting used to it is relatively easy.

For the pagefile files, the tool selected for this comparison was the

WinHex application. The WinHex application was used as it provides a

6.1 Research Evaluation 187

convenient and simple interface for random access to files and disks at the

sector level through its hexadecimal editor in analysing files.

A. For Event Log files

1. Using evtstats.pl

This experiment was conducted to retrieve and examine the data

using evtstats.pl

i. This experiment used 9 binary format of event log files

(AppEvent01.Evt until AppEvent03.Evt, SecEvent01.Evt

until SecEvent03.Evt and SysEvent01.Evt until

SysEvent03.Evt) described in Table 6.2 to run with evtstats.pl

to collect information from each event log files.

ii. evtstats.pl displays simple statistics for each event log files as

shown here:

- Max size of Event Log file =

- Actual size of the Event Log file =

- Total number of event records (header info) =

- Total number of event records (actual count) =

- Total number of event records (rec_nums) =

- Total number of event records (sources) =

- Total number of event records (types) =

- Total number of event records (IDs) =

iii. Statistic used:

Total number of event records (actual count) = Xn, where

n = 01, 02, 03

2. Using Event Viewer

This experiment was conducted to retrieve and examine the data

using Event Viewer.

i. This experiment used 9 event log files (AppEvent01.Evt until

AppEvent03.Evt, SecEvent01.Evt until SecEvent03.Evt and

SysEvent01.Evt until SysEvent03.Evt) described in Table 6.2

to run with Event Viewer to ascertain how many records are

present in each event log file.

6.1 Research Evaluation 188

ii. Statistic used:

Total number of event records displayed = Yn, where

n = 01, 02, 03

3. Using Prototype Software

This experiment was carried out to retrieve and examine the data

using the Prototype Software.

i. This experiment used 9 event log files (AppEvent01.Evt until

AppEvent03.Evt, SecEvent01.Evt until SecEvent03.Evt and

SysEvent01.Evt until SysEvent03.Evt) described in Table 6.2

to run with the Prototype Software and obtain the number of

records present in each event log file.

ii. Statistic used:

Frequency of event records display = Zn, where

n = 01, 02, 03

4. Results

The experimental results are presented in tabulated form below:

Table 6.3: Event Logs Experimental Results for Experiment 2

Test Data File

Name

No. of Records

evtstats.pl
Event

Viewer
SAFTool

AppEvent01.Evt Xn Yn Zn

SecEvent01.Evt Xn Yn Zn

SysEvent01.Evt Xn Yn Zn

AppEvent02.Evt Xn Yn Zn

SecEvent02.Evt Xn Yn Zn

SysEvent02.Evt Xn Yn Zn

AppEvent03.Evt Xn Yn Zn

SecEvent03.Evt Xn Yn Zn

SysEvent03.Evt Xn Yn Zn

Xn, Yn, Zn = Number of Records

where n = 01, 02, 03

6.1 Research Evaluation 189

B. For Swap Files

1. Using WinHex

This experiment was conducted to retrieve and examine the data

using the WinHex.

i. This experiment used 9 pagefile files (pagefile01.sys until
pagefile09.sys) as described in Table 6.2 with the WinHex to

collect information from pagefile files.

 ii. The statistic used:

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ words found

= ANn, where

ANn =Yes / No, where

N = V, W, X, Y, Z

n = 01, 02, 03, 04, 05, 06, 07, 08, 09

2. Using Prototype Software

This experiment was carried out to retrieve and examine the data

using the Prototype Software.

i. This experiment used 9 pagefile files (pagefile01.sys until

pagefile09.sys) as described in Table 6.2 with the Prototype

Software to collect information from pagefile files.

ii. Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ words found

= BNn, where

BNn = Yes / No, where

N = V, W, X, Y, Z

n = 01, 02, 03, 04, 05, 06, 07, 08, 09

3. Results

The experimental results are presented in tabulated form below:

6.1 Research Evaluation 190

Table 6.4: Swap File Experimental Results for Experiment 2 Using WinHex

The results of the experiment will be entered in the form:

ANn = Yes / No, where
N = V, W, X, Y, Z and
n = 01, 02, 03, 04, 05, 06, 07, 08, 09

Table 6.5: Swap File Experimental Results for Experiment 2 Using
Prototype Tool

File No.

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’

words in Prototype Software (BNn)

‘mail’ ‘from’ ‘www’ ‘html’ ‘send’

pagefile01.sys BV01 BW01 BX01 BY01 BZ01

pagefile02.sys BV02 BW02 BX02 BY02 BZ02

pagefile03.sys BV03 BW03 BX03 BY03 BZ03

pagefile04.sys BV04 BW04 BX04 BY04 BZ04

pagefile05.sys BV05 BW05 BX05 BY05 BZ05

pagefile06.sys BV06 BW06 BX06 BY06 BZ06

pagefile07.sys BV07 BW07 BX07 BY07 BZ07

pagefile08.sys BV08 BW08 BX08 BY08 BZ08

pagefile09.sys BV09 BW09 BX09 BY09 BZ09

BNn = Yes / No, where
N = V, W, X, Y, Z and
n = 01, 02, 03, 04, 05, 06, 07, 08, 09

File No.

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’

words in WinHex (ANn)

‘mail’ ‘from’ ‘www’ ‘html’ ‘send’

pagefile01.sys AV01 AW01 AX01 AY01 AZ01

pagefile02.sys AV02 AW02 AX02 AY02 AZ02

pagefile03.sys AV03 AW03 AX03 AY03 AZ03

pagefile04.sys AV04 AW04 AX04 AY04 AZ04

pagefile05.sys AV05 AW05 AX05 AY05 AZ05

pagefile06.sys AV06 AW06 AX06 AY06 AZ06

pagefile07.sys AV07 AW07 AX07 AY07 AZ07

pagefile08.sys AV08 AW08 AX08 AY08 AZ08

pagefile09.sys AV09 AW09 AX09 AY09 AZ09

6.1 Research Evaluation 191

Experiment 3

The goal of the experiment was to evaluate the results after the developed

software application had been tested in a controlled environment to determine

whether it was functioning effectively. The experimental process was carried

out according to the following plan:

Subjects of Experiment

The subjects were recruited from among post-graduate students in the

Information Security Research Group, University of Glamorgan.

Structure of Experiments

i. Data

The experiments used AppEvent04.Evt, SecEvent04.Evt, SysEvent04.Evt and

pagefile10.sys from the examined disks (readable disks) that were used in the

analysis of information remaining on disks obtained as part of the disk study

at the University of Glamorgan.

ii. Questionnaires:

A questionnaire (see Appendix I) was given to all subjects to be answered after

completion of the set task.

iii. The process:

The process of the questionnaire is carried out by giving the participants

briefing describing the tasks and objectives of the questionnaire.

6.2 Comparison with Other Tools 192

iv. The tasks:

The following tasks were used in the experiments:

A. For the Extensible Architecture of the Prototype

Task 1: To verify the extensible architecture.

B. For Event log files

Task 1: To install the event log plugin with SAFTool.

Task 2: To open and analyse the event log file with SAFTool.

Task 3: To open and further analyse the event log file (visualise

event log files).

Task 4: To generate report with SAFTool.

C. For Swap files

Task 1: To install the pagefile plugin with SAFTool.

Task 2: To open and analyse the pagefile file with SAFTool.

Task 3: To open and further analyse the pagefile file (visualise

pagefile file) with SAFTool.

Task 4: To search word (keyword search) with SAFTool.

Task 5: To generate report with SAFTool.

6.2 Comparison with Other Tools

The Windows system generated artefacts forensic analysis system concerns

the use of data structure (refer to Definition 2 of Chapter 1) when extracting

data of an artefact and visualising the data. The proposed tool for this purpose

is similar to other tools related to forensic analysis such as JView (Microsoft,

2005), EnCase Registry Viewer (Guidance Software, 2005), FTK Registry

Viewer (AccessData, 2009). However, these tools in particular EnCase

(Guidance Software, 2005); and FTK (AccessData, 2009) focus on the Windows

Registry as the key Windows artefact. In addition, comparing this approach to

(Vlastos and Patel, 2007), a tool which also involves presentation, the

approach selected in this thesis includes reporting tools that help the

6.3 Objective Evaluations Experiment of Forensic Analysis System 193

investigator to easily assess data found in the selected Windows system

generated artefacts.

The work undertaken in this research is similar to Carvey’s (2007) Perl

script, as the same mechanism is used to identify information in the artefacts.

Data structures are extracted from a file, and field offsets extracted from an

artefact are used as field descriptors of an artefact to extract information (as

elaborated upon in Section 6.3) and not rely on Windows API.

6.3 Objective Evaluations Experiment of Forensic
Analysis System

This section describes the analysis performed by the prototype forensic

analysis system on a selection of event log and swap files sourced from data

collected as part of the disk studies carried out at the University of Glamorgan

(Jones et al., 2006, 2008, 2009). The experimentation platform consisted of a

PC (Pentium 4, with 4 GB memory) running under a Windows XP Professional

environment (32 Bit, Version 2002) and during the experiment no other

programs were running on the PC.

After retrieving and examining evidence data using the prototype tool,

SAFTool, the results were verified by performing the same tasks with

comparable forensic software. The experiment used a number of pieces of

software for comparison: Event Viewer, which is a GUI manager for the Event

logs by Microsoft; Carvey’s Perl script (evtstats.pl and lsevt.pl), which is the

script which parses the header of the Event logs file and determines the

number of records that should exist (for the Event logs); and WinHex

(Vyavhare, 2009), a hexadecimal editor to validate the results of the prototype

tool (for the Swap files). The Event Viewer, evtstats.pl and lsevt.pl, and

WinHex will be examined along with the prototype tool for evaluation

purposes. The results of using these forensic tools over the same test data is

compared to the SAFTool results. The tools should retrieve the same

information when the same event logs file or swap file is analysed and

presented.

6.4 Practical Experiments 194

 Measuring the ability to retrieve information required visualising the

information extracted from Windows system generated artefacts in the form of

narrative constructs and also in graphical form. The comparison and accuracy

of information retrieved by the tools was based on the number of records and

the content recovered from the artefacts. Since our prototype tool, the SAFTool

had not been pre-assessed for its extracting and visualising capabilities, we

used the accuracy scores relating to the data extracted (number of records

parsed) from each file to determine whether the tool was functioning as

desired under normal conditions. Snapshots were collected of the tool’s

functioning capability.

6.4 Practical Experiments

This section describes the practical experimentation. As discussed in Chapter

4, this took place over three experiments, each focused on determining

whether the objectives (Section 1.3.3) had been met.

As discussed in Section 6.1, the first and second practical experiments

assess the functionality of the tool. This assessment was to determine whether

the prototype tool was functioning according to the design requirements.

• The first experiment examined the SAFTool to determine whether the

application was functioning as desired under normal conditions.

Screenshots were collected from this process.

• The second experiment examined the SAFTool as a whole against the

nominated forensic software (Event Viewer, evtstats.pl, lsevt.pl and

WinHex), to discover how the SAFTool compared to existing solutions

(Section 6.4.1 until Section 6.4.5).

• In this experiment, the analysis involved determining the SAFTools

ability to parse the event logs and swap files and display the results

in a suitable format (Section 6.4.6).

6.4 Practical Experiments 195

• In this experiment, the variables examined in this experiment are

the number of records parsed with processing time from the

selected event logs and swap files (Section 6.4.7).

• The third experiment examined the SAFTool to determine how well the

system supported the analysis of Windows system generated artefacts

by evaluating the functionalities and usefulness of the SAFTool (Section

6.5).

To carry out the following experiments, a dataset was created that contained

10 event log files and 10 swap files (pagefile.sys). A list of the files used and

associated information can be seen in Appendix G.

6.4.1 Experiment on the Event Logs with the Event

Viewer

The following steps took place when running this experiment:

1. The dataset from Appendix G was inserted into the Windows

directory of the test computer.

2. The Event Viewer application was invoked and set to view the events.

Screenshots, number of records parsed and processing times were

collected from this process.

3. The tool, as it is part of Windows, provides output via a Windows

GUI. When data started to appear in the Event Viewer application,

the Action menu was clicked when the mouse position was on the left

pane and next the Action menu was clicked when the mouse position

was on the right pane.

Results

A visual record of the output from the Microsoft event viewer is shown in

Figure 6.1. The Event logs are presented to the user in a Windows Explorer

like interface. Event Viewer tool has two different panes. The left pane shows

the list of available log files, the right pane shows the selected log’s contents.

The left pane shows the list of available log files: Application, System and

Security log, while the right pane shows a list of different event

6.4 Practical Experiments 196

entries, one line per entry. The menu options in Event Viewer are context

sensitive, depending on where the focus of the mouse is at the time. The menu

choices may change. In having two panes, and context sensitive menu option

make the tool more difficult to use as users can be confused at what

information they are looking at. Opening a saved log is not a straightforward

process. There are four items that the Event Viewer has to be told: the File

name, Files of Type, Log Type and Display Name. This means that opening a

file is not possible or wrong information is displayed if the items given is not

correct. In Figure 6.1, the Event Viewer is shown showing the Windows Event

logs file in two panes with context sensitive Action menu for one Event log test

subject. This Figure 6.1 shows the result from the third step of the experiment.

Sometime when opening a log files that were saved or imaged from another

system, the Event Viewer gives an error message that the file is corrupted.

Figure 6.1: The Event Viewer Shows the Content of the Windows Event Logs

Left pane shows the list of

available log files.

The Action menu with the

focus on the left pane.

Right pane shows a list of

each different event entry,

one line per entry.

The Action menu with the

focus on the right pane.

File name, Files of Type, Log

Type and Display Name need

to be input when opening a

saved log files.

6.4 Practical Experiments 197

6.4.2 Experiment on the Event Logs with the evtstats.pl

and lsevt.pl

This experiment examined how evtstats.pl and lsevt.pl could view events in an

event log file. The following steps took place when running this experiment:

1. The dataset listed in Appendix G was inserted into the Windows

directory of the test system.

2. The evtstats.pl application was invoked and set to view the events.

3. The lsevt.pl application was invoked and set to view the events.

4. Screenshots, number of records parsed and processing times were

collected from this process.

5. The event log files were processed and appeared in the Command

Prompt window.

Results

The visual output can be seen in Figures 6.2 and 6.3. The Perl scripts of

Carvey (2007) collected information from the Event log files and displayed

simple statistics collected from the .Evt file shown in Figure 6.2 and displayed

event records in simple listing format as illustrated in Figure 6.3. The

mechanism operated like this: the script parsed the header of the Event log file

and determined the number of records that should exist, then parsed through

the contents of the Event log file and, using various tags from within each

event record, performed an actual count of the number of records found.

6.4 Practical Experiments 198

Figure 6.2: The evtstats.pl Shows the Statistic from an Event Log File

Figure 6.3: The lsevt.pl Shows the Event Records from an Event Log File

Display of event records in a

simple listing format.

Display of a simple statistic

collected from an .Evt file.

6.4 Practical Experiments 199

6.4.3 Experiment on the Event Logs with the SAFTool

This experiment examined (i) the built in extensible architecture of the

SAFTool by testing the mechanism used to install a new plugin; and (ii) how

the SAFTool examined and viewed events in an event log file. The following

steps took place when running this experiment:

1. The dataset from Appendix G was inserted into the Windows

directory of the test system.

2. The SAFTool was run. Initially no option of artefact names could be

seen on the menu.

3. The Install Plugin was clicked; the process of installing the plugin

was performed.

4. The Analyse Event Log was clicked; the process of analysing event

logs was performed.

5. The Visualise Event Log was clicked; the process of visualising

events for event logs was performed.

6. The Report Event Log was clicked; the process of reporting the event

logs was performed. Screenshots, number of records parsed, and the

processing times were collected during the experiment.

Results

In Chapter 5, the extensible architecture, on which the prototype

implementation was based, was outlined. The architecture enables a variety of

system artefacts to be analysed by enabling other system objects and tools to

be added easily; and it also caters for different data structures. In other words,

a number of possible complex data structures within Windows can be easily

analysed using the developed architecture. ‘Plug and Play’ features can be

added easily, depending on what exactly is being analysed, how the analysis is

to be shown, and what type of case is under investigation.

 The Windows Event logs and Swap files were investigated to

demonstrate that the proposed extensible architecture could extract

information from the known data structure of Windows Event logs and the

6.4 Practical Experiments 200

not known data structure of Swap files. The architecture also allows features

to be added to support visualisations and various forensic analysis capabilities.

A concept of plugin is introduced to the architecture. A plugin can be developed

to perform a specific function on the data. The plugin can perform searches on

the data sets data and determine the most appropriate way to display the

results in the interface. In order to examine the architecture’s extensibility,

the plug and play features were examined.

The visual output can be seen in Figure 6.4. The user interface of the

SAFTool is dynamic. It is dynamic in such a way that it shows the

implementation of the extensible architecture of the application. As illustrated

in Figure 6.4, the prototype tool did not display the list of artefact name files

for the user to choose to analyse (Analyse menu), further analyse (Visualise

menu) and report (Report menu) before an artefact’s plugin had been installed.

Furthermore, the Analyse menu, Visualise menu and Report menu were

disabled. Only the File menu was enable to be clicked for installing the plugin,

to restart the application when a plugin was to be reinstalled, and exit the

application. When a plugin was installed, the Analyse menu, Visualise menu

and Report menu were enabled and displayed the artefact name files. Figure

6.5, Figure 6.6 and Figure 6.7 illustrated the Analyse menu; Visualise menu;

and Report menu were enabled and displayed the artefact name files. This

feature allows the core application to be extended easily without modifying its

original code base or core application and enhances its functionality with new

plugins.

6.4 Practical Experiments 201

Figure 6.4: No Plugin Installed

Figure 6.5: The SAFTool Displays Active Menu When the Event Logs Plugin

Has Been Installed

6.4 Practical Experiments 202

Figure 6.6: Th SAFTool Displays Active Menu When the Swap Files Plugin

Has Been Installed

Figure 6.7: The SAFTool Displays Active Menu after the Event Logs and
Swap Files Plugin Have Been Installed

The SAFTool allows the user to launch the application, and then select

the specific system generated artefacts they wish to process. In this situation,

the user can select the Event log as the artefact, and provide the location of the

extracted files for analysis or allow the application to scan the computer for

6.4 Practical Experiments 203

any .Evt files available, thus the user can select the desired file to be

examined. For example, in Figure 6.8, the SAFTool displays the list of event

log files the user can choose to analyse.

The SAFTool shows the three main categories of event log (Application,

Security and System) as a separate file. Once the files have been selected, the

user can examine the data that has been processed by the prototype tool. The

prototype tool extracts the following data from the files: Record number, Date

and Time, Event ID, Event Type, Event Category, Source Name, Computer

Name and Description. The user does not need prior knowledge of the internal

data structure of the files, and the data is extracted.

Figure 6.8: The SAFTool Display the Event Log Files the User Can
Choose to Analyse

The logs in their native .Evt binary format provide the most flexibility

in analysing them. The prototype tool parses through the information in those

files in a manner that does not rely on the Windows API. This is important

since this approach not only provides the user with the possibility of

discovering hidden information or having loss of data if the file comes from

other formats such as .txt or .csv. It also allows the user to perform

analysis on platforms other than Windows; in other words investigators are

not restricted to analysing Windows images on a Windows platform. The

6.4 Practical Experiments 204

visual output can be seen in Figure 6.9. As illustrated in Figure 6.9, the

prototype tool displays the menu user can choose to analyse event logs and

further display the time taken to process the event logs.

Figure 6.9: The SAFTool Displays the Menu Option, Progress Window and

Processing Time Message Window for the Event Logs Analysis

The event records in the files are saved in the database for further

analysis. Each category of event log has its own table in the database with its

file name and timestamp for the table name. The purpose of choosing a file

name and timestamp for the table name is to make it unique and simplify the

retrieval for further analysis. The user does not need to know the table name

and where the table is stored, the prototype tool automatically shows the

artefact name and the user simply selects the desired artefact to be analysed.

Further, the prototype tool offers the user (via a menu options) the opportunity

6.4 Practical Experiments 205

to visualise the event logs. As illustrated in Figure 6.10, the prototype tool is

shown displaying the list of event file name the user can choose to view

further.

Figure 6.10: The SAFTool Displays the Menu Option and List of Event Logs

Files User Can Choose to View Further

Further analysis is provided in the prototype tool for event logs. The

user can select a specific event log and the visualisation format. There are two

formats used in displaying the file contents of event logs. One format lists all

the event records in an event log file, one line per entry. Figure 6.11 shows the

SAFTool displaying the AppEvent04.Evt event records.

6.4 Practical Experiments 206

Figure 6.11: The SAFTool Displaying the AppEvent04.Evt
Event Records

The second format displays the events information in graphical form

and a timeline of event records. The graph shows the number of types of event

which will entries relating to Information, Warning and Error for Application

and System logs, and Success or Failure for the Security log. According to

Anson and Bunting (2007), “some information, warning or error events may be

of evidentiary value, the presence of a warning or an error by itself is not

indicative of an attack”. The visual output can be seen in Figure 6.12. This

Figure 6.12 shows the graph displaying the number of entries of two types in

this particular log, information and warning events. The timeline of event log

records is the graphical representation of events in chronological order. The

timeline portray events as they occurred and tells what happened as it

happened (see Figure 6.13). According to Anson and Bunting (2007), “timelines

are an excellent means of conveying technical facts in a way that makes

understanding much easier”.

6.4 Practical Experiments 207

Figure 6.12: The Types of Events for the Event Logs

Figure 6.13: The Timeline of Event Logs Records

6.4 Practical Experiments 208

Once an investigator has located the information they require that information

needs to be included into a report. As illustrated in 6.14, the prototype tool

provides a feature to generate a report. Upon clicking the generate report

option, the Microsoft document will pop up with information about the file

name analysed, the date the file was created, the file hash value and the

number of records existed in the file. At this point, a report has been created

and been saved (see Figure 6.15 below).

Figure 6.14: The SAFTool Allows the User to Generate A Report for the
Event Logs Analysis

Figure 6.15: The Report Generated for the Event Logs Analysis

6.4 Practical Experiments 209

6.4.4 Swap Files Analysis Using WinHex

The following steps took place when running this experiment:

1. The file listed in Appendix G was inserted into the Windows directory

of the test system.

2. The WinHex application was invoked and set to view the swap files’

content. Screenshots, total size of data and processing times were

collected from this process.

Results

As discussed in Chapter 3, WinHex is the tool provided by X-Ways Software

Technology AG and is capable of performing a number of operations including

displaying the content of each file type, including swap files.

The user can select to open the swap files from the File menu of the

WinHex window. The data contained within the swap files are presented to the

user in GUI in a hexadecimal display and an ASCII display window (although

there are options to display in a full width window).

 WinHex provides the user with information about the logical size of the

file (size without slack) or physical size of a directory, physical file size and

valid data length (for files stored in an NTFS file system) in the Info Pane. The

visual output can be seen in Figure 6.16 which illustrates the hexadecimal

data display, the ASCII text display, and the information window.

The WinHex Search Menu provides a find text command to search for a

specified string of ASCII characters in the current file. The visual output from

WinHex can be seen in Figure 6.17.

6.4 Practical Experiments 210

Figure 6.16: The Hexadecimal Data Display, ASCII Text Display
And Info Pane for WinHex

Figure 6.17: The Find Text Function for WinHex

6.4 Practical Experiments 211

6.4.5 Swap Files Analysis Using the SAFTool

This experiment investigated how the SAFTool can examine and views the

contents of a swap file. The following steps took place when running this

experiment:

1. The dataset from Appendix G was inserted into the Windows

directory of the test computer.

2. The SAFTool was run.

3. The Analyse Pagefile menu was clicked; the process of analysing the

swap file was performed.

4. The Visualise Pagefile menu was clicked; the process of visualising

the swap file contents was performed.

5. The Report Pagefile menu was clicked; the process of reporting the

examining of the swap file was performed. Screenshots, total size of

data and processing times were collected from this process and are

detailed below.

Results

The prototype tool allows the user to launch the application then select the

system generated artefacts. In this situation, the user can select the swap files

as the artefact, and provide the location of the extracted files for analysis or

allow the application to scan the computer for any .sys files available, thus

the user can select the desired file to be examined. The visual output can be

seen in Figure 6.18 which illustrates the prototype tool displaying the list of

swap files the user can choose to analyse.

Once the files have been selected, the user can examine the data

depicted by the prototype tool. The user does not need prior knowledge of the

internal data structure of the files.

6.4 Practical Experiments 212

Figure 6.18: The SAFTool Displays the List of Swap Files the User
Can Choose to Analyse

The swap files in their native binary format provide the most flexibility

in analysing them. Collecting the swap file on a live system is cumbersome

since the Windows operating system has complete control and protection of it.

The prototype tool parses through the information in those files in a manner

that translates a stream of bytes into a usable file structure of an artefact and

recovers the content of the file. The visual output from the SAFTool can be

seen in Figure 6.19. The prototype tool displays the menu option, the progress

window, and the processing time for the swap files’ analysis.

6.4 Practical Experiments 213

Figure 6.19: The SAFTool Displays the Menu Option, Progress Window and
Processing Time Message Window for the Swap Files Analysis

The event records in the files are saved to the database for further

analysis. Each category of event log has its own table in the database with its

file name and timestamp for the table name. The purpose of choosing a file

name and timestamp for the table name is to make it unique and retrievable

for further analysis. The user does not need to know the table name and where

the table is stored, since the prototype tool automatically shows the artefact

name and the user simply selects the desired artefact to be analysed. Further,

the prototype tool offers the user a menu to visualise the swap files as shown

in Figure 6.20. This figure shows the prototype tool displaying the list of swap

file names the user can choose to further analyse.

6.4 Practical Experiments 214

Figure 6.20: The SAFTool Displays the Menu Option and List of Swap File
Names the User Can Choose to Visualise the Swap Files

The prototype tool supports the investigator by enabling the selection of

specific swap file and a visualisation format for the file. Two possible

visualisation formats have been included in the prototype tool. Firstly, the

hexadecimal data display and ASCII text display format to display the

detailed contents of each swap file. In Figure 6.21, output from the prototype

tool displays the hexadecimal data display and ASCII text display format for

the contents of swap files.

6.4 Practical Experiments 215

Figure 6.21: The Hexadecimal Data Display and ASCII Text Display Format
for Displaying the Contents of Swap Files

The second visualisation included in the prototype is the block view

format which displays the file’s content. This consists of series of square blocks

colour coded to indicate the density (the percentage of the ASCII character) of

swap file’s content. Each 4MB file’s content is colour coded according to a

predetermined scheme and is controlled by the percentage of the ASCII

character in it. This 4 is used due to, when the memory in used exceeds the

amount of RAM available, the operating system will move pages (4KB pieces)

of virtual address spaces to the swap file. 4MB is used instead of 4KB due to

the size of swap file used which average was 555673KB. The block view format

which displays the file’s content is implemented as this visualisation technique

(nonhierarchical visualisation technique defined by Teerlink and Erbacher

(2006)), can aid the investigator to direct their search to suspicious area of the

swap file. If the block’s content contrasts greatly with an other block, it is

easily spotted because it stands out against a sea of different coloured blocks.

This method is used due to the fact that it is common that pages in swap files

6.4 Practical Experiments 216

are blank or contain less ASCII content. The visual output can be seen in

Figure 6.22. As illustrates in Figure 6.22, the block view displays a swap file in

which the density of the block is controlled by the intensity within the 4MB

data of ASCII characters.

Figure 6.22: The Square Block Diagram for the
Density of Swap Files

The prototype tool basic information need to be exported to a report. The

visual output can be seen in Figure 6.23. The prototype tool provides a limited

feature to generate a report. Upon clicking the generate report option, a

Microsoft word document is created containing information about the file name

analysed, the date the file created, the file hash value and number of records

that exist in the file. At this point, a report has been created and have been

saved, which is shown in Figure 6.24 below.

6.4 Practical Experiments 217

Figure 6.23: The SAFTool Enables the User to Generate A Report for the
Swap Files Analysis

Figure 6.24: The Report Generated for the Swap Files.

6.4 Practical Experiments 218

6.4.6 Analysis of the Results

The following table (Table 6.6) below shows the results of the desired functions

comparison. Overall, all the representatives were able to parse the test dataset

and display the results accordingly. Table 6.6 shows, the SAFTool is able to

parse system artefacts files and visualise the results in the forms of narrative

constructs and also in graphical form, that is the tables, graph, timeline,

hexadecimal data display, ASCII text display and block view.

Table 6.6: Ability to Parse the Dataset and Display the Results

Function Event Viewer
evtstats.pl /

lsevt.pl
SAFTool

Parse Event Logs

Yes.

Windows API is

used.

Reports the saved

event logs file is

corrupted when

trying to open it.

Yes.

Windows API is

not used.

Yes.

Windows API is

not used.

Format for

Displaying Results

Two panes.

One line per entry.

Simple listing

format.

Narrative

construct and

graphical form,

i.e.

Tables, graph

and time lines.

Function WinHex SAFTool

Parse Swap Files Yes Yes

Format for

Displaying Results

Hexadecimal data display

and ASCII text display.

Hexadecimal data display,

ASCII text display and

Block Diagram.

6.4 Practical Experiments 219

6.4.7 A Comparison of the Results for the Event Logs

and Swap Files Experiments

Measuring the accuracy of this tools ability to retrieve information required

assessment of the number of records in the artefacts with known and not

known data structures, and evaluation of their visualisation in the form of a

narrative construct and graph. For this evaluation, the experiments were

performed on a number of artefact files of varying sizes that were extracted

from different hard drive images (dataset from Appendix G) and using the

tools mentioned earlier in Section 6.2.

The results of applying the various tools to the test files listed in

Appendix G are summarised for discussion in Table 6.7. This table indicates

the number of records that are processed from individual event logs (one line

per log file). Ultimately, the SAFTool was able to parse the files and locate a

greater or equal number of records than the evtsstat.pl. The Event Viewer was

not able to parse the files. When using Event Viewer as a tool to open and view

the event records of a saved log file, viewing for the event records is

impossible. This can be accounted for because the viewer relies on the eventlog

service API. The file would be reported as corrupted because of the out of

synch fields and the file status byte in both the header and the floating footer

(Anson and Bunting, 2007).

Referring to the data shown in Table 6.7, there were two event log files

examined by evtstats.pl and SAFTool that generated different results, which

were the SysEvent01.Evt and AppEvent02.Evt from the dataset in Appendix

G. Both were obtained from parsing the Event log files in binary mode and

bypassing the Windows API all together. According to Schuster (2007), such

variation in results is likely due to a special condition regarding the Event log

record, in that a record is written to the end of the .Evt file but wraps around

the beginning of the file, resulting in part of the event record following the

header.

6.4 Practical Experiments 220

Table 6.7: Number of Records Retrieved for Event Viewer, evtstats.pl and
SAFTool

Test Data File

Name

Size

(KB)

No. of Records

Event Viewer evtstats.pl SAFTool

AppEvent01.Evt 512 X 2317 2317

SecEvent01.Evt 64 X
no records

found

no records

found

SysEvent01.Evt 512 X 1364 1491

AppEvent02.Evt 512 X 1909 1911

SecEvent02.Evt 512 X 1949 1949

SysEvent02.Evt 512 X 2599 2599

AppEvent03.Evt 64 X 206 206

SecEvent03.Evt 64 X 260 260

SysEvent03.Evt 192 X 765 765

X – unable to complete the operation. The event log file is reported as

corrupted.

Figure 6.25 illustrates the total event records located for the evtstats.pl

script and the prototype SAFTool.

Figure 6.25: Total Event Records Located for the evtstats.pl Script and
SAFTool

0
206 260

765

1364

1909 1949

2317

2599

0 206 260

765

1491

1911 1949

2317

2599

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9

N
o

.
o

f
R

e
co

rd
s

Total of Records

evtstats

SAFTool

6.4 Practical Experiments 221

Data in Table 6.8 shows the processing times for the requests

submitted to the forensic analysis system during the processing of the event

logs. In the context of this chapter, processing time is the duration in time

(measured in milliseconds (ms)) of the forensic analysis system to generate an

analysis display upon receiving an analysis request. According to Zhu (2007),

“the common measure of efficiency is the time taken to complete a task and

baseline task completion times should be recorded for non-visual displays and

used as a reference”.

Table 6.8: Processing Time for Event Viewer, lsevt.pl and SAFTool

Test Data File

Name

Size

(KB)

Event

Viewer

Processing

Time (ms)

lsevt.pl SAFTool

No. of

Records

Processing

Time (ms)

No. of

Records

Processing

Time (ms)

AppEvent01.Evt 512 X 2317 2172 2317 14813

SecEvent01.Evt 64 X

no

records

found

no records

found

no

records

found

no records

found

SysEvent01.Evt 512 X 1364 1641 1491 8379

AppEvent02.Evt 512 X 1909 1719 1911 10427

SecEvent02.Evt 512 X 1949 1852 1949 13032

SysEvent02.Evt 512 X 2599 2235 2599 16595

AppEvent03.Evt 64 X 206 719 206 1392

SecEvent03.Evt 64 X 260 859 260 1422

SysEvent03.Evt 192 X 765 953 765 5658

 X – unable to complete the operation. The event log file is reported as corrupted.

Table 6.8 shows the time required to process the event logs using

lsevt.pl and SAFTool. It should be noted that the lsevt.pl tool is used in this

comparison due to the fact that evtstats.pl only displays simple statistic mean

while lsevt.pl displays event records in a listing format. The graph in Figure

6.26 is generated based on the parses through the contents of the Event log file

and display event records. The results show more time is required by the

SAFTool to parse through the Event log file (with a greater or equal number of

records when compare to lsevt.pl) and display the event records. The total

processing time would be in milliseconds and the practical impact is that extra

6.4 Practical Experiments 222

in average 8965 milliseconds is taken. This would suggest that, due to the

visualisation of the analysis in a graphical form, the processing time is in

average 8965 milliseconds; and the Carvey program (lsevt.pl) shows numbers

of record in a simple listing format. Both illustrate almost the same shapes of

graph, i.e. processing time increases with the file sizes. Note the fact that the

Event Viewer supplied with the operating system was unable to deal with a

saved event logs, the experiment with the Event Viewer could not be

conducted.

Figure 6.26: Graph Showing the Number of Records Located With
Processing Time

 Data in Table 6.9 shows total size of data parsed for WinHex and the

SAFTool. As can be seen, the same results were recorded for each tool. A graph

(see Figure 6.27) was subsequently drawn comparing the total size of data

parsed by each tool. It confirmed the result in Table 6.9.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
o

ta
l

R
e

co
rd

s
Lo

ca
te

d

Milliseconds
Thousands

Comparison of Total Records Located Over Time

lsevt

SAFTool

6.4 Practical Experiments 223

Table 6.9: Total Size of Data for WinHex and the SAFTool

Test Data

File Name

Size (KB)

Total Size of Data (bytes)

WinHex SAFTool

pagefile01.sys 1,506,576 1,598,029,824 1,598,029,824

pagefile02.sys 540,672 553,648,128 553,648,128

pagefile03.sys 786,432 805,306,368 805,306,368

pagefile04.sys 774,144 792,723,456 792,723,456

pagefile05.sys 117,760 120,586,240 120,586,240

pagefile06.sys 512,000 524,288,000 524,288,000

pagefile07.sys 173,648 177,815,552 177,815,552

pagefile08.sys 196,608 201,326,592 201,326,592

pagefile09.sys 393,216 402,653,184 402,653,184

Figure 6.27: Comparison of Total Size of Data Shown by the WinHex and
SAFTool

1,598

554

805
793

121

524
178

201
403

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

T
o

ta
l

S
iz

e
 o

f
D

a
ta

 (
b

y
te

s)

M
il

li
o

n
s

File Name

Comparison Total Size of Data

WinHe

x

6.4 Practical Experiments 224

Table 6.10 shows the processing times for WinHex and the SAFTool

which was subsequently displayed in graph form, Figure 6.28 and Figure 6.29

respectively.

In the context of this chapter, processing time recorded in milliseconds

(ms) in term of the time taken by the forensic analysis system to generate an

analysis display. It took a longer generate hexadecimal data display or an

ASCII text display for the contents of each swap file when the SAFTool was

employed. The additional time was required as a result of the need for the

SAFTool to find the data structure and to identify the structure of each record

in a binary data file without using a predefined template, WinHex was slightly

faster due to the uses of a pre-defined template to examine a swap file and has

the capability to move freely forwards and backwards within the data (X-Ways

Software Technology AG, 2010).

Table 6.10: Processing Time for WinHex and SAFTool

Test Data

File Name

Size

(KB)

Processing Time (ms)

WinHex SAFTool

pagefile01.sys 1,506,576 531 575,484

pagefile02.sys 540,672 469 235,078

pagefile03.sys 786,432 516 292,579

pagefile04.sys 774,144 500 266,562

pagefile05.sys 117,760 297 38,343

pagefile06.sys 512,000 437 137,063

pagefile07.sys 173,648 390 50,297

pagefile08.sys 196,608 406 55,438

pagefile09.sys 393,216 421 98,765

6.4 Practical Experiments 225

Figure 6.28: Total Size of Data Located Over Time for WinHex

Figure 6.29: Total Size of Data Located Over Time for the SAFTool

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

250 300 350 400 450 500 550

T
o

ta
l

S
iz

e
 o

f
D

a
ta

 (
b

y
te

s)
 L

o
ca

te
d

M
il

li
o

n
s

Milliseconds

Comparison of Total Size of Data (bytes) Located Over Time

Win

Hex

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

0 100 200 300 400 500 600

T
o

ta
l

S
iz

e
 o

f
D

a
ta

 (
b

y
te

s)
 L

o
ca

te
d

M
il

li
o

n
s

Milliseconds
Thousands

Comparison of Total Size of Data (bytes) Located Over Time

SAFTool

6.4 Practical Experiments 226

Chapter 2 outlined the key requirements of a forensic investigation including

outlining in Chapters 2 and 3 the key features of forensics tools. According to

(Volonino et al., 2007), “computer forensics tools support the investigator by

helping to: recreate a specific chain of events or sequence of user activities;

search for key words and dates and determine which of the data is relevant;

search for copies of previous document drafts; search for potentially privileged

information; search for the existence of certain programs, such as file-wiping

programs; and authenticate data files and their date and time stamps”.

According to Shinder and Tittel (2002), swap and page files contain all

sorts of data, including e-mail, web pages, word processing documents and any

other work that has been performed on the computer during the work session.

In line with this, five search terms related to the user Internet activity,

specifically e-mail communications were selected to use as a test set for

searching. The terms were chosen to check for their existence in the swap files

were ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term.

Their existence in the swap files as identified by WinHex and the

SAFTool is shown in Table 6.11 and Table 6.12, respectively.

6.4 Practical Experiments 227

Table 6.11: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap
Files Identified by WinHex

Table 6.12: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap

Files Identified by the SAFTool

Test Data

File Name

Size

(KB)

SAFTool

Existence of

‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile01.sys 1,506,576 √ √ √ √ √

pagefile02.sys 540,672 √ √ √ √ √

pagefile03.sys 786,432 √ √ √ √ √

pagefile04.sys 774,144 √ √ √ √ √

pagefile05.sys 117,760 √ √ √ √ √

pagefile06.sys 512,000 √ √ √ √ √

pagefile07.sys 173,648 √ √ √ √ √

pagefile08.sys 196,608 √ √ √ √ √

pagefile09.sys 393,216 √ √ √ √ √

Test Data

File Name

Size

(KB)

WinHex

Existence of

‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile01.sys 1,506,576 √ √ √ √ √

pagefile02.sys 540,672 √ √ √ √ √

pagefile03.sys 786,432 √ √ √ √ √

pagefile04.sys 774,144 √ √ √ √ √

pagefile05.sys 117,760 √ √ √ √ √

pagefile06.sys 512,000 √ √ √ √ √

pagefile07.sys 173,648 √ √ √ √ √

pagefile08.sys 196,608 √ √ √ √ √

pagefile09.sys 393,216 √ √ √ √ √

6.5 Subjective Evaluations Experiment of Forensic Analysis System 228

6.5 Subjective Evaluations Experiment of Forensic

Analysis System

To validate the results of the tool in interpreting and the data extracted from

the Event logs and Swap files, further evaluation experiments were conducted.

The objective of the evaluation was: to gain an understanding of the level of

awareness surrounding the use of System Generated Artefacts in an

investigation; to assess subjects’ level of satisfaction with the SAFTool ability

to aid their understanding of System Generated Artefacts and their data

content; and to assess the degree to which the SAFTool can be modified and

extended.

 The functionality and usefulness of the SAFTool is further examined by

the use of a series of questionnaires. The questionnaires targeted

knowledgeable and experienced users in the digital forensics domain. The

objectives is to verify the implementation of the SAFTool by (1) viewing

different types of events recorded in the Event logs, (2) viewing the contents of

Swap files, (3) searching for traces of keywords in Swap files as keyword

searching is a primary method for the examination of large blocks of data

(Gagnon, 2008), (4) further analysing the event logs and swap files by

displaying the file information regarding the contents of the files in a graphical

manner, and (5) generating report.

The structure of the experiment is described in Section 6.5.2, which is

then followed by a summary of the questionnaire results.

6.5.1 Subjects of Experiments

The subjects were recruited from among post-graduate students from the

Information Security Research Group, University of Glamorgan. These

individuals are in different stages of pursuing doctoral awards and is either

actively researching the area of computer forensics or are responsible for

teaching on the undergraduate or postgraduate awards offered by the Faculty

of Advanced Technology at the University of Glamorgan. The goal of the

6.5 Subjective Evaluations Experiment of Forensic Analysis System 229

system generated artefacts forensic analysis system is to enable it to visualise

the known data structure of Event logs and the not known data structure of

Swap files in such a way that the investigator can easily see what data is

available within these system areas of the Windows, only students who

already had previously participated in a disk study were recruited as subjects.

Further, because the system is a prototype, that at the moment only handles

event logs and swap files, a basic knowledge of event logs and swap files was

also required so that subjects could easily understand the tasks set and later

be better able to evaluate the data in the display.

 The objective of the evaluation was to evaluate the functionalities and

usefulness of the prototype architecture with the utilisation of system

generated artefacts as forensic evidence.

Test files were extracted from the hard drive images from the forensic

laboratory disk study. Only Event logs files and Swap files were extracted as

subjects. The experiments used AppEvent04.Evt, SecEvent04.Evt,

SysEvent04.Evt and pagefile10.sys from the examined disks (readable disks)

that were used in the analysis of information remaining on disks offered for

sale on the second hand market at the University of Glamorgan (2008). This is

listed in Appendix G.

 A total of five subjects participated in the evaluation experiments. All

the five subjects had been involved to varying degrees in the residual data disk

studies which had examined volumes and types of information that remains on

computer hard drives offered for sale on the second hand market. Thus, they

had been using system artefacts as forensic object. The subjects’ expertise in

forensic analysis varied, ranging from specialists in hard drive forensic

analysis, mobile forensics to network forensics. Table 6.13 summarises their

background knowledge about forensic in general and system artefacts in

particular.

As outlined four files subjects were selected in the evaluation

experiments and Table 6.14 summarises the properties of the files. Three files

is used for the event logs since an event logs comprises three files as outlined

6.5 Subjective Evaluations Experiment of Forensic Analysis System 230

in Chapter 3, and one file is used for the swap file, for analysis and visualising

the event logs and swap file.

Table 6.13: Forensic Knowledge and Expertise of Human Subjects

Subject S1 S2 S3 S4 S5

Years of experience in computer forensics

field

5 2 >5 1 5

No. of computer forensics tool used 5 2 >5 1 5

Table 6.14: File Size of File Subjects

Subject Size (KB)

AppEvent04.Evt 512

SysEvent04.Evt 512

SecEvent04.Evt 64

pagefile10.sys 393,216

6.5.2 Structure of Experiments

i. Questionnaires:

A questionnaire (see Appendix I) was given to all subjects to be answered after

completion of the set task.

Objectives of the questionnaire:

1. To find out whether they were aware of system generated artefacts

before this experiment and if so had they examined system generated

artefacts to find digital evidence.

2. To find out whether this prototype software helped them easily see what

data was available within these system areas of the Windows operating

system.

ii. The process:

The questionnaires process was as follows:

1. A briefing was given to participants, describing the tasks and objectives

of the questionnaire.

2. The test data was explained to participants. They were requested to use

the test data for the experiments.

6.5 Subjective Evaluations Experiment of Forensic Analysis System 231

3. The participants were then required to carry out an evaluation of the

system generated artefacts (AppEvent04.Evt, SecEvent04.Evt,

SysEvent04.Evt and pagefile10.sys) as forensic evidence using the

prototype software (SAFTool).

4. The participants were then asked to answer the questionnaire as in

Appendix I, which addressed the metrics for performing each type of

evaluation.

5. The results from the questionnaires were then analysed and presented in

tabulated form and graphical charts.

iii. The task:

A. The Extensible Architecture of the Prototype

The following tasks were used in the experiments:

Task 1:

To verify the extensible architecture, do the following:

1. Click Analyse (No displayed artefact name)

2. Click Visualise (No displayed artefact name)

3. Click Report (No displayed artefact name)

Task 2:

To verify the extensible architecture after the Event log plugin and/or Swap

file plugin have been installed, do the following:

1. Click Analyse (Artefact names are displayed)

2. Click Visualise (Artefact names are displayed)

3. Click Report (Artefact names are displayed)

Note: This task is used only after the Event log plugin and/or Swap file plugin

have been installed.

B. For Event log files

The following tasks were used in the experiments:

6.5 Subjective Evaluations Experiment of Forensic Analysis System 232

Task 1:

To install the event log plugin with SAFTool do the following:

1. Open SAFTool and examine the drop-down menu selections.

2. Click File > Install Plugin

3. Select EventLogPlugin.xml > Open (plugin descriptor for

installation)

4. Plugin Installer > Install Plugin (Plugin Installer Dialog

displayed)

5. Confirmation Dialog > Yes (Confirmation to restart base

application)

Task 2:

To open and analyse the event log file with SAFTool do the following:

1. Click Analyse > Analyse Event Log

2. In the File Open dialog, browse to the AppEvent10.Evt file.

Click Open

3. Message popup will appear.

Task 3:

To open and further analyse the event log file (visualise the event log files)

with SAFTool do the following:

1. Click Visualise > Visualise Event Log

2. In the view window, browse to the AppEvent10.Evt file,

Click View

3. To view graph,

Click Graph

Task 4:

To generate report with SAFTool do the following:

1. Click Report > Report Event Log

2. In the view window, browse to the AppEvent10.Evt file,

Click Generate

3. The Microsoft word documents will popup.

Note: All these tasks can be used for AppEvent10.Evt, SecEvent10.Evt and

SysEvent10.Evt.

6.5 Subjective Evaluations Experiment of Forensic Analysis System 233

C. For Swap files

The following tasks were used in the experiments:

Task 1:

To install the pagefile plugin with SAFTool do the following:

1. Open SAFTool and examine the drop-down menu selections.

2. Click File > Install Plugin

3. Select PageFilePlugin.xml > Open (plugin descriptor for

installation)

4. Plugin Installer > Install Plugin (Plugin Installer Dialog

displayed)

5. Confirmation Dialog > Yes (Confirmation to restart base

application)

Task 2:

To open and analyse the pagefile file with SAFTool do the following:

1. Click Analyse > Analyse Pagefile

2. In the File Open dialog, browse to the pagefile10.sys file.

Click Open

3. Message popup will appear.

Task 3:

To open and further analyse the pagefile file (visualise the pagefile file) with

SAFTool do the following:

1. Click Visualise > Visualise Pagefile

2. In the view window, browse to the pagefile10.sys file,

Click Hex View

3. To view density map,

Click Map View

Task 4:

To search word with SAFTool (keyword search), do the following:

1. Click Visualise > Visualise Pagefile

2. In the search window, key in ‘mail’ word,

Click Search

6.5 Subjective Evaluations Experiment of Forensic Analysis System 234

3. The ‘mail’ word will be displayed if it exists

Task 5:

To generate report with SAFTool do the following:

1. Click Report > Report Pagefile

2. In the view window, browse to the pagefile10.sys file,

Click Generate

3. The Microsoft word documents will popup.

6.5.3 Results

This section reviews and analyses the findings of the evaluation experiments.

The objectives of the experiments were to verify the implementation of the

SAFTool through: (1) verifying the extensible architecture; (2) viewing

different types of events recorded in the Event logs, (3) viewing the contents of

Swap files; (4) searching for traces of keywords in Swap files as keyword

searching is the primary examination method (Gagnon, 2008) since swap and

page files contain all sorts of data, including e-mail, web pages, word

processing documents and any other work that has been performed on the

computer during the work session; (5) further analysing the event logs and

swap files by displaying the file information relating to the contents of the files

in a graphical manner; and (6) generating a report. Developing a plugin was

not undertaken in the testing of the architecture’s extensibility since in order

to build a plugin, the subjects would have been required to analyse each of the

programs in the collection and write their own code for the new plugin.

Considering that the subjects were volunteers, such an activity would have

been time consuming. Five subjects were asked to use the system and verify

the functionalities and usefulness of the SAFTool. Their expert opinion was

captured using questionnaires.

The five subjects were given with four files to analyse and visualise. In

total, there were 95 tasks conducted with the forensic analysis system during

the experiment. A detailed review of these tasks is included in Appendix G.

The different tasks were related to assessing different sections of

6.5 Subjective Evaluations Experiment of Forensic Analysis System 235

the architecture: six tasks related to the architecture, forty-five tasks to the

Event logs and twenty tasks to the Swap files.

The task with regard to the architecture was to verify that the

architecture is extensible; which new plugins of various Windows artefacts can

be added and with various visualisation techniques, which can be used for the

analysis and visualisation of the artefacts. The tasks with regard to the Event

logs is to view different types of events recorded in the Event logs; visualise

the file information regarding the contents of the files in graphical manner,

which can aid the investigator to interpret massive amounts of data and

representations of events in chronological order helps understanding much

easier; and generating report, which is used when the investigator requires the

information from the analysis to be included in a report. The tasks with regard

to the Swap files is to view the contents of the Swap files; searching for traces

of keywords since swap and page files contain all sorts of data, including e-

mail, web pages, word processing documents and any other work that has been

performed on the computer during the work session; visualise the file

information regarding the contents of the files in block view format

(nonhierarchical visualisation technique) which can aid the investigator to

interpret massive amounts of data and this helps understanding much easier;

and generating report, which is used when the investigator requires the

information from the analysis to be included in a report. Upon conducting a

task, the user would see the outcome of the task in a different format: the

Event logs displayed data in one line per entry and graphical form, i.e. in table

and timeline; and Swap files displayed information in hexadecimal data

display and ASCII text display and square block view format which display the

file information regarding of file content.

At the same time, the subjects’ opinions regarding the functionalities

and usefulness of the SAFTool were gathered through the comment columns of

the questionnaires. Their contents are summarised below:

(1) Features to help users:

Menu, colours and presentation are elements to help users in using the

tool and understanding the objectives of the usage of the tool. Use of

6.5 Subjective Evaluations Experiment of Forensic Analysis System 236

colours to identify different areas and to easy understand visual aids

will also help. The SAFTool should have a ‘Help’ menu for users to

understand how the tool works.

(2) Information presentation:

Visualisation is the key element to aid users’ exploration of the file

contents. The SAFTool presents a visual presentation of artefacts

generated by the system both graphically and textually. Presentation of

information was in a structured manner but with a basic level of detail.

Start with Analyse, Visualise then Report. With the search function,

the possibility of any queries can be seen through the system generated

artefacts and therefore supply a better understanding. In order to

better understand the information in the files the SAFTool should have

more information on visual representation. For example, incorporate

better description for the graph’s legend by explaining more of the units

used in the block diagram of the Swap files.

(3) Consideration of interface design:

The most important element for the interface design is the menu

structure. The SAFTool’s linear menu is easy to operate and

demonstrate the flow design of left to right in the menus. The SAFTool,

at the same time, uses branched menus in one visual representation of

the file’s content to branch out to another visual representation of the

file’s content.

(4) Enhancement for expansion:

The SAFTool has a built-in extensible architecture. It seems the tool

could be expanded with additional add ons. It is a straightforward

process, just a couple of clicks and a plugin is installed, but this needs

to be further investigation.

 In order to study the functionalities and usefulness of system generated

artefacts as forensic evidence, the functionalities and usefulness of the

prototype software with additional information annotation as a working tool;

and the SAFTool’s built-in extensible architecture, allowing it to be expanded

6.5 Subjective Evaluations Experiment of Forensic Analysis System 237

with additional add on, three objectives were introduced and analysed as

follows:

O1: To gain understanding of the level of awareness surrounding the use

of System Generated Artefacts in an investigation;

O2: To assess the degree to which the SAFTool supports the

understanding of System Generated Artefacts; and

O3: To assess the degree to which the SAFTool can be modified and

extended.

The three objectives were assessed using the questionnaire distributed to the

five subjects. Their satisfaction levels will the objectives established in

questions A1, A2, A3, B4, B5 and C6 below were analysed:

A1: The data analysis and the presentation of data in the application

aid the understanding of the selected system generated artefacts.

The use of the tool highlights the importance of system generated

artefacts.

A2: The chosen analysis and display methods aid the understanding of

the system generated artefacts data.

A3: Additional information annotation provided in the application aids

the understanding of the information contained in the system

generated artefacts.

B4: The data analysis and data visualisation easily and clearly indicate

the contents of the Windows system generated artefacts.

B5: The data analysis and data visualisation used in the prototype aid

in understanding the information contained in the Windows system

generated artefacts.

C6: In your expert opinion, and given the information provided, how

easy is it to modify and extend the tool?

In Figure 6.30, participants’ satisfaction levels are tabulated and presented in

the form of a bar chart with categories relating to the functionalities and

usefulness of the system generated artefacts as forensic evidence; the

functionalities and usefulness of the prototype software with additional

information annotation as a working tool; and the SAFTool’s built-in

6.5 Subjective Evaluations Experiment of Forensic Analysis System 238

extensible architecture allowing it to be expanded with additional add ons. The

questionnaire for the experiments undertaken is provided in Appendix I.

Figure 6.30: Participant’s Satisfaction Level with the System Generated
Artefacts Forensic Analysis Tool (SAFTool)

Figure 6.30 above depicts the results of the participant’s satisfaction

level on the satisfaction of analysing, visualising and reporting system

generated artefacts concentrating on Event logs and Swap files which is built

in the extensible architecture of SAFTool. Generally, majority of the

participants are in the fair and above fair category of satisfaction with the

functionalities and usefulness on the use of System Generated Artefacts in an

investigation and the support of System Generated Artefacts Forensic Analysis

Application (SAFTool) in understanding of System Generated Artefacts.

Looking at the subjects’ satisfaction level with the objectives

established in questions A1, A2, A3, B4, B5 and C6, depicted by the bar chart,

more than 50% of the subjects expressed a fair and above level of satisfaction

with them: 4(80%) with A1; 4(100%) with A2; 3(60%) with A3, 5(100%) with

B4, 3(60%) with B5; and 5(100%) with C6. Subjects thus indicated they were

Very Satisfied Satisfied Fair Unsatisfied
Very

Unsatisfied

A1 0 3 1 1 0

A2 2 1 1 1 0

A3 1 2 0 2 0

B4 2 2 1 0 0

B5 0 3 0 2 0

C6 2 1 2 0 0

A1

A1 A1

A2

A2 A2 A2A3

A3 A3B4 B4

B4

B5

B5C6

C6

C6

0

1

2

3

4
N

u
m

b
e

r
o

f
P

a
rt

ic
ip

a
n

ts

Participant's Satisfaction Level

6.5 Subjective Evaluations Experiment of Forensic Analysis System 239

satisfied with their ability to analyse, visualise and report on system

generated artefacts using an extensible architecture during an investigation.

Looking at subjects who were unsatisfied with the objectives

established in questions A1, A2, A3, B4, B5 and C6, depicted by the bar chart,

less than 50% were unsatisfied: 1(20%) with A1; 1(20%) with A2; 2(40%) with

A3, 0(0%) with B4, 2(40%) with B5; and 0(0%) with C6. Not one subject was

very unsatisfied.

The result thus show and confirm that the SAFTool aided

understanding system generated artefacts; the additional information

annotation provided in the tool aided understanding of the information

contained in the system generated artefacts; the data analysis and

visualisation functionalities easily and clearly indicated the contents of the

artefact; and the SAFTool’s built-in extensible architecture would allow it to be

expanded with additional add ons. Hence all the objectives: O1 (to gain an

understanding and increase the level of awareness surrounding the use of

system generated artefacts in an investigation); O2 (to assess subjects’ level of

satisfaction with the SAFTool’s ability to aid their understanding of system

generated artefacts); and O3 (how easy they thought it would be to modify and

extend the tool) were accomplished.

6.6 Additional Experiments 240

6.6 Additional Experiments

The testing of the tool for consistency is examined here via a several number of

test files would be used and number of times that each one was tested, to

demonstrate that a tool meets the consistency test. For this test, all the

experiments were performed three times run on a number of artefacts files of

varying sizes and were extracted from different machine (dataset from

Appendix H) and using the tools mentioned earlier in Section 6.2. A new

database was created each time of the run.

The result of applying the various tools to the test files listed in

Appendix H is summarised for discussion in Table 6.15. This table indicates

the number of records that are processed from individual event logs (one line

per log file) from the three runs of each event logs. Figure 6.31 illustrates the

total event records from three runs of each event logs in Appendix H located

for the evtstats.pl script and the prototype SAFTool in the consistency test.

Table 6.16 shows the average time required to process each event logs

using lsevt.pl and SAFTool (from three runs of each event logs in Appendix H).

The graph in Figure 6.32 is generated based on the parses through the

contents of the Event log file and display event records. The total processing

time would be in milliseconds and the practical impact is that extra in average

1521 milliseconds are taken. Both illustrate almost the same shapes of graph,

i.e. processing time increases with the file sizes. As noted in Section 6.4.7, the

experiment with the Event Viewer could not be conducted.

6.6 Additional Experiments 241

Table 6.15: Number of Records Retrieved for Event Viewer, evtstats.pl and
SAFTool in Consistency Test

Test Data File Name Size (KB)
No. of Records

Event Viewer evtstats.pl SAFTool

AppEvent05.Evt 64 X 112 112

SecEvent05.Evt 64 X 58 58

SysEvent05.Evt 128 X 347 347

AppEvent06.Evt 64 X 76 76

SecEvent06.Evt 64 X 0 0

SysEvent06.Evt 64 X 262 262

AppEvent07.Evt 64 X 123 123

SecEvent07.Evt 64 X 260 260

SysEvent07.Evt 256 X 370 370

AppEvent08.Evt 192 X 139 139

SecEvent08.Evt 64 X 0 0

SysEvent08.Evt 512 X 1547 1547

AppEvent09.Evt 192 X 106 106

SecEvent09.Evt 512 X 2317 2317

SysEvent09.Evt 128 X 395 395

AppEvent10.Evt 64 X 63 63

SecEvent10.Evt 64 X 0 0

SysEvent10.Evt 64 X 295 295

AppEvent11.Evt 64 X 187 187

SecEvent11.Evt 64 X 0 0

SysEvent11.Evt 128 X 359 359

AppEvent12.Evt 64 X 110 110

SecEvent12.Evt 64 X 206 206

SysEvent12.Evt 64 X 236 236

AppEvent13.Evt 64 X 89 89

SecEvent13.Evt 64 X 0 0

SysEvent13.Evt 64 X 247 247

AppEvent14.Evt 64 X 76 76

SecEvent14.Evt 64 X 124 124

SysEvent14.Evt 128 X 312 312

X – unable to complete the operation. The event log file is reported as corrupted

Figure 6.31: Total Event Records Located for the evtstats.pl Script and SAFTool in Consistency Test

0 0 0 0 0
58 63 76 76 89 106 110 112 123 124 139 187 206 236 247 260 262 295 312 347 359 370 395

1547

2317

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400
Se

cE
ve

n
t0

6
.E

vt

Se
cE

ve
n

t0
8

.E
vt

Se
cE

ve
n

t1
0

.E
vt

Se
cE

ve
n

t1
1

.E
vt

Se
cE

ve
n

t1
3

.E
vt

Se
cE

ve
n

t0
5

.E
vt

A
p

p
E

ve
n

t1
0

.E
vt

A
p

p
E

ve
n

t0
6

.E
vt

A
p

p
E

ve
n

t1
4

.E
vt

A
p

p
E

ve
n

t1
3

.E
vt

A
p

p
E

ve
n

t0
9

.E
vt

A
p

p
E

ve
n

t1
2

.E
vt

A
p

p
E

ve
n

t0
5

.E
vt

A
p

p
E

ve
n

t0
7

.E
vt

Se
cE

ve
n

t1
3

.E
vt

A
p

p
E

ve
n

t0
8

.E
vt

A
p

p
E

ve
n

t1
1

.E
vt

Se
cE

ve
n

t1
2

.E
vt

S
y

sE
ve

n
t1

2
.E

vt

S
y

sE
ve

n
t1

3
.E

vt

Se
cE

ve
n

t0
7

.E
vt

S
y

sE
ve

n
t0

6
.E

vt

S
y

sE
ve

n
t1

0
.E

vt

S
y

sE
ve

n
t1

4
.E

vt

S
y

sE
ve

n
t0

5
.E

vt

S
y

sE
ve

n
t1

1
.E

vt

S
y

sE
ve

n
t0

7
.E

vt

S
y

sE
ve

n
t0

9
.E

vt

S
y

sE
ve

n
t0

8
.E

vt

Se
cE

ve
n

t0
9

.E
vt

N
u

m
b

e
r

o
f

R
e

co
rd

s

File Name

Total of Records

WinHex

SAFTool

 6
.6

 A
d

d
itio

n
a

l E
xp

e
rim

e
n

ts 2
4

2

6.6 Additional Experiments 243

Table 6.16: Processing Time for Event Viewer, lsevt.pl and SAFTool in
Consistency Test

Test Data File

Name

Size

(KB)

Event

Viewer

Processing

Time (ms)

lsevt.pl SAFTool

No. of

Records

Processing

Time (ms)

No. of

Records

Processing

Time (ms)

AppEvent05.Evt 64 X 112 87 112 661.33

SecEvent05.Evt 64 X 58 57 58 343.66

SysEvent05.Evt 128 X 347 198.66 347 1390.66

AppEvent06.Evt 64 X 76 70 76 437.33

SecEvent06.Evt 64 X 0 0 0 0

SysEvent06.Evt 64 X 262 149.33 262 1239.33

AppEvent07.Evt 64 X 123 87.66 123 677

SecEvent07.Evt 64 X 260 148 260 1089

SysEvent07.Evt 256 X 370 396.66 370 1729

AppEvent08.Evt 192 X 139 104.66 139 838.33

SecEvent08.Evt 64 X 0 0 0 0

SysEvent08.Evt 512 X 1547 804.66 1547 6025.66

AppEvent09.Evt 192 X 106 79.33 106 474

SecEvent09.Evt 512 X 2317 851 2317 9755.33

SysEvent09.Evt 128 X 395 397.33 395 2805.66

AppEvent10.Evt 64 X 63 60 63 349

SecEvent10.Evt 64 X 0 0 0 0

SysEvent10.Evt 64 X 295 150 295 1251

AppEvent11.Evt 64 X 187 115.66 187 874.66

SecEvent11.Evt 64 X 0 0 0 0

SysEvent11.Evt 128 X 359 263.33 359 1583.66

AppEvent12.Evt 64 X 110 85 110 531.66

SecEvent12.Evt 64 X 206 118.33 206 901

SysEvent12.Evt 64 X 236 136.33 236 911.66

AppEvent13.Evt 64 X 89 75.66 89 468.66

SecEvent13.Evt 64 X 0 0 0 0

SysEvent13.Evt 64 X 247 147.66 247 1067.66

AppEvent14.Evt 64 X 76 67 76 401.33

SecEvent14.Evt 64 X 124 97 124 828

SysEvent14.Evt 128 X 312 162 312 1385.33

X – unable to complete the operation. The event log file is reported as corrupted.

Figure 6.32: Graph Showing the Number of Records Located With Processing Time in Consistency Test

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

T
o

ta
l

R
e

co
rd

s
Lo

ca
te

d

Milliseconds

Comparison of Total Records Located Over Time

lsevt

SAFTool

 6
.6

 A
d

d
itio

n
a

l E
xp

e
rim

e
n

ts 2
4

4

6.6 Additional Experiments 245

Data in Table 6.17 shows total size of data parsed for WinHex and the

SAFTool (from three runs of each swap file in Appendix H). As can be seen, the

same results were recorded for each tool in the consistency test. A graph (see

Figure 6.33) was subsequently drawn comparing the total size of data parsed

by each tool. It confirmed the result in Table 6.17.

Table 6.17: Total Size of Data for WinHex and the SAFTool in Consistency
Test

Test Data

File Name

Size (KB)

Total Size of Data (bytes)

WinHex SAFTool

pagefile11.sys 1,506,576 1,598,029,824 1,598,029,824

pagefile12.sys 589,824 603,979,776 603,979,776

pagefile13.sys 2,095,104 2,145,386,496 2,145,386,496

pagefile14.sys 786,432 805,306,368 805,306,368

pagefile15.sys 196,608 201,326,592 201,326,592

pagefile16.sys 540,672 553,648,128 553,648,128

pagefile17.sys 117,760 120,586,240 120,586,240

pagefile18.sys 512,000 524,288,000 524,288,000

pagefile19.sys 774,144 792,723,456 792,723,456

pagefile20.sys 393,216 402,653,184 402,653,184

Figure 6.33: Comparison of Total Size of Data Shown by the WinHex and SAFTool for Consistency Test

1598

603

2145

805

201

553

120

524

792

402

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200
T

o
ta

l
S

iz
e

 o
f

D
a

ta
 (

b
y

te
s)

File Name

Comparison Total Size of Data

WinHex

SAFTool

Millions

 6
.6

 A
d

d
itio

n
a

l E
xp

e
rim

e
n

ts 2
4

6

6.6 Additional Experiments 247

Table 6.18 shows the processing times for WinHex and the SAFTool

(from three runs of each swap file in Appendix H) which was subsequently

displayed in graph form, Figure 6.34 and Figure 6.35 respectively.

In the context of this chapter, processing time recorded in milliseconds

(ms) in term of the time taken by the forensic analysis system to generate an

analysis display. It took a longer generate hexadecimal data display or an

ASCII text display for the contents of each swap file when the SAFTool was

employed in the consistency test.

Table 6.18: Processing Time for WinHex and SAFTool in Consistency Test

Test Data

File Name

Size (KB)

Processing Time (ms)

WinHex SAFTool

pagefile11.sys 1,506,576 23.33 461,594

pagefile12.sys 589,824 21.00 299,812

pagefile13.sys 2,095,104 25.00 572,125

pagefile14.sys 786,432 22.66 359,896

pagefile15.sys 196,608 19.33 234,735

pagefile16.sys 540,672 20.66 295,911

pagefile17.sys 117,760 18.33 228,339

pagefile18.sys 512,000 20.33 290,052

pagefile19.sys 774,144 21.33 338,813

pagefile20.sys 393,216 19.66 283,339

The ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term existence in the swap

files (from three runs of each swap file in Appendix H) as identified by WinHex

and the SAFTool is shown in Table 6.19 and Table 6.20 respectively.

Figure 6.34: Total Size of Data Located Over Time for WinHex in Consistency Test

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

2,000,000

2,250,000

18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00

T
o

ta
l

S
iz

e
d

 o
f

D
a

ta
 (

b
y

te
s)

 L
o

ca
te

d

Milliseconds

Comparison of Total Size of Data (bytes) Located Over Time

WinHex

 6
.6

 A
d

d
itio

n
a

l E
xp

e
rim

e
n

ts 2
4

8

 6

.6
 A

d
d

itio
n

a
l E

xp
e

rim
e

n
ts 2

4
8

Figure 6.35: Total Size of Data Located Over Time for the SAFTool in Consistency Test

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

2,000,000

2,250,000

200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000

T
o

ta
l

S
iz

e
 o

f
D

a
ta

 (
b

y
te

s)
 L

o
ca

te
d

Milliseconds

Comparison of Total Size of Data (bytes) Located Over Time

SAFTool

 6
.6

 A
d

d
itio

n
a

l E
xp

e
rim

e
n

ts 2
4

9

6.6 Additional Experiments 250

Table 6.19: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap
Files Identified by WinHex in Consistency Test

Table 6.20: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in Swap

Files Identified by the SAFTool in Consistency Test

Test Data

File Name

Size

(KB)

SAFTool

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile11.sys 196,608 √ √ √ √ √

pagefile12.sys 589,824 √ √ √ √ √

pagefile13.sys 1,560,576 √ √ √ √ √

pagefile14.sys 589,824 √ √ √ √ √

pagefile15.sys 393,216 √ √ √ √ √

pagefile16.sys 540,672 √ √ √ √ √

pagefile17.sys 117,760 √ √ √ √ √

pagefile18.sys 512,000 √ √ √ √ √

pagefile19.sys 774,144 √ √ √ √ √

pagefile20.sys 786,432 √ √ √ √ √

Test Data

File Name

Size

(KB)

WinHex

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile11.sys 196,608 √ √ √ √ √

pagefile12.sys 589,824 √ √ √ √ √

pagefile13.sys 1,560,576 √ √ √ √ √

pagefile14.sys 589,824 √ √ √ √ √

pagefile15.sys 393,216 √ √ √ √ √

pagefile16.sys 540,672 √ √ √ √ √

pagefile17.sys 117,760 √ √ √ √ √

pagefile18.sys 512,000 √ √ √ √ √

pagefile19.sys 774,144 √ √ √ √ √

pagefile20.sys 786,432 √ √ √ √ √

6.6 Additional Experiments 251

 A total of 15 subjects participated in the evaluation experiments to

evaluate the tool. This number is three times the number of subjects involved

in evaluating the tool as undertaken in Section 6.5.3, therefore should shows a

realistic population. All the 15 subjects involve directly in digital forensic

examination and analysis including in the area of audio and video forensics.

Thus, they had been using system artefacts as forensic object. The subjects’

expertise in forensic analysis is hard drive forensic analysis, phone forensics,

audio forensics and video forensics. Table 6.13 summarises their background

knowledge about forensic in general and system artefacts in particular.

Test files were extracted from the hard drive from the multimedia

laboratory used to train computer technician. Only Event logs files and Swap

files were extracted as subjects. The experiments used AppEvent05.Evt,

SecEvent05.Evt, SysEvent05.Evt and pagefile20.sys in the analysis. This is

listed in Appendix H. As outlined four files subjects were selected in the

evaluation experiments and Table 6.14 summarises the properties of the files.

Table 6.21: Forensic Knowledge and Expertise of Human Subjects of Fifteen
Participants

(a) Subject 1 to 5

Subject S1 S2 S3 S4 S5

Years of experience in computer forensics

field

5 2 2 1 5

No. of computer forensics tool used 9 2 4 2 5

(b) Subject 6 to 10

Subject S6 S7 S8 S9 S10

Years of experience in computer forensics

field

5 2 6 1 4

No. of computer forensics tool used 6 2 7 1 5

(c) Subject 11 to 15

Subject S11 S12 S13 S14 S15

Years of experience in computer forensics

field

5 2 >5 1 5

No. of computer forensics tool used 5 2 >5 1 5

6.6 Additional Experiments 252

Table 6.22: File Size of File Subjects for Additional Experiments

Subject Size (KB)

AppEvent05.Evt 64

SysEvent05.Evt 128

SecEvent05.Evt 64

Pagefile20.sys 393,216

The 15 subjects were given with four files to analyse and visualise. In

total, there were 285 tasks conducted with the forensic analysis system during

the experiment. A detailed review of these tasks is included in Appendix H

(Table H4). The different tasks were related to assessing different sections of

the architecture: 90 tasks related to the architecture, 135 tasks to the Event

logs and 60 tasks to the Swap files. The outline of the experiment has already

been discussed in Section 6.5.2.

This section contains the results of the questionnaires as initially

discussed in Section 6.5.3. In Figure 6.36, participants’ satisfaction levels are

tabulated and presented in the form of a bar chart with categories relating to

the functionalities and usefulness of the system generated artefacts as forensic

evidence; the functionalities and usefulness of the prototype software with

additional information annotation as a working tool; and the SAFTool’s built-

in extensible architecture allowing it to be expanded with additional add ons.

The questionnaire for the experiments undertaken is provided in Appendix I.

Figure 6.36 depicts the results of the participant’s satisfaction level on

the satisfaction of analysing, visualising and reporting system generated

artefacts concentrating on Event logs and Swap files which is built in the

extensible architecture of SAFTool. Generally, all of the participants are in the

fair and above fair category of satisfaction with the functionalities and

usefulness on the use of System Generated Artefacts in an investigation and

the support of System Generated Artefacts Forensic Analysis Application

(SAFTool) in understanding of System Generated Artefacts.

6.6 Additional Experiments 253

Figure 6.36: Participant’s Satisfaction Level with Fifteen Participants in Using
the System Generated Artefacts Forensic Analysis Tool (SAFTool)

Looking at the subjects’ satisfaction level with the objectives

established in questions A1, A2, A3, B4, B5 and C6 depicted by the bar chart,

more than 50% of the participants are very satisfied. Out of the total of 15

participants, 12 (80%) of A1, followed by 10 (67%) of A2, 8 (53%) of A3, 12

(80%) of B4, 9 (60%) of B5, and lastly 10 (67%) of B6 show that by using

visualised tool, system generated artefacts can be easily read to enhance the

understanding. Subjects thus indicated they were satisfied with their ability to

analyse, visualise and report on system generated artefacts using an

extensible architecture during an investigation. Whereas, the percentage of

below 50% on the participant’s satisfaction level of satisfied, fair, 0% for

unsatisfied and very unsatisfied are described as follows:

Very Satisfied Satisfied Fair Unsatisfied
Very

Unsatisfied

A1 12 3 0 0 0

A2 10 3 2 0 0

A3 8 2 5 0 0

B4 12 2 1 0 0

B5 9 3 3 0 0

B6 10 2 3 0 0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

N
u

m
b

e
r

o
f

P
a

rt
ic

ip
a

n
ts

Participant's Satisfaction Level

6.7 Conclusion 254

i. Satisfied (3 (20%) of A1; 3 (20%) of A2; 2(13%) of A3; 2(13%) of

B4; 3(20%) of B5; and 2(13%) of B6)

ii. Fair (0 (0%) of A1; 2 (13%) of A2; 5(33%) of A3; 1(7%) of B4;

3(20%) of B5; and 3(20%) of B6)

The result thus show and confirm that the SAFTool aided

understanding system generated artefacts; the additional information

annotation provided in the tool aided understanding of the information

contained in the system generated artefacts; the data analysis and

visualisation functionalities easily and clearly indicated the contents of the

artefact; and the SAFTool’s built-in extensible architecture would allow it to be

expanded with additional add ons. Hence all the objectives mentioned in

Section 6.5.3 were accomplished.

To conclude, the SAFTool (the visualised tool) with built-in extensible

architecture and with additional information annotation (menu, colours and

presentation) as a working tool have enhanced the understanding about

system generated artefacts.

6.7 Conclusion

In this chapter we have presented the results of a number of comparisons and

evaluations of the proposed system generated artefacts forensic analysis

system. Based on the experiments undertaken, the proposed system to locate

and extract data from the data structures is more robust and accurate than

approach using the Windows API to analyse system generated artefacts.

Further, the system has been shown able to locate and extract data from a

known and a not known data structures and present users with the data using

different visualisation techniques. We obtained approximately 100% of records

examining both event logs (parsing the contents of the Event log file and

performing an actual count of the number of records found and not parses the

header of the Event log file and determines the number of records that existed

6.7 Conclusion 255

to both evtstats.pl and SAFTool) and swap files (equal total size of data parsed

given a pagefile to both WinHex and SAFTool). According to Teerlink and

Erbacher (2006), the forensic analysis process can be made better if

visualisation is employed to display mountains of data in analysing suspicious

files.

 In addition we also learned that there is a difference in processing time

in locating and extracting known and not known data structures. Based on the

experiments undertaken, it was noted that swap files (with a not known data

structure) took a longer processing time when compared to event logs files

(with a known data structure). This was probably due to the difference in their

data structure, i.e. one known and one not known.

 The results produced by the questionnaire evaluation confirmed the

functionalities and usefulness of system generated artefacts as forensic

evidence; the functionalities and usefulness of the prototype software with

additional information annotation as a working tool; SAFTool’s built-in

extensible architecture allowing it to be expanded with additional add ons; and

the data analysis and data visualisation used in the prototype increasing

understanding. Generally, all of the participants (five and fifteen) are in fair

and above fair category of satisfaction with the functionalities and usefulness

on the use of System Generated Artefacts in an investigation and the support

of System Generated Artefacts Forensic Analysis Application (SAFTool) in

understanding of System Generated Artefacts. 100% of records obtained

examining both event logs and swap files with the three times that each file

was tested demonstrate the consistency of the tool.

256

CHAPTER 7

CONCLUSIONS AND FUTURE
WORK

In the introduction to this thesis, a hypothesis was proposed and a series of

objectives were outlined which focused on testing the hypothesis. These were

concerned with the tools, processes and procedures required to support the

forensic analysis of Windows system generated artefacts. This chapter reflects

on these outlined objectives, describe how the various chapters contribute to

addressing the questions, raised and also draws a series of conclusions.

7.1 Summary

The purpose of the thesis was to prove that the prototype tool could:

• Benefit investigators by providing a mechanism through which the

analysis and visualisation of system artefacts can effectively reveal the

contents of a selection of system artefacts to further assist investigators

in examining evidence.

• Allow investigators to see the evidentiary value of each of the selected

system generated artefacts as they incorporate new modules of

analysis, visualisation and report for those artefacts.

7.1 Summary 257

• Assist in the process of examining system artefacts, by incorporating

search for keywords function and visualisation techniques to interpret

massive amounts of data and this helps understanding much easier.

In the literature review contained in (Chapters 2 and 3), a need was

identified in the lack of special software to analyse system artefact data in

order to find information related to a specific case, which data can be found in

many different places. Several of these artefacts are created on Windows

systems during normal operations without reference to the user and without

the user’s knowledge. System generated artefacts represent valuable sources

of evidence and are increasingly the focus of investigation and legal discovery

as they are generated by the system and are not readily visible to the common

user, which also makes it more plausible that they have not been altered

(Volonino et al., 2007).

Further, with ever increasing hard drive capacity, and also for critical

business requirements it is more practical to be able to gain access to the file(s)

required since, as pointed out by Carvey (2004), “I found that in many ways,

all these forensic analysis applications are vastly different, different in the

capabilities they provide, and especially different in how you would go about

getting them to perform a certain function and then display the results. A

forensic analysis application needs a core set of functionalities and capabilities.

A forensic analysis application should be a data presentation application.” This

statement would appear to support the development of new forensic analysis

application.

The aim and objectives of the research were influenced by a literature

review and by observing and using the current state of the art tools available

for the analysis of Windows system generated artefacts. The research was

structured around three central questions 1 to 3 summarised below which in

Section 7.1.1 through Section 7.1.3, and which have been addressed and stated

by the summarisation of related chapters. This further led to the architecture

design and implementation of the prototype tool (SAFTool)

7.1 Summary 258

(Chapters 4 and 5). Next, coupled with the research presented in this thesis, a

new solution to a problem has been evaluated (Chapter 6).

In the introduction to this thesis (Chapter 1), a number of questions is

posed concerning with the tools, processes and procedures required to support

the forensic analysis of Windows system generated artefacts. In this chapter, it

will reflect on these questions, describe how the various chapters contribute to

answering each question and draw some conclusions.

7.1.1 Information Extraction

One of the first steps in a forensic analysis is to extract the information

contained in an artefact: in this case, the automated extraction of information

from an artefact file. In Chapter 1, we argue that this step is hindered in some

cases by the internal structure of the file not being generally available. The

internal structures being effectively unknown makes it difficult to parse the

file for the file evidentiary values. Hence, this project suggested implementing

the ideas of abstraction to data structuring and providing appropriate parsers

to extract different types of data structure that are explicitly and implicitly

contained in a file. Chapter 3 addressed the data structures contained in a

number of system generated artefacts. Event logs and Swap files data

structures were selected as specific examples for this thesis, as they are

examples of the complex internal structures of system artefacts found in the

Windows Operating System, Event logs for their known data structure and

Swap files for their not known data structure. Chapter 4 introduced the

proposed architecture aimed at processing Windows system artefacts. The

architecture requirements and objectives were defined based on a clear

understanding of the priority of the requirements identified in Chapters 2 and

3 from the issues associated with current state of the art tools. In order to

make the architecture extensible, Chapter 4 elaborated on how the design

Question 1: How can we extract information from an artefact?

7.1 Summary 259

process of the proposed architecture incorporated and implemented object

oriented features, such as abstraction, modular software, event-driven

programming, reusable software and model transition. In addition, the

architecture has a layered architecture, that is, has separate layers for the

application logic, presentation, domain and database, and each layer has

different classes. Therefore, this architecture provides an extensibility

functionality whereby the application can be extended easily without

modifying its original code base. Following the design process was

implementation of the prototype system, which dealt with how the design

decisions were implemented with respect to the requirements in Chapter 4.

Chapter 5 focused on the implementation of the proposed architecture and the

development of the prototype and discussed the various techniques used to

implement the architecture. In Chapter 6, the prototype implementation and,

in turn, the architecture was evaluated using a series of experiments based on

test data consisting of previously unseen event log files and swap files.

The architecture deals with the complex structure in the native format.

It facilitates the extraction of data from complex structures. The architecture

use data structures to access and extract all the relevant data from the

complex structures. This can be done for all structures, as it does not use the

APIs internally for accessing, adding and retrieving data.

7.1.2 Organising Data

In Chapter 4, we introduced the requirements for the storage of persistent

data to operate independently of any changes made to the database, thus

reinforcing the architecture’s extensibility. In Chapter 5, we have

demonstrated the use of a Database Management System (DBMS) to integrate

information on the known and not known data structure of an artefact as

Question 2: How can we organise and integrate the various data structures

to improve the correlation of the data obtained?

7.1 Summary 260

Event logs represent known data structure, whereas swap files represent not

known data structure. The database can be used to suit the storage of data for

known and not known data structures of Windows system generated artefacts

and can be used further for data from different systems. Both file and database

provide stores for information but the file for keeping data and the other

database design is not used as the file is only appropriate for simple

applications and for storing data that does not need to be shared and updated

by many users; other database designs tested did not include the use of

recursion and resulted in more fields being added to the database records.

Therefore, a relational database represents a storage better compared to using

files as a means of persistent storage. The DBMS is a comprehensive data

management system which organises and manages the tasks associated with

storing and providing effective access to large volumes of data. It can be

expanded in terms of accepting all sizes of data without any knowledge of the

structure and extracting the data for visualisation and report printout

purposes.

The architecture enables the automatic processing of complex data

structures into a common data store. The data is pulled from the complex

structure and stored in the database for use by the visualiser. The architecture

also incorporates a mechanism to ensure that no data in the original complex

structure will change, to ensure that forensic integrity is maintained during

the investigation.

7.1.3 Supporting Forensic Analysis

An issue which arises after parsing and storing the information contained in

an artefact is presenting it usefulness, in a way that can be easily understood

and interacted with. Visual representations translate data into a visible form

Question 3: How can we use the information obtained in the first two

questions to support and improve forensic analysis?

7.1 Summary 261

that highlights important features, including commonalities and anomalies

(Guillermo et al., 2007). The work undertaken was demonstrated in Chapters

4 and 5 included the operation of mapping data into a visual form such that

the data representation is invoked during the use case Visualise Artefact

Data. The use case description is as follows: the artefact data may be examined

to identify valuable meaningful data and allow for further analysis. The

mapping data to a visual form is presented in a more human friendly format by

graphs, charts or illustrations. Results from the design of the use case

Visualise Artefact Data in Chapter 5 showed that by information

visualisation, visual forensic analysis can be improved. Teerlink and Erbacher

(2006) commented, “Using this concept of visual perception, we have developed

a GUI and associated visualisations that display file information in a

graphical manner; and with these visualisation techniques reduce the time

examiners need to analyse data and greatly increase the probability of locating

criminal evidence”. In Chapter 6, we learnt that the Carvey’s (2007) programs

(evtstats.pl and lsevt.pl) shows the numbers of record in numeric form and the

SAFTool program shows the number of records in visualisation form in the

shape of graph (bar graphs).

The architecture presents the data extracted from the structure

visually in many formats using analytical visualisation techniques or

informative visualisation techniques. The architecture uses the data stored in

the complex structure and uses the visualiser to visualise the output of the

data. The visualiser can provide visualisations of data in informative ways,

illustrating the data in graphs and charts. Analytical visualisation can provide

the user to further analyse the data. The architecture also provides the

investigator with a reporting feature. A reporting feature can be used to export

out the data to a report.

7.2 Conclusions 262

7.2 Conclusions

The following achievements were the results of proving the hypothesis and

fulfilling the research aim and objectives outlined in Chapter 1 which allowed

verification through a thorough evaluation process:

• A design overview and detailed design with design documentation

which detailed in the justifications the decisions taken when discussing

the features and development practices required for the implementation

of the SAFTool to be a success.

• The implementation of the design, which is the development of an

extensible architecture that enables a variety of system artefacts to be

analysed by allowing other objects and tools to be added easily. The

architecture also caters for different data structures (known and not

known internal data structures of system generated files by the

Windows Operating System). This includes the provision of

visualisation that displays file contents information in a graphical

manner.

• The implementation of a proof of concept prototype tool capable of

visualising the Event logs and Swap files.

• A detailed evaluation plan was produced. A number of comparable

applications from academia and industry were selected as

representatives of current state-of-the-art tools and compared to the

proposed prototype tool.

• The evaluations carried out produced detailed evaluation results which

have been examined and discussed in depth. Conclusions regarding the

architecture’s ability to satisfy the requirements identified at the start

of the research were drawn from the experiments and helped to confirm

the contributions made to science.

The architecture developed has satisfied the hypothesis of the thesis.

The following are the contributions in more detail:

7.2 Conclusions 263

• An architecture as a single standard means for examining system

artefacts contained in hard disk images.

• An architecture as a single standard means for analysing and visualising

evidence from various artefacts within the Windows Operating System.

These artefacts’ data are parsed separately and later combined into a

single representation. Such an approach can be extended to include other

data from various areas within the Windows operating system as

identified and/or required by the user. The data in the complex data

structures within the Windows operating system can be easily analysed

using the developed architecture.

• An architecture that parses the information in those files in a manner

that does not rely on the Windows API.

• Architecture capable of visualising data contained in an artefact in such

a way that the investigator can easily see what data what is available

within these areas of the Windows operating system.

• An architecture that incorporates reporting functionality which some

tools do not offer a reporting facility.

• The provision of an open source architecture that is as extensible and

flexible as possible for future improvements, research and the addition of

features as well as integration of the implemented system into a wider

forensic tool.

• A prototype tool for visualising the Event logs and Swap files’ data as a

means to highlight its features in order of their importance, reveal

patterns, and simultaneously show features that exist across multiple

dimensions. Thus, visualisation is the important method to understand

and communicate information.

7.3 Issues and Future Work 264

7.3 Issues and Future Work

While this research proved that it is feasible to develop an architecture that is

able to integrate forensic data from the known and not known internal data

structure of system generated files by the Windows Operating System; display

the content information of those files in the form of narrative constructs and in

a graphical manner; and to implement a proof of concept prototype tool capable

of visualising the Event logs and Swap files, many additional areas that need

to be resolved were identified. During the implementation stage of this project,

a number of issues were revealed that could not initially be addressed. Some of

the issues identified are improvements that can be made to the SAFTool in its

current state; others are possible feature improvements that could make the

SAFTool more feature-rich. These are discussed below:

• There are some speed issues that should be investigated. The process of

analysing Swap files can take some time when large file sizes are being

processed. However, the architecture works and given further research,

the speed issues can be identified and addressed.

• The architecture has been created as a proof of concept prototype tool

and not meant to be distributed, but through the experiments

conducted it seems that its applications are stable and functional. The

tool could be used in the academic environment as a teaching aid

allowing others to examine the work and perhaps add their own

contributions to the project.

• As the SAFTool is able to parse different data structure formats of

system artefacts, it could be further developed to recognise and present

other versions of the Windows operating system and all the various

types of computer operating systems, both proprietary and open source.

• SAFTool is not necessary confined purely to system artefacts analysis.

As a data examining architecture, it can be applied to different

examining paradigms. For example, be able to recognise and present a

wide range of files data structure, if any in the future and incorporating

7.3 Issues and Future Work 265

recovering internal structure of processes from the memory (Craiger et

al., 2005; Sutherland et al., 2008). Further, additional spectrum of data

container could be used. Investigators have an increasing need to share

digital evidence between different organisations and analysis tools. But

today’s investigators are hindered by a variety of independently

developed and incompatible formats used to store digital evidence

(EnCase, 2005; Garfinkel, 2006; The Common Digital Evidence Storage

Format Working Group, 2006; Turner, 2006; and Pladna, 2008).

• To provide the investigator with an additional resource the system

could also include a flat text file with an explanation / interpretation of

the structure of the artefact. This can then be used as a reference for

the investigator or to add an interpretation of material for a court

report.

• As the SAFTool is able to be used in post-mortem analysis, there is a

need to view running processes in conducting live investigations. In

addition to physical media, investigators may also obtain evidence from

other sources such as live memory analysis. Where the capture of live

memory is not possible, some evidence of memory activity can be

recovered from the Swap files left on the hard drive. The evolution of

technology has a need for live analysis than a post-mortem one. With

such live investigation, the forensic analysis system will more flexible

as it can be modified to visualise RAM content when analysing memory.

266

BIBLIOGRAPHY

AccessData (2009) AccessData BootCamp Training Manual. AccessData

Corporation, Lindon, U.S.A.

ACPO (2003) Good Practice Guide for Computer-Based Electronic Evidence.

United Kingdom Association of Chief Police Officers. Available at:

http://www.7safe.com/electronic_evidence/ACPO_guidelines_computer_evide-

nce.pdf (Accessed: 14 July 2008).

Adamson, I. T. (1996) Data Structures and Algorithms: A First Course.

Springer.

Adobe Systems Incorporated (2011) HomeSite. Available at: http://rup.hops-

http://www.adobe.com/products/homesite/ (Accessed: 14 February 2011).

Adobe Systems Incorporated (2011) DreamWeaver. Available at:

http://www.adobe.com/uk/products/dreamweaver/?promoid=BPCVH (Accessed:

14 February 2011).

Alink, W., Bhoedjang, R. A. F., Boncz, P. A. and Vries, A. P. (2006) ‘XIRAF –

XML-based Indexing And Querying For Digital Forensics’, Journal of Digital

Investigation, Volume 3, Supplement 1, pp. 50-58.

BIBLIOGRAPHY 267

Allen, R. (2005) Windows Server Cookbook. Available at:

http://my.safaribooksonline.com/0596006330/windowsvrckbk-APP-F?portal=o-

reilly. (Accessed: 6 January 2011).

Ambler, S. W. (2003) UML 2 Component Diagram, Agile Modeling. Available

at: http://www.agilemodeling.com/artifacts/component/Diagram.htm.

(Accessed: 12 June 2010).

Anderson, M. R. (2005) Electronic Fingerprints Computer Evidence Comes Of

Age. Available at: http://www.forensics-intl.com/art2.html. (Accessed: 3

December 2007).

Anson, S. and Bunting, S. (2007) Mastering Windows Network Forensics and

Investigation. Indianapolis, Indiana: Wiley Publishing, Inc.

Arnott, D. (2006) ‘Cognitive Biases and Decision Support Systems

Development: A Design Science Approach’, Information Systems Journal,

January, pp. 55.

Arthur, K. K. and Venter, H. S. (2005) An Investigation Into Computer

Forensic Tools. Available at: http://www.forensicfocus.com/computer-forensic-

tools-investigation (Accessed: 14 July 2008).

Ashcroft, J. (2001) Electronic Crime Scene Investigation: A Guide for First

Responders. Available at: http://www.ncjrs.gov/pdffiles1/nij/187736.pdf.

(Accessed: 27 February 2008).

Ashcroft, J., Daniels, D. J. and Hart, S. V. (2004) Forensic Examination of

Digital Evidence: A Guide for Law Enforcement. Available at:

http://www.ncjrs.gov/pdffiles1/nij/199408.pdf. (Accessed: 16 June 2008).

BIBLIOGRAPHY 268

Avison, D. and Fitzgerald, G. (2003) Information Systems Development:

Methodologies, Techniques and Tools. New York: McGraw Hill Education.

Ayers, D. (2009) ‘A Second Generation Computer Forensic Analysis System’,

Journal of Digital Investigation, Volume 6, Supplement 1, pp. 34-42.

Bangeman, E. (2006) Microsoft doesn’t like PCs sold without Windows.

Available at: http://arstechnica.com/news.ars/post/20060405-6531.html.

(Accessed: 16 June 2008).

Bejtlich, R., Jones, K. and Rose, C. W. (2005) Windows Live Response for

Collecting and Analysing Forensically Sound Evidence. Available at:

http://www.informit.com/articles/article.aspx?p=417509. (Accessed: 25 July

2007).

Bennett, S., McRobb, S. and Farmer, R. (2006) Object-Oriented Systems

Analysis And Design Using UML. London: McGraw Hill.

Bilic, N. (2006) System Event Viewer Tips. Available at:

http://technet.microsoft.com/en-us/library/aa996105.aspx (Accessed: 4 June

2008).

BJA (2010) Bureau of Justice Assistance Evaluation and Performance

Measurement Glossary. Available at: http://www.ojp.usdoj.gov/BJA/evaluation/

glossary/glossary_i.htm (Accessed: 23 November 2010).

Bos, J. and Knijff, R. (2005) ‘TULP2G - An Open Source Forensic Software

Framework for Acquiring and Decoding Data Stored in Electronic Devices’,

International Journal of Digital Evidence, Fall 2005, Volume 4, Issue 2.

BIBLIOGRAPHY 269

Boudreau, T., Glick, J., Greene, S., Spurlin, V. and Woehr, J. (2003) NetBeans:

The Definitive Guide. California, United States of America: O’Reily &

Associates.

Bradley, T. (2005) Windows security threat tips: security log data: Make the

most of it. Available at: http://searchwindowssecurity.techtarget. com/tip/

289483,sid45_gci1107594,00.html (Accessed: 13 July 2007).

Brandel, M. (2008) Rules of Evidence - Digital Forensics Tools. Available at:

http://www.csoonline.com/article/374763/rules-of-evidence-digital-forensics-

tools (Accessed: 14 July 2009).

Britz, M. (2004) Computer Forensics and Cyber Crime: An Introduction. Upper

Saddle River, New Jersey: Pearson Prentice Hall.

Brown, R., Palm, B. and Vel, O. de (2005) Design of a Digital Forensics Image

Mining System. Lecture Notes in Computer Science 2005. Number 3683, pages

395-404. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.7935

Available at: http://www.springerlink.com/content/ 3a7t7cxk3mdrajb0/

(Accessed: 13 January 2010).

Bryson, C. and Stevens, S. (2002) Tool Testing And Analytical Methodology,

Handbook Of Computer Crime Investigation: Forensic Tools And Technology.

San Diego, California: Academic Press.

Bunting, S. and Wei, W. (2006) EnCase Computer Forensics The Official

EnCE: Encase Certified Examiner Study Guide. Indianapolis, Indiana: Wiley

Publishing.

Cadenhead, R. and Lemay, L. (2007) Sams Teach Yourself Java 6 in 21 Days.

United States of America: Bronkella Publishing.

BIBLIOGRAPHY 270

Caloyannides, M. A., (2001) Computer Forensics and Privacy. Boston: Artech

House.

Carrier, B. (2002) Open Source Digital Forensics Tools: The Legal Argument.

Available at: http://www.packetstormsecurity.org/papers/IDS/

atstake_opensource_forensics.pdf (Accessed: 14 July 2008).

Carrier, B. (2003) ‘Defining Digital Forensic Examination and Analysis Tools

Using Abstraction Layers’, International Journal of Digital Evidence, 1(4).

Carrier, B. and Spafford, E., H. (2003) ‘Getting Physical with the Digital

Investigation Process’, International Journal of Digital Evidence, 2(2).

Carrier, B. (2005) File System Forensic Analysis. Upper Saddle River, NJ:

Addison Wesley.

Carrier, B. D. (2006) Basic Digital Forensic Investigation Concepts. Available

at: http://www.digital-evidence.org/di_basics.html (Accessed: 12 February

2011).

Carrier, B. (2010) The Sleuth Kit (TSK) and Autopsy: Open Source Digital

Investigation Tools. Available at: http://www.sleuthkit.org/ (Accessed: 12

February 2011).

Carvey, H. (2004) ‘Instant Messaging Investigations On A Live Windows XP

System’, Journal of Digital Investigation, 1(4), pp. 256-260.

Carvey, H. and Altheide, C. (2005) ‘Tracking USB Storage: Analysis of

Windows Artifacts Generated by USB Storage Devices’, Journal of Digital

Investigation, 2(2), pp. 94-100.

BIBLIOGRAPHY 271

Carvey, H. (2007) Windows Forensic Analysis DVD Toolkit. Burlington:

Syngress Publishing.

Casey, E. (2000), Digital Evidence and Computer Crime: Forensic Science,

Computers and the Internet, Academic Press

Casey, E. (2002) ‘Practical Approaches to Recovering Encrypted Digital

Evidence’, International Journal of Digital Evidence, 1(3).

Casey, E. (2004) Digital Evidence and Computer Crime: Forensic Science,

Computers and the Internet, Second Edition. San Diego, California: Elsevier

Academic Press.

Casey, E. and Larson, T. (2004) Digital Evidence Examination Guidelines,

Digital Evidence and Computer Crime: Forensic Science, Computers and the

Internet, Second Edition. San Diego, California: Elsevier Academic Press.

Casey, E. and Turvey, B. (2004) Investigative Reconstruction With Digital

Evidence, Digital Evidence and Computer Crime: Forensic Science, Computers

and the Internet, Second Edition. San Diego, California: Elsevier Academic

Press.

Casey, E. (2010) Handbook of Digital Forensic and Investigation. London:

Elsevier Inc.

CERT (2005) First Responders Guide to Computer Forensics. Carnegie Mellon

Software Engineering Institute, United States of America. Available at:

www.cert.org/ archive/pdf/ FRGCF_v1.3.pdf (Accessed: 14 July 2008).

BIBLIOGRAPHY 272

Chappell, G. (2010) The INDEX.DAT File Format. Available at:

http://www.geoffchappell.com/viewer.htm?doc=studies/windows/ie/wininet/api/

urlcache/indexdat.htm (Accessed: 11 January 2011).

Collins, W. (2008) Collins English Dictionary, HarperCollins Publishers,

Glasgow.

Conti, G., Dean, E., Sinda, M. and Sangster, B. (2008) ‘Visual Reverse

Engineering Of Binary And Data Files’. In Proceedings of the 5th International

Workshop on Visualisation for Computer Security. pp. 1-17. Available at:

http://www.rumint.org/gregconti/publications/2008_VizSEC _FileVisualization

_v53_final.pdf (Accessed: 14 July 2008).

Craiger, J. P., Pollitt, M. and Swauger, J. (2005) Law Enforcement and Digital

Evidence. Available at: http://ncfs.org/craiger.delf.revision.pdf (Accessed: 7

August 2007).

Cummings, R. and Lowry, J. (2003) Computer Forensic 101 and Incident

Response. Available at: http://isacala.org/doc/2003oct1 _workshop_pres.pdf

(Accessed: 7 August 2007).

Daintith, J. (2004) “Software Tool”: A Dictionary of Computing. Available at:

http://www.encyclopedia.com/doc/1011-softwaretool.html (Accessed: 16 April

2010).

Davia, H. R. (2000) Fraud 101: Techniques And Strategies For Detection. New

York: John Wiley & Sons, Inc.

Dell (2010) The Official Site for Computer and PCs, Dell UK. Available at:

http://www.dell.co.uk/ (Accessed: 14 July 2010).

BIBLIOGRAPHY 273

Derek, B. (2007) Software Development Glossary. Department of Computer

Science, University College Cork, Ireland. Available at:

http://www.cs.ucc.ie/~dgb/courses/swd/glossary.html (Accessed: 23 November

2010).

Detwiler, B. (2008) Poll: Which of the Following Windows Versions is the Most

Prevalent Among Your End Users? Available at:

http://blogs.techrepublic.com.com/itdojo/?p=147 (Accessed: 7 August 2008).

Dickson, M. (2006) ‘An Examination Into MSN Messenger 7.5 Contact

Identification’, Journal of Digital Investigation, 3(2), pp. 79-83.

Digitivity (2008). The Evolution of Relational Database Management System.

Digitivity Electrical & Electronics Industry MarketPlace. Available at:

http://www.digitivity.com/articles/2008/10/evolution-of-relational-

database.html (Accessed: 14 July 2010).

DoJ (2007) Digital Forensic Analysis Methodology Flowchart. Department of

Justice, Computer Crime and Intellectual Property Section, United States of

America. Available at: http://www.cybercrime.gov/forensics_chart.pdf

(Accessed: 28 October 2010).

Dongen, W. S. V. (2007) ‘Forensic Artefacts left by Windows Live Messenger

8.0’, Journal of Digital Investigation, 4(2), pp. 73-87.

Elcomsoft (2005) Advanced Registry Tracer. Available at:

http://www.elcomsoft.com/art.html (Accessed: 3 December 2007).

EPF Copyright (2010). Guideline: Example: Design Mechanisms. Available at:

http://epf.eclipse.org/wikis/abrd/core.tech.common.extend_supp/guidances/guid

elines/example_design_mechanisms_7762C0FB.html (Accessed: 14 July 2010).

BIBLIOGRAPHY 274

Finkelstein, A. (2000) Software Engineering. Available at:

http://eprints.uclac.uk/1119/1/13.5_seencyc.pdf (Accessed: 11 February 2011).

Fitzgerald, E. (2006) HOWTO Understand the Microsoft Windows Event Log.

Available at: http://www.splunkbase.com/howtos/Operating_Systems/

Windows/howto:HOWTOunderstandMSEventLog (Accessed: 11 July 2007).

Frauenheim, E. (2004) Storage Hardware Sales on the Rise. CNET News.

Available at: http://news.cnet.com/2100-1015_3-5170267.html?tag=fd_nbs_ent

(Accessed: 28 September 2010).

Free Internet Window Washer (2010) Free Internet Window Washer. Eusing

Software. Available at: http://www.eusing.com/Window_Washer/Window_

Washer.htm (Accessed: 3 February 2011).

Fry, B. (2007) Visualising Data. Sebastopol, CA: O’Reilly Media, Inc.

Gagnon, L. (2008) Data Forensics: Tools and Techniques for a Basic

Examination. Available at: http://www.esentire.com/user_files/

images/File/Data%20Forensics%20What%20You%20Need%20to%20Know.pdf

(Accessed: 12 August 2010).

Garfinkel, S. L. (2006) ‘Forensic Feature Extraction and Cross-Drive Analysis’,

Journal of Digital Investigation, Volume 3, Supplement 1, pp. 71-81.

Geiger, M. and Cranor, L. F. (2006) ‘Scrubbing Stubborn Data: An Evaluation

of Counter-Forensic Privacy Tools’, Journal of Security & Privacy, 4(5), pp. 16-

25.

GFI (2007) LANguard Security Event Log Monitor. Available at:

http://www.gfi.com/ (Accessed: 3 December 2007).

BIBLIOGRAPHY 275

Ghavalas, B. and Philips, A. (2005) ‘Trojan defence: A Forensic View Part II’,

Journal of Digital Investigation, 2(2), pp. 133-136.

Gillam, Wm. B. and Rogers, M. (2005) ‘File Hound: A Forensic Tool For First

Responders’. In Proceedings of the 5th Annual Digital Forensic Research

Workshop, DFRWS 2005. Available at: http://www.dfrws.org/2005/

proceedings/gillam_filehound.pdf (Accessed: 14 July 2008).

Gould, S. R. (2004) Index Dat Spy. Available at:

http://www.stevengould.org/index.php?option=com_content&task=view&id=47

&Itemid=88 (Accessed: 12 January 2011).

Greene, T. C. (2007) Clearing swap and hibernation files properly. Available

at: http://www.theregister.co.uk/2007/05/05/wipe_swap_file/ (Accessed: 3

December 2007).

Grochowski, E. and Halem, R. D. (2003) Technological Impact of Magnetic

Hard Disk Drives on Storage Systems. Available at:

http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/grochowski.pdf

(Accessed: 19 August 2010).

Guidance Software (2005) Encase Forensic Version 5 User Manual. Available

at: http://www.guidancesoftware.com (Accessed: 14 July 2008).

Guillermo, F., Trifas, M., Brown, D., Francia, R. and Scott, C. (2007) Forensic

Data Visualization System: Improving Security Through Automation:

Computer Security Conference. Myrtle Beach, SC, USA, 11-13 April.

Hailey, S. (2003) What Is Computer Forensics, CyberSecurity Institute.

Available at: http://www.cybersecurityinstitute.biz/forensics.htm (Accessed: 14

July 2008).

BIBLIOGRAPHY 276

Haiping, C., Delin, L. and Qinquan, G. (2009) IE Internet Information

Forensics Technology in Unallocated Disk Space: International Symposium On

Computer Network and Multimedia Technology.

Harms, K. (2006) ‘Forensic Analysis of System Restore Points in Microsoft

Windows XP’, Journal of Digital Investigation, 3(3), pp. 151-158.

Harvey, P. (2004) Open Source Security Tools: A Practical Guide to Security

Applications. Available at: http://www.informit.com/store/

product.aspx?isbn=0321194438 (Accessed: 12 February 2010).

Hashim, N. and Sutherland, I. (2007) System Data Artefacts: Event Logs and

Swap Files. 2nd Research Student Workshop, University of Glamorgan, Cardiff,

UK.

Hashim, N. and Sutherland, I. (2010) An Architecture For The Forensic

Analysis of Windows System Artefacts: 2nd International ICST Conference on

Digital Forensics and Cyber Crime. Abu Dhabi, UAE, 3-6 October.

Hautefeuille, B. (2011) A Simpler Way of Getting .NET Objects Out of

ADO.NET. Available at: http://www.15seconds.com/issue/031013.htm

(Accessed: 14 March 2011).

Hay, S. A. (2005) Windows File Analyser Guidance. Available at:

http://www.mitec.cz/Downloads/WFA%20Guidance.pdf (Accessed: 14 July

2008).

Hitachi (2008), The 4TB Hard Drive. 2008 Hitachi Global Storage

Technologies. Available at: http://www.hitachigstwhatsnext.com/en/Future_

Technology/4TB_hard_drive/ (Accessed: 28 September 2010).

BIBLIOGRAPHY 277

Hosmer, C. (2002) Time Lining Computer Evidence: Information Technology

Conference 1998.

Howell, B. A. (2005) ‘Digital Forensics: Sleuthing on Hard Drives and

Networks’, Journal of The Vermont Bar. Available at:

http://www.strozfriedberg.com/files/Publication/884a031c-755c-40d8-a09c-

2abaa57e9496/Presentation/Publication-Attachment/28e367df-8658-4fe9-a4c0-

26011c249931/VTBDigitalForensicsArticle.pdf (Accessed: 12 February 2010).

Howlett, T. (2004) Open Source Security Tools: A Practical Guide to Security

Applications. Available at: http://www.informit.com/store/ product.aspx?

isbn=0321194438 (Accessed: 12 February 2010).

IBM (2006) DB2 Database for Linux, Unix and Windows. International

Business Machines. Available at: http://publib.boulder.ibm.com/infocenter/

db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/c0004100.htm

(Accessed: 14 July 2008).

IBM (2011a). Unified Modeling Language. IBM Rational Software. Available

at: http://www-01.ibm.com/software/rational/uml/ (Accessed: 14 February

2011).

IBM (2011b). Informix product family. IBM Information Management.

Available at: http://www-01.ibm.com/software/data/informix/ (Accessed: 14

February 2011).

Ieong, R. S. C. (2006) ‘FORZA - Digital Forensics Investigation Framework

That Incorporate Legal Issues’, Journal of Digital Investigation, Volume 3,

Supplement 1, pp. 29-36.

BIBLIOGRAPHY 278

International Telecommunication Union (2009) Proposal of New Work Item on

Digital Evidence Exchange File Format. Telecommunication Standardisation

Sector Republic of Korea .

Jeffrey, R. and Clark, J. D. (2000) Programming Server Side Applications for

Microsoft Windows 2000. Available at: http://www.zanshu.com/ebook/175_

13server/HTML/ (Accessed: 7 August 2007).

Jones, A., Valli, C., Sutherland, I. and Thomas P. (2006) An Analysis of

Information Remaining on Disks Offered for Sale on the Second Hand Market.

Journal of Digital Forensics, Security and Law. Volume 1, Issue 3.

Jones, A., Valli, C. and Sutherland, I. (2008) Analysis of Information

Remaining on Hand Held Devices Offered for Sale on the Second Hand Market.

Journal of Digital Forensics, Security and Law. Volume 3, Issue 2.

Jones, A., Dardick G., Davies G., Sutherland, I. and Valli, C. (2009) The 2008

Analysis of Information Remaining on Disks Offered for Sale on the Second

Hand Market. Journal of International Commercial Law and Technology, Vol.4

(3) 2009.

Jones, K. (2003) Visual Computer Forensic Analysis: Galleta,

http://www.law.com/jsp/lawtechnologynews/PubArticleLTN.jsp?id=120242824-

8638 (Accessed: 7 August 2007).

Kahvedzic, D. and Kechadi, T. (2008) Extraction of User Activity Through

Comparison of Windows Restore Point: 6th Australian Digital Forensics

Conference 2008.

Kahvedzic, D. and Kechadi, T. (2010) Extraction of User Activity Through

Comparison of Windows Restore Point: 2nd International ICST Conference on

Digital Forensics and Cyber Crime. Abu Dhabi, UAE, 3-6 October.

BIBLIOGRAPHY 279

Kale, K. V. (2007) Investigative System for Evidences Collection in Internet

Explorer Cache Files: Advances in Computer Vision and Information

Technology. Available at: http://books.google.co.uk/books?id=pNKxKYHL2RYC

&pg=PA143&lpg=PA143&dq=HASH+of+index.dat&source=bl&ots=mNvNM8

Ah9g&sig=2GUcYc5mvbomGw_ozKCdtIrjJY&hl=en&ei=sj0rTbLcFp2ShAeDs

Z2IAg&sa=X&oi=book_result&ct=result&resnum=9&sqi=2&ved=0CFIQ6AEw

CA#v=onepage&q=HASH%20of%20index.dat&f=false (Accessed: 25 February

2010).

Kavanagh, P. (2004) Open Source Software: Implementation and Management.

Available at: http://books.google.co.uk/books?id=CHkHNChvPqIC&printsec

=frontcover&dq=open+source+software&source=bl&ots=iYLLDfZIYz&sig=bZR

UcLIjA_AUM5lo46krTeLQiw&hl=en&ei=HwYrTcSUA5CC5Ab9u9iZCg&sa=X

&oi= book_result&ct=result&resnum=9&ved=0CFcQ6AEwCDgK#v=onepage&

q&f=false (Accessed: 25 February 2010).

KayKeys (2005) Object-Oriented Design/Process Concepts. Available at:

http://kaykeys.net/science/computerwork/oodesign/index.html (Accessed: 14

July 2008).

Keizer, G. (2008) Leopard drubs Vista in corporate satisfaction survey,

Computerworld Operating Systems. Available at:

http://www.computerworld.com

/action/article.do?command=viewArticleBasic&articleId=9072218 (Accessed: 14

July 2008).

Kerlinger, F. N. (1986) Foundations of Behavioral Research (3rd edn.). New

York: Holt, Rinehart and Winston.

Kuhn, T. (1996) The Structure of Scientific Revolutions. Chicago: University of

Chicago Press.

BIBLIOGRAPHY 280

Kleber, R. and Galvao, M. (2006) ‘Computer Forensics with The Sleuth Kit and

The Autopsy Forensic Browser’, The International Journal of Forensic

Computer Science, 1, pp. 41-44.

Knuth, D. E. (1997) Art of Computer Programming, Volume 1: Fundamental

Algorithms (3rd Edition). Addison-Wesley Professional.

Kornblum, J. (2007) ‘Using Every Part of the Buffalo in Windows Memory

Analysis’, Journal of Digital Investigation, 4(1), pp. 24-29.

Kruse II, W. G. and Heiser, J. G. (2002) Computer Forensics: Incident Response

Essentials. Indianapolis: Addison-Wesley.

Kumar, R. (2005) Research Methodology (2nd edn.). London: SAGE Publications

Ltd.

La Bella, R. (2004) Know Your Enemy: Learning About Security Threats/The

Honeynet Project – 2nd edn.. Boston: Pearson Education, Inc.,

Lakatos, I. (1978) The Methodology of Scientific Research Programmes (John

Worral and Gregory Currie, Eds.). Cambridge: Cambridge University Press.

Lee, S., Savoldi, A., Lee, S., Lim, J. (2007a) ‘Windows Pagefile Collection and

Analysis for a Live Forensics Context’, Journal of Future Generation

Communication And Networking. FGCN 2007. 6-8 Dec. Pages 97-101. The

British Library.

Lee, S., Savoldi, A., Lee, S. and Lim, J. (2007b) Password Recovery Using An

Evidence Collection Tool And Countermeasures: 3rd International Conference on

Intelligent Information Hiding and Multimedia Signal Processing. Volume II,

Pages 97-102. The British Library.

BIBLIOGRAPHY 281

Leedy, P. D. and Ormrod, J. E. (2005) Practical Research Planning and Design,

8th Edition. New Jersey: Pearson Merrill Prentice Hall.

Lewis, J. A. (2004) Where Data Resides – Data Discovery from the Inside Out.

Available at: http://www.digitalmountain.com/recent_article_3 (Accessed: 3

December 2007).

Love, T. (2000) Theoretical Perspectives, Design Research and the PhD Thesis.

In Doctoral Education in Design, Foundations for the Future, edited by

Durling, D. and Friedman, K.. Staffordshire, UK: Staffordshire University

Press.

Luo, V. C. (2007) Tracing USB Device Artefacts on Windows XP Operating

System for Forensic Purpose. Available at:

http://scissec.scis.ecu.edu.au/publications/2007/forensics/23_Luo_Tracing_USB

_ Device_artefacts_on_Windows_XP.pdf (Accessed: 14 July 2008).

Lyle, J. R. (2006) The Contribution of Tool Testing to the Challenge of

Responding to an IT Adversary. Available at: http://www1.giev.de/

fachbereiche/sicherheit/fg/sidar/imf/imf2006/21_Lyle_imf-stuttgart-06.pdf

(Accessed: 13 July 2009).

MacVittie, L. (2010) Following Google’s Lead on Security? Don’t Forget to

Encrypt Cookies. f5 DevCentral. Available at:

http://devcentral.f5.com/weblogs/

macvittie/archive/2010/01/15/google-gmail-ssl-cookie-encryption.aspx

(Accessed: 13 January 2011).

Mandia, K., Prosise, C. and Pepe, M. (2003) Incident Response & Computer

Forensics, Second Edition. California: McGraw-Hill/Osborne.

BIBLIOGRAPHY 282

Mandiant (2006) Web Historian. MANDIANT Corporation, Available at:

http://www.mandiant.com/products/free_software/web_historian/ (Accessed: 12

January 2011).

Manson, D., Carlin, A., Ramos, S., Gyger, A., Kaufman, M. and Treichelt, J.

(2007) Is the Open Way a Better Way? Digital Forensics Using Open Source

Tools. Available at: http://www.computer.org/ portal/web/csdl/doi/10.1109/HIC

SS.2007.301 (Accessed: 12 February 2010).

Marcella, A. J. and Greenfield, R. S. (2002) Cyber Forensics: A Field Manual

For Collecting, Examining and Preserving Evidence of Computer Crimes. Boca

Raton, Florida: Auerbach Publications.

Marcella, A. J. and Mendenez, D. (2008) Cyber Forensics: A Field Manual For

Collecting, Examining and Preserving Evidence of Computer Crimes, Second

Edition, Boca Raton, Florida, Auerbach Publications.

March, S. and Smith, G. (1995) ‘Design and Natural Science Research on

Information Technology’. Journal of Decision Support Systems, Volume 15

Issue 4, pp. 251-266.

Martin, R. C. (1995) Designing Object Oriented C++ Applications Using the

Booch Method. Upper Saddle River, New Jersey: Prentice Hall Publications.

Mee, V., Tryfonas, T. and Sutherland, I. (2006) ‘The Windows Registry As A

Forensic Artefact: Illustrating Evidence Collection for Internet Usage’, Journal

of Digital Investigation, 3(3), pp. 166-173.

Mee, V. (2009) The Application of Visualisation Architecture to the Windows

Registry as a Forensic Object to Aid in the Forensic Process: PhD Thesis.

University of Glamorgan. pp. 127-132.

BIBLIOGRAPHY 283

Microsoft Computer Dictionary (2002), Microsoft Computer Dictionary: Fifth

Edition. Microsoft Press

Microsoft (2005) Log Parser 2.2. Microsoft Technet, Available at:

http://www.microsoft.com/technet/scriptcenter/tools/logparser/default.mspx

(Accessed: 14 July 2008).

Microsoft (2005a) Chapter 9 - Monitoring Events. Windows NT Server Product

Documentation, Available at: http://www.microsoft.com/resources/

documentation/windowsnt/4/server/proddocs/enus/concept/xcp09.mspx?mfr=tr

ue (Accessed: 6 January 2011).

Microsoft Corporation (2005) What is JView. Microsoft Security Bulletin MS05

-037. Available at: http://www.microsoft.com/technet/security/Bulletin/MS05-

037.mspx (Accessed: 18 November 2010).

Microsoft (2007) INFO: Working with the FILETIME Structure. Microsoft Help

and Support. Available at: http://support.microsoft.com/kb/188768 (Accessed:

14 July 2008).

Microsoft Corporation (2011). FrontPage. Available at:

http://office.microsoft.com/en-us/frontpage-help/ (Accessed: 14 January 2011).

Microsoft Corporation (2011a). Overview of the JDBC Driver. Available at:

http://msdn.microsoft.com/en-us/library/ms378749.aspx (Accessed: 14 January

2011).

Microsoft TechNet (2007) Fundamental Computer Investigation Guide For

Windows: Overview. Available at: http://www.microsoft.com/downloads/

details.aspx?FamilyId=71B986EC-B3F1-4C14AC70EC0EB8ED9D57& display

lang=en (Accessed: 14 July 2008).

BIBLIOGRAPHY 284

Middleton, B. (2002) Cyber Crime Investigator’s Field Guide. Florida: CRC

Press LLC.

Mil Incorporated (2010) What is in the Index.dat files?. Available at:

http://www.milincorporated.com/a3_index.dat.html (Accessed: 11 January

2011).

Metz, J. (2009) MSIE Cache File (index.dat) format specification. Available at:

http://mirror.transact.net.au/sourceforge/l/project/li/libmsiecf/Documentation/

MSIE%20Cache%20File%20format/MSIE%20Cache%20File%20(index.dat)%2

0format.pdf (Accessed: 11 January 2011).

Mocas, S. (2004) ‘Building Theoretical Underpinnings for Digital Forensics

Research’, Journal of Digital Investigation, 1(1), pp. 61-68.

Mohay, G., Anderson, A., Collie, B., De Vel, O. and McKemmish, R. (2003)

Computer and Intrusion Forensic. Norwood: Artech House, Inc.

Morgan, T., D. (2009) The Windows NT Registry File Format Version 0.4.

Sentinel Chicken Networks. Available at:

http://www.sentinelchicken.com/research/registry_format (Accessed: 8

February 2010).

Morris, J. (2003) Forensics on the Windows Platform, Part One and Two.

Available at: http://www.securityfocus.com/print/infocus/1661 (Accessed: 30

April 2007).

Murphey, R. (2007) ‘Automated Windows Event Log Forensics’, Journal of

Digital Investigation, Volume 4, Supplement1, pp. 92-100.

BIBLIOGRAPHY 285

Murr, M. (2006) The Basics of How Digital Forensics Tools Work 3 December,

2006. Forensic Computing Blog. Available at:

http://www.forensicblog.org/2006/2/03/the-basics-of-how-digital-forensics-tools-

work/ (Accessed: 29 September 2008).

Murr, M. (2007) How Digital Forensics Relates to Computing 25 January,

2007. Forensic Computing Blog. Available at:

http://www.forensicblog.org/2007/01/25/how-digital-forensics-relates-

tocomputing/ (Accessed: 29 September 2008).

Murr, M. (2007) How Forensics Tools Recover Digital Evidence (Data

Structure) 5 May, 2007. Forensic Computing Blog. Available at:

http://www.forensicblog.org/2007/05/05/how-forensic-tools-recover-digital-

evidence-data-structures/ (Accessed: 29 September 2008).

Murr, M. (2007), The Five Phases of Recovering Digital Evidence 8 May, 2007.

Forensic Computing Blog. Available at: http://www.forensicblog.org/2007/05/08

/the-five-phases-of-recovering-digital-evidence/ (Accessed: 29 September 2008).

Murr, M. (2009) The Meaning of LEAK Records. Forensic Computing Blog.

Available at: http://www.forensicblog.org/2009/09/10/the-meaning-of-leak-

records/ (Accessed: 11 January 2011).

MyCERT (2007) Fortinet Announces Top Reported Threats for November 2007,

E-Security, Cyber Security Malaysia, Volume 13 (Q4/2007).

Nelson, B., Phillips A., Enfinger, F. and Steuart, C. K. (2004) Guide To

Computer Forensics And Investigations, Course Technology a Division of

Thomson Technology, Canada.

BIBLIOGRAPHY 286

Net Applications, (2009) Operating system market share. Market Share,

Available at: http://marketshare.hitslink.com/report.

aspx?qprid=10&qpmr=15&qpdt=1&qpct=3&qpcal=1&qptimeframe=M&qpsp=

122 (Accessed: 14 July 2010).

Newman, R. C. (2007) Computer Forensics: Evidence Collection and

Management. Boca Raton: Auerbach Publications.

Nikkel, B. (2005) Digital Forensics using Linux and Open Source Tools.

Available at: http://www.digitalforensics.ch/nikkel05b.pdf (Accessed: 14 July

2008).

Nolan, R., O’Sullivan, C., Branson, J. and Waits, C. (2005) First Responders

Guide to Computer Forensics. Available at:

http://www.cert.org/archive/pdf/FRGCF_v1.3.pdf (Accessed: 14 July 2008).

Nourie, D. (2005) Getting Started with an Integrated Development

Environment (IDE). Available at:

http://java.sun.com/developer/technicalArticles/tools/-intro.html (Accessed: 8

February 2011).

Object Management Group (2005) UML Resource Page. Available at:

http://uml-directory.omg.org/ (Accessed: 14 July 2008).

O’Conner, J. (2007) Creating Extensible Applications With the Java Platform.

Available at: http://java.sun.com/developer/ technicalArticles/javase/extensible/

index.html (Accessed: 25 February 2010).

O’Leary, Z. (2005) Researching Real-World Problems. London,California, New

Delhi, Singapore: SAGE Publications.

BIBLIOGRAPHY 287

Okolica, J. and Peterson, G. L. (2010) ‘Windows Operating Systems Agnostic

Memory Analysis’, Journal of Digital Investigation, Volume 7, Supplement 1,

pp. 48-56.

Oracle (2011). Hardware and Software, Engineered to Work Together.

Available at: http://www.oracle.com/index.html (Accessed: 14 January 2011).

OSI (2010) Open Source Initiative. Available at: http://www.opensource.org/

(Accessed: 25 February 2010).

Petroni, N. L., Walters, A., Fraser, T. and Arbaugh, W. A. (2006) ‘FATKit: A

Framework for the Extraction and Analysis of Digital Forensic Data from

Volatile System Memory’, Journal of Digital Investigation, 3(4), pp. 197-210.

Pidanick, R. (2004) An Investigation of Computer Forensics. Available at:

http://www.isaca.org/Template.cfm?Section=Home&CONTENTID= 19743&

TEMPLATE=/ContentManagement/ContentDisplay.cfm (Accessed: 14 July

2008).

Pladna, B. (2008) Computer Forensics Procedures, Tools, and Digital Evidence

Bags: What They Are and Who Should Use Them. Available at:

http://www.infosecwriters.com/text_resources/pdf/BPladna_Computer_Forensi

c_Procedures.pdf (Accessed: 11 August 2008).

Poggenpohl, S. and Sato, K. (2003) ‘Models of Dissertation Research in Design’,

3rd Doctoral Education in Design Conference. Tsukuba, Japan. October.

Available at: http://www.id.iit.edu/141/documents/tsukuba_2003.pdf (Accessed:

11 August 2008).

POST (2005) Open Source Software. Available at:

http://www.parliament.uk/documents/post/postpn242.pdf (Accessed: 25

February 2010).

BIBLIOGRAPHY 288

Prentice Hall (2010) Online Glossary. Available at:

http://www.prenhall.com/rm_student/html/glossary/i_gloss.html (Accessed: 23

November 2010).

ProDiscover (2003) ProDiscover Computer Forensics. Technology Pathways.

Available at: http://www.techpathways.com/DesktopDefault.aspx (Accessed: 23

November 2010).

Purao, S. (2002) ‘Design Research in the Technology of Information Systems:

Truth or Dare’. In GSU Department of CIS Working Paper, Atlanta.

Rational Software Corporation (2003) Activity: Identify Design Elements.

Available at: http://rup.hops-fp6.org/process/activity/ac_iddes.htm

(Accessed: 14 July 2010).

Read, H. (2009) Data Exchange for Visualising Security Events (DEViSE): PhD

Thesis. University of Glamorgan. pp. 43-46.

Read, H., Blyth, A. and Sutherland, I. (2009) A Unified Approach to Network

Traffic and Network Security Visualisation: IEEE International Conference on

Communication. pp. 1-6.

Reyes, A., O’Shea, K., Steele, J., Hansen, J. R., Jean, B. R., Ralph, T. and

Cunningham, B. (2007) Cyber Crime Investigations: Bridging the Gaps

Between, Security Professionals, Law Enforcement and Prosecutors. Rockland,

MA: Syngress Publishing, Inc.

Richard, G. G. and Roussev V. (2005), Scalpel: A Frugal, High Performance

File Carver. In Proceedings of the 2005 Digital Forensics Research Workshop.

New Orleans, L.A.

BIBLIOGRAPHY 289

Richard, G. G. and Roussev V. (2006), ‘Next Generation Digital Forensics’.

Communications of the ACM, Volume 49, No. 2.

RIPA (2000) The Regulation of Investigatory Powers Act 2000. Available at:

http://www.yourprivacy.co.uk/what-ripa.html (Accessed: 02 November 2010).

Rossi, M. and Sein, M. (2003) ‘Design Research Workshop: A Proactive

Research Approach’. Presentation Delivered at IRIS26, August.

http://www.cis.gsu.edu/~emonod/epistemology/Sein%20and%20Rossi%20-

%20design%20research%20-%20IRIS.pdf (Accessed: 11 November 2010).

Roussev, V. and Richard, G. G. (2004), Breaking the Performance Wall: the

Case for Distributed Digital Forensics. In Proceedings of the 2004 Digital

Forensics Research Workshop. Baltimore, MD.

Rubin, S. and Howell, B. A. (2006) What You Need To Know About Digital

Forensics. Available at: http://www.strozfriedberg.com/services/xprService

DetailSF.aspx?xpST=ServiceDetail&service=5&op=Pubs (Accessed: 11 August

2008).

Ruff, N. (2007) ‘Windows Memory Forensics’, Journal in Computer Virology.

4S, S92-S100.

Russinovich, M. (1999) Inside the Registry, Microsoft NT Magazine. Available

at: http://technet.microsoft.com/en-us/library/cc750583.aspx (Accessed: 18

October 2007).

Rutman, L. (ed.) (1977) Evaluation Research Methods: A Basic Guide. Beverly

Hills: Sage Publications.

BIBLIOGRAPHY 290

Sanderson, B. (2004) RAM, Virtual Memory, Pagefile and All That Stuff,

Microsoft Help and Support. Available at: http://support.microsoft.com/default.

aspx?scid=kb;en-us;555223 (Accessed: 18 October 2007).

Sansurooah, K. (2006) Taxonomy Of Computer Forensics Methodologies and

Procedures For Digital Evidence Seizure: 4th Australian Digital Forensics

Conference. Paper 32.

SAS (2010) Concepts of Experimental Design. Design Institute for Six Sigma

Available at:http://support.sas.com/resources/papers/sixsigma1.pdf. (Accessed:

24 November 2010).

Schneider, G. M. and Bruell, S. C. (1998) Concepts in Data Structures &

Software Development: A Text for the Second Course in Computer Science.

Minnesota: West Publishing.

Schuster, A. (2006) ‘Searching For Processes and Threats In Microsoft

Windows Memory Dump’, Journal of Digital Investigation, Volume 3,

Supplement 1, pp. 10-16.

Schuster, A. (2007) ‘Introducing the Microsoft Vista Event Log File Format’,

Journal of Digital Investigation, Volume 4, Supplement 1, pp. 65-72.

Schweitzer, D. (2003) Incident Response: Computer Forensics Toolkit.

Indianapolis, Indiana: Wiley Publishing, Inc.

Shinder, T. (2002) Take Control Of The Windows XP Pagefile. Available at:

http://articles.techrepublic.com.com/5100-6346-1056269.html (Accessed: 25

September 2007).

BIBLIOGRAPHY 291

Shinder, D. L. and Tittel, E. (ed.) (2002) Scene of the Cybercrime: Computer

Forensics Handbook. Rockland, MA: Syngress Publishing Inc.

Shnitman, A. (2000) Unified Modeling Language. SearchSoftwareQuality.com.

Available at: http://searchsoftwarequality.techtarget.com/definition/Unified-

Modeling-Language (Accessed: 14 July 2008).

Sheldon, B. (2002) Forensic Analysis of Windows Systems, Handbook of

Computer Crime Investigation. London: Academic Press.

Simon, M. and Slay, J. (2010) Recovery of Skype Application Activity Data from

Physical Memory: 2010 International Conference on Availability, Reliability

and Security, pp.283-288,

Solomon, M. G., Barrett, D. and Broom, N. (2005) Computer Forensic Jump

Start. California: SYBEX Inc.,

Sommer, P. (1998) Digital Footprints: Assessing Computer Evidence, Criminal

Law Review Special Edition December 1998, pages 61-78. Available at:

http://www.pmsommer.com/CrimLR01.PDF (Accessed: 14 July 2010).

Stacy, H. and Lunsford, P. (2006) Computer Forensics For Law Enforcement.

Available at: http://www.infosecwriters.com/text_resources/pdf/Forensics_

HStacy.pdf (Accessed: 14 July 2008).

Stair, R. M. and Reynolds, G. W. (2008) Fundamentals of Information Systems,

A Managerial Approach, Fourth Edition. Massachusetts: Thomson Course

Technology.

Sun Developer Network (2010) About The Java Technology. Available at:

http://java.sun.com/docs/books/tutorial/ (Accessed: 14 July 2010).

BIBLIOGRAPHY 292

Sun Microsystems (2007) The Benefits of Modular Programming. Available at:

http://netbeans.org/project_downloads/usersguide/rcp-book-ch2.pdf (Accessed:

14 July 2008).

Sutherland I., Evans, J., Tryfonas, T. and Blyth, A. J. C., (2008) ‘Acquiring

Volatile Operating System Data: Tools and Techniques’. ACM SIGOPS

Operating Systems Review, 42(3).

Sutherland I., Davies, G. and Blyth, A. J. C., (2010) ‘Malware and

Steganography in Hard Disk Firmware’. Journal of Computer Virology 2010,

DOI: 10.1007/s11416-010-0149-x. Online 10th January 2011

Svensson, A. (2005) Computer Forensics Applied to Windows NTFS Computers,

Master Thesis Stockholm’s University / Royal Institute of Technology Kista,

Stockholm, Sweden. Available at: http://www.dsv.su.se/en/seclab/pages/pdf-

files/2005-x-268.pdf (Accessed: 13 August 2007).

SWGDE (2006) Best Practices for Computer Forensics. Scientific Working

Group on Digital Evidence, United State. Available at:

http://www.swgde.org/documents/wgde2006/Best_Practices_for_Computer_For

ensics%20July06.pdf (Accessed: 14 July 2008).

Sybase (2011). Database Management. Available at:

http://www.sybase.com/products/databasemanagement (Accessed: 14 January

2011).

Systenance (2006) Index.dat Analyser. Systenance Software Solutions.

Available at: http://www.systenance.com/indexdat.php (Accessed: 12 January

2011).

BIBLIOGRAPHY 293

TIBCO (2011) Spotfire. Available at: http://spotfire.tibco.com/ (Accessed: 24

January 2011).

TCT (1999) The Coroner’s Toolkit. Available at:

http://www.porcupine.org/forensics/tct.html (Accessed: 23 November 2010).

Teerlink, S. and Erbacher, R. F. (2006) ‘Foundations for Visual Forensic

Analysis’, In Proceedings of the 7th IEEE Workshop on Information Assurance,

U. S. Military Academy, West Point.

The Common Digital Evidence Storage Format Working Group (2006)

Standardising Digital Evidence Storage, Communication of the ACM.

The NT Insider (1998) Windows NT Virtual Memory, Available at:

http://www.osronline.com/article.cfm?article=71 (Accessed: 23 November 2008)

Thomas, L. K. (2003) Reverse Engineering Index.dat. Available at:

http://www.latenighthacking.com/projects/2003/reIndexDat/. (Accessed: 9

December 2010).

TSK (2003) The Sleuth Kit. Available at: http://www.sleuthkit.org/index.php

(Accessed: 23 November 2010).

Turnbull, B., Blundell, B. and Slay, J. (2006) ‘Google Desktop As A Source Of

Digital Evidence’, International Journal of Digital Evidence, 5(1).

Turner, P. (2005) ‘Unification of Digital Evidence From Disparate Sources

(Digital Evidence Bags)’, Journal of Digital Investigation. 2(3), pp. 223-228.

Turner, P. (2006) ‘Selective and Intelligent Imaging Using Digital Evidence

Bags’, Journal of Digital Investigation, Volume 3, Supplement 1, pp. 59-64.

BIBLIOGRAPHY 294

USDOJ (2001) Electronic Crime Scene Investigation – A Guide for First

Responders. National Institute of Justice, U.S. Department of Justice.

Available at: http://www.ncjrs.gov/pdffiles1/nij/219941.pdf. (Accessed: 14 July

2008).

University of Glamorgan (2008) Unpublished Research Data. Information

Security Research Group, Faculty of Advanced Technology, University of

Glamorgan. Pontypridd. United Kingdom.

Vacca, J. R. (2002) Computer Forensics: Computer Crime Scene Investigation.

Hinghan, Mass: Charles River Media.

Vaishnavi, V. and Kuechler, W. (2004) Design Research in Information

Systems. Association for Information Systems. Available at:

http://ais.affiniscape.com/displaycommon.cfm?an=1&subarticlenbr=279.

(Accessed: 19 March 2009).

VisiData Limited (2011) Sawmill. Available at: http://www.sawmill.co.uk/

(Accessed: 24 January 2011).

Vlastos, E. and Patel, A. (2007) ‘An Open Source Forensic Tool To Visualise

Digital Evidence’, International Journal of Computer Standards & Interfaces.

30(1-2), pp. 8-19.

Volonino, L., Anzaldua, R. and Godwin, J. (2007) Computer Forensics:

Principles and Practices. Upper Saddle River, New Jersey: Pearson Prentice

Hall.

Vyavhare, A. (2009) Top Cyber Forensic Tools. Available at:

http://www.articleswave.com/computer-articles/top-cyber-forensic-tools.html.

(Accessed: 23 June 2009).

BIBLIOGRAPHY 295

Walden, I. (2007) Computer Crimes And Digital Investigations. Oxford:

University Press.

Wang, W. and Daniels, T. E. (2006) ‘Building Evidence Graphs For Network

Forensics Analysis’, Computer Security Applications Conference, 21st Annual.

Available at: http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.96.

2142&rep=rep1&type=pdf (Accessed: 14 July 2008).

Whitehead, A. (2010) File Recovery from Recycle Bin. Available at: http://free-

backup.info/file-recovery-from-recycle-bin.html. (Accessed: 9 December 2010).

Zhu, H. (2005) Software Design Methodology: From Principles To Architectural

Styles. Oxford, Boston: Elsevier Butterworth-Heinemann.

Zhu, Y. (2007) Measuring Effective Data Visualisation, pp. 652-661. Lecture

Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 2007.

X-Ways Software Technology AG (2010) WinHex: Features and Ways of

Application. Available at: http://www.winhex.com/winhex/allfeatures.html.

(Accessed: 9 December 2010).

296

APPENDIX A

EVENT LOGS DATA STRUCTURE FOR
WINDOWS VISTA

Appendix A 297

Table A.1: Event Logs Header

No.
Offset

(bytes)
Type Description

1 0x00 char[8] Magic string (“ElfFile”) 0x00

2 0x08 char[8] Unknown, const 0x00

3 0x10 int64 Number of current chunk

3 0x18 int64 Number of next record

4 0x20 uint32 Header space used, constant 0x80

5 0x24 uint16 Minor version, constant 1

6 0x26 uint16 Major version, constant 3

7 0x28 uint16 Size of header, constant 0x1000

8 0x2a uint16 Chunk count

9 0x2c char[76] Unknown, const 0x00

10 0x78 uint32 Flags

11 0x7c uint32 Check sum

Appendix A 298

Table A.2: Event Logs Chunk Header

 No.
Offset

(bytes)
Size (bytes) Description

1 0x000 char[8] Magic string (“ElfChnk”) 0x00

2 0x008 int64 Number of first record in log

3 0x010 int64 Number of last record in log

4 0x018 int64 Number of first record in file

5 0x020 int64 Number of last record in file

6 0x028 uint32 Size of header

7 0x02c uint32 Offset of last record

8 0x030 uint32 Offset of next record

9 0x034 uint32 DataCRC

10 0x038 char[68] Unknown

11 0x07c uint32 HeaderCRC

12 0x080 uint32[64] StringTable

13 0x180 uint32[32] TemplateTable

Appendix A 299

Table A.3: Event Logs Record

No.
Offset

(bytes)
Type Description

1 0x00 char[4] Magic, constant 0x42, 0x00

2 0x04 uint32 Record length

3 0x08 int64 NumLogRecord

4 0x10 FILETIME TimeCreated (FILETIME)

5 var. char[] Event message, binary XML stream

6 var. uint32 Length (repeated)

300

APPENDIX B

REGISTRY DATA STRUCTURE

Appendix B 301

Table B.1: Security Records (SK) Data Structures (Morgan, 2009)

Offset
Size

(bytes)
Type Description

0x0 2 String(“sk”) Magic number

0x4 4 Offset Pointer to previous SK record

0x8 4 Offset Pointer to next SK record

0xC 4 Unsigned Integer Reference count

0x10 4 Unsigned Integer Size of security descriptor

0x14 Varies
Windows security

descriptor

Data structure which contains

owner SID, DACL, SACL and

control flags.

Table B.2: Key Records (NK) Data Structures (Morgan, 2009)

Offset
Size

(bytes) Type Description

0x0 2 String(“nk”) Magic number

0x2 2 Flags
0x0001, 0x0002, 0x0004, 0x0008, 0x0010,

0x0020, 0x0040, 0x0080, 0x1000, 0x4000

0x4 8
Unsigned

Integer
64-bit NT time stamp

0x10 4 Offset Parent NK record

0x14 4
Unsigned

Integer
Number of subkeys (stable)

0x18 4
Unsigned

Integer
Number of subkeys (volatile)

0x1C 4 Offset Pointer to subkey-list (stable)

0x20 4 Offset Pointer to subkey-list (volatile)

0x24 4
Unsigned

Integer
Number of values

0x28 4 Offset Pointer to value-list for values

0x2C 4 Offset Pointer to the SK record

0x30 4 Offset Pointer to the class name

0x34 4 Unsigned

Integer

Maximum number of bytes in a subkey

name

Appendix B 302

Table B.2: Key Records (NK) Data Structures (Morgan, 2009) (continued)

Offset
Size

(bytes)
Type Description

0x38 4
Unsigned

Integer
Maximum subkey class name length

0x3C 4
Unsigned

Integer

Maximum number of bytes in a value

name

0x40 4
Unsigned

Integer
Maximum value data size

0x48 2
Unsigned

Integer
Key name length

0x4A 2
Unsigned

Integer
Class name length

0x4C
Variabl

e
String

The key name; stored in ASCII and is

typically NULL terminated

 Table B.3: Subkey-lists Record Data Structures (Morgan, 2009)

Offset
Size

(bytes)
Type Description

0x0 2 String
Magic number (“lf”, “lh”, “ri” or

“li”)

0x2 2
Unsigned

Integer

Number of elements in this

subkey-list

0x4
4 or 8

(each)
Structure List Multiple subkey-list elements

Table B.4: Value Records (VK) Data Structures (Morgan, 2009)

Offset
Size

(bytes)
Type Description

0x0 2 String(“vk”) Magic number

0x2 2 Unsigned

Integer
Value name length

0x4 4 Unsigned

Integer
Data length

0x8 4 Offset Pointer to data

Appendix B 303

Table B.4: Value Records (VK) Data Structures (Morgan, 2009) (continued)

Offset
Size

(bytes)
Type Description

0xC 4 Enumeration Value type; One of; REG_NONE (0),

REG_SZ (1), REG_EXPAND_SZ (2),

REG_BINARY (3), REG_DWORD (4),

REG_DWORD_BIG_ENDIAN (5),

REG_LINK (6), REG_MULTI_SZ (7), REG_

RESOURCE_LIST (8),

REG_FULL_RESOURCE_ DESCRIPTOR (9),

REG_RESOURCE_ REQUIREMENTS _LIST

(10), REG_QWORD (11).

0x10 2 Flags If the 0 bit is set, the value name is in

ASCII, otherwise it is in UTF-16LE

0x14 Variable String The value name; stored in ASCII and is

typically NULL terminated

Table B.5: Value-lists Records Data Structures (Morgan, 2009)

Offset
Size

(bytes)
Type Description

0x0..[4*(num. values)] 4 Offset List of pointers to VK records;

appear in order of value

creation

 Table B.6: Normal Data Blocks Records Data Structures Morgan, 2009)

Offset
Size

(bytes)
Type Description

0x0 Variable Raw

Data
Data type and structure depends on type indicated

by VK record

Appendix B 304

Table B.7: Big Data Records Data Structures (Morgan, 2009)

Offset
Size

(bytes)
Type Description

0x0 2 String (“db”) Magic number

0x2 2 Unsigned Integer Number of data fragment

0x4 4 Offset Pointer to big data indirect

cell

Table B.8: Big Data Indirect Cells Records Data Structures

 (Morgan, 2009)

Offset
Size

(bytes)
Type Description

0x0..[4*(num. fragments)] 4 Offset To a data fragment

305

APPENDIX C

USE CASES

Appendix C 306

Requirements List

Requirement Use Case

To locate and access the artefact file in the file
system.

Analyse new artefact

To create new artefact object.

To extract data from the artefact’s internal
structure (extract fields).
To record details of each artefact for each user.
This will include the title of the artefact, the
interpretation and reconstruction of the fields.
To provide data store for insertion of data for each
artefact.
To get a database specification from the user, and
tell the database object to read in an artefact
object from the database.

Visualise artefact data

To display the current information about the
desired artefact.
To provide information that is used to visualise
the data of an artefact in an intuitive format, that
is to check the artefact data.

Use Case Description

Use Case Description

Analyse new artefact When a user gets the system artefact analysis task,
details of the new artefact are entered into the
database. These include the translation of a stream
of bytes into a usable structure to recover evidence
(data structures) from the artefact. The aim is to
extract all data from any complex structure.
Availability of a data store ensures retrieval and
insertion of data.
The investigator for that artefact is the person who
analyses it.

Visualise artefact data
 The artefact data may be examined to identify

valuable meaningful data and allow for further
analysis. The mapping of data to a visual form
presents the data in a more human friendly format
by the use of graphs, charts or illustrations.

Appendix C 307

Artefact Preparation Use Cases

Artefact Management Use Cases

308

APPENDIX D

SEQUENCE DIAGRAMS

Appendix D 309

Sequence diagram for the use case Analyse new artefact
(to illustrate the interaction between instances of classes)

Appendix D 310

Sequence diagram for the use case Visualise artefact data
(to illustrate the interaction between instances of classes)

Appendix D 311

Appendix D 312

313

APPENDIX E

FULL CLASS DIAGRAMS

Classes for Base Application

 A
p

p
e

n
d

ix E
 3

1
4

+create()

com.forensic.base.model::Plugin

com.forensic.base.model::Module

+scanPlugin()

+startApplication()

+reboot()

+start()

com.forensic.base::Bootloader

+readXml

com.forensic.base::DescriptorReader

+isUpdated() : bool
+loadRegisteredPlugin() :

<unspecified>

+loadNewPlugins() : <unspecified>

+registerNewPlugin()

com.forensic.base::PluginRegistry

+create()

+createMenu()

+choosePluginAction()

+installPlugin()

+analyseFileAction()

+viewAction()

+viewReportAction()

+exitAction()

+restartAction()

+getFile()

com.forensic.base.ui::MainFrame

+create()

+initialise()

+install()

+cancel()

com.forensic.base.ui::PluginInstallerDialog

+loadClass(in Class : Object)

com.forensic.base::ClassLoaderFactory

+getMD5Checksum(in file : object) :

string

com.forensic.base.util::Checksum

+getPluginByModule()

+getModuleByType()

+getModuleByExtension()

com.forensic.base.util::PluginResolver

+getAllDocuments()

+getDocumentsByType()

+insertNewDocument()

com.forensic.base.util::DocumentQueryUtil

+createPanel()

javax.swing::Jpanel

+analyse()

com.forensic.base::Analyser

<<subsystem>>

EventLogPlugin

<<call>>

<<call>>

<<call>>

<<call>> <<call>>

<<call>>

<<call>>

<<call>>

<<call>>

<<instance>>

<<extends>>
<<extends>>

<<instance>>

+getConnection() : object

+select(in query : string) : object

+insert(in query : string) : bool

com.forensic.base.util::QueryUtil

+start()

+stop()

+getTime()

com.forensic.base.util::Stopwatch

Classes for Event Logs Plugin

+getMD5Checksum(in file : object) :

string

com.forensic.base.util::Checksum

+getAllDocuments()

+getDocumentsByType()

+insertNewDocument()

com.forensic.base.util::DocumentQueryUtil

+start()

+stop()

+getTime()

com.forensic.base.util::Stopwatch

+createPanel()

javax.swing::Jpanel

+analyse()

com.forensic.base::Analyser

<<call>>

<<call>>

<<call>>

<<call>>

+eventLogReader()

+processRecord()

+getEventLogs()

com.forensic.plugin.event::EventLogReader

+insertEventLog()

+getEventLog(in uid)

com.forensic.plugin.event::EventLogQueryUtil

com.forensic.plugin.event.model::EventLog

+analyse()

com.forensic.plugin.event.analyser::EventAnalyser

<<extends>>

+createPanel()

+viewDocument()

com.forensic.plugin.event.visualiser::EventMainPanel

+createPanel()

+populateData()

+createTable()

com.forensic.plugin.event.visualiser::EventPanel

<<extends>>

<<extends>>

<<call>>

<<call>>

<<call>>

<<call>>

 A
p

p
e

n
d

ix E
 3

1
5

Classes for Swap Files Plugin

 A
p

p
e

n
d

ix E
 3

1
6

+getAllDocuments()

+getDocumentsByType()

+insertNewDocument()

com.forensic.base.util::DocumentQueryUtil

+createPanel()

javax.swing::Jpanel

+analyse()

com.forensic.base::Analyser

<<call>>

<<call>>

<<call>>

<<call>>

<<extends>>

<<call>>

<<call>>

+createPanel()

com.forensic.plugin.page.visualiser::PageMainPanel

+analyse()

com.forensic.plugin.event.analyser::PageAnalyser

+pageFileReader()

+processRecord()

+getBlockSize()

+getPercentage()

com.forensic.plugin.page::PagefileReader

-x

-y

-colour

com.forensic.plugin.page.model::Tile

+createPanel()

+paintComponent()

com.forensic.plugin.page.visualiser::LegendPanel

+createPanel()

+setASCIIView()

+setHexView()

+setScrollAdjustment()

+search()

com.forensic.plugin.page.visualiser::PageFilePanel

+AreaMapFrame()

com.forensic.plugin.page.visualiser::AreaMapFrame

+createPanel()

+paintComponent()

com.forensic.plugin.page.visualiser::MapVisualPanel

+indexOfASCII()

com.forensic.page.util::Boyer

+HexaViewer()

com.forensic.plugin.page.visualiser::HexaViewer

+getUIManager()

+searchASCII()

+incrementBlock()

+decrementBlock()

+getCurrentBlock()

+getHexInBlock()

+getASCIIInBlock()

com.forensic.plugin.page.visualiser::PageFileUIManager

<<call>>

<<call>>

<<call>> <<extends>>

<<call>>

<<call>>

+start()

+stop()

+getTime()

com.forensic.base.util::Stopwatch

317

APPENDIX F

FULL DATABASE TABLES

Appendix F 318

 EventUID
 ArtefactID
 RecordNo
 TimeGenerated
 TimeWritten
 EventID
 EventType
 EventCategory
 StrCount
 SourceName
 ComputerName
 Description

Eventlogs

 ArtefactID
 LoadedDate
 CreatedDate
 FilePath
 FileTypeID
 FileCRC

Artefacts

 PageUID
 ArtefactID
 Page01
 Page02
 Page03
 Page04
 Page05
 Page06
 Page07
 Page08
 Page09
 Page10

Swapfiles

 RecycleBinUID
 ArtefactID
 RecycleSize
 RecycleName
 RecycleID
 RecycleNum
 RecycleDT
 RecycleFSize

RecycleBin
 WebCookiesUID
 ArtefactID
 VarName
 VarValue
 Website
 ExpiredM
 ExpiredL
 CreationM
 CreationL

WebCookies

 A
p

p
e

n
d

ix F
 3

1
9

 ArtefactID
 LoadedDate
 CreatedDate
 FilePath
 FileTypeID
 FileCRC

Artefacts

 RegistryUID
 ArtefactID
 EventID
 EventTypeID

Registry

 HiveUID
 RegistryUID
 RegistryText
 Description

Hive

 KeyUID
 RegistryUID
 HiveUID
 KeyName

Key

 KeyDataUID
 KeyUID
 KeyDataName
 KeyDataType
 KeyDataData

KeyData

 ArtefactID
 LoadedDate
 CreatedDate
 FilePath
 FileTypeID
 FileCRC

Artefacts

 IEActivityUID
 ArtefactID
 IELength
 CDirectory

IEActivity

 ActivityUID
 IEActivityUID
 Type
 URL
 ModifiedDate
 AccessDate
 Filename
 Directory
 HTTPHeader

Activity

Appendix F 320

CREATE TABLE Artefacts

 (

 ArtefactID int NOT NULL PRIMARY KEY,

 LoadedDate datetime NOT NULL,

 CreatedDate datetime NOT NULL,

 FilePath varchar(200),

 FileType int NOT NULL)

 FileCRC varchar(200)

);

CREATE TABLE Eventlog

 (

 EventUID int NOT NULL PRIMARY KEY,

 ArtefactID int NOT NULL FOREIGN KEY REFERENCES Artefacts(ArtefactID),

 RecordNo int NOT NULL,

 GeneratedTime datetime NOT NULL,

 WrittenTime datetime NOT NULL,

 EventID int NOT NULL,

 EventType int NOT NULL,

 EventCategory int NOT NULL,

 StrCount int NOT NULL,

 SourceName varchar(200) NULL,

 ComputerName varchar(200) NULL,

 Description varchar(200) NULL

);

CREATE TABLE Pagefile

 (

 PageUID int NOT NULL PRIMARY KEY,

 ArtefactID int NOT NULL FOREIGN KEY REFERENCES Artefacts(ArtefactID),

 Content blob NOT NULL,

 AsciiSize int NOT NULL,

 ChunkSize int NOT NULL,

 Block int NOT NULL

);

Appendix F 321

CREATE TABLE Registry

 (

 RegistryUID int NOT NULL PRIMARY KEY,

 ArtefactID int NOT NULL FOREIGN KEY REFERENCES Artefacts(ArtefactID),

 EventID int,

 EventTypeID int

);

CREATE TABLE Hive

 (

 HiveUID int NOT NULL PRIMARY KEY,

 RegistryUID int NOT NULL FOREIGN KEY REFERENCES Registry(RegistryUID),

 Registry text NOT NULL,

 Description text NOT NULL

);

CREATE TABLE Key

 (

 KeyUID int NOT NULL PRIMARY KEY,

 RegistryUID int NOT NULL FOREIGN KEY REFERENCES Registry(RegistryUID),

 HiveUID int NOT NULL FOREIGN KEY REFERENCES HiveUID(HiveUID),

 KeyName text NOT NULL

);

CREATE TABLE KeyData

 (

 KeyDataUID int NOT NULL PRIMARY KEY,

 KeyUID int NOT NULL FOREIGN KEY REFERENCES KeyUID(KeyUID),

 KeyDataName text NOT NULL,

 KeyDataType text,

 KeyDataData text

);

Appendix F 322

CREATE TABLE WebCookies

 (

 WebCookiesUID int NOT NULL PRIMARY KEY,

 ArtefactID int NOT NULL FOREIGN KEY REFERENCES Artefacts(ArtefactID),

 VarName varchar,

 VarValue varchar,

 Website varchar,

 ExpiredM timestamp,

 ExpiredL timestamp,

 CreationM timestamp,

 CreationL timestamp

);

CREATE TABLE RecycleBin

 (

 RecycleBinUID int NOT NULL PRIMARY KEY,

 ArtefactID int NOT NULL FOREIGN KEY REFERENCES Artefacts(ArtefactID),

 RecycleSize int,

 RecycleName varchar,

 RecycleID int,

 RecycleNum int,

 RecycleDT timestamp,

 RecycleFSize int

);

CREATE TABLE IEActivity

 (

 IEActivityUID int NOT NULL PRIMARY KEY,

 ArtefactID int NOT NULL FOREIGN KEY REFERENCES Artefacts(ArtefactID),

 IELength int,

 CDirectory varchar

);

CREATE TABLE Activity

 (

 ActivityUID int NOT NULL PRIMARY KEY,

 IEActivityUID int NOT NULL FOREIGN KEY REFERENCES IEActivity(IEActivityUID),

 Type varchar,

 URL varchar,

 ModifiedDate timestamp,

 AccessDate timestamp,

 Filename varchar,

 Directory varchar,

 HTTPHeader varchar

);

323

APPENDIX G

FULL DATASET

Appendix G 324

Table G.1: Event Logs File Name and File Size

No. Event logs File Name File Size (KB)

1. AppEvent01.Evt 512

2. SecEvent01.Evt 64

3. SysEvent01.Evt 512

4. AppEvent02.Evt 512

5. SecEvent02.Evt 512

6. SysEvent02.Evt 152

7. AppEvent03.Evt 64

8. SecEvent03.Evt 64

9. SysEvent03.Evt 192

10. AppEvent04.Evt 64

11. SecEvent04.Evt 512

12. SysEvent04.Evt 64

Table G.2: Swap Files File Name and File Size

No. Swap Files File Name File Size (KB)

1. pagefile01.sys 1,506,576

2. pagefile02.sys 540,672

3. pagefile03.sys 786,432

4. pagefile04.sys 774,144

5. pagefile05.sys 117,760

6. pagefile06.sys 512,000

7. pagefile07.sys 173,648

8. pagefile08.sys 196,608

9. pagefile09.sys 393,216

10. pagefile10.sys 393,216

Appendix G 325

A review of the tasks carried out by five participants when they were given

four data files from the dataset to analyse and visualise.

Table G.3: Review of the Tasks Carried Out by Five Participants

No. The Tasks
Data from the

Dataset

Total number of tasks

carried out by five

people (95 tasks)

1 The built in extensible architecture of the SAFTool (6 tasks)

 Click File from menu no data is used

6 tasks X 5

= 30 tasks

Click Analyse from Menu no data is used

Click Visualise from Menu no data is used

Click Report from Menu no data is used

Click Install Plugin – EventLogPlugin.xml no data is used

Click Install Plugin – PageFilePlugin.xml no data is used

2 Event Logs – 3 tasks for each data (3 tasks X 3 = 9 tasks)

 Click Analyse Event Logs AppEvent04.Evt

SecEvent04.Evt

SysEvent04.Evt

9 tasks X 5

= 45 tasks

Click Visualise Event Logs AppEvent04.Evt

SecEvent04.Evt

SysEvent04.Evt

Click Report Event Logs AppEvent04.Evt

SecEvent04.Evt

SysEvent04.Evt

3 Pagefile – 4 tasks for each data (4 tasks X 1 = 4 tasks)

 Click Analyse Pagefile pagefile10.sys

4 tasks X 5

= 20 tasks

Click Visualise Pagefile pagefile10.sys

Click Visualise Pagefile > Search

keyword

pagefile10.sys

Click Report Pagefile pagefile10.sys

326

APPENDIX H

ADDITIONAL DATASET

Appendix H 327

Table H.1: Event Logs File Name and File Size of File Subjects
in Consistency Test

No. Event logs File Name File Size (KB)

1. AppEvent05.Evt 64

2. SecEvent05.Evt 64

3. SysEvent05.Evt 128

4. AppEvent06.Evt 64

5. SecEvent06.Evt 64

6. SysEvent06.Evt 64

7. AppEvent07.Evt 64

8. SecEvent07.Evt 64

9. SysEvent07.Evt 256

10. AppEvent08.Evt 192

11. SecEvent08.Evt 64

12. SysEvent08.Evt 512

13. AppEvent09.Evt 192

14. SecEvent09.Evt 512

15. SysEvent09.Evt 128

16. AppEvent10.Evt 64

17. SecEvent10.Evt 64

18. SysEvent10.Evt 64

19. AppEvent11.Evt 64

20. SecEvent11.Evt 64

21. SysEvent11.Evt 128

22. AppEvent12.Evt 64

23. SecEvent12.Evt 64

24. SysEvent12.Evt 64

25. AppEvent13.Evt 64

26. SecEvent13.Evt 64

27. SysEvent13.Evt 64

28. AppEvent14.Evt 64

29. SecEvent14.Evt 64

30. SysEvent14.Evt 64

Table H.2: Swap Files File Name and File Size of File Subjects
in Consistency Test

No. Swap Files File Name File Size (KB)

1. pagefile11.sys 196,608

2. pagefile12.sys 589,824

3. pagefile13.sys 1,560,576

4. pagefile14.sys 589,824

5. pagefile15.sys 393,216

6. pagefile16.sys 540,672

7. pagefile17.sys 117,760

8. pagefile18.sys 512,000

9. pagefile19.sys 774,144

10. pagefile20.sys 786,432

Appendix H 328

Table H.3: Number of Records Retrieved for Event Viewer, evtstats.pl and
SAFTool (First Run)

Test Data File

Name

Size

(KB)

No. of Records

Event Viewer evtstats.pl SAFTool

AppEvent05.Evt 64 X 112 112

SecEvent05.Evt 64 X 58 58

SysEvent05.Evt 128 X 347 347

AppEvent06.Evt 64 X 76 76

SecEvent06.Evt 64 X 0 0

SysEvent06.Evt 64 X 262 262

AppEvent07.Evt 64 X 123 123

SecEvent07.Evt 64 X 260 260

SysEvent07.Evt 256 X 370 370

AppEvent08.Evt 192 X 139 139

SecEvent08.Evt 64 X 0 0

SysEvent08.Evt 512 X 1547 1547

AppEvent09.Evt 192 X 106 106

SecEvent09.Evt 512 X 2317 2317

SysEvent09.Evt 128 X 395 395

AppEvent10.Evt 64 X 63 63

SecEvent10.Evt 64 X 0 0

SysEvent10.Evt 64 X 295 295

AppEvent11.Evt 64 X 187 187

SecEvent11.Evt 64 X 0 0

SysEvent11.Evt 128 X 359 359

AppEvent12.Evt 64 X 110 110

SecEvent12.Evt 64 X 206 206

SysEvent12.Evt 64 X 236 236

AppEvent13.Evt 64 X 89 89

SecEvent13.Evt 64 X 0 0

SysEvent13.Evt 64 X 247 247

AppEvent14.Evt 64 X 76 76

SecEvent14.Evt 64 X 124 124

SysEvent14.Evt 64 X 312 312

X – unable to complete the operation. The event log file is reported as

corrupted.

Appendix H 329

Table H.4: Number of Records Retrieved for Event Viewer, evtstats.pl and
SAFTool (Second Run)

Test Data File

Name

Size

(KB)

No. of Records

Event Viewer evtstats.pl SAFTool

AppEvent05.Evt 64 X 112 112

SecEvent05.Evt 64 X 58 58

SysEvent05.Evt 128 X 347 347

AppEvent06.Evt 64 X 76 76

SecEvent06.Evt 64 X 0 0

SysEvent06.Evt 64 X 262 262

AppEvent07.Evt 64 X 123 123

SecEvent07.Evt 64 X 260 260

SysEvent07.Evt 256 X 370 370

AppEvent08.Evt 192 X 139 139

SecEvent08.Evt 64 X 0 0

SysEvent08.Evt 512 X 1547 1547

AppEvent09.Evt 192 X 106 106

SecEvent09.Evt 512 X 2317 2317

SysEvent09.Evt 128 X 395 395

AppEvent10.Evt 64 X 63 63

SecEvent10.Evt 64 X 0 0

SysEvent10.Evt 64 X 295 295

AppEvent11.Evt 64 X 187 187

SecEvent11.Evt 64 X 0 0

SysEvent11.Evt 128 X 359 359

AppEvent12.Evt 64 X 110 110

SecEvent12.Evt 64 X 206 206

SysEvent12.Evt 64 X 236 236

AppEvent13.Evt 64 X 89 89

SecEvent13.Evt 64 X 0 0

SysEvent13.Evt 64 X 247 247

AppEvent14.Evt 64 X 76 76

SecEvent14.Evt 64 X 124 124

SysEvent14.Evt 64 X 312 312

X – unable to complete the operation. The event log file is reported as

corrupted.

Appendix H 330

Table H.5: Number of Records Retrieved for Event Viewer, evtstats.pl and
SAFTool (Third Run)

Test Data File

Name

Size

(KB)

No. of Records

Event Viewer evtstats.pl SAFTool

AppEvent05.Evt 64 X 112 112

SecEvent05.Evt 64 X 58 58

SysEvent05.Evt 128 X 347 347

AppEvent06.Evt 64 X 76 76

SecEvent06.Evt 64 X 0 0

SysEvent06.Evt 64 X 262 262

AppEvent07.Evt 64 X 123 123

SecEvent07.Evt 64 X 260 260

SysEvent07.Evt 256 X 370 370

AppEvent08.Evt 192 X 139 139

SecEvent08.Evt 64 X 0 0

SysEvent08.Evt 512 X 1547 1547

AppEvent09.Evt 192 X 106 106

SecEvent09.Evt 512 X 2317 2317

SysEvent09.Evt 128 X 395 395

AppEvent10.Evt 64 X 63 63

SecEvent10.Evt 64 X 0 0

SysEvent10.Evt 64 X 295 295

AppEvent11.Evt 64 X 187 187

SecEvent11.Evt 64 X 0 0

SysEvent11.Evt 128 X 359 359

AppEvent12.Evt 64 X 110 110

SecEvent12.Evt 64 X 206 206

SysEvent12.Evt 64 X 236 236

AppEvent13.Evt 64 X 89 89

SecEvent13.Evt 64 X 0 0

SysEvent13.Evt 64 X 247 247

AppEvent14.Evt 64 X 76 76

SecEvent14.Evt 64 X 124 124

SysEvent14.Evt 64 X 312 312

X – unable to complete the operation. The event log file is reported as

corrupted.

Appendix H 331

Table H.6: Processing Time for Event Viewer, lsevt.pl and SAFTool
(First Run)

Test Data File

Name

Size

(KB)

Event

Viewer

Processing

Time (ms)

lsevt.pl SAFTool

No. of

Records

Processing

Time (ms)

No. of

Records

Processing

Time (ms)

AppEvent05.Evt 64 X 112 76 112 703

SecEvent05.Evt 64 X 58 53 58 359

SysEvent05.Evt 128 X 347 182 347 1328

AppEvent06.Evt 64 X 76 61 76 422

SecEvent06.Evt 64 X 0 0 0 0

SysEvent06.Evt 64 X 262 150 262 1281

AppEvent07.Evt 64 X 123 87 123 719

SecEvent07.Evt 64 X 260 148 260 1063

SysEvent07.Evt 256 X 370 386 370 1468

AppEvent08.Evt 192 X 139 96 139 812

SecEvent08.Evt 64 X 0 0 0 0

SysEvent08.Evt 512 X 1547 807 1547 5906

AppEvent09.Evt 192 X 106 76 106 453

SecEvent09.Evt 512 X 2317 839 2317 10797

SysEvent09.Evt 128 X 395 393 395 2805.66

AppEvent10.Evt 64 X 63 56 63 349

SecEvent10.Evt 64 X 0 0 0 0

SysEvent10.Evt 64 X 295 145 295 1251

AppEvent11.Evt 64 X 187 100 187 843

SecEvent11.Evt 64 X 0 0 0 0

SysEvent11.Evt 128 X 359 284 359 1583.66

AppEvent12.Evt 64 X 110 64 110 547

SecEvent12.Evt 64 X 206 120 206 901

SysEvent12.Evt 64 X 236 140 236 844

AppEvent13.Evt 64 X 89 76 89 468.66

SecEvent13.Evt 64 X 0 0 0 0

SysEvent13.Evt 64 X 247 148 247 1067.66

AppEvent14.Evt 64 X 76 70 76 422

SecEvent14.Evt 64 X 124 95 124 828

SysEvent14.Evt 64 X 312 154 312 1385.33

X – unable to complete the operation. The event log file is reported as corrupted.

Appendix H 332

Table H.7: Processing Time for Event Viewer, lsevt.pl and SAFTool
(Second Run)

Test Data File

Name

Size

(KB)

Event

Viewer

Processing

Time (ms)

lsevt.pl SAFTool

No. of

Records

Processing

Time (ms)

No. of

Records

Processing

Time (ms)

AppEvent05.Evt 64 X 112 98 112 625

SecEvent05.Evt 64 X 58 62 58 328

SysEvent05.Evt 128 X 347 229 347 1344

AppEvent06.Evt 64 X 76 62 76 453

SecEvent06.Evt 64 X 0 0 0 0

SysEvent06.Evt 64 X 262 148 262 1187

AppEvent07.Evt 64 X 123 87 123 625

SecEvent07.Evt 64 X 260 150 260 1094

SysEvent07.Evt 256 X 370 406 370 1735

AppEvent08.Evt 192 X 139 109 139 875

SecEvent08.Evt 64 X 0 0 0 0

SysEvent08.Evt 512 X 1547 807 1547 6031

AppEvent09.Evt 192 X 106 78 106 453

SecEvent09.Evt 512 X 2317 864 2317 8969

SysEvent09.Evt 128 X 395 410 395 1296

AppEvent10.Evt 64 X 63 54 63 266

SecEvent10.Evt 64 X 0 0 0 0

SysEvent10.Evt 64 X 295 159 295 987

AppEvent11.Evt 64 X 187 129 187 906

SecEvent11.Evt 64 X 0 0 0 0

SysEvent11.Evt 128 X 359 214 359 1688

AppEvent12.Evt 64 X 110 68 110 516

SecEvent12.Evt 64 X 206 120 206 844

SysEvent12.Evt 64 X 236 143 236 922

AppEvent13.Evt 64 X 89 76 89 453

SecEvent13.Evt 64 X 0 0 0 0

SysEvent13.Evt 64 X 247 145 247 1109

AppEvent14.Evt 64 X 76 70 76 360

SecEvent14.Evt 64 X 124 100 124 781

SysEvent14.Evt 64 X 312 173 312 1516

X – unable to complete the operation. The event log file is reported as corrupted.

Appendix H 333

Table H.8: Processing Time for Event Viewer, lsevt.pl and SAFTool
(Third Run)

Test Data File

Name

Size

(KB)

Event

Viewer

Processing

Time (ms)

lsevt.pl SAFTool

No. of

Records

Processing

Time (ms)

No. of

Records

Processing

Time (ms)

AppEvent05.Evt 64 X 112 87 112 656

SecEvent05.Evt 64 X 58 56 58 344

SysEvent05.Evt 128 X 347 185 347 1500

AppEvent06.Evt 64 X 76 78 76 437

SecEvent06.Evt 64 X 0 0 0 0

SysEvent06.Evt 64 X 262 150 262 1250

AppEvent07.Evt 64 X 123 89 123 687

SecEvent07.Evt 64 X 260 146 260 1110

SysEvent07.Evt 256 X 370 398 370 1984

AppEvent08.Evt 192 X 139 109 139 828

SecEvent08.Evt 64 X 0 0 0 0

SysEvent08.Evt 512 X 1547 800 1547 6140

AppEvent09.Evt 192 X 106 82 106 516

SecEvent09.Evt 512 X 2317 850 2317 9500

SysEvent09.Evt 128 X 395 89 395 719

AppEvent10.Evt 64 X 63 70 63 265

SecEvent10.Evt 64 X 0 0 0 0

SysEvent10.Evt 64 X 295 146 295 1188

AppEvent11.Evt 64 X 187 118 187 875

SecEvent11.Evt 64 X 0 0 0 0

SysEvent11.Evt 128 X 359 292 359 719

AppEvent12.Evt 64 X 110 123 110 532

SecEvent12.Evt 64 X 206 115 206 1015

SysEvent12.Evt 64 X 236 126 236 969

AppEvent13.Evt 64 X 89 75 89 485

SecEvent13.Evt 64 X 0 0 0 0

SysEvent13.Evt 64 X 247 150 247 1016

AppEvent14.Evt 64 X 76 70 76 422

SecEvent14.Evt 64 X 124 96 124 953

SysEvent14.Evt 64 X 312 159 312 1375

X – unable to complete the operation. The event log file is reported as corrupted.

Appendix H 334

Table H.9: Total Size of Data for WinHex and the SAFTool (First Run)

Test Data

File Name

Size (KB)

Total Size of Data (bytes)

WinHex SAFTool

pagefile11.sys 1,506,576 1,598,029,824 1,598,029,824

pagefile12.sys 589,824 603,979,776 603,979,776

pagefile13.sys 2,095,104 2,145,386,496 2,145,386,496

pagefile14.sys 786,432 805,306,368 805,306,368

pagefile15.sys 196,608 201,326,592 201,326,592

pagefile16.sys 540,672 553,648,128 553,648,128

pagefile17.sys 117,760 120,586,240 120,586,240

pagefile18.sys 512,000 524,288,000 524,288,000

pagefile19.sys 774,144 792,723,456 792,723,456

pagefile20.sys 393,216 402,653,184 402,653,184

Table H.10: Total Size of Data for WinHex and the SAFTool (Second Run)

Test Data

File Name

Size (KB)

Total Size of Data (bytes)

WinHex SAFTool

pagefile11.sys 1,506,576 1,598,029,824 1,598,029,824

pagefile12.sys 589,824 603,979,776 603,979,776

pagefile13.sys 2,095,104 2,145,386,496 2,145,386,496

pagefile14.sys 786,432 805,306,368 805,306,368

pagefile15.sys 196,608 201,326,592 201,326,592

pagefile16.sys 540,672 553,648,128 553,648,128

pagefile17.sys 117,760 120,586,240 120,586,240

pagefile18.sys 512,000 524,288,000 524,288,000

pagefile19.sys 774,144 792,723,456 792,723,456

pagefile20.sys 393,216 402,653,184 402,653,184

Appendix H 335

Table H.11: Total Size of Data for WinHex and the SAFTool (Third Run)

Test Data

File Name

Size (KB)

Total Size of Data (bytes)

WinHex SAFTool

pagefile11.sys 1,506,576 1,598,029,824 1,598,029,824

pagefile12.sys 589,824 603,979,776 603,979,776

pagefile13.sys 2,095,104 2,145,386,496 2,145,386,496

pagefile14.sys 786,432 805,306,368 805,306,368

pagefile15.sys 196,608 201,326,592 201,326,592

pagefile16.sys 540,672 553,648,128 553,648,128

pagefile17.sys 117,760 120,586,240 120,586,240

pagefile18.sys 512,000 524,288,000 524,288,000

pagefile19.sys 774,144 792,723,456 792,723,456

pagefile20.sys 393,216 402,653,184 402,653,184

Appendix H 336

Table H.12: Processing Time for WinHex and SAFTool (First Run)

Test Data

File Name

Size (KB)

Processing Time (ms)

WinHex SAFTool

pagefile11.sys 1,506,576 37 439,890

pagefile12.sys 589,824 25 307,547

pagefile13.sys 2,095,104 34 572,719

pagefile14.sys 786,432 28 406,469

pagefile15.sys 196,608 25 239,969

pagefile16.sys 540,672 25 314,687

pagefile17.sys 117,760 20 240,797

pagefile18.sys 512,000 26 314,625

pagefile19.sys 774,144 32 340,297

pagefile20.sys 393,216 25 262,688

Table H.13: Processing Time for WinHex and SAFTool (Second Run)

Test Data

File Name

Size (KB)

Processing Time (ms)

WinHex SAFTool

pagefile11.sys 1,506,576 18 638,844

pagefile12.sys 589,824 20 375,312

pagefile13.sys 2,095,104 21 680,156

pagefile14.sys 786,432 20 388,094

pagefile15.sys 196,608 18 318,469

pagefile16.sys 540,672 17 353,640

pagefile17.sys 117,760 18 295,860

pagefile18.sys 512,000 20 328,187

pagefile19.sys 774,144 18 436,360

pagefile20.sys 393,216 17 444,766

Appendix H 337

Table H.14: Processing Time for WinHex and SAFTool (Third Run)

Test Data

File Name

Size (KB)

Processing Time (ms)

WinHex SAFTool

pagefile11.sys 1,506,576 15 306,047

pagefile12.sys 589,824 18 216,578

pagefile13.sys 2,095,104 20 463,500

pagefile14.sys 786,432 20 285,125

pagefile15.sys 196,608 15 145,766

pagefile16.sys 540,672 20 219,406

pagefile17.sys 117,760 17 148,360

pagefile18.sys 512,000 15 227,343

pagefile19.sys 774,144 14 239,781

pagefile20.sys 393,216 17 142,562

Appendix H 338

Table H.15: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in
Swap Files Identified by WinHex (First Run)

Table H.16: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in
Swap Files Identified by WinHex (Second Run)

Test Data

File Name

Size

(KB)

WinHex

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile11.sys 1,506,576 √ √ √ √ √

pagefile12.sys 589,824 √ √ √ √ √

pagefile13.sys 2,095,104 √ √ √ √ √

pagefile14.sys 786,432 √ √ √ √ √

pagefile15.sys 196,608 √ √ √ √ √

pagefile16.sys 540,672 √ √ √ √ √

pagefile17.sys 117,760 √ √ √ √ √

pagefile18.sys 512,000 √ √ √ √ √

pagefile19.sys 774,144 √ √ √ √ √

pagefile20.sys 393,216 √ √ √ √ √

Test Data

File Name

Size

(KB)

WinHex

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile11.sys 1,506,576 √ √ √ √ √

pagefile12.sys 589,824 √ √ √ √ √

pagefile13.sys 2,095,104 √ √ √ √ √

pagefile14.sys 786,432 √ √ √ √ √

pagefile15.sys 196,608 √ √ √ √ √

pagefile16.sys 540,672 √ √ √ √ √

pagefile17.sys 117,760 √ √ √ √ √

pagefile18.sys 512,000 √ √ √ √ √

pagefile19.sys 774,144 √ √ √ √ √

pagefile20.sys 393,216 √ √ √ √ √

Appendix H 339

Table H.17: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in
Swap Files Identified by WinHex (Third Run)

Test Data

File Name

Size

(KB)

WinHex

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile11.sys 1,506,576 √ √ √ √ √

pagefile12.sys 589,824 √ √ √ √ √

pagefile13.sys 2,095,104 √ √ √ √ √

pagefile14.sys 786,432 √ √ √ √ √

pagefile15.sys 196,608 √ √ √ √ √

pagefile16.sys 540,672 √ √ √ √ √

pagefile17.sys 117,760 √ √ √ √ √

pagefile18.sys 512,000 √ √ √ √ √

pagefile19.sys 774,144 √ √ √ √ √

pagefile20.sys 393,216 √ √ √ √ √

Appendix H 340

Table H.18: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in
Swap Files Identified by the SAFTool (First Run)

Test Data

File Name

Size

(KB)

SAFTool

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile11.sys 1,506,576 √ √ √ √ √

pagefile12.sys 589,824 √ √ √ √ √

pagefile13.sys 2,095,104 √ √ √ √ √

pagefile14.sys 786,432 √ √ √ √ √

pagefile15.sys 196,608 √ √ √ √ √

pagefile16.sys 540,672 √ √ √ √ √

pagefile17.sys 117,760 √ √ √ √ √

pagefile18.sys 512,000 √ √ √ √ √

pagefile19.sys 774,144 √ √ √ √ √

pagefile20.sys 393,216 √ √ √ √ √

Table H.19: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in
Swap Files Identified by the SAFTool (Second Run)

Test Data

File Name

Size

(KB)

SAFTool

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile11.sys 1,506,576 √ √ √ √ √

pagefile12.sys 589,824 √ √ √ √ √

pagefile13.sys 2,095,104 √ √ √ √ √

pagefile14.sys 786,432 √ √ √ √ √

pagefile15.sys 196,608 √ √ √ √ √

pagefile16.sys 540,672 √ √ √ √ √

pagefile17.sys 117,760 √ √ √ √ √

pagefile18.sys 512,000 √ √ √ √ √

pagefile19.sys 774,144 √ √ √ √ √

pagefile20.sys 393,216 √ √ √ √ √

Appendix H 341

Table H.20: Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ Terms in
Swap Files Identified by the SAFTool (Third Run)

Test Data

File Name

Size

(KB)

SAFTool

Existence of ‘mail’, ‘from’, ‘www’, ‘html’ and ‘send’ term

mail From www Html send

pagefile11.sys 1,506,576 √ √ √ √ √

pagefile12.sys 589,824 √ √ √ √ √

pagefile13.sys 2,095,104 √ √ √ √ √

pagefile14.sys 786,432 √ √ √ √ √

pagefile15.sys 196,608 √ √ √ √ √

pagefile16.sys 540,672 √ √ √ √ √

pagefile17.sys 117,760 √ √ √ √ √

pagefile18.sys 512,000 √ √ √ √ √

pagefile19.sys 774,144 √ √ √ √ √

pagefile20.sys 393,216 √ √ √ √ √

Appendix H 342

A review of the tasks carried out by fifteen participants when they were given

four data files from the dataset to analyse and visualise.

Table H.21: Review of the Tasks Carried Out by Fifteen Participants

No. The Tasks
Data from the

Dataset

Total number of tasks

carried out by fifteen

people (285 tasks)

1 The built in extensible architecture of the SAFTool (6 tasks)

 Click File from menu no data is used

6 tasks X 15

= 90 tasks

Click Analyse from Menu no data is used

Click Visualise from Menu no data is used

Click Report from Menu no data is used

Click Install Plugin – EventLogPlugin.xml no data is used

Click Install Plugin – PageFilePlugin.xml no data is used

2 Event Logs – 3 tasks for each data (3 tasks X 3 = 9 tasks)

 Click Analyse Event Logs AppEvent04.Evt

SecEvent04.Evt

SysEvent04.Evt

9 tasks X 15

= 135 tasks

Click Visualise Event Logs AppEvent04.Evt

SecEvent04.Evt

SysEvent04.Evt

Click Report Event Logs AppEvent04.Evt

SecEvent04.Evt

SysEvent04.Evt

3 Pagefile – 4 tasks for each data (4 tasks X 1 = 4 tasks)

 Click Analyse Pagefile pagefile10.sys

4 tasks X 15

= 60 tasks

Click Visualise Pagefile pagefile10.sys

Click Visualise Pagefile > Search

keyword

pagefile10.sys

Click Report Pagefile pagefile10.sys

343

APPENDIX I

QUESTIONNAIRE

Appendix I 344

Questionnaires

Questionnaires on user satisfaction level with the System Generated
Artefacts Forensic Analysis Application.

Objectives of the questionnaires:

1. To gain an understanding and increase the level of awareness

surrounding the use of System Generated Artefacts in an
investigation.

2. To assess your level of satisfaction with the SAFTool’s ability to aid

your understanding of system generated artefacts and their data
content.

3. To find out how easy you think it would be to modify and extend the

tool.

Please score the performance measures using the following criteria:

Very unsatisfied = 1; Unsatisfied = 2; Fair = 3; Satisfied = 4;

Very Satisfied = 5

A. System Generated Artefacts are files which are created due to the
routine operation of a computer operating system. These may be
created without the user’s knowledge.

1. Data analysis and presentation of data in the application increases

the understanding of the main points of the system generated
artefacts and their data content. The use of the tool highlights the
importance of system generated artefacts. Comment please.

 Comments
Please Tick

1 2 3 4 5

Appendix I 345

2. The chosen analysis and display methods aid the understanding of

the system generated artefacts and their data content. Comment
please.

 Comments

Please Tick

1

2 3 4 5

3. Additional information annotation provided in the application aids the

understanding of the information contained in the system generated
artefacts. Comment please.

 Comments

Please Tick

1

2 3 4 5

B. Information Representation

4. The data analysis and data visualisation easily and clearly indicate
the content of the Windows system generated artefacts. Comment
please.

Comments

Please Tick

1

2 3 4 5

Appendix I 346

5. The data analysis and data visualisation used in the prototype help
the user to understand the information contained in the Windows
system generated artefacts. Comment please.

Comments

Please Tick

1

2 3 4 5

C. Extensibility

6. In your expert opinion, and given the information provided, how easy
is it to modify and extend the tool?

Comments

Please Tick

1

2 3 4 5

Appendix I 347

Name:

Age:

Gender:

Years of Experience in Digital Forensics Field:

List of Computer Forensics Tool Used:

Thank You

