580 research outputs found

    Robust 24 Hours ahead Forecast in a Microgrid: A Real Case Study

    Get PDF
    Forecasting the power production from renewable energy sources (RESs) has become fundamental in microgrid applications to optimize scheduling and dispatching of the available assets. In this article, a methodology to provide the 24 h ahead Photovoltaic (PV) power forecast based on a Physical Hybrid Artificial Neural Network (PHANN) for microgrids is presented. The goal of this paper is to provide a robust methodology to forecast 24 h in advance the PV power production in a microgrid, addressing the specific criticalities of this environment. The proposed approach has to validate measured data properly, through an effective algorithm and further refine the power forecast when newer data are available. The procedure is fully implemented in a facility of the Multi-Good Microgrid Laboratory (MG(Lab)(2)) of the Politecnico di Milano, Milan, Italy, where new Energy Management Systems (EMSs) are studied. Reported results validate the proposed approach as a robust and accurate procedure for microgrid applications

    Solar Power Forecasting

    Get PDF
    Solar energy is a promising environmentally-friendly energy source. Yet its variability affects negatively the large-scale integration into the electricity grid and therefore accurate forecasting of the power generated by PV systems is needed. The objective of this thesis is to explore the possibility of using machine learning methods to accurately predict solar power. We first explored the potential of instance-based methods and proposed two new methods: the data source weighted nearest neighbour (DWkNN) and the extended Pattern Sequence Forecasting (PSF) algorithms. DWkNN uses multiple data sources and considers their importance by learning the best weights based on previous data. PSF1 and PSF2 extended the standard PSF algorithm deal with data from multiple related time series. Then, we proposed two clustering-based methods for PV power prediction: direct and pair patterns. We used clustering to partition the days into groups with similar weather characteristics and then created a separate PV power prediction model for each group. The direct clustering groups the days based on their weather profiles, while the pair patterns consider the weather type transition between two consecutive days. We also investigated ensemble methods and proposed static and dynamic ensembles of neural networks. We first proposed three strategies for creating static ensembles based on random example and feature sampling, as well as four strategies for creating dynamic ensembles by adaptively updating the weights of the ensemble members based on past performance. We then explored the use of meta-learning to further improve the performance of the dynamic ensembles. The methods proposed in this thesis can be used by PV plant and electricity market operators for decision making, improving the utilisation of the generated PV power, planning maintenance and also facilitating the large-scale integration of PV power in the electricity grid

    Power Generation Forecasting of Dual-Axis Solar Tracked PV System Based on Averaging and Simple Weighting Ensemble Neural Networks

    Get PDF
    Solar power is a renewable energy interest many researchers around the world to be explored for human life beneficial especially for electric power generation. Photovoltaic (PV) is one of technology developed massively to exploit the solar power for this purpose. However, its performance is very sensitive to environmental condition such as solar irradiance, weather, and climatic behavior. Thus, the hybrid power generation systems are developed to solve this output uncertainty problem. To support this such hybrid system, this paper proposes an ensemble neural network based forecaster of the power output of PV systems which will lead an efficient power management. The object of this research is the PV systems equipped with two axes automated solar tracking with peak power 10Wp. The proposed ensemble forecaster model employs four multi-layer perceptron neural networks with two hidden layers as base forecasters while the input number of historical data is varied in order to exploit the forecaster diversity. The final prediction is calculated both by conventional averaging and simple weighting optimized by the least square fitting technique. According to the research results, the both proposed approaches provide low error rate. Moreover, in term of comparison, the ensemble model with averaging combining technique gives the highest accuracy comparing to the other ensemble and conventional neural network structures

    An Ensemble Approach for Multi-Step Ahead Energy Forecasting of Household Communities

    Get PDF
    This paper addresses the estimation of household communities' overall energy usage and solar energy production, considering different prediction horizons. Forecasting the electricity demand and energy generation of communities can help enrich the information available to energy grid operators to better plan their short-term supply. Moreover, households will increasingly need to know more about their usage and generation patterns to make wiser decisions on their appliance usage and energy-trading programs. The main issues to address here are the volatility of load consumption induced by the consumption behaviour and variability in solar output influenced by solar cells specifications, several meteorological variables, and contextual factors such as time and calendar information. To address these issues, we propose a predicting approach that first considers the highly influential factors and, second, benefits from an ensemble learning method where one Gradient Boosted Regression Tree algorithm is combined with several Sequence-to-Sequence LSTM networks. We conducted experiments on a public dataset provided by the Ausgrid Australian electricity distributor collected over three years. The proposed model's prediction performance was compared to those by contributing learners and by conventional ensembles. The obtained results have demonstrated the potential of the proposed predictor to improve short-term multi-step forecasting by providing more stable forecasts and more accurate estimations under different day types and meteorological conditionspublishedVersio

    Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression

    Get PDF
    The variability of renewable energy resources, due to characteristic weather fluctuations, introduces uncertainty in generation output that are greater than the conventional energy reserves the grid uses to deal with the relatively predictable uncertainties in demand. The high variability of renewable generation makes forecasting critical for optimal balancing and dispatch of generation plants in a smarter grid. The challenge is to improve the accuracy and the confidence level of forecasts at a reasonable computational cost. Ensemble methods such as random forest (RF) and extra trees (ET) are well suited for predicting stochastic photovoltaic (PV) generation output as they reduce variance and bias by combining several machine learning techniques while improving the stability; i.e. generalisation capabilities. This paper investigated the accuracy, stability and computational cost of RF and ET for predicting hourly PV generation output, and compared their performance with support vector regression (SVR), a supervised machine learning technique. All developed models have comparable predictive power and are equally applicable for predicting hourly PV output. Despite their comparable predictive power, ET outperformed RF and SVR in terms of computational cost. The stability and algorithmic efficiency of ETs make them an ideal candidate for wider deployment in PV output forecasting

    Extending intraday solar forecast horizons with deep generative models

    Full text link
    Surface solar irradiance (SSI) plays a crucial role in tackling climate change - as an abundant, non-fossil energy source, exploited primarily via photovoltaic (PV) energy production. With the growing contribution of SSI to total energy production, the stability of the latter is challenged by the intermittent character of the former, arising primarily from cloud effects. Mitigating this stability challenge requires accurate, uncertainty-aware, near real-time, regional-scale SSI forecasts with lead times of minutes to a few hours, enabling robust real-time energy grid management. State-of-the-art nowcasting methods typically meet only some of these requirements. Here we present SHADECast, a deep generative diffusion model for the probabilistic spatiotemporal nowcasting of SSI, conditioned on deterministic aspects of cloud evolution to guide the probabilistic ensemble forecast, and based on near real-time satellite data. We demonstrate that SHADECast provides improved forecast quality, reliability, and accuracy in different weather scenarios. Our model produces realistic and spatiotemporally consistent predictions outperforming the state of the art by 15% in the continuous ranked probability score (CRPS) over different regions up to 512 km x 512 km with lead times of 15-120 min. Conditioning the ensemble generation on deterministic forecasts improves reliability and performance by more than 7% on CRPS. Our approach empowers grid operators and energy traders to make informed decisions, ensuring stability and facilitating the seamless integration of PV energy across multiple locations simultaneously

    Applications of Probabilistic Forecasting in Smart Grids : A Review

    Get PDF
    This paper reviews the recent studies and works dealing with probabilistic forecasting models and their applications in smart grids. According to these studies, this paper tries to introduce a roadmap towards decision-making under uncertainty in a smart grid environment. In this way, it firstly discusses the common methods employed to predict the distribution of variables. Then, it reviews how the recent literature used these forecasting methods and for which uncertain parameters they wanted to obtain distributions. Unlike the existing reviews, this paper assesses several uncertain parameters for which probabilistic forecasting models have been developed. In the next stage, this paper provides an overview related to scenario generation of uncertain parameters using their distributions and how these scenarios are adopted for optimal decision-making. In this regard, this paper discusses three types of optimization problems aiming to capture uncertainties and reviews the related papers. Finally, we propose some future applications of probabilistic forecasting based on the flexibility challenges of power systems in the near future.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    corecore