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ABSTRACT 

BIOMEDICAL  APPLICATIONS  OF  MID-INFRARED  SPECTROSCOPIC  IMAGING 
AND  MULTIVARIATE  DATA  ANALYSIS:  CONTRIBUTION  TO  THE 

UNDERSTANDING  OF  DIABETES  PATHOGENESIS 

 

by 

Ebrahim Aboualizadeh 

       The University of Wisconsin-Milwaukee, 2017                                                                 
Under the Supervision of Professor Carol Hirschmugl 

 

Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of 

adult vision loss. Although a great deal of progress has been made in ophthalmological 

examinations and clinical approaches to detect the signs of retinopathy in patients with diabetes, 

there still remain outstanding questions regarding the molecular and biochemical changes 

involved. To discover the biochemical mechanisms underlying the development and progression 

of changes in the retina as a result of diabetes, a more comprehensive understanding of the bio-

molecular processes, in individual retinal cells subjected to hyperglycemia, is required. Animal 

models provide a suitable resource for temporal detection of the underlying pathophysiological 

and biochemical changes associated with DR, which is not fully attainable in human studies. In 

the present study, I aimed to determine the nature of diabetes-induced, highly localized 

biochemical changes in the retinal tissue from Ins2Akita/+ (Akita/+; a model of Type I diabetes) 

male mice with different duration of diabetes. Employing label-free, spatially resolved Fourier 

transform infrared (FT-IR) imaging engaged with chemometric tools enabled me to identify 

temporal-dependent reproducible biomarkers of the diabetic retinal tissue from mice with 6 or 12 

weeks, and 6 or 10 months of diabetes. I report, for the first time, the origin of molecular changes 
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in the biochemistry of individual retinal layers with different duration of diabetes. A robust 

classification between distinctive retinal layers - namely photoreceptor layer (PRL), outer 

plexiform layer (OPL), inner nuclear layer (INL), and inner plexiform layer (IPL) - and 

associated temporal-dependent spectral biomarkers, were delineated. Spatially-resolved super 

resolution chemical images revealed oxidative stress-induced structural and morphological 

alterations within the nucleus of the photoreceptors. Comparison among the PRL, OPL, INL, and 

IPL suggested that the photoreceptor layer is the most susceptible layer to the oxidative stress 

with short-duration of diabetes. Moreover, for the first time, we present the temporal-dependent 

molecular alterations for the PRL, OPL, INL, and IPL from Akita/+ mice, with progression of 

diabetes. These findings are potentially important and may be of particular benefit in 

understanding the molecular and biological activity of retinal cells during oxidative stress in 

diabetes. Our integrating paradigm provides a new conceptual framework and a significant 

rationale for a better understanding of the molecular and cellular mechanisms underlying the 

development and progression of DR. This approach may yield alternative and potentially 

complimentary methods for the assessment of diabetes changes. It is expected that the 

conclusions drawn from this work will bridge the gap in our knowledge regarding the 

biochemical mechanisms of the DR and address some critical needs in the biomedical 

community. 
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Chapter 1: Introduction 

1.1. Introduction 

        Fourier Transform Infrared (FTIR) spectroscopic widefield imaging provides specific 

spatially resolved information about the chemistry of materials. Chemical signatures of DNA, 

carbohydrates (i.e. glucose), proteins, and lipids are recorded as a function of position. 

Frequencies of IR light match frequency dependent vibrations of functional groups (based on the 

masses of the participating atoms) and are absorbed. A range of important chemical signatures 

associated with the biomarkers of disease progression has been detected in biological materials. 

Despite the dramatic development in diagnostic procedures and treatment of diseases, identifying 

biomarkers with temporal and spatial resolution at the cellular and molecular level is critical for 

early detection and a better understanding of the disease pathology.  FT-IR spectroscopy has 

been applied to understand the biomolecular alteration in the variety of tissues including breast, 

prostate, skin, lung, brain, kidney, and colon as well as single cells and neurons. In this 

dissertation, I demonstrate the effectiveness of FTIR imaging in detecting the biomarkers of 

diabetic retinopathy at different stages of the disease. The central theme of this study is focused 

on spectroscopic imaging of retinal tissues and developing multivariate algorithms, which 

provide information regarding the molecular mechanism of diabetes that help pathologists for a 

better understanding of the diabetes histology. In this study, I aimed to determine a more detailed 

understanding of the natural history of diabetic retinopathy in Akita/+ (type 1 diabetes model) 

male mice with different duration of diabetes. 

1.2. Organization of the Dissertation 

        The dissertation is organized as follows. In chapter 2, I present an overview of FTIR 

spectroscopy and widefield spectroscopic imaging. The history of FTIR instruments, recent 
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developments in detectors and sources, in situ IR spectromicroscopy of live cells, microscope 

optics, and the experimental techniques and details of the measurements used in this study are 

discussed. I also present the development of synchrotron infrared spectromicroscopy and 

applications in this chapter.  

        In chapter 3, a general framework of multivariate data analysis and a review of existing 

chemometric tools for clustering and classification of tissues and cells have been discussed. Pre-

processing methods for data evaluations, unsupervised classification methods like principal 

component analysis (PCA), hierarchical clustering analysis (HCA), and k-means clustering, as 

well as supervised clustering methods including linear discriminant analysis (LDA), artificial 

neural network, and naïve Bayesian classifiers are detailed. The framework of a multivariate 

analysis termed PCA-LDA (i.e. principal component analysis followed by linear discriminant 

analysis) to identify the discriminatory features in each classification is explained. The series of 

examples for classification of tissues and cells are illustrated in this chapter. In this chapter, 

spectral distortions and artefacts in the mid-infrared spectrum, caused by sample geometry and 

the theory behind resonant Mie scattering are discussed. Interpretation of mid-IR spectra, 

especially when there is a complex sample is critical and spectral artefacts can lead to 

misunderstanding of the chemistry of samples due to the shifts in peak positions. I also 

demonstrate some examples from tissues and cells that show how correcting spectral distortions 

mitigate the data interpretation and a better understanding of chemical characteristics.  

        In chapter 4, I demonstrate the retinal anatomy and physiology and discuss the associated 

chemistry of the retinal layers and general framework of the light propagation into the retina. 

Basics of diabetic retinopathy; symptoms, causes and risk factors, and the complications during 
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diabetes at each stage of the disease are reviewed. Existing diagnostic modalities in treating 

diabetic retinopathy with their limitations are discussed.  

        Chapter 5 discusses the oxidative stress detected in short-term (6-week-old) diabetes in 

rodents determined by synchrotron-based FTIR imaging. FTIR widefield microscopy coupled 

with multivariate data analysis was employed to identify biomarkers with spatial resolution at the 

cellular and molecular level. In this chapter, I demonstrate the biomarkers of oxidative stress and 

lipid peroxidation at the early stages of diabetes and oxidative-stress induced alterations in the 

diabetic retina tissue morphology compared to the control retina. Distinctive layers of the retina, 

namely the photoreceptor retinal layer (PRL), the outer plexiform layer (OPL), the inner nuclear 

layer (INL) and the inner plexiform layer (IPL), are evaluated and the contribution of the 

photoreceptor layer to the oxidative stress in short-term diabetes is discussed.  

        Chapter 6 discusses temporal-dependent diabetes-induced biochemical alteration in the 

retinal tissue at different duration of diabetes in rodent models. Spatially resolved chemical 

images allow me to understand diabetes-induced alterations in biochemistry of distinct retinal 

layers. I demonstrate the alterations in the chemical images from both Akita/+ (diabetic) and 

non-diabetic retinal tissues, and the spectral biomarkers from the comparison of distinct retinal 

layers from diabetic and non-diabetic mice. Moreover, I present the molecular factors associated 

with the changes to the protein structure and cellular lipids of retinal layers induced by different 

duration of diabetes. My paradigm provides a new conceptual framework for a better 

understanding of the temporal cellular and biochemical changes underlying the progression of 

diabetic retinopathy. It is expected that our integrating paradigm provide a new conceptual 

framework for a better understanding of the mechanism underlying diabetic retinopathy. In this 

work, I demonstrate that high-resolution infrared spectrochemical imaging with multivariate 
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image analysis is a robust approach to differentiate between diabetic and non-diabetic tissues 

with the highest level of classification. Chapter 7 discusses the concluding remarks of this 

dissertation.  
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Chapter 2: Fourier transform infrared (FTIR) spectroscopic imaging 

2.1. Introduction  

        Fourier transform infrared (FTIR) spectroscopic imaging is a label-free and non-destructive 

imaging technique that detects the distribution of biologically relevant components in samples, 

concurrently revealing biochemical composition and morphology [1]. The goal of absorption 

spectroscopy is to determine how much light is absorbed by the sample. Absorption spectrum of 

a molecule provides structural insights about the functional groups that constitute the molecule. 

Since molecules have different chemical structures, each molecule produces unique spectral 

fingerprint that can be used in interpretation of the spectra of complex mixtures. Thanks to 

advances in focal plane array detectors [2], the field of IR spectromicroscopy, which is a 

combination of spectroscopy and microscopy, generated significant improvement in scientific 

study and applications in this field. FTIR imaging allows illuminating and measuring larger areas 

of samples, and detects heterogeneities in tissues, which provides thousands of spectra 

simultaneously in a few minutes. Nowadays, FTIR imaging has a wide range of applications in 

animal tissues [3,4], plant studies [5,6] restoring arts [7], cancer histopathology [8-12], 

neuroscience [13,14], polymers [15], and drug delivery [16,17]. The fundamentals of 

instruments, theory and background, and coupling of synchrotron radiation to FTIR microscope 

are discussed in this chapter.  

2.2. Interferogram 

        In the prior infrared dispersive spectroscopy method, a monochrometer was used to separate 

the wavelengths in the source and a particular wavelength was passed through a sample and then 

the absorption spectrum was recorded [18]. The procedure was then repeated for every single 

frequency to achieve the full absorption spectrum for the sample. In this method, a grating was 
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placed before the sample and was used to select the frequencies of light. During 1950’s, time 

domain spectrometers [19] were developed to collect IR spectra and still considered in 

widespread use as infrared spectrometers. IR spectrometers are designed based on typical 

Michelson interferometer, which split the beam through beam splitter [19]. Radiation from 

infrared source is passed through a beam splitter (identical beam splitter divides the beam into 

two equal beams), which one beam travels to the fixed mirror and the other to the moving mirror. 

The reflected beams from the fixed and moving mirrors are recombined and passed through the 

sample and finally to the detector. The schematic of the Michelson interferometer is shown in 

Figure 2.1. In FTIR spectrometers all the wavenumbers are impinged simultaneously to the 

sample, where in the dispersive spectrometers one observes wavenumbers sequentially. This is 

called Felleget (multiplex) advantage. The optical path difference (OPD) between the beams that 

travel to the fixed mirror and the moving mirror back to the beam splitter is called retardation 

(δ). When the both distances of moving mirror and fixed mirror from the beam splitter are equal, 

this point is called zero path difference (ZPD) and the interference between the beams is 

constructive at ZPD. The intensity of the source recorded at the detector is called interferogram 

and written as a function of δ by: 

𝐼 𝛿 = 0.5 𝐼 𝜈! 1+ 𝑐𝑜𝑠 2𝜋𝜈!𝛿  

Where 𝜈! is the wavenumber of radiation [19]. The first term is called DC term and there is no 

contribution from the DC term in spectrometry. Therefore the intensity can be written as: 

𝐼 𝛿 = 0.5 𝐼(𝜈!) cos 2𝜋𝜈!𝛿 
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In practice, there are several factors that affect the intensity recorded at the detector including 

beamsplitter efficacy, detector response, and amplifier characteristics. Thus, the constant 𝐼(𝜈!) 

should be modified to B(𝜈!) and the new parameter entails instrumental characteristics. The new 

equation that describes the interferogram is:  

𝑆 𝛿 = B(𝜈!) cos 2𝜋𝜈!𝛿 

The second advantage of FTIR spectrometers to dispersive spectrometers is the Fast Fourier 

Transform (FFT) algorithm that is discovered by J.W. Cooley and J.W. Tukey in 1965 [20]. The 

conversion of interferogram in time domain into the spectra in frequency domain was now 

Figure 2.1: Schematic of a Michelson interferometer. Photo courtesy by Petergans [Public 
domain]. Reprinted from Wikimedia Commons. 
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possible. The interferogram is sampled using an analog to digital converter and then loaded into 

the computer to perform FFT and generate the spectrum as a function of frequency. Greater 

signal to noise ratio, speed in data acquisition, and a better resolving power for the instrument are 

some advantages of Fourier transform spectroscopy.  The interferogram and the spectrum can be 

calculated from one another via Fourier cosine transform as shown below. 

 

𝑆 𝛿 = B
!!

!!
(𝜈!) cos(2𝜋𝜈!𝛿)𝑑𝜈! 

𝐵(𝜈!) = 𝑆(𝛿)
!!

!!
cos(2𝜋𝜈!𝛿)𝑑𝛿 

 

2.3. Spectral Resolution 

        Spectral resolution in a spectrometer is the ability to resolve two wavenumbers ν1 and ν2 

that are closely spaced. The resolution of a spectrometer is limited by the maximum optical path 

difference between the beams that travel from the arms of interferometer. Thus, the minimum 

difference between two adjacent wavenumbers (Δν = ν1 – ν2) equals the maximum optical path 

difference in the interference pattern and has to be such that 

∆𝜈 = ∆𝑥!"#!! 

Therefore, the narrower the separation between two wavenumbers, the greater is the retardation. 

Lower or higher spectral resolution highly depends on the sample and the information I am 

seeking in the sample. For example, biological specimen requires higher spectral resolution due 

to the subtle spectral features (small peaks and shoulders) in the spectrum, although it takes 

longer time to scan at higher resolutions. Typical spectral resolutions for routine IR 
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measurements are 4 or 8 cm-1. Mathematically speaking, to limit the maximum retardation of the 

interferogram to Δ centimeters, one can multiply the interferogram by a D(δ) function, which is 

unity between −Δ and +Δ, and zero elsewhere. The D(δ) is a boxcar function and therefore the 

spectrum can be written as:  

𝐵 𝜈 = 𝑆 𝛿
!!

!!
D(δ)cos(2𝜋ν𝛿)𝑑𝛿 

Which is a convolution of the original spectrum and the Fourier transform of the boxcar function. 

Since the Fourier transform of a boxcar function is a sinc function, it creates side lobes (small 

oscillations from the center of a line shape) that possess negative values. These negative values 

will be eliminated in the calculated spectrum and therefore, to prevent losing information, 

apodization is used to control the effects of finite retardation and suppress the magnitude of these 

oscillations. 

 

2.4. Signal to noise ratio 

        Signal to noise ratio (SNR) is one of the critical factors in data acquisition that largely 

affects the quality of the spectrum. SNR is proportional to the root square of the time as follows: 

 

𝑆𝑁𝑅 ∝ 𝑛!/! 

 

Since the noise component is uncorrelated to the source, signal averaging can increase the SNR 

in the acquired spectrum. The signal power increases by the factor of N2, while the noise power 

goes up by the factor of N, therefore, signal averaging increases the SNR by the factor of N. 

Consider the signal x is constant for all observations z., then the nth observation is written as:  
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𝑧! = 𝑥 + 𝑟! 

 

Where rn is the noise that changes for every observation. The SNR of zn is defined as:  

 

𝛽1 =
𝐸 𝑥!

𝐸 𝑟!!
 

Where E is the expectation operator. If we average N observations of zn, we get:  

𝑧 =
1
𝑁 𝑥 + 𝑟! = 𝑥 +

1
𝑁 𝑟!

!

!!!

!

!!!
 

Now we calculate the SNR for the averaged observation 𝑧: 

𝛽! =
𝐸 𝑥!

1
𝑁!  𝐸 𝑟!!

!!!
!

 

Since the noise component is uncorrelated to the source, we can simplify the expression in the 

denominator into: 

𝐸 𝑟!

!

!!!

!

= 𝐸 𝑟!!
!

!!!

= 𝑁𝐸 𝑟!!  

 

Inserting into the expression for β2 yields: 

𝛽! = 𝑁
𝐸 𝑥!

 𝐸 𝑟!!
 

Now, comparing the SNR β1 for single observation and β2 for averaged observation reveals that 

averaging increases the SNR by a factor of N. To repeat reproducible scans, there is an 
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embedded monochromatic laser source in the interferometer that creates its own interferogram at 

a separate detector and monitors the displacement of the moving mirror (OPD). 

2.5. Detectors 

        There are three types of detectors that are routinely used in FTIR spectroscopy. The choice 

of detector depends on various experimental factors including spectral resolution, optical 

throughput of the IR beam, sampling geometry, and spectral range desired of the experiment. For 

static measurement (e.g. standard measurement of pure chemicals) deuterated triglycine sulfate 

(DTGS) detectors are suitable choice due to the high throughput (more than 20% of IR beam 

reaches the detector). The second type of detector is a mercury cadmium telluride (MCT) 

detector, which is a photoconductive detector. When an infrared photon has sufficient energy to 

move an electron from the valence band to the conduction band, the detection occurs. MCT 

detectors are LN2 cooled detectors and is opaque to the infrared photons that have less energy 

than the energy gap. One of the limitations of MCT detectors is losing the responsivity and 

directivity at high throughput; therefore, one must limits the intensity of IR beam reaching the 

detector at high energies.  
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The third detector that is commonly used for FTIR chemical imaging is a multi-channel focal 

plane array (FPA) detector [22]. FPA operates in the spectral range 5400-850 cm-1 and the pixel 

size at the detector (each element of the detector) is about 40 × 40 µm2. FPA allows concurrent 

acquisition of n × n number of spatially resolved spectra (n=16, 32, 64 or 128) where each pixel 

represents and infrared spectrum. FPA has advantages over MCT detectors including larger field 

of view, more chemical information, speed in data acquisition, greater number of spectra per 

measurement (4096 spectra per measurement for 64×64 FPA size), and detection of morphology 

and heterogeneities of the specimen. Schematic diagram of the beam path in FT-IR single point 

spectroscopy and FT-IR widefield imaging with a multi-element focal plane array detector is 

shown in Figure 2.2 [21].  

2.6. Infrared spectroscopy 

        Electromagnetic radiation, including IR light, drives the motion of electric charges in 

matter. If the natural time scale of any oscillations of the charges in a molecule is close to the 

period of the electromagnetic radiation shining on the system, a condition known as resonance 

occurs. Near resonance, IR light is efficiently absorbed by the system, allowing the identification 

of the frequencies of low-energy (1–500 meV) excitations found in the sample. These excitations 

may involve nuclear motion, such as vibrating molecules, ions, or radicals. For IR spectroscopy, 

the process of interest is absorption. IR photons are absorbed by vibrations that induce dynamic 

dipoles originated from oscillations in the density of electrons or electron charge due to atomic 

motion (the electrons follow the motion of the nuclei). The natural oscillating frequencies of 

Figure 2.2: Schematic illustration of the beampath in (A) aperture-based FTIR single point 
spectroscopy and (B) FTIR imaging using focal point array detector. In both methods, the 
microscope and the detector are attached to the Michelson interferometer. Reprinted with 
permission from [21]. 
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molecules are related to the masses of the displaced atoms and the strength of their respective 

chemical bonds. Thus, a “fingerprint” or series of absorption bands with specific vibrations 

associated with the functional groups for a specific macromolecule are identified, and an 

absorption spectrum is a plot that shows how well different frequencies of light couple to 

excitations for the macromolecule. An absorption spectrum (Figure 2.3) is commonly plotted as 

Absorbance (A) vs. frequency (ν), which is related to the transmittance by A = −log T [It is 

conventional to convert the units for frequency ν from Hz (s−1) to wavenumbers (cm−1) by 

dividing ν by the speed of light c]. Absorbance curves exhibit peaks at energies where the sample 

has absorbed energy from the incident beam. Functional groups within molecules absorb IR light 

when they are in resonance with the incident radiation and lead to peaks in the absorption 

spectrum. The frequencies are dependent on the masses of the atomic constituents and the 

bonding strength and can therefore be used to identify the functional groups. The absorption 

strength can also be correlated with the concentration of the functional groups and ideally 

increases linearly for a wide range of concentrations. An example of a typical absorption 

spectrum from a biological specimen is demonstrated in Figure 2.3.  
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        Obtaining concentrations from two-dimensional projection measurements relies upon 

having a controlled sample thickness or a precise knowledge of the sample thickness at the point 

being measured since absorption depends on both concentration and path length. Furthermore, 

for such parameters to be extracted, the sample must be of uniform thickness over the dimension 

sampled by a given measurement (e.g., 10 µm for a 10 × 10 µm2 aperture size). Obtaining 

relative concentrations for a given sample or sampling area is reliable if the dynamic dipole 

strengths of a particular mode are known. 

        Infrared (IR) spectroscopy is a non-destructive and label-free tool for examining live cells 

[23,24] and allows one to identify the chemical species present within the sample under 

investigation. IR light detects distinct chemistry based on absorption “fingerprints” providing 

inherent contrast, without disturbing the sample even under adverse conditions, conferring access 

to vital, in vivo information. IR spectroscopy is a mature field, yet, more recent schemes 

coupling it with microscopy, implemented as raster scanning and widefield microspectroscopy 

measurement schemes provide chemically and spatially resolved 2D projections images of 

samples. These methods are poised to make significant contributions to the newer directions 

embraced by scientists in live cell imaging. Many of these state-of-the-art experiments have been 

facilitated by IR radiation extracted from storage rings or synchrotrons [25,26].  

        IR spectroscopy allows the determination of the energy of the excitations it probes, and 

thereby sheds light on the microscopic origin of the excitation. For example, identifying what 

functional groups exist within cells—based on their known vibrational excitations—can provide 

Figure 2.3: Schematic illustration of an absorption mid-infrared spectrum of a typical 
biological sample. The spectrum highlights the functional groups attributed to important 
macromolecules.    
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insight into how fixation and arsenic induce changes in biomolecules, or to assess native cellular 

heterogeneity at the chemical level. Recent advances in instrumentation, including the design of 

spectrometers and detectors and the development of new sources provide the means to enhance 

significantly the capabilities of this mature field. As a practical matter, IR spectroscopy has 

found its widest application in identifying the chemical compounds present in an unknown 

sample by the virtue of frequencies of IR light the sample absorbs. Since the resonance condition 

occurs over a narrow range of frequencies, which differs for different compounds (i.e., lipid 

versus carbohydrate functional groups), the exact frequency of the absorbed light provides a 

characteristic signature of the molecules, ions, or radicals present in the sample. The analytical 

capabilities of IR spectroscopy are invaluable for identifying chemical composition within 

complex, often heterogeneous biological systems. 

2.7. Infrared spectromicroscopy 

        IR spectromicroscopy, which is a combination of mid-IR spectroscopy and microscopy, is 

relatively a new term with the development of focal plane array detectors. It is a non-destructive 

spectrally-resolved modality for imaging biological tissues and allows to collect spectra from 

different regions of tissue concurrently. Every pixel within the field of view (FOV) entails a mid-

IR spectrum and all the frequencies are retained by the phase modulation of the interferometer. 

IR spectromicroscopy has a wide range of applications from materials and polymers to biological 

cells and connective tissues at micrometer scale. The objectives that are used in conventional IR 

spectromicroscopy are Cassegrain or Schwarzschild-like objectives [27] as shown in Figure 2.4. 

The IR microscope is performing using a bottom Schwarzschild objective (aperture objective) to 

focus the IR beam to the sample and the upper objective collects the light and relays it on the 

detector. Schwarzschild objectives consist of a primary concave mirror with a center hole and a 
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secondary convex mirror. The primary concave mirror collects the incoming light through the 

hole and transmits the light to the secondary mirror. The light reflects and diverges from the 

secondary convex mirror to fill the concave mirror and the primary mirror then focus the beam to 

the focal point. The Schwarzschild objectives have zero spherical and chromatic aberrations. 

Infrared microscopes can perform in two ways depending on whether point illumination or 

widefield imaging is desired. For point illumination, single element detectors are used and two 

apertures before and after the sample are embedded to control the throughput of the IR beam 

impinging on the specimen. This configuration performs in confocal geometry and the apertures 

allow the illumination of the particular region of the sample area.  

 

 

 

 

 

 

 

 

 

Figure 2.4: Illustration of the Schwarzschild optical arrangement. Two parabolic mirrors with 
radii r1 and r2 are arranged in the objective. The smaller mirror masks the opening of the 
primary mirror, forming an annular aperture toward the incoming light. "Reprinted with 
permission from [12]. Copyright (2012) American Chemical Society." 
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        On the contrary, for FTIR imaging, the design is apertureless to allow the maximum 

illumination and widefield imaging within the FOV. There are still two objectives before and 

after the sample plane, where the bottom one focuses the illumination on the sample plane and 

the top objective collects the light and transmits to the detector. The beam paths for IR 

spectroscopy and IR widefield imaging are demonstrated in Figure 2.2. The spatial resolution of 

the infrared imaging setup is limited by the diffraction of light and depends on the wavelength of 

the infrared beam and the numerical aperture of the microscope optics.    

2.8. Hyperspectral Imaging 

        Hyperspectral imaging or spectroscopic imaging is a combination of vibrational 

spectroscopy and chemical imaging. The hyperspectral image contains both spatial and spectral 

information about the sample. In this imaging technique, the sample is partitioned into small 

pixels and each pixel contains a mid-IR absorption spectrum. The hyperspectral images are 

plotted as a 3D cube of data (x, y, z), where x and y represent spatial dimensions of the pixel and 

the z-axis is the absorption of that particular pixel as a function of wavenumber. For example, for 

the FPA size of 64 × 64, every image contains 4096 mid-IR spectra for a single measurement. 

Concentration weights of image constituents are different from pixel to pixel and it depends on 

the pixel composition. However, pure spectra of the constituents from the whole image are 

identical. By means of bilinear model in multivariate image analysis, one can decompose a raw 

data into two matrices where the first matrix is associated with the pixel concentrations and the 

second matrix is attributed to the pure spectra. It is identical to the Beer-Lambert law in matrix 

form:  

D = C S! + E 
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Where D is the raw 3D cube of data, C is the concentration values of image constituents within 

each pixel, ST contains the pure spectra of image constituents and E is the experimental error. 

The structure of data is shown in Figure 2.5. It means that every row in matrix C is associated 

with the concentration weights and provides us information about the chemical composition of 

that pixel. The concentration variation from pixel to pixel is achievable by taking every column 

in matrix C. Then by re-dimensioning a column in matrix C into a 2D image, the distribution 

map of each image constituent can be obtained and it provides valuable spatial information. 

Taking advantage of this idea and using the analogy between chemometric tools and beer-

lambert law in matrix form, the original two-dimensional chemical images and refolded principal 

component score images can be correlated.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Schematic Illustration of the Beer-Lambert law model of the three-dimensional 
hyperspectral images. Reprinted with permission from [29]. 
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2.9. Synchrotron FTIR widefield imaging 

        IR spectromicroscopy has recently evolved by several technological advances; first, 

coupling IR microscopes with synchrotron source [30] rather than the conventional thermal IR 

source yields higher signal-to-noise ratio (SNR) than that of the thermal source when using 

smaller apertures (in confocal experiments) and therefore higher spatial resolution. The tradeoff 

of this approach is that diffraction-limited imaging at the shortest wavelengths requires a small 

aperture that reduces the signal for the entire bandwidth, pushing the signal for the longest 

wavelengths below the detection limit. If a larger aperture is used, spatial resolution for the 

shorter wavelengths is degraded. Further, the confocal setup has the drawback that image 

acquisition time ranges from several hours to days, precluding time-resolved measurements such 

as biochemical kinetics of living cells. The second advance was to replace the single-element 

detector with a FPA detector (illuminated by a globar) to accelerate data acquisition. Some 

groups had efforts to illuminate FPA detectors with synchrotron IR beams [27,31]. They 

succeeded in illuminating a small portion of the FPA to obtain higher SNR in the illuminated 

area; however, these small illumination areas meant that only a small subset of the FPA 

corresponding to a relatively small sample area could be used.  

        Infrared Environmental Imaging (IRENI) beamline, located at the Synchrotron Radiation 

Center in Madison, WI, USA [28] is the first IR widefield imaging system that has been 

specifically designed and optimized to overcome the SNR-acquisition time-spatial resolution 

tradeoff by coupling multiple synchrotron beams with a large field of view FPA detector. The 

schematic of the IRENI beamline is shown in Figure 2.6.  

        This capability enabled spectrochemical imaging for challenging problems such biological 

and medical applications that require many samplings to collect statistically relevant data and/or 
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high throughput, and analysis of heterogeneous materials at the micrometer scale. In particular, 

IR imaging of cells in vivo is a rapid, nondestructive tool to identify the chemical composition of 

biological samples for a wide range of physiological and biochemical applications, now 

realizable with IRENI [32-40].  

 

 

        Because water is a strong IR absorber, benchtop chemical imaging with blackbody thermal 

sources is limited in attainable spatial resolution and/or SNR when imaging live cells that are 

immersed in water or require aqueous environments. In this way, use of the bright synchrotron 

source provides distinct advantages; as it overcomes the SNR problem for thin layers of water 

[41-43] and recent developments in flow cells [44-46] make these experiments feasible. Using 

multi-beam synchrotron source, reaching biologically relevant spatial and temporal scales, new 

Figure 2.6: schematic of the IRENI beamline.  a) Organization of the optics highlighting four 
sets of mirrors focusing the beam from the bending magnet to the spectrometer. The beam is 
focused through a condenser to the sample plane and through the second objective to the 
detector. b) Illustration of twelve defocused IR beams onto the FPA detector. c) Image of the 
visible portion of the synchrotron beams. Reprinted with permission from [28].  
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information on short length and time scales can be obtained in a simultaneous and rapid fashion 

in living cells or tissue. These developments have been critical steps forward for the field, as 

diffraction-limited chemical images can be collected for living cells in vivo in a matter of 

minutes, a critical aspect for the field of living cells which can evolve and move over short time-

scales. 

2.10. Applications 

        FTIR spectroscopic imaging has a wide range of applications in the study of biological 

specimen that can provide information on morphology and structure of cells and tissues. There 

are numerous applications in pathology, neurology, and cancer diagnosis shown in several 

studies. Here, I present some examples from various biological cells and tissues, performed 

during my PhD studies to provide an illustration of possibilities.   

2.10.1. Dorsal root ganglion neurons 

        Based on both morphological and functional criteria, dorsal root ganglion (DRG) neurons 

isolated from adult mice can be classified into large-diameter (≥27 µm) and small-diameter (< 27 

µm) somata. DRG neurons with large somata tend to have myelinated Aα and Aβ axons in vivo 

[47] and generally conduct proprioceptive or mechanical information from peripheral targets at 

high velocities. DRG neurons with small to medium-diameter somata tend to correspond in vivo 

to unmyelinated C fibers and Aδ fibers. Many of the small diameter DRG neurons are 

nociceptive, or pain-sensing [48-50] or thermosensors and conduct information from pain and 

thermal receptors at low velocities [51]. A further population of small neurons is low- threshold 

C fibers that convey gentle touch and skin stroke [52]. The organization of how the peripheral 

nervous system senses painful stimuli and the alterations that occur during chronic pain states 

has been a central topic in the research of acute and chronic peripheral pain. However, one of the 
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major complexities for determining the underlying mechanisms of pain is that dorsal root ganglia 

(DRG) neurons, which comprise sensory nerves, are exceptionally heterogeneous, in that there 

are many functionally distinct subpopulations, some of which respond to light touch, heat, cold 

or endogenous or exogenous chemical stimuli.   

        Fourier transform infrared (FTIR) widefield microscopy provides label-free imaging that 

detects the distribution of biologically relevant components in cells at subcellular level. The 

importance of sample preparation and cell cultures for infrared measurements, for DRG neurons 

placed on CaF2, BaF2, and glass substrates are discussed elsewhere [53].  
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        Chemical images and IR absorption spectra from large diameter (LD) and small diameter 

(SD) neurons obtained from intact DRGs are displayed in Figure 2.7. Average spectra identify 

the infrared bands associated with the vibrations of the major functional groups of proteins, 

hydrocarbons, carbohydrates and phosphates. The following spectral regions as indicators of 

specific functional groups are used: 2800 –3000 cm-1 (C–H stretching of hydrocarbons, primarily 

lipids), 1600 –1700 cm-1 (C-O stretching of amide functional groups in protein), 1200 –1268 cm-

1 (PO2- asymmetric stretching of phosphates in lipids, sugars, and nucleic acids), and 1000–1135 

Figure 2.7: A,C) visible images of a representative large-diameter (A) and small-diameter 
(C) neuron. Average mid-infrared spectra of the respective neurons, generated by 
averaging the spectra from each pixel occupied by the somata, are shown in B and D. E–L 
show chemical images generated for amide (E and G), hydrocarbon (F and H), phosphate 
(I and K), and carbohydrate (J and L) for the large-diameter and small-diameter neurons, 
respectively. All of the visible and IR images represent a field of view that is the same 
size, so the scale bar in E represents 10 µm and applies to all images. Reprinted from [13]. 
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cm-1 (mixed C–O–H modes of carbohydrates). The region from 3000 to 3600 cm-1 has 

contributions from N–H stretching modes from proteins as well as O–H stretching modes from 

water and carbohydrates. Integrating the area under the spectral regions with a corresponding 

baseline at each pixel generated chemical images. The chemical images were pseudocolored to 

illustrate relative abundance or density of the corresponding functional groups such that red 

delineates regions of high relative abundance, and blue indicates areas of low relative abundance 

(Fig. 2.7).  

        Relative lipid content in different subpopulations of DRG neurons, segregated by size 

(large- and small-diameter), treatment (naive and CFA inflammation), and genotype (wild type 

and TRPA1 KO) are calculated. The results from wild-type neurons and neurons from naive and 

CFA-injected TRPA1 KO mice are then compared. In small-diameter, wild-type neurons, I 

observed a significant (p 0.001) increase in relative lipid content following CFA inflammation as 

compared with naive control neurons. Interestingly, this effect was diminished in TRPA1 KO 

neurons, where following inflammation, the change in the relative lipid content failed to reach 

statistical significance (p 0.062). This difference in the effect of inflammation on TRPA1 KO 

versus wild- type neurons suggests that the increase in lipid content during inflammation is 

dependent in part on the expression TRPA1 [13]. I found that chemical morphology can define 

subpopulations of sensory neurons based on lipid and/or carbohydrate enrichment in chemical 

rings.  
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2.10.2. Biochemical alterations in brown and subcutaneous white adipose tissues 

        Numerous techniques have been used to determine the activity of adipose tissues and 

measure the whole body energy expenditure. Positron emission tomography (PET) with 

fluorodeoxyglucose (FDG) [54-56] is known as a primary method to detect BAT in humans. 

Despite outstanding clinical applications of PET-FDG, there are some limitations including 

ionizing radiation exposure, cost, procedure duration, and poor reproducibility of images [57,58]. 

Indirect calorimetry [59] is a non-invasive method that provides information on thermogenesis 

and metabolism; however, a lack of signal in inactive tissues, high-cost equipment, sensitivity to 

the measurement error, and sensitivity only to the steady state exercise condition, are some of the 

limitations. Computed tomography (CT) scanning [60] is another commonly used approach that 

provides the relationships between metabolic activity and body composition. Recently, PET-

FDG/CT has been used to measure the activity of cold-induced BAT in a semi-quantitative 

manner. Infrared thermography [61] is also a thermal imaging technique that has been developed 

for predicting the presence of BAT. In addition, hyperpolarized 13C imaging [62], BOLD MRI 

[63], and hyperpolarized xenon MRI [64] have been used to detect BAT in rodents. Non-invasive 

near-infrared spectroscopy technique is also employed to detect human BAT [65]. Therefore, 

there is a necessity to develop alternative imaging methods to investigate the activity of BAT and 

s-WAT due to the significance of these tissues.   

        FTIR imaging permits detecting the inherent vibrational mid-infrared (IR) spectra of the 

biochemical constituents of the cells and characterization of the localized biochemical changes. 

Due to the sensitivity of IR spectra to the concentration of components in a sample, this method 

serves as a quantitative and qualitative technique. In this study, for the first time, I suggest that 

the combination of FTIR imaging and chemometric tools is a promising alternative approach to 
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detect the biomolecular changes attributed to cold acclimation in BAT and s-WAT excised from 

mice. FTIR microspectroscopy has been previously applied to obesity research including 

determination of fatty acids in human abdominal fat [66], obesity-induced alterations in BXD 

recombinant inbred mice [67], determination of fat content in liver tissue [68], and obesity-

induced alterations in subcutaneous and visceral adipose tissues [69]. Other vibrational 

spectroscopic methods have also been applied to the field of obesity such as Raman spectroscopy 

[70] and coherent anti-stokes Raman microscopy [71].  
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        In the present study, BAT and s-WAT derived from thermoneutral (control, 30 °C), room 

temperature -maintained (24 °C) and cold-exposed (10 °C) mice were investigated. The potency 

of cold exposure in stimulating adipose tissues was evaluated by quantitative measurement of 

messenger RNA (mRNA) expression levels of UCP-1, Dio2 and Cidea. I present a novel 

chemometric-based method to detect the regions of interest within adipose tissue thin-sections.  

Individual pixel IR spectra (n=600) derived from 30 °C, 24 °C, and 10 °C BAT and s-WAT and 

used for measuring the ratio of several IR bands. Principal component analysis (PCA) and 

ANOVA model with post-hoc F-test were also used in this study to determine classification 

between the studied groups. Complementary 1H NMR measurements were performed on BAT 

and s-WAT and MR-based olefinic: lipid ratio was used as an additional proxy to correlate with 

IR-based results.  

 

Figure 2.8: Chemical images derived from BAT (aa) and s-WAT (bb) at 10°C, 24°C and 30°C 
are shown. Panels A, E, I are visible images of adipose tissues. Each tissue covers the area of 
280 × 280 µm2 (2 × 2 tiles; each tile = 64×64 pixels; each pixel = 2.2 × 2.2 µm2). Chemical 
images from integrated area under 1600-1700 cm-1 associated with proteins (Panels B, F, J), 
2830-2980 cm-1 associated with saturated lipids (Panels C, G, K), and 2992-3020 cm-1 
associated with unsaturated fatty acids (Panels D, H, L) are demonstrated. Colors indicate 
component gradients from low (blue) to high (red) and the values are demonstrated below each 
panel. The scale bar is 40 µm.  cc) Average of nearly 1000 individual pixel spectra (3600-900 
cm-1) and a corresponding second derivative spectra (3050-2750 cm-1) for BAT and s-WAT at 
10°C, 24°C, and 30°C are demonstrated. dd) stack of spectra from the linescan drawn in Figure 
2.8-bb/Panel B is shown. The starting pint is the green dot in the purple region of the image. 
The protein regions of the spectra are highlighted with purple, pink, and green rectangles in 
Panel dd to show the differences in protein absorbance. Reprinted from [72].   
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        Visible images of BAT/s-WAT sections at 10°C (Figure 2.8-aa/bb - Panel A), 24°C (Figure 

2.8-aa/bb – Panel E) and 30°C (Figure 2.8-aa/bb - Panel I) are demonstrated. Spectral maps were 

generated from integrating over different spectral regions including 1600-1700 cm-1 (proteins-

Amide I (Panels B, F, J)), 2830-2980 cm-1 (Lipids - CH2 and CH3 stretching (Panels C, G, K)), 

and 2992-3020 cm-1 (Olefinic - unsaturated fatty acids (Panels D, H, L)). Distribution maps were 

derived from four adjacent tiles (2×2 tiles), covering the area of about 280×280 µm2 within the 

section of a tissue. Chemical images reveal the relative concentrations of each functional group 

on a rainbow color scale, (red (blue)/highest (lowest) intensity) to correspond to the absorption 

intensity and therefore concentration. The blue/purple background denotes the lack of biological 

material, while the green to red distributions shows elevated levels. The segments of the adipose 

tissues marked with white arrows in the visible images (Figure 2.8-aa/bb - Panel A, E, I) were 

detected by FTIR imaging (Figure 2.8-aa/bb - Panel B, F, J).    

        Figure 2.8-cc demonstrates IR average spectra from BAT and s-WAT (30°C, 24°C, 10°C) 

that highlight the IR bands attributable to carbohydrates, proteins and lipids. Lipids dominate the 

mid-IR spectral region 3050-2800 cm-1. The band at 3009 cm-1 attributed to olefin and 

unsaturated fatty acid was observed in both BAT and s-WAT. Similarly, the four lipid bands at 

2854 (νs CH2), 2873 (νs CH3), 2923 (νas CH2) and 2960 cm-1 (νas CH3) respectively, were 

observed in the spectra from both BAT and s-WAT. Clear differences in spectrum content, in 

particular in the heights of characteristic protein peaks in the spectral regions 3600-3100 cm-1 

attributed to N-H and O-H stretching, Amide I (1700-1600 cm-1) and Amide II (1570-1500 cm-1) 

peaks, between BAT and s-WAT were observed. The highlighted green, pink, and blue boxes 

represent the variations in the absorption strength of the bands between the tissues (Figure 2.8-

cc). Absorption bands at 1163 cm-1 attributed to C-O-C stretching of the ester functionalities and 
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1745 cm-1 assigned to C=O stretching of the carbonyl group are also seen in the spectra from 

BAT and s-WAT. Figure 2.8-dd shows the stack of spectra along the linescan drawn in the 

Figure 2.8-bb/ Panel B. The first 8 spectra in Figure 2.8-dd show lack of protein absorptions 

(highlighted rectangles); however, the rest of the spectra show elevated absorption of the protein 

bands at 3290, 1654, and 1544 cm-1. The stack of spectra clearly shows the differences in the 

protein profile in different segments of the tissue.    

2.10.3. In situ IR microspectroscopy (Time lapse FTIR widefield microscopy) 

        In situ IR microspectroscopy is performed using a customized flow cell, allowing for 

measurements ranging from living cells in liquid media to gas adsorption on solid films. FTIR 

spectroscopic imaging of living cells is challenging due to the suspension of many cells in 

aqueous environments. Water is strongly absorbing in the mid-IR region, and optical path 

lengths of water greater than 25 µm result in total absorption over a considerable portion of the 

mid-IR region. Schematics of the microfluidic chamber used to maintain the diatoms 

(Thalassiosira weissflogii) alive and perform IR measurements are shown in Figure 2.9. 

Demountable flow chambers open [36,43,46] and closed [72] micro fluidic devices are used by 

several groups in live cell studies.    

        Time dependent macromolecule changes in Thallasosira weissflogii due to elevated carbon 

dioxide exposure were studied. Widefield spectromicroscopy was used to study changes in 

concentrations of carbon containing macromolecules due to environmental stresses by rapidly 

imaging single Thalassiosira weissflogii algal cells maintained in a microfluidic chamber. These 

data result in a series of temporally-resolved IR images, enabling chemically specific 

visualization that is unattainable with visible imaging, of on-going chemical processes and 

morphology in live cells. 
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        Diatoms were diluted once a week, in order to have the population always in exponential 

growth (remove half of the culture and add the same volume of new medium) and then were 

exposed to high CO2 medium (5000 ppm CO2) prior to IR measurements, and then maintained 

within the microfluidic chamber at fixed temperature (20 °C) in 10 µL of CO2 controlled 

medium fixed with a 15 µm spacer, and continually illuminated with photosynthetically active 

light. A background or reference spectrum is taken at the measurement position on the sample 

before the target gases are introduced to the cell. Then a controlled flow rate of the target gas is 

introduced using a mass flow controller connected to the input tube of the flow cell while 

differential transmission spectra are recorded.  
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        Typically, these measurements are performed in transmission mode. The data sets were 

collected over a span of 8 hours. The most obvious changes in the spectral sequence and the IR 

images are seen in the carbohydrate/silica spectral band. Clearly, the intensity of this band 

changes from the beginning to the end of the experiment as is evident from the change in the 

color rendering of the images from the initial time point to the images generated from the time 

point taken at 8 h. Second, studying the spectral signatures show clear changes in the peak 

shapes, with the peak at 1040 cm-1 getting smaller while there are minimal to no changes in the 

peak at 1080 cm-1 (spectra not shown) [24]. The former peak is associated with carbohydrate 

functional groups, while the latter is associated with silica Si–O functional groups. Further 

changes are observed for the CH3 and CH2 functional groups, in both distribution and overall 

intensity. Time-lapse IR images are shown in Figure 2.10.  This proof-of-principal experiment 

demonstrates the capability of following such changes in vivo with sufficient time resolution to 

capture the changes in real-time.  

 

 

 

 

Figure 2.9: Different schemes of chambers for sustaining living cells. (A) Demountable 
liquid flow cell using submicrometer thick diamond windows (B) Fully-sealed microfluidic 
chamber employing 1 and 2 mm thick CaF2 windows as the top and bottom windows, 
separated by an 8.5 µm photoresist layer. (C) Demountable liquid flow cell employing 2 mm 
thick CaF2 windows as the substrate and lid for the cell and (D) Open channel microfluidic 
design consisting of 10–15 µm deep microchannels embedded onto a Si chip with controlled 
inlet and outlet pressures.	 "Reprinted with permission from [36,43,46]. Copyright (2009) 
American Chemical Society." 
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Figure 2.10: Temporally resolved series of IR images showing distributions of biochemically 
important functional groups and time dependent changes in the concentrations of several 
biochemical functional groups for a Thalassiosira weissflogii maintained in the flow cell. The 
images are obtained from data sets collected at 1, 3 and 8 h after exposure to medium 
containing a high concentration (5000 ppm) of CO2. The images are displayed on a rainbow 
scale, with the red corresponding to the highest detected quantity of the functional group. 
Reprinted from [24].  
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Chapter 3: Chemometric tools and tissue classification 
 

        Hyperspectral images from IR spectroscopic imaging provide massive dataset (spectral 

outputs from images), which include chemical information. Prior to image analysis, 

understanding of the chemical and mathematical properties of the measurement is crucial due to 

the specificity of each algorithm in providing outcome. Chemometric tools are critical in image 

analysis, especially in heterogeneous samples and complex tissues (e.g. diabetic tissue, 

cancerous tissue or tissue engineering) and detecting various species (e.g. bacterial species, 

impurities). Therefore, it is important to select the right algorithm among existing and in-

progress methodologies in extracting structural information related to biomedical context. The 

main aim of chemometric tools are exploring the differentiation between image constituents 

based on their specific spectral fingerprints. In this chapter, I will discuss data pre-processing and 

noise reduction methods that are critical steps in obtaining robust and reproducible tissue 

classification. Then, I survey principles of some supervised and unsupervised methods that are 

highly used in spectroscopic studies with focus on merits, applications, and the drawbacks of 

each method. Finally, I will provide with some examples of my work in applying the 

chemometric tools and statistical analysis in classifying tissues and strains of bacteria. 

3.1. Introduction 

        Spectroscopic data has been broadly used to understand the structure and biomolecular 

dynamics, consisting of hundreds of thousands of variables measured from number of samples 

[1]. Multivariate data analysis involves the analysis of large-scale data to determine all the 

spectral and spatial information and reveals the classes based on the similarities and differences 

in the spectral features (image segmentation). Chemometric tools [2] convert the original 
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variables into the latent variables to find the relationship between variables and number of 

samples. In both qualitative and quantitative analytical methods, chemometric tools are crucial in 

determining image constituents based on clustering the chemical composition of the pixels 

within an image. Employment of chemometric methods in biomedical spectroscopy is highly 

sought after, due to the richness and availability of myriad data. The main goal of this chapter is 

discussing general methods that a vibrational biospectroscopist may use in classification and 

pattern recognition of samples that leads to pathology. Chemometric tools in vibrational 

spectroscopic measurements (e.g. Raman, FTIR) include three major approaches. Enhancing the 

quality of data by improving signal to noise ratio, clustering between different classes by either 

supervised or unsupervised methods, and visualizing the data (new variables) to discern the 

differences in the dataset. The basic idea of classical multivariate image analysis is built on the 

bilinear model that decomposes the original dataset into pure spectra of the image constituents 

and the concentration values of these constituents. Therefore, one can segment the image into the 

pixels with similar chemical composition and generate spectral information attributed to each 

cluster. The rationale behind decomposing the dataset into smaller matrices is that the recorded 

data are repeated measurements of a small set of sample characteristics and that small set can 

represent the whole dataset as well as the spectral features. Although regression models [3] are 

helpful in identifying molecular structures of complex mixtures, there is a need for more accurate 

algorithms to help determine biochemical markers [4-6]. In biomedical spectroscopy, detecting 

alterations in tissue morphology (pixel to pixel variations in large areas) is crucial and therefore, 

pattern recognition techniques are more advantageous in this context. Experimental artefacts in 

spectroscopic data (raw data) can largely influence the chemometric analysis. There are some 

typical issues including the noticeable level of noise in the data, baseline effects, and bad pixels 



	 44	

(low absorbance) that have great impact on the image analysis and leads to misunderstanding of 

the classification. Thus, appropriate pre-processing methods can significantly improve the 

quality of the spectra [7]. In this chapter, I present some methods that are mainly used in signal 

processing for decreasing the artifacts in the dataset.     

3.2. Pre-processing methods 

3.2.1 Baseline correction 

        Baseline correction is generally required when there is the presence of background effects 

in the signal [8,9]. Baseline removal is necessary prior to subsequent quantitative spectral 

analysis to successfully interpret the FTIR spectral features (e.g. peak positions, band areas, peak 

heights), or else it is easy to be misled. Baseline offset can vary from pixel to pixel on the 

detector and it can be aroused from either how the detector output voltage is mapped to the 

analogue-to-digital converter input voltage range or the generation of electron-hole pairs referred 

as dark current.  The appearance of baseline effect is that of a sloping baseline that decreases 

towards longer wavelength (lower wavenumbers) and a spectral manipulation technique is 

needed to correct spectra with sloped or varying baselines. One can simply draw a low-order 

polynomial parallel to the baseline, and then this function is subtracted from the intensity values, 

if the baseline is independent of wavenumber. If the baseline has spectral shape, a more 

sophisticated approach is required to remove the baseline effect in the spectra [10,11]. There are 

different categories of chemometric methods for removing baselines (or "backgrounds") from 

data, including multiplicative signal correction (MSC) method, derivatization of spectra, or 

polynomial fitting [12-16]. It is critical to apply the most amenable method to the data; therefore, 

understanding the characteristic of baseline effect is a need. MSC and similar full-matrix 

methods require the full dataset (all spectra along with the concentrations for all samples) to be 
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loaded and the procedure is faster. However, it is not a suitable method for correcting individual 

spectra upon acquisition and also this method highly depends on the quality of the raw spectra 

since an outlier can impede the correction.  

        Derivatizing the spectra is one of the most common and heavily used preprocessing 

methods in vibrational spectroscopy. The first derivative spectrum removes the constant offset 

from the spectrum, while the second derivative removes both constant offset and linear drifts in 

the spectrum. However, the second derivative spectrum retains all subtle spectral bands 

attributed to the chemistry of the sample. Although derivative preprocessing in removing the 

baseline effects is widely used, adding the noise structure to the spectra is one of the major 

drawbacks in this method.       

        Another method to remove baselines from data in more complicated forms is by including a 

baseline function (polynomial function) when fitting a sum of functions to the data and then 

subtracts it from the original spectrum [17]. This can be done by dividing the spectrum into N 

ranges and determine the lowest points in every range. The first baseline is built out of these 

initial points. Then, the spectrum is brought down by the difference between the lowest point in 

the current range and the lowest point on the baseline. Lieber and Mahadevan-Jansen proposed 

an automated straightforward method for removing baseline effects by fitting polynomials in 

iterative mode to the spectra [18]. In this method, the shape of original spectrum is retained and 

allows spectroscopist to evaluate the corrected spectrum, while interpreting the spectra in 

derivative preprocessing is challenging. There are additional methods to remove the baseline 

modulations either by performing FFT (Fast Fourier Transform) and filter out the lowest 

wavenumbers or using cosine functions with multiple long wavelengths and perform a linear fit 

to the data. In the latter, one can filter out the spectra by weighting the data points with their 
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intensity.  

3.2.2. De-noising  

        Signal to noise ratio (SNR) is a quantity that has been used to measure signal strength and 

detectability relative to the noise. It is critical to perform quality test on spectroscopic data prior 

to multivariate image analysis and eliminate the pixels with low SNR, since the presence of poor 

SNR spectra can lead to misunderstanding of the chemistry and pathology. The process of noise 

removal in the data requires understanding the characteristic property of noise, which is distinct 

from that of the signal. Recently, new methodologies are developed to de-noise spectroscopic 

data and most of the methods are amenable to hyperspectral images [10]. Some methods are 

based on smoothing spectra (e.g. Least-squares polynomial smoothing) that can be done by 

fitting a polynomial function to a set of input samples. Mathematical signal filtering methods 

including wavelet transform, statistical reconstruction, and FFT-based filters [19] are some 

techniques to improve SNR in the chemical spectrum. In FTIR imaging, it is vital that the noise 

removal method reduces noise while maintaining the shape and the height of the spectral peaks. 

Other methods, such as multivariate covariance method, are gaining interest in the field of 

vibrational spectroscopy, especially where large numbers of spectra have to be recorded [20]. 

Briefly, This approach, for example, a principal component analysis (PCA), decomposes the 

original data matrix into a set of eigenvalue images via forward transformation. Only selected 

number of eigenvalue images represents chemical distribution in the data and the rest are 

attributed to the noise. After selecting the eigenvalue images with sufficient SNR, an inverse 

transform is performed to reconstruct the data with lower noise content and higher SNR. An 

example of raw spectroscopic data, baseline corrected, and de-noised via PCA are shown in 

Figure 3.1.     
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3.2.3. Spike Removal   

        In hyperspectral images, some pixels present either abnormal spectral readings or spectrum 

that is mostly dominated by noise (dead pixel) due to some instrumental artefacts. Detecting 

these artefacts that are known as “spike noise” is another step in pre-processing spectroscopic 

data prior to tissue classification. It is known that spike noise is generated from α-rays or γ-rays 

emitted from the materials around the detector chip. Another reason that spikes are seen in FTIR 

imaging data are employing larger detectors with increased integration times for imaging 

biological tissues [21]. The most common method to remove spikes from the data is local 

interpolation, which is using median values from regions of interest that can be used as a 

reference. In this method, neighboring pixels with acceptable SNR are used to smooth data, i.e. 

spikes and bad pixels can be replaced by interpolated spectra, taking as reference [22]. Another 

method to remove spikes in the FTIR spectra is defining both upper and lower threshold on 

absorbance values at certain wavenumbers. The threshold approach can be used to detect outliers 

in the spectra, as well [23]. For typical spectrum from biological specimen, one can consider 

amide I band (1690-1620 cm-1) as signal and the absorption-free spectral region (1900-1800 cm-

Figure 3.1: Raw spectra of an emulsion layer image (a) after de-noising (b) and after de-
noising along with baseline correction (c) by least squares. Reprinted with permission from 
[5].  
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1) as noise content in the data. A threshold can also be applied to the area underneath the bands to 

find the outliers. 

3.2.4. Normalization 

        In spectroscopic applications, different spectra that are recorded from the same material at 

different times and under different instrument conditions experience differences in intensity 

levels. These scaling differences can arise from scattering effects, alignments, pathlength effects, 

and variations in source or detector. Normalization is a pre-processing step that corrects the 

disparity in the intensity levels of the spectra recorded from the same sample under identical 

experimental parameters. Normalization helps spectroscopist to evaluate all the samples with an 

equal impact on the model, especially if the variance in the data is desirable. In discriminant 

analysis such as PLS-DA or PCA methods, classification results are significantly different with 

or without normalization. Normalization is typically performed after baseline correction and 

offset removal in FTIR spectral analysis [24]. There are four typical normalization techniques 

that are summarized below.  

        Let’s assume the spectrum to be normalized is ‘A’ and the normalized spectrum is defined 

as ‘AN’, where N is the number of wavenumbers (data points) in the recorded spectrum. 

 

A = (a!, a!, a!,…… . . , a! ) 

A! = (a!", a!", a!",…… . . , a!" ) 

 

Each element of ‘A’ and ‘AN‘ represents the intensity of the spectrum at a given wavenumber.  
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(1) Vector normalization 

        Vector normalization, is dividing each absorption intensity attributed to a wavenumber by 

the “norm” of the spectrum. Norm is defined as the square root of the sum of the squared spectral 

elements.  

norm = (a!! + a!! +⋯+ a! 
! ) 

 

a!" =
a! norm ; i = 1,2,… ,N 

(2) Peak normalization 

        In peak normalization, the entire FTIR spectrum is normalized to the intensity of a 

particular wavenumber. Let’s define the reference intensity as ‘A’, then the normalized spectrum 

is defined as: 

a!" =
a!
A  ; i = 1,2,3,… ,N 

        This method is not recommended if there is a possibility of variations in peak position and 

peak height in the spectrum. In most cases, Amide I or Amide II bands are used as references for 

peak normalization, therefore this normalization is not an appropriate method if protein 

denaturation or alterations in protein structure are the points of the comparison.  

(3) Min-Max normalization 

        First, the minimum and maximum values of all the intensities of the FTIR spectrum is 

calculated. Then, each intensity value corresponding to each wavenumber is replaced by a new 
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intensity value. The normalized spectrum in this method is calculated as follows: 

 

a!"# = max (a!, a!,… , a!) 

a!"# = min(a!, a!,… , a!) 

a!" =
a!-a!"#

a!"#-a!"#
; i = 1,2,… ,N 

(4) Standard Normal Variate (SNV) normalization 

        This method is very similar to min-max normalization method with slight changes. The 

mean value for the intensity values are calculated and then divided by the standard deviation 

(S.D.). 

Mean = a! + a! +⋯+ a!
N 

S.D.= a!-Mean ! + a!-Mean ! +⋯+ a!-Mean !

N-1  

 

a!" =
a!-Mean

S.D.   ; i = 1,2,… ,N 

3.2.5. Scattering correction 

        The primary complication in the analysis of the FTIR spectrum of cells comes from 

scattering effects in the data. It is well known that scattering particles similar to the wavelength 

of incident IR radiation  (3-10 µm) cause Mie-Type scattering [14,15]. Typical human cells are 
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mostly about 8-30 micron and the cell organelles ranges from 1-10 micron, which is very close 

to that of the IR radiation.  This effect usually appears as a derivative-shape line in the high 

wavenumber side of Amide I band in the spectrum. Although it appears in the spectral region 

close to amide I, this phenomenon has influence on other peaks in the mid-IR fingerprint region, 

which leads to misrepresentation of the peak positions and the chemistry of cells.  

        In the presence of scattering features in the data, peak shapes, positioning, and intensities 

are not reliable to evaluate biochemistry of cellular features. Extended multiplicative signal 

correction (EMSC) is known as one of the most powerful methods in correcting scattering 

features and dispersion artefacts in mid-IR spectra, especially in the case of moderate Mie 

scattering where the amide I band (∼1650 cm-1) is not heavily distorted. EMSC is a multivariate 

data pre-processing method that is based on linear regression model to handle multiplicative 

effects and artefacts in the spectral data. EMSC has been widely used in spectroscopic data to 

correct the baseline effects and transform the distorted spectrum to the original spectrum and 

therefore, the chemical interpretation is more accessible. This method has been used in non-

linear problems such as Mie scattering to remove offsets and baseline slopes as well as 

correcting optical pathlength differences in the spectra by means of multiplicative part of the 

model. In EMSC model, a second order polynomial function is used to correct the baseline 

effects. Assume A1, A2, ……, AM are the FTIR spectra and A is the average spectrum. Each 

spectrum can be written as: 

A = a!, a!,… , a!  

where N is the number of data points. Let’s assume that Aν

i is an intensity value of the spectrum 

at particular wavenumber ν for a given spectrum Ai. Then, EMSC transforms each spectrum in 
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terms of the average spectrum and a polynomial using the following equation: 

A!! = α! + β!*A!
! + γ!*ν + δ!*ν! + ϵ!!   ; i = 1,2,… ,M;   ν = 1,… ,N 

Once the parameters αi, βi, δi, and γi are calculated, then the corrected spectrum is given by: 

A_EMSC! = E!
b! + A!; i = 1, 2,… , L 

Where Ei = ( ε1
i, ε2

i, …., εN
i ) is the residual spectrum.  

 

 

        Van de Hulst initiated the first calculations of the Mie scattering efficiency, Q [25]. In this 

model, known as non-resonant Mie scattering EMSC model, Q is defined as a function of 

parameters such as the real refractive indices of particle, surrounding medium, and the diameter 

of scattering particles. Then, due to the non-linearity of Q and the complexity of implementing 

this non-linear function into pre-processing, this function is replaced by a multivariate bi-linear 

Figure 3.2: Flowchart demonstrating the iterative process for performing scattering correction 
using reference spectrum. Reprinted with permission from [16].   
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model and incorporated into the linear EMSC model. Thus, one can estimate the parameters by 

the multivariate linear regressions and the resulting curves are loaded into PCA, to manipulate 

data in smaller dimensions.  The described algorithm is successful at removing the smooth 

oscillations due to Mie scattering; however, the dispersion artefact often remains. These artefacts 

should be removed through resonant Mie scattering EMSC method, which is scattering when 

there is concurrent absorption [26]. 

 

 

        The model, which has been used to correct both baseline effect and dispersion artefacts in 

the data, is based on generating Mie scattering curves (scattering efficiency) that are dependent 

on wavenumber and scatter diameter.  It has been modeled that the size of scatters has an impact 

on the period of oscillation in the Mie scattering curves and the variations in the refractive index 

as a function of wavenumber is obtained by means of Kramers-Kronig transformations.  

        The procedure removes Mie scattering spectral features, and recovers pure absorption 

Figure 3.3: The mid-IR spectra before and after scattering correction using GPU-based 
algorithm. Reprinted with permission from [16].  
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spectra. The flowchart demonstrating the iterative procedure to correct scattering features in the 

FTIR data are shown in Figure 3.2. Scattering correction in our work was implemented using 

Graphics Processing Units (GPUs) for fast hyperspectral processing [16,27]. An overall 

procedure to perform scattering correction implementation on 800 images of 128 ×128 pixels 

takes about 12 seconds. The algorithm proposed by Bassan, et al. is used to implement the GPU-

based scattering correction with some modifications [16]. The mid-IR spectra before and after 

scattering effect using GPU-based algorithm is shown in Figure 3.3.  

3.3. Multivariate data analysis 

        The most critical step in practicing statistical analyses is to understand the logical structure 

of data, which provide insights to substantive chemical information conveyed by the data. 

Hyperspectral data are typically presented in the form of hypercube where two spatial 

dimensions represent the pixel coordinates and the spectral axis is the third dimension. One of 

the most important objectives of multivariate analysis is to extract the maximum variance in the 

data, where in the most cases this variation entails the morphological and chemical information 

of the data. The choice of appropriate multivariate analysis among existing methods highly 

depends on the goal of the analysis. There are three main objectives in multivariate image 

analysis namely, descriptive information of data structure, classification and discrimination 

between classes and groups of measurements in the data, and prediction and regression.  

        The multivariate analyses are generally split into “unsupervised” and “supervised” methods. 

Unsupervised methods do not rely on a priori information and are suitable to find subtle 

structural information in the unlabeled data. Unsupervised algorithm (e.g. PCA) performs 

classification based on the similarities of the spectra. Recently, unsupervised methods are used to 
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reduce the dimensionality of big data and also as a precursor to supervised methods. Clustering 

analyses such as K-means clustering and Hierarchical Clustering Analysis (HCA) are considered 

unsupervised methods.  

        On the other hand, supervised methods use previous knowledge and label the classes that 

need to be classified. The “training phase” and the “prediction phase” are two main phases of 

modeling stage in supervised algorithms. In the training phase, the dataset that is labeled 

(training dataset) is used to find the patterns in the data and the parameters that are obtained in 

this phase are used to validate the data (the data that are not included in the training dataset) in 

the prediction phase. Linear discriminant analysis (LDA), support vector machines (SVM), and 

partial least squares (PLS) are some examples of supervised methods. One of the major 

drawbacks of supervised algorithms is that they rely on labeling and it is burdensome to label 

every observation, especially in handling big data. Using supervised methods along with 

unsupervised methods has solved the issue. Initially all of the data are loaded into an 

unsupervised method and based on the obtained clusters, each observation is labeled. Moreover, 

this procedure enables us to handle the data in a lower dimensional space and filter out the 

spectral artefacts and noise in the data. PCA is the most common dimensionality reduction 

algorithm.  Then, the labeled data are fed into supervised algorithm for further classification and 

to maximize the separation between classes.       

3.3.1 Eigenvector based multivariate analysis 

        Multivariate image analysis provides simple ways to visualize image constituents by using 

information in both spectral and spatial directions, while preserving the relevant original 

information. Hypercube of data contains hundreds of thousands of spectral channels, although 
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the spectral data are highly redundant and affected by artefacts. Therefore, understanding the 

structure of data is vital prior to chemometric evaluation. Eigenvector based algorithm and in 

particular principal component analysis (PCA) is very common to determine the chemical 

composition of the image. PCA is a linear transformation of the original data that decomposes a 

dataset into bilinear latent variables called principal components (PCs) and reduces the 

dimensionality of the data while retaining most of the information in the data set. In PCA, Data 

are typically mean centered and the mean spectrum is used as comparator. Thus, PCA can be 

considered as a method that aims to explain the standard deviations from an average spectral 

property. The first component (1st PC) is accredited to an average intensity observed at every 

spectral data point and the second component represents the variations from the first component 

and subtle differences between groups of samples can be identified with standard statistics. PCA 

can be used for compressed representation of an image that retains most of the information based 

on the expression: 

Y = V!X  

        Where Y is the new data matrix after rotation, X is the original data matrix and VT is the 

vector of weights (termed as loadings).  The weights attributed to different axes are illustrative of 

distinct spectral features assigned to sub-classes in the data that are classified based on variance.   

PCA is calculated based on the maximum variance contained in the dataset in descending order 

of importance and there is a null correlation between components.  

        However, the number of components in PC representation is equal to the number of spectral 

wavenumbers in the data, only the first few numbers of PCs can be used since the rest of the 

components do not account for the chemical information. Comparatively speaking, PCA is 
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identical to beer-lambert law in a matrix form and the number of components that describe an 

image can be interpreted as the number of constituents of an image. It means that taking every 

column in the scores matrix and refolds it into a two-dimensional image can be analogous to the 

distribution map. The PCA model and chemical images for FTIR images of retinal tissue are 

shown in Figure 3.4.  

        The advantage of working with scores and loadings representation is the reduced size of the 

big data and the efficacy to highlight and visualize the variations and heterogeneities in the 

biological tissue. Similar values in the scores matrix are attributed to different pixels but with the 

identical chemical composition in the original data. There is also a typical visualization of PC 

scores to detect pixel clusters by creating scatterplots without need of extra calculation and re-

dimension process. The first three PCs typically account for 99% of the total variability of data 

and therefore used to create 2D scatter plots. The scatter plots from scores are helpful to 

visualize whether the score values are clustered or dispersed along each component. The second 

piece of information originated from PCA is the “loading spectra” that can be used to find 

relevant spectral features in the real spectra. The principal component loadings are used to infer 

the components and strength of components that correspond to the discriminatory features 

responsible for the classification. Further, by the comparison between the location of the clusters 

of points in the 2D score scatterplots and the variations seen in the PC loadings, one can correlate 

the clusters with positive (negative) scores to the loadings with peaks (troughs). 
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        The largest peaks or troughs in the loading plots are associated with the largest variances in 

the score plots. The difference between the real spectra and the loading spectra is the existence of 

some negative bands in the loading plot, which comes from the fact that loading spectra are 

completely uncorrelated and principal components are calculated under the condition that there is 

a null correlation between components. However, PCA is very well designed to reduce the 

dimensionality of the original data and meanwhile maintain most of the relevant information in 

Figure 3.4: Chemical images of non-diabetic and diabetic retinal tissue processed at lipid 
band at 2850 cm-1. Average absorption spectrum from the region of interest within the 
photoreceptor retinal layer is shown. Results from PCA including re-dimensioned scores for 
PC-1 to PC-4 and associated loadings plot for the lipid region 3050-2800 cm-1 is shown.  
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the original data. 2D scores distribution map highlights the regions with the highest variations 

within original data and can be used to correlate with the biggest variations observed in the 

loading spectra. Therefore, pixels with identical chemical composition have the same PC score 

value and this idea has been used in some image segmentation algorithms.  

        I am less interested in using PCA for the purpose of tissue classification and spectral 

pathology. Failure of this method in identifying instrumental artefacts or correlated noise in 

classification and the inability of using a priori information about the samples are two major 

drawbacks in using pure PCA in classification. However, there are several classification studies 

with limited number of image constituents where PCA provides robust and accurate 

classification and identification [28-34]. In my case study, PCA has been used as an initial pre-

processing step to provide a priori information for further sophisticated classification techniques 

that will be discussed later in this chapter. PCA-based algorithms have advantages of noise 

reduction property [35] that is implicit in PCA and the orthogonality of the components, which 

make the classifications robust, accurate, and comparable to non-linear methods [36]. 

3.3.2 Hierarchical Clustering Analysis 

        Hierarchical clustering analysis (HCA) [37] involves partitioning the dataset to multiple 

steps such that a single cluster of the entire dataset is successively formed into separate clusters. 

HCA is a chemometric tool to classify dataset by evaluating distances between spectra/clusters. 

Amongst various existing methods, Ward’s algorithm together with Euclidean distance is known 

as the most efficient method. Hierarchical clustering could be divided into agglomerative and 

divisive methods. In agglomerative clustering method, the algorithm starts with n clusters of size 

1 and then forms the first cluster of size 2 and n–1 clusters of size 1. In the next step, one has 

either 1 cluster of size 3 and n-1 clusters of size 1 or 2 clusters of size 2 and n-2 clusters of size 
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1. This procedure continues until all data are combined into a single cluster of size n. In divisive 

method, the algorithm starts from a single group of N objects and ends when each cluster 

contains a single object. Agglomerative method is more common in spectroscopic data and the 

results are typically demonstrated as tree of connections termed as dendrograms. An example of 

dendrogram is shown in Figure 3.5. In agglomerative clustering, two spectra with the smallest 

spectral distance (highest similarity) form a new cluster and then the distance between other 

spectra and the formed cluster is calculated. Again the two clusters/spectra with the highest 

similarity form another cluster and the software repeats this procedure until one big cluster is 

left. This method tries to minimize the sum of squares of two clusters that are formed during the 

whole procedure. The distance between cluster i and cluster j with a new cluster k is calculated 

based on the following equation: 

d!,!" =  
c! + c! d!" + c! + c! d!"-c!d!"

c! + c! + c!
 

Where dki is the Euclidean distance between clusters k and i calculated in the first step, dkj is the 

distance between clusters k and j and dij is the distance between clusters i and j. ci,j,k is the 

number of units in clusters i, j and k.   
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        There are some major benefits of hierarchical clustering in spectral analysis. Since 

hierarchical clustering is an unsupervised method, no prior information of classes in the data is 

needed. In addition, the organization of clustering can be visualized at every single step of the 

analysis and provides the estimate of heterogeneity, and the chemical information (spectral 

features) regarding each class can be obtained. Hierarchical clustering has been widely used in 

spectral analysis and visualizing the data including classification of microbial species [38-41], 

pathology of tissues [42], and drugs [43]. Results drawn from hierarchical clustering could also 

be linked to clinical application via two parameters namely sensitivity and specificity. The 
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Figure 3.5: Schematic illustration of a dendrogram. The x-axis shows the number of samples 
and the y-axis shows the distance between clusters.   
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sensitivity refers to the number of diseased samples that are clustered in a disease group (true 

positive) and specificity refers to the number of control samples that are clustered in a control 

group (true negative). These parameters help to quantify false positive and false negatives in 

tissue classification. Owing to this knowledge, one can infer the progress of disease based on the 

sensitivity factor of tissues at different stages of the disease and compare the biological 

variations.   

3.3.3 K-means clustering  

        K-means clustering [44-46] is an unsupervised learning algorithm that works iteratively to 

assign each data point to one of K clusters based on the number of clusters that are fixed a priori. 

The aim of k-means clustering is finding the positions of the clusters that minimize the distance 

from the data points to the cluster.  The main idea is defining a centroid for each cluster that can 

be used to label the new data. The centroids are placed far from each other at the first step and 

then associate each data point to a centroid. When no point is pending, the first group is formed. 

At this step, one has to re-calculate K new centroids as bary-center of the clusters resulting from 

previous step. After defining k new centroids, the same data points should be assigned to the 

nearest centroids and the loop is generated. Therefore, when the loop starts running, the centroids 

change from step to step and the loop stops until there is no further change in the centroids. The 

algorithmic steps to perform k-means clustering are listed below. 

1) Assume that X= {x1, x2, x3, …… , xn}be the set of data points and Y= { y1, y2, y3, …… , yn} 

be the set of centroids.  

2) Select “m” cluster centers randomly. 

3) Calculate the Euclidean distance between every data point and cluster centers. 
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4) Associate each data point to the cluster center whole distance is minimum from the cluster 

center (among all cluster centers). 

5) Recalculate the new cluster center using the following equation: 

y! =
1
m!

x!

!!

!!!

 

Where mi represents the number of data points in the ith cluster.  

6) Recalculate the distance between data points and the new cluster center. 

7) If no data point is pending, then algorithm stops, otherwise repeat from step 4. 

Figure 3.6: Spectral maps of colorectal adenocarcinoma derived form K-means clustering. A) 
H&E-stained specimen. Re-assembled spectral maps after 2 points (B), 4 points (C), 6 points 
(D), 8 points (E), and 11 points (F) clustering. Reprinted with permission from [51].   
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        K-means is an efficient and robust clustering method, especially when the number of 

clusters is known and the data forms natural classes. However, the choice of the number of 

clusters is challenging and requires a priori specification of the clusters in the data. The data 

requires extensive pre-processing due to an inability of algorithm in handling outliers and noisy 

data. Each centroid of a cluster is a collection of feature values, which define the resulting 

groups. The centroid feature weights can be used for qualitative interpretation of the classes 

obtained from k-means clustering. An example of tissue classification and segmentation using k-

means clustering is demonstrated in Figure 3.6.   

3.3.4 Bayes Classifier 

        The Bayesian classification [47] is a supervised learning method based on Bayes’ theorem, 

which predicts a class value given a set of attributes for each known class value. This method 

enables us to capture uncertainty about the model by calculating probabilities of the outcomes. 

Naïve Bayes classifier model assumes that there is no correlation between one specific feature in 

a class to the rest of the features in that class.  A decision rule is based on probabilities to assign 

instance D to class C!, which is the most probable class. Bayes theorem calculates probability of 

the observed D (posterior probability) using the following equation: 

p C! D =
p D C!  p C!

p D
 

Where p C! D  is the probability of an instance D being in class C! (what we are trying to 

compute), p D C!  represents the probability of having feature D  with some probability 

(likelihood), p C!  represents the frequency of the class C! in our data (class prior probability), 

and p D  is the predictor prior probability that is the same for all classes. In case of having 
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multiple features, Bayesian classifier assume independent distributions for each attribute; 

therefore, the probability of class C! generating instance D is calculated using the following 

equation: 

p D C! = p D! C! *p D! C! *… .p D! C!  

        Bayes classifier method works well in multi class predictions, handles real and discrete 

data, and it is not sensitive to irrelevant features. However, one of the major drawbacks of this 

method is that in real life, getting a set of predictors that are entirely independent is almost 

impossible. Bayes classifier method can be applied to every pixel in a hyperspectral cube of data 

to determine the probability of an unknown spectral pattern originated from a particular class. 

This method classifies the individual pixel spectra within an entire imaging data, regardless of 

the spatial position of that pixel. This method permits probabilities of occurrence of different 

classes, which could be critical in evaluating the risk of misclassification.   

3.3.5. Artificial Neural Network 

        Neural networks [48] are among the most well known classification methods, and are 

typically made of number of layers.  Artificial neural network (ANN) algorithm consists of input 

layer or input “nodes” and an output layer along with some hidden layers (called neurons) that 

link input nodes to an output layer in a non-linear fashion. The processing in hidden layers in 

done via a combination of weighted connections. The patterns from input layer enters the 

processing element and are multiplied by weighting factors, then the modified inputs are loaded 

into a summing function that sums the input products.  
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        ANN requires a learning rule, which modifies the connections between the neurons based 

on the patterns in the input layer. Most of the developments that have been applied to ANN 

method are by modifying the learning rules and connection formulas. While the connection units 

are optimized and the prediction errors are minimized, the network is trained and ready to be 

given new inputs. ANN has a broad range of applications such as pattern recognition, 

classification, and prediction. The main advantage of ANN is the ability to handle very large 

Figure 3.7: Schematic illustration of neural network architecture. The inputs are the features 
attributed to different classes and selected through training process the known object class for 
each training object is forced to be the result of the output layer. Then, the hidden and output 
layers perform non-linear operations on their inputs. The connecting lines are weights that are 
computed in training procedure and propagate the features from an input layer to the output 
layer via hidden layer.   
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datasets with large number of parameters, even when distribution of parameters is complex.  

 

        ANN has been widely used in Raman and FTIR spectroscopic data to determine the 

concentration of biological substances such as identifying bacterial species [49,50], 

determination of blood glucose [52], diesel analysis [53], assessment of brain tumors [54], 

detection of food products [55], and biochemical changes in melanoma tissues [56]. Schematic 

diagram of neural network architecture is demonstrated in Figure 3.7.      

        ANN like any other machine learning algorithm has some limitations. A major criticism 

arises from the learning rule that works in a sense of  “black box”. The user has no role over the 

procedure, which makes it impossible to determine which spectral features is used for 

classification and which are discarded. Therefore, the results are highly dependent on the choice 

of initial parameters. Another common problem is the amount of time that takes to visualize data 

and extract input features and also train a dataset on a standard computer, especially when 

handling complex dataset. On the other hand, insufficient training of dataset leads to errors in 

classification; however, there is no general rule for choosing the amount of required training. 

ANN often overfit the dataset i.e. if training continues for a long time, there is a risk of including 

noise and artefacts as part of the pattern. Additionally, ANN converges on local minima rather 

than global minima, meaning that losing important information (big picture) for small features. 

There are some non-linear classification algorithms that are very similar to neural networks, 

including Support Vector Machines (SVM) that does not suffer from the above limitations. SVM 

separates the dataset into classes by building a high-dimensional hyperplane and the accuracy of 

classification highly depends on the parameters that describe hyperplane. SVM is a powerful 

classification tool and superior to ANN, especially if the size of the dataset is small.     
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3.3.6. Linear Discriminant Analysis (LDA) 

        Linear discriminant analysis (LDA) is a supervised method, which is also a probabilistic 

classifier; however, can be combined with regression model and PCA. In general, LDA is very 

similar to PCA and can be used as dimensionality reduction step, pattern recognition, and 

machine learning applications. The main goal of LDA is to project a k-dimensional original 

dataset on to a smaller n-dimensional subset (n ≤ k−1), while preserving the discriminatory 

information between classes in the dataset. The main difference between PCA and LDA is that 

LDA computes linear discriminants (the axes) that maximize the classification between multiple 

classes and the class labels are known. LDA generates the components from the original dataset 

in the form of two sets of matrices, namely, inter-class scatter matrix and intra-class scatter 

matrix. Each of these matrices has an eigenvalue, which indicates the significance and the 

magnitude of the variance in that component. The eigenvectors are sorted in a decreasing order 

and k eigenvectors with the most chemical information are chosen to form a k × d dimensional 

matrix W. Every column in a new matrix represents an eigenvector. Therefore, the transformed 

matrix X in the new subspace can be derived from matrix multiplication X = W × Z, where Z is 

an n × d-dimensional matrix (representing n samples). Here, I provide the mathematical 

background of the Fisher’s linear discriminant method applied to a two-class system. Assume 

that I have a set of K-dimensional samples X = x!, x!,… . . , x! . Then, the mean vector of two 

classes in X- space can be written as: 

u! =
1
N!

x!
!∈!!

  where  k = 1,2 

and in the subspace y can be written as: 
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u! =
1
N!

y! =
1
N!!∈!!

θ!x! = θ!u!     where k = 1,2
!∈!!

 

One can define the between-class variance by measuring the distance between the means in a 

projected space, as follows: 

u!-u! = θ! u!-u!    where k = 1,2 

And within-class variance can be defined as: 

s!! = y!-u!
!

!∈!!

  where k = 1,2 

To find the maximum between-class variance with regards to within-class variance, one can 

define an objective function as: 

J θ =
u!-u! !

s!
! + s!

! 

Let’s define the projection y as a function of the scatter matrix in x space: 

s!! = y!-u!
!

!∈!!

  

             = θ!x!-θ!u!
!

!∈!!

 

                              = θ! x!-u!
!∈!!

x!-u!
!θ 

                                                                          = θ!S!θ 
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Where Sk is the scatter in x space. Now, J (θ) can be re-written in terms of scatter matrices. 

                       

           u!-u! ! = θ!u!-θ!u! ! 

                                                 = θ! u!-u! u!-u! !θ 

              = θ!S!θ 

and 

                                                           s!
! + s!

! = θ!S!θ+ θ!S!θ  

                                                                     = θ!S!θ 

Where SB represents between-class scatter matrix and SW represents within-class scatter matrix. 

Objective function that expresses the Fisher criterion can be expressed as: 

J θ =
θ!S!θ
θ!S!θ

 

        By maximizing the objective function J (θ) and finding an optimum θ, one can derive the 

direction of θ for the projection of the data down to one dimension. This calculation can be 

extended to multiclass problem and instead of one projection; one can seek for (C-1) projections. 

Discriminant analysis has been widely used in vibrational spectroscopic methods including 

Raman and infrared applied to classification of various tissue types [57-60], cellular activity 

[61], microbial species [62], and food products [63,64]. Although discriminant analysis is a 

promising approach for robust classification of tissues and cells, an extensive pre-processing, 

which is mainly dimensionality reduction (often PCA, PLS regression models) is required. Some 
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groups have developed LDA-based algorithms [65] and the applications of these methods are 

gaining interest in spectroscopic data with the goal of classification between stages of disease.    

3.3.7. Identifying the discriminatory features responsible for classification 

        Infrared spectrochemical imaging of biological samples involve spectral analysis and 

classify the spectra into separate classes and categories [66]. The interpretation of data typically 

involves two sets of information: clustering and the identification of variables that are 

responsible for the observed classification. PCA is a well-known technique for decomposing the 

original dataset into a linear combination of principal components, which is based on the 

assumption that variations imply information. One of the main drawbacks of performing PCA 

alone is that in most cases, it does not give the optimum classification between groups of 

samples. Additionally, using only one loadings vector to determine the chemistry attributed to 

the clustering, leads to losing chemical information. PCA followed by LDA is a combination 

method in which the original dataset first transforms via PCA and projects into a new subspace. 

Then, the transformed dataset in PC space are projected into a new subspace via LDA.  

        In this method, PCA is used as a pre-processing method to reduce the dimensionality of data 

and provides a priori information to load into LDA algorithm. Linear discriminants are found 

such that the ratio of between-class variance to within-class variance is maximized, and thus the 

maximum separation between classes is achievable. The second piece of information originated 

from PCA-LDA analysis is the “cluster vector plot” that can be used for biomarker extraction. 

The cluster vector plots are used to infer the components and the strength of components that 

correspond to the observed biomarkers of the disease. The largest peaks or troughs in vector 
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plots were associated with the most contributing feature to the separation between classes. Here, 

I present the matrix manipulations to derive the LDA scores matrix and cluster loadings matrix.  

        Consider N samples that separate into h clusters and the number of wavenumbers 

(variables) being m. The number of principal components that are preserved is g and the number 

of LD coefficients from LDA analysis is denoted by d. For simplicity, let’s assume 100 samples, 

5 clusters, 650 wavenumbers, 8 PCs, and 4 LDs. The notations i, j, k, and w are used for 

individual samples, PCs, LD coefficients, and variables. PCA provides a 100 × 8 scores matrix 

SNg and a 650 × 8 loadings matrix Lmg and a vector with 1 column represents 5 classes in the 

sample cN. LDA gives a 4 × 8 linear discriminant coefficient matrix Ddg that can be used as 

weighting factors for the scores matrix from PCA. The 100 × 4 LDA scores matrix can be 

computed by the following matrix multiplication: SD!"# = D!" S!".  

        Since LDA allows labeling the classes (types of tissues and cells); therefore, I can generate 

cluster loadings plot for each class. For each of the h clusters, from SDikh that is calculated from 

the previous step, a 4 × 5 mean cluster scores matrix mDkh is calculated. Then the 650 × 4 

loadings matrix LD!" = D!"L!"! , and finally the 650 × 5 cluster loadings matrix is computed 

via F!" = Σ! LD!"mD!"! . Every column in matrix Fmh provides the loadings plot for each 

cluster.  PCA-LDA results are likely to be more accurate when applied to two groups, since there 

is less contributing factors that play role in the spectral variations between different classes. 

Figure 3.8 demonstrates the classification between retinal tissues from non-diabetic and diabetic 

mice and an associated cluster vector plot, from PCA-LDA.    
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3.4. Case Study: Classification of bacterial species 

        In this section I present the application of PCA-LDA in monitoring the photoreactivity of 

methicillin-resistant Staphylococcus aureus (MRSA) [67], a Gram-positive antibiotic resistant 

bacterium that leads to fatal infections, from infrared spectrochemical imaging data. In this 

example of the described method in section 3.4, to uncover the mechanism underlying the 

bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy 

and chemometric tools is employed to detect distinctive pathway of MRSA toward apoptosis 

after treatment. In this study, individual pixel spectra derived from hyperspectral cube of data, 

were generated and preprocessed as follows. CO2 peak at 2350 cm-1 was flattened between 2500 

Figure 3.8: one-dimensional scores plot (A) and associated cluster vector plot (B) from PCA-
LDA from the comparison between wild-type and diabetic retinal tissues.  
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and 2200 cm-1 and then baseline was corrected by finding a least squares linear line between all 

spectral points in 2692-1920 cm-1 spectral region and subtracted from every spectrum. Then, 

signal to noise ratio (S/N) in every spectrum was systematically assessed by defining the noise 

content as the standard deviation in the 2000-1900 cm-1 spectral region, and the signal as the 

maximum of the curve between 1700 and 1600 cm-1 (Amide I band).  

        It is critical to ensure that all spectra are subjected to the same procedure for pre-processing 

such as baseline correction and de-noising. In classification algorithms based on supervised 

methods, the entire dataset is consisted of two independent subsets, namely, the training dataset 

and the test dataset. The training dataset is attributed to pre-defined classes and is used to learn 

the features and spectral characteristics. The test dataset is used to estimate how well the 

classifier has been trained and assists to validate the classification achieved from training dataset. 

Among the existing classification techniques that could be used in this study, PCA-LDA is 

chosen due to the fact that maximum potential separation and spectral features associated with 

each treatment could be achieved, which indicates the mechanism underlying each treatment 

applied to the bacterial cells.     

        Five different experimental groups of samples are evaluated using FTIR spectroscopy. 

Group I: Control I, comprised of untreated MRSA incubated at 37 °C for 24 h (N = 3); Group II: 

Control II, comprised of untreated MRSA incubated in ambient air for 24 h (N = 3); Group III: 

Irradiation with 262 J/cm2 of blue 470 nm light, incubated at 37 °C for 24 h (N = 5); Group IV: 

UV light- irradiated (253.5 nm) MRSA, incubated at 37 °C for 24 h (N = 5); Group V: 

Vancomycin-treated MRSA, incubated at 37 °C for 24 h (N = 3). The rationale for control II is to 

determine if there would be a difference between bacteria left to die through a natural process 

(devoid of adequate growth environment) as opposed to treatment with chemicals and 
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irradiation. The designated selection of the three treatment groups is based on their effectiveness 

to inactivate MRSA, and to identify how they affect the biomarkers evaluated through FTIR.  

                 

        Figure 3.9 shows rotated three-dimensional scores plot generated from PCA-LDA model, 

performed on the spectra from control and treated MRSA cells. Scores plot demonstrates that 

vancomycin-treated spectra are clearly separated along LD1 from the rest of the groups. 

Clustering and separation between control I, control II, blue light-irradiated, UV light-irradiated, 

and vancomycin-treated groups are achieved. Scores plot reveals that blue light- irradiated and 

UV light-irradiated spectra are the closest adjacent clusters and there is a small degree of overlap 

between the two groups. The UV light-irradiated spectra are the most biochemically similar to 

the blue light-irradiated spectra. In addition, the comparison between four groups (control groups 

Figure 3.9:  Three-dimensional rotated PCA-LDA scores plot from comparison of control I 
(red circles), control II (green circles), blue light irradiated (blue circles), UV light-irradiated 
(black circles) and vancomycin-treated spectra (yellow circles). Reprinted from [67]. 
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and light-irradiated (UV/blue light spectra) is performed to confirm that the separation is not due 

to the vancomycin-treated spectra and clear clustering between control groups and light-

irradiated spectra (UV/blue-light) is achieved. 

        PCA-LDA analysis yields wavelength dependent loadings that describe the major 

wavenumbers responsible for classification between the classes. Since the goal of this analysis is 

to understand the mode of action of each treatment, the most informative loadings are those that 

are generated from the comparison between control groups and individual treatments. Nearly 

70,000 spectra (4096 spectra per measurement; 6 measurement per sample and at least 3 

replicates per sample) are pre-processed (baseline-corrected, de-noised, S/N tested, and vector- 

normalized) between 1800 and 900 cm−1 for each group of samples prior to computational 

analysis.  

        Figure 3.10 shows the loading plot and two-dimensional scores plot from the comparison 

between control and vancomycin-treated spectra and highlight the important functional groups 

that are responsible for the clustering. Clear clusters of control I, control II and vancomycin-

treated spectra are achieved. Significant wavenumbers responsible for this separation are 

observed at 1677 cm−1 (amide I), 1652 cm−1 (amide I), 1598 cm−1 (amide II), 1230 cm−1 (νasym 

PO2−) and 1062 cm−1 (ν C-O). The loading plot highlights additional wavenumbers that lie in the 

lipid region (1488 and 1409 cm−1), and carbohydrate region (1155, 1027, 1014 cm−1). 
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        Figures 3.11 shows the loading plot and the corresponding scores plot from the comparison 

of control I, control II and light-irradiated (Blue light and UV light) spectra. Scores plot 

demonstrate a very good degree of clustering between control and light-irradiated spectra, 

Figure 3.10: Cluster vector plots and corresponding 2D scores plot (LD2 vs. LD1) from PCA-
LDA analysis. A,B) Comparison between control groups and vancomycin-treated spectra, C,D) 
Comparison between control groups and UV-light irradiated spectra, and E,F) Comparison 
between control groups and blue light-irradiated spectra. In PCA-LDA plots, red (control I), 
green (control II), blue (blue light irradiated), black (UV-light irradiated), and yellow 
(vancomycin- treated) colors are used. Reprinted from [67]. 
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although, a small degree of overlap between UV light-irradiated and control I spectra is 

observed. Figure 3.11- Panels E and F show the loading plots derived from analyses where the 

spectra from UV light- irradiated and blue light- irradiated are compared with control I/II 

spectra. The loading plot for UV light and blue light irradiated MRSA are very similar overall; 

however, the frequencies of some absorbance bands between 1800 and 900 cm−1 experience 

shifts. The common discriminating wavenumbers that are identified in blue light and UV light- 

irradiated loading plots are 1683, 1656, 1596, and 1542 cm−1 (amide I and II), 1743 cm−1 (C-O 

stretching, ester functional group in lipids and phospholipids), 1060 cm−1 (ν C-O) and 1087 cm−1 

(νsym PO2−). The frequencies of some of the absorbance bands between 1800 and 900 cm−1 are 

shifted, when the loadings for UV light and blue light irradiated spectra are compared. The 

distinct shifts are the basis of our interpretation of the differences among the interactions 

between UV and MRSA versus blue light and MRSA.  

        The most intense differentiating band between light-irradiated (blue light and UV light) and 

control spectra, in the DNA/RNA spectral region (1425–900 cm−1), is the asymmetric stretching 

of phosphate moieties (νasym PO2−). νasym PO2− band, a broad band from overlapping of two bands 

at 1225 cm−1 (B-helical form of DNA) [38] and 1240 cm−1 (A-helical form of nucleic acids) [68], 

clearly exhibits distinctive characteristics of UV light-irradiated (1228 cm−1) and blue light-

irradiated MRSA (1238 cm−1). Moreover, the FTIR biomarkers at 970 cm−1 (C-C stretching of 

DNA backbone) [68] and 1717 cm−1 (base pair vibrations) [68] that are seen in the UV-irradiated 

loading plot, are observed at 965 cm−1 and 1712 cm−1 in the blue light-irradiated loading plot.  
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        I demonstrated that a combination of FTIR measurements and PCA-LDA detects the 

photoreactivity of MRSA and distinctive mechanism of action toward apoptosis per treatment. 

The distinct biomarkers of blue light irradiated, UV light-irradiated and vancomycin-treated 

samples are discussed. The observations suggest, for the first time, that irradiation with blue light 

targets A-DNA in MRSA cells, and the bacterial response is distinct from UV irradiation 

response that is known to target B-DNA. From the well-understood UV light response of MRSA 

I conclude that blue light irradiation of MRSA induces A-DNA cleavage and that the B-DNA is 

more resistant to damage. In sum, UV light and blue light use different stratagems to modify 

DNA, and the light treatments are complementary and distinct from the known antimicrobial 

effect of vancomycin against MRSA.  

Figure 3.11: Cluster vector plots derived from the comparison of control groups vs. blue-light 
irradiated spectra (blue dashed line) and control groups vs. UV light-irradiated (black solid line) 
spectra are overlaid. The FTIR bands that are indicative of blue-light and UV light-induced 
damage to MRSA are highlighted. Clear shifts in the loadings plot from 966, 1238, 1712 cm− 1 
(blue light-irradiated) to 970, 1228, 1717 cm− 1 (UV light-irradiated) are shown. Reprinted from 
[67]. 
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Chapter 4: Diabetic Retinopathy 

4.1 Introduction 

        Diabetic retinopathy (DR) is a microvascular retinal dysfunction, known as a major vision 

threatening complication of diabetes in the working age population in the developed world [1,2]. 

Almost half of this group will go on to develop some degrees of diabetic retinopathy in their 

lifetime. In the West, DR, a progressive disease affecting the integrity and function of retinal 

circulation, is the leading cause of blindness in adults aged 20-74 years. It affects over 5.3 

million people in the U.S., making up to 8% of all cases of legal blindness and 12% of newly 

diagnosed blindness [3]. It is increasing as a major cause of blindness in other parts of the world, 

especially developing countries. It is known that diabetes damages the blood vessels in the retina, 

which leads to blood and fluid leakage into the retina. Accumulation of fluids in the eye causes 

the change in the curvature of the lens; therefore, exacerbate the focusing and eventually leads to 

blurred vision over time. DR has multiple stages and each stage develop ophthalmic 

complications. In the initial stage of DR, which is known as background retinopathy, patients are 

more asymptomatic, and microaneurysms that are tiny black swellings appear in the blood 

vessels in the retina, which leads to blood leakage. The next state is non-proliferative retinopathy 

that includes the presence of serious histopathological symptoms such as bleeding into the retina. 

The final stage is proliferative retinopathy in which abnormal blood vessels develop scar tissues 

that could lead to retina detachment and loss of vision.  

        To date, vitrectomy, which is a surgical procedure to remove scar tissue and abnormal blood 

vessels, is a common practice for DR and in the most advanced proliferative DR, retinotomies 

and retinectomies will be applied that are extreme surgical procedures. The reason for cutting the 

retina (retinotomy) and remove peripheral retinal tissue and nonessential areas (retinotomies) is 
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to have access to sub-retinal tissue and treat retinal incarceration. However, these methods are 

invasive methods with serious consequences and only recommended when all less invasive 

methods failed. In some other cases, vitreous tissue is the preferred tissue to sample when there 

is a suspicious case of intraocular malignancy or when infection is suspected. Maintaining the 

level of HbA1c and glucose in the normal range can substantially reduce the risks of severe DR 

and still known as one of the most important aspects in the management of DR.  

4.2 Retinal anatomy 

        Retina is the innermost layer of the eye, which is approximately 300-400 micrometer thick 

and lines the back of the eye. The practical constituents of retina are arranged in form of the 

layers [4] and vertically oriented from the outside to inside as follows: (1) Retinal Pigment 

Epithelium (RPE) (2) inner segment of photoreceptor, (3) The outer segment of photoreceptor  

(4) The nucleus segment of photoreceptor (outer nucleus layer) (5) outer plexiform layer (6) 

inner nucleus layer (7) inner plexiform layer (8) ganglion cell layer. There are three major types 

of neurons distributed across the retina from the front of the eye (ganglion cells) to the middle 

section (amacrine horizontal cells) and the innermost in the retina (photoreceptors) [5]. Ganglion 

cell axons that are present in the optic nerve transmit signals to the brain. The ganglion cell layer 

is the innermost layer in the retina and entails displaced cells and ganglion cells. Photoreceptor 

layer is the outermost layer in the retina and contains rods and cones. Photoreceptor cells are 

responsible for converting the absorbed light into an electric signal and ultimately to the brain 

through optic nerve. Rods are more sensitive to light and allows for night vision, while cones 

adapts for daylight vision and responsible for seeing visual details and colors [6]. 
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        The inner segment of photoreceptor system is rich in poly-unsaturated fatty acid (PUFA) 

that is the main target for oxidative attack during diabetes [8]. Inner plexiform layer and outer 

plexiform layer are two neuropils in the retina that are not occupied by cell bodies but contain 

intricate dendrites and synapsis. The outer plexiform layer is an adjacent layer to the outer 

nuclear layer in photoreceptor system and the inner plexiform layer is attached to the inner 

nuclear layer and ganglion cell layer. The outer plexiform layer bridges the connection between 

rods and cones, bipolar cells, and horizontal cells; however, the inner plexiform layer connects 

the bipolar cells to the ganglion cells. A cross-section diagram of retinal structure is 

demonstrated in Figure 4.1.   

Figure 4.1: A) A histologic cross-section of retina highlighting the microstructure of retina. 
B) Schematic illustration of retinal layers and the cells attributed to each layer. Reprinted with 
permission from [7].   
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4.3 Diagnostic modalities in Diabetic Retinopathy 

        Comprehensive eye exam is still the highly recommended way to monitor the progression 

of DR. There are several exams that help ophthalmologists to evaluate different parts of the eye 

including eye chart exam to determine visual acuity, slit-lamp exam that examines the front parts 

of the eye  (cornea, lens, sclera), and dilated exam that widen or dilate the pupil to examine the 

retina and optic nerve. Another factor is the consistent monitoring of blood glucose levels. 

Excessive blood glucose could lead to an elevated eye’s focusing power and eventually blurred 

vision. In this section, some routine modalities to assess DR, including Optical Coherence 

Tomography (O.C.T), Fluorescein Angiography (FA), and Ultrasonography will be discussed.   

4.3.1. Optical Coherence Tomography (O.C.T) 

        Optical Coherence Tomography (OCT) [9,10] is an emerging technology and non-invasive 

method that permits cross-sectional imaging of tissues on the micron scale. OCT unlike 

histopathological diagnostic methods that requires removal of tissues can provide real time 

images of tissues. OCT was initially used in imaging of the eye [11-15] and has had the largest 

impact in the field of ophthalmology. OCT provides the high-resolution images of cross section 

of retina that is typically used for evaluating the thickness of retina. The principals of imaging by 

means of OCT technology relies on measuring the echo time delay of the reflected light using 

interferometry. Low coherence interferometry has been initially used in ophthalmology to 

measure the corneal thickness [16,17]. Low coherence interferometry is based on a Michelson 

type interferometer and measures the echo time delay by comparing the backscattered light to a 

light with known reference path and time delay. The beam of light from a source is guided onto a 

beam splitter, where one of the beams is directed onto the sample and the other beam travels in 

the direction of a reference path with a variable time delay and path length. The backscattered 
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light from the sample and the reflected light from the reference path are combined and detected 

by the detector outside the interferometer. In the presence of a coherent source of light, the 

interference patterns occur as the pathlength of light varies; however, the interference patterns 

from short-pulse or low-coherence light sources only occur when the pathlength difference 

matches the coherence length of light. The optical beam is incident on the sample, and then the 

echo time delay and the backscattering intensity are measured and used to generate an axial 

backscattering profile. Next, the incident beam is focused into the sample in the transverse 

direction and the axial backscattering intensity is measured at different spots to generate a two-

dimensional image. Therefore, the resultant image represents the optical backscattering through 

the cross-section of a sample. Schematics of the two-dimensional image from OCT and 

backscattering intensity as a function of depth are shown in Figure 4.2. The axial resolution in 

OCT imaging is dependent on the coherence length of the source and is inversely proportional to 

the bandwidth of the source. The axial resolution in OCT is defined as follows:      

∆z = 2ln2 π λ! ∆λ  

 

Where Δλ is the full width at half maximum (FWHM) of the bandwidth of the source. 
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        The spatial resolution in OCT imaging is defined very similar to conventional microscopy 

systems depending on the numerical aperture of the objective lens and the focused spot size and 

it is given as follows: 

Δx = 4λ π f d  

Where f is the focal length of the objective and d is the spot size on the objective lens. By using 

high numerical aperture objectives and focusing on a small area, one can achieve high spatial 

resolution. Additionally, the spatial resolution depends on the depth of focus, which is given by: 

Figure 4.2: Cross-sectional images from measurements of echo time delay of light at multiple 
transverse positions are reconstructed. Backscattered intensity associated with cross-sectional 
plane of the tissue is shown. The image can be displayed in either gray scale or false color 
scale. Reprinted with permission from [10]. 
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b = πΔx! 2λ 

In practice, Forsterite laser and short pulse lasers have been used that permits high-resolution 

imaging and high-speed data acquisition, due to the high-energy throughput of the lasers. Short 

pulse laser sources at wavelengths near 1300 nm (power ranges between 10 and 15 mW) provide 

≈ 15 µm axial resolution [18].   

 

 

        OCT has had the largest impact in the field of visual science and in particular, in retinal-

related studies. Figure 4.3 demonstrates a human retina imaged with OCT and provides a cross-

sectional view of the retina tissue with detailed structures. This image highlights different layers 

of the retina including the retinal pigment epithelium and choroid layer as well as photoreceptor 

layer; however, because OCT measure absolute positions at a resolution of ≈ 10µm, the motion 

of the eye in the measurement time interval (1-2 seconds) can influence the images. OCT has 

been widely used in detecting retinal-related diseases including glaucoma, macular edema, 

Figure 4.3: OCT image of the human retina from in vivo measurements, highlighting the 
structural morphology of the retinal tissue. The highly backscattering retinal layers (Retinal 
pigment epithelium and Nerve fiber layer) appear red in the false-color images. Reprinted 
with permission from [10].  
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macular degeneration and choroidal tumors [19-24]. OCT is a promising diagnostic tool to 

determine the progress of diabetic retinopathy by providing quantitative information such as the 

thickness of the retina and dynamic responses of the retina.   

4.3.2. Fluorescein Angiography  

        Fluorescein Angiography (FA) [25] is an eye examination tool that involves imaging the 

choroidal and retinal circulations using dye-tracing method. It is a diagnostic procedure that 

helps to understand the pathological processes in the retina and diagnose an assembly of retinal 

diseases. The dye that has been used in this technique is a sodium fluorescein (a yellow-red dye) 

that has absorption in the range of blue light (460-490 nm) and excitation in the range of yellow-

green (520-530 nm). In the normal angiogram, the appearance of the dye helps ophthalmologists 

to examine the abnormalities of the eye because the retinal pigment epithelium and blood vessels 

in the retina act as barriers to the fluorescein leakage in a normal retina. Fluorescein dye is 

injected intravenously (antecubital vein of the arm) and after 8-12 seconds dye appears in the 

optic nerve and choroid and a couple of seconds later, the retinal circulation appear. Monitoring 

the transition of the dye and sequence of photographs captured by a fundus camera, which is 

equipped with excitation and barrier filters, yields an angiogram. Fundus camera permits 

illumination of retina with white light that has been passed through the blue excitation filter and 

then the fluorescein molecules absorb blue light, emitting light with a longer wavelength 

(yellow-green). The barrier filter blocks any reflections from light that allows camera to produce 

high contrast images.  

        To interpret the angiogram, it is critical to understand multiple phases of FA starting from 

the first appearance of dye in the choroid, which occurs 10 seconds after injection. This process 

is called choroidal flush and the capillaries within choroid leaks fluorescein dye into the 
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extravascular space. The next phase is the filling phase of retinal capillaries with dye, which 

starts from filling the walls of the larger veins and becomes wider until the maximum vessel 

fluorescence occurring. The last phase is the gradual reduction of dye intensity and elimination 

of dye from retina and choroid, which occurs approximately 15 minutes after injection. Despite 

the valuable diagnostic role of FA in retinal and choroidal complication including diabetic 

retinopathy, macular degeneration, and choroidal tumors, it is an invasive method that can lead 

to complications and adverse reactions [26]. Some adverse reactions have been reported in 10-15 

% of patients such as nausea, urticarial, hypotension, seizures, and pruritis. However, the 

characteristic features of FA in identifying neovascularization and elevated vascular permeability 

make it a promising technique to diagnose vascular complications during diabetic retinopathy.  

4.3.3.  Ultrasonography 

        Ultrasonography [27] is a technique that has been initially used in ocular diagnosis and it is 

based on propagation, reflection, and attenuation of sound waves. At the interface of two 

acoustic media, the difference between velocities yields an echo. The sound echoes from the 

tissue are recorded and displayed as an image. To create an image via ultrasonography, the 

ultrasound scanner determines the strength of the echoes and the time lapse that takes for the 

echo to be received. The strength of the echo determined the brightness of an image. The 

frequency of ultrasound is positively correlated with resolution of ultrasound imaging and 

negatively correlated with depth of penetration. Higher frequency sound waves are able of 

scattering or reflecting from tiny structures; however, these waves are limited in penetrating deep 

tissues due to a larger attenuation coefficient. This technique is available in two forms. A-scan 

(time-amplitude) permits rapid examination and differentiation of intraocular and orbital lesions 
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and B-scan (based on amplitude of a two-dimensional cross section of a tissue) allows 

anatomical visualization similar to an eye section, which is critical for interpretation.      

        Ultrasonography is an important non-invasive diagnostic tool in detecting severe retinal 

complications including tumors, retinal detachments, and hemorrhages. The main drawbacks of 

sonography-based techniques are the limitation in penetrating deep tissues, bones, and 

environments when gas is present between transducer and organ (e.g. gastrointestinal tract). This 

technique is highly dependent on the quality of the expertise of an operator in order to produce 

high quality images.     

 

4.4. Diabetic Retinopathy 

        Diabetic retinopathy (DR) is a complication of diabetes that affects retinal blood vessels and 

bleeding of the blood vessels. In the early stages, DR has no direct impact on vision but the sight 

will be affected as disease progresses. There are two major stages of DR, namely non-

proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). The 

classification is based on morphological changes observed in the retina, retinal abnormalities, 

blurred vision, and progressive visual loss. 

4.4.1. Non-proliferative Diabetic Retinopathy   

        Non-proliferative diabetic retinopathy (NDPR) or background retinopathy is the early stage 

of retinopathy and is characterized by blood vessels that develop swellings (balloon-like) called 

microaneurysms, basement membrane thickening, and altered retinal vascular permeability [28]. 

Microaneurysms can be located only on one side of the vessel wall or both sides and its size 

ranges between 25 and 100 micrometer. Sometimes in the early stages of NPDR, no 
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histopathological symptoms exist; however, advances in fluorescein angiography enabled a 

better detection of microaneurysms. NPDR is categorized into three different levels of severity 

namely, mild, moderate, and severe. One of the factors to determine the severity of NPDR is the 

presence of intraretinal hemorrhages that are caused by ruptured microaneurysms. These 

hemorrhages are typically located in the inner nuclear layer, and the plexiform layers in the 

retina [29]. Another microscopic findings of NPDR are hard exudates (intraretinal lipids), cotton 

wools (accumulation of cytoplasmic debris and damage to nerve fiber layer), and venous beading 

(fluctuation of the venous caliber). Based on the American Academy of Ophthalmology, 

classification between different stages of NPDR and associated findings in each stage has been 

documented. Mild NPDR is defined based on the presence of only one microaneurysm. 

Moderate stage is defined by the presence of cotton wools, hard exudates, and mild hemorrhages. 

Severe stage is defined by the presence of more than 20 hemorrhages, venous beading in two or 

more spots in the retina, and at least one microvascular abnormalities [30]; however, there is no 

symptom of proliferative diabetic retinopathy. This classification is an invaluable standard in 

determining the severity of DR and prevents the progress of the disease into more hostile stages; 

however, the mechanism behind the damage within the retina and the progress of diabetic 

retinopathy remains unclear.      

4.4.2. Proliferative Diabetic Retinopathy   

        Proliferative diabetic retinopathy (PDR) is an abnormal growth of blood vessels on the 

surface of retina and the main cause of blindness. PDR is a progressed form of retinopathy that 

occurs when blood vessels leak in the large area inside the retina and make visual acuity worse 

[30,31]. During this process, retina develops new blood vessels (neovascularization); however, 

the new blood vessels are abnormal (leaking) i.e. accompanied by scar tissue and not capable of 
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providing enough blood into the retina [31]. The growth of abnormal vessels in the retina is 

caused by vascular endothelial growth factor (VEGF), which is a proangiogenic signal for 

formation of new blood vessels to restore oxygen supply to tissues when the blood circulation is 

not sufficient. However, overproduction of VEGF [32] contributes to the disease and cause 

vascular complications in the retina. These abnormal blood vessels sometimes cause displacing 

retina from its normal position and eventually retinal detachment. In severe cases when major 

parts of retina are detached, vision loss occurs. Another vision effect of PDR is called vitreous 

hemorrhage, which is bleeding of new blood vessels into the vitreous (central part of the eye) 

and blocks the rays of lights reaching the retina [33]. The main symptom of vitreous hemorrhage 

is the appearance of tiny dots floating in the field of vision. The severe case of PDR may lead to 

neovascular glaucoma [34], which is the case when the front segment neovascularization 

(involving iris -the colored part of the eye) is presented along with a formation of a fibrovascular 

membrane. Consequently, the new blood vessels blocks the flow of fluids out of the eye that 

leads to accumulation of pressure in the eye and eventually damage to the optic nerve.  

4.5. Oxidative Stress pathway in diabetic retinopathy 

        Oxidative stress contributes the most into the pathogenesis of diabetic retinopathy and the 

structural, and biochemical alterations in the retina are highly related to oxidative stress [35,36]. 

Understanding the exact mechanism behind biochemical alterations associated with oxidative 

stress offers potential early therapeutic targets to assist developing early diagnosis and treatment 

of diabetic retinopathy. Metabolic processes consume 95% of the oxygen that enters the 

mitochondrial electron transport chain through normal physiological conditions and the rest is 

reduced to reactive oxygen species (ROS). However, there are additional physiological 

procedures that lead to continuous production and removal of ROS and support the functionality 
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of the cells. Any imbalance between production and scavenging of ROS can lead to serious 

complications such as elevated oxidative stress, disturbance in cellular homeostasis, and 

damages to macromolecules (e.g. DNA, proteins, and carbohydrates).  

        Diabetes results in elevated oxidative stress, which can modulate cellular functions by 

stimulating signal transduction pathways, and promotes the progression of neuropathy [37], 

retinopathy [38], nephropathy [39,40], and myocardial injury [41]. Among major recognized 

pathophysiological pathways that describe the mechanism underlying diabetic retinopathy, the 

oxidative stress pathway is known as a unifying mechanism that links the existing pathways. 

Most of these pathways originate from hyperglycemia, which is mainly induced by activation of 

oxidative stress; however, the exact mechanism that oxidative stress contributes to development 

of diabetic retinopathy remains a challenge. Mitochondria are another endogenous source of 

superoxide and ROS that play a pivotal role in the oxidative damage during diabetes [42-44]. 

Mitochondrial DNA is very susceptible to oxidative damage and the damage to mitochondria 

leads to an imbalance of ROS in the electron transport chains and eventually damage to proteins 

in the membrane [45]. On the other hand, elevated ROS cause mitochondria to release 

cytochrome c that give rise to apoptosis [46]. Therefore, mitochondria have a dual role in the 

development of diabetes by contribution to the oxidative damage and susceptibility to the 

oxidative stress and cell death.  

        Structural and functional changes in the microvasculature of retina are another consequence 

of the oxidative damage. Structural changes such as membrane thickening [47-50], 

microvascular cell loss [51], and capillary closures [52] are examples of the pathways toward 

diabetes that are impacted by ROS. Basement membrane thickening is an early structural 

alteration in the retina that results from cross linking of advanced glycated end (AGE) products 
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and collagens. Breakdown of blood-retinal barrier [53] is another functional alteration that plays 

a critical role in the pathogenesis of diabetic retinopathy, in which the change occurs in the 

permeability of retinal endothelial cells and the barrier becomes more leaky. Apoptosis of 

neuroretina that occurs at the early stages of diabetes is gaining interest; however, more studies 

are needed to determine biochemical alterations in the retinal cells and the role of individual cells 

and layers in the pathogenesis of diabetic retinopathy.  

        Although the development of histopathology of diabetic retinopathy takes over 10 years, the 

damages to neuronal units of retina, especially cells with fragmented DNA occur early. 

Therefore, apoptosis of cells in the retina during the early phase of diabetes-induced damage, 

which is followed by late structural consequences, are critical. In conclusion, the path to fully 

understand the mechanistic insight is expected from studies on animal models that provide some 

hints as to the effectiveness of clinical outcomes; however, more studies are still in need.      
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Chapter 5: Retinal oxidative stress at the onset of diabetes 

        Diabetic retinopathy is a microvascular complication of diabetes that can lead to blindness. 

In the present study, I aimed to determine the nature of diabetes-induced, highly localized 

biochemical changes in the neuroretina at the onset of diabetes. High-resolution synchrotron 

Fourier transform infrared (s-FTIR) wide field microscopy coupled with multivariate analysis 

(PCA-LDA) was employed to identify biomarkers of diabetic retinopathy with spatial resolution 

at the cellular level. I compared retinal tissue prepared from 6-week-old Ins2Akita/+ heterozygous 

(Akita/+, N=6; a model of diabetes) male mice compared with the wild-type (WT; control, N=6) 

mice. Male Akita/+ mice become diabetic at 4-weeks of age. Significant differences (P<0.001) in 

the presence of biomarkers associated with diabetes and segregation of spectra was achieved. 

Differentiating IR bands attributed to nucleic acids (964, 1051, 1087, 1226 and 1710 cm-1), 

proteins (1662, 1608 cm-1) and fatty acids (2854, 2923, 2956 and 3012 cm-1) were observed 

between the Akita/+ and WT samples. Comparison between distinct layers of the retina, namely 

the photoreceptor layer (PRL), outer plexiform layer (OPL), inner nuclear layer (INL) and inner 

plexiform layer (IPL) suggested that the photoreceptor layer is the most susceptible layer to the 

oxidative stress in short-term diabetes. Spatially-resolved chemical images indicated 

heterogeneities and oxidative-stress induced alterations in the diabetic retina morphology 

compared with WT retina. The spectral biomarkers and the spatial biochemical alterations in the 

diabetic retina and in specific layers were identified for the first time. I believe that the 

conclusions drawn from these studies will help to bridge the gap in our understanding of the 

molecular and cellular mechanisms that contribute to pathobiology of diabetic retinopathy.  
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5.1. Introduction 

        Diabetic retinopathy (DR), a progressive disease affecting the integrity and function of 

retinal circulation, is the leading cause of blindness in adults [1]. Development of DR can 

stimulate the growth of scar tissue and elevate the intraocular pressure. It is well established that 

neurovascular retinal changes occur during diabetes [2]. However, the biochemical nature of 

these changes and their consequences on retinal function remain largely unknown. It has been 

acknowledged that oxidative stress and pro-inflammatory changes make significant contribution 

to the pathogenesis of DR in animal models [3]. Reactive oxygen species (ROS) are constantly 

produced during normal oxidative metabolism and are removed by scavenging system. 

Inefficient removal of ROS leads to excessive ROS and increased oxidative stress. Diabetes 

results in elevated oxidative stress that mainly damages biological macromolecules [4]. 

However, mechanisms behind the contribution of oxidative stress to development of diabetes 

still remains a challenge. Retina is the most susceptible tissue to the oxidative stress due to high 

content of polyunsaturated fatty acids (PUFAs). Membrane lipid peroxidation and oxidative 

damage to DNA are known as the consequences of increased level of ROS and superoxide in the 

diabetic retina [5,6].       

        Although DR is a slow progressing disease, it has been shown in animal models that in the 

initial stages (before any histopathological signs appear), the basement membrane of the 

capillaries thicken [7]. Diabetes affects neuronal cells in the retina, which causes visual 

dysfunction and degeneration of some neurons. Recently, the impacts of DR on neuronal unit of 

retina and the biochemical alterations including oxidative stress, apoptosis of neurons, and 

activation of microglial cells have been reported [8]. During diabetes, apoptosis of neurons 

occurs earlier than vascular cell apoptosis. It is critical to localize diabetes-induced damage and 
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determine the origin of neurons that experience apoptosis. Therefore, I aimed to determine the 

underlying biochemical changes in the neuroretina at early stages of diabetes.  

        Biological and biomedical applications of FTIR spectromicroscopy with the goal of 

classification, pattern recognition and pathology are highly sought after [9-13]. FTIR 

spectromicroscopy has been widely used in studying the pathology of various diseases including 

brain tumors [14], adenocarcinoma [15,16], prostate and breast cancer [17-21], lung cancer [22], 

lymph node [23], squamous cervical epithelium [24], or the biochemistry of neurons [25-27], 

antral oocytes [28] and stem cells [29]. Vibrational spectroscopic methods have been used in 

several studies to understand the diabetes-induced biochemical alterations in the kidney plasma 

membrane [30], liver microsomal membrane and soleus skeletal muscle [31], myocardia and 

vessels of the rat heart [32], human lips [33], and human saliva [34].  Thus, the use of 

appropriate imaging techniques to characterize biomolecular alterations attributed to DR is 

essential. 

        The aim of this study was to gain a deeper insight into the biochemical alterations in 

diabetic retina tissue by means of high-resolution chemically and spatially resolved FTIR images 

and chemometric tools. Chemical images from retinal tissue (flash-frozen samples) and the 

biochemistry of distinctive retinal layers have been previously studied [35]. Here, diabetic 

(Akita/+) and wild-type (WT) retina tissues, which were imaged at the mid-infrared IRENI 

beamline at the Synchrotron Radiation Center (SRC), were studied to determine short-term 

diabetes-induced alterations in the retina tissue at subcellular levels for the first time. Principal 

component analysis followed by linear discriminant analysis (PCA-LDA) was performed to 

achieve the maximum classification between Akita/+ and WT retina, and reveal the spectral 

biomarkers attributed to the distinction between these tissues [36]. For the first time, distinctive 
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layers of retina were compared to detect highly localized diabetes-induced biochemical changes 

in the retina. Comparison between the retinal photoreceptor layer (PRL), outer plexiform layer 

(OPL), inner nuclear layer (INL) and inner plexiform layer (IPL) in this study suggested that 

photoreceptors are the primary target for oxidative stress during short-term diabetes.    

5.2. Materials and Methods 

5.2.1. Animals 

        All experiments were carried out in accordance with the Association for Research in Vision 

and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research and 

were approved by the Institutional Animal Care and Use Committee of the University of 

Wisconsin School of Medicine and Public Health. Male Akita/+ mice spontaneously develop 

diabetes at 4-weeks of age due to a mutation in their insulin gene. The Akita spontaneous 

mutation (commonly referred to as MODY; Maturity-Onset Diabetes of the Young) is an 

autosomal dominant mutation in the insulin II gene (Ins2) 22. Ins2 Akita-C57BL/6 diabetic mice 

develop retinal vascular pathology characteristic of the early stages of DR. Eyes were harvested 

from male WT and Akita/+ (all on C57BL/6 background) mice at 6-weeks of age. Eyes were 

immediately frozen in isopentane cooled to almost freezing in liquid nitrogen and later stored at -

80°C freezer for FTIR microspectroscopy. Freezing must be done quickly in order to preserve 

the tissue integrity and avoid H2O crystal formation in the tissue. Each group of samples 

contained 6 mice.  

5.2.2. Retinal tissue preparation 

        Frozen eyes that were preserved at -80° C were transported to the biotechnology facility 

(University of Wisconsin-Milwaukee) for sectioning using a cryostat machine (Leica Model CM 
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3050S) for rapid sectioning. It was critical to assure that the temperature at which the tissue was 

cut (inside cryostat) was between -15 °C and -20 °C and the blade was pre-chilled for at least 

half an hour prior to sectioniong.  Eyes were embedded in optimal cutting medium (O.C.T) 

compound (Sakura Finetek Inc. USA) and an embedded eye was left inside the cryostat machine 

(-20°C) for a minute (until the O.C.T will freeze and turn into a solid white color) prior to 

sectioning. Only small amount of O.C.T was applied to prevent tissue contamination. Eyes were 

dissected starting from the optic nerve (from back of the eye) and retinas were extracted using a 

thin paintbrush. The position of the eye was adjusted to be near the blade and the appropriate 

thickness was chosen (5-8 µm for FTIR measurements). At least, 5 retina tsections were 

collected from each animal and the tissues were mounted on mid-IR BaF2 window. The BaF2 

window was placed in a foil-wrapped cell suspension tube (visible-light exposure is not allowed) 

and preserved on dried ice for transporting to the laboratory for FTIR measurements. Prior to 

FTIR imaging, the samples were desiccated in  dark at the room temperature, and low humidity 

condition [37, 38]. The cryosections are light sensitive, therefore exposure to visible light is only 

required during instrument setup. Schematic of the methodology is shown in Figure 5.1. 
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5.2.3. Synchrotron FTIR wide-field microscopy 

        Advantages of the synchrotron-based FTIR imaging of the biological tissues have been 

previously described in several studies [39-45]. Here the samples were evaluated with a Bruker 

Vertex 70 IR spectrometer and a Bruker Hyperion 3000 IR Microscope equipped with a multi-

beam synchrotron source at IRENI beamline [46,47]. The focal plane array (FPA) detector was a 

multi-element detector (128 × 128 pixels) coupled with an interferometer for collecting 

hyperspectral data sets (x, y, Abs (λ)). The measurements were performed using a 74× 

Cassegrain microscope objective (numerical aperture 0.65) and a 15× condenser aperture (N.A. 

0.4). With this experimental geometry, the effective geometric pixel size at the sample plane was 

Figure 5.1: Schematics of the experimental design (Aboualizadeh et al., 
10.1039/C6AN02603F).  
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0.54 × 0.54 µm2  [46]. The data were collected using a 128 co-added scan at 4 cm−1 spectral 

resolution. Data were acquired using OPUS 6.5 software (Bruker). FTIR measurements of retina 

sections were performed in a transmission mode. Background was measured from no sample 

area on BaF2 window and the ratio of sample measurement to background was evaluated as an 

absorption spectrum. The FPA size for the measurements were set to 64×64 pixels, therefore, 

4096 individual spectra in the mid-IR wavelength range 3800-900cm-1 (every pixel contains an 

IR spectrum) were collected per single tile measurement. To cover a larger area of the tissue, 9 

adjacent tiles were measured by mapping across the section of retina.  

5.2.4. Data Pre-processing 

        Resultant spectra from tissues were partially influenced by Mie scattering. It is known that 

the IR radiation can scatter from particles with diameters in the range of 2-20 µm, and this 

artefact distorts the absorption bands leading to misinterpretation of the spectra [48-50]. 

Although the dispersion artefact appears as a derivative shape in the spectral region close to the 

Amide I band, this phenomenon could influence other peaks in the biochemical-IR region, and 

leads to misinterpretation of the peaks and pathology. In this study, nearly 192,000 individual 

pixel spectra (6 animals; each retina tissue measurement ≈32000 spectra) from WT tissues 

(including all retinal layers) and the same number of spectra from Akita/+ tissues (including all 

retinal layers) were generated and preprocessed as follows. CO2 peak at 2350 cm-1 was removed, 

and the spectral regions 900-1800 cm-1 and 2750-3050 cm-1 were used. This resulted in 624 data 

points for multivariate analysis. Pixel binning (2×2; average of 4 pixels) was applied. This was 

necessary to increase signal to noise ratio, and S/N in every spectrum was then systematically 

evaluated using an in-house written code in Matlab. To remove Mie scattering effect and 

dispersion artefacts, RMieS-EMSC correction was applied to the data. The algorithm used for 
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scattering correction in this work was implemented using Graphics Processing Units (GPUs) for 

fast hyperspectral processing, and described elsewhere [51-53]. All spectra were vector-

normalized using Matlab prior to computational analysis.      

5.2.5. Computational and statistical analysis 

        Multivariate analysis PCA-LDA was performed (in-house written code in Python) to reveal 

the biomarkers and segregation between diabetic and control groups. Principal component 

analysis (PCA) is an unsupervised method to decompose a dataset into bilinear latent variables 

called principal components (PCs). This reduces the dimensionality of the data while retaining 

most of the information in the data set. PCA is calculated based on the maximum variance 

contained in the dataset in descending order of importance, and there is a null correlation 

between components. The advantage of working with scores and loading representations is the 

reduced size of the big data and the efficacy to highlight and visualize the variations and 

heterogeneities in biological tissues. Linear discriminant analysis (LDA) is a supervised method 

to improve the segregation level and reveal clusters that are maximized based on the separation 

between multiple classes rather than variations within each group. Here PCA was used in the 

first stage and the optimum numbers of PCs were retained for subsequent LDA analysis (PCA-

LDA), and cross-validated scores [54] were shown.  The second piece of information originated 

from PCA-LDA analysis is the “cluster vector plot” that can be used for biomarker extraction. 

The cluster vector plots are used to infer the components and the strength of components that 

correspond to the observed biomarkers of the disease. The largest peaks or troughs in vector 

plots were associated with the most contributing feature to separation between classes [30]. 

Multivariate analysis was performed using “R” package (version 3.1.2), Matlab_R2016a and 

Python_2.6 version. 
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One-way-ANOVA statistical analysis was employed to determine whether there is any 

significant difference in the bands that are highlighted in both the WT and the Akita/+ samples. 

Results were studied as means ± standard deviations (S.D.) and P values, equal or less than 0.05, 

were accepted as a significant level of difference between the groups. The statistical analysis was 

performed using SAS 8.0. software.   

5.3. Results 

        The central premise of this study was to identify chemical signatures of retinal damage, and 

to gain a deeper insight into retinal biochemical changes associated with early stages of diabetes. 

This study was motivated by two specific aims: i) identifying and characterizing the biomarkers 

of mitochondrial oxidative damage and cellular lipids; and ii) understanding diabetes-induced 

alterations in biochemistry of distinctive retinal layers by means of spatially-resolved chemical 

images.  

5.3.1. IR spectra and chemical images of retinas from WT and diabetic (Akita/+) mice         

        Absorption spectra of retina from Akita/+ mice compared with retinas from WT mice are 

demonstrated in the mid-IR spectral range (3600-900cm-1) in Figure 5.2. There are subtle 

differences in the biochemical-fingerprint spectral region (1800-900 cm-1) and unsaturated and 

saturated fatty acid regions (3050-2800cm-1). Second derivative absorption spectra (Savitzky-

Golay algorithm, 9 smoothing points) are shown in the spectral region 3050-2800 cm-1 

associated with δsym,asym(CH2, CH3)  and polyunsaturated fatty acids (PUFA) content, 1800-1470 

cm-1 attributed to the secondary structure of proteins and 1470-900cm-1 mostly attributed to 

DNA/RNA bands.  Absorption bands in the spectral region 1160-950 cm-1 are highly dominated 

by vibrations from C-O functional groups in carbohydrates, although νsymm PO2- modes also 

contribute at 1085 (±2) cm-1. Figure 5.2, B-D demonstrates the peak wavenumber values for 
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important macromolecules of retinas from WT and Akita/+ mice, respectively. The band 

assignments are summarized in Table 5.1. 

 

 

  

 

Figure 5.2: FTIR absorption spectrum analysis. A) Average spectra from the 
wild-type (WT) and Akita/+ retina tissues in the spectral range 3600-900cm-1 are 
shown. Second derivative absorption spectra of the WT vs. Akita/+ tissue is 
shown B) in the lipid region 3050-2750cm-1, C) protein region 1800-1500cm-1 
and D) DNA/RNA region 1425-900cm-1. Spectra were generated from the whole 
retina tissue (including all retinal layers) and an average of 32,000 individual 
pixel spectra is demonstrated. (Aboualizadeh et al., 10.1039/C6AN02603F).   
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Peak Frequency (cm-1)                              Assignments 

966 Symmetric PO4
− stretching (DNA) and 

deoxyribose- phosphate skeletal motions 

1010 C-O stretching; C-C stretching; DNA 
ribose 

1051 C–O stretching: deoxyribose/ribose DNA, 
RNA/ glycogen 

1087 Symmetric stretching of PO2
− 

:phospholipids and nucleic acids 

1150 C-O, C-C stretching, C-O-H, C-O-C 
deformation of carbohydrates/ glycogen 

1172 CO-O-C asymmetric stretching: ester 
bonds in cholesterol esters 

1240 Asymmetric stretching of PO2
− 

:phospholipids and nucleic acids 

1388 Symmetric CH3 bending lipids, proteins, 
and nucleic acids 

1546 Amide II- α helical structure of proteins 
(mainly N-H bending and C-N stretching) 

1637 Amide I- β sheets 

1656 Amide I- α helical or unordered structure 
of proteins (proteins C-O stretching, C-N 
stretch, CCN deformation) 

1681 Amide I- β sheets, antiparallel/random coil 
(mainly C-O stretching) 

1712 Base pair carbonyl (C=O), nucleic acids, 
DNA, RNA, oxidation of cellular lipids, 
short chain aldehyde  

1741 C=O stretching: ester in phospholipids 

2850 Symmetric stretching of CH2; lipids 
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2873 Symmetric stretching of CH3; lipids 

2921 Asymmetric stretching of CH2; lipids 

2960 Asymmetric stretching of CH3; lipids 

3012 Olefinic=C-H stretching; unsaturated fatty 
acids 

 

        Chemical images demonstrated features of the mouse retina and its individual layers at 

subcellular level. Figure 5.3 depicts retina sections from WT and the Akita/+ mice. Figure 5.3A 

shows the photomicrograph of the retina oriented vertically from the choroid layer (the 

outermost layer of retina) to the ganglion cell layer, and the FTIR images are overlaid to 

visualize retinal layers with respect to the visible images. Figures 5.3B,C show the chemical 

images of the retina from WT and Akita/+ mice integrated underneath 1712 cm-1 peak (baselined 

region: 1725-1700 cm-1), and reveals the photoreceptor layer (PRL), outer plexiform layer 

(OPL), inner nuclear layer (INL) and inner plexiform layer (IPL) within the retina.  

        Chemical image of the retina from Akita/+ mice (Fig. 5.3C) is overlaid with the sketch of 

photoreceptor system including rod cells, mitochondria, and nucleus. Processed images of the 

retina at different frequencies and absorption spectra for the retina layers are discussed elsewhere 

[35]. In Figure 5.3 (red-blue color scale), regions of the highest absorption strength e.g. 

photoreceptor nucleus layer appeared red and the retinal layers with the lowest absorption 

strength were blue/purple. The same color scale was used for demonstration of both mosaics in 

each tissue. The H&E stained (after FTIR measurements) section of retina that highlights the 

nucleus segment of the photoreceptor layer has been shown elsewhere [35]. The outer segment 

Table 5.1. Band assignments for the retina spectra [55-59] 
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of photoreceptors are mostly comprised of rod cells and are rich in PUFA content, while the rod 

inner segments are rich in mitochondria and Golgi apparatus. Comparison between photoreceptor 

nucleus layers in both tissues revealed decreased concentration of DNA and more heterogeneity 

in retinas from Akita/+ mice compared with WT mice. As discussed previously [35], the outer 

and inner plexiform layers are rich in symmetric and asymmetric stretching of CH2 and CH3 

functional groups, and the nucleus segment in photoreceptors (ONL) has very similar spectrum 

to INL. Chemical images in Figure 5.3 demonstrate the area of 128 × 270 µm2 of the retinas from 

the Akita/+ and WT mice.  
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5.3.2. Wild-type vs. Akita/+ retinal tissue 

        Retinal tissues prepared from WT and Akita/+ mice were compared. IR absorption spectra 

generated from each pixel within hyperspectral image in the biochemical spectral region (1800-

900 cm-1) and the spectral region primarily attributed to lipids (3050-2750cm-1) were pre-

processed for loading into “PCA-LDA” analysis. Spectra from the whole retinal tissue covering 

Figure 5.3: A) Photomicrograph of retina tissue with an overlaid FTIR image with 
localization of retinal layers. B, C) Chemical images of the WT and Akita/+ retina 
highlighting distinctive layers of retina. Each tissue covers the area of ≈128×270 
µm2 (2 mosaics, 2 × 8 tiles (each tile = 64×64 pixels)), and integrated over the 
nucleic acid band at 1712 cm-1 (the linear baseline is set at 1700-1725 cm-1) to 
highlight the absorption strength of this band in retinal layers. The inner, outer and 
nucleus segments of the photoreceptor system, OPL, INL and IPL, are shown. Panel 
C has been overlaid with the sketch of the photoreceptor system of retina including 
rods, mitochondria, and nucleus. Scale bar is 30 µm and the color scale is from blue 
(the lowest absorption strength) to red (the highest absorption strength). The 
colorscales 0-0.3 (WT tissue) and 0-0.6 (Akita/+ tissue) was used for this plot and 
the same colorscale was used for both mosaics in each tissue. (Aboualizadeh et al., 
10.1039/C6AN02603F).     
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the PRL, the OPL, the INL and the IPL were used for comparison. PC “scores” and “loadings” 

were generated principally from PCA analysis to identify the class segregation and wavenumbers 

responsible for the segregation of clusters. LDA was then performed to maximize the variance 

between groups rather than variations within each group. Figure 5.4A shows 1-dimensional 

cross-validated scores plot of the retina from WT vs. Akita/+ mice after PCA-LDA analysis and 

the classification. Figure 5.4B depicts the “cluster vector plot” generated from the loadings and 

discriminating wavenumbers responsible for the separation between the retinas from diabetic and 

non-diabetic mice. Major differentiating bands that lie in the biochemical spectral region were 

1739 cm-1, 1710 cm-1, 1662 cm-1, 1608 cm-1, 1550 cm-1, 1226 cm-1 and 1151 cm-1
, while other 

important bands were observed at 964 cm-1, 987 cm-1, 1051 cm-1, 1085 cm-1 and 1488 cm-1 

(lipids). Discriminative bands in the spectral region, associated with saturated and unsaturated 

fatty acids region, were 2854 cm-1, 2923 cm-1, 2956 cm-1, and an olefinic band at 3012 cm-1. The 

list of differentiating bands between WT and Akita/+ tissues, and their biomolecular assignments 

are summarized in Table 5.2.   

Table 5.2: Major wavenumbers responsibel for classification between retinal tissues from WT 

and Akita/+ mice (including all retinal layers). [55-59] 

Peak Frequency (cm-1)                              Assignments 

3012 Olefinic=C-H stretching; unsaturated fatty acids 

2956 Asymmetric stretching of CH3; lipids 

2923 Asymmetric stretching of CH2; lipids 

2854 Symmetric stretching of CH2; lipids 

1739 C=O stretching: ester in phospholipids 

1710 Base pair carbonyl (C=O), nucleic acids, DNA, 
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RNA, oxidation of cellular lipids, fatty acids  

1662 Amide I- turns 310 helical structure of proteins 
(mainly C-O stretching; contribution from C-N 
stretching) 

1550 Amide II (N-H bending; C-N stretching) 

1488 Deformation C-H 

1226 Asymmetric stretching of PO2
− :phospholipids and 

nucleic acids 

1151 C-O, C-C stretching, C-O-H, C-O-C deformation 
of carbohydrates/ glycogen 

1085 Symmetric stretching of PO2
− :phospholipids and 

nucleic acids 

1051 C–O stretching: deoxyribose/ribose DNA, RNA/ 
nucleic acids 

987 Nucleic acids and proteins; protein 
phosphorylation 

964 Nucleic acids, Symmetric PO4
− stretching (DNA) 

and deoxyribose; phosphate skeletal motions 
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5.3.3. Photoreceptor layer vs. Inner and Outer plexiform layers vs. Inner nuclear layer 

        To gain a better understanding of the impact of oxidative stress on distinctive retinal layers, 

a separate comparison was made between the PRL, OPL, INL and IPL in the retinal tissue from 

Akita/+ mice. Individual pixel IR spectra were derived from characteristic layers and compared 

by using PCA-LDA analysis. Figure 5.5A shows three-dimensional score plots where there was 

a separation between the PRL and the rest of the retinal layers along LD1. Along LD2, the IPL 

separated from OPL and INL, while there is some overlap between PRL and IPL. LD3 separated 

Figure 5.4: Comparison of the WT vs. Akita/+ retina tissue generated from PCA-LDA 
analysis. A) 1-dimensional (1D) cross-validated scores plot of the spectra that revealed 
classification. B) Corresponding Cluster vector plot showing differentiating bands in 
the biomedical-IR spectral region (1800-900cm-1) and lipid region (3050-2750cm-1). 
Spectra are generated from the whole tissue (all retinal layers) and 3600 spectra from 
each group of samples are used for comparison. (Aboualizadeh et al., 
10.1039/C6AN02603F). 
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the OPL from IPL and INL with higher degrees of overlap compared with LD2, and still 

overlaps with PRL. Three-dimensional score plots revealed the separation of PRL compared with 

other retinal layers, and there was more variation within the PRL scores compared with the 

tightly clustered scores in the other layers. Figure 5.5B demonstrates the cluster vector plot for 

all retinal layers, and when the PRL scores were compared to the scores of OPL, INL and IPL 

(Fig. 5.5A), the most notable contributing peaks in the loading plot between 1800 and 900 cm-1 

were 1739 cm-1, 1685 cm-1, 1654 cm-1, 1623 cm-1, 1529 cm-1, 1236 cm-1, 1085 cm-1, and 964 cm-

1, respectively.  The major contributing bands between the PRL and rest of the layers in the lipid 

region were 2850 cm-1 and 2921 cm-1. The largest peaks in biochemical-IR region, responsible 

for segregating between the PRL and the other layers, were attributed to nucleic acids. The list of 

differentiating wavenumbers between the PRL and the other layers with their biomolecular 

assignments are summarized in Table 5.3.  

Table 5.3. Major wavenumbers responsible for the discrimination between distinctive diabetic 

retinal layers (PRL, OPL, INL, and IPL) [55-59]. 

Peak Frequency (cm-1)                      Assignments 

2921 Asymmetric stretching of CH2; lipids 

2850 Symmetric stretching of CH2; lipids 

1739 C=O stretching: ester in phospholipids 

1685 Amide I- β sheets, antiparallel/random coil 
(mainly C-O stretching, contribution from 
C-N stretching) 

1654 Amide I- α helical or unordered structure of 
proteins (proteins C-O stretching, C-N 
stretch, CCN deformation) 

1623 Amide I of aggregated strand structures 
(mainly C-O stretching, contribution from 
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C-N stretching) 

1529 Amide II- β sheets (mainly N-H bending 
and C-N stretching) 

1236 Asymmetric stretching of PO2
− 

:phospholipids and nucleic acids 

1085 Symmetric stretching of PO2
− 

:phospholipids and nucleic acids 

964 Nucleic acids, Symmetric PO4
− stretching 

(DNA) and deoxyribose; phosphate 
skeletal motions 

 

 

Figure 5.5: Comparison of the PRL (red dots), OPL (blue dots), INL (green 
dots) and IPL (black dots) of Akita/+ retina tissue by means of PCA-LDA is 
shown. A) 3-dimensional (3D) scores plot of the spectra showing the 
separation of the PRL from other layers along LD1. B) Cluster vector plot of 
A; highlighting the discriminating wavenumbers responsible for the separation. 
Nearly 1500 spectra from each layer of the retina were generated and 
compared. (Aboualizadeh et al., 10.1039/C6AN02603F). 
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Figure 5.6: The ratio of νasym PO2- band to protein band for the WT and Akita/+ retina 
tissues. A) Comparison of the  νasym PO2- /protein (1230cm-1/Amide II (1546 cm-1)), and 
among the PRL, OPL, INL and IPL within each tissue. + was used for the comparison of 
the WT and the Akita/+ and ★ was used for the comparison of the PRL with the rest of 
the layers. P< 0.05 is the level of significance. B,C) Spectral maps of the νasym PO2- 

/protein ratio in WT (B) and Akita/+ (C) tissues, showing the absorption strength of the 
PRL among layers. The representative images are on a three-color coded color scale, 
where the blue/red color is associated with the highest/lowest absorption. The spectral 
regions 1180-1280 cm-1 (for the phosphate band) and 1500-1750 cm-1 (for protein band 
Amide II) were used as a baseline. (Aboualizadeh et al., 10.1039/C6AN02603F).   
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5.3.4. Nucleic acid to protein ratio in the retinal tissue  

        To reinforce the rationality of our findings and obtain a better knowledge of diabetes-

induced alterations in the composition and concentration of molecules, the band area ratios for 

some functional groups of retinal tissues from WT and Akita/+ mice were evaluated. In tissue 

studies, the differences in the thickness of tissues can influence cellular alterations and spectral 

interpretation. Thus, to avoid such errors the ratio of integral intensities was employed. νasym PO2- 

to protein ratio was calculated by dividing the baseline-corrected area under the functional group 

attributed to asymmetric stretching of phosphates at 1230 cm-1 and one of the main FTIR markers 

of DNA [60, 61] by Amide II absorption band (1544 cm-1). The ratio was calculated for the PRL, 

OPL, INL and IPL of the retina in both types of mice, and a comparison was made of the layers 

per tissue type (WT vs. Akita/+) and per layer for each tissue. The spectral regions 1180-1280 

cm-1 (for the phosphate band) and 1500-1750 cm-1 (for Amide II band) were used as a baseline. 

The PRL demonstrated the highest amount of νasym PO2-/protein (in both tissues) compared to 

OPL, INL and IPL.  

        The sample from Akita/+ mice had a higher amount of this ratio in all layers compared to 

WT group. Both tissues follow the same trend of having either increasing or decreasing νasym 

PO2-/protein between layers. P-values were calculated and P< 0.05 was considered to be 

significantly different among groups of samples and retina layers. Results from the statistical 

analysis for both tissues are demonstrated in Figure 5.6A. A spectral map of νasym PO2- to protein 

ratio of retinas from WT and Akita/+ mice are shown in Figures 5.6B, C. These ratio images 

were used to visually discern the strength of the relative concentration of phosphates, and 

alterations in tissue morphology associated with diabetes-induced damage between the layers. 

The area of nearly 270 × 270 µm2 of the retina tissues are shown in Figures 5.6B, C, where the 
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blue color shows the highest value of ratio and the red color indicates the lowest value. This 

Figure demonstrates the strength of PRL, and in particular the nuclear segment of the 

photoreceptor layer compared to the other layers. The ratio image for the retina from WT mice 

shows a homogenous morphology within the retina layers, while the retina from Akita/+ mice is 

more heterogeneous in the nuclear segment of photoreceptors. The νasym PO2- to protein ratio 

images (Fig. 5.6) enabled us to resolve in detail the subtle heterogeneities observed in the inner 

segment of photoreceptors within chemical images of diabetic retina (Fig. 5.3C).       

 

5.3.5. Unsaturation level and hydrocarbon acyl chains in lipids 

        The olefinic to lipid ratio, also known as unsaturation index, is used to find the relative 

amount of unsaturated lipids in retinal tissue. This ratio is calculated by dividing the area of the 

ν=(CH) peak at 3012 cm-1, attributed mainly to unsaturated lipids, by area of the C-H region 

Figure 5.7:  Bar graphs of the olefinic/lipid ratio and qualitative hydrocarbon acyl chains in 

lipids are shown. A) The unsaturated/saturated lipid ratio and B) The CH2/CH3 asym ratio of 

the WT and Akita/+ retina tissues were compared. + was used for comparison of WT and 

Akita/+ tissues. (Aboualizadeh et al., 10.1039/C6AN02603F).        
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attributed to symmetric and asymmetric stretching of CH2 and CH3 in 2830-2980 cm-1 (lipids). 

The spectral region 2800-3050 cm-1 was used as a baseline region. A remarkable decrease in the 

ratio was observed in retinal layers from Akita/+ mice compared with WT mice, while the PRL 

demonstrated the largest decrease amongst the layers (Fig. 5.7.A).  

        To determine the diabetes-induced changes in hydrocarbon acyl chain length of lipids, the 

ratio of νas CH2/νas CH3 was calculated. There was an increase in retinal layers from Akita/+ mice 

compared with WT mice (Figure 5.7B). As shown in Table 5.1., the areas under 2960 cm-1 and 

2921 cm-1 bands were calculated and there was an increase in the band area in Akita/+ groups 

(for all retinal layers) compared with WT groups. The variation of ratio between WT layers was 

negligibly smaller. The results of statistical analysis are shown in Figure 5.7B. 

5.4. Discussion  

        Understanding biophysical and biochemical features of retinal tissue at subcellular level 

plays a major role in the pathogenesis of diabetes and particularly, in revealing the mechanism 

underlying the oxidative stress damage in the retina. Identifying biomarkers with spatial 

resolution at the cellular and molecular level is critical for early detection and a better 

understanding of the disease pathogenesis. The first goal of this study, which was the 

determination of biomarkers of diabetes-induced oxidative damage in the retina, was achieved by 

employing PCA-LDA. I demonstrated the efficacy of s-FTIR imaging and multivariate image 

analysis in classification of control and diabetic tissues (Fig. 5.4.) and the series of IR bands 

(Table 5.2.) in proteins, nucleic acids, and lipids attributed to this separation were found. FTIR 

images of retinas that were imaged at the most advanced infrared beamline (IRENI) revealed all 

distinctive layers of the retina. High resolution spatially resolved chemical images integrated 
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over the IR band at 1712 cm-1 from Akita/+ tissue demonstrated heterogeneous morphology 

within the nucleus segment of photoreceptors, while the WT retina tissue looked more 

homogenous within the same layer (Fig. 5.3.C). However, the OPL, INL, and IPL revealed a 

homogenous structure in both WT and Akita/+ tissues. Notably, the band at 1712 cm-1 has been 

only observed in the spectra from the nucleus segment of photoreceptors [35]. The 1712 cm-1 

band has also been reported as a marker for determination of free fatty acids [62], and carbonyl 

group products that are produced by deposition of glycation products [63]. This band was found 

as one of the major differentiating wavenumbers between the WT and Akita/+ tissues, which 

suggests the significance of the photoreceptor cell’s nucleus in the observed classification.  

        The second goal of this study was to determine the diabetes-induced alterations in the 

biochemistry of distinctive layers of the retina. Three-dimensional score plots from PCA-LDA 

analysis exclusively on Akita/+ tissue (Fig. 5.5A) revealed clear separation among the retinal 

layers. Along LD1, there was a separation between PRL and the rest of the layers, and the IR 

bands that were responsible for the classification are reported (Table 5.3.). This finding 

recommended that at the initial stage of DR, PRL was the most vulnerable retinal layer in 

comparison with the other layers. There were three major differentiating bands in the DNA/RNA 

region (1425-900 cm-1) of the cluster vector plot at 964cm-1 (symmetric PO4
− stretching 

(DNA)/deoxyribose/backbone (C-C)), 1085cm-1 (νsym PO2-), and 1236 cm-1 (νasym PO2-) (Fig. 

6.5B). Peak characteristic for symmetric and asymmetric phosphate bands at 1080 and 1236 cm-

1, for the inner and outer segments of photoreceptor has been shown [35]. The peaks of 

symmetric and asymmetric stretching vibrations of phosphates have been reported in the double 

stranded DNA spectra in several studies [60,61].  



	 131	

        The ratio of νasym PO2- to protein was also found (Fig. 5.6) to provide information about the 

changes in nucleic acid content in comparison to protein content. The higher level of νasym PO2- 

/protein in the PRL in our findings could be indicative of localization of DNA damage in PRL, 

due to the proximity of nuclei to sites of superoxide generation in photoreceptors. 

Heterogeneities in the ratio images of retinas from Akita/+ mice that appeared within nucleus 

segment of PRL (Fig. 5.6C) suggest morphological changes as a result of diabetes-induced 

oxidative stress. The morphological variations in the thickness of retinal layers at different stages 

of diabetes, and the role of early phase photoreceptor loss during diabetes have been studied 

[64]. I believe that the segregation between PRL (which is a dense layer in nuclei) and the other 

layers, and the presence of differentiating bands attributed to nucleic acids, indicates the 

oxidative DNA damage in the retina, and in particular in the PRL.  

        It is well established that the oxidative damage to DNA is elevated in the retina at early 

stages of diabetes mellitus [65-67]. The significance of photoreceptor changes in the 

pathogenesis of DR is evaluated in several studies [68-70]. Photoreceptors are the major source 

of superoxide and reactive oxygen species (ROS) compared with INL or ganglion cell layer 

(GCL) and contribute to the greater extent to the oxidative stress during diabetes [71]. Most of 

the mitochondria are located in the photoreceptor layer (where I observe the most variations 

between diabetic and WT tissues) and mitochondrial DNA (mtDNA) is the most vulnerable 

target for ROS and oxidative damage [72]. The contribution of mitochondria in diabetes-induced 

oxidative damage is well-established [73,74]. 

        Our results also identified differentiating spectral features between WT and Akita/+ retina 

in saturated and unsaturated fatty acids (Fig. 5.4).  Differentiating peak at 3012 cm-1 could be 
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attributed to the richness of PUFA disks in the inner segment of photoreceptors. The olefinic to 

lipid ratio, used as the level of unsaturation in lipids, decreased in Akita/+ mice compared with 

WT mice. Notably, the diabetic PRL showed the largest decrease among the retinal layers (Fig. 

5.7A). The decrease in this ratio in diabetic retinal layers, suggests the loss of unsaturation in 

acyl chains of lipids due to an elevated lipid peroxidation in diabetic retina. 4-Hydroxyalkenals 

are the most toxic products in lipid peroxidation and were found in the retina as early as 6 weeks 

of diabetes [75].  

        Our results was found to be in agreement with several studies on diabetes-induced changes 

in retinal fatty acid metabolism [76,77] that revealed a significant decrease in unsaturation level 

in diabetic retina. Lipid peroxidation serves as an indicator of the oxidative stress in diabetes 

mellitus [52], and it occurs due to the abundance of unsaturated fatty acids in biological 

membranes that are mainly attacked by free radicals. The oxidation of unsaturated fatty acids is 

well established and poly-unsaturated fatty acids are more susceptible to peroxidation due to the 

number of double bonds [78]. The changes in unsaturated fatty acids can affect the structure and 

functionality of the membranes and signal propagation; however, these changes can adversely 

affect the integrity of membrane [79].  

        CH2/CH3 antisymmetric stretching ratio (FTIR-based hydrocarbon acyl chain in lipids) was 

larger for Akita/+ mice compared with WT mice, and it was significantly larger for OPL and IPL 

due to the richness of the plexiform layers in lipids associated with the network of axons and 

synapses (Fig. 5.7B). The IPL and OPL demonstrated comparable biochemistry in the chemical 

images integrated at peaks 2850 cm-1 and 1738 cm-1, shown in ref [35]. Qualitative longer chains 

of hydrocarbon acyl of lipids in diabetic groups suggest changes in the membrane and lipid 
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metabolism [80] at the early stages of diabetes, and the significance of plexiform layers in these 

alterations compared to the outer and inner nucleus segments of the retina. 

5.5. Concluding remarks  

        DR causes progressive damage to the retina tissue that can lead to serious complications 

including retinal detachment, vitreous hemorrhage, glaucoma, and blindness. Here I 

demonstrated the efficacy of high-resolution synchrotron-based FTIR wide field imaging and 

PCA-LDA to differentiate between diabetic and non-diabetic retina tissues with robust 

classification, and determine the highly localized early diabetes-induced biochemical alterations 

in the retina. Spectral biomarkers of diabetes-induced changes in distinctive retinal layers 

attributed to nucleic acids, proteins, and lipids, were delineated. This is the first study to report 

the nature of molecular changes in the biochemistry of distinctive layers of retina during 

diabetes. One important finding of this study is that super resolution FTIR images providing 

information about the significance of PRL at the onset of DR and the heterogeneities associated 

with diabetes-induced changes in the nucleus segment of photoreceptors. Findings from ratios of 

several IR bands, including an increase in nucleic acid /protein, a decrease in olefinic/lipid, and 

an increase in hydrocarbon acyl chains in lipids, in the diabetic retina, is reported. Comparison 

between distinctive layers of retina in the diabetic and WT mice indicated that the PRL 

experienced the most obvious impact at the onset of diabetes. The current study provides 

substantial mechanistic understanding of the oxidative damage in the retina, which may shed 

import insight into the pathogenesis and diagnosis of DR. Future work will focus on temporal 

and persistence of these changes and their contribution to retinal complications associated with 

diabetes. 
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Chapter 6: Temporal diabetes-induced biochemical changes in distinctive layers of mouse 
retina                                      

        To discover the mechanisms underlying the development and progression of diabetes 

changes in the retina, a more comprehensive understanding of the bio-molecular processes in 

individual retinal cells subjected to hyperglycemia is required. Animal models provide a suitable 

model for detecting the underlying pathophysiological mechanisms of DR, which is not fully 

attainable in human studies. In the present chapter, I discuss the nature of diabetes-induced, 

highly localized biochemical changes in the retinal tissue from Ins2Akita/+ (Akita/+; a model of 

Type I diabetes) male mice with different duration of diabetes. Employing label-free spatially 

resolved Fourier transform infrared (FT-IR) imaging engaged with chemometric tools enabled us 

to identify temporal-dependent reproducible biomarkers of the diabetic retinal tissue from mice 

with 6 or 12 weeks, and 6 or 10 months of diabetes. I report, for the first time, the origin of 

molecular changes in the biochemistry of individual retinal layers with different duration of 

diabetes. A robust classification between distinctive retinal layers namely photoreceptor layer 

(PRL), outer plexiform layer (OPL), inner nuclear layer (INL), and inner plexiform layer (IPL), 

and associated temporal-dependent spectral biomarkers were delineated. Spatially-resolved super 

resolution chemical images revealed oxidative stress-induced structural and morphological 

alterations within the nucleus of the photoreceptors. Comparison among the PRL, OPL, INL, and 

IPL suggested that the photoreceptor layer is the most susceptible layer to the oxidative stress 

with short-duration of diabetes. Moreover, for the first time, I present the temporal-dependent 

biomolecular alterations for the PRL, OPL, INL, and IPL from Akita/+ mice, as diabetes 

progresses. These findings are potentially important that may be of particular benefit in 

understanding the molecular and biological activity of retinal cells during oxidative stress in 

diabetes, which is still unclear. My integrating paradigm provides a new conceptual framework 
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and a significant rationale for a better understanding of the molecular and cellular mechanisms 

underlying the development and progression of DR. This approach may yield alternative and 

potentially complementary methods for the assessment of diabetes changes.  

6.1. Introduction 

        Diabetic retinopathy (DR) is a retinal microvascular dysfunction that affects retinal vascular 

homeostasis and can ultimately lead to blindness [1]. Accumulation of fluids in the eye causes a 

change in the curvature of the lens; therefore, exacerbate the focusing and eventually leads to 

blurred vision over time. There are two major stages of DR, namely non-proliferative diabetic 

retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). The classification is based on 

morphological changes observed in the retinal vasculature, retinal abnormalities, blurred vision, 

and progressive visual loss [2]. The various cellular components of the retina, especially the 

vascular cells, may be susceptible to the hyperglycemic environment that triggers unique 

biochemical alterations.  These cellular changes occur through a number of pathways including, 

elevated oxidative stress [3], PKC activation [4,5], and advanced glycation end (AGE) product 

formation [6]. Oxidative stress is considered as a unifying mechanism that links the existing 

pathophysiological pathways [7]. Structural changes such as membrane thickening [8], 

microvascular cell loss [9], and capillary closures [10] are another contributors to the oxidative 

damage that are regulated by reactive oxygen species. 

        Information on apoptosis of neuronal cells of the retina that may occur at the early stages of 

diabetes has been gaining interest as primary target of diabetes changes. This is further supported 

by the damage to the neuronal units of retina, especially cells with fragmented DNA, which 

occurs within few hours [11,12]. Understanding the underlying mechanisms behind these 
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biochemical alterations associated with oxidative stress, especially at specific cellular levels, 

offers potential therapeutic targets that will assist in developing early diagnosis and effective 

treatment for DR. Thus, more studies are needed to determine the nature of these biochemical 

alterations in various retinal cells including the vascular cells, and their contribution to the 

development and progression of DR. Animal models provide a suitable model for detecting the 

underlying pathophysiological mechanisms of DR, which is not fully attainable by human 

studies [13]. Although rodent models have been proven useful for characterizing the early-stages 

of DR, detecting the late-stage complications of DR still remains a challenge in these models.      

        Fourier transform infrared (FTIR) spectrochemical imaging is a label-free and non-

destructive technique that permits detecting the inherent vibrational properties of the biochemical 

constituents of the cells [14-16]. Spatially resolved chemical images from this technique allow 

the characterization of localized biochemical changes in the tissue. FTIR imaging allows rapid 

monitoring of early tissue alterations and can quantify the molecular changes in the tissue. Its 

key advantages over competing methods are its ability to measure these changes without 

applying exogenous labels. IR spectrochemical imaging offers unlabeled biomolecular 

information from sub-cellular regions of cells and tissues that can help to better understand a 

disease pathology and diagnosis [17-19]. FTIR imaging has been used to investigate various 

tissue types including prostate [20], breast [21,22], kidney [23], brain [24,25], thyroid 

lobectomies [26], mesothelioma [27], and colon [28].  

        Here I aim to determine the highly localized temporal biomolecular changes in the mouse 

retina induced by different duration of diabetes using IR spectroscopic imaging and chemometric 

tools. For this purpose, retinal tissues from Wild-Type (WT; non-diabetic) and Ins2Akita/+ mice 

(Akita/+, a model of type I diabetes) at 6-week, 12-week, 6-month, and 10-month of age were 
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used. Individual layers of the retina, including photoreceptor layer (PRL), outer plexiform layer 

(OPL), inner nucleus layer (INL), and inner plexiform layer (IPL) were evaluated using a high-

magnification imaging setup. Recently, I studied the oxidative stress damages to the retinal tissue 

in short-term diabetes (6 weeks old) and the comparison between individual retinal layers 

revealed that photoreceptors are the primary target for oxidative stress at the onset [29]. In this 

study, for the first time, I report the biochemical changes in the PRL, OPL, INL, and IPL from 

Akita/+ mice with different duration of diabetes, which provided novel insight into cellular 

specific biochemical changes associated with the development and progression of DR.  

6.2. Materials and Methods 

6.2.1 Sample preparation  

        The procedure for sample preparation has been described explicitly elsewhere [29]. Briefly, 

Male C57BL6 mice (Jackson Laboratories) were given a standard and housed in standard caging 

with 12:12 light: dark cycle and food and water provided ad libitum. Akita/+ mice spontaneously 

develop diabetes at 4-weeks of age due to a mutation in their insulin gene. The Akita 

spontaneous mutation (commonly referred to as MODY; Maturity-Onset Diabetes of the Young) 

is an autosomal dominant mutation in the insulin II gene (Ins2). Ins2 Akita/+-C57BL/6 diabetic 

mice develop retinal vascular pathology characteristic of the early stages of DR. Once sacrificed, 

eyes were enucleated from male WT and Akita/+ mice at 6-week (n=6), 12-week (n=8), 6-month 

(n=6), and 10-month (n=6) of age. Eyes were rapidly frozen in isopentane cooled to almost 

freezing in liquid nitrogen and later stored at -80°C freezer for FTIR microspectroscopy.  

        Eyes were embedded in optimal cutting medium (O.C.T) compound and carefully cut into 8 

µm thin sections using a cryomicrotome. Sectioning started from the optic nerve (from the back 
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of the eye) and the retinas were extracted using a thin paintbrush. The temperature inside the 

cryomicrotome was maintained (between -15 °C and -20 °C) and the blade was pre-chilled for at 

least half an hour prior to sectioning. From each eye, at least 5 retina sections were collected and 

mounted on the mid-IR BaF2 substrate. All sections were stored in darkness and kept frozen at 

−80°C until FTIR measurements. Before the experiment, the sample was removed from the 

freezer and desiccated. The experiment was performed in dark and low humidity condition. 

Schematic of the methodology has been shown in the previous chapter in Figure 5.1.    

6.2.2. FTIR wide field imaging 

        The FPA-FTIR chemical images were recorded with the use of a Bruker vertex 70 IR 

spectrometer coupled with a Bruker Hyperion 3000 IR microscope. Hyperspectral images (x, y, 

Abs (λ)) were acquired by means of the focal plane array (FPA) detector, which is a 

multielement detector and it is coupled with the interferometer. The measurements were 

performed using a 36× Cassegrain microscope objective and a 15× condenser aperture. This 

experimental geometry allows us for high magnification imaging capabilities with a 1.1 × 1.1 

µm2 pixel size and a 70 × 70 µm2 FOV. I used 2048 scans co-added at a spectral resolution of 4 

cm−1 with a zero filling factor 2 for background and for sample acquisitions, respectively. To 

cover a larger area of the tissue, 4 adjacent tiles were measured by mapping across the section of 

the retina. The FPA size for the measurements was set to 64×64 pixels; therefore, 4096 

individual spectra in the mid-IR wavelength range 3800-900cm-1 (every pixel contains an IR 

spectrum) were collected per single tile measurement.  
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6.2.3. Spectral pre-processing 

        Resultant spectra from tissues revealed Mie scattering distortions. This distortion originates 

from the scattering of IR light from particles with diameters in the range of 2-20 µm [30,31]. 

Although the dispersion artefact appears as a derivative shape in the spectral region close to the 

protein band (Amide I band), this phenomenon could influence spectrum in several spectral 

regions, and leads to misinterpretation of the chemistry and pathology. In this study, nearly 

82,000 individual pixel spectra from each animal were generated and were subjected to the 

RMies-EMSC scattering correction algorithm to alleviate the contribution of the scattering 

effect. High-throughput computations of hundreds of thousands of spectra were supported by 

Graphics Processing Units (GPUs) for fast hyperspectral processing [32]. Once corrected, the 

spectra were quality tested and preprocessed as follows. The spectra were truncated to 900-1800 

cm-1 range (finger print region) that resulted in 485 data points. Pixel binning (2×2; average of 4 

pixels) was applied, which was necessary to increase the signal to noise ratio, and S/N in every 

spectrum was then systematically evaluated using an in-house written code in Matlab. All spectra 

were vector-normalized and baseline corrected (a linear baseline correction) using 

Matlab_R2016a prior to computational analysis.      

6.2.4. Multivariate and statistical analysis 

        Multivariate analysis with principal component analysis (PCA) followed by Linear 

discriminant analysis (LDA) was performed using in-house written code in Python to extract 

maximum chemical information attributed to the variance in the spectra. PCA is an unsupervised 

method to decompose a dataset into bilinear latent variables called principal components (PCs) 

and every absorbance spectrum is replaced by a single score value for each derived PC. This 
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reduces the dimensionality of the data while retaining most of the information in the data set. 

Here, PCA was used for dimensionality reduction and then the output was loaded into LDA. 

LDA is a supervised method that allows labeling the classes or cell types distinguished by PCA. 

Assigning data to multiple classes enables an algorithm to determine the sources of within-class 

and between-class variances in the dataset. The outcome of PCA-LDA is an improved 

classification between spectra by maximizing between-class variances (mostly attributed to 

disease) and minimizing within-class variances (mostly attributed to tissue heterogeneity). Two 

sets of information were generated from PCA-LDA. Scores scatter plot that shows the separation 

of scores along each axis and cluster vector plot that demonstrates the coefficients of linear 

combinations as a function of wavenumbers. The details of PCA-LDA construction and the 

interpretation of results are described elsewhere [33]. The spectral region 1800-900 cm-1 

(biochemical region) was used for the analysis of spectra. Multivariate analysis was performed 

using “R” package (version 3.1.2), Matlab_R2016a and Python_2.6 version.      

        One-way ANOVA with Tukey’s test as a post hoc test was employed for two-group 

comparisons, to determine whether there is a significant difference in the means of the groups. 

Quantitative results were studied as means ± standard error of means (SEM) and P values equal 

or less than 0.05 were accepted as a significant level of difference between WT and the Akita/+ 

samples. The statistical analysis was performed in SAS software. 

        Support Vector Machine (SVM) classifier is a machine-learning algorithm for two-class 

problems that is based on non-linear transformation to provide classification. SVM separates the 

dataset into classes by building a high-dimensional hyperplane and the accuracy of classification 

highly depends on the parameters that describe hyperplane. SVM uses a kernel function for 

mapping the data into a new dimension. The SVM was performed in “ R” using package 
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“e1071” and sensitivity and specificity values, positive predictive value (PPV), negative 

predictive value (NPV), and classification accuracy rate were obtained.  The number of spectra 

for each tissue type, and the parameters from SVM were reported in Figure 6.1.     

6.2.5. Molecular factors 

        The ratio of the integrated area of the spectral region attributed to C-O, C-C, and C-O-C 

stretches (1180-950 cm-1) to the integrated area of the amide II band (1540 cm-1) of proteins was 

calculated. The former spectral region entails significant vibrational modes of sugar moieties, 

phosphates, and glycation products. This ratio indicates the degree of glycation in the retinal 

layers [34,35].	The relative alteration in the structure of amide groups of proteins was calculated 

as a ratio of the integrated area of amide I band (1600-1700 cm-1) normalized to the total amide I 

and amide II profile (1500-1700 cm-1). The changes in this ratio provide information about the 

modifications in the secondary structure of proteins [36]. The degree of unsaturation in the lipid 

chains was assessed by calculating the ratio of the area of the olefinic band (2992-3020 cm-1) to 

the C-H region (2830-2980 cm-1), mainly dominated by saturated lipids. This ratio indicates the 

relative content of unsaturated lipids and double bonds in the lipid structure of the tissue [37]. 

The spectral regions 1500-1750 cm-1 (for amide I and II bands), 950-1180 cm-1 (for C-O, C-C, 

and C-O-C bands), and 2800-3050 cm-1 (for olefinic and C-H bands) were used as a baseline 

region. 

6.3. Results 

6.3.1. Classification between retinal tissues from WT and Akita/+ mice 

        A section of retinal tissue stained with hematoxylin and eosin (H&E) was used to show the 

microstructural organization of the retinal tissue [14] (Fig. 6.1A). Bright-field image (Fig. 6.1B) 



	 151	

and chemical image (Fig. 6.1C) of the retinal tissue from an Akita/+ mouse oriented vertically 

from the choroid to the ganglion cell layer are shown. As demonstrated (Fig. 6.1C), a mosaic 

image covers the area of ≈70×280 µm2 (1 mosaic, 1 × 4 tiles (each tile = 64×64 pixels), pixel 

resolution: 1.1µm), and integrated over the lipid band at 2850 cm-1 to highlight the individual 

retinal layers. Chemical image (Fig. 6.1C) is overlaid with the sketch of photoreceptor system 

including rod cells, mitochondria, and nucleus. Processed images of the retinal tissue at different 

wavenumbers and absorption spectra from multiple layers of the retinal tissue are unequivocally 

discussed elsewhere [14].  

        Average of nearly 16,000 individual pixel spectra generated from the whole tissue and the 

corresponding second derivative spectra (Savitzky-Golay algorithm, 9 smoothing points) in the 

biochemical mid-IR spectral region (1800-900cm-1) are shown (Fig. 6.1.D). The biomolecular 

assignment of the bands for the retinal tissue has been shown in our previous study [29]. Next, 

retinal tissues prepared from WT and Akita/+ mice were compared (Fig. 6.1E).  
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6-week-
old (cm-1) 

12-week-
old (cm-1) 

6-month-
old (cm-1) 

10-month-
old (cm-1) 

Assignment 

1739  1735 1735 Lipids: C=O ester in phospholipids 

1710    Nucleic acids: Base pair carbonyl 
(C=O), nucleic acids, DNA, RNA, 
oxidation of cellular lipids, fatty 

Figure 6.1: H&E stained [reprinted with permission from [14]] (A), Bright-field (B), and 
FTIR chemical image (C) of retinal tissue from Akita/+ mouse highlighting the microstructure 
of retina. FTIR image covers the area of ≈ 70 × 270 µm2 (1 mosaic, 4 tiles (each tile = 64 × 64 
pixels)), integrated over the lipid band at 2850 cm−1 (baseline: 2842–2862 cm−1) to show lipid 
distribution. Panel C has been overlaid with the sketch of the photoreceptor system of the 
retina including rods, mitochondria, and the nucleus. The scale bar is 20 µm and the color 
scale is from blue (low) to red (high). D) Average spectra and the corresponding second 
derivative spectra of retinal tissues from wild-type and Akita/+ mice in the spectral range 
1800–900 cm−1 are shown. An average of ≈16000 individual pixel spectra is demonstrated. E) 
Comparison of WT and Akita/+ retinal tissue at 6.week, 12.week, 6.month, and 10.month of 
diabetes, generated from PCA–LDA. One-dimensional cross-validated scores plot and the 
corresponding cluster vector plot highlighting differentiating bands are demonstrated for each 
stage of diabetes. F) Comparison of WT and Akita/+ retinal tissue at different ages of diabetes 
from support vector machine classifier. (Aboualizadeh et al., submitted for publication.)    
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acids 

 1695 1695  Proteins: Amide I- Antiparallel β-
sheet 

1662    Proteins: Amide I- turns 310 helical 
structure of proteins (mainly C-O 
stretching; contribution from C-N 
stretching) 

 1656 1654 1654 Proteins: Amide I- α-helical 
structure 

 1627   Proteins: Amide I- β-sheet structure 

1608    Proteins: Amide I- aggregated 
strands 

   1596 Proteins: Amide II- mainly N-H 
bending 

1550    Proteins: Amide II (N-H bending; 
C-N stretching) 

 1523   Proteins: Amide II- β-sheet 
structure 

  1442  Lipids: CH2 bending 

 1409 1405  Lipids: C-H deformation 

 

 

 

 1355   Stretching C-O, deformation C-H, 

deformation N-H 

1226 1245 1236 1243 Nucleic acids: Phosphates: νasym 
PO2- 

 1191  1195 Phosphate (P=O) band; collagen 
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  1188  Deoxyribose 

1151    C-O, C-C stretching, C-O-H, C-O-
C deformation of carbohydrates 

1087 1093  1095 Nucleic acids: phosphates: νsym 
PO2- 

  1070  C-O stretching, deoxyribose/ribose, 
DNA, RNA 

1051    C–O stretching, deoxyribose/ribose 
DNA, RNA 

 1041  1037 C–O stretching, ribose 

987    Nucleic acids and proteins, protein 
phosphorylation, OCH3 
(polysaccharides-cellulose) 

964  964 968 Nucleic acids, symmetric PO4− 
stretching (DNA) and deoxyribose; 
phosphate skeletal motions 

 

 

 

        Individual pixel IR spectra from the whole retinal tissue covering the PRL, OPL, INL and 

IPL were used for comparison. Fig. 6.1E shows the PCA-LDA score plots indicating a clear 

separation between the two groups of interest, namely WT and Akita/+ at 6-week, 12-week, 6-

month, and 10-months of diabetes. The PCA-LDA cluster vector plots (Fig. 6.1E) revealed the 

Table 6.1. Distinguishing wavenumbers (cm-1) from PCA-LDA and associated 
biomolecular assignments when the entire retinal tissue (including all retinal layers) from 
WT and Akita/+ mice was compared at 6.week, 12.week, 6.month, and 10.month of 
diabetes.36-39  
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major discriminating wavenumbers responsible for the classification between the tissues at each 

stage of diabetes.  

        The list of differentiating bands in the carbohydrates, lipids, and protein regions, between 

WT and Akita/+ tissues and their biomolecular assignments are summarized in Table 6.1. Fig. 

6.2F displays the results from support vector machine (SVM) classifier that was performed on 

the spectra from WT and Akita/+ retina with different duration of diabetes. Using a SVM 

classifier for IR spectra from retinal tissues, an accuracy of 87.59% (10-month), 89.58% (6-

month), 99.69% (12-week) and 99.32% (6-week) was achieved. The number of spectra used for 

the comparison and the classification parameters are listed in Fig. 6.1F. 
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Figure 6.2: Comparison of distinctive diabetic retinal layers, namely PRL, OPL, INL, and 
IPL at 6.week (A), 12.week (B), 6.month (C), and 10.month (D) of diabetes derived from 
PCA-LDA. Three-dimensional rotated scores plot and cluster vector plot highlighting 
discriminatory wavenumbers are demonstrated for each case study. Nearly 1500 spectra 
from each layer of the retina, and for each stage of diabetes, were generated and compared. 
(Aboualizadeh et al., submitted for publication.)   
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6-week-
old (cm-1) 

12-week-
old (cm-1) 

6-month-
old (cm-1) 

10-month-
old (cm-1) 

Assignment 

1739 1741 1739 1735 Lipids: C=O ester in phospholipids 

  1710  Base pair carbonyl (C=O), nucleic acids, 
DNA, RNA, oxidation of cellular lipids, 
fatty acids 

   1701 Lipids: C=O ester 

1685 1681   Proteins: Amide I- turns or antiparallel 
β-sheet structure (mainly C-O stretching) 

 1656 1654  Proteins: Amide I- α-helical structure 

 1633  1631 Proteins: Amide I: β-sheet structure 

1623    Proteins: Amide I- aggregated strand 
structures (mainly C-O stretching) 

  1608  Proteins: Amide I-aggregated strands 

   1583 Proteins: Amide II- mainly N=H 
bending, ring C-C stretch of phenyl 

 1560 1550  Proteins: Amide II- mainly N-H bending 

1529 1525  1523 Proteins: Amide II- mainly C=N, C=C 
stretching 

 1488   Lipids: C-H deformation 

   1407 Lipids: C-H deformation 

   1296 Proteins: Amide III, mainly N-H bending 

  1267  Proteins: Amide III, mainly N-H bending 

1236 1222 1220 1224 Nucleic acids: phosphates: νasym PO2- 

  1151  C-O, C-C stretching, C-O-H, C-O-C 
deformation of carbohydrates/ glycogen 

 1135 1135  C-O, C-C stretching, RNA ribose 
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   1120 C-O stretching, RNA ribose 

1085 1083 1085  Nucleic acids: phosphates: νsym PO2- 

 1049 1051  C–O stretching, deoxyribose/ribose 
DNA, RNA 

   1039 C–O stretching, ribose 

   1020 C-O, C-C stretching, DNA, glycogen, 

 995   C-O ribose, C-C, RNA 

  987  Nucleic acids and proteins, protein 
phosphorylation, OCH3 
(polysaccharides-cellulose) 

964 964 964 964 Nucleic acids, symmetric PO4− stretching 
(DNA) and deoxyribose; phosphate 
skeletal motions 

 

6.3.2. Intra-retinal layer classification at each stage of diabetes 

        To gain a better understanding of the diabetes-induced impacts on distinctive retinal layers, 

a comparison was made between the diabetic PRL, OPL, INL and IPL with different duration of 

diabetes. IR spectra were derived from characteristic layers of diabetic tissues and compared 

using PCA-LDA. Figure 6.2 shows three-dimensional rotated score plots comparing diabetic 

retinal layers at 6-weeks (6.2.A), 12-weeks (6.3.B), 6-months (6.2.C), and 10-months (6.2.D) of 

diabetes after PCA-LDA of IR spectra from retinal layers and the corresponding loading plots 

that exhibit the major discriminating frequencies responsible for classification. Segregation with 

an excellent degree between the diabetic retinal layers was achieved; however, the best 

Table 6.2. Distinguishing wavenumbers (cm-1) from PCA-LDA and associated biomolecular 
assignments for the comparison of distinctive diabetic retinal layers (PRL, OPL, INL, and 
IPL) at 6.week, 12.week, 6.month, and 10.month of diabetes. 36-39  
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classification between the retinal layers was achieved at 6 weeks of diabetes (Fig. 6.2A). Table 

6.2 lists the major wavenumbers with their tentative biomolecular assignments associated with 

the classification.  
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Figure 6.3: Temporal diabetes-induced biochemical alterations in individual retinal layers generated 
from PCA-LDA. Biochemical changes in the PRL (A), OPL (B), INL (C), and IPL (D) as diabetes 
progresses are shown. Three-dimensional rotated scores plot and cluster vector plot for each case are 
demonstrated. (Aboualizadeh et al., submitted for publication.)   
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6.3.3. Temporal biochemical changes for each retinal layer 

        To ascertain the molecular and cellular alterations in individual retinal layers as diabetes 

progresses, I investigated biochemical changes from multiple duration of diabetes, for each layer 

of the retina from Akita/+ mice, using PCA-LDA. IR spectra were compared from each retinal 

layer at 6-week, 12-week, 6-month, and 10-month of diabetes. Temporal-dependent three-

dimensional rotated score plots and attributed loading plots from the comparison of the PRL 

(Fig. 6.3A), the OPL (Fig. 6.3B), the INL (Fig. 6.3C), and the IPL (Fig. 6.3D) are displayed. As 

shown in Fig. 6.3, spectra from short-term diabetes (6 week-old) present a clear segregation from 

the other stages of diabetes, for all retinal layers studied here. Table 6.3 lists the main 

wavenumbers with their biomolecular assignments associated with the classifications.   

 

PRL 
(cm-1) 

OPL  
(cm-1) 

INL   
(cm-1) 

IPL      
(cm-1) 

Assignment 

1758    Lipids: C=C stretching 

1741  1739 1741 Lipids: C=O ester in phospholipids 

1712  1710  Base pair carbonyl (C=O), nucleic acids, DNA, 
RNA, oxidation of cellular lipids, fatty acids 

 1693 1691  Proteins: Amide I- Antiparallel β-sheet 

1681  1683  Proteins: Amide I- turns or antiparallel β-sheet 
structure (mainly C-O stretching) 

1677   1679 Proteins: Amide I- turns structure (mainly C-O 
stretching) 

1656 1654 1654 1654 Proteins: Amide I- α-helical structure 

1637 1629   Proteins: Amide I: β-sheet structure 
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1593   1594 Proteins: Amide II- mainly N-H bending 

 1566   Proteins: ring base, phenyl, aromatics 

1556   1550 Proteins: Amide II- mainly N-H bending 

  1537  Proteins: Amide II- α-helical structure 

   1521 Proteins: Amide II- β-sheet structure 

 1510   Proteins: Amide II, chain β-sheet structure C=C 
stretching, aromatics 

1481  1483  Lipids: C-H deformation 

 1401   Bending mode of CH3 

1255 1250 1255  Proteins: Amide III- mainly N-H bending, C-N 
stretching 

1222   1220 Phosphates: νasym PO2- 

 1204 1207  Collagen, C-C stretching, C-H bending, νasym PO2- 

1191    Vibrational modes of collagen, phosphate band 

1103 1105 1110 1107 Carbohydrates, C-O, C-C stretching, νsym PO2- 

1072    Phosphates: νsym PO2- 

 1045 1047 1043 Carbohydrates, C-O stretching, glycogen, DNA, 
RNA 

1037    Carbohydrates, C–O stretching 

  983  Nucleic acids and proteins, protein 
phosphorylation, OCH3 (polysaccharides-
cellulose) 

964    Nucleic acids, symmetric PO4− stretching (DNA) 
and deoxyribose; phosphate skeletal motions 

 943  946 Deoxyribose 
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6.3.4. Molecular factors 

As shown (Fig. 6.4 A-F), we computed the spectral metrics (see methods for details) for each 

retinal layer as a function of diabetes duration to determine the significant relative variations in 

the macromolecular functional groups between non-diabetic and diabetic mice. The first metric 

was the ratio of integrated absorbance between 950 and 1180 cm−1 (C-O, C-C, C-O-C stretches) 

to the integrated absorbance between 1510 and 1570 cm−1 (amide II). This metric was used to 

show the degree of glycation in retinal layers. For all retinal layers and all diabetes durations, this 

ratio was greater in diabetic groups compared with WT groups (Fig. 6.4 A), although some of the 

differences were not significantly different. The second metric was the ratio of integrated 

absorbance between 1600 and 1700 cm−1 (amide I-proteins) to the integrated absorbance of total 

amide I and amide II groups between 1500 and 1700 cm−1. This metric was used to show the 

relative variations in the amide groups of proteins in retinal layers. Statistical analysis revealed 

that this ratio at 6 and 12 weeks of diabetes was significantly greater for the non-diabetic PRL, 

OPL, and INL compared to the corresponding layers in Akita/+ group (Fig. 6.4 C). This ratio 

was significantly larger in the diabetic IPL at 6 weeks in comparison with WT group. This metric 

was not significantly different between the layers of WT and Akita/+ mice at 6 months of age.  

The last metric was the ratio of integrated absorbance between 2992 and 3020 cm−1 (CH=CH) to 

the integrated absorbance between 2830 and 2980 cm−1 (mainly C-H stretches of lipids). This 

metric was used to show the relative variations in the double bonds in lipid chains within retinal 

layers.  This metric revealed a decrease in all diabetic layers compared to the WT group at the 

Table 6.3. Temporal-dependent distinguishing wavenumbers (cm-1) from PCA-LDA and associated 
biomolecular assignments for each diabetic retinal layer (PRL, OPL, INL, and IPL) at different 
duration of diabetes. The biochemistry of each retinal layer is delineated as diabetes develops. 36-39  
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age of 6 weeks (Fig. 6.4 E). At 12 weeks, this metric was greater in the diabetic OPL and IPL; 

however, there was no significant difference between the WT and diabetic PRL and INL at this 

age. At the ages of 6, and 10 months, diabetic PRL was the only layer with the greater level of 

this metric in comparison with WT layers.  

The time-lapse trends were shown for all three metrics (Fig. 6.4 B,D,F), calculated for individual 

diabetic and non-diabetic retinal layers, as a function of diabetes duration. The trends facilitate 

an understanding of the temporal-dependent variations in molecular parameters of retinal layers. 
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6.4. Discussion 

        In the present work, I highlighted the bio-molecular changes of retinal layers, and their 

potential contribution to pathogenesis of DR, with different duration of diabetes. Precise 

temporal biomarkers of oxidative stress in the retina with sub-cellular spatial resolution level 

were obtained and the specific macromolecular functional groups associated with the damage 

were delineated. Our approach integrates spatially resolved chemical imaging and multivariate 

analysis to determine the intra-retinal layer bio-molecular changes from the onset to late diabetes 

(Fig. 6.2). With short duration of diabetes (6 and 12 weeks), the PRL showed a conspicuous 

segregation from the rest of the layers (Fig. 6.2 A, B), while the separation between layers 

looked more clustered with longer duration of diabetes (6 and 10 months) (Fig. 6.2 C, D).  

        The data presented here clearly show that the FTIR-based methods can identify and 

distinguish between WT and diabetic tissues at early and later stages of diabetes, which has not 

been previously achieved. In a recent paper [29], I resolved short-term diabetes-induced 

heterogeneous morphology in the size range of 10-20 µm within the nucleus segment of 

photoreceptors by means of high-resolution (74× objective; NA 0.65) synchrotron-based 

chemical imaging with oversampling [43]. One of the limitations with this study was employing 

the conventional globar source, which does not provide sufficient brightness to resolve subtle 

Figure 6.4: Bar graphs of the ratio of several IR band areas including glycation level (A), protein 
content (C), and unsaturation level (E) at 6.week, 12.week, 6.month, and 10.month of diabetes, are 
demonstrated. A comparison was made between the WT and Akita/+ mice for each retinal layer at 
different duration of diabetes. All graphs show the average of at least six replicates with error bars 
indicating SEM. * was used to show the level of significance (P < 0.05). Time-dependent trends for 
the PRL, OPL, INL, and IPL, highlighting the variations in the glycation level (B), protein content 
(D), and unsaturation level (F) during diabetes, are displayed. (Aboualizadeh et al., submitted for 
publication.)    
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morphological heterogeneities in the diabetic tissue. However, the specific spectral biomarkers 

were achieved in a precise manner. Future studies will concentrate on the employment of 

synchrotron source in detecting temporal morphological alterations in diabetic retinal tissue in 

the anticipation that this approach may yield alternative and potentially complementary methods 

for the assessment of diabetes changes. 

        Our novel approach integrates spatially resolved chemical images and multivariate analysis 

for studying individual layers of retina in order to determine diabetes-induced biochemical 

alterations in the retinal layers from the onset to the late stage of diabetes (Fig. 6.2). PCA-LDA 

revealed a robust classification between the retinal layers at different duration of diabetes and an 

attributed biomolecular change at each stage, were reported (Table 6.2). At earlier stages of 

diabetes (6-week and 12-week), the PRL showed a conspicuous segregation from the rest of the 

layers (Fig. 6.2 A,B), while the separation between retinal layers looked more entangled at the 

later stages (6-month and 10-month) (Fig. 6.2 C,D).  

        The significance of photoreceptor changes in the pathogenesis of early DR [44,45] and the 

contribution of mitochondria in diabetes-induced oxidative damage is well studied [46]. One of 

the promising features of these results is the capacity to ascertain the macromolecules that 

promote retinal changes. Important biomarkers at 6 weeks were associated with the stretches and 

skeletal motions of phosphates, the main spectral markers of ds-DNA. However, the 

discriminatory features between retinal layers at 12 weeks were mostly attributable to the amide I 

and amide II of α-helical and β-sheet structure of proteins (Table 6.2). Intra-retinal layer 

biomolecular changes at 6 and 10 months of diabetes were mostly attributed to C-O, C-C, and C-

O-C stretches of carbohydrates, DNA, RNA ribose, and glycogen as well as several biomarkers 

in the secondary structure of proteins. Here biochemical changes in the protein structures with 
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longer duration of diabetes may resonate with the extracellular and intracellular changes induced 

by glycation reactions via chemical rearrangement. The glycation products built on amino groups 

of proteins, and in DNA can lead to molecular cross-links.  

        Here for the first time, I studied the biochemical changes of each layer of retina from mice 

with different duration of diabetes to better assess the development and progression of DR (Fig. 

6.3). This is a potentially important finding that may be of particular benefit to understand the 

molecular and biological activity of retinal cells in response to oxidative stress during diabetes, 

which still remains unclear. When the diabetic retinal layers were studied, the spectra from 12 

weeks, 6 months, and 10 months were adjacent clusters in the scores plot; however, the spectra 

from 6 weeks revealed a clear separation (Fig. 6.3). This finding implies the uniqueness of 

damage and the highest impact at 6 weeks within the layers of retina from diabetic mice. 

Classification between the spectra from IPL at different durations of diabetes (Fig. 6.3D) 

revealed major biomarkers attributable to α-helical and β-sheet structures of proteins that suggest 

the significance of protein changes in this layer with progression of diabetes. These bio-

molecular changes may have significant impact on retinal neuronal function early in diabetes.         

        The ratio between the areas of bands associated with C-O, C-C, and C-O-C to amide II 

group in proteins provides information on the molecular modifications in the glycation products. 

I found that this ratio was significantly greater for the PRL in retinas from 6 weeks, 12 weeks, 

and 6 months diabetic mice. However, this ratio was significantly larger for the OPL at 12 weeks 

and 10 months of diabetes (Fig. 6.4A). For the INL and IPL, this metric was significantly greater 

at 6 and 10 months of diabetes, which suggests the impacts of the glycation products within these 

layers late in diabetes. Time-lapse variations in this ratio, for all diabetic layers, revealed an 

increase from 6 to 12 weeks, and then a decrease at 6 months followed by another increase at 10 
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months of diabetes (Fig. 6.4 B). Excessive production of ROS during diabetes leads to an 

imbalance in these byproducts of metabolism, and increased oxidative stress. One of the major 

tasks of the cell’s compensatory mechanisms is the repair of the oxidatively damaged or 

degraded macromolecules. Molecular ROS-scavengers, enzymatic antioxidants, and proteins that 

help the repair machinery are the known defense mechanisms. Temporal trend of variations in 

the glycation level at different durations of diabetes in our data may correlate with the 

antioxidative mechanisms of retinal cells in response to progression of diabetic changes.       

        The area ratio between amide I and (amide I + amide II) bands sheds light on structural 

variations in proteins within retinal layers. In the plexiform layers of diabetic retina, this ratio did 

not exhibit any significant change from 6 to 10 months of diabetes; however, the nuclear bodies 

of diabetic retina revealed a decrease from 6 to 10 months (Fig.6.4 C,D). For diabetic retinal 

layers, I found that this metric reached a low at 12 weeks and a peak at 6 months; however, the 

PRL reached a minimum at 6 weeks of diabetes. One possible biological source of these 

alterations is the AGEs that are found in the extracellular matrix and that potentially modify the 

matrix proteins impairing matrix-matrix and matrix-cell interactions [48]. Another source of 

damage are the intracellular proteins, where the formation of AGE has direct impact on their 

function. Specific binding of the AGE modified proteins to the receptor of AGE has the potential 

to damage [49,50]. The most interesting result to emerge from the relative changes in glycation 

products and the variations in the amide groups of proteins, is that these ratios exhibit nearly the 

same value for all diabetic retinal layers at 10 months, which states the uniformity of the damage 

to all the layers with longer duration of diabetes.   

        The modifications in the unsaturated bonds in lipids was evaluated from the area ratio 

between C=H (double bonds) and C-H stretching region. Investigation of this ratio in the diabetic 
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PRL, OPL, INL, and IPL (Fig. 6.4 E,F) suggests the significance of hydrocarbon chain 

unsaturation in short duration of diabetes (6 and 12 weeks). The decrease in this ratio in diabetic 

retinal layers, suggests the loss of unsaturated acyl chains of lipids due to an elevated lipid 

peroxidation in diabetic retina. The oxidation of unsaturated fatty acids is well established and 

poly-unsaturated fatty acids are more susceptible to peroxidation due to the number of double 

bonds [51]. Our results are in agreement with several studies with short-duration of diabetes-

mediated changes in retinal fatty acid metabolism [52,53], which revealed a significant decrease 

in unsaturation of lipids in diabetic retina.  

6.5. Concluding remarks 

        In summary, this is the first study to report the nature of diabetes-mediated molecular 

changes in the biochemistry of distinctive layers of mouse retina. The function of cell types in 

the retina and their role in the pathogenesis of DR has not been yet clearly delineated. Our results 

demonstrate the susceptibility of the neuro-retina as an early potential target of changes brought 

about by hyperglycemic environment associated with diabetes. The persistence of these changes 

during chronic diabetes leads to progression of the disease and ultimately loss of vision. These 

findings provide a significant rationale for the development of further studies of the role of 

retinal neuronal cells in the pathogenesis of DR. Findings from this work offer substantial 

mechanistic insight into the diabetes-induced changes in the neuro-retina, which may shed light 

into the early diagnosis, prognostication and treatment of DR.  
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Chapter 7: Concluding Remarks 

       In the present dissertation, I aimed to provide a more comprehensive understanding of the 

diabetes-mediated biomolecular processes in individual retinal cells subjected to hyperglycemia. 

Despite extensive studies, the changes in the biochemistry of retinal layers during the 

development of diabetic retinopathy (DR) are not well known. Lateral and axial resolutions, 

depth of penetration in the eye, contrast from the imaging modalities, optical sectioning, and the 

incapability of early intervention, are some restraints that hindered an in-depth understanding of 

the pathogenesis of DR in the microscopic realm.  

       Spatially resolved infrared chemical imaging allows simultaneous visualization of multiple 

retinal layers and characterization of localized biochemical changes in the tissue without 

applying exogenous stains or dyes. The study of the bio-molecular alterations in the biochemistry 

of retinal layers at different duration of diabetes would be greatly facilitated by spectroscopic 

techniques without any need for isolating the cell compartments. The spectral differences 

between diabetic and non-diabetic retinal tissues are very subtle. In this dissertation, I have 

focused on developing multivariate data analysis that enables me to identify the spectral 

biomarkers associated with the histology.   

       In this study, for the first time, I demonstrate that FT-IR widefield imaging engaged with 

multivariate analysis is a promising approach to quantifying temporal-dependent biomolecular 

changes attributed to DR in distinctive layers of mouse retina. Intra-layer comparison between 

photoreceptor layer (PRL), outer plexiform layer (OPL), inner nuclear layer (INL), and inner 

plexiform layer (IPL), at different duration of diabetes was performed and the associated 

biomarkers were determined. Here, I also report the biochemical changes over time in the 
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individual layers of retina from Akita/+ mice related to different duration of diabetes. These 

results provide novel insight into the cellular specific retinal changes during the development and 

progression of DR.  

       The function of cell types in the retina and their role in the pathogenesis of DR has not been 

yet clearly delineated. My results demonstrate the susceptibility of the neuro-retina as an early 

potential target of changes brought about by hyperglycemic environment associated with 

diabetes. The persistence of these changes during chronic diabetes leads to progression of the 

disease, vascular changes, and ultimately loss of vision. These findings provide a significant 

rationale for the development of further studies of the role of retinal neuronal cells in the 

pathogenesis of DR. Findings from my work offer substantial mechanistic insight into the 

diabetes-induced early changes in the neuro-retina, which may shed light into early diagnosis, 

prognostication and treatment of DR.   

       The mid-infrared spectroscopy thus far, combined with statistical analysis, has revealed the 

spectral differences between several malignant and benign tissues. However, due to the 

limitation with the conventional globar source in the bench top systems, there is no report on the 

morphological variations in the tissue caused by the disease. In this dissertation, for the first 

time, I reported the morphological alterations in the nucleus segment of photoreceptors occurred 

at the onset of diabetes by employing high-resolution synchrotron-based chemical imaging. This 

approach may yield alternative and potentially complementary methods for the assessment of 

diabetes changes. 
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       Future directions can be focused on the MALDI imaging mass spectrometry of the retinal 

tissue to determine the role of proteins in individual retinal layers and the proteomic profiling of 

the photoreceptors. Retinal tissue is a suitable candidate for mass spectrometric studies due to it's 

layered structure, which enables us to study the layer of interest. Modifying the ion potentials 

and light-responsive proteins in the individual retinal neurons via optogenetic, and then 

measuring the infrared signals from those cells, can be another potential experiment that may 

provide a deep level of biomolecular alterations in the biochemistry of retinal neurons.      
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